Microbial conversion of acetanilide to 2'-hydroxyacetanilide and 4'-hydroxyacetanilide.
Theriault, R J; Longfield, T H
1967-11-01
Approximately 700 cultures of various types were examined for their ability to hydroxylate acetanilide. The major product formed by unidentified Streptomyces species RJTS-539 was identified as 4'-hydroxyacetanilide (N-acetyl-p-aminophenol). This culture gave a peak yield of 405 mg per liter from 1,000 mg of acetanilide per liter. Considerably lower yields of 4'-hydroxyacetanilide were isolated from S. cinnamoneus NRRLB-1285. The major conversion product of acetanilide formed by Amanita muscaria F-6 was identified as 2'-hydroxyacetanilide, with a peak yield of 433 mg per liter from 1,000 mg per liter of substrate. A small amount of 4'-hydroxyacetanilide was also formed. Six other Streptomyces cultures formed small amounts of one or two products identical or similar to 2'-hydroxyacetanilide or 4'-hydroxyacetanilide as determined by thin-layer chromatography and ultraviolet spectra.
Microbial Conversion of Acetanilide to 2′-Hydroxyacetanilide and 4′-Hydroxyacetanilide
Theriault, Robert J.; Longfield, Thomas H.
1967-01-01
Approximately 700 cultures of various types were examined for their ability to hydroxylate acetanilide. The major product formed by unidentified Streptomyces species RJTS-539 was identified as 4′-hydroxyacetanilide (N-acetyl-p-aminophenol). This culture gave a peak yield of 405 mg per liter from 1,000 mg of acetanilide per liter. Considerably lower yields of 4′-hydroxyacetanilide were isolated from S. cinnamoneus NRRLB-1285. The major conversion product of acetanilide formed by Amanita muscaria F-6 was identified as 2′-hydroxyacetanilide, with a peak yield of 433 mg per liter from 1,000 mg per liter of substrate. A small amount of 4′-hydroxyacetanilide was also formed. Six other Streptomyces cultures formed small amounts of one or two products identical or similar to 2′-hydroxyacetanilide or 4′-hydroxyacetanilide as determined by thin-layer chromatography and ultraviolet spectra. Images Fig. 1 Fig. 2 PMID:16349759
Nitrification Enhancement through pH Control with Rotating Biological Contactors
1981-09-01
source for growth (24). The generation of bactsrial biomass per unit of amonia oxidized, or yield, is quite small. The total yield for both Nitrosomonas...6.7 had the lowest performance level throughout most of the 69-day Qtudy and also developed the l.east amount of biofilm. The maxim- amonia -oxidition
Improvement of high-yield pulp properties by using a small amount of bleached wheat straw pulp.
Zhang, Hongjie; He, Zhibin; Ni, Yonghao
2011-02-01
In this study, the potential of using bleached wheat straw pulp (BWSP) was explored to improve the tensile strength of the high-yield pulp (HYP) while preserving its high bulk property. The results showed that with the addition of 5-10% refined BWSP, the HYP tensile strength can be increased by about 10-20% without sacrificing the bulk. Similar results were obtained by adding refined BWSP into a mixed furnish of bleached kraft pulps (BKPs) and HYP. The explanation was that micro fines from refined BWSP can act as binders to improve the HYP interfiber bonding, as a result, the HYP tensile strength can be improved by using a small amount of BWSP, while the HYP bulk is not significantly affected. Copyright © 2010 Elsevier Ltd. All rights reserved.
Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine.
Wheeler, Tobias D; Zeng, Dexing; Desai, Amit V; Önal, Birce; Reichert, David E; Kenis, Paul J A
2010-12-21
Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (<5%) upon repeated use. A direct comparison between the radiolabeling yields obtained using the microreactor and conventional radiolabeling methods shows that improved mixing and heat transfer in the microreactor leads to higher yields for identical reaction conditions. Most importantly, by using small volumes (~10 µL) of concentrated solutions of reagents (>50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.
Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan's atmosphere
NASA Astrophysics Data System (ADS)
Tran, Buu N.; Joseph, Jeffrey C.; Force, Michael; Briggs, Robert G.; Vuitton, Veronique; Ferris, James P.
2005-09-01
Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.
Ring-Opening Cycloaddition of Aziridines to Ketenimines.
Maas, Heiko; Bensimon, Corinne; Alper, Howard
1998-01-09
The Lewis acid-catalyzed addition of aziridines to ketenimines gave substituted pyrrolidonimines in 47-87% yields. The hard Lewis acid LiClO(4) proved to be superior to the soft [(PhCN)(2)PdCl(2)], affording higher yields under milder conditions. The reaction is regioselective and occurs with complete stereoselectivity using [(PhCN)(2)PdCl(2)] and with a small amount of racemization in the case of LiClO(4).
Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals.
Hassanzadeh, Salman; Aminlashgari, Nina; Hakkarainen, Minna
2014-11-04
Exceptionally high cellulose liquefaction yields, up to 87% as calculated from the amount of solid residue, were obtained under mild conditions by utilizing the synergistic effect of microwave radiation and acid catalysis. The effect of processing conditions on degradation products was fingerprinted by rapid laser desorption ionization-mass spectrometry (LDI-MS) method. The reaction was chemo-tunable, enabling production of glucose (Glc) or levulinic acid (LeA) at significantly high selectivity and yields, the relative molar yields being up to 50 and 69%, respectively. A turning point from pure depolymerization to glucose to further degradation to levulinic acid and formic acid was observed at approximately 50% liquefaction or above 140 °C. This was accompanied by the formation of small amounts of solid spherical carbonized residues. The reaction was monitored by multiple analytical techniques. The high yields were connected to the ability of the process to break the strong secondary interactions in cellulose. The developed method has great potential for future production of green platform chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kinetics of cyclopentene isomerization at 1200 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, D.K.; Baldwin, J.E.; Cianciosi, S.J.
1990-09-20
This study was conducted to determine the rate of intramolecular degenerate rearrangement of cyclopentene (CP), presumably via reversible conversion to vinylcyclopropane (VCP). Cyclopentene-3-{sup 13}C was synthesized and heated to 1,200 K in a single-pulse shock tube and then analyzed by {sup 13}C NMR to ascertain the extent of migration of the {sup 13}C label to the 4-position. The very small amounts of migration observed were consistent with log k(CP {yields} VCP) = 15.7 {minus} (16,000/T). This rate constant for CP {yields} VCP is too small to account for the previously reported evidence of multiple channels for H{sub 2} elimination frommore » CP.« less
NASA Astrophysics Data System (ADS)
Kang, Dong-Hyun; Kim, Kyongtae; Kim, Yong-Jun
2018-02-01
Microfluidic devices for plasma extraction are popular because they offer the advantage of smaller reagent consumption compared to conventional centrifugations. The plasma yield (volume percentage of plasma that can be extracted) is an important factor for diagnoses in microdevices with small reagent consumptions. However, recently designed microfluidic devices tend to have a low plasma yield because they have been optimized to improve the purity of extracted plasma. Thus, these devices require large amounts of reagents, and this complexity has eliminated the advantage of microfluidic devices that can operate with only small amounts of reagents. We therefore propose a continuous, real-time, blood plasma separation device, for plasma extraction rate enhancements. Moreover, a blood plasma separation device was designed to achieve improved plasma yields with high-purity efficiency. To obtain a high plasma yield, microstructures were placed on the bottom side of the channel to increase the concentration of blood cells. Plasma separation was then accomplished via microfluidic networks based on the Zweifach-Fung effect. The proposed device was fabricated based on the polydimethylsiloxane molding process using the SU-8 microfluidic channel for the fabrication of the mold and bottom structures. Human blood diluted in a phosphate buffered saline solution (25% hematocrit) was injected into the inlet of the device. The purity efficiencies were approximately equal to 96% with a maximum of 96.75% at a flow rate of 2 µl min-1, while the plasma yield was approximately 59% with a maximum of 59.92% at a flow rate of 4 µl min-1. Compared to results obtained using other devices, our proposed device could obtain comparable or higher plasma purity and a high plasma yield.
Minimizing the amount of nitromethane in palladium-catalyzed cross-coupling with aryl halides.
Walvoord, Ryan R; Kozlowski, Marisa C
2013-09-06
A method for the formation of arylnitromethanes is described that employs readily available aryl halides or triflates and small amounts of nitromethane in a dioxane solvent, thereby reducing the hazards associated with this reagent. Specifically, 2-10 equiv (1-5% v/v) of nitromethane can be employed in comparison to prior work that used nitromethane as solvent (185 equiv). The present transformation provides high yields at relatively low temperatures and tolerates an array of functionality, including heterocycles and substantial steric encumbrance.
Io - Ground-based observations of hot spots
NASA Technical Reports Server (NTRS)
Sinton, W. M.; Tokunaga, A. T.; Becklin, E. E.; Gatley, I.; Lee, T. J.; Lonsdale, C. J.
1980-01-01
Observations of Io in eclipse demonstrate conclusively that Io emits substantial amounts of radiation at 4.8 and 3.8 micrometers and a measurable amount at 2.2 micrometers. Color temperatures derived from the observations fit blackbody emission at 560 K. The required source area to yield the observed 4.8-micrometer flux is approximately 5 x 10 to the -5th of the disk of Io and is most likely comprised of small hot spots in the vicinity of the volcanoes.
Richard B. Chandler; David I. King; Raul Raudales; Richard Trubey; Carlin Chandler; Víctor Julio Arce Chávez
2013-01-01
Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land-sharing agricultural practices incorporate elements of native...
Enhanced sequencing coverage with digital droplet multiple displacement amplification
Sidore, Angus M.; Lan, Freeman; Lim, Shaun W.; Abate, Adam R.
2016-01-01
Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing. PMID:26704978
Hearn, Henry J.; Seliokas, Zenonas V.; Andersen, Arthur A.
1969-01-01
A minority of stable large-plaque virus increased proportionally in stored unstable attenuated (9t) Venezuelan equine encephalomyelitis virus populations. L-cell-grown progeny (9t2) of stored 9t showed large amounts of large-plaque virus and increased virulence. Small-plaque virus inhibited large-plaque virus but not the reverse. Serial passage of small-plaque virus from 9t2 yielded a strain (20t) that was more attenuated than 9t. PMID:5823235
Model for fluorescence quenching in light harvesting complex II in different aggregation states.
Andreeva, Atanaska; Abarova, Silvia; Stoitchkova, Katerina; Busheva, Mira
2009-02-01
Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states, is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles, the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased, and their singlet excited-state lifetimes steeply decrease.
Factors affecting alkali jarosite precipitation
NASA Astrophysics Data System (ADS)
Dutrizac, J. E.
1983-12-01
Several factors affecting the precipitation of the alkali jarosites (sodium jarosite, potassium jarosite, rubidium jarosite, and ammonium jarosite) have been studied systematically using sodium jarosite as the model. The pH of the reacting solution exercises a major influence on the amount of jarosite formed, but has little effect on the composition of the washed product. Higher temperatures significantly increase the yield and slightly raise the alkali content of the jarosites. The yield and alkali content both increase greatly with the alkali concentration to about twice the stoichiometric requirement but, thereafter, remain nearly constant. At 97 °C, the amount of product increases with longer retention times to about 15 hours, but more prolonged reaction times are without significant effect on the amount or composition of the jarosite. Factors such as the presence of seed or ionic strength have little effect on the yield or jarosite composition. The amount of precipitate augments directly as the iron concentration of the solution increases, but the product composition is nearly independent of this variable. A significant degree of agitation is necessary to suspend the product and to prevent the jarosite from coating the apparatus with correspondingly small yields. Once the product is adequately suspended, however, further agitation is without significant effect. The partitioning of alkali ions during jarosite precipitation was ascertained for K:Na, Na:NH4, K:NH4, and K:Rb. Potassium jarosite is the most stable of the alkali jarosites and the stability falls systematically for lighter or heavier congeners; ammonium jarosite is slightly more stable than the sodium analogue. Complete solid solubility among the various alkali jarosite-type compounds was established.
Minimizing the Amount of Nitromethane in Palladium Catalyzed Cross Coupling with Aryl Halides
Walvoord, Ryan R.; Kozlowski, Marisa C.
2013-01-01
A method for the formation of arylnitromethanes is described that employs readily available aryl halides or triflates and small amounts of nitromethane in a dioxane solvent, thereby reducing the hazards associated with this reagent. Specifically, 2–10 equivalents (1–5% v/v) of nitromethane can be employed in comparison to prior work that used nitromethane as solvent (185 equivalents). The present transformation provides high yields at relatively low temperatures and tolerates an array of functionality, including heterocycles and substantial steric encumbrance. PMID:23895411
Miandad, R; Barakat, M A; Rehan, M; Aburiazaiza, A S; Ismail, I M I; Nizami, A S
2017-11-01
This study aims to examine the catalytic pyrolysis of various plastic wastes in the presence of natural and synthetic zeolite catalysts. A small pilot scale reactor was commissioned to carry out the catalytic pyrolysis of polystyrene (PS), polypropylene (PP), polyethylene (PE) and their mixtures in different ratios at 450°C and 75min. PS plastic waste resulted in the highest liquid oil yield of 54% using natural zeolite and 50% using synthetic zeolite catalysts. Mixing of PS with other plastic wastes lowered the liquid oil yield whereas all mixtures of PP and PE resulted in higher liquid oil yield than the individual plastic feedstocks using both catalysts. The GC-MS analysis revealed that the pyrolysis liquid oils from all samples mainly consisted of aromatic hydrocarbons with a few aliphatic hydrocarbon compounds. The types and amounts of different compounds present in liquid oils vary with some common compounds such as styrene, ethylbenzene, benzene, azulene, naphthalene, and toluene. The FT-IR data also confirmed that liquid oil contained mostly aromatic compounds with some alkanes, alkenes and small amounts of phenol group. The produced liquid oils have high heating values (HHV) of 40.2-45MJ/kg, which are similar to conventional diesel. The liquid oil has potential to be used as an alternative source of energy or fuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Extraction and labeling methods for microarrays using small amounts of plant tissue.
Stimpson, Alexander J; Pereira, Rhea S; Kiss, John Z; Correll, Melanie J
2009-03-01
Procedures were developed to maximize the yield of high-quality RNA from small amounts of plant biomass for microarrays. Two disruption techniques (bead milling and pestle and mortar) were compared for the yield and the quality of RNA extracted from 1-week-old Arabidopsis thaliana seedlings (approximately 0.5-30 mg total biomass). The pestle and mortar method of extraction showed enhanced RNA quality at the smaller biomass samples compared with the bead milling technique, although the quality in the bead milling could be improved with additional cooling steps. The RNA extracted from the pestle and mortar technique was further tested to determine if the small quantity of RNA (500 ng-7 microg) was appropriate for microarray analyses. A new method of low-quantity RNA labeling for microarrays (NuGEN Technologies, Inc.) was used on five 7-day-old seedlings (approximately 2.5 mg fresh weight total) of Arabidopsis that were grown in the dark and exposed to 1 h of red light or continued dark. Microarray analyses were performed on a small plant sample (five seedlings; approximately 2.5 mg) using these methods and compared with extractions performed with larger biomass samples (approximately 500 roots). Many well-known light-regulated genes between the small plant samples and the larger biomass samples overlapped in expression changes, and the relative expression levels of selected genes were confirmed with quantitative real-time polymerase chain reaction, suggesting that these methods can be used for plant experiments where the biomass is extremely limited (i.e. spaceflight studies).
Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.
NASA Astrophysics Data System (ADS)
Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.
2017-12-01
This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa
Polarized internal target apparatus
Holt, Roy J.
1986-01-01
A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.
Impact of butyric acid on butanol formation by Clostridium pasteurianum.
Regestein, Lars; Doerr, Eric Will; Staaden, Antje; Rehmann, Lars
2015-11-01
The butanol yield of the classic fermentative acetone-butanol-ethanol (ABE) process has been enhanced in the past decades through the development of better strains and advanced process design. Nevertheless, by-product formation and the incomplete conversion of intermediates still decrease the butanol yield. This study demonstrates the potential of increasing the butanol yield from glycerol though the addition of small amounts of butyric acid. The impact of butyric acid was investigated in a 7L stirred tank reactor. The results of this study show the positive impact of butyric acid on butanol yield under pH controlled conditions and the metabolic stages were monitored via online measurement of carbon dioxide formation, pH value and redox potential. Butyric acid could significantly increase the butanol yield at low pH values if sufficient quantities of primary carbon source (glycerol) were present. Copyright © 2015 Elsevier Ltd. All rights reserved.
1981-01-01
The problem of determining small but significant amounts of carbohydrates, in purified proteins, has been studied using the membrane protein, cytochrome b5. A newly developed method that involves direct gas chromatography-mass spectrometry of sugars obtained by hydrolysis of proteins purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) allows the identification and determination of small amounts of carbohydrates (e.g., 20 micrograms of glycoprotein containing a minimum of 0.1% monosaccharide), even in the presence of relatively high amounts of impurities. Application of this method to cytochrome b5 fragments obtained by tryptic digestion from rat liver microsomes and purified by combined gel filtration and ion exchange chromatography, followed by SDS PAGE, has consistently yielded values below 0.07 mol of the individual sugars and aminosugars per mole cytochrome b5. It is concluded that cytochrome b5, at least its trypsin-released major amino- terminal fragment, is not constitutively glycosylated. PMID:7251667
Water resources inventory of Connecticut Part 8: Quinnipiac River basin
Mazzaferro, David L.; Handman, Elinor H.; Thomas, Mendall P.
1978-01-01
The Quinnipiac River basin area in southcentral Connecticut covers 363 square miles, and includes all drainage basins that enter Long Island Sound from the Branford to the Wepawaug Rivers. Its population in 1970 was estimated at 535,000. Precipitation averages 47 inches per year and provides an abundant supply of water. Twenty-one inches returns to the atmosphere as evapotranspiration; the remainder flows directly to streams or percolates to the water table and discharges to Long Island Sound. Small amounts of water are exported from the basin by the New Britain Water Department, and small amounts are imported to the basin by the New Haven Water Company. The amount of water that can be developed at a given place depends upon precipitation, variability of streamflow, hydraulic properties and areal extent of the aquifers, and hydraulic connection between the aquifers and major streams. The quality of the water is determined by the physical environment and the effects of man. Stratified drift is the only aquifer capable of large sustained yields of water to individual wells. Yields of 64 screened wells tapping stratified drift range from 17 to 2,000 gpm (gallons per minute); their median yield is 500 gpm. Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and commonly are inadequate during dry periods. Till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire report area and include sedimentary, igneous, and metamorphic rock types. These aquifers supply small but reliable quantities of water to wells throughout the basin and are the chief source for many nonurban homes and farms. About 90 percent of the wells tapping bedrock yield at least 2 pgm, and much larger yields are occasionally reported. Maximum well yields of 305 gpm for sedimentary, 75 gpm for igneous, and 200 gpm for metamorphic bedrock have been reported. Water potentially available from stratified drift was estimated on the basis of hydraulic characteristics of the aquifers and evaluation of natural and induced recharge. Long-term yields estimated for 14 favorable areas of stratified drift range from 0.8 to 16.1 mgd (million gallons per day), but detailed verification studies are needed before development. The natural quality of water in the report area is good. The water is generally low in dissolved solid and is soft to moderately hard. Surface water is less mineralized than ground water, especially during high flow when it is primarily surface runoff. A median dissolved-solids concentration of 117 mg/l (milligrams per liter) and a median hardness of 58 mg/l was determined for water samples collected at 20 sites on 16 streams during high flow. A median dissolved-solids concentration of 146 mg/l and a median hardness of 82 mg/l was determined for samples collected at the same sites during low flow. In contrast water from 130 wells had a median dissolved-solids concentration of 188 mg/l and a median hardness of 110 mg/l. Iron and manganese occur in objectionable concentrations in parts of the report area, particularly in water from streams draining swamps and in water from aquifers rich in iron- and manganese-bearing minerals. Concentrations of iron in excess of 0.3 mg/l were found in 40 percent of the high-streamflow samples, 59 percent of the low-streamflow samples and 20 percent of the ground-water samples. Human activities have modified the quality of water in much of the basin. Wide and erratic fluctuations in concentration of dissolved solids in streams, high bacterial content of the Quinnipiac River, and locally high nitrate and chloride concentrations in ground water are evidence of man's influence. Streams, wetlands, and some aquifers along the southern boundary of the basin contain salty water. Overpumping has caused extensive saltwater intrusion in aquifers in the southern and eastern parts of New Haven. The total amount of fresh water used in the area during 1970 is estimated at 35,710 million gallons, or 183 gallons per day per capita. Public water-supply systems met the domestic requirements of about 90 percent of the population; all the systems supplied water that met the drinking water standards of the Connecticut Department of Health.
Iwahama; Yoshino; Keitoku; Sakaguchi; Ishii
2000-10-06
Highly efficient catalytic oxidation of alcohols with molecular oxygen by N-hydroxyphthalimide (NHPI) combined with a Co species was developed. The oxidation of 2-octanol in the presence of catalytic amounts of NHPI and Co(OAc)2 under atmospheric dioxygen in AcOEt at 70 degrees C gave 2-octanone in 93% yield. The oxidation was significantly enhanced by adding a small amount of benzoic acid to proceed smoothly even at room temperature. Primary alcohols were oxidized by NHPI in the absence of any metal catalyst to form the corresponding carboxylic acids in good yields. In the oxidation of terminal vic-diols such as 1,2-butanediol, carbon-carbon bond cleavage was induced to give one carbon less carboxylic acids such as propionic acid, while internal vic-diols were selectively oxidized to 1,2-diketones.
NASA Technical Reports Server (NTRS)
Jayanty, R. K. M.; Simonaitis, R.; Heicklen, J.
1976-01-01
Ammonia (NH3) was photolyzed at 213.9 nm in the presence of NO2 at 25 C in order to study the reactions of NH2 with NO2. The products included NO, with a quantum yield of 1.0. The other measured products of the reaction were N2 and N2O with respective quantum yields of 0.94 plus or minus 0.10 and 0.3 in the presence of small amounts of He and 0.65 plus or minus 0.15 and 0.13 in the presence of a large excess of He. The quantum yield for NO2 consumption was 6.0 plus or minus 2.0 in the absence of He. These results are explained in terms of various reactions.
NASA Astrophysics Data System (ADS)
Al Samarai, Imen; Deligny, Olivier; Rosado, Jaime
2016-10-01
A small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield in the UV range is estimated based on an approach previously developed in the framework of the radio-detection of showers in the gigahertz frequency range. First, this approach is shown to provide an estimate of the main contribution of the fluorescence yield due to the de-excitation of the C 3Πu electronic level of nitrogen molecules to the B 3Πg one amounting to Y[ 337 ] =(6.05 ± 1.50) MeV-1 at 800 hPa pressure and 293 K temperature conditions, which compares well to previous dedicated works and to experimental results. Then, under the same pressure and temperature conditions, the fluorescence yield induced by molecular Bremsstrahlung radiation is found to be Y[330-400]MBR = 0.10 MeV-1 in the wavelength range of interest for the air-fluorescence detectors used to detect extensive air showers induced in the atmosphere by ultra-high energy cosmic rays. This means that out of ≃175 photons with wavelength between 330 and 400 nm detected by fluorescence detectors, one of them has been produced by molecular Bremsstrahlung radiation. Although small, this contribution is not negligible in regards to the total budget of systematic uncertainties when considering the absolute energy scale of fluorescence detectors.
SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yingyong; Jin, Guoqiang; Tong, Xili
2011-11-15
Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The hydrothermal stability of the dopped materials is also bettermore » than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.« less
Polarized internal target apparatus
Holt, R.J.
1984-10-10
A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.
Shi, Kan; Song, Da; Chen, Gong; Pistolozzi, Marco; Wu, Zhenqiang; Quan, Lei
2015-08-01
Submerged fermentations of Monascus anka were performed with different nitrogen sources at different pH in 3 L bioreactors. The results revealed that the Monascus pigments dominated by different color components (yellow pigments, orange pigments or red pigments) could be selectively produced through pH control and nitrogen source selection. A large amount of intracellular pigments dominated by orange pigments and a small amount of water-soluble extracellular yellow pigments were produced at low pH (pH 2.5 and 4.0), independently of the nitrogen source employed. At higher pH (pH 6.5), the role of the nitrogen source became more significant. In particular, when ammonium sulfate was used as nitrogen source, the intracellular pigments were dominated by red pigments with a small amount of yellow pigments. Conversely, when peptone was used, intracellular pigments were dominated by yellow pigments with a few red pigments derivatives. Neither the presence of peptone nor ammonium sulfate promoted the production of intracellular orange pigments while extracellular pigments with an orangish red color were observed in both cases, with a higher yield when peptone was used. Two-stage pH control fermentation was then performed to improve desirable pigments yield and further investigate the effect of pH and nitrogen sources on pigments composition. These results provide a useful strategy to produce Monascus pigments with different composition and different color characteristics. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Foster, Guy M.; Lee, Casey J.; Ziegler, Andrew C.
2012-01-01
The U.S. Geological Survey, in cooperation with the Kansas Water Office, investigated sediment transport to and from three small impoundments (average surface area of 0.1 to 0.8 square miles) in northeast Kansas during March 2009 through September 2011. Streamgages and continuous turbidity sensors were operated upstream and downstream from Atchison County, Banner Creek, and Centralia Lakes to study the effect of varied watershed characteristics and agricultural practices on sediment transport in small watersheds in northeast Kansas. Atchison County Lake is located in a predominantly agricultural basin of row crops, with wide riparian buffers along streams, a substantial amount of tile drainage, and numerous small impoundments (less than 0.05 square miles; hereafter referred to as “ponds”). Banner Creek Lake is a predominantly grassland basin with numerous small ponds located in the watershed, and wide riparian buffers along streams. Centralia Lake is a predominantly agricultural basin of row crops with few ponds, few riparian buffers along streams, and minimal tile drainage. Upstream from Atchison County, Banner Creek, and Centralia Lakes 24, 38, and 32 percent, respectively, of the total load was transported during less than 0.1 percent (approximately 0.9 days) of the time. Despite less streamflow in 2011, larger sediment loads during that year indicate that not all storm events transport the same amount of sediment; larger, extreme storms during the spring may transport much larger sediment loads in small Kansas watersheds. Annual sediment yields were 360, 400, and 970 tons per square mile per year at Atchison County, Banner, and Centralia Lake watersheds, respectively, which were less than estimated yields for this area of Kansas (between 2,000 and 5,000 tons per square mile per year). Although Centralia and Atchison County Lakes had similar percentages of agricultural land use, mean annual sediment yields upstream from Centralia Lake were about 2.7 times those at Atchison County or Banner Creek Lakes. These data indicate larger yields of sediment from watersheds with row crops and those with fewer small ponds, and smaller yields in watersheds which are primarily grassland, or agricultural with substantial tile drainage and riparian buffers along streams. These results also indicated that a cultivated watershed can produce yields similar to those observed under the assumed reference (or natural) condition. Selected small ponds were studied in the Atchison County Lake watershed to characterize the role of small ponds in sediment trapping. Studied ponds trapped about 8 percent of the sediment upstream from the sediment-sampling site. When these results were extrapolated to the other ponds in the watershed, differences in the extent of these ponds was not the primary factor affecting differences in yields among the three watersheds. However, the selected small ponds were both 45 years old at the time of this study, and have reduced capacity because of being filled in with sediments. Additionally, trapping efficiency of these small ponds decreased over five observed storms, indicating that processes that suspended or resuspended sediments in these shallow ponds, such as wind and waves, affected their trapping efficiencies. While small ponds trapped sediments in small storms, they could be a source of sediment in larger or more closely spaced storm events. Channel slope was similar at all three watersheds, 0.40, 0.46, and 0.31 percent at Atchison County, Banner Creek, and Centralia Lake watersheds, respectively. Other factors, such as increased bank and stream erosion, differences in tile drainage, extent of grassland, or riparian buffers, could be the predominant factors affecting sediment yields from these basins. These results show that reference-like sediment yields may be observed in heavily agricultural watersheds through a combination of field-scale management activities and stream channel protection. When computing loads using published erosion rates obtained by single-point survey methodology, streambank contributions from the main stem of Banner Creek are three times more than the sediment load observed by this study at the sediment sampling site at Banner Creek, 2.6 times more than the sediment load observed by this study at the sediment sampling site at Clear Creek (upstream from Atchison County Lake), and are 22 percent of the load observed by this study at the sediment sampling site at Black Vermillion River above Centralia Lake. Comparisons of study sites to similarly sized urban and urbanizing watersheds in Johnson County, Kansas indicated that sediment yields from the Centralia Lake watershed were similar to those in construction-affected watersheds, while much smaller sediment yields in the Atchison County and Banner Creek watersheds were comparable to stable, heavily urbanized watersheds. Comparisons of study sites to larger watersheds upstream from Tuttle Creek Lake indicate the Black Vermillion River watershed continues to have high sediment yields despite 98 percent of sediment from the Centralia watershed (a headwater of the Black Vermillion River) being trapped in Centralia Lake. Estimated trapping efficiencies for the larger watershed lakes indicated that Banner Creek and Centralia Lakes trapped 98 percent of incoming sediment, whereas Atchison County Lake trapped 72 percent of incoming sediment during the 3-year study period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bach, G.; Moskowitz, S.M.; Tieu, P.T.
1993-08-01
The mutations underlying Hurler syndrome (mucopolysaccharidosis IH) in Druze and Muslim Israeli Arab patients have been characterized. Four alleles were identified, using a combination of (a) PCR amplification of reverse-transcribed RNA or genomic DNA segments, (b) cycle sequencing of PCR products, and (c) restriction-enzyme analysis. One allele has two amino acid substitutions, Gly[sub 409][yields]Arg in exon 9 and Ter[yields]Cys in exon 14. The other three alleles have mutations in exon 2 (Tyr[sub 64][yields]Ter), exon 7 (Gln[sub 310][yields]Ter), or exon 8 (Thr[sub 366][yields]Pro). Transfection of mutagenized cDNAs into Cos-1 cells showed that two missense mutations, Thr[sub 366][yields]Pro and Ter[yields]Cys, permitted themore » expression of only trace amounts of [alpha]-L-iduronidase activity, whereas Gly[sub 409][yields]Arg permitted the expression of 60% as much enzyme as did the normal cDNA. The nonsense mutations were associated with abnormalities of RNA processing: (1) both a very low level of mRNA and skipping of exon 2 for Tyr[sub 64][yields]Ter and (2) utilization of a cryptic splice site for Gln[sub 310][yields]Ter. In all instances, the probands were found homozygous, and the parents heterozygous, for the mutant alleles, as anticipated from the consanguinity in each family. The two-mutation allele was identified in a family from Gaza; the other three alleles were found in seven families, five of them Druze, residing in a very small area of northern Israel. Since such clustering suggests a classic founder effect, the presence of three mutant alleles of the IDUA gene was unexpected. 28 refs., 4 figs., 3 tabs.« less
Reducing uncertainties for short lived cumulative fission product yields
Stave, Sean; Prinke, Amanda; Greenwood, Larry; ...
2015-09-05
Uncertainties associated with short lived (halflives less than 1 day) fission product yields listed in databases such as the National Nuclear Data Center’s ENDF/B-VII are large enough for certain isotopes to provide an opportunity for new precision measurements to offer significant uncertainty reductions. A series of experiments has begun where small samples of 235U are irradiated with a pulsed, fission neutron spectrum at the Nevada National Security Site and placed between two broad-energy germanium detectors. The amount of various isotopes present immediately following the irradiation can be determined given the total counts and the calibrated properties of the detector system.more » The uncertainty on the fission yields for multiple isotopes has been reduced by nearly an order of magnitude.« less
Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions
NASA Astrophysics Data System (ADS)
Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.
2018-05-01
The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.
Kang, Sumin; Xiao, Lingping; Meng, Lingyan; Zhang, Xueming; Sun, Runcang
2012-11-16
To investigate the potential for the utilization of cotton stalk, ammonia hydrothermal treatment was applied to fractionate the samples into aqueous ammonia-soluble and ammonia-insoluble portions. The ammonia-soluble portion was purified to yield lignin fractions. The lignin fractions obtained were characterized by wet chemistry (carbohydrate analysis) and spectroscopy methods (FT-IR, 13C and 1H-13C HSQC NMR spectroscopy) as well as gel permeation chromatography (GPC). The results showed that the cotton stalk lignin fractions were almost absent of neutral sugars (0.43%-1.29%) and had relatively low average molecular weights (1255-1746 g/mol). The lignin fractions belonged to typical G-S lignin, which was composed predominately of G-type units (59%) and noticeable amounts of S-type units (40%) together with a small amount of H-type units (~1%). Furthermore, the ammonia-extractable lignin fractions were mainly composed of β-0-4' inter-unit linkages (75.6%), and small quantities of β-β' (12.2%), together with lower amounts of β-5' carbon-carbon linkages (7.4%) and p-hydroxycinnamyl alcohol end groups.
Ejection of sodium from sodium sulfide by the sputtering of the surface of Io
NASA Technical Reports Server (NTRS)
Chrisey, D. B.; Johnson, R. E.; Boring, J. W.; Phipps, J. A.
1988-01-01
The mechanism by which Na is removed from the surface of Io prior to its injection into the plasma torus is investigated experimentally. Na2S films of thickness 3-8 microns were produced by spray coating an Ni substrate in a dry N2 atmosphere and subjected to sputtering by 34-keV Ar(+), Ne(+), Kr(+), or Xe(+) ions up to total doses of about 5 x 10 to the 18th ions/sq cm. The sputtering yields and mass spectra are found to be consistent with ejection of only small amounts of atomic Na and somewhat larger amounts of Na-containing molecules. It is concluded that the amount of Na ejected by magnetospheric-ion sputtering of Na2S would be insufficient to account for the amounts observed in the Io neutral cloud. A scenario involving sputtering of larger polysulfide molecules is considered.
Thermal and catalytic degradation of high and low density polyethylene into fuel oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uddin, Azhar; Koizumi, Kazuo; Sakata, Yusaku
1996-12-31
The degradation of four different types of polyethylene (PE) namely high density PE (HDPE), low density PE (LDPE), linear low density PE (LLDPE), and cross-linked PE (XLPE) was carried out at 430 {degrees}C by batch operation using silica-alumina as a solid acid catalyst and thermally without any catalyst. For thermal degradation, both HDPE and XLPE produced significant amount of wax-like compounds and the yield of liquid products were lower than that of LDPE and LLDPE. LDPE and LLDPE also produced small amount of wax-like compounds. Thus the structure of the degrading polymers influenced the product yields. The liquid products frommore » thermal degradation were broadly distributed in the carbon fraction of n-C{sub 5} to n-C{sub 25} (boiling point range, 36-405 C). With silica-alumina, the polyethylenes were converted to liquid products with high yields (77-83 wt%) and without any wax production. The liquid products were distributed in the range of n-C{sub 5} to n-C{sub 20} (Mostly C{sub 5}-C{sub 12}). Solid acid catalyst indiscriminately degraded the various types of polyethylene into light fuel oil. 5 refs., 4 figs., 1 tab.« less
Hydrogen peroxide kinetics in water radiolysis
NASA Astrophysics Data System (ADS)
Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.
2018-04-01
The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.
Mysteries of TOPSe revealed: insights into quantum dot nucleation.
Evans, Christopher M; Evans, Meagan E; Krauss, Todd D
2010-08-18
We have investigated the reaction mechanism responsible for QD nucleation using optical absorption and nuclear magnetic resonance spectroscopies. For typical II-VI and IV-VI quantum dot (QD) syntheses, pure tertiary phosphine selenide sources (e.g., trioctylphosphine selenide (TOPSe)) were surprisingly found to be unreactive with metal carboxylates and incapable of yielding QDs. Rather, small quantities of secondary phosphines, which are impurities in tertiary phosphines, are entirely responsible for the nucleation of QDs; their low concentrations account for poor synthetic conversion yields. QD yields increase to nearly quantitative levels when replacing TOPSe with a stoiciometric amount of a secondary phosphine chalcogenide such as diphenylphosphine selenide. Based on our observations, we have proposed potential monomer identities, reaction pathways, and transition states and believe this mechanism to be universal to all II-VI and IV-VI QDs synthesized using phosphine based methods.
Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation
Evans, Christopher M.; Evans, Meagan E.
2010-01-01
We have investigated the reaction mechanism responsible for QD nucleation using optical absorption and nuclear magnetic resonance spectroscopies. For typical II-VI and IV-VI quantum dot (QD) syntheses, pure tertiary phosphine selenide sources (e.g. trioctylphosphine selenide (TOPSe)) were surprisingly found to be unreactive with metal carboxylates and incapable of yielding QDs. Rather, small quantities of secondary phosphines, which are impurities in tertiary phosphines, are entirely responsible for the nucleation of QDs; their low concentrations account for poor synthetic conversion yields. QD yields increase to nearly quantitative levels when replacing TOPSe with a stoiciometric amount of a secondary phosphine chalcogenide such as diphenylphosphine selenide. Based on our observations, we have proposed potential monomer identities, reaction pathways and transition states, and believe this mechanism to be universal to all II-VI and IV-VI QDs synthesized using phosphine based methods. PMID:20698646
Adhesion, friction, and deformation of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Buckley, Donald H.; Alterovitz, Samuel A.; Pouch, John J.; Liu, David C.
1987-01-01
The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.
Adhesion, friction and deformation of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Alterovitz, S. A.; Pouch, J. J.; Liu, D. C.
1987-01-01
The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.
A simplified field protocol for genetic sampling of birds using buccal swabs
Vilstrup, Julia T.; Mullins, Thomas D.; Miller, Mark P.; McDearman, Will; Walters, Jeffrey R.; Haig, Susan M.
2018-01-01
DNA sampling is an essential prerequisite for conducting population genetic studies. For many years, blood sampling has been the preferred method for obtaining DNA in birds because of their nucleated red blood cells. Nonetheless, use of buccal swabs has been gaining favor because they are less invasive yet still yield adequate amounts of DNA for amplifying mitochondrial and nuclear markers; however, buccal swab protocols often include steps (e.g., extended air-drying and storage under frozen conditions) not easily adapted to field settings. Furthermore, commercial extraction kits and swabs for buccal sampling can be expensive for large population studies. We therefore developed an efficient, cost-effective, and field-friendly protocol for sampling wild birds after comparing DNA yield among 3 inexpensive buccal swab types (2 with foam tips and 1 with a cotton tip). Extraction and amplification success was high (100% and 97.2% respectively) using inexpensive generic swabs. We found foam-tipped swabs provided higher DNA yields than cotton-tipped swabs. We further determined that omitting a drying step and storing swabs in Longmire buffer increased efficiency in the field while still yielding sufficient amounts of DNA for detailed population genetic studies using mitochondrial and nuclear markers. This new field protocol allows time- and cost-effective DNA sampling of juveniles or small-bodied birds for which drawing blood may cause excessive stress to birds and technicians alike.
An improved synthesis of 2,4,8,10-tetroxaspiro /5.5/ undecane /pentaerythritol diformal/
NASA Technical Reports Server (NTRS)
Poshkus, A. C.
1979-01-01
It is found that high yields of pentaerythritol diformal can be prepared in less than 10 minutes by heating a stirred mixture of pentaerythritol with a slight excess of paraformaldehyde up to about 120 C in the presence of catalic amounts of acid, but without any solvents or with only a small amount of water. The reaction was carried out in two stages: first by preparing the monoformal with a molar equivalent of paraformaldehyde in about five minutes, and then, after cooling to about 70 C, adding the remainder of paraformaldehyde in 1% excess, and heating to about 120 C for a total heating time of 10 minutes
O2 Herzberg State Reaction with N2: A Possible Source of Stratospheric N2O
NASA Technical Reports Server (NTRS)
Slanger, Tom G.; Copeland, Richard A.
1997-01-01
The goal of this one-year investigation was to determine whether N2O is formed in atmospherically significant quantities by the reaction of vibrationally excited levels of the O2((A3 Sigma(sub u)(sup +)) state with nitrogen. O2(A3 Sigma(sub u)(sup +)) is made throughout the upper stratosphere in considerable amounts by solar photoabsorption, and only a very small reactive yield is necessary for this mechanism to be a major N2O source. By long-term 245-252 nm irradiation of O2/N2 mixtures on- and off-resonance with absorption lines in the O2(A3 Sigma(sub u)(sup +) - X3 Sigma(sub g)(sup -)) transition, followed by N2O analysis by frequency-modulated diode laser absorption spectroscopy, we determined an upper limit for the N2O yield of the candidate reaction. This limit, 3 x 10(exp -5), eliminates O2(A3 Sigma(sub u)(sup +)) + N2 as a significant channel for the generation of stratospheric N2O. In further measurements, we established that N2O is stable under our photolysis conditions, showing that the small amounts of ozone generated from the reaction of O2(A) and O2 do not indirectly lead to destruction of N2O.
Nobre, C; Castro, C C; Hantson, A-L; Teixeira, J A; De Weireld, G; Rodrigues, L R
2016-01-20
Fructo-oligosaccharides (FOS) obtained by fermentation of sucrose may be purified at large-scale by continuous chromatography (Simulated Moving Bed: SMB). In order to improve the efficiency of the subsequent SMB purification, the optimization of the fermentative broth composition in salts and sugars was investigated. Fermentations conducted at reduced amount of salts, using Aureobasidium pullulans whole cells, yielded 0.63 ± 0.03 g of FOS per gram of initial sucrose. Additionally, a microbial treatment was proposed to reduce the amount of small saccharides in the mixture. Two approaches were evaluated, namely a co-culture of A. pullulans with Saccharomyces cerevisiae; and a two-step fermentation in which FOS were first synthesized by A. pullulans and then the small saccharides were metabolized by S. cerevisiae. Assays were performed in 100mL shaken flasks and further scaled-up to a 3 L working volume bioreactor. Fermentations in two-step were found to be more efficient than the co-culture ones. FOS were obtained with a purity of 81.6 ± 0.8% (w/w), on a dry weight basis, after the second-step fermentation with S. cerevisiae. The sucrose amount was reduced from 13.5 to 5.4% in total sugars, which suggests that FOS from this culture broth will be more efficiently separated by SMB. Copyright © 2015 Elsevier Ltd. All rights reserved.
Arriola, Kathy G; Oliveira, Andre S; Ma, Zhengxin X; Lean, Ian J; Giurcanu, Mihai C; Adesogan, Adegbola T
2017-06-01
The aim of this study was to use meta-analytical methods to estimate effects of adding exogenous fibrolytic enzymes (EFE) to dairy cow diets on their performance and to determine which factors affect the response. Fifteen studies with 17 experiments and 36 observations met the study selection criteria for inclusion in the meta-analysis. The effects were compared by using random-effect models to examine the raw mean difference (RMD) and standardized mean difference between EFE and control treatments after both were weighted with the inverse of the study variances. Heterogeneity sources evaluated by meta-regression included experimental duration, EFE type and application rate, form (liquid or solid), and method (application to the forage, concentrate, or total mixed ration). Only the cellulase-xylanase (C-X) enzymes had a substantial number of observations (n = 13 studies). Application of EFE, overall, did not affect dry matter intake, feed efficiency but tended to increase total-tract dry matter digestibility and neutral detergent fiber digestibility (NDFD) by relatively small amounts (1.36 and 2.30%, respectively, or <0.31 standard deviation units). Application of EFE increased yields of milk (0.83 kg/d), 3.5% fat-corrected milk (0.55 kg/d), milk protein (0.03 kg/d), and milk lactose (0.05 kg/d) by moderate to small amounts (<0.30 standard deviation units). Low heterogeneity (I 2 statistic <25%) was present for yields and concentrations of milk fat and protein and lactose yield. Moderate heterogeneity (I 2 = 25 to 50%) was detected for dry matter intake, milk yield, 3.5% fat-corrected milk, and feed efficiency (kg of milk/kg of dry matter intake), whereas high heterogeneity (I 2 > 50%) was detected for total-tract dry matter digestibility and NDFD. Milk production responses were higher for the C-X enzymes (RMD = 1.04 kg/d; 95% confidence interval: 0.33 to 1.74), but were still only moderate, about 0.35 standardized mean difference. A 24% numerical increase in the RMD resulting from examining only C-X enzymes instead of all enzymes (RMD = 1.04 vs. 0.83 kg/d) suggests that had more studies met the inclusion criteria, the C-X enzymes would have statistically increased the milk response relative to that for all enzymes. Increasing the EFE application rate had no effect on performance measures. Application of EFE to the total mixed ration improved only milk protein concentration, and application to the forage or concentrate had no effect. Applying EFE tended to increase dry matter digestibility and NDFD and increased milk yield by relatively small amounts, reflecting the variable response among EFE types. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Kang, Sumin; Xiao, Lingping; Meng, Lingyan; Zhang, Xueming; Sun, Runcang
2012-01-01
To investigate the potential for the utilization of cotton stalk, ammonia hydrothermal treatment was applied to fractionate the samples into aqueous ammonia-soluble and ammonia-insoluble portions. The ammonia-soluble portion was purified to yield lignin fractions. The lignin fractions obtained were characterized by wet chemistry (carbohydrate analysis) and spectroscopy methods (FT-IR, 13C and 1H-13C HSQC NMR spectroscopy) as well as gel permeation chromatography (GPC). The results showed that the cotton stalk lignin fractions were almost absent of neutral sugars (0.43%–1.29%) and had relatively low average molecular weights (1255–1746 g/mol). The lignin fractions belonged to typical G-S lignin, which was composed predominately of G-type units (59%) and noticeable amounts of S-type units (40%) together with a small amount of H-type units (~1%). Furthermore, the ammonia-extractable lignin fractions were mainly composed of β-O-4′ inter-unit linkages (75.6%), and small quantities of β-β′ (12.2%), together with lower amounts of β-5′ carbon-carbon linkages (7.4%) and p-hydroxycinnamyl alcohol end groups. PMID:23203120
Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability
NASA Technical Reports Server (NTRS)
Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos
2016-01-01
We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.
Selective etching of TiN over TaN and vice versa in chlorine-containing plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Hyungjoo; Zhu Weiye; Liu Lei
2013-05-15
Selectivity of etching between physical vapor-deposited TiN and TaN was studied in chlorine-containing plasmas, under isotropic etching conditions. Etching rates for blanket films were measured in-situ using optical emission of the N{sub 2} (C{sup 3}{Pi}{sub u}{yields}B{sup 3}{Pi}{sub g}) bandhead at 337 nm to determine the etching time, and transmission electron microscopy to determine the starting film thickness. The etching selectivity in Cl{sub 2}/He or HCl/He plasmas was poor (<2:1). There was a window of very high selectivity of etching TiN over TaN by adding small amounts (<1%) of O{sub 2} in the Cl{sub 2}/He plasma. Reverse selectivity (10:1 of TaNmore » etching over TiN) was observed when adding small amounts of O{sub 2} to the HCl/He plasma. Results are explained on the basis of the volatility of plausible reaction products.« less
Carbonaceous nanowire supports for polymer electrolyte membrane fuel cells
Garzon, Fernando H.; Wilson, Mahlon S.; Banham, Dustin; ...
2015-12-03
Here, carbohydrate-dye combinations were used to form ionically-linked soft templates for the formation of polypyrrole nanowire networks. High yields of nanostructured products were obtained using small amounts of low-cost carbohydrate and dye template materials, the majority of which remained encapsulated within the nanowires. Varying the concentration and the two-part ratio of the templates influenced the length and diameter of the nanofiber segments within the nanowire network. Pyrolysis of the nanowires yielded carbonaceous fibers containing nitrogen heteroatoms, as well as convoluted graphitic domains, well suited for supporting Pt nanoparticles. The resulting high density of nucleation sites enabled the formation of wellmore » dispersed, smaller Pt particles compared to commercial catalysts, despite significantly higher support surface loadings.« less
Diffusive tunneling for alleviating Knudsen-layer reactivity reduction under hydrodynamic mix
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; McDevitt, Chris; Guo, Zehua
2017-10-01
Hydrodynamic mix will produce small features for intermixed deuterium-tritium fuel and inert pusher materials. The geometrical characteristics of the mix feature have a large impact on Knudsen layer yield reduction. We considered two features. One is planar structure, and the other is fuel cells segmented by inert pusher material which can be represented by a spherical DT bubble enclosed by a pusher shell. The truly 3D fuel feature, the spherical bubble, has the largest degree of yield reduction, due to fast ions being lost in all directions. The planar fuel structure, which can be regarded as 1D features, has modest amount of potential for yield degradation. While the increasing yield reduction with increasing Knudsen number of the fuel region is straightforwardly anticipated, we also show, by a combination of direct simulation and simple model, that once the pusher materials is stretched sufficiently thin by hydrodynamic mix, the fast fuel ions diffusively tunnel through them with minimal energy loss, so the Knudsen layer yield reduction becomes alleviated. This yield recovery can occur in a chunk-mixed plasma, way before the far more stringent, asymptotic limit of an atomically homogenized fuel and pusher assembly. Work supported by LANL LDRD program.
Method and apparatus for optoacoustic spectroscopy
Amer, Nabil M.
1979-01-01
A method and apparatus that significantly increases the sensitivity and flexibility of laser optoacoustic spectroscopy, with reduced size. With the method, it no longer is necessary to limit the use of laser optoacoustic spectroscopy to species whose absorption must match available laser radiation. Instead, "doping" with a relatively small amount of an optically absorbing gas yields optoacoustic signatures of nonabsorbing materials (gases, liquids, solids, and aerosols), thus significantly increasing the sensitivity and flexibility of optoacoustic spectroscopy. Several applications of this method are demonstated and/or suggested.
Carbon dioxide reduction by the Bosch process
NASA Technical Reports Server (NTRS)
Manning, M. P.; Reid, R. C.
1975-01-01
Prototype units for carrying out the reduction of carbon dioxide to elementary carbon have been built and operated successfully. In some cases, however, startup difficulties have been reported. Moreover, the recycle reactor product has been reported to contain only small amounts of water and undesirably high yields of methane. This paper presents the results of the first phase of an experimental study that was carried out to define the mechanisms occurring in the reduction process. Conclusions are drawn and possible modifications to the present recycle process are suggested.
Zhang, Yitao; Wang, Hongyuan; Liu, Shen; Lei, Qiuliang; Liu, Jian; He, Jianqiang; Zhai, Limei; Ren, Tianzhi; Liu, Hongbin
2015-05-01
Identification of critical nitrogen (N) application rate can provide management supports for ensuring grain yield and reducing amount of nitrate leaching to ground water. A five-year (2008-2012) field lysimeter (1 m × 2 m × 1.2 m) experiment with three N treatments (0, 180 and 240 kg Nha(-1)) was conducted to quantify maize yields and amount of nitrate leaching from a Haplic Luvisol soil in the North China Plain. The experimental data were used to calibrate and validate the process-based model of Denitrification-Decomposition (DNDC). After this, the model was used to simulate maize yield production and amount of nitrate leaching under a series of N application rates and to identify critical N application rate based on acceptable yield and amount of nitrate leaching for this cropping system. The results of model calibration and validation indicated that the model could correctly simulate maize yield and amount of nitrate leaching, with satisfactory values of RMSE-observation standard deviation ratio, model efficiency and determination coefficient. The model simulations confirmed the measurements that N application increased maize yield compared with the control, but the high N rate (240 kg Nha(-1)) did not produce more yield than the low one (120 kg Nha(-1)), and that the amount of nitrate leaching increased with increasing N application rate. The simulation results suggested that the optimal N application rate was in a range between 150 and 240 kg ha(-1), which would keep the amount of nitrate leaching below 18.4 kg NO₃(-)-Nha(-1) and meanwhile maintain acceptable maize yield above 9410 kg ha(-1). Furthermore, 180 kg Nha(-1) produced the highest yields (9837 kg ha(-1)) and comparatively lower amount of nitrate leaching (10.0 kg NO₃(-)-Nha(-1)). This study will provide a valuable reference for determining optimal N application rate (or range) in other crop systems and regions in China. Copyright © 2015 Elsevier B.V. All rights reserved.
Chada Filho, Luiz Goncalves; Dias Pessoa, Mario; Sinclair, William C.
1966-01-01
The upper Capibaribe basin is the western three-fourths, approximately, of the valley of the river that empties into the Atlantic Ocean at Recife, the capital of the State of Pernambuco, Brazil. It is the part of the drainage basin that is within the Drought Polygon of northeast Brazil, and it totals about 5,400 square kilometers. It receives relatively abundant precipitation in terms of the annual average, yet is regarded as hot subhumid to semiarid because the precipitation is uneven from year to year and place to place. The dependable water supply, therefore, is small. The basin has water, which could be put to better use than at present, but the opportunities for augmenting the usable supply are not great. The streams are intermittent and therefore cannot be expected to fill surface reservoirs and to keep them filled. The ground-water reservoirs have small capacity--quickly filled and quickly drained. A rough estimate based on the records for 1964 suggests that, of 4,700 million cubic meters of precipitation in the upper Capibaribe basin, 2,700 million cubic meters (57 percent) left the basin as runoff and 2,000 million cubic meters {43 percent) went into underground storage or was evaporated or transpired. The bedrock of the upper Capibaribe basin is composed of granite, gneiss, schist, and other varieties of crystalline rocks, which have only insignificant primary permeability. They are permeable mainly where fractured. The principal fracture zones, fortunately, are in the valleys, where water accumulates and can feed into them, but the volume of fractured rock is small in relation to the basin as a whole. A well in a large water-filled fracture zone may yield up to 20,000 liters per hour, but the average well yields less than one-fourth this amount, and some wells yield none. The saprolite, or weathered rock, is many meters thick at some places especially in the eastern half of the upper Capibaribe basin. It contains water locally, but ordinarily will yield only small quantities to wells. The alluvium probably is the most productive aquifer in the basin, but is limited to narrow bands along the rivers that generally are no more than a few hundred meters wide and 5 meters thick. The alluvium contains variable amounts of silty sand capable of yielding small to moderate quantities of water to wells. Wells driven or dug into the alluvium could solve many small water problems. The chemical quality of the water in the upper Capibaribe basin ranges from good to bad and generally presents a major problem that cannot be solved solely by applying geological criteria. Mineralized water is widespread in the area, both in streams and underground, and .the choice of aquifers is small. All known aquifers contain, at one place or another, water that is mineralized, leaving no alternative for a natural supply of good-quality water. Although much of the available water is unsatisfactory for human consumption, it is generally acceptable for animals and therefore meets one of the principal water needs. Some of the ground water could be made potable by diluting it with rainwater, which could be collected during rainy seasons and temporarily stored in cisterns or reservoirs.
Viscoelastic love-type surface waves
Borcherdt, Roger D.
2008-01-01
The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.
Geology and ground-water resources of Waushara County, Wisconsin
Summers, William Kelly
1965-01-01
Abundant ground water for irrigation is available in the outwash deposits in western Waushara County, and many more large-capacity wells can be developed in these deposits without seriously lowering the water level. Pumping for irrigation temporarily lowers water levels in the vicinity of the wells but has not lowered regional water levels. Pumpage has probably intercepted and utilized some of the recharge that would have been rapidly discharged from the aquifer. Ground water is continuously being discharged to streams and to the atmosphere by evapotranspiration, but intermittent recharge from precipitation replaces the discharged water. Recharge and discharge are in approximate balance, maintaining about the same amount of ground water in storage. Further recharge to the aquifer is rapidly discharged to streams. The sandstones, till, and glaciolacustrine deposits in Waushara County generally yield small to moderate amounts of water to wells but do not produce enough water for irrigation ; recent alluvium may yield large quantities of water to wells. In general, the ground water is of good quality, except for hardness and local high-iron concentrations.
Ma, Shang-Yu; Yu, Zhen-Wen; Wang, Dong; Zhang, Yong-Li; Shi, Yu
2012-09-01
In the wheat growth seasons of 2009 -2010 and 2010-2011, six border lengths of 10, 20, 40, 60, 80 and 100 m were installed in a wheat field to study the effects of different border lengths for irrigation on the water consumption characteristics and grain yield of wheat. The results showed that with the increasing border length from 10 to 80 m, the irrigation amount and the proportion of irrigation amount to total water consumption amount, the water content in 0-200 cm soil layers and the soil water supply capacity at anthesis stage, as well as the wheat grain yield and water use efficiency increased, while the soil water consumption amount and the water consumption amount of wheat from jointing to anthesis stages as well as the total water consumption amount decreased. At the border length of <80 m, the irrigation amount was smaller, and the water content in upper soil layers was lower, as compared with those at the border length of 80 m, which led to the wheat to absorb more water from deeper soil layers, and thus, the total water consumption increased. At the border length of 100 m, the irrigation amount, soil water consumption amount, and total water consumption amount all increased, and, due to the excessive irrigation amount and the uneven distribution of irrigation water when irrigated once, the 1000-grain mass, grain yield, and water use efficiency decreased significantly, which was not conductive to the water-saving and high-yield cultivation.
Fecko, Christopher J; Munson, Katherine M; Saunders, Abbie; Sun, Guangxing; Begley, Tadhg P; Lis, John T; Webb, Watt W
2007-01-01
Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.
Water resources of Bannock Creek basin, southeastern Idaho
Spinazola, Joseph M.; Higgs, B.D.
1997-01-01
The potential for development of water resources in the Bannock Creek Basin is limited by water supply. Bannock Creek Basin covers 475 square miles in southeastern Idaho. Shoshone-Bannock tribal lands on the Fort Hall Indian Reservation occupy the northern part of the basin; the remainder of the basin is privately owned. Only a small amount of information on the hydrologic and water-quality characteristics of Bannock Creek Basin is available, and two previous estimates of water yield from the basin ranged widely from 45,000 to 132,500 acre-feet per year. The Shoshone-Bannock Tribes need an accurate determination of water yield and baseline water-quality characteristics to plan and implement a sustainable level of water use in the basin. Geologic setting, quantities of precipitation, evapotranspiration, surface-water runoff, recharge, and ground-water underflow were used to determine water yield in the basin. Water yield is the annual amount of surface and ground water available in excess of evapotranspiration by crops and native vegetation. Water yield from Bannock Creek Basin was affected by completion of irrigation projects in 1964. Average 1965-89 water yield from five subbasins in Bannock Creek Basin determined from water budgets was 60,600 acre-feet per year. Water yield from the Fort Hall Indian Reservation part of Bannock Creek Basin was estimated to be 37,700 acre-feet per year. Water from wells, springs, and streams is a calcium bicarbonate type. Concentrations of dissolved nitrite plus nitrate as nitrogen and fluoride were less than Maximum Contaminant Levels for public drinking-water supplies established by the U.S. Environmental Protection Agency. Large concentrations of chloride and nitrogen in water from several wells, springs, and streams likely are due to waste from septic tanks or stock animals. Estimated suspended-sediment load near the mouth of Bannock Creek was 13,300 tons from December 1988 through July 1989. Suspended-sediment discharge was greatest during periods of high streamflow.
NASA Astrophysics Data System (ADS)
Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya
2018-04-01
The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.
NASA Astrophysics Data System (ADS)
Leal, J.; Ventura, C. J.
2016-12-01
The purpose of this experiment is to discover the most efficient, feasible way to produce a high yield of flavorful microgreens within the best growing medium and building location at the Stanford Educational Farm. In recent years, microgreens, young, small edible greens utilized as flavor garnishes for fine dining, have evolved into an immensely profitable market that will continue to expand and prosper. To capitalize on such opportunities, the primary metrics focused upon are harvest yield and flavor of basil and squash microgreens, as they develop in different concentrations of quick root and compost while located in either a greenhouse or lath house. It was hypothesized that if basil and squash microgreens were grown in a mixture of 50% compost and 50% quick root in the greenhouse, then they would produce the greatest harvest yield and maximum amount of flavor. The general experimental protocol includes monitoring the growth of the microgreens, then harvesting directly after the first true leaves begin to emerge. Upon harvest, each set of microgreens are separated into different clear glass jars to place on a small scale for weighing to determine the yield and tasting the leaves to analyze the flavor content. The highest yield of basil (63 grams) developed in a tray of 100% quick root in the lath house, while the greatest yield of squash (51 grams) succeeded in 100% quick root in the greenhouse. Overall however, the basil grew fastest in the greenhouse but tasted stronger in the lath house. Additionally, because the harvest yield and flavor results were so poor in all other locations and growing mediums for squash during the first trial, it cannot be considered a viable microgreen. In the future, more trials should be conducted for greater numbers of trays of microgreens to collect more data. The nutritional value of microgreens should also be explored further to obtain a holistic approach to the value of these plants from seed to harvest to consumption.
Monavari, Sanam; Galbe, Mats; Zacchi, Guido
2011-01-01
By employing metal salts in dilute-acid pretreatment the severity can be reduced due to reduced activation energy. This study reports on a dilute-acid steam pretreatment of spruce chips by addition of a small amount of ferrous sulfate to the acid catalyst, i.e., either SO2, H2SO3 or H2SO4. The utilization of ferrous sulfate resulted in a slightly increased overall glucose yield (from 74% to 78% of the theoretical value) in pretreatment with SO2 and H2SO3. Impregnation with ferrous sulfate and sulfuric acid did not give any improvement compared with pretreatment based solely on H2SO4. Copyright © 2010. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stannett, V.T.
1989-01-04
Hexachlorophosphazene was irradiated in bulk and in solution after various methods of purification. When rigorously dried and purified, good yields of polymer were obtained. Poor reproducibility was found in the bulk but reasonably good results were obtained in decalin solution. The best yields and highest molecular weights were obtained after the addition of small amounts of the bulky electron acceptor pyromellitic dianhydride. Hexachlorocyclotriphosphazene was purified by recrystallization for various times from dried heptane. The trimer was then further purified by repeated sublimation steps under high vacuum. Finally the trimer was dried in the melt over rigorously baked out barium oxide.more » The monomer was then transferred to ampules or the NMR tubes for radiation and subsequent determination of the polymer content.« less
Chandler, Richard B; King, David I; Raudales, Raul; Trubey, Richard; Chandler, Carlin; Chávez, Víctor Julio Arce
2013-08-01
Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land-sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land-sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small-scale, land-sparing coffee-production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest-dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well-defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large-scale land-sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land-use patterns. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.
Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.
Jia, Aiyin; Wu, Chunde; Duan, Yan
2016-05-05
This study investigated the precursors and factors affecting formation of haloacetonitriles (HANs) and chloropicrin (TCNM) during chlorination/chloramination of eight amino acids in the effluent water of V-type clarifying filtration from a drinking water treatment plant. The yields of trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN) and TCNM were higher during chlorination than during chloramination. Tyrosine and tryptophan produced the greatest amount of DCAN and also generated a small amount of TCAN during chlorination process. Besides, the yields of DCAN were higher than TCNM during chlorination/chloramination. Contact time, Cl2:org-N molar ratios, pH, temperature and bromide ion affected nitrogenous disinfection by-products (N-DBPs) formation during chlorination of tryptophan in different degrees. TCAN, DCAN and TCNM formation showed the increasing and then decreasing with prolonged contact time. Higher Cl2:org-N molar ratios improved N-DBPs formation within a certain range. The pH affected N-DBPs formation differently. HANs increased with increasing pH from 5 to 6 and decreased with increasing pH from 6 to 9, while TCNM increased with increasing pH from 5 to 9. Higher temperatures enhanced TCNM formation, but reduced the formation of TCAN and DCAN. The presence of bromide ions improved the yields of HANs and TCNM and shifted N-DBPs to more brominated ones. Copyright © 2016 Elsevier B.V. All rights reserved.
Global preamplification simplifies targeted mRNA quantification
Kroneis, Thomas; Jonasson, Emma; Andersson, Daniel; Dolatabadi, Soheila; Ståhlberg, Anders
2017-01-01
The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification. PMID:28332609
New exopolysaccharides produced by Aureobasidium pullulans grown on glucosamine.
Cescutti, Paola; Pupulin, Raffaella; Delben, Franco; Abbate, Maria; Dentini, Mariella; Sparapano, Lorenzo; Rizzo, Roberto; Crescenzi, Vittorio
2002-07-16
The polysaccharides produced by Aureobasidium pullulans, grown using glucosamine as the carbon source, were investigated by means of methylation analysis, affinity chromatography and NMR spectroscopy. The results indicated that, besides a small amount of pullulan, this micro-organism was capable of producing-in low yields-mixtures of at least two different complex polysaccharides containing mainly mannose and galactose. (1)H NMR spectra of two fractions obtained by lectin affinity chromatography indicated that one polymer was constituted exclusively of mannose residues while the other contained both galactofuranosyl and mannopyranosyl residues.
Tomato seeds as a novel by-product feed for lactating dairy cows.
Cassinerio, C A; Fadel, J G; Asmus, J; Heguy, J M; Taylor, S J; DePeters, E J
2015-07-01
Whole tomato seeds, a novel by-product feedstuff, were fed to lactating Holstein cows to determine the nutritive value of whole tomato seeds by replacing whole cottonseed in the total mixed ration. Four primiparous and 4 multiparous Holstein cows were used in a 4×4 Latin square design and fed 1 of 4 total mixed rations. Whole tomato seeds replaced whole cottonseed on a weight-to-weight basis for lipid. The proportion of whole tomato seeds to whole cottonseed in the diets were 100:0, 50:50, 25:75, and 0:100 on a lipid basis. Thus, tomato seeds were 4.0, 2.4, 1.1, and 0% of the ration dry matter, respectively. Milk yield and the concentrations and yields of protein, lactose, and solids-not-fat did not differ for the effect of diet. However, milk fat concentration decreased and milk fat yield tended to decrease as whole tomato seeds replaced whole cottonseed. Intakes of dry matter, lipid, and crude protein did not differ. Whole-tract apparent digestibility of dry matter and ash-free neutral detergent fiber did not differ, but digestibility of total fatty acids and crude protein decreased with increasing proportion of whole tomato seeds. Urea concentration in milk and plasma both decreased with increasing whole tomato seeds. Fecal concentration of linoleic and α-linolenic acids increased with increasing whole tomato seeds, suggesting that seeds were passing out of the digestive tract undigested. The concentrations of C18:2n-6 and C18:3n-3 in milk fat had small increases, but their yields were not different, suggesting that only a small amount of whole-tomato-seed lipid might have been digested postruminally. Amounts of trans C18:1 fatty acids in milk fat were higher with increasing whole cottonseed, which might suggest a shift in rumen biohydrogenation pathways. At the level of feeding used in the current study, whole tomato seeds replaced whole cottonseed in the diet of lactating dairy cows without a change in production. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Li, Q; Wei, W; Liu, Q
2000-10-01
A new method for the indirect determination of thiocyanate with ammonium sulfate and ethanol by extraction-flotation of copper in the presence of ascorbic acid is described. A small amount of Cu(II) is reduced to Cu(I) by ascorbic acid, then Cu(I) is precipitated with SCN-. In the course of phase separation of ethanol from water, the precipitated CuSCN stays in the interface of ethanol and water. A good linear relationship is observed between the flotation yield of Cu(II) and the amount of SCN-. Using 1.0 ml of 1 x 10(-3) M ascorbic acid solution, 50 micrograms of Cu(II), 3.5 g of (NH4)2SO4 and 3.0 ml of ethanol with a total volume of 10 ml, the concentration of thiocyanate could then be determined by determining the flotation yield of Cu(II). The detection limit for thiocyanate is 5 x 10(-5) M. Every parameter was optimized and the reaction mechanism was studied. The method is simple and rapid and it was successfully applied to the determination of thiocyanate in urine and saliva of smokers and non-smokers and in venous blood of patients infused with sodium nitroprusside.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Hof, J.V.
1975-11-01
Experiments were designed to determine the relative radiosensitivity of the cell transition points of G1 $Yields$ S and G2 $Yields$ M in root meristems of several plant species. Label and mitotic indices and microspectrophotometry were used to measure the proportions of cells in each mitotic cycle stage in root meristems after protracted gamma radiation. The criterion of radiosensitivity was the dose rate needed to produce a tissue with less than 1 percent cells in S and none in M after 3 days of continuous exposure. The results show that DNA is the primary radiation target in proliferative root meristems andmore » that the cycle duration stipulates the time interval of vulnerability. In each species, nonrandom reproducible cell proportions were established with 2C:4C:8C amounts of nuclear DNA after 3 days of exposure. Roots of Helianthus annuus, Crepis capillaris, and Tradescantia clone 02 had 80 percent cells with a 2C amount of DNA and 20 percent had a 4C amount of DNA. In these species the transition point of G1 $Yields$ S was more radiosensitive than G2 $Yields$ M. Roots of Pisum sativum and Triticum aestivum had cell proportions at 2C:4C:8C amounts of DNA in frequencies of 0.10 to 0.20:0.40 to 0.60:0.30 to 0.40. In these two species 0.30 to 0.40 cells underwent radiation-induced endoreduplication that resulted from a rapid inhibition of cell transit from G2 $Yields$ M and a slower impairment of G1 $Yields$ S. Cells increased from 2C to 4C and from 4C to 8C amounts of DNA during irradiation. The proportions of nuclei with 2C:4C:8C amounts of DNA were dependent in part upon the relative radiosensitivity of the G1 $Yields$ S and G2 $Yields$ M control points. The data show the relative radiosensitivity of the transition points from G1 $Yields$ S and from G2 $Yields$ M was species specific and unrelated to the cycle duration and mean nuclear DNA content of the plant species. (auth)« less
de Jonge, J; Smit Sibinga, C T; Das, P C
1983-01-01
As a by-product of a new high-yield method of production of freeze-dried factor VIII, red cell concentrate (RCC) containing a small amount of heparin besides CPDA-1 was studied. Compared to CPDA-1 stored RCC no difference was found in hematology parameters and 2,3-DPG levels during 28 days storage. Although still in the normal range for transfusion, ATP levels were significantly lower compared to CPDA-1-stored RCC after 30 days shelf life. A survival study with 51Cr-labelled red cells showed good recovery and normal red cell half-life. Rapid transfusion of heparin/CPDA-1 RCC in 6 volunteers did not have any effect on aPTT. Heparin could not be detected in posttransfusion plasma samples.
Mitsuoka, Motoki; Shinzawa, Hideyuki; Morisawa, Yusuke; Kariyama, Naomi; Higashi, Noboru; Tsuboi, Motohiro; Ozaki, Yukihiro
2011-01-01
Far-ultraviolet (FUV) spectra in the 190-300 nm region were measured for spring water in Awaji-Akashi area, Tamba area and Rokko-Arima area in Hyogo Prefecture, Japan, these areas have quite different geology features. The spectra of the spring water in the Awaji-Akashi area can be divided into two groups: the spring water samples containing large amounts of NO(3)(-) and/or Cl(-), and those containing only small amounts of NO(3)(-) and Cl(-). The former shows a saturated band below 190 nm due to NO(3)(-) and/or Cl(-). These two types of spectra correspond to different lithological areas: sedimentary lithology near the sea shore containing many ions in the seawater and gravitic lithology far from the sea side, in the Awaji-Akashi area. The spring water from the Tamba area, which is far from the sea, contains relatively small amounts of NO(3)(-) and Cl(-); it does not yield a strong band in the region observed. The FUV spectra of three of four kinds of spring water samples in the Arima Hotspring show characteristic spectral patterns. They are quite different from the spectra of the spring water samples of the Rokko area. Calibration models were developed for NO(3)(-), Cl(-), SO(4)(2-), Na(+), and Mg(2+) in the nine kinds of spring water collected in the Awaji-Akashi area, Tamba, and Rokko-Arima area by using univariate analysis of the first derivative spectra and the actual values obtained by ion chromatography. NO(3)(-) yields the best results: correlation coefficient of 0.999 and standard deviation of 0.09 ppm with the wavelength of 212 nm. Cl(-) also gives good results: correlation coefficient of 0.993 and standard deviation of 0.5 ppm with the wavelength of 192 nm.
NASA Astrophysics Data System (ADS)
Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung
2018-02-01
Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high proportion of large landslides in Taiwan contributes significantly to the high annual sediment yield, which is among the world's highest despite the small area of Taiwan.
Pigati, Jeffery S.; McGeehin, John P.; Muhs, Daniel; Grimley, David A.; Nekola, Jeffery C.
2014-01-01
Small terrestrial gastropod shells (mainly Succineidae) have been used successfully to date late Quaternary loess deposits in Alaska and the Great Plains. However, Succineidae shells are less common in loess deposits in the Mississippi Valley compared to those of the Polygyridae, Helicinidae, and Discidae families. In this study, we conducted several tests to determine whether shells of these gastropods could provide reliable ages for loess deposits in the Mississippi Valley. Our results show that most of the taxa that we investigated incorporate small amounts (1–5%) of old carbon from limestone in their shells, meaning that they should yield ages that are accurate to within a few hundred years. In contrast, shells of the genus Mesodon(Mesodon elevatus and Mesodon zaletus) contain significant and variable amounts of old carbon, yielding ages that are up to a couple thousand 14C years too old. Although terrestrial gastropod shells have tremendous potential for 14C dating loess deposits throughout North America, we acknowledge that accuracy to within a few hundred years may not be sufficient for those interested in developing high-resolution loess chronologies. Even with this limitation, however, 14C dating of terrestrial gastropod shells present in Mississippi Valley loess deposits may prove useful for researchers interested in processes that took place over multi-millennial timescales or in differentiating stratigraphic units that have significantly different ages but similar physical and geochemical properties. The results presented here may also be useful to researchers studying loess deposits outside North America that contain similar gastropod taxa..
NASA Astrophysics Data System (ADS)
Masselink, Rens; Temme, Arnaud; Giménez, Rafael; Casalí, Javier; Keesstra, Saskia
2017-04-01
Soil erosion from agricultural areas is a large problem, because of off-site effects like the rapid filling of reservoirs. To mitigate the problem of sediments from agricultural areas reaching the channel, reservoirs and other surface waters, it is important to understand hillslope-channel connectivity and catchment connectivity. To determine the functioning of hillslope-channel connectivity and the continuation of transport of these sediments in the channel, it is necessary to obtain data on sediment transport from the hillslopes to the channels. Simultaneously, the factors that influence sediment export out of the catchment need to be studied. For measuring hillslope-channel sediment connectivity, Rare-Earth Oxide (REO) tracers were applied to a hillslope in an agricultural catchment in Navarre, Spain, preceding the winter of 2014-2015. The results showed that during the winter there was no sediment transport from the hillslope to the channel. Analysis of precipitation data showed that total precipitation quantities did not differ much from the mean. However, precipitation intensities were low, causing little sediment mobilisation. To test the implication of the REO results at the catchment scale, two conceptual models for sediment connectivity were assessed using a Random Forest (RF) machine learning method. One model proposes that small events provide sediment for large events, while the other proposes that only large events cause sediment detachment and small events subsequently remove these sediments from near and in the channel. The RF method was applied to a daily dataset of sediment yield from the catchment (N=2451 days), and two subsets of the whole dataset: small events (N=2319) and large events (N=132). For sediment yield prediction of small events, variables related to large preceding events were the most important. The model for large events underperformed and, therefore, we could not draw any immediate conclusions whether small events influence the amount of sediment exported during large events. Both REO tracers and RF method showed that low intensity events do not contribute any sediments to the channel in the Latxaga catchment (cf. Masselink et al., 2016). Sediment dynamics are dominated by sediment mobilisation during large (high intensity) events. Sediments are for a large part exported during those events, but large amount of sediments are deposited in and near the channel after these events. These sediments are gradually removed by small events. To better understand the delivery of sediments to the channel and how large and small events influence each other more field data on hillslope-channel connectivity and within-channel sediment dynamics is necessary. Reference: Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degrad. Dev. 27, 933-945. doi:10.1002/ldr.2512
Water resources inventory of Connecticut Part 6: Upper Housatonic River basin
Cervione, Michael A.; Mazzaferro, David L.; Melvin, Robert T.
1972-01-01
The upper Housatonic River basin report area has an abundant supply of water of generally good quality, which is derived from precipitation on the area and streams entering the area. Annual precipitation has averaged about 46 inches over a 30-year period. Of this, approximately 22 inches of water is returned to the atmosphere each year by evaporation and transpiration; the remainder flows overland to streams or percolates downward to the water table and ultimately flows out of the report area in the Housatonic River or in smaller streams tributary to the Hudson River. During the autumn and winter precipitation normally is sufficient to cause a substantial increase in the amount of water stored in surface reservoirs and in aquifers, whereas in the summer, losses through evaporation and transpiration result in sharply reduced streamflow and lowered ground-water levels. Mean monthly storage of water in November is 2.8 inches more than it is in June. The amount of water that flows into, through, and out of the report area represents the total amount potentially available for use ignoring reuse. For the 30-year period 1931 through 1960, the annual runoff from precipitation has averaged 24 inches (294 billion gallons). During the same period, inflows from Massachusetts and New York have averaged 220 and 64 billion gallons per year, respectively. A total average annual runoff of 578 billion gallons is therefore available. Although runoff indicates the total amount of water potentially available, it is rarely feasible to use all of it. On the other hand, with increased development, some water may be reused several times. The water availability may be tapped as it flows through the area or is temporarily stored in streams, lakes, and aquifers. The amounts that can be developed differ from place to place and time to time, depending on the amount of precipitation, on the size of drainage area, on the thickness, transmissivity, and areal extent of aquifers, and on the variations in chemical and physical quality of water. Differences in precipitation cause differences in the amount of streamflow whereas differences in the proportion of stratified drift affect its timing. Water can be obtained from wells almost anywhere in the area, but the amount obtainable at any particular point depends on the type and water-bearing properties of the aquifers tapped. Stratified-drift aquifers are the only ones generally capable of yielding more than 100 gpm (gallons per minute) to individual wells. Drilled, screened wells tapping this unit yield from 17 to 1,400 gpm, with a median yield of 200 gpm. Till and bedrock are widespread but generally provide only small supplies of water. Till is tapped in a few places by dug wells, which can yield small supplies of only a few hundred gallons per day throughout all or most of the year. Bedrock is the chief aquifer for privately owned domestic and rural supplies; it is tapped by drilled wells, about 90 percent of which will supply at least 2 gpm. Only 1 of 10 bedrock wells, however, will supply more than 30 gpm. The amount of ground water potentially available in the report area depends upon the thickness and hydraulic properties of aquifers, the amount of salvageable natural discharge of ground water, and the quantity of water available by induced infiltration from streams and lakes. From data on transmissivity, thickness, recharge, well performance, and streamflow, preliminary estimates of ground-water availability can be made for most stratified-drift aquifers in the report area. Long-term yields estimated for eight areas of stratified drift especially favorable for development of large ground-water supplies ranged from 0.6 to 5 mgd (million gallons per day). Detailed site studies are needed to verity these estimates and to determine optimum yields, drawdowns, and spacing of individual wells before major ground-water development is undertaken in these or other areas. The chemical quality of water in the report area is generally good; carbonate-bedrock units exert considerable local influence on water quality. Samples of naturally occurring surface water collected at 24 sites during low flow averaged 90 mg/l (milligrams per liter) dissolved solids and 60 mg/l hardness. Water from wells is generally more highly mineralized than naturally occurring water from streams. About 37 percent of the wells sampled yielded water with more than 200 mg/l dissolved solids and 50 percent yielded water with more than 120 mg/l hardness. These concentrations reflect the high degree of mineralization of ground water in carbonate bedrock and unconsolidated deposits derived from this bedrock. The larger streams, which transport varying amounts of industrial and domestic effluents, averaged about 150 mg/l dissolved solids and 90 mg/l hardness. Iron and manganese concentrations in both ground water and surface water at some places exceed recommended limits for domestic and industrial use. Most wells in the report area yield water with little or no iron or manganese. In certain localities however, the probability is high of encountering water with excessive concentrations of these constituents. Schists, especially the unit in the northwestern corner of the basin, are the likely sources of water with excessive iron and manganese. Iron concentrations in naturally occurring stream water exceed 0.3 mg/l under low-flow conditions at 29 percent of the sites sampled. These excessive concentrations result from discharge of iron-bearing water from aquifers or from swamps where iron is released from decaying vegetation. Water temperature in the larger streams ranges from 0°C (degrees Celsius) to about 28°C. Ground water between 30 feet and 200 feet below the land surface has a relatively constant temperature, usually between 8°C and 11°C. The quantity of suspended sediment transported by streams under natural conditions is negligible. Even in streams affected by man, turbidity is rarely a problem. The total amount of water used in the report area for all purposes during 1967 was about 6,360 million gallons, or 140 gpd per person. Public supplies furnished the domestic needs of nearly half the population of the area. All of the 14 public supplies sampled provided water that meets the drinking water standards of the U.S. Public Health Service.
Micro-quantity tissue digestion for metal measurements by use of a microwave acid-digestion bomb.
Nicholson, J R; Savory, M G; Savory, J; Wills, M R
1989-03-01
We describe a simple and convenient method for processing small amounts of tissue samples for trace-metal measurements by atomic absorption spectrometry, by use of a modified Parr microwave digestion bomb. Digestion proceeds rapidly (less than or equal to 90 s) in a sealed Teflon-lined vessel that eliminates contamination or loss from volatilization. Small quantities of tissue (5-100 mg dry weight) are digested in high-purity nitric acid, yielding concentrations of analyte that can be measured directly without further sample manipulation. We analyzed National Institute of Standards and Technology bovine liver Standard Reference Material to verify the accuracy of the technique. We assessed the applicability of the technique to analysis for aluminum in bone by comparison with a dry ashing procedure.
Chattopadhyay, Sankha; Saha Das, Sujata
2010-10-01
A simple and inexpensive ion-exchange chromatography method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed and tested using (131)I. The radiochemical separation was performed using a very small Dowex-1x8 ion-exchange column. The overall radiochemical yield for the complete separation of (131)I was 92+/-1.8 (standard deviation) % (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purity and did not contain detectable amounts of the target material. This method may be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation. Copyright 2010 Elsevier Ltd. All rights reserved.
Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils.
Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Fostert, Neil
2011-01-01
The application of vetiver grass (Chrysopogon zizaniodes) for phytoremediation of heavy metal contaminated soils can be promoted by economic return through essential oil production. Four levels of lead (0, 500, 2000, and 8000 mg kg(-1) dry soil), copper (0, 100, 400, and 1600 mg kg(-1) dry soil) and zinc (0, 400, 1600, and 6400 mg kg(-1) dry soil) were used to study their effects on vetiver growth, essential oil composition and yield. This study also investigated the effect of nitrogen concentrations on vetiver oil yield. Vetiver accumulated high concentrations of Pb, Cu and Zn in roots (3246, 754 and 2666 mg kg(-1), respectively) and small amounts of contaminants in shoots (327, 55, and 642 mg kg(-1), respectively). Oil content and yield were not affected at low and moderate concentrations of Cu and Zn. Only the application of Pb had a significant detrimental effect on oil composition. Extraction of vetiver essential oils by hydrodistillation produced heavy metal free products. High level of nitrogen reduced oil yields. Results show that phytoremediation of Cu and Zn contaminated soils by vetiver can generate revenue from the commercialization of oil extracts.
Combinations of Aromatic and Aliphatic Radiolysis.
LaVerne, Jay A; Dowling-Medley, Jennifer
2015-10-08
The production of H(2) in the radiolysis of benzene, methylbenzene (toluene), ethylbenzene, butylbenzene, and hexylbenzene with γ-rays, 2-10 MeV protons, 5-20 MeV helium ions, and 10-30 MeV carbon ions is used as a probe of the overall radiation sensitivity and to determine the relative contributions of aromatic and aliphatic entities in mixed hydrocarbons. The addition of an aliphatic side chain with progressively from one to six carbon lengths to benzene increases the H(2) yield with γ-rays, but the yield seems to reach a plateau far below that found from a simple aliphatic such as cyclohexane. There is a large increase in H(2) with LET (linear energy transfer) for all of the substituted benzenes, which indicates that the main process for H(2) formation is a second-order process and dominated by the aromatic entity. The addition of a small amount of benzene to cyclohexane can lower the H(2) yield from the value expected from a simple mixture law. A 50:50% volume mixture of benzene-cyclohexane has essentially the same H(2) yield as cyclohexylbenzene at a wide variation in LET, suggesting that intermolecular energy transfer is as efficient as intramolecular energy transfer.
NASA Astrophysics Data System (ADS)
Ghazali, Q.; Yasin, N. H. M.
2016-06-01
The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.
The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Kramlich; Linda Castiglone
2007-06-30
Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wetmore » scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting mercury oxidation is one means of getting moderate-efficiency, 'free' mercury capture when wet gas cleanup systems are already in place. The chemical kinetic model we developed to describe the oxidation process suggests that in fuel lean gases, the introduction of trace amounts of H{sub 2} within the quench region leads to higher Cl concentrations via chain branching. The amount of additive, and the temperature at the addition point are critical. We investigated this process in a high-temperature quartz flow reactor. The results do indicate a substantial amount of promotion of oxidation with the introduction of relatively small amounts of hydrogen at around 1000 K ({approx}100 ppm relative to the furnace gas). In practical systems the source of this hydrogen is likely to be a small natural gas steam reformer. This would also produce CO, so co-injection of CO was also tested. The CO did not provide any additional promotion, and in some cases led to a reduction in oxidation. We also examined the influence of NO and SO{sub 2} on the promotion process. We did not see any influence under the conditions examined. The present results were for a 0.5 s, isothermal plug flow environment. The next step should be to determine the appropriate injection point for the hydrogen and the performance under realistic temperature quench conditions. This could be accomplished first by chemical kinetic modeling, and then by tunnel flow experiment.« less
NASA Technical Reports Server (NTRS)
Wilson, D. J.
1972-01-01
Time-dependent notch sensitivity of Inconel 718 sheet occurred at 900 to 1200 F when notched specimens were loaded below the yield strength, and tests on smooth specimens showed that small amounts of creep consumed large fractions of creep-rupture life. The severity of the notch sensitivity decreased with decreasing solution treatment temperature and increasing time and/or temperature of the aging treatment. Elimination of the notch sensitivity was correlated with a change in the dislocation mechanism from shearing to by-passing precipitate particles.
Bai, Guo-Yi; Lan, Xing-Wang; Chen, Guo-Feng; Liu, Xiao-Fang; Li, Tian-Yu; Shi, Ling-Juan
2014-03-01
The reaction of aldehydes and o-phenylenediamine for the preparation of 2-benzimidazoles has been studied using hydrogen peroxide as an oxidant under ultrasound irradiation at room temperature in this paper. The combination of substoichiometric sodium iodide and ammonium molybdate as co-catalysts, together with using small amounts of hydrogen peroxide, makes this transformation very efficient and attractive under ultrasound. Thus, a mild, green and efficient method is established to carry out this reaction in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.
Nuclear reactor descriptions for space power systems analysis
NASA Technical Reports Server (NTRS)
Mccauley, E. W.; Brown, N. J.
1972-01-01
For the small, high performance reactors required for space electric applications, adequate neutronic analysis is of crucial importance, but in terms of computational time consumed, nuclear calculations probably yield the least amount of detail for mission analysis study. It has been found possible, after generation of only a few designs of a reactor family in elaborate thermomechanical and nuclear detail to use simple curve fitting techniques to assure desired neutronic performance while still performing the thermomechanical analysis in explicit detail. The resulting speed-up in computation time permits a broad detailed examination of constraints by the mission analyst.
Process for reducing sulfur in coal char
Gasior, Stanley J.; Forney, Albert J.; Haynes, William P.; Kenny, Richard F.
1976-07-20
Coal is gasified in the presence of a small but effective amount of alkaline earth oxide, hydroxide or carbonate to yield a char fraction depleted in sulfur. Gases produced during the reaction are enriched in sulfur compounds and the alkaline earth compound remains in the char fraction as an alkaline earth oxide. The char is suitable for fuel use, as in a power plant, and during combustion of the char the alkaline earth oxide reacts with at least a portion of the sulfur oxides produced from the residual sulfur contained in the char to further lower the sulfur content of the combustion gases.
Acute gouty bursitis: report of 15 cases.
Canoso, J J; Yood, R A
1979-01-01
Fifteen cases of acute gouty bursitis were seen among 136 crystal-proved cases of gout. Bursal aspirate yielded yellow or pink fluid in 10, chalky white fluid in 1, and a small amount of bloody fluid in 4. Monosodium urate crystals were present in all. Bursal fluid leucocyte counts averaged 2.9 X 10(9)/1 compared with synovial fluid leucocyte counts that averaged 25.5 X 10(9)/1 in cases of articular gout (P less than 0.05). Gouty, septic, and idiopathic (traumatic) bursitis share clinical features, and detailed bursal fluid analysis is crucial for diagnosis. PMID:496446
Song, Yonghee; Lee, Somyung; Jho, Eek-Hoon
2018-06-08
Pluripotent embryonic stem cells are one of the best modalities for the disease treatment due to their potential for self-renewal and differentiation into various cell types. Induction of stem cell differentiation into specific cell lineages has been investigated for decades, especially in vitro neuronal differentiation of embryonic stem cells. However, in vitro differentiation methods do not yield sufficient amounts of neurons for use in the therapeutic treatment of neurological disorders. Here, we provide an improved neuronal differentiation method based on a combination of small regulatory molecules for specific signaling pathways (FGF4 for FGF signaling, SB431542 for Nodal/Smad signaling, and XAV939 and BIO for Wnt signaling) in N2B27 media. We found that FGF4 was required for neural induction, SB431542 accelerated neural precursor differentiation, and treatment with XAV939 and BIO at different periods enhanced neuronal differentiation. These optimized neuronal differentiation conditions may allow a greater neuron cell yield within a shorter time than current methods and be the basis for treatment of neurological dysfunction using stem cells. Copyright © 2018. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Nakashima, T.; Fox, S. W.
1981-01-01
The synthesis of peptides from individual amino acids or pairs of amino acids and ATP in the presence of catalysis by nucleoproteinoid microparticles is investigated. Experiments were performed with suspensions formed from the condensation of lysine-rich and acidic proteinoids with polyadenylic acid, to which were added glycine, phenylalanine, proline, lysine or glycine-phenylalanine mixtures, and ATP either at once or serially. Peptide yields are found to be greatest for equal amounts of acidic and basic proteinoids. The addition of imidazole is found to alter the preference of glycine-phenylalanine mixtures to form mixed heteropeptides rather than homopeptides. A rapid ATP decay in the peptide synthesis reaction is observed, and a greater yield is obtained for repeated small additions than for a single addition of ATP. The experimental system has properties similar to modern cells, and represents an organizational unit ready for the evolution of associated biochemical pathways.
Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents.
Zhu, Hong; Cao, Quan; Li, Chunhu; Mu, Xindong
2011-09-27
Conversion of fructose into furan derivatives 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) is performed in tetrahydrofuran (THF) and methanol-organic solvent systems, catalysed by an acidic resin Amberlyst-15. The melted fructose can be converted into HMF on the surface of the solid resin catalyst in the presence of THF as an extracting phase, which is a good solvent for HMF and other by-products. The solid resin catalyst can be reused eleven times without losing its catalytic ability, with an average HMF yield of approximately 50%. Upon the addition of methanol, the generated HMF can further react with methanol to form MMF, and the total yield of HMF and MMF could be promoted to 65%. GC-MS analysis confirms the formation of a small amount of methyl levulinate in methanolorganic solvent system. Copyright © 2011 Elsevier Ltd. All rights reserved.
Base catalysed isomerisation of aldoses of the arabino and lyxo series in the presence of aluminate.
Ekeberg, Dag; Morgenlie, Svein; Stenstrøm, Yngve
2002-04-30
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.
NASA Technical Reports Server (NTRS)
Bellan, J.
1997-01-01
Concern over the future availability of high quality liquid fuels or use in furnaces and boilers prompted the U. S. Department of Energy (DOE) to consider alternate fuels as replacements for the high grade liquid fuels used in the 1970's and 1980's. Alternate fuels were defined to be combinations of a large percentage of viscous, low volatility fuels resulting from the low end of distillation mixed with a small percentage of relatively low viscosity, high volatility fuels yielded by the high end of distillation. The addition of high volatility fuels was meant to promote desirable characteristics to a fuel that would otherwise be difficult to atomize and burn and whose combustion would yield a high amount of pollutants. Several questions thus needed to be answered before alternate fuels became commercially viable. These questions were related to fuel atomization, evaporation, ignition, combustion and pollutant formation. This final report describes the results of the most significant studies on ignition and combustion of alternative fuels.
Surface Stabilized InP/GaP/ZnS Quantum Dots with Mg Ions for WLED Application.
Park, Joong Pill; Kim, Sang-Wook
2016-05-01
One of the most highlighted cadmium-free quantum dots (QDs), InP-based QDs, have improved their optical properties. However, InP-based QDs have some practical drawbacks, for example, stability, compared with CdSe-based QDs. Poor stability of InP-based QDs yields critical problems, such as agglomeration and photoluminescence quenching in light emitting diode (LED). It has to be solved for applications and most research has focused on thick outer shells as an effective solution. We introduced magnesium cations for improving stability of InP-based QDs. We applied very small amounts of Mg cations as surface stabilizers, as a result, stability of QDs is clearly improved. Then, QD based LED chips also yield improved values including RA of 84.4, CCT of 3799 K, and luminous efficiency of 129.57 Im/W, which are highly improved data compared with our previous results.
Ice-Templated Bimodal-Porous Silver Nanowire/PDMS Nanocomposites for Stretchable Conductor.
Oh, Jae Young; Lee, Dongju; Hong, Soon Hyung
2018-06-27
A three-dimensional (3D) bimodal-porous silver nanowire (AgNW) nanostructure with superior electrical properties is fabricated by freeze drying of AgNW aqueous dispersion with macrosized ice spheres for bimodal-porous structure. The ice sphere dispersed AgNW solution yields a 3D AgNW network at the surface of ice sphere and formation of macropores by removal of ice sphere during freeze-drying process. The resulting nanostructures exhibit excellent electrical properties due to their low electrical percolation threshold by the formation of macropores, which results in an efficient and dense 3D AgNW network with a small amount of AgNWs. The highly conductive and stretchable AgNW/poly(dimethylsiloxane) (PDMS) nanocomposites are made by impregnating the 3D porous conductive network with highly stretchable poly(dimethylsiloxane) (PDMS) matrix. The AgNW/PDMS nanocomposites exhibit a high conductivity of 42 S/cm with addition of relatively small amount of 2 wt %. The high conductivity is retained when stretched up to 120% elongation even after 100 stretching-releasing cycles. Due to high electrical conductivity and superior stretchability of AgNW/PDMS nanocomposites, these are expected to be used in stretchable electronic devices.
Dilute Acid and Autohydrolysis Pretreatment
NASA Astrophysics Data System (ADS)
Yang, Bin; Wyman, Charles E.
Exposure of cellulosic biomass to temperatures of about 120-210°C can remove most of the hemicellulose and produce cellulose-rich solids from which high glucose yields are possible with cellulase enzymes. Furthermore, the use of dilute sulfuric acid in this pretreatment operation can increase recovery of hemicellulose sugars substantially to about 85-95% of the maximum possible versus only about 65% if no acid is employed. The use of small-diameter tubes makes it possible to employ high solids concentrations similar to those preferred for commercial operations, with rapid heat-up, good temperature control, and accurate closure of material balances. Mixed reactors can be employed to pretreat larger amounts of biomass than possible in such small-diameter tubes, but solids concentrations are limited to about 15% or less to provide uniform temperatures. Pretreatment of large amounts of biomass at high solids concentrations is best carried out using direct steam injection and rapid pressure release, but closure of material balances in such “steam gun” devices is more difficult. Although flow of water alone or containing dilute acid is not practical commercially, such flow-through configurations provide valuable insight into biomass deconstruction kinetics not possible in the batch tubes, mixed reactors, or steam gun systems.
NASA Astrophysics Data System (ADS)
Lin, Cong; Wang, Bo; Cheng, Yao; Wang, Cao
2013-01-01
The zirconia-toughened-alumina (ZTA) composite powder was exposed to a prior ball milling treatment with a small amount of stearic acid (SA) before the traditional blending process. The effect of different amounts of stearic acid on surface properties of the powder, the particle size distribution of the powder, and the rheological properties of the suspension were systematically studied within the design of experiments. Fourier transformation infrared spectroscopy (FTIR) analysis was used to prove the chemical interaction between the stearic acid and the ZTA powder. The effects of SA content on the particle sizes and their distribution were carefully examined. Rheological properties such as viscosity, yield stress, and power law exponent of the suspensions were determined within a temperature range of 140-170 °C. The optimal content of SA to improve the properties of the suspensions was found to be 3 wt.%.
NASA Astrophysics Data System (ADS)
Wu, Xiaoyan; Yun, Ying; Zhang, Huarui; Ma, Zhen; Jia, Lina; Tao, Tongxiang; Zhang, Hu
2017-12-01
The effect of different holding pressures on microstructure, tensile properties and fracture behavior of A356-T6 aluminum alloy was investigated. It was observed that the ultimate strength, yield strength and elongation of A356-T6 aluminum alloy increased with the increasing of holding pressure from 85 kPa to 300 kPa. This was attributed to the finer microstructure and the elimination of porosity defects caused by high holding pressure. The fractographs of specimens obtained under lower holding pressure displayed mixed quasi-cleavage and dimple type morphology with flat dimples and large amount of porosities. However, the fractographs of specimens obtained under high holding pressure of 300 kPa clearly exhibited a dimple morphology with small and deep dimples. The differences in the tensile fracture were attributed to the different shape of eutectic Si particle and different amount of porosity defects.
NASA Technical Reports Server (NTRS)
Jansen, Mark J.; Jones, William R., Jr.; Predmore, Roamer E.
2001-01-01
A bearing test apparatus was used to investigate lubricant degradation rates and elastohydrodynamic transition temperatures for several perfluoropolyether (Krytox) formulations, a pentasilahydrocarbon, and a synthetic hydrocarbon (Pennzane 2001 A) in an MPB 1219 bearing, which is used in the geostationary operational environmental satellite (GOES) mission filter wheel assembly. Test conditions were the following: 1000-hr duration, 75 C, 20 lb axial load, vacuum level less than 1 x 10(exp -6) Torr, and a 600-rpm rotational speed. Baseline tests were performed using unformulated Krytox 143AB, the heritage lubricant. Krytox additive formulations showed small reductions in degradation rate. Krytox GPL-105, a higher viscosity version, yielded the least amount of degradation products. Both the silahydrocarbon and Pennzane 2001A showed no signs of lubricant degradation and had ample amounts of free oil at test conclusion.
Mixed Messages: Ambiguous Penalty Information in Modified Restaurant Menu Items
Lawless, Harry T.; Patel, Anjali A.; Lopez, Nanette V.
2016-01-01
Restaurant menu items from six national or regional brands were modified to reduce fat, saturated fat, sodium and total calories. Twenty-four items were tested with a current recipe, and two modifications (small and moderate reductions) for 72 total products. Approximately 100 consumers tested each product for acceptability as well as for desired levels of tastes/flavor, amounts of key ingredients and texture/consistency using just-about-right (JAR) scales. Penalty analysis was conducted to assess the effects of non-JAR ratings on acceptability scores. Situations arose where JAR ratings and penalty analyses could yield different recommendations, including large groups with low penalties and small groups with high penalties. Opposing groups with moderate to high penalties on opposite sides of the same JAR scale were also seen. Strategies for dealing with these observances are discussed. PMID:27833254
Interactions between plant nutrients, water and carbon dioxide as factors limiting crop yields
Gregory, P. J.; Simmonds, L. P.; Warren, G. P.
1997-01-01
Biomass production of annual crops is often directly proportional to the amounts of radiation intercepted, water transpired and nutrients taken up. In many places the amount of rainfall during the period of rapid crop growth is less than the potential rate of evaporation, so that depletion of stored soil water is commonplace. The rate of mineralization of nitrogen (N) from organic matter and the processes of nutrient loss are closely related to the availability of soil water. Results from Kenya indicate the rapid changes in nitrate availability following rain.
Nutrient supply has a large effect on the quantity of radiation intercepted and hence, biomass production. There is considerable scope for encouraging canopy expansion to conserve water by reducing evaporation from the soil surface in environments where it is frequently rewetted, and where the unsaturated hydraulic conductivity of the soil is sufficient to supply water at the energy limited rate (e.g. northern Syria). In regions with high evaporative demand and coarse-textured soils (e.g. Niger), transpiration may be increased by management techniques that reduce drainage.
Increases in atmospheric [CO2] are likely to have only a small impact on crop yields when allowance is made for the interacting effects of temperature, and water and nutrient supply.
A technical assessment of the porcine ejaculated spermatozoa for a sperm-specific RNA-seq analysis.
Gòdia, Marta; Mayer, Fabiana Quoos; Nafissi, Julieta; Castelló, Anna; Rodríguez-Gil, Joan Enric; Sánchez, Armand; Clop, Alex
2018-04-26
The study of the boar sperm transcriptome by RNA-seq can provide relevant information on sperm quality and fertility and might contribute to animal breeding strategies. However, the analysis of the spermatozoa RNA is challenging as these cells harbor very low amounts of highly fragmented RNA, and the ejaculates also contain other cell types with larger amounts of non-fragmented RNA. Here, we describe a strategy for a successful boar sperm purification, RNA extraction and RNA-seq library preparation. Using these approaches our objectives were: (i) to evaluate the sperm recovery rate (SRR) after boar spermatozoa purification by density centrifugation using the non-porcine-specific commercial reagent BoviPure TM ; (ii) to assess the correlation between SRR and sperm quality characteristics; (iii) to evaluate the relationship between sperm cell RNA load and sperm quality traits and (iv) to compare different library preparation kits for both total RNA-seq (SMARTer Universal Low Input RNA and TruSeq RNA Library Prep kit) and small RNA-seq (NEBNext Small RNA and TailorMix miRNA Sample Prep v2) for high-throughput sequencing. Our results show that pig SRR (~22%) is lower than in other mammalian species and that it is not significantly dependent of the sperm quality parameters analyzed in our study. Moreover, no relationship between the RNA yield per sperm cell and sperm phenotypes was found. We compared a RNA-seq library preparation kit optimized for low amounts of fragmented RNA with a standard kit designed for high amount and quality of input RNA and found that for sperm, a protocol designed to work on low-quality RNA is essential. We also compared two small RNA-seq kits and did not find substantial differences in their performance. We propose the methodological workflow described for the RNA-seq screening of the boar spermatozoa transcriptome. FPKM: fragments per kilobase of transcript per million mapped reads; KRT1: keratin 1; miRNA: micro-RNA; miscRNA: miscellaneous RNA; Mt rRNA: mitochondrial ribosomal RNA; Mt tRNA: mitochondrial transference RNA; OAZ3: ornithine decarboxylase antizyme 3; ORT: osmotic resistance test; piRNA: Piwi-interacting RNA; PRM1: protamine 1; PTPRC: protein tyrosine phosphatase receptor type C; rRNA: ribosomal RNA; snoRNA: small nucleolar RNA; snRNA: small nuclear RNA; SRR: sperm recovery rate; tRNA: transfer RNA.
Hu, Suwen; Deng, Lei; Wang, Huamao; Zhuang, Yingping; Chu, Ju; Zhang, Siliang; Li, Zhonghai; Guo, Meijin
2011-05-01
The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 10(5) cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ARIMURA, A.; SATO, H.; KUMASAKA, T.
1973-11-01
Repeated injections of synthetic LH -- RH decapeptide, adsorbed on polyvinylpyrrolidone and emulsified with complete Freund's adjuvant, resulted in the production of a specific antiserum to LH-- RH in two of three rabbits. The animals that produced this antiserum showed a reduction of pituitary LH content and marked atrophy of the testes. The antiserum-antibody complex was detected by the complement flxation test. The antiserum was capable of binding /sup 125/I- labeled LH--RH. After iodination of LHRH (using /sup 125/I and either the chloramine T or lactoperoxidase method) separation of the iodination products on CMC yielded three main peaks of radioactivity:more » The first was free iodide, the second was labeled peptide with low immunoreactivity, and the third was immunoreactive peptide. This 3rd peak consisted of two or three subpeaks; the leading subpeak(s) were more readily bound by antiserum than the trailing one(s). Binding of these fractions to antiserum was increased in the presence of small amounts of unlabeled LH--RH (a phenomenon called paradoxical binding or hock effect) but inhibited by larger amounts. Both the augmentation and the inhibition effects were dose-related, allowing the development of two different radioimmunoassay (RIA) systems for LH--RH. An ordinary (coinpetitive) type of RIA was developed in which a small amount (0.31 ng/assay tube) of unlabeled LH-- RH was added to the labeled peptide. This saturated the antiserum's capacity for paradoxical binding, so that further addition of LH-- RH (from 0.04 to 2.5 ng/ tube) inhibited binding of labeled LH--RH. The assay developed using paradoxical binding omitted the premixing of labeled and unlabeled LH--RH; in this assay addition of very small amounts (0.5 to 310 pg) of unlabeled LH--RH to the assay tubes increased the amount of label bound to antiserum and allowed construction of a parabolic curve of positive slope when B/T was plotted against arithmetic dose. The assays seem to be highly specific for LH--RH although both polymers and degradation products of LH--RH appeared to have some immunoreactivity.« less
Lao, Fei; Giusti, M Monica
2017-07-15
Spray drying is an economic technique to produce anthocyanin-based colorants. High pigments yields with minimum color degradation are desirable to maximize quality and profits. This study evaluated the impacts of purple corncob (PCC) anthocyanin extraction matrices (hot water, 40% ethanol, C18 purified), drying inlet temperature (130, 150, 170°C) and amount of carrier (2%, 5%, 10% maltodextrin) on the yields and quality of PCC anthocyanin powders. Monomeric and polymeric anthocyanins, color properties (CIELch, haze), and pigments composition before and after spray drying were determined. The yield and final color quality of spray dried PCC anthocyanins were affected (p<0.05) by all parameters evaluated. The pigment matrix, inlet temperature, and carrier amount had biggest impacts on product water solubility, pigments degradation and yield, respectively. The optimal combination of hot water extracts spray dried with 5% maltodextrin at 150°C gave the highest pigment yield (∼90%) with good solubility with the least color loss. Copyright © 2017 Elsevier Ltd. All rights reserved.
Water resources of Indiana County, Pennsylvania
Williams, D.R.; McElroy, T.A.
1997-01-01
Indiana County, west-central Pennsylvania, is a major producer of coal and natural gas. Water managers and residents are concerned about the effects of mining and natural gas exploration on the surface- and ground-water resources of the county. This study assesses the quality and quantity of water in Indiana County. Ground- and surface-water sources are used for public supplies that serve 61 percent of the total population of the county. The remaining 39 percent of the population live in rural areas and rely on cisterns and wells and springs that tap shallow aquifers. Most of the county is underlain by rocks of Middle to Upper Pennsylvanian age. From oldest to youngest, they are the Allegheny Group, the Glenshaw Formation, the Casselman Formation, and the Monongahela Group. Almost all the coals mined are in the Allegheny Group and the Monongahela Group. Ground water in Indiana County flows through fractures in the rock. The size and extent of the fractures, which are controlled by lithology, topography, and structure, determine the sustained yield of wells. Topography has a significant control over the yields of wells sited in the Allegheny Group. Properly sited wells in the Glenshaw Formation may have yields adequate for municipal, commercial, or industrial uses. The Casselman Formation yields adequate amounts of water for domestic use. Yield of the Monongahela Group is small, and the water may not be of suitable quality for most uses. Yields of hilltop wells may be marginal, but valley wells may yield sufficient amounts for large-volume users. Data on the other rock units are sparse to nonexistent. Few wells in the county yield more than 40 gallons per minute. Most of the wells that do are in valleys where alluvial deposits are extensive enough to be mapable. Short-term water-level fluctuations are variable from well to well. Seasonal water-level fluctuations are controlled by time of year and amount of precipitation. The quality of water from the Casselman Formation, Glenshaw Formation, and Allegheny Group tends to be hard and may have concentrations of iron and manganese that exceed the U.S. Environmental Protection Agency Secondary Maximum Contaminant Levels of 0.3 milligrams per liter and 0.05 milligrams per liter, respectively. Ground water from the Glenshaw Formation is less mineralized than ground water from the Allegheny Group. Concentrations of minerals in water from the Casselman Formation are between those in water from the Glenshaw Formation and the Allegheny Group. Water from wells on hilltops has lower concentrations of dissolved solids than water from wells on hillsides. Water from valley wells is the most mineralized. Nearly half the springs tested yield water that is low in pH and dissolved solids; this combination makes the water chemically aggressive. The 7-day, 10-year low-flow frequencies for 26 unregulated surface-water sites ranged from 0.0 to 0.19 cubic feet per second per square mile. The presence of coal mines and variations in precipitation were probably the principal factors affecting flow duration on Blacklick Creek (site 28) during 1953-88. Sustained base flows of regulated streams such as Blacklick Creek generally were larger than those of unregulated streams as a result of low-flow augmentation. The annual water loss in streamflow as a result of evapotranspiration, diversion, seepage to mines, and seepage to the ground-water system was determined at four sites (sites 8, 9, 17, and 28) and ranged from 35 to 53 percent. The highest concentrations of dissolved solids, iron, manganese, aluminum, zinc, and sulfate were measured mostly in streams in central and southern Indiana County, where active and abandoned coal mines are the most numerous. Streamflow was measured during low flow in two small basins; one basin almost completely deep mined (Cherry Run) and one basin unmined (South Branch Plum Creek). The measurements showed a con
Tscherbul, Timur V; Brumer, Paul
2015-12-14
We present a theoretical study of quantum coherence effects in the primary cis-trans photoisomerization of retinal in rhodopsin induced by incoherent solar light. Using the partial secular Bloch-Redfield quantum master equation approach based on a two-state two-mode linear vibronic coupling model of the retinal chromophore [S. Hahn and G. Stock, J. Phys. Chem. B, 2000, 104, 1146-1149], we show that a sudden turn-on of incoherent pumping can generate substantial Fano coherences among the excited states of retinal. These coherences are the most pronounced in the regime where the matrix elements of the transition dipole moment between the ground and excited eigenstates are parallel to one another. We show that even when the transition dipole moments are perpendicular (implying the absence of light-induced Fano coherence) a small amount of excited-state coherence is still generated due to the coupling to intramolecular vibrational modes and the protein environment, causing depopulation of the excited eigenstates. The overall effect of the coherences on the steady-state population and on the photoproduct quantum yield is shown to be small; however we observe a significant transient effect on the formation of the trans photoproduct, enhancing the photoreaction quantum yield by ∼11% at 200 fs. These calculations suggest that coupling to intramolecular vibrational modes and the protein environment play an important role in photoreaction dynamics, suppressing oscillations in the quantum yield associated with Fano interference.
Experimental Techniques Verified for Determining Yield and Flow Surfaces
NASA Technical Reports Server (NTRS)
Lerch, Brad A.; Ellis, Rod; Lissenden, Cliff J.
1998-01-01
Structural components in aircraft engines are subjected to multiaxial loads when in service. For such components, life prediction methodologies are dependent on the accuracy of the constitutive models that determine the elastic and inelastic portions of a loading cycle. A threshold surface (such as a yield surface) is customarily used to differentiate between reversible and irreversible flow. For elastoplastic materials, a yield surface can be used to delimit the elastic region in a given stress space. The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory, but at elevated temperatures, material response can be highly time dependent. Thus, viscoplastic theories have been developed to account for this time dependency. Since the key to many of these theories is experimental validation, the objective of this work (refs. 1 and 2) at the NASA Lewis Research Center was to verify that current laboratory techniques and equipment are sufficient to determine flow surfaces at elevated temperatures. By probing many times in the axial-torsional stress space, we could define the yield and flow surfaces. A small offset definition of yield (10 me) was used to delineate the boundary between reversible and irreversible behavior so that the material state remained essentially unchanged and multiple probes could be done on the same specimen. The strain was measured with an off-the-shelf multiaxial extensometer that could measure the axial and torsional strains over a wide range of temperatures. The accuracy and resolution of this extensometer was verified by comparing its data with strain gauge data at room temperature. The extensometer was found to have sufficient resolution for these experiments. In addition, the amount of crosstalk (i.e., the accumulation of apparent strain in one direction when strain in the other direction is applied) was found to be negligible. Tubular specimens were induction heated to determine the flow surfaces at elevated temperatures. The heating system induced a large amount of noise in the data. By reducing thermal fluctuations and using appropriate data averaging schemes, we could render the noise inconsequential. Thus, accurate and reproducible flow surfaces (see the figure) could be obtained.
Water resources inventory of Connecticut Part 3: lower Thames and southeastern coastal river basins
Thomas, Chester E.; Cervione, Michael A.; Grossman, I.G.
1968-01-01
The lower Thames and southeastern coastal river basins have a relatively abundant supply of water of generally good quality which is derived from streams entering the area and precipitation that has fallen on the area. Annual precipitation has ranged from about 32 inches to 65 inches and has averaged about 48 inches over a 30-year period. Approximately 22 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the report area through estuaries and coastal streams or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the report area, whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced stream-flow and lowered ground-water levels. The mean monthly storage of water on an average is about 3.8 inches higher in November than it is in June. The amount of water that flows through and out of the report area represents the total amount of water potentially available for use by man. For the 30-year period 1931 through 1960, the annual runoff from the report area has averaged nearly 26 inches (200 billion gallons), from the entire Thames River basin above Norwich about 24 inches (530 billion gallons), and from the Pawcatuck River basin about 26 inches (130 billion gallons). A total average annual runoff of 860 billion gallons is therefore available. Although runoff indicates the total amount of water potentially available, it is usually not economically feasible for man to use all of it. On the other hand, with increased development, it is possible that some water will be reused several times. The water available may be tapped as it flows through the area or is temporarily stored in streams, lakes, and aquifers. The amounts that can be developed vary from place to place and time to time, depending on the amount of precipitation, on the size of drainage area, on the thickness, permeability, and areal extent of aquifers, and on the variations in chemical and physical quality of the water. Differences in streamflow from point to point are due primarily to differences in the proportion of stratified drift in the drainage basin above each point, which affect the timing of streamflow, and to differences in precipitation, which affect the amount of streamflow. Ground water can be obtained from wells almost anywhere in the area, but the amount obtainable at any particular point depends upon the type and water-bearing properties of the aquifers. For practical purposes, the earth materials in the report area comprise three aquifers--stratified drift, bedrock, and till. Stratified drift is the only aquifer generally capable of yielding more than 100 gpm (gallons per minute) to individual wells. It covers about 20 percent of the area and occurs chiefly in lowlands where it overlies till and bedrock. The coefficient of permeability of the coarse-grained unit of stratified drift averages about 1,500 gbd (gallons per day) per sq ft. Drilled, screened wells tapping this unit are known to yield from 4 to 88o gpm and average 146 gpm. Dug wells in coarse-grained stratified drift supply about 2 gpm per foot of drawdown over a period of a few hours. Fine-grained stratified drift has an average coefficient of permeability of about 300 gpd per sq ft and can usually yield supplies sufficient for household use to dug wells. Bedrock and till are widespread in extent but generally provide only small water supplies. Bedrock is tapped chiefly by drilled wells, about 90 percent of which will supply at least 3 gpm. Very few, however, will supply more than 50 gpm. Till is tapped in a few places by dug wells which can yield small supplies of only a few hundred gpd throughout all or most of the year. The coefficient of permeability of till ranges from about 0.2 gpd per sq ft to 120 gpd per sq ft. The amount of ground water potentially available in the report area depends upon the amount of ground-water outflow, the amount of ground water in storage, and the quantity of water available by induced infiltration from streams and lakes. From data on permeability, saturated thickness, recharge, yield from aquifer storage, well performance, and streamflow, preliminary estimates of ground-water availability can be made for any point in the report area. Long-term yields estimated for 18 areas of stratified drift especially favorable for development of large ground-water supplies ranged from 1.3 to 66 mgd. Detailed site studies to determine optimum yields, drawdowns, and spacing of individual wells are needed before major ground-water development is undertaken in these or other areas. The chemical quality of water in the report area is generally good to excellent. Samples of naturally occurring surface water collected at 24 sites contained less than 151 ppm (parts per million) of dissolved solids and less than 63 ppm of hardness. Water from wells is more highly mineralized than naturally occurring water from streams. Even so only 12 percent of the wells sampled yielded water with more than 200 ppm of dissolved solids and only 8 percent yielded water with more than 120 ppm of hardness. Even in major streams, which are used to transport industrial waste, hardness rarely exceeds 60 ppm and the dissolved mineral content is generally less than 200 ppm. At a few places in the town of Montville however, waters may contain dissolved mineral concentrations of 2,000 to 4,000 ppm. Iron and manganese in both ground water and surface water are the only constituents whose concentrations commonly exceed recommended limits for domestic and industrial use. Most wells in the report area yield clear water with little or no iron or manganese, but distributed among them are wells yielding ground water that contains enough of these dissolved constituents to be troublesome for most uses. Iron concentrations in naturally occurring stream water exceed 0.3 ppm under low-flow conditions at 33 percent of the sites sampled. Large concentrations of iron in stream water result from discharge of iron-bearing water from aquifers or from swamps where it is released largely from decaying vegetation. Ground water more than 30 feet below the land surface has a relatively constant temperature, usually between 48°F and 52°F. Water temperature in very shallow wells may fluctuate from about 38°F in February or March to about 55°F in late summer. Water temperature in the larger streams fluctuates much more widely, ranging from 32°F at least for brief periods in winter, to about 85°F occasionally during summer. The quality of suspended sediment transported by streams in the area is negligible. Turbidity in streams is generally not a problem although amounts large enough to be troublesome may occur locally at times. The total amount of water used in the report area for all purposes during 1964 was about 118,260 million gallons, of which 105,600 million gallons was estuarine water used for cooling by industry. The average per capita water use, excluding estuarine, temporary summer residence, and institutional water was equivalent to 186 gpd. Public water systems supplied the domestic needs of nearly tw0-thirds the population of the report area. All of the 19 systems, which were sampled, provided water of better quality than the U.S. Public Health Service suggests for drinking water standards.
Study on paddy rice yield estimation based on multisource data and the Grey system theory
NASA Astrophysics Data System (ADS)
Deng, Wensheng; Wang, Wei; Liu, Hai; Li, Chen; Ge, Yimin; Zheng, Xianghua
2009-10-01
The paddy rice is our important crops. In study of the paddy rice yield estimation, compared with the scholars who usually only take the remote sensing data or meteorology as the influence factors, we combine the remote sensing and the meteorological data to make the monitoring result closer reality. Although the gray system theory has used in many aspects, it is applied very little in paddy rice yield estimation. This study introduces it to the paddy rice yield estimation, and makes the yield estimation model. This can resolve small data sets problem that can not be solved by deterministic model. It selects some regions in Jianghan plain for the study area. The data includes multi-temporal remote sensing image, meteorological and statistic data. The remote sensing data is the 16-day composite images (250-m spatial resolution) of MODIS. The meteorological data includes monthly average temperature, sunshine duration and rain fall amount. The statistical data is the long-term paddy rice yield of the study area. Firstly, it extracts the paddy rice planting area from the multi-temporal MODIS images with the help of GIS and RS. Then taking the paddy rice yield as the reference sequence, MODIS data and meteorological data as the comparative sequence, computing the gray correlative coefficient, it selects the yield estimation factor based on the grey system theory. Finally, using the factors, it establishes the yield estimation model and does the result test. The result indicated that the method is feasible and the conclusion is credible. It can provide the scientific method and reference value to carry on the region paddy rice remote sensing estimation.
7 CFR 1421.304 - Payment amount.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.304 Payment amount. (a) The grazing payment rate... payment rate in effect for the predominant class of wheat in the county where the farm is located as of... three (3) similar farms. For triticale, the payment yield shall be the yield for wheat from three (3...
Teebor, G W; Frenkel, K; Goldstein, M S
1984-01-01
HeLa cells grown in the presence of [methyl-3H]thymidine contained large amounts of 5-hydroxymethyl-2'-deoxyuridine (HMdU) in their DNA. When the cells were grown in [6-3H]thymidine and their DNA was labeled to the same specific activity, no HMdU was present. When such [6-3H]thymidine-labeled cells were exposed to increasing amounts of gamma-radiation, small but increasing amounts of HMdU were formed in their DNA. This indicates that HMdU can be formed in DNA by two distinct mechanisms. The first is the result of the transmutation of 3H to 3He (beta decay) in the methyl group of thymidine, leading to formation of a carbocation. This short-lived ion reacts with hydroxide ions of water, yielding the hydroxymethyl group. HMdU that is formed by this mechanism is formed at the rate of beta decay of 3H. It appears only in [methyl-3H]thymidine residues and is present in the DNA of both nonirradiated and gamma-irradiated cells. The second mechanism is the result of the radiolysis of water caused by ionizing radiation. The resultant radical species, particularly hydroxyl radicals, may react with many sites on DNA. When the methyl group of thymine is attacked by hydroxyl radicals, the hydroxymethyl group is formed. The formation of HMdU by this mechanism was detected only when [6-3H]thymidine-labeled cells were used, since transmutation of 3H in position 6 of thymine cannot yield HMdU. PMID:6582490
Teebor, G W; Frenkel, K; Goldstein, M S
1984-01-01
HeLa cells grown in the presence of [methyl-3H]thymidine contained large amounts of 5-hydroxymethyl-2'-deoxyuridine (HMdU) in their DNA. When the cells were grown in [6-3H]thymidine and their DNA was labeled to the same specific activity, no HMdU was present. When such [6-3H]thymidine-labeled cells were exposed to increasing amounts of gamma-radiation, small but increasing amounts of HMdU were formed in their DNA. This indicates that HMdU can be formed in DNA by two distinct mechanisms. The first is the result of the transmutation of 3H to 3He (beta decay) in the methyl group of thymidine, leading to formation of a carbocation. This short-lived ion reacts with hydroxide ions of water, yielding the hydroxymethyl group. HMdU that is formed by this mechanism is formed at the rate of beta decay of 3H. It appears only in [methyl-3H]thymidine residues and is present in the DNA of both nonirradiated and gamma-irradiated cells. The second mechanism is the result of the radiolysis of water caused by ionizing radiation. The resultant radical species, particularly hydroxyl radicals, may react with many sites on DNA. When the methyl group of thymine is attacked by hydroxyl radicals, the hydroxymethyl group is formed. The formation of HMdU by this mechanism was detected only when [6-3H]thymidine-labeled cells were used, since transmutation of 3H in position 6 of thymine cannot yield HMdU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, F.N. Jr.
The Dynacracking process developed by Hydrocarbon Research, Inc., is a non-catalytic process capable of upgrading heavy oil whose sulfur, metal, and carbon contents may be high. It converts residual stocks to distillates with high naphtha yields, and to synthetic fuel gas of high quality (700-800 Btu/ft/sup 3/). It has esentially no air polution emissions and requires a relatively small amount of water and utilities. The process generates sufficient heat internally such that, except for start-up, no boilers, furnaces, or external heaters are required to operate the plant. Several aspects of the process are discussed: chemistry, hardware, feedstock, flexibility in themore » product mix, product quality, and economics.« less
NASA Technical Reports Server (NTRS)
Wilson, D. J.
1971-01-01
Time-dependent notch sensitivity of Inconel 718 sheet was observed at 900 F to 1200 F (482 - 649 C). It occurred when edge-notched specimens were loaded below the yield strength and smooth specimen tests showed that small amounts of creep consumed large rupture life fractions. The severity of the notch sensitivity was reduced by decreasing the solution temperature, increasing the time and/or temperature of aging and increasing the test temperature to 1400 F (760 C). Elimination of time-dependent notch sensitivity correlated with a change in dislocation motion mechanism from shearing to by-passing precipitate particles.
NASA Astrophysics Data System (ADS)
Rostamnia, Sadegh; Kholdi, Saba
2017-12-01
The silica based hollow nanosphere (silica-HNS) containing polymer of polyaniline was synthesized and chosen as a promising support for PdNPs. Then it was applied as a green catalyst in the reaction of Heck coupling with high yield. TEM and SEM-EDX/mapping images were used to study the structure and morphology. FT-IR spectroscopy, Thermal gravimetry analysis (TGA), and BET were used to characterize and investigate the catalyst. Also, the amounts of Pd loading were characterized by ICP-AES technique. Catalyst recyclability showed 5 successful runs for the reaction.
Stoknes, Ketil; Beyer, David M; Norgaard, Erik
2013-07-01
Source-separated food waste is increasingly being treated by means of hygienisation followed by anaerobic digestion. The fibrous digester residue (digestate) is a potential mushroom substrate, while heat from the biogas can provide steam for the cultivation process. Using bag experiments the present study explored digestate as a full substitute for chicken manure conventionally used in mushroom composts. After mixing, a rapid temperature development in the compost was stimulated by a small amount of chicken manure, as aerobic microbial seeding. Mechanical elimination of lumps was essential for full mycelial colonisation. Three straw digestate composts had Agaricus bisporus mushroom yields above 370 g kg⁻¹ substrate. The optimal compost water content was 600 g kg⁻¹ at inoculation, and high digestate content (up to 500 g kg⁻¹ by dry weight) did not affect yield for this species. High yields of A. subrufescens (200 g kg⁻¹) were related to drier composts of lower digestate content (more straw) and lower pH values at inoculation. Digestate successfully substituted chicken manure in straw composts without affecting mushroom yields for both species. There were no clear differences between straw digestate and control composts in terms of mushroom dry matter, size, nitrogen or ash content. © 2012 Society of Chemical Industry.
Integrating remote sensing, geographic information system and modeling for estimating crop yield
NASA Astrophysics Data System (ADS)
Salazar, Luis Alonso
This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.; Loftin, B.; Abramczyk, G.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels withinmore » the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for each spectral group. For a given isotope, the source spectrum is folded with the response for each group. The summed contribution from all isotopes determines the total dose from the RAM in the container.« less
NASA Technical Reports Server (NTRS)
Ruane, Alex C.; Cecil, L. Dewayne; Horton, Radley M.; Gordon, Roman; McCollum, Raymond (Brown, Douglas); Brown, Douglas; Killough, Brian; Goldberg, Richard; Greeley, Adam P.; Rosenzweig, Cynthia
2011-01-01
We present results from a pilot project to characterize and bound multi-disciplinary uncertainties around the assessment of maize (Zea mays) production impacts using the CERES-Maize crop model in a climate-sensitive region with a variety of farming systems (Panama). Segunda coa (autumn) maize yield in Panama currently suffers occasionally from high water stress at the end of the growing season, however under future climate conditions warmer temperatures accelerate crop maturation and elevated CO (sub 2) concentrations improve water retention. This combination reduces end-of-season water stresses and eventually leads to small mean yield gains according to median projections, although accelerated maturation reduces yields in seasons with low water stresses. Calibrations of cultivar traits, soil profile, and fertilizer amounts are most important for representing baseline yields, however sensitivity to all management factors is reduced in an assessment of future yield changes (most dramatically for fertilizers), suggesting that yield changes may be more generalizable than absolute yields. Uncertainty around General Circulation Model (GCM)s' projected changes in rainfall gain in importance throughout the century, with yield changes strongly correlated with growing season rainfall totals. Climate changes are expected to be obscured by the large inter-annual variations in Panamanian climate that will continue to be the dominant influence on seasonal maize yield into the coming decades. The relatively high (A2) and low (B1) emissions scenarios show little difference in their impact on future maize yields until the end of the century. Uncertainties related to the sensitivity of CERES-Maize to carbon dioxide concentrations have a substantial influence on projected changes, and remain a significant obstacle to climate change impacts assessment. Finally, an investigation into the potential of simple statistical yield emulators based upon key climate variables characterizes the important uncertainties behind the selection of climate change metrics and their performance against more complex process-based crop model simulations, revealing a danger in relying only on long-term mean quantities for crop impact assessment.
NASA Astrophysics Data System (ADS)
Ohya, K.; Tanabe, T.; Rubel, M.; Wada, M.; Ohgo, T.; Hirai, T.; Philipps, V.; Kirschner, A.; Pospieszczyk, A.; Huber, A.; Sergienko, G.; Brezinsek, S.; Noda, N.
2004-08-01
The erosion and deposition patterns on tungsten and tantalum test limiters exposed to the TEXTOR deuterium plasma containing a small amount of C impurity are simulated with the modified EDDY code. At the very top of the W and Ta limiters, there occurs neither erosion nor deposition, but the erosion proceeds slowly along the surface. When approaching the edge, the surface is covered by a thick C layer, which shows a very sharp boundary similar to the observation in surface measurements. In the erosion zone, the re-deposited carbon forms a W (Ta)-C mixed layer with small C concentration. Assumptions for chemical erosion yields of ˜0.01 for W and <0.005 for Ta fit the calculated widths of the deposition zone to the experimentally determined values. Possible reasons for the difference between W and Ta are discussed.
The clouds and winds of Neptune
NASA Astrophysics Data System (ADS)
Beebe, R.
1992-04-01
The atmospheric features of Neptune are described based on the images from Voyager 2 with comparisons made to the atmosphere of Uranus. Specific attention is given to the clear atmosphere's methane content and lack of the smog associated with Uranus. Neptune absorbs only a small amount of energy from sunlight and radiates about 2.7 times as much as it absorbs. The mechanisms that keep Neptune's atmosphere free of smog are thought to be upwelling enhanced by an outward heat flow and melting ice. The Voyager photographs show streaks of white clouds indicating strong winds and probably white ice in the upper atmosphere. The Great Dark Spot and a small triangular cloud are described in terms of their periods of rotation, and the wind speed is discussed in terms of cloud variations. The Great Dark Spot drifted equatorward during the observational period, and the drift yields some important clues regarding the nature of the Neptunian atmosphere and climate.
Review of current interest and research in water hyacinth-based wastewater treatment
NASA Technical Reports Server (NTRS)
Markarian, R. K.; Balon, J. E.; Robinson, A. C.
1977-01-01
The status of activity in the user community for water hyacinth-based wastewater treatment was evaluated. The principal technique used was that of interviewing people who either (1) were known to be engaged in hyacinth research or development or (2) had made inquiry to NASA about hyacinth systems. About 40 non-research organizations and a similar number of research organizations were contacted. As a result of the interviews and a review of the relevant literature, it was concluded that hyacinth systems have the potential for providing a lower cost way for small cities to meet increasingly stringent effluent requirements. A limited amount of full-scale demonstration of hyacinth systems has been carried out during the past two years, but the yield of design data has been small. Several organizations are currently planning construction of experimental full-scale hyacinth-based wastewater treatment systems during 1977-1978.
Mineral resource potential of the Middle Santiam Roadless Area, Linn County, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, G.W.
1984-01-01
This report discusses the results of a mineral survey of the Middle Santiam Roadless Area (06929), Willamette National Forest, Linn County Oregon. Middle Santiam Roadless Area is adjacent on the east of the Quartzville mining district, a district that has yielded small amounts of base- and precious-metal ores. Many rock types and alteration features that characterize the mining district occur only the western part of the roadless area, and analysis of a few samples from this part of the roadless area indicates evidence of weak mineralization. The western part of the roadless area is therefore identified as having a moderatemore » potential for small deposits of base and precious metals and a low potential for large very low-grade precious-metal deposits. The eastern part of the roadless area has a low potential for metalliferous deposits. 7 refs., 4 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Bitner, Rex M.; Koller, Susan C.
2004-06-01
Three different methods of automated high throughput purification of genomic DNA from plant materials processed in 96 well plates are described. One method uses MagneSil paramagnetic particles to purify DNA present in single leaf punch samples or small seed samples, using 320ul capacity 96 well plates which minimizes reagent and plate costs. A second method uses 2.2 ml and 1.2 ml capacity plates and allows the purification of larger amounts of DNA from 5-6 punches of materials or larger amounts of seeds. The third method uses the MagneSil ONE purification system to purify a fixed amount of DNA, thus simplifying the processing of downstream applications by normalizing the amounts of DNA so they do not require quantitation. Protocols for the purification of a fixed yield of DNA, e.g. 1 ug, from plant leaf or seed samples using MagneSil paramagnetic particles and a Beckman-Coulter BioMek FX robot are described. DNA from all three methods is suitable for applications such as PCR, RAPD, STR, READIT SNP analysis, and multiplexed PCR systems. The MagneSil ONE system is also suitable for use with SNP detection systems such as Third Wave Technology"s Invader methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Yoshiki; Kodera, Yoichi; Kamo, Tohru
1997-12-31
Coal derived liquid from mild gasification contains more than 40% of alkylphenols with alkylnaphthalenes and a small amount of benzofuran, naphthol and condensed aromatic derivatives. In this study, thermal hydrocracking of the coal derived liquid, and related model compounds have been investigated using a small atmospheric flow apparatus at temperatures of 700--770 C with residence time of 3--10 sec, and hydrogen-to-reactant molar ratio of about 3--10. In the experiments using m-cresol and 2,5-dimethylphenol, dealkylation and dehydroxylation proceeded concurrently with high selectivity in the presence of excess hydrogen. The rates of hydrocracking of m-cresol and 2,5-dimethylphenol were in accordance with first-ordermore » rate law with respect to reactant. This indicates that the same kinetic equation for the demethylation of alkylbenzenes can be applied. Rates of demethylation and dehydroxylation for cresols and dimethylphenols have been measured at 700 C by using toluene as an internal reference, and discussed in terms of chemical structure. Thermal hydrocracking of the coal derived liquid produced 20--40 wt% gases and 60--80 wt% liquids. Gaseous products mainly consisted of carbon monoxide and methane with small amounts of C{sub 2} and C{sub 3} hydrocarbon gases. Liquid products, obtained at 770 C, contained 24 wt% of BTX, 40 wt% of phenol and cresols, and 12 wt% of naphthalene and methylnaphthalenes. Yield of useful chemicals, having simple aromatic structure in the liquid product increased with temperature and residence time.« less
Estimates of spatial and temporal variation of energy crops biomass yields in the US
NASA Astrophysics Data System (ADS)
Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.
2013-12-01
Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus) have been identified for potential use as biomass feedstocks in the US. Current research on perennial grass biomass production has been evaluated on small-scale plots. However, the extent to which this potential can be realized at a landscape-scale will depend on the biophysical potential to grow these grasses with minimum possible amount of land that needs to be diverted from food to fuel production. To assess this potential three questions about the biomass yield for these grasses need to be answered: (1) how the yields for different grasses are varied spatially and temporally across the US; (2) whether the yields are temporally stable or not; and (3) how the spatial and temporal trends in yields of these perennial grasses are controlled by limiting factors, including soil type, water availability, climate, and crop varieties. To answer these questions, the growth processes of the perennial grasses are implemented into a coupled biophysical, physiological and biogeochemical model (ISAM). The model has been applied to quantitatively investigate the spatial and temporal trends in biomass yields for over the period 1980 -2010 in the US. The bioenergy grasses considered in this study include Miscanthus, Cave-in-Rock switchgrass and Alamo switchgrass. The effects of climate, soil and topography on the spatial and temporal trends of biomass yields are quantitatively analyzed using principal component analysis and GIS based geographically weighted regression. The spatial temporal trend results are evaluated further to classify each part of the US into four homogeneous potential yield zones: high and stable yield zone (HS), high but unstable yield zone (HU), low and stable yield zone (LS) and low but unstable yield zone (LU). Our preliminary results indicate that the yields for perennial grasses among different zones are strongly related to the different controlling factors. For example, the yield in HS zone is depended on soil and topography factors. However, the yields in HU zone are more controlled by climate factors, leading to a large uncertainty in yield potential of bioenergy grasses under future climate change.
Fita, Ana; Rodríguez-Burruezo, Adrián; Boscaiu, Monica; Prohens, Jaime; Vicente, Oscar
2015-01-01
World population is expected to reach 9.2 × 109 people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a ‘saline agriculture’ which will not compete in terms of resources with conventional agriculture. PMID:26617620
Yamaguchi, Aritomo; Hiyoshi, Norihito; Sato, Osamu; Bando, Kyoko K; Shirai, Masayuki
2010-06-21
Paper wastes are used for the production of gaseous fuels over supported metal catalysts. The gasification of the nonrecyclable paper wastes, such as shredded documents and paper sludge, is carried out in high-temperature liquid water. The order of the catalytic activity for the gasification is found to be ruthenium>rhodium>platinum>palladium. A charcoal-supported ruthenium catalyst (Ru/C) is the most effective for the gasification of paper and cellulose. Paper wastes are gasified to a limited degree (32.6 carbon %) for 30 min in water at 523 K to produce methane and carbon dioxide, with a small amount of hydrogen. At 573 K, more complete gasification with almost 100 carbon % is achieved within 10 min in water. At 523 K, the gas yield of paper gasification over Ru/C is higher than that of cellulose powder. The gas yields are increased by ball-milling treatment of the recycled paper and cellulose powder. Printed paper wastes are also gasified at 523 K in water.
Substantial reservoirs of molecular hydrogen in the debris disks around young stars.
Thi, W F; Blake, G A; van Dishoeck, E F; van Zadelhoff, G J; Horn, J M; Becklin, E E; Mannings, V; Sargent, A I; van Den Ancker, M E; Natta, A
2001-01-04
Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.
Paprika (Capsicum annuum) oleoresin extraction with supercritical carbon dioxide.
Jarén-Galán, M; Nienaber, U; Schwartz, S J
1999-09-01
Paprika oleoresin was fractionated by extraction with supercritical carbon dioxide (SCF-CO(2)). Higher extraction volumes, increasing extraction pressures, and similarly, the use of cosolvents such as 1% ethanol or acetone resulted in higher pigment yields. Within the 2000-7000 psi range, total oleoresin yield always approached 100%. Pigments isolated at lower pressures consisted almost exclusively of beta-carotene, while pigments obtained at higher pressures contained a greater proportion of red carotenoids (capsorubin, capsanthin, zeaxanthin, beta-cryptoxanthin) and small amounts of beta-carotene. The varying solubility of oil and pigments in SCF-CO(2) was optimized to obtain enriched and concentrated oleoresins through a two-stage extraction at 2000 and 6000 psi. This technique removes the paprika oil and beta-carotene during the first extraction step, allowing for second-stage oleoresin extracts with a high pigment concentration (200% relative to the reference) and a red:yellow pigment ratio of 1.8 (as compared to 1.3 in the reference).
NASA Technical Reports Server (NTRS)
Yang, Jinhua; Oh, Woon Su; Elder, Ian A.; Leventis, Nicholas; Sotiriou-Leventis, Chariklia
2003-01-01
We report a new application of the Suzuki-Miyaura reaction whereas two bifunctional reactants, 3,8-dibromo-1,10-phenanthroline and 3,5-diethynylheptyloxylbenzene (9), yield 3,8-bis (3-ethynyl-5-heptyloxyphenylethynyl)-1,10-phenanthroline (2) efficiently (74% yield) without polymerization. This was achieved by reacting a stoichiometric amount of 9 and (Me3Si)2NLi to obtain quantitatively the monoacetylide anion of 9 (10). The latter was activated with B-methoxy-9-BBN and reacted in analogy to the alkynyl copper complex of a Sonogashira route. However, in the Sonogashira reaction, the alkynyl copper complex is present in small equilibrium concentrations and polymerization takes place even when reagents are mixed slowly. Actually the Sonogashira route gave no desired product 2, as the latter polymerizes easily via homo-coupling in the presence of air and Cu(I). Sonogashira coupling involves the palladium(0) catalyzed reaction of terminal alkynes.
Rau, Udo; Kuenz, Anja; Wray, Victor; Nimtz, Manfred; Wrenger, Julika; Cicek, Hasan
2009-01-01
Trametes versicolor ATCC 200801 secretes 4.1 g L(-1) of exopolysaccharide (EPS) when synthetic minimal medium and low-shear bioreactor cultivation technique are used. Structural and compositional analyses by thin layer chromatography, gas chromatography-mass spectrometry, electrospray ionization tandem mass spectrometry, and nuclear magnetic resonance spectroscopy yielded predominantly glucose and small amounts of galactose, mannose, arabinose, and xylose. The main EPS is composed of beta-1,3/beta-1,6-linked D-glucose molecules which is identical with Schizophyllan but does not possess a triple helical arrangement as secondary structure. Two molar mass fractions were detected by size exclusion chromatography yielding weight-average molecular weights of 4,100 and 2.6 kDa. Protein content varies between 2-3.6% (w/w). The exopolysaccharide is different in the nature of the glycosidic linkage, composition of monosaccharides, protein content, and weight-average molecular weight compared to the well-known polysaccharopeptide (PSP) and polysaccharopeptide Krestin (PSK).
Djafari Petroudy, Seyed Rahman; Syverud, Kristin; Chinga-Carrasco, Gary; Ghasemain, Ali; Resalati, Hossein
2014-01-01
This study explores the benefits of using bagasse microfibrillated cellulose (MFC) in bagasse paper. Two different types of MFC were produced from DED bleached soda bagasse pulp. The MFC was added to soda bagasse pulp furnishes in different amounts. Cationic polyacrylamide (C-PAM) was selected as retention aid. The results show that addition of MFC increased the strength of paper as expected. Interestingly, 1% MFC in combination with 0.1% C-PAM yielded similar drainage time as the reference pulp, which did not contain MFC. In addition, the samples containing 1% MFC and 0.1% C-PAM yielded (i) a significant increment of the tensile index, (ii) a minor decrease of opacity and (iii) preserved Gurley porosity. Hence, this study proves that small fractions of MFC in combination with adequate retention aids can have positive effects with respect to paper properties, which is most interesting from an industrial point of view. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electrochemical product detection of an asymmetric convective polymerase chain reaction.
Duwensee, Heiko; Mix, Maren; Stubbe, Marco; Gimsa, Jan; Adler, Marcel; Flechsig, Gerd-Uwe
2009-10-15
For the first time, we describe the application of heated microwires for an asymmetric convective polymerase chain reaction (PCR) in a modified PCR tube in a small volume. The partly single-stranded product was labeled with the electrochemically active compound osmium tetroxide bipyridine using a partially complementary protective strand with five mismatches compared to the single-stranded product. The labeled product could be successfully detected at a gold electrode modified with a complementary single-stranded capture probe immobilized via a thiol-linker. Our simple thermo-convective PCR yielded electrochemically detectable products after only 5-10 min. A significant discrimination between complementary and non-complementary target was possible using different immobilized capture probes. The total product yield was approx. half the amount of the classical thermocycler PCR. Numerical simulations describing the thermally driven convective PCR explain the received data. Discrimination between complementary capture probes and non-complementary capture probes was performed using square-wave voltammetry. The coupling of asymmetric thermo-convective PCR with electrochemical detection is very promising for future compact DNA sensor devices.
Feature Selection for Wheat Yield Prediction
NASA Astrophysics Data System (ADS)
Ruß, Georg; Kruse, Rudolf
Carrying out effective and sustainable agriculture has become an important issue in recent years. Agricultural production has to keep up with an everincreasing population by taking advantage of a field’s heterogeneity. Nowadays, modern technology such as the global positioning system (GPS) and a multitude of developed sensors enable farmers to better measure their fields’ heterogeneities. For this small-scale, precise treatment the term precision agriculture has been coined. However, the large amounts of data that are (literally) harvested during the growing season have to be analysed. In particular, the farmer is interested in knowing whether a newly developed heterogeneity sensor is potentially advantageous or not. Since the sensor data are readily available, this issue should be seen from an artificial intelligence perspective. There it can be treated as a feature selection problem. The additional task of yield prediction can be treated as a multi-dimensional regression problem. This article aims to present an approach towards solving these two practically important problems using artificial intelligence and data mining ideas and methodologies.
Tesena, Parichart; Korchunjit, Wasamon; Taylor, Jane; Wongtawan, Tuempong
2017-01-01
Gastric tissue biopsy and gene expression analysis are important tools for disease diagnosis and study of the physiology of the equine stomach. However, RNA extraction from gastric biopsy samples is a complex procedure because the samples contain low quantities of RNA and are contaminated with mucous protein and bacterial flora. The objectives of these studies were to compare the performance of RNA extraction methods and to investigate the sensitivity of commercial qPCR master mixes for gene expression analysis of gastric biopsy samples. Three commercial RNA extraction methods (TRIzol ™ , GENEzol ™ and MiniPrep ™ ) and four qPCR master mixes with SYBR ® green (qPCRBIO, KAPA, QuantiNova, and PerfeCTa) were compared. RNA qualification and quantitation were compared. Real-time PCR was used to compare qPCR master mixes. The results revealed that TRIzol and GENEzol obtained significantly higher yield of RNA (P<0.01) but that TRIzol had the highest contamination of protein and DNA (P<0.05). Conversely, MiniPrep resulting in a significantly higher purification of RNA (P<0.05) but provided the lowest yield of RNA (P<0.01). For PCR master mixes, KAPA was significantly (P<0.05) more sensitive than other qPCR kits for all amounts of DNA template, particularly at the lowest amount of cDNA. In conclusion, GENEzol is the best method to obtain a high RNA yield and purification and it is more cost-effective than the others as well. Regarding the qPCR master mixes, KAPA SYBR qPCR Master Mix (2x) Universal is superior to the other tested master mixes for studying gene expression in equine gastric biopsies.
Potential resource materials from Ohio plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, M.E.; Roth, W.B.; Bagby, M.O.
Previously, the Northern Regional Research Center (NRRC) has studied chemical and botanical features of about 800 plant species in a program to identify potential renewable sources of industrial raw materials. In this program, another 64 species from northwestern and southwestern Ohio were studied for the present report. Aboveground samples were quantitatively analyzed for moisture, ash, crude protein, oil, polyphenol, and hydrocarbon. Plant oils were examined for classes of constituents. Oils were saponified and analyzed for yields of organic acids and unsaponifiable matter. Hydrocarbons were examined for the presence of rubber, gutta, and waxes. Rubber and gutta were analyzed for weight-averagemore » molecular weight and molecular weight distribution. Data are presented for 89 species of the 64 that gave the higher chemical yields. Rhus typhina gave outstanding yields of oil (6.5%) and polyphenol (30.8%) (moisture- plus ash-free basis). Liatris aspera yielded substantial amounts of oil (4.7%) and polyphenol (22.7%), whereas Cornus racemosa yielded a substantial amount of oil (4.4%) but a more typical yield of polyphenol (11.0%). Nuphar advena and Epilobium angustifolium had considerable amounts of polyphenol (16.2, 16.3%) but little oil. Nuphar advena contained the most crude protein (24.8%). Noteworthy amounts of hydrocarbon were extracted from Calamagrostis canadensis (1.1%), Aster umbellatus (0.8%), and Solidago riddellii (0.7%). Polyisoprenes in the hydrocarbon fractions of the latter 3 species were identified as gutta for C. canadensis and rubber for A. umbellatus and S. riddellii. Botanical features of the 8 species are briefly discussed.« less
Lohrenz, A-K; Duske, K; Schönhusen, U; Losand, B; Seyfert, H M; Metges, C C; Hammon, H M
2011-09-01
Diets containing corn starch may improve glucose supply by providing significant amounts of intestinal starch and increasing intestinal glucose absorption in dairy cows. Glucose absorption in the small intestine requires specific glucose transporters; that is, sodium-dependent glucose co-transporter-1 (SGLT1) and facilitated glucose transporter (GLUT2), which are usually downregulated in the small intestine of functional ruminants but are upregulated when luminal glucose is available. We tested the hypothesis that mRNA and protein expression of intestinal glucose transporters and mRNA expression of enzymes related to gluconeogenesis are affected by variable starch supply. Dairy cows (n=9/group) were fed for 4 wk total mixed rations (TMR) containing either high (HS) or low (LS) starch levels in the diet. Feed intake and milk yield were measured daily. After slaughter, tissue samples of the small intestinal mucosa (mid-duodenum and mid-jejunum) were taken for determination of mRNA concentrations of SGLT1 and GLUT2 as well as pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase by real-time reverse transcription PCR relative to a housekeeping gene. Protein expression of GLUT2 in crude mucosal membranes and of SGLT1 and GLUT2 in brush-border membrane vesicles was quantified by sodium dodecyl sulfate-PAGE and immunoblot. A mixed model was used to examine feeding and time-related changes on feed intake and milk yield and to test feeding and gut site effects on gene or protein expression of glucose transporters and enzymes in the intestinal mucosa. Dry matter intake, but not energy intake, was higher in cows fed HS compared with LS. Abundance of SGLT1 mRNA tended to be higher in duodenal than in jejunal mucosa, and mRNA abundances of pyruvate carboxylase tended to be higher in jejunal than in duodenal mucosa. In brush-border membrane vesicles, SGLT1 and GLUT2 protein expression could be demonstrated. No diet-dependent differences were found concerning mRNA and protein contents of glucose transporter or mRNA level of gluconeogenic enzymes. In conclusion, our investigations on glucose transporters and gluconeogenic enzymes in the small intestinal mucosa of dairy cows did not show significant diet regulation when TMR with different amounts of intestinal starch were fed. Therefore, predicted intestinal glucose absorption after enhanced starch feeding is probably not supported by changes of intestinal glucose transporters in dairy cows. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems.
Wilson, Erica L; Kim, Younggy
2016-05-01
In conventional wastewater treatment, waste sludge management and disposal contribute the major cost for wastewater treatment. Bioelectrochemical systems, as a potential alternative for future wastewater treatment and resources recovery, are expected to produce small amounts of waste sludge because exoelectrogenic bacteria grow on anaerobic respiration and form highly populated biofilms on bioanode surfaces. While waste sludge production is governed by the yield and decay coefficient, none of previous studies have quantified these kinetic constants for exoelectrogenic bacteria. For yield coefficient estimation, we modified McCarty's free energy-based model by using the bioanode potential for the free energy of the electron acceptor reaction. The estimated true yield coefficient ranged 0.1 to 0.3 g-VSS (volatile suspended solids) g-COD(-1) (chemical oxygen demand), which is similar to that of most anaerobic microorganisms. The yield coefficient was sensitively affected by the bioanode potential and pH while the substrate and bicarbonate concentrations had relatively minor effects on the yield coefficient. In lab-scale experiments using microbial electrolysis cells, the observed yield coefficient (including the effect of cell decay) was found to be 0.020 ± 0.008 g-VSS g-COD(-1), which is an order of magnitude smaller than the theoretical estimation. Based on the difference between the theoretical and experimental results, the decay coefficient was approximated to be 0.013 ± 0.002 d(-1). These findings indicate that bioelectrochemical systems have potential for future wastewater treatment with reduced waste sludge as well as for resources recovery. Also, the found kinetic information will allow accurate estimation of wastewater treatment performance in bioelectrochemical systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement of curium in marine samples
NASA Astrophysics Data System (ADS)
Schneider, D. L.; Livingston, H. D.
1984-06-01
Measurement of environmentally small but detectable amounts of curium requires reliable, accureate, and sensitive analytical methods. The radiochemical separation developed at Woods Hole is briefly reviewed with specific reference to radiochemical interferences in the alpha spectrometric measurement of curium nuclides and to the relative amounts of interferences expected in different oceanic regimes and sample types. Detection limits for 242 Cm and 244 Cm are ultimately limited by their presence in the 243Am used as curium yield monitor. Environmental standard reference materials are evaluated with regard to curium. The marine literature is reviewed and curium measurements are discussed in relation to their source of introduction to the environment. Sources include ocean dumping of low-level radioactive wastes and discharges from nuclear fuel reporcessing activities, In particular, the question of a detectable presence of 244Cm in global fallout from nuclear weapons testing is addressed and shown to be essentially negligible. Analyses of Scottish coastal sedimantes show traces of 242Cm and 244Cm activity which are believed to originate from transport from sources in the Irish Sea.
Maggi, Maristella; Scotti, Claudia
2017-06-01
Heterologous expression of high amounts of recombinant proteins is a milestone for research and industrial purposes. Single domain antibodies (sdAbs) are heavy-chain only antibody fragments with applications in the biotechnological, medical and industrial fields. The simple nature and small size of sdAbs allows for efficient expression of the soluble molecule in different hosts. However, in some cases, it results in low functional protein yield. To overcome this limitation, expression of a 6xHistag sdAb was attempted in different conditions in Escherichia coli BL21(DE3) cells. Data showed that high amount of sdAb can be expressed in E. coli classical inclusion bodies, efficiently extracted by urea in a short-time, and properly purified by metal ion affinity chromatography. These data originate from the research article "Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies" Maggi and Scotti (2017) [1] (DOI: http://dx.doi.org/10.1016/j.pep.2017.02.007).
Chojnacka, Aleksandra; Janssen, Hans-Gerd; Schoenmakers, Peter
2014-01-01
Measuring polymer solubility accurately and precisely is challenging. This is especially true at unfavourable solvent compositions, when only very small amounts of polymer dissolve. In this paper, pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) is demonstrated to be much more informative and sensitive than conventional methods, such as ultraviolet spectroscopy. By using a programmed-temperature-vapourisation injector as the pyrolysis chamber, we demonstrate that Py-GC-MS can cover up to five orders of magnitude in dissolved polymer concentrations. For polystyrene, a detection limit of 1 ng mL(-1) is attained. Dissolution in poor solvents is demonstrated to be discriminating in terms of the analyte molecular weight. Py-GC-MS additionally can yield information on polymer composition (e.g. in case of copolymers). In combination with size-exclusion chromatography, Py-GC-MS allows us to estimate the molecular weight distributions of minute amounts of a dissolved polymer and variations therein as a function of time.
Reuse of EAF Slag as Reinforcing Filler for Polypropylene Matrix Composites
NASA Astrophysics Data System (ADS)
Cornacchia, G.; Agnelli, S.; Gelfi, M.; Ramorino, G.; Roberti, R.
2015-06-01
Electric-arc furnace (EAF) slag, the by-product of steel fabricated at the EAF, is in most cases still sent to dumps, with serious environmental consequences. This work shows an innovative, economically convenient application for EAF slag: its use as reinforcing filler for polypropylene. Composites based on polypropylene containing 10-40 wt.% of EAF slag particles were prepared by melt compounding followed by injection molding. A physical-chemical analysis of the EAF slag was performed to determine microstructural features and main component phases. Leaching tests demonstrated that, although EAF slag can release small amounts of toxic elements, such as heavy metals, incorporating such material into the polymeric matrix immobilizes the heavy metals inside that matrix. The mechanical characterization of the polymer-based composites was performed. Incorporating EAF slag particles raises the Young's modulus and the tensile strength at yield, whereas elongation at break and the impact strength of the polymer-based composite are significantly reduced only when large amounts of filler are added, i.e., 30% or more.
Measurement of surface water runoff from plots of two different sizes
NASA Astrophysics Data System (ADS)
Joel, Abraham; Messing, Ingmar; Seguel, Oscar; Casanova, Manuel
2002-05-01
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff.
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-01
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-13
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.
Man, Jian-guo; Wang, Dong; Yu, Zhen-wen; Zhang, Yong-li; Shi, Yu
2013-08-01
Taking the high-yielding winter wheat variety Jimai 22 as test material, a field experiment was conducted in 2010-2012 to study the effects of irrigation with different length micro-sprinkling hoses on the soil water distribution in winter wheat growth period and the water consumption characteristics and grain yield of winter wheat. Three micro-sprinkling hose lengths were designed, i. e., 40 m (T40), 60 m (T60) and 80 m (T80). Under the micro-sprinkling irrigation at jointing and anthesis stages, the uniformity of the horizontal distribution of irrigation water in soil increased significantly with the decrease of hose length from 80 to 40 m. When irrigated at jointing stage, the water content of 0-200 cm soil layer in each space of wheat rows had no significant difference within the 0-40 m distanced from the border initial in treatments T40 and T60. When measured at the 38-40 m, 58-60 m, and 78-80 m distanced from the border initial in treatment T80 at jointing and anthesis stages, the water content in 0-200 cm soil layer had the same change pattern, i. e., decreased with the increasing distance from micro-sprinkling hose. The water consumption amounts in 40-60 cm soil layer from jointing to anthesis stages and in 20-80 cm soil layer from anthesis to maturing stages were higher in treatment T40 than in treatments T60 and T80. However, the soil water consumption amount, irrigation amount at anthesis stage, total irrigation amount, and total water consumption amount were significantly lower in treatment T40 than in treatments T60 and T80. The grain yield, yield water use efficiency increased with the hose length decreased from 80 to 40 m, but the flow decreased. Therefore, the effective irrigation area per unit time decreased with the same irrigation amounts. Considering the grain yield, water use efficiency, and the flow through micro-sprinkling hose, 40 and 60 m were considered to be the appropriate micro-sprinkling hose lengths under this experimental condition.
NASA Technical Reports Server (NTRS)
Thompson, J. E.; Wittman, J. W.; Reynard, K. A.
1976-01-01
Candidate polyphosphazene polymers were investigated to develop a fire-resistant, thermally stable and flexible open cell foam. The copolymers were prepared in several mole ratios of the substituent side chains and a (nominal) 40:60 derivative was selected for formulation studies. Synthesis of the polymers involved solution by polymerization of hexachlorophosphazene to soluble high molecular weight poly(dichlorophosphazene), followed by derivatization of the resultant polymer in a normal fashion to give polymers in high yield and high molecular weight. Small amounts of a cure site were incorporated into the polymer for vulcanization purposes. The poly(aryloxyphosphazenes) exhibited good thermal stability and the first polymer mentioned above exhibited the best thermal behavior of all the candidate polymers studied.
Production of Aflatoxin on Soybeans
Gupta, S. K.; Venkitasubramanian, T. A.
1975-01-01
Probable factors influencing resistance to aflatoxin synthesis in soybeans have been investigated by using cultures of Aspergillus parasiticus NRRL 3240. Soybeans contain a small amount of zinc (0.01 μg/g) bound to phytic acid. Autoclaving soybeans at 15 pounds (6803.88 g) for 15 min increases the aflatoxin production, probably by making zinc available. Addition of zinc to both autoclaved and nonautoclaved soybeans promotes aflatoxin production. However, addition of varying levels of phytic acid at a constant concentration of zinc depresses aflatoxin synthesis with an increase in the added phytic acid. In a synthetic medium known to give good yields of aflatoxin, the addition of phytic acid (10 mM) decreases aflatoxin synthesis. PMID:1171654
Accurate Inventories Of Irrigated Land
NASA Technical Reports Server (NTRS)
Wall, S.; Thomas, R.; Brown, C.
1992-01-01
System for taking land-use inventories overcomes two problems in estimating extent of irrigated land: only small portion of large state surveyed in given year, and aerial photographs made on 1 day out of year do not provide adequate picture of areas growing more than one crop per year. Developed for state of California as guide to controlling, protecting, conserving, and distributing water within state. Adapted to any large area in which large amounts of irrigation water needed for agriculture. Combination of satellite images, aerial photography, and ground surveys yields data for computer analysis. Analyst also consults agricultural statistics, current farm reports, weather reports, and maps. These information sources aid in interpreting patterns, colors, textures, and shapes on Landsat-images.
Organic-Solvent-Free Phase-Transfer Oxidation of Alcohols Using Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Hulce, Martin; Marks, David W.
2001-01-01
Organic-solvent-free oxidations of alcohols using aqueous hydrogen peroxide in the presence of sodium tungstate and phase-transfer catalysts provide a general, safe, simple, and cost-effective means to prepare ketones. Six representative alcohols, 1-phenylethanol, 1-phenylpropanol, benzhydrol, 4-methylbenzhydrol, cis,trans-4-tert-butylcyclohexanol, and benzyl alcohol are oxidized to the corresponding aldehyde or ketone over 1-3 hours in 81-99% yields. Purities are very high, with only small to trace amounts of starting alcohol remaining. Experiments can be readily designed for one or two 3-hour laboratory periods, integrating the various techniques of extraction, drying, filtration, column chromatography, gas chromatography, NMR and IR spectroscopy, and reaction kinetics.
Preference for internucleotide linkages as a function of the number of constituents in a mixture
NASA Technical Reports Server (NTRS)
Kanavarioti, A.
1998-01-01
Phosphoimidazolide-activated ribomononucleotides (*pN; see Scheme I) are useful substrates for the nonenzymatic synthesis of oligonucleotides. In the presence of metal ions dilute neutral aqueous solutions of *pN (0.01 M) typically yield only small amounts of dimers and traces of oligomers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate (5'NMP). An earlier investigation of *pN reactions in highly concentrated aqueous solutions (up to 1.4 M) showed, as expected, that the percentage yield of the condensation products increases and the yield of the hydrolysis product correspondingly decreases with *pN concentration (Kanavarioti 1997). Here we report product distributions in reactions with one, two, or three reactive components at the same total nucleotide concentration. *pN used as substrates were the nucleoside 5'-phosphate 2-methylimidazolides, 2-MeImpN, with N = cytidine (C), uridine (U), or guanosine (G). Reactions were conducted as self-condensations, i. e., one nucleotide only, with two components in the three binary U,C, U,G, and C,G mixtures, and with three components in the ternary U,C, G mixture. The products are 5'NMP, 5',5'-pyrophosphate-, 2',5'-, 3', 5'-linked dimers, cyclic dimers, and a small percentage of longer oligomers. The surprising finding was that, under identical conditions, including the same total monomer concentration, the product distribution differs substantially from one reaction to another, most likely due to changing intermolecular interactions depending on the constituents. Even more unexpected was the observed trend according to which reactions of the U,C,G mixture produce the highest yield of internucleotide-linked dimers, whereas the self-condensations produce the least and the reactions with the binary mixtures produce yields that fall in between. What is remarkable is that the approximately two-fold increase in the percentage yield of internucleotide-linked dimers is not due to a concentration effect or a catalyst, but to the increased complexity of the system from a single to two and three components. These observations, perhaps, provide an example of how increased complexity in relatively simple chemical systems leads to organization of the material and consequently to chemical evolution. A possible link between prebiotic chemistry and the postulated RNA world is discussed.
African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption
NASA Astrophysics Data System (ADS)
van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep
2014-05-01
The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.
Maragkaki, A E; Fountoulakis, M; Kyriakou, A; Lasaridi, K; Manios, T
2018-01-01
In Greece, in many cities, wastewater treatment plants (WWTPs) operate their own anaerobic digestion (AD) facility in order to treat sewage sludge rather than achieve optimum biogas production. Nowadays, there is a growing interest regarding the addition of other co-substrates in these existing facilities in order to increase gas yield from the biomass. This practice may be possible by adding small amount of co-substrates which will not affect significantly in the designed hydraulic retention time. Nonetheless, the lack of experimental data regarding this option is a serious obstacle. In this study, the effect of co-digestion sewage sludge, with small amount of agro-industrial by-products and food wastes is examined in lab-scale experiments. Specifically, co-digestion of SS and food waste (FW), grape residues (GR), crude glycerol (CG), cheese whey (CW) and sheep manure (SM), in a small ratio of 5-10% (v/v) was investigated. The effect of agro-industrial by-products and food waste residues on biogas production was investigated using one 1L and three 3L lab-scale reactors under mesophilic conditions at a 24-day hydraulic retention time. The biogas production rate reached 223, 259, 406, 572, 682 and 1751 mlbiogas/lreactor/d for 100% SS, 5% SM & 95% SS, 10% CW & 90% SS, 5% FW & 95% SS, 5% FW & 5% CG & 90% SS and 5% CG & 95% SS respectively. Depending on the co-digestion material, the average removal of total chemical oxygen demand (TCOD) ranged between 20% (5% SM & 95% SS) and 76% (5% FW & 5% CG & 90% SS). Reduction in the volatile solids ranged between 26% (5% SM & 95% SS) and 62% (5% FW & 5% CG & 90% SS) for organic loading rates between 0.8kgVSm -3 d -1 and 2.0kgVSm -3 d -1 . Moreover, co-digestion improved biogas production from 14% (5% SM & 95% SS) to 674% (5% CG & 95% SS). This work suggests that WWTPs in Greece can increase biogas production by adding other wastes to the sewage sludge without affecting the operation of existing digesters and without requiring additional facilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.
2009-01-01
The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.
12 CFR Appendix A to Part 230 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2010 CFR
2010-01-01
... following simple formula: APY=100 (Interest/Principal) Examples (1) If an institution pays $61.68 in... percentage yield is 5.39%, using the simple formula: APY=100(134.75/2,500) APY=5.39% For $15,000, interest is... Yield Calculation The annual percentage yield measures the total amount of interest paid on an account...
Amini, Parisa; Ettlin, Julia; Opitz, Lennart; Clementi, Elena; Malbon, Alexandra; Markkanen, Enni
2017-08-23
Formalin-fixed paraffin embedded (FFPE) tissue constitutes a vast treasury of samples for biomedical research. Thus far however, extraction of RNA from FFPE tissue has proved challenging due to chemical RNA-protein crosslinking and RNA fragmentation, both of which heavily impact on RNA quantity and quality for downstream analysis. With very small sample sizes, e.g. when performing Laser-capture microdissection (LCM) to isolate specific subpopulations of cells, recovery of sufficient RNA for analysis with reverse-transcription quantitative PCR (RT-qPCR) or next-generation sequencing (NGS) becomes very cumbersome and difficult. We excised matched cancer-associated stroma (CAS) and normal stroma from clinical specimen of FFPE canine mammary tumours using LCM, and compared the commonly used protease-based RNA isolation procedure with an adapted novel technique that additionally incorporates a focused ultrasonication step. We successfully adapted a protocol that uses focused ultrasonication to isolate RNA from small amounts of deparaffinised, stained, clinical LCM samples. Using this approach, we found that total RNA yields could be increased by 8- to 12-fold compared to a commonly used protease-based extraction technique. Surprisingly, RNA extracted using this new approach was qualitatively at least equal if not superior compared to the old approach, as Cq values in RT-qPCR were on average 2.3-fold lower using the new method. Finally, we demonstrate that RNA extracted using the new method performs comparably in NGS as well. We present a successful isolation protocol for extraction of RNA from difficult and limiting FFPE tissue samples that enables successful analysis of small sections of clinically relevant specimen. The possibility to study gene expression signatures in specific small sections of archival FFPE tissue, which often entail large amounts of highly relevant clinical follow-up data, unlocks a new dimension of hitherto difficult-to-analyse samples which now become amenable for investigation.
Vesicle-mediated growth of tubular branches and centimeter-long microtubes from a single molecule.
Abbas, Abdennour; Brimer, Andrew; Tian, Limei; d'Avignon, D André; Hameed, Abdulrahman Shahul; Vittal, Jagadese J; Singamaneni, Srikanth
2013-08-12
The mechanism by which small molecules assemble into microscale tubular structures in aqueous solution remains poorly understood, particularly when the initial building blocks are non-amphiphilic molecules and no surfactant is used. It is here shown how a subnanometric molecule, namely p-aminothiophenol (p-ATP), prepared in normal water with a small amount of ethanol, spontaneously assembles into a new class of nanovesicle. Due to Brownian motion, these nanostructures rapidly grow into micrometric vesicles and start budding to yield macroscale tubular branches with a remarkable growth rate of ∼20 μm s⁻¹. A real-time visualization by optical microscopy reveals that tubular growth proceeds by vesicle walk and fusion on the apex (growth cone) and sides of the branches and ultimately leads to the generation of centimeter-long microtubes. This unprecedented growth mechanism is triggered by a pH-activated proton switch and maintained by hydrogen bonding. The vesicle fusion-mediated synthesis suggests that functional microtubes with biological properties can be efficiently prepared with a mixture of appropriate diaminophenyl blocks and the desired macromolecule. The reversibility, timescale, and very high yield (90%) of this synthetic approach make it a valuable model for the investigation of hierarchical and structural transition between organized assemblies with different size scales and morphologies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.
2014-12-01
Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.
78 FR 64232 - Notice of Adjustment of Disaster Grant Amounts
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... maximum amount of any Small Project Grant made to State, Tribal, and local governments or to the owner or... Disaster Grant Amounts AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: FEMA gives notice of an increase of the maximum amount for Small Project Grants made to State, Tribal, and...
75 FR 62135 - Notice of Adjustment of Disaster Grant Amounts
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... amount of any Small Project Grant made to the State, local government, or to the owner or operator of an... Disaster Grant Amounts AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: FEMA gives notice of an increase of the maximum amount for Small Project Grants to State and local...
Influence of Biomass Pretreatment Process Time on Furfural Extraction from Birch Wood
NASA Astrophysics Data System (ADS)
Brazdausks, Prans; Puke, Maris; Vedernikovs, Nikolajs; Kruma, Irena
2013-12-01
Furfural is a biomass derived-chemical that can be used to replace petrochemicals. In this study, dilute sulphuric acid hydrolysis was used for hemicelluloses secession from birch wood. The reaction was investigated at different biomass treatment times (10-90 min, increasing it by 10 min). We found that the greatest amount of furfural 1.4-2.6%, which is 9.7-17.7% from theoretical possible yield, was formed in the first 30 min of the beginning of birch wood pentoses monosaccharide dehydration, but the greatest yield of furfural 10.3%, which is 70.0% from the theoretical yield, can be obtained after 90 min. Given that furfural yield generally does not exceed 50% from the theoretical amount, the result can be considered as very good.
Rui, Yunjun; Zhao, Weiliang; Zhu, Dewei; Wang, Hengyu; Song, Guangliang; Swihart, Mark T.; Wan, Neng; Gu, Dawei; Tang, Xiaobing; Yang, Ying; Zhang, Tianyou
2018-01-01
In recent years, many research groups have synthesized ultra-thin silver nanowires (AgNWs) with diameters below 30 nm by employing Cl− and Br− simultaneously in the polyol process. However, the yield of AgNWs in this method was low, due to the production of Ag nanoparticles (AgNPs) as an unwanted byproduct, especially in the case of high Br− concentration. Here, we investigated the roles of Cl− and Br− in the preparation of AgNWs and then synthesized high aspect ratio (up to 2100) AgNWs in high yield (>85% AgNWs) using a Cl− and Br− co-mediated method. We found that multiply-twinned particles (MTPs) with different critical sizes were formed and grew into AgNWs, accompanied by a small and large amount of AgNPs for the NaCl and NaBr additives, respectively. For the first time, we propose that the growth of AgNWs of different diameters and yields can be understood based on the electron trap distribution (ETD) of the silver halide crystals. For the case of Cl− and Br− co-additives, a mixed silver halide crystal of AgBr1−xClx was formed, rather than the AgBr/AgCl mixture reported previously. In this type of crystal, the ETD is uniform, which is beneficial for the synthesis of AgNWs with small diameter (30~40 nm) and high aspect ratio. AgNW transparent electrodes were prepared in air by rod coating. A sheet resistance of 48 Ω/sq and transmittance of 95% at 550 nm were obtained without any post-treatment. PMID:29538281
Limitations to CO2-induced growth enhancement in pot studies.
McConnaughay, K D M; Berntson, G M; Bazzaz, F A
1993-07-01
Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO 2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO 2 . To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO 2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C 3 dicot with a deep tap root andSetaria faberii, a C 4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO 2 -induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO 2 -induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO 2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO 2 responses of real-world plants.
NASA Astrophysics Data System (ADS)
Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J.-P.
2010-01-01
Thermal ionization mass spectrometry (TIMS) is a well established instrumental technique for providing accurate and precise isotope ratio measurements of elements with reasonably low first ionization potential. In nuclear safeguards and in environmental research, it is often required to measure the isotope ratios in small samples of uranium. Empirical studies had shown that the ionization yield of uranium and plutonium in a TIMS ion source can be significantly increased in the presence of a carbon source. But, even though carbon appeared crucial in providing high ionization yields, processes taking place on the ionization surface were still not well understood. This paper describes the experimental results obtained from an extended study on the evaporation and ionization mechanisms of uranium occurring on a rhenium mass spectrometry filament in the presence of carbon. Solid state reactions were investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, vaporization measurements were performed with a modified-Knudsen cell mass spectrometer for providing information on the neutral uranium species in the vapor phase. Upon heating, under vacuum, the uranyl nitrate sample was found to turn into a uranium carbide compound, independent of the type of carbon used as ionization enhancer. With further heating, uranium carbide leads to formation of single charged uranium metal ions and a small amount of uranium carbide ions. The results are relevant for a thorough understanding of the ion source chemistry of a uranyl nitrate sample under reducing conditions. The significant increase in ionization yield described by many authors on the basis of empirical results can be now fully explained and understood.
High-yield maize with large net energy yield and small global warming intensity
Grassini, Patricio; Cassman, Kenneth G.
2012-01-01
Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684
Evaluation of Switchgrass as a co-firing fuel in the Southeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southern Research Institute
2001-11-01
The ''Evaluation of Switchgrass as a Co-Firing Fuel in the Southeast'' is a comprehensive project incorporating the highest yielding variety of switchgrass, unique harvesting methods, detailed parametric evaluations in a state-of-the-art combustion research facility, and a full-scale demonstration in a tangentially-fired Alabama Power Company power boiler. These features were incorporated into the project to reduce the technical and economic risk of yielding a practical renewable energy option for the southeastern US. There are particular incentives for proving the feasibility of switchgrass as a biomass fuel in the southeastern US. Even though agriculture is a predominant industry much of the landmore » in this region is under-utilized, marginal farmland. As a result, some of the poorest counties in the nation are located in this region. The yields of switchgrass are substantially higher in the southeastern US than in other regions. Yield, or productivity, is a critical factor in determining the feasibility of biomass fuel. Yields in small research plots in the region averaged 25.8 Mg/ha (11.5 tons/acre) over the period 1990-1994. Achievable commercial yield in the southeastern US will likely be about 15.7 Mg/ha (7 tons/acre) with currently available varieties. Use of switchgrass as a supplemental fuel for coal-fired utility boilers could create an enormous market for growers. The Southern Company has 23,000 MW of coal-fired capacity in the southeast. If only 1% of this capacity was provided by switchgrass instead of coal, 74,500 ha (184,000 acres) of production would be needed. This would generate 1,288,000 tons of switchgrass which, if valued at $35/ton, would amount to over $45 million.« less
Parasitic helminths: a pharmacopeia of anti-inflammatory molecules.
Johnston, M J G; MacDonald, J A; McKay, D M
2009-02-01
Infection with parasitic helminths takes a heavy toll on the health and well-being of humans and their domestic livestock, concomitantly resulting in major economic losses. Analyses have consistently revealed bioactive molecules in extracts of helminths or in their excretory/secretory products that modulate the immune response of the host. It is our view that parasitic helminths are an untapped source of immunomodulatory substances that, in pure form, could become new drugs (or models for drug design) to treat disease. Here, we illustrate the range of immunomodulatory molecules in selected parasitic trematodes, cestodes and nematodes, their impact on the immune cells in the host and how the host may recognize these molecules. There are many examples of the partial characterization of helminth-derived immunomodulatory molecules, but these have not yet translated into new drugs, reflecting the difficulty of isolating and fully characterizing proteins, glycoproteins and lipid-based molecules from small amounts of parasite material. However, this should not deter the investigator, since analytical techniques are now being used to accrue considerable structural information on parasite-derived molecules, even when only minute quantities of tissue are available. With the introduction of methodologies to purify and structurally-characterize molecules from small amounts of tissue and the application of high throughput immunological assays, one would predict that an assessment of parasitic helminths will yield a variety of novel drug candidates in the coming years.
Geohydrology of the Oklahoma Panhandle, Beaver, Cimarron, and Texas Counties
Hart, D.L.; Hoffman, G.L.; Goemaat, Robert L.
1976-01-01
The Ogallala aquifer, which consists of semiconsolidated clay, sand, and gravel, is the principal source of ground water in the Oklahoma Panhandle. This aquifer commonly yields 500 to 1,000 gallons per minute (32 to 63 litres per second) and may yield as much as 2,500 gallons per minute (158 litres per second). Based on an estimated average storage coefficient of 0.1, the quantity of water stored in the Ogallala aquifer was computed at approximately 50 million acre-feet (6.17 x 101° cubic metres). Local overdevelopment of this water resource has resulted in water-level declines of more than 40 feet (12 metres) from 1966 to 1972 in some areas of concentrated well development. The amount of ground water in storage has been reduced about 2 percent during this period.Aquifer tests indicate that transmissivity ranges from 500 to 11,800 feet squared per day (46 to 1,100 metres squared per day), the storage coefficient ranges from 0.002 to 0.11, and hydraulic conductivity ranges from 2.1 to 55 feet per day (0.6 to 16.8 metres per day). In addition to these tests, 802 specific-capacity tests were used to extend transmissivity data.Recharge to the Ogallala aquifer is primarily from precipitation and may be as much as 1 inch (25 millimetres) per year in areas where catchment and percolation are most favorable. Discharge is primarily from pumping and a small amount of natural discharge.Aquifers of limited importance are the Dakota Sandstone and the Cheyenne Sandstone Member of the Purgatoire Formation which provide water to irrigation wells in the southwestern part of Cimarron County. Irrigation wells generally are completed jointly in these aquifers and yields of 300 to 500 gallons per minute (19 to 32 litres per second) are common. Water levels in these aquifers have not shown the pronounced declines that have occurred in the Ogallala aquifer. Permian red beds provide only small quantities of water to domestic and stock wells.Water in the Ogallala aquifer, Dakota Sandstone, and Cheyenne Sandstone Member generally has a dissolved-solids concentration of less than 500 milligrams per litre. The dissolved-solids concentration in water from the Permian red beds generally exceeds 500 milligrams per litre and locally exceeds 2,000 milligrams per litre.
Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips.
Jürgens, A; Webber, A C; Gottsberger, G
2000-11-01
Chemical analysis (GC-MS) yielded a total of 58 volatile compounds in the floral scents of six species of Annonaceae distributed in four genera (Xylopia, Anaxagorea, Duguetia, and Rollinia), Xylopia aromatica is pollinated principally by Thysanoptera and secondarily by small beetles (Nitidulidae and Staphylinidae), whereas the five other species were pollinated by Nitidulidae and Staphylinidae only. Although the six Annonaceae species attract a similar array of pollinator groups, the major constituents of their floral scents are of different biochemical origin. The fragrances of flowers of Anaxagorea brevipes and Anaxagorea dolichocarpa were dominated by esters of aliphatic acids (ethyl 2-methylbutanoate, ethyl 3-methylbutanoate), which were not detected in the other species. Monoterpenes (limonene, p-cymene, alpha-pinene) were the main scent compounds of Duguetia asterotricha, and naphthalene prevailed in the scent of Rollinia insignis flowers. The odors of X. aromatica and Xylopia benthamii flowers were dominated by high amounts of benzenoids (methylbenzoate, 2-phenylethyl alcohol).
NASA Technical Reports Server (NTRS)
Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)
1997-01-01
Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.
Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.
Walton, Sara L; Bischoff, Kenneth M; van Heiningen, Adriaan R P; van Walsum, G Peter
2010-08-01
Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Wilson, Jacqueline; Imre, Dan
This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantlymore » with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niederberger, Armand; Scarani, Valerio; Gisin, Nicolas
2005-04-01
In practical quantum cryptography, the source sometimes produces multiphoton pulses, thus enabling the eavesdropper Eve to perform the powerful photon-number-splitting (PNS) attack. Recently, it was shown by Curty and Luetkenhaus [Phys. Rev. A 69, 042321 (2004)] that the PNS attack is not always the optimal attack when two photons are present: if errors are present in the correlations Alice-Bob and if Eve cannot modify Bob's detection efficiency, Eve gains a larger amount of information using another attack based on a 2{yields}3 cloning machine. In this work, we extend this analysis to all distances Alice-Bob. We identify a new incoherent 2{yields}3more » cloning attack which performs better than those described before. Using it, we confirm that, in the presence of errors, Eve's better strategy uses 2{yields}3 cloning attacks instead of the PNS. However, this improvement is very small for the implementations of the Bennett-Brassard 1984 (BB84) protocol. Thus, the existence of these new attacks is conceptually interesting but basically does not change the value of the security parameters of BB84. The main results are valid both for Poissonian and sub-Poissonian sources.« less
Qu, Weiguo; Dorjpalam, Enkhtuvshin; Rajagopalan, Ramakrishnan; Randall, Clive A
2014-04-01
The in situ modification of a lithium hexafluorophosphate-based electrolyte using a molybdenum oxide catalyst and small amount of water (1 vol %) yields hydrolysis products such as mono-, di-, and alkylfluorophosphates. The electrochemical stability of ultrahigh-purity, high-surface-area carbon electrodes derived from polyfurfuryl alcohol was tested using the modified electrolyte. Favorable modification of the solid electrolyte interface (SEI) layer on the activated carbon electrode increased the cyclable electrochemical voltage window (4.8-1.2 V vs. Li/Li(+)). The chemical modification of the SEI layer induced by electrolyte additives was characterized by using X-ray photoelectron spectroscopy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atmospheric Pseudohalogen Chemistry
NASA Technical Reports Server (NTRS)
Lary, David John
2004-01-01
Hydrogen cyanide is not usually considered in atmospheric chemical models. The paper presents three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. Firstly, HCN is a product and marker of biomass burning. Secondly, it is also likely that lightning is producing HCN, and as HCN is sparingly soluble it could be a useful long-lived "smoking gun" marker of lightning activity. Thirdly, the chemical decomposition of HCN leads to the production of small amounts of the cyanide (CN) and NCO radicals. The NCO radical can be photolyzed in the visible portion of the spectrum yielding nitrogen atoms (N). The production of nitrogen atoms is significant as it leads to the titration of total nitrogen from the atmosphere via N+N->N2, where N2 is molecular nitrogen.
Evaluation of the Mechanical Properties of Electroslag Refined Fe-12Ni Alloys
NASA Technical Reports Server (NTRS)
Bhat, G. K.
1978-01-01
Three Fe-12Ni alloys, individually alloyed with small amounts of V, Ti, and Al, were manufactured through different melting techniques, with special emphasis on electroslag remelting, in order to achieve different levels of metal purity and associated costs. The relative effectiveness of these melting techniques was evaluated from tensile and slow bend fracture toughness behavior at 25 C and -196 C after tempering the test specimens at various temperatures. The best melting procedure was vacuum induction melting (VIM) with or without electroslag remelting (ESR). VIM+ESR is the recommended procedure since ESR provides increased yield of plate product, a reduction of overall manufacturing costs and, depending on the alloy composition, improved tensile and fracture toughness properties.
Piezoelectric and dielectric properties of nanoporous polyvinylidence fluoride (PVDF) films
NASA Astrophysics Data System (ADS)
Zhao, Ping; Wang, Shifa; Kadlec, Alec
2016-04-01
A nanoporous polyvinylidene Fluoride (PVDF) thin film was developed for applications in energy harvesting, medical surgeries, and industrial robotics. This sponge-like nanoporous PVDF structure dramatically enhanced the piezoelectric effect because it yielded considerably large deformation under a small force. A casting-etching method was adopted to make films, which is effective to control the porosity, flexibility, and thickness of the film. The films with various Zinc Oxide (ZnO) mass fractions ranging from 10 to 50% were fabricated to investigate the porosity effect. The piezoelectric coefficient d33 as well as dielectric constant and loss of the films were characterized. The results were analyzed and the optimal design of the film with the right amount of ZnO nanoparticles was determined.
Trade-offs among ecosystem services in a typical Karst watershed, SW China.
Tian, Yichao; Wang, Shijie; Bai, Xiaoyong; Luo, Guangjie; Xu, Yan
2016-10-01
Nowadays, most research results on ecosystem services in Karst areas are limited to a single function of an ecosystem service. Few scholars conduct a comparative study on the mutual relationships among ecosystem services, let alone reveal the trade-off and synergic relationships in typical Karst watershed. This research aims to understand and quantitatively evaluate the relationships among ecosystem services in a typical Karst watershed, broaden the depth and width of trade-off and synergic relationships in ecosystem services and explore a set of technical processes involved in these relationships. With the Shibantang Karst watershed in China as the research site, we explore the trade-off and synergic relationships of net primary productivity (NPP), water yield, and sediment yield by coupling Soil and Water Assessment Tool (SWAT) and Carnegie-Ames-Stanford Approach (CASA), and simulating and evaluating these three ecosystem services between 2000 and 2010. Results of this study are as follows. (1) The annual average water yield decreased from 528mm in 2000 to 513mm in 2010, decreasing by 2.84%. (2) The annual average sediment yield decreased from 26.15t/ha in 2000 to 23.81t/ha in 2010, with an average annual reduction of 0.23t/ha. (3) The annual average NPP increased from 739.38gCm(-2)a(-1) in 2000 to 746.25gCm(-2)a(-1) in 2010, increasing by 6.87gCm(-2)a(-1) . (4) Water yield and sediment yield are in a synergic relationship. The increase of water yield can accumulate the soil erosion amount. NPP is in a trade-off relationship with water yield and sediment yield. The improvement of NPP is good for decreasing water yield and soil erosion amount and increasing soil conservation amount. This study provides policy makers and planners an approach to develop an integrated model, as well as design mapping and monitoring protocols for land use change and ecosystem service assessments. Copyright © 2016 Elsevier B.V. All rights reserved.
Schmid-Bindert, Gerald; Wang, Yongsheng; Jiang, Hongbin; Sun, Hui; Henzler, Thomas; Wang, Hao; Pilz, Lothar R.; Ren, Shengxiang; Zhou, Caicun
2013-01-01
Background Multiple biomarker testing is necessary to facilitate individualized treatment of lung cancer patients. More than 80% of lung cancers are diagnosed based on very small tumor samples. Often there is not enough tissue for molecular analysis. We compared three minimal invasive sampling methods with respect to RNA quantity for molecular testing. Methods 106 small biopsies were prospectively collected by three different methods forceps biopsy, endobronchial ultrasound (EBUS) guided transbronchial needle aspiration (TBNA), and CT-guided core biopsy. Samples were split into two halves. One part was formalin fixed and paraffin embedded for standard pathological evaluation. The other part was put in RNAlater for immediate RNA/DNA extraction. If the pathologist confirmed the diagnosis of non-small cell lung cancer(NSCLC), the following molecular markers were tested: EGFR mutation, ERCC1, RRM1 and BRCA1. Results Overall, RNA-extraction was possible in 101 out of 106 patients (95.3%). We found 49% adenocarcinomas, 38% squamouscarcinomas, and 14% non-otherwise-specified(NOS). The highest RNA yield came from endobronchial ultrasound guided needle aspiration, which was significantly higher than bronchoscopy (37.74±41.09 vs. 13.74±15.53 ng respectively, P = 0.005) and numerically higher than CT-core biopsy (37.74±41.09 vs. 28.72±44.27 ng respectively, P = 0.244). EGFR mutation testing was feasible in 100% of evaluable patients and its incidence was 40.8%, 7.9% and 14.3% in adenocarcinomas, squamouscarcinomas and NSCLC NOS subgroup respectively. There was no difference in the feasibility of molecular testing between the three sampling methods with feasibility rates for ERCC1, RRM1 and BRCA1 of 91%, 87% and 81% respectively. Conclusion All three methods can provide sufficient tumor material for multiple biomarkers testing from routinely obtained small biopsies in lung cancer patients. In our study EBUS guided needle aspiration provided the highest amount of tumor RNA compared to bronchoscopy or CT guided core biopsy. Thus EBUS should be considered as an acceptable option for tissue acquisition for molecular testing. PMID:24205040
Water resources of the Salmon Falls Creek basin, Idaho-Nevada
Crosthwaite, E.G.
1969-01-01
The northern part of the Salmon Falls Creek basin, referred to as the Salmon Falls tract, contains a large acreage of good agricultural land, but the surface-water supply is inadequate to develop the area fully. Attempts to develop ground water for irrigation have been successful only locally. Specific capacities of wells drilled for irrigation and for test purposes ranged from less than 0.5 to 70 gallons per minute per foot of drawdown. The surface-water supply averages 107,000 acre-feet annually, of which about 76,000 acre-feet is diverted for irrigation. The Idavada Volcanics, the most widespread and oldest water-bearing formation in the Salmon Falls tract, consists of massive, dense, thick flows and blankets of welded silicic tuff with associated fine- to coarse-grained ash, clay, silt, sand, and gravel. Fault zones and jointed rock yield large amounts of water to wells, but massive nonjointed units yield little water. Sand, tuff, and ash beds yield moderate quantities of water. Clay, sandy clay, sand, and pea gravel occur in topographic lows on the Idavada Volcanics. The finegrained sediments yield little water to wells, but the gravel yields moderate quantities. Vesicular porphyritic irregularly jointed olivine basalt flows, which overlie the Idavada Volcanics, underlie almost all the Salmon Falls tract. Lenticular fine-grained sedimentary beds as much as 15 feet thick separate some of the flows. Joints and contacts between flows yield small to moderate amounts of water to wells. Alluvial and windblown deposits blanket most of the tract. Where they occur below the water table, the alluvial deposits yield adequate supplies for stock and domestic wells. Perched water in the alluvium along Deep Creek supplies some stock and domestic wells during most years. Ground-water supplies adequate for domestic and stock use can be obtained everywhere in the tract, but extensive exploration has discovered only five local areas where pumping ground water for irrigation is presently economically feasible. About 8,000 acre-feet was withdrawn for all uses in 1960. Natural discharge of ground water is northward -- toward the Twin Falls South Side Project and the Snake River--and is provisionally estimated to be 115,000 acre-feet annually. Ground water in the Salmon Falls tract has a medium- to high salinity hazard and a low sodium hazard. The salinity does not appear to affect crops presently grown in the tract. The southern part of the Salmon Falls Creek basin, referred to as the upper drainage basin, has little agricultural development and is used mostly for grazing livestock. Silicic volcanic rocks and tuffaceous sedimentary rocks of Tertiary age and alluvial deposits yield water to livestock, domestic, and commercial wells.
Nagy, M; Otremba, P; Krüger, C; Bergner-Greiner, S; Anders, P; Henske, B; Prinz, M; Roewer, L
2005-08-11
Automated procedures for forensic DNA analyses are essential not only for large-throughput sample preparation, but are also needed to avoid errors during routine sample preparation. The most critical stage in PCR-based forensic analysis is DNA isolation, which should yield as much highly purified DNA as possible. The extraction method used consists of pre-treatment of stains and samples, cell lysis using chaotropic reagents, binding of the DNA to silica-coated magnetic particles, followed by elution of the DNA. Our work focuses mainly on sample preparation, obtaining the maximum possible amount of biological material from forensic samples, and the following cell lysis, to create a simple standardized lysis protocol suitable for nearly all forensic material. After optimization and validation, the M-48 BioRobot((R)) workstation has been used for more than 20,000 routine lab samples. There has been no evidence of cross contamination. Resulting DNA from as small as three nuclear cells yield reliable complete STR amplification profiles. The DNA remains stable after 2 years of storage.
Nonprevalence of biochemical fossils in kerogen from pre-Phanerozoic sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leventhal, J.; Suess, S. E.; Cloud, P.
Evidence of biochemical and geochemical evolution was sought in insoluble carbonaceous matter from 30 selected pre-Phanerozoic sediments ranging in age from about 3.8 to about 0.7 x 10 9 years. The carbon isotope ratios observed were in the range of -20 to -32 per mil with reference to the Peedee belemnite standard, similar to those previously reported. No systematic trends are obvious to us. Stepwise pyrolysis-gas-chromatography showed only molecules with fewer than 8 carbon atoms at the level of sensitivity of 10 -9 g of organics in a 10 mg rock sample. Carbon, hydrogen, and nitrogen analyses showed noncarbonate carbonmore » from less than 0.1 percent to more than 3 percent, with very small amounts of N. The H/C (atomic) ratios on HCl-leached and HF-treated samples were generally less than 0.3. Evidence of low pyrolysis yields (micro-analysis) and low H/C atomic ratios (macro-analysis) implies that the carbonaceous solids in even the least metamorphosed of these ancient sediments have evolved far toward amorphous carbon or graphite and do not yield useful ''biochemical fossils.''« less
A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization.
Dickinson, Daniel J; Schwager, Francoise; Pintard, Lionel; Gotta, Monica; Goldstein, Bob
2017-08-21
Regulated protein-protein interactions are critical for cell signaling, differentiation, and development. For the study of dynamic regulation of protein interactions in vivo, there is a need for techniques that can yield time-resolved information and probe multiple protein binding partners simultaneously, using small amounts of starting material. Here we describe a single-cell protein interaction assay. Single-cell lysates are generated at defined time points and analyzed using single-molecule pull-down, yielding information about dynamic protein complex regulation in vivo. We established the utility of this approach by studying PAR polarity proteins, which mediate polarization of many animal cell types. We uncovered striking regulation of PAR complex composition and stoichiometry during Caenorhabditis elegans zygote polarization, which takes place in less than 20 min. PAR complex dynamics are linked to the cell cycle by Polo-like kinase 1 and govern the movement of PAR proteins to establish polarity. Our results demonstrate an approach to study dynamic biochemical events in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajpai, P.; Margaritis, A.
1982-12-01
The kinetics of ethanol inhibition on cell growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 were studied during batch growth. The liquid medium contained 10% (weight/volume) inulin-type sugars derived from an extract of Jerusalem artichoke (Helianthus tuberosus) tubers, supplemented with small amounts of Tween 80, oleic acid, and corn steep liquor. Initial ethanol concentrations ranging from 0 to 80 g/liter in the liquid medium were used to study the inhibitory effect of ethanol on the following parameters: maximum specific growth rate (mu max), cell and ethanol yields, and sugar utilization. It was found that as the initial ethanolmore » concentration increased from 0 to 80 g/liter, and maximum specific growth rate of K. marxianus cells decreased from 0.42 to 0.09/hour, whereas the ethanol and cell yields and sugar utilization remained almost constant. A simple kinetic model was used to correlate the mu max results and the rates of cell and ethanol production, and the appropriate constants were evaluated. (Refs. 22).« less
State-dependent choice and ecological rationality.
Nevai, Andrew L; Waite, Thomas A; Passino, Kevin M
2007-08-07
Decision makers who minimize costly errors should flexibly adjust the way they trade off competing demands, depending on their current state. We explore how state (amount of hoarded food) affects willingness to take extra predation risk to obtain larger food rewards, particularly in animals that may overemphasize safety. Assuming a sigmoid fitness function, we explore how a supplement in state influences this willingness trade danger for food energy. Above a threshold, the model predicts the supplement will weaken this willingness. Incremental increases in state in the deceleratory phase yield smaller fitness gains, so it pays to increase emphasis on safety after receiving a supplement. Below this threshold, the model makes the opposite prediction because incremental increases in state yield bigger fitness gains and so it pays to decrease emphasis on safety. We use the model to explain why hoarding gray jays (Perisoreus canadensis) were induced by an experimental subsidy to accept greater danger. This formerly puzzling finding makes sense if the jays' effective hoard was relatively small, due to theft and decomposition. We discuss adaptive state-dependent choice as a general explanation for apparently irrational behavior.
Degueurce, Axelle; Trémier, Anne; Peu, Pascal
2016-09-01
Performances of batch mode solid state anaerobic digestion (SSAD) were investigated through several leachate recirculation strategies. Three parameters were shown to particularly influence methane production rates (MPR) and methane yields: the length of the interval between two recirculation events, the leachate to substrate (L:S) ratio and the volume of leachate recirculated. A central composite factor design was used to determine the influence of each parameter on methane production. Results showed that lengthening the interval between two recirculation events reduced methane yield. This effect can be counteracted by recirculating a large volume of leachate at a low L:S ratio. Steady methane production can be obtained by recirculating small amounts of leachate, and by lengthening the interval between two recirculations, regardless of the L:S ratio. However, several combinations of these parameters led to similar performances meaning that leachate recirculation practices can be modified as required by the specific constraints SSAD plants configurations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microwave-enhanced pyrolysis of natural algae from water blooms.
Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei
2016-07-01
Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis
Koh, Ming Joo; Nguyen, Thach T.; Zhang, Hanmo; Schrock, Richard R.; Hoveyda, Amir H.
2016-01-01
Olefin metathesis has made a significant impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is very limited. In this manuscript, we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of an in situ-generated catalyst with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents and proceed to high conversion at ambient temperature within four hours. Many alkenyl chlorides, bromides and fluorides can be obtained in up to 91 percent yield and complete Z selectivity. This method can be used to easily synthesize biologically active compounds and to perform the site- and stereoselective fluorination of other organic compounds. PMID:27008965
High harmonic emission from a superposition of multiple unrelated frequency fields.
Siegel, T; Torres, R; Hoffmann, D J; Brugnera, L; Procino, I; Zaïr, A; Underwood, Jonathan G; Springate, E; Turcu, I C E; Chipperfield, L E; Marangos, J P
2010-03-29
We report observations and analysis of high harmonic generation driven by a superposition of fields at 1290 nm and 780 nm. These fields are not commensurate in frequency and the superposition leads to an increase in the yield of the mid-plateau harmonics of more than two orders of magnitude compared to using the 1290 nm field alone. Significant extension of the cut-off photon energy is seen even by adding only a small amount of the 780 nm field. These observations are explained by calculations performed in the strong field approximation. Most importantly we find that enhancement is found to arise as a consequence of both increased ionization in the sum-field and modification of the electron trajectories leading to an earlier return time. The enhanced yield even when using modest intensity fields of 5 x 10(13) Wcm(-2) is extended to the 80 eV range and is a promising route to provide a greater photon number for applications in XUV imaging and time-resolved experiments at a high repetition rate.
Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides
NASA Technical Reports Server (NTRS)
Kanavarioti, Anastassia
1997-01-01
Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2- methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2(+) in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MelmpU and 2-MelmpC produce about 65% of oligomers including 4% of the 3',5'-Iinked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of intemucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MelmpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.
NASA Astrophysics Data System (ADS)
Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.
2017-06-01
This paper focuses on environmental controls, spatiotemporal variability and rates of contemporary fluvial suspended sediment transport in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was conducted since 2004 in Erdalen and since 2008 in Bødalen. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (> 70 mm d- 1) in autumn can trigger significant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The proportion of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls for the detected spatial variability of suspended sediment yields. The contemporary sediment supply from glacierized surface areas and the Jostedalsbreen ice cap through different defined outlet glaciers shows a high spatial variability. The fact that the mean annual suspended sediment yield of Bødalen is with 31.3 t km- 2 yr- 1 almost twice as high as the mean annual suspended sediment yield of Erdalen (16.4 t km- 2 yr- 1) is to a large extent explained by the higher proportion of glacier coverage in Bødalen (38% of the drainage basin surface area) as compared to Erdalen (18% of the drainage basin surface area) and by a significantly higher sediment yield from the glacierized area of the Bødalen drainage basin compared to the glacierized surface area in Erdalen. When looking at the total annual mass of suspended sediments being fluvially exported from both entire drainage basin systems, the total amount of suspended sediments coming from the ice-free drainage basin surface areas altogether dominates over the total amount of suspended sediments coming from the glacierized surface area of both drainage basins. Drainage-basin wide annual suspended sediment yields are rather low when compared with yields of other partly glacierized drainage basin systems in Norway and in other cold climate environments worldwide, which is mainly due to the high resistance of the predominant gneisses towards glacial erosion and weathering, the altogether only small amounts of sediments being available within the entire drainage basin systems, the stable and nearly closed vegetation cover in the ice-free surface areas with sedimentary covers, and the efficiency of proglacial lakes in trapping sediments supplied by defined outlet glaciers. Both contemporary and long-term suspended sediment yields are altogether supply-limited. Contemporary suspended sediment transport accounts for nearly two-thirds of the total fluvial transport and, accordingly, plays an important role within the sedimentary budgets of the entire Erdalen and Bødalen drainage basins.
2005-04-01
Approximately 20 percent of the corn kernel is not utilized in the production of ethanol and other starch based products, such as sweeteners and high - fructose ...under high yields. The amount of corn and soybeans available for ethanol, biodiesel or other bioproducts was calculated by first subtracting amounts...because of increasing demand for animal feed. This evaluation assumes that corn exports rise by another 10 percent in the high corn yield scenarios
Redesigning photosynthesis to sustainably meet global food and bioenergy demand
USDA-ARS?s Scientific Manuscript database
The remarkable gains in productivity of the Green Revolution of the late 20th century depended on improving yield potential, i.e. the yield obtained with good nutrition in the absence of pests, diseases and drought. To a first approximation, yield potential is dependent on the amount of solar energy...
Antifoam addition to shake flask cultures of recombinant Pichia pastoris increases yield
2011-01-01
Background Pichia pastoris is a widely-used host for recombinant protein production. Initial screening for both suitable clones and optimum culture conditions is typically carried out in multi-well plates. This is followed by up-scaling either to shake-flasks or continuously stirred tank bioreactors. A particular problem in these formats is foaming, which is commonly prevented by the addition of chemical antifoaming agents. Intriguingly, antifoams are often added without prior consideration of their effect on the yeast cells, the protein product or the influence on downstream processes such as protein purification. In this study we characterised, for the first time, the effects of five commonly-used antifoaming agents on the total amount of recombinant green fluorescent protein (GFP) secreted from shake-flask cultures of this industrially-relevant yeast. Results Addition of defined concentrations of Antifoam A (Sigma), Antifoam C (Sigma), J673A (Struktol), P2000 (Fluka) or SB2121 (Struktol) to shake-flask cultures of P. pastoris increased the total amount of recombinant GFP in the culture medium (the total yield) and in the case of P2000, SB2121 and J673A almost doubled it. When normalized to the culture density, the GFP specific yield (μg OD595-1) was only increased for Antifoam A, Antifoam C and J673A. Whilst none of the antifoams affected the growth rate of the cells, addition of P2000 or SB2121 was found to increase culture density. There was no correlation between total yield, specific yield or specific growth rate and the volumetric oxygen mass transfer coefficient (kLa) in the presence of antifoam. Moreover, the antifoams did not affect the dissolved oxygen concentration of the cultures. A comparison of the amount of GFP retained in the cell by flow cytometry with that in the culture medium by fluorimetry suggested that addition of Antifoam A, Antifoam C or J673A increased the specific yield of GFP by increasing the proportion secreted into the medium. Conclusions We show that addition of a range of antifoaming agents to shake flask cultures of P. pastoris increases the total yield of the recombinant protein being produced. This is not only a simple method to increase the amount of protein in the culture, but our study also provides insight into how antifoams interact with microbial cell factories. Two mechanisms are apparent: one group of antifoams (Antifoam A, Antifoam C and J673A) increases the specific yield of GFP by increasing the total amount of protein produced and secreted per cell, whilst the second (P2000 or SB2121) increases the total yield by increasing the density of the culture. PMID:21426555
Oral purgative and simethicone before small bowel capsule endoscopy
Rosa, Bruno Joel Ferreira; Barbosa, Mara; Magalhães, Joana; Rebelo, Ana; Moreira, Maria João; Cotter, José
2013-01-01
AIM: To evaluate small bowel cleansing quality, diagnostic yield and transit time, comparing three cleansing protocols prior to capsule endoscopy. METHODS: Sixty patients were prospectively enrolled and randomized to one of the following cleansing protocols: patients in Group A underwent a 24 h liquid diet and overnight fasting; patients in Group B followed protocol A and subsequently were administered 2 L of polyethylene glycol (PEG) the evening before the procedure; patients in Group C followed protocol B and were additionally administered 100 mg of simethicone 30 min prior to capsule ingestion. Small bowel cleansing was independently assessed by two experienced endoscopists and classified as poor, fair, good or excellent according to the proportion of small bowel mucosa under perfect conditions for visualization. When there was no agreement between the two endoscopists, the images were reviewed and discussed until a consensus was reached. The preparation was considered acceptable if > 50% or adequate if > 75% of the mucosa was in perfect cleansing condition. The amount of bubbles was assessed independently and it was considered significant if it prevented a correct interpretation of the images. Positive endoscopic findings, gastric emptying time (GET) and small bowel transit time (SBTT) were recorded for each examination. RESULTS: There was a trend favoring Group B in achieving an acceptable (including fair, good or excellent) level of cleansing (Group A: 65%; Group B: 83.3%; Group C: 68.4%) [P = not significant (NS)] and favoring Group C in attaining an excellent level of cleansing (Group A: 10%; Group B: 16.7%; Group C: 21.1%) (P = NS). The number of patients with an adequate cleansing of the small bowel, corresponding to an excellent or good classification, was 5 (25%) in Group A, 5 (27.8%) in Group B and 4 (21.1%) in Group C (P = 0.892). Conversely, 7 patients (35%) in Group A, 3 patients (16.7%) in Group B and 6 patients (31.6%) in Group C were considered to have poor small bowel cleansing (P = 0.417), with significant fluid or debris such that the examination was unreliable. The proportion of patients with a significant amount of bubbles was 50% in Group A, 27.8% in Group B and 15.8% in Group C (P = 0.065). This was significantly lower in Group C when compared to Group A (P = 0.026). The mean GET was 27.8 min for Group A, 27.2 min for Group B and 40.7 min for Group C (P = 0.381). The mean SBTT was 256.4 min for Group A, 256.1 min for Group B and 258.1 min for Group C (P = 0.998). Regarding to the rate of complete examinations, the capsule reached the cecum in 20 patients (100%) in Group A, 16 patients (88.9%) in Group B and 17 patients (89.5%) in Group C (P = 0.312). A definite diagnosis based on relevant small bowel endoscopic lesions was established in 60% of the patients in Group A (12 patients), 44.4% in Group B (8 patients) and 57.8% in Group C (11 patients) (P = 0.587). CONCLUSION: Preparation with 2 L of PEG before small bowel capsule endoscopy (SBCE) may improve small bowel cleansing and the quality of visualization. Simethicone may further reduce intraluminal bubbles. No significant differences were found regarding GET, SBTT and the proportion of complete exploration or diagnostic yield among the three different cleansing protocols. PMID:23424190
Oral purgative and simethicone before small bowel capsule endoscopy.
Rosa, Bruno Joel Ferreira; Barbosa, Mara; Magalhães, Joana; Rebelo, Ana; Moreira, Maria João; Cotter, José
2013-02-16
To evaluate small bowel cleansing quality, diagnostic yield and transit time, comparing three cleansing protocols prior to capsule endoscopy. Sixty patients were prospectively enrolled and randomized to one of the following cleansing protocols: patients in Group A underwent a 24 h liquid diet and overnight fasting; patients in Group B followed protocol A and subsequently were administered 2 L of polyethylene glycol (PEG) the evening before the procedure; patients in Group C followed protocol B and were additionally administered 100 mg of simethicone 30 min prior to capsule ingestion. Small bowel cleansing was independently assessed by two experienced endoscopists and classified as poor, fair, good or excellent according to the proportion of small bowel mucosa under perfect conditions for visualization. When there was no agreement between the two endoscopists, the images were reviewed and discussed until a consensus was reached. The preparation was considered acceptable if > 50% or adequate if > 75% of the mucosa was in perfect cleansing condition. The amount of bubbles was assessed independently and it was considered significant if it prevented a correct interpretation of the images. Positive endoscopic findings, gastric emptying time (GET) and small bowel transit time (SBTT) were recorded for each examination. There was a trend favoring Group B in achieving an acceptable (including fair, good or excellent) level of cleansing (Group A: 65%; Group B: 83.3%; Group C: 68.4%) [P = not significant (NS)] and favoring Group C in attaining an excellent level of cleansing (Group A: 10%; Group B: 16.7%; Group C: 21.1%) (P = NS). The number of patients with an adequate cleansing of the small bowel, corresponding to an excellent or good classification, was 5 (25%) in Group A, 5 (27.8%) in Group B and 4 (21.1%) in Group C (P = 0.892). Conversely, 7 patients (35%) in Group A, 3 patients (16.7%) in Group B and 6 patients (31.6%) in Group C were considered to have poor small bowel cleansing (P = 0.417), with significant fluid or debris such that the examination was unreliable. The proportion of patients with a significant amount of bubbles was 50% in Group A, 27.8% in Group B and 15.8% in Group C (P = 0.065). This was significantly lower in Group C when compared to Group A (P = 0.026). The mean GET was 27.8 min for Group A, 27.2 min for Group B and 40.7 min for Group C (P = 0.381). The mean SBTT was 256.4 min for Group A, 256.1 min for Group B and 258.1 min for Group C (P = 0.998). Regarding to the rate of complete examinations, the capsule reached the cecum in 20 patients (100%) in Group A, 16 patients (88.9%) in Group B and 17 patients (89.5%) in Group C (P = 0.312). A definite diagnosis based on relevant small bowel endoscopic lesions was established in 60% of the patients in Group A (12 patients), 44.4% in Group B (8 patients) and 57.8% in Group C (11 patients) (P = 0.587). Preparation with 2 L of PEG before small bowel capsule endoscopy (SBCE) may improve small bowel cleansing and the quality of visualization. Simethicone may further reduce intraluminal bubbles. No significant differences were found regarding GET, SBTT and the proportion of complete exploration or diagnostic yield among the three different cleansing protocols.
Zhao, Bin; Dong, Shu-Ting; Wang, Kong-Jun; Zhang, Ji-Wang; Liu, Peng
2009-11-01
A field experiment with colophony-coated fertilizer (CRF) and sulfur-coated fertilizer (SCF) showed that under the same application rates of N, P and K, applying CRF and SCF increased the summer maize grain yield by 13.15% and 14.15%, respectively, compared to the application of common compound fertilizer CCF. When the applied amount of CRF and SCF was decreased by 25%, the yield increment was 9.69% and 10.04%, respectively; and when the applied amount of CRF and SCF was decreased by 50%, the yield had less difference with that under CCF application. The field ammonia volatilization rate in treatments CRF and SCF increased slowly, with a peak appeared 7 days later than that in treatment CCF, and the total amount of ammonia volatilization in treatments CRF and SCF was ranged from 0.78 kg N x hm(-2) to 4.43 kg N x hm(-2), with a decrement of 51.34%-91.34% compared to that in treatment CCF. The fertilizer nitrogen use efficiency and agronomic nitrogen use efficiency of CRF and SCF were also significantly higher than those of CCF.
Scintillating Cocktail Mixtures and the Role of Water on the Optophysical Properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordaro, Joseph Gabriel; Feng, Patrick L.; Mengesha, Wondwosen
2015-10-01
Two types of water - containing liquid scinti llation mixtures were prepared in the present work. In the first, m ixtures of 2 - phenylethanol, water, diphenyl phosphate, sodium phenyl phosphate dibasic dihydrate, and the dye 2,5 - diphenyloxazole (PPO) have been investigated as liquid scintillators. In th e second system, nonionic and mixed surfactant systems were investigated in conjunction with water and small amounts of toluene. In both cases, increasing amounts of water led to reductions in the scintillation light yield. Understanding what factors contr ibute to this phenomenon is the focus of this report. Changes in the solutionmore » microphase structure, diminishing aromatic content of the cocktail mixtures, and inefficient energy transfer to the dye a ppear to be responsible for the decreased light yield as more water is added . In the 2 - phenylethanol system, the observed experimental results are consistent with the formation of a bicontinuous microemulsion at higher water concentrations, which incorporates PPO and shields it from the quenching effects of the increasing polar matrix. Evidence for this proposed phase chan ge c ome s from light scattering data, photo - and x - ray luminescence measurements, and optical transparency measurements . In the surfactant - based system, the quenching effect of water was found to be less than both commercially - available dioxane - naphthalene mixtures used for scintillation counting as well as the 2 - phenylethanol mixtures described above. The effect of different surfactant mixtures and concentrations were studied, revealing a benefic ial effect upon the scintillation light yield for mixed surfactant mixtures. These results are interpreted in the context of r eactive radical species formation following water ionization , which leads to light - yield quenching in aqueous systems . The presenc e of surfactant(s) in these mixtures enables the formation of organic - rich regions that are spatially separated from the reactive radicals. This hypothesis is consistent with subsequent experiments that showed reduced light - yield quenching in the presence of radical - trapping additives. A notable result from these surfactant studies was the preparation of an aqueous scintillator that was transparent and showed neutron/gamma pulse - shape discrimination. Section II below provides background information on the s ignificance of this finding. The combined work described herein has implications on other efforts to make water - based solution scintillators -- without aromatic content an efficient mechanism for ionizing radiation to sensitize emission from a dye is limited.« less
NASA Technical Reports Server (NTRS)
Stribling, Roscoe; Miller, Stanley L.
1987-01-01
Simulated prebiotic atmospheres containing either CH4, CO, or CO2, in addition to N2, H2O, and variable amounts of H2, were subjected to the spark from a high-frequency Tesla coil, and the energy yields for the syntheses of HCN and H2CO were estimated from periodic (every two days) measurements of the compound concentrations. The mixtures with CH4 were found to yield the highest amounts of HCN, whereas the CO mixtures produced the highest yields of H2CO. These results model atmospheric corona discharges. From the yearly energy yields calculated and the corona discharge available on the earth, the yearly production rate of HCN was estimated; using data on the HCN production rates and the experimental rates of decomposition of amino acids through the submarine vents, the steady state amino acid production rate in the primitive ocean was calculated to be about 10 nmoles/sq cm per year.
NASA Astrophysics Data System (ADS)
Rahman, A.; Aung, K. M.
2018-01-01
A small amount of hydrogen made by on-board reformer is added to the normal intake air and gasoline mixture in the vehicle’s engine could improves overall combustion quality by allowing nearly twice as much air for a given amount of fuel introduced into the combustion chamber. This can be justified based on the calorific value of Hydrogen (H2) 141.9 MJ/kg while the gasoline (C6.4H11.8) is 47MJ/kg. Different weight % of Pd and GO uses for the reformer model and has conducted simulation by COMSOL software. The best result found for the composition of catalyst (palladium 30% and graphene 70%). The study shows that reformer yield hydrogen 23% for the exhaust temperature of 600-900°C and 20% for 80-90°C. Pumping hydrogen may boost the fuel atomization and vaporization at engine idle condition, which could enhances the fuel combustion efficiency. Thus, this innovative technology would be able to save fuel about 12% and reduce the emission about 35%.
Residual pesticide detection on food with particle-enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Ranjan, Bikas; Huang, LiChuan; Masui, Kyoko; Saito, Yuika; Verma, Prabhat
2014-08-01
Modern farming relies highly on pesticides to protect agricultural food items from insects for high yield and better quality. Increasing use of pesticide has raised concern about its harmful effects on human health and hence it has become very important to detect even small amount of pesticide residues. Raman spectroscopy is a suitable nondestructive method for pesticide detection, however, it is not very effective for low concentration of pesticide molecules. Here, we report an approach based on plasmonic enhancement, namely, particle enhanced Raman spectroscopy (PERS), which is rapid, nondestructive and sensitive. In this technique, Raman signals are enhanced via the resonance excitation of localized plasmons in metallic nanoparticles. Gold nanostructures are promising materials that have ability to tune surface plasmon resonance frequency in visible to near-IR, which depends on shape and size of nanostructures. We synthesized gold nanorods (GNRs) with desired shape and size by seed mediated growth method, and successfully detected very tiny amount of pesticide present on food items. We also conformed that the detection of pesticide was not possible by usual Raman spectroscopy.
Light Source Effects on Aerosol Photoacoustic Spectroscopy Measurements
Radney, James G.; Zangmeister, Christopher D.
2016-01-01
Photoacoustic spectroscopy measurements of flame-generated soot aerosol coated with small amounts of water yielded absorption enhancements that were dependent on the laser used: quasi-continuous wave (Q-CW, ≈ 650 ps pulse duration and 78 MHz repetition rate) versus continuous wave (CW). Water coating thickness was controlled by exposing the aerosol to a set relative humidity (RH). At ≈ 85 % RH, the mass of the soot particles increased by an amount comparable to a monolayer of water being deposited and enhanced the measured absorption by 36 % and 15 % for the Q-CW and CW lasers, respectively. Extinction measurements were also performed using a cavity ring-down spectrometer (extinction equals the sum of absorption and scattering) with a CW laser and negligible enhancement was observed at all RH. These findings demonstrate that source choice can impact measurements of aerosols with volatile coatings and that the absorption enhancements at high RH previously measured by Radney and Zangmeister (2015) [1] are the result of laser source used (Q-CW) and not from an increase in the particle absorption cross section. PMID:28066027
77 FR 61423 - Notice of Adjustment of Disaster Grant Amounts
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... any Small Project Grant made to the State, local government, or to the owner or operator of an... Disaster Grant Amounts AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: FEMA gives notice of an increase of the maximum amount for Small Project Grants to State and local...
Rajendra, Yashas; Balasubramanian, Sowmya; Kiseljak, Divor; Baldi, Lucia; Wurm, Florian M; Hacker, David L
2015-01-01
Although the protein yields from transient gene expression (TGE) with Chinese hamster ovary (CHO) cells have recently improved, the amount of plasmid DNA (pDNA) needed for transfection remains relatively high. We describe a strategy to reduce the pDNA amount by transfecting CHO-DG44 cells with 0.06 μg pDNA/10(6) cells (10% of the optimal amount) in the presence of nonspecific (filler) DNA and various polar solvents including dimethylsufoxide, dimethyl formamide, acetonitrile, dimethyl acetamide (DMA), and hexamethyl phosphoramide (HMP). All of the polar solvents with the exception of HMP increased the production of a recombinant antibody in comparison to the untreated control transfection. In the presence of 0.25% DMA, the antibody yield in a 7-day batch culture was 500 mg/L. This was fourfold higher than the yield from the untreated control transfection. Mechanistic studies revealed that the polar solvents did not affect polyethylenimine-mediated pDNA delivery into cells or nuclei. The steady-state transgene mRNA level was elevated in the presence of each of the polar solvents tested, while the transgene mRNA half-life remained the same. These results indicated that the polar solvents enhanced transgene transcription. When screening a panel of recombinant antibodies and Fc-fusion proteins for production in the presence of the polar solvents, the highest increase in yield was observed following DMA addition for 11 of the 12 proteins. These results are expected to enhance the applicability of high-yielding TGE processes with CHO-DG44 cells by decreasing the amount of pDNA required for transfection. © 2015 American Institute of Chemical Engineers.
[Effects of grafting and nitrogen fertilization on melon yield and nitrogen uptake and utilization].
Xue, Liang; Ma, Zhong Ming; DU, Shao Ping
2017-06-18
A split-field design experiment was carried out using two main methods of cultivation (grafting and self-rooted cultivation) and subplots with different nitrogen application levels (0, 120, 240, and 360 kg N·hm -2 ) to investigate the effects of cultivation method and nitrogen application levels on the yield and quality of melons, nitrogen transfer, nitrogen distribution, and nitrogen utilization rate. The results showed that melons produced by grafting cultivation had a 7.3% increase in yield and a 0.16%-3.28% decrease in soluble solid content, compared to those produced by self-rooted cultivation. The amount of nitrogen accumulated in melons grafted in the early growth phase was lower than that in self-rooted melons, and higher after fruiting. During harvest, nitrogen accumulation amount in grafted melon plants was 5.2% higher than that in self-rooted plants and nitrogen accumulation amount in fruits was 10.3% higher. Grafting cultivation increased the amount of nitrogen transfer from plants to fruits by 20.9% compared to self-rooted cultivation. Nitrogen distribution in fruits was >80% in grafted melons, whereas that in self-rooted melons was <80%. Under the same level of nitrogen fertilization, melons cultivated by grafting showed 1.3%-4.2% increase in nitrogen absorption and utilization rate, 2.73-5.56 kg·kg -1 increase in nitrogen agronomic efficiency, and 7.39-16.18 kg·kg -1 increase in nitrogen physiological efficiency, compared to self-rooted cultivation. On the basis of the combined perspective of commercial melon yield, and nitrogen absorption and utilization rate, an applied nitrogen amount of 240 kg·hm -2 is most suitable for graf-ting cultivation in this region.
Wang, De-Mei; Yu, Zhen-Wen
2008-09-01
Field experiment was conducted in 2005 -2007 to study the effects of irrigation amount and stage on the water consumption characteristics, grain yield, and water use efficiency of wheat. The results showed that the variation coefficient of the proportion of soil water consumption amount to total water consumption amount was significantly higher than that of precipitation to total water consumption amount, suggesting the relatively wide regulation range of soil water use efficiency. The proportions of irrigation amount, precipitation, and soil water consumption amount to total water consumption amount were 31.0%, 38.9%, and 30.1% in treatment W3 (irrigated at jointing and flowering stages, with total irrigation amount of 120 mm), and 51.7%, 32.4%, and 15.9% in treatment W5 (irrigated before winter and at jointing, flowering and grain-filling stages, with total irrigation amount of 240 mm), respectively, indicating that treatment W3 had a significantly higher proportion of soil water consumption amount to total water consumption amount than treatment W5. Though treatments W2 (irrigated before winter and at jointing stage) and W3 (irrigated at jointing and flowering stages) had the same irrigation amount (120 mm), the water consumption amount during the period from flowering to maturing was significantly higher in W3 than in W2, while the water consumption amount before jointing was significantly lower in W3 than in W2. The water consumption pattern in treatment W3 was in agreement with the water requirement pattern of wheat, which was the physiological basis of high water use efficiency.
NASA Astrophysics Data System (ADS)
Koshimizu, K.; Uchida, T.
2015-12-01
Initial large-scale sediment yield caused by heavy rainfall or major storms have made a strong impression on us. Previous studies focusing on landslide management investigated the initial sediment movement and its mechanism. However, integrated management of catchment-scale sediment movements requires estimating the sediment yield, which is produced by the subsequent expanded landslides due to rainfall, in addition to the initial landslide movement. This study presents a quantitative analysis of expanded landslides by surveying the Shukushubetsu River basin, at the foot of the Hidaka mountain range in central Hokkaido, Japan. This area recorded heavy rainfall in 2003, reaching a maximum daily precipitation of 388 mm. We extracted the expanded landslides from 2003 to 2008 using aerial photographs taken over the river area. In particular, we calculated the probability of expansion for each landslide, the ratio of the landslide area in 2008 as compared with that in 2003, and the amount of the expanded landslide area corresponding to the initial landslide area. As a result, it is estimated 24% about probability of expansion for each landslide. In addition, each expanded landslide area is smaller than the initial landslide area. Furthermore, the amount of each expanded landslide area in 2008 is approximately 7% of their landslide area in 2003. Therefore, the sediment yield from subsequent expanded landslides is equal to or slightly greater than the sediment yield in a typical base flow. Thus, we concluded that the amount of sediment yield from subsequent expanded landslides is lower than that of initial large-scale sediment yield caused by a heavy rainfall in terms of effect on management of catchment-scale sediment movement.
Fang, Dong-ping; Zhang, Fu-cang; Li, Jing; Wang, Hai-dong; Xiang, You-zhen; Zhang, Yan
2015-06-01
Taking cucumber as experimental plant, an experiment was conducted to study the effects of irrigation amount and fertigation methods on growth, yield and quality of cucumber in greenhouse. The experiment had designed two irrigation levels, i.e. 100% ET0 (W1) and 75% ET0 (W2), and four fertigation fertilization ratios, i.e. 100%, 66.6%, 33.3% and 0% (Z100, Z66 , Z33, Z0) fertigation of a total amount of (360:180:540 kg · hm(-2)) (N:P2O5:K2O) by 8 times with the corresponding remainders (0%, 33.3%, 66.6% and 100%) were applied to soil as basic fertilization before the planting according to the recommended fertilization rate, and no fertilizer treatment was set up as the control (CK). Results showed that irrigation and fertilization levels had positive correlations with plant height, leaf areas, dry mass, yield and quality of cucumber. Yield at W1Z100 was the highest, reaching 67760 kg · hm(-2). W2 treatment increased the mean water use efficiency (WUE) by 9.4% compared to W1. W2Z100 treatment had the highest WUE, reaching 47.13 kg · m(-3). Yield at W2Z100 was only 3.4% lower than the maximum, but saved 25% of water. Yield and dry matter at Z100 were 15.3% and 16.8% higher than at Z0, respectively, the cucumber fruit vitamin C, soluble protein and soluble sugar contents were increased, and the water use efficiency was increased by 19.1%. W2Z100 treatment was the best treatment which could enable cucumber to obtain both the high-yield and the high-quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solak, Agnieszka; Rutkowski, Piotr, E-mail: piotr.rutkowski@pwr.wroc.pl
2014-02-15
Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with highmore » yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.« less
Penobscot woodlands yield annual cuts
A. C. Hart
1958-01-01
Two small woodlands, put under management at the Penobscot Experimental Forest in the early 1950's, have yielded continuous annual cuts. The two woodlands, in the spruce-fir type, were selected to be representative of small forest properties in that region.
Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit
2018-01-01
Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.
Correlation Between Precipitation and Crop Yield for Corn and Cotton Produced in Alabama
NASA Technical Reports Server (NTRS)
Hayes, Carol E.; Perkey, Donald J.
1998-01-01
In this study, variations in precipitation during the time of corn silking are compared to Alabama corn yields. Also, this study compares precipitation variations during bloom to Alabama cotton yield. The goal is to obtain mathematical correlations between rainfall during the crop's critical period and the crop amount harvested per acre.
Impacts of pinyon-juniper treatments on water yields: A historical perspective
Peter F. Ffolliott; Cody Stropki
2008-01-01
Pinyon-juniper woodlands are not normally considered a high water-yielding type largely because of the low precipitation amounts and high evapotranspiration rates encountered. Nevertheless, a recommendation was made in the 1950s to evaluate the effectiveness of increasing water yields by converting pinyon-juniper overstories to herbaceous covers. A series of process...
Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms.
Garibaldi, Lucas A; Carvalheiro, Luísa G; Vaissière, Bernard E; Gemmill-Herren, Barbara; Hipólito, Juliana; Freitas, Breno M; Ngo, Hien T; Azzu, Nadine; Sáez, Agustín; Åström, Jens; An, Jiandong; Blochtein, Betina; Buchori, Damayanti; Chamorro García, Fermín J; Oliveira da Silva, Fabiana; Devkota, Kedar; Ribeiro, Márcia de Fátima; Freitas, Leandro; Gaglianone, Maria C; Goss, Maria; Irshad, Mohammad; Kasina, Muo; Pacheco Filho, Alípio J S; Kiill, Lucia H Piedade; Kwapong, Peter; Parra, Guiomar Nates; Pires, Carmen; Pires, Viviane; Rawal, Ranbeer S; Rizali, Akhmad; Saraiva, Antonio M; Veldtman, Ruan; Viana, Blandina F; Witter, Sidia; Zhang, Hong
2016-01-22
Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America. For fields less than 2 hectares, we found that yield gaps could be closed by a median of 24% through higher flower-visitor density. For larger fields, such benefits only occurred at high flower-visitor richness. Worldwide, our study demonstrates that ecological intensification can create synchronous biodiversity and yield outcomes. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Röder, Beate; Ermilov, Eugeny A.; Hackbarth, Steffen; Helmreich, Matthias; Jux, Norbert
2006-04-01
The photophysical properties of DAB-dendrimers from 1 st to 4 th generation as well as Diaminohexane - all substituted with the in maximum achievable quantity of pheophorbide a (Pheo) molecules were studied in comparison with a novel hexapyropheophorbide a - fullerene hexaadduct (FHP6) and a fullerene [6:0]-hexaadduct which carries twelve pyropheophorbide a units (FHP12) using both steady-state and time-resolved spectroscopic methods. It was found that neighboring dye molecules covalently linked to one DAB- or fullerene moiety due to the length and high flexibility of carbon chains could stack with each other. This structural property is the reason for the possibility of formation different types of energy traps, which were resolved experimentally. The dipole-dipole resonance Förster energy transfer between the dye molecules coupled to one complex caused a very fast and efficient delivery of the excitation to a trap. As result the fluorescence as well as the singlet oxygen quantum yields of the different complexes were reduced with increasing number of dye molecules per complex. Nevertheless in every case the singlet oxygen generation was less influenced then the fluorescence quantum yield, exposing the complex to a non-negligible amount of excited oxygen in the singlet state. While the fullerene complexes turned out to be stable under these conditions, the DAB-dendrimer-backbones were completely fragmented to small rudiments carrying just one or a small number of dye molecules.
Different parameter and technique affecting the rate of evaporation on active solar still -a review
NASA Astrophysics Data System (ADS)
A, Muthu Manokar; D, Prince Winston; A. E, Kabeel; Sathyamurthy, Ravishankar; T, Arunkumar
2018-03-01
Water is one of the essential sources for the endurance of human on the earth. As earth having only a small amount of water resources for consumption purpose people in rural and urban areas are getting affected by consuming dirty water that leads to water-borne diseases. Even though ground water is available in small quantity, it has to be treated properly before its use for internal consumption. Brackish water contains dissolve and undissolved contents, and hence it is not suitable for the household purpose. Nowadays, distillation process is done by using passive and active solar stills. The major problem in using passive solar still is meeting higher demand for fresh water. The fresh water production from passive solar still is critically low to meet the demand. To improve the productivity of conventional solar still, input feed water is preheated by integrating the solar still to different collector panels. In this review article, the different parameters that affect the rate of evaporation in an active solar still and the different methods incorporated has been presented. In addition to active distillation system, forced convection technique can be incorporated to increase the yield of fresh water by decreasing the temperature of cover. Furthermore, it is identified that the yield of fresh water from the active desalination system can be improved by sensible and latent heat energy storage. This review will motivate the researchers to decide appropriate active solar still technology for promoting development.
Nakano, Masashi; Kino, Kuniki
2015-01-01
We developed a novel process for efficient synthesis of l-threo-3-hydroxyaspartic acid (l-THA) using microbial hydroxylase and hydrolase. A well-characterized mutant of asparagine hydroxylase (AsnO-D241N) and its homologous enzyme (SCO2693-D246N) were adaptable to the direct hydroxylation of l-aspartic acid; however, the yields were strictly low. Therefore, the highly stable and efficient wild-type asparagine hydroxylases AsnO and SCO2693 were employed to synthesize l-THA. By using these recombinant enzymes, l-THA was obtained by l-asparagine hydroxylation by AsnO followed by amide hydrolysis by asparaginase via 3-hydroxyasparagine. Subsequently, the two-step reaction was adapted to one-pot bioconversion in a test tube. l-THA was obtained in a small amount with a molar yield of 0.076% by using intact Escherichia coli expressing the asnO gene, and thus, two asparaginase-deficient mutants of E. coli were investigated. A remarkably increased l-THA yield of 8.2% was obtained with the asparaginase I-deficient mutant. When the expression level of the asnO gene was enhanced by using the T7 promoter in E. coli instead of the lac promoter, the l-THA yield was significantly increased to 92%. By using a combination of the E. coli asparaginase I-deficient mutant and the T7 expression system, a whole-cell reaction in a jar fermentor was conducted, and consequently, l-THA was successfully obtained from l-asparagine with a maximum yield of 96% in less time than with test tube-scale production. These results indicate that asparagine hydroxylation followed by hydrolysis would be applicable to the efficient production of l-THA. PMID:25795668
Martin, Jerry W; Moore, Philip A; Li, Hong; Ashworth, Amanda J; Miles, Dana M
2018-03-01
Ammonia (NH) scrubbers reduce amounts of NH and dust released from animal rearing facilities while generating nitrogen (N)-rich solutions, which may be used as fertilizers. The objective of this study was to determine the effects of various NH scrubber solutions on forage yields, N uptake, soil-test phosphorus (P), and P runoff. A small plot study was conducted using six treatments: (i) an unfertilized control, (ii) potassium bisulfate (KHSO) scrubber solution, (iii) aluminum sulfate [Al(SO) ⋅14HO, alum] scrubber solution, (iv) sodium bisulfate (NaHSO) scrubber solution, (v) sulfuric acid (HSO) scrubber solution, and (vi) ammonium nitrate (NHNO) fertilizer. The scrubber solutions were obtained from ARS Air Scrubbers attached to commercial broiler houses. All N sources were applied at a rate of 112 kg N ha. Plots were harvested approximately every 4 wk and soil-test P measurements were made, then a rainfall simulation study was conducted. Cumulative forage yields were greater ( < 0.05) for KHSO (7.6 Mg ha) and NaHSO (7.5 Mg ha) scrubber solutions than for alum (6.7 Mg ha) or HSO (6.5 Mg ha) scrubber solutions or for NHNO (6.9 Mg ha). All N sources resulted in higher yields than the control (5.1 Mg ha). The additional potassium in the KHSO treatment likely resulted in higher yields. Although Mehlich-III-extractable P was not affected, water-extractable P in soil was lowered by the alum-based scrubber solution, which also resulted in lower P runoff. This study demonstrates that N captured using NH scrubbers is a viable N fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Click chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging
Hapuarachchige, Sudath; Artemov, Dmitri
2016-01-01
Click chemistry provides fast, convenient, versatile and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving MRI performance. PMID:27748712
Microstructure-Mechanical Property Relationships for a Fe/Mn/Cr Rock Bolt Reinforcing Steel
NASA Astrophysics Data System (ADS)
Panigrahi, B. K.
2010-08-01
The influence of low chromium additions to a 0.25C-1.5Mn semikilled steel on microstructure, and tensile and impact behaviors of high strength rock bolt reinforcing bars has been investigated. Although chromium imparted adequate tensile properties at ambient temperature (yield stress: 624 MPa; ultimate tensile stress: 819 MPa; elongation: 12.5%) by forming transformation products such as tempered martensite, lower and upper bainite, and small amounts of acicular ferrite, it increased the ductile-to-brittle transition temperature due to coarser upper bainite in the core region of bar having larger unit crack paths. The synthesized steel is considered to be effective in realizing the desired tensile properties, and suitable for application in rock bolt, as well as other reinforced concrete structures.
Is repulsion good for the health of chimeras?
NASA Astrophysics Data System (ADS)
Jalan, Sarika; Ghosh, Saptarshi; Patra, Bibhabasu
2017-10-01
Yes! Very much so. A chimera state refers to the coexistence of a coherent-incoherent dynamical evolution of identically coupled oscillators. We investigate the impact of multiplexing of a layer having repulsively coupled oscillators on the occurrence of chimeras in the layer having attractively coupled identical oscillators. We report that there exists an enhancement in the appearance of the chimera state in one layer of the multiplex network in the presence of repulsive coupling in the other layer. Furthermore, we show that a small amount of inhibition or repulsive coupling in one layer is sufficient to yield the chimera state in another layer by destroying its synchronized behavior. These results can be used to obtain insight into dynamical behaviors of those systems where both attractive and repulsive couplings exist among their constituents.
High performance ammonium nitrate propellant
NASA Technical Reports Server (NTRS)
Anderson, F. A. (Inventor)
1979-01-01
A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.
31 CFR 356.20 - How does the Treasury determine auction awards?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false How does the Treasury determine... margin for the securities we are auctioning. (2) Accepting bids at the high yield, discount rate, or... the remaining par amount needed to fill the offering amount by the par amount of the bids at the high...
Steroid injections - tendon, bursa, joint
... a small amount of corticosteroid and a local anesthetic into the bursa. JOINT Any joint problem, such ... A small amount of corticosteroid and a local anesthetic will be injected into the joint. TENDON A ...
The Generation of Barriers to Melt Ascent in the Martian Lithosphere
NASA Astrophysics Data System (ADS)
Schools, Joe W.; Montési, Laurent G. J.
2018-01-01
Planetary mantles can be regarded as an aggregate of two phases: a solid, porous matrix and a liquid melt. Melt travels rapidly upward through the matrix due to its buoyancy. When this melt enters the colder lithosphere, it begins to crystallize. If crystallization happens at a high rate, the newly formed crystals can clog the pore space, reducing its permeability to essentially zero. This zone of zero permeability is the permeability barrier. We use the MELTS family of thermodynamic calculators to determine melt compositions and the crystallization sequence of ascending melt throughout Martian history and simulate the formation of permeability barriers. At lower strain rates (10-17-10-15 s-1) permeability barriers form deep in the lithosphere, possibly contributing to the formation of localized volcanic edifices on the Martian surface once fracturing or thermal erosion enables melt to traverse the lithosphere. Higher strain rates (10-13 s-1) yield shallower permeability barriers, perhaps producing extensive lava flows. Permeability barrier formation is investigated using an anhydrous mantle source or mantle sources that include up to 1,000 ppm H2O. Introducing even small amounts of water (25 ppm H2O) reduces mantle viscosity in a manner similar to increasing the strain rate and results in a shallower barrier than in the anhydrous case. Large amounts of water (1,000 ppm H2O) yield very shallow weak barriers or no barriers at all. The depth of the permeability barrier has evolved through time, likely resulting in a progression in the style of surface volcanism from widespread flows to massive, singular volcanoes.
Mineralization of paracetamol in aqueous solution with advanced oxidation processes.
Torun, Murat; Gültekin, Özge; Şolpan, Dilek; Güven, Olgun
2015-01-01
Paracetamol is a common analgesic drug widely used in all regions of the world more than hundred tonnes per year and it poses a great problem for the aquatic environment. Its phenolic intermediates are classified as persistent organic pollutants and toxic for the environment as well as human beings. In the present study, the irradiation of aqueous solutions of paracetamol with 60Co gamma-rays was examined on a laboratory scale and its degradation path was suggested with detected radiolysis products. The synergic effect of ozone on gamma-irradiation was investigated by preliminary ozonation before irradiation which reduced the irradiation dose from 5 to 3 kGy to completely remove paracetamol and its toxic intermediate hydroquinone from 6 to 4 kGy as well as increasing the radiation chemical yield (Gi values 1.36 and 1.66 in the absence and presence of ozone, respectively). The observed amount of formed hydroquinone was also decreased in the presence of ozone. There is a decrease in pH from 6.4 to 5.2 and dissolved oxygen consumed, which is up to 0.8 mg l(-1), to form some peroxyl radicals used for oxidation. Analytical measurements were carried out with gas chromatography/mass spectrometry and ion chromatography (IC) both qualitatively and quantitatively. Amounts of paracetamol and hydroquinone were measured with gas chromatography after trimethylsilane derivatization. Small aliphatic acids, such as acetic acid, formic acid and oxalic acid, were measured quantitatively with IC as well as inorganic ions (nitrite and nitrate) in which their yields increase with irradiation.
NASA Astrophysics Data System (ADS)
Munaka, Tatsuya; Abe, Hirohisa; Kanai, Masaki; Sakamoto, Takashi; Nakanishi, Hiroaki; Yamaoka, Tetsuji; Shoji, Shuichi; Murakami, Akira
2006-07-01
We successfully developed a measurement system for real-time analysis of cellular function using a newly designed microchip. This microchip was equipped with a micro cell incubation chamber (240 nl) and was stimulated by a very small amount of stimuli (as small as 24 nl). Using the microchip system, cultivation of mast cells was successfully carried out. Monitoring of the cellular events after stimulation with an extremely small amount of fluid on a microchip was performed. This system could be applicable for various types of cellular analysis including real-time monitoring of cellular response by stimulation.
Garrett, R P; Savell, J W; Cross, H R; Johnson, H K
1992-06-01
Lamb carcass (n = 100) were selected from USDA yield grades (YG) 2, 3, and 4 and carcass weight (CW) groups 20.4 to 24.9, 25.0 to 29.5, and 29.6 to 34.0 kg. Lamb carcass were fabricated into semiboneless and boneless subprimals and trimmed to three s.c. fat trim levels: .64, .25, and .00 cm of fat remaining. Innovative subprimals were fabricated and yields were calculated for the subprimals and dissectible components (lean, bone, connective tissue, external fat, and seam fat) from each of the various subprimals. Carcass weight as a main effect in a two-way analysis of variance did not account for a significant amount of the variation in yield among trimmed subprimals or the percentage of the dissectible components, but USDA YG was a significant main effect in determining variation in yield for many of the subprimals or dissectible components. Muscle seaming of shoulders and legs and removal of excessive tails on the loin and rack resulted in a majority of the seam fat being removed from these cuts. Dissection data clearly showed that seam fat is a major component of rack and shoulder cuts and with increasing fatness or higher numerical yield grade there are clearly increased amounts of this depot. Increased trimming of external fat magnifies and draws more attention to the amount of seam fat remaining. Production of heavy, lean lambs would be more useful in an innovative type of program because of the larger-sized muscles. Heavy, fat lambs would not be as useful because of their decreased yields and excess seam fat located in cuts that cannot be muscled-seamed because of the loss of retail cut integrity. Seam fat was highly correlated to percentage of kidney and pelvic fat and to external fat thickness and with USDA yield grade but was not strongly correlated to carcass weight.
Interior. Distillation apparatus used for extracting small test amounts of ...
Interior. Distillation apparatus used for extracting small test amounts of latex from plant fiber. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ
Development of self-anchoring bone implants. I. Processing and material characterization.
Abusafieh, A; Siegler, S; Kalidindi, S R
1997-01-01
We recently designed and produced a family of new swelling-type materials that are potentially capable of self-fixation in bone. These materials are designed to absorb body fluids and swell by small amounts, which will allow the implants made from these materials to achieve self-fixation by an expansion-fit mechanism. The developed material system is essentially a crosslinked random copolymer based on poly (methyl methacrylate-acrylic acid). For potential structural (load-bearing) bioimplant applications, we reinforced this copolymer with AS-4 carbon and Kevlar 49 fibers. The details of processing these materials and the steps involved in optimizing their microstructures are presented in this article. A set of mechanical tests were performed on these materials in both dry and swollen conditions to measure their moduli and yield strengths. In the dry state, the copolymers were found to exhibit Young's moduli in the range of 3 to 4 GPa and yield strengths in the range of 70 to 85 MPa. The reinforced composites exhibited moduli in the range of 15 to 65 GPa and yield strengths in the range of 125 to 500 MPa. Upon controlling the volumetric swelling in these materials to be less than about 10%, the loss in mechanical properties was found to be less than about 30%. These hygromechanical properties are well suited for self-anchoring bone implant applications.
Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb
2018-05-09
High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Kanavarioti, A.
1998-01-01
The formation of the internucleotide bond in diguanylate synthesis was studied in aqueous solution at pH 8 and 0.2 M Mg2+ in the presence and absence of polycytidylate, poly(C). The investigation was simplified by using guanosine 5'-phosphorylmorpholinamide, mor-pG, which can act only as a nucleophile, and deoxyguanosine 5'-phosphoryl-2-methylimidazolide, 2-MeImpdG, which can act only as an electrophile. The time-dependent product distribution was monitored by high-performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC/MS). In the absence of poly(C) the reaction between mor-pG and 2-MeImpdG yielded small amounts of the dimer mor-pGpdG with a regioselectivity of 2'-5':3'-5' = 3.5. In the presence of poly(C) dimer yields increased and a reversal in regioselectivity occurred; both effects were in proportion to the concentration of the polymer. The results can be quantitatively explained with the proposition that poly(C), acting as the template, catalyzes the reaction between template-bound monomers by about a factor of 4-5 over the reaction in solution and yields dimers with a regioselectivity of 2'-5':3'-5' approximately 0.33. These findings illustrate the intrinsic preference of guanosine monomers to correctly self-assemble on the appropriate template.
Yi, Li-Pan; Yu, Zhen-Wen; Zhang, Yong-Li; Wang, Dong; Shi, Yu; Zhao, Jun-Ye
2013-05-01
In 2010-2011, a field experiment with high-yielding winter wheat cultivar Jimai 22 was conducted to study the effects of supplemental irrigation based on the measurement of moisture content in different soil layers on the water consumption characteristics and grain yield of winter wheat. Four soil layers (0-20 cm, W1; 0-40 cm, W2; 0-60 cm, W3; and 0-140 cm, W4) were designed to make the supplemental irrigation at wintering stage (target soil relative moisture content = 75%), jointing stage (target soil relative moisture content = 70%), and anthesis stage (target soil relative moisture content = 70%), taking no irrigation (W0) during the whole growth season as the control. At the wintering, jointing, and anthesis stages, the required irrigation amount followed the order of W3 > W2 > W1. Treatment W4 required smaller irrigation amount at wintering and jointing stages, but significantly higher one at anthesis stage than the other treatments. The proportion of the irrigation amount relative to the total water consumption over the entire growth season followed the sequence of W4, W3 > W2 > W1. By contrast, the proportion of soil water consumption relative to the total water consumption followed the trend of W1 > W2 > W3 > W4. With the increase of the test soil depths, the soil water utilization ratio decreased. The water consumption in 80-140 cm and 160-200 cm soil layers was significantly higher in W2 than in W3 and W4. The required total irrigation amount was in the order of W3 > W4 > W2 > W1, the grain yield was in the order of W2, W3, W4 > W1 > W0, and the water use efficiency followed the order of W2, W4 > W0, W1 > W3. To consider the irrigation amount, grain yield, and water use efficiency comprehensively, treatment W2 under our experimental condition could be the optimal treatment, i. e., the required amount of supplemental irrigation based on the measurement of the moisture content in 0-40 cm soil layer should be feasible for the local winter wheat production.
Kocijancic, Igor
2007-12-01
The aim of this article is to present an overview of our 10 years clinical research work and early clinical experience with small pleural effusions. Small amounts of pleural fluid are severely difficult to identify with imaging methods (chest x-rays and ultrasound). Nevertheless, it may be an important finding, sometimes leading to a definitive diagnosis of pleural carcinomatosis, infection or other pathologic condition. Chest x-rays were used for many years for the diagnosis of small pleural effusions. Lateral decubitus chest radiographs represented a gold standard for imaging of small amounts of plural fluid for more than 80 years. In the last two decades, ultrasonography of pleural space became a leading real-time method for demonstrating small pleural effusions. Furthermore, the advent of sonographic technology actually enables detection of physiologic pleural fluid in some otherwise healthy individuals. In conclusion, new definitions of the key terms in the field of diagnostic imaging of small amounts of pleural fluid seem to be justified. We suggest that the term pleural fluid should determine physiologic pleural space condition while the term pleural effusion should only be used in the cases of pleural involvement or pleural illness.
Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin
2016-03-15
Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.
Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides
NASA Astrophysics Data System (ADS)
Kanavarioti, Anastassia
1997-08-01
Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.
Interfacial Studies of Chemical Vapor Infiltrated (CVI) Ceramic Matrix Composites
1988-10-01
carbon layer exists at the fiber/matrix interface. From Fig. 6, it can also be seen that a small amount of Cl exists at the interface and in the CVD SiC...matrix interface, most of which stayed on the fiber surface upon fracture. A small amount of oxygen (3-5 at*/) was found to be present in the CVI SiC. The... small amount of oxygen (1-2%). The results of MTS precursor coatings applied to Nextel 440 and Nicalon fibers preceded by an argon flush of the reactor
Nitrogen and harvest impact on warm-season grasses biomass yield
USDA-ARS?s Scientific Manuscript database
Perennial warm-season grasses have drawn interest as bioenergy feedstocks due to their high productivity with minimal amounts of inputs while producing multiple environmental benefits. Nitrogen (N) fertility and harvest timing are critical management practices when optimizing biomass yield of these ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... steel plate from PRC producers containing small amounts of boron resulting in the classification of the... Iron and Steel Co., Ltd. and/ or imported by Toyota Tsusho America with small amounts of boron added... to add insignificant amounts of boron to their steel products for the purpose of securing a higher...
Economic Impact of Water Allocation on Agriculture in the Lower Chattahoochee River Basin
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh S.; Paudel, Krishna P.; Musleh, Fuad; Cruise, James F.; Hatch, L. Upton
2004-01-01
The relative value of irrigation water was assessed for three important crops (corn, cotton, and peanuts) grown in the southeastern United States. A decision tool was developed with the objective of allocating limited available water among competing crops in a manner that would maximize the economic returns to the producers. The methodology was developed and tested for a hypothetical farm located in Henry County, Alabama in the Chattahoochee river basin. Crop yield - soil moisture response functions were developed using Monte Carlo simulated data for cotton, corn, and peanuts. A hydrologic model was employed to simulate runoff over the period of observed rainfall the county to provide inflows to storage facilities that could be used as constraints for the optimal allocation of the available water in the face of the uncertainty of future rainfall and runoff. Irrigation decisions were made on a weekly basis during the critical water deficit period in the region. An economic optimization model was employed with the crop responses, and soil moisture functions to determine the optimum amount of water place on each crop subject to the amount of irrigation water availability and climatic uncertainty. The results indicated even small amounts of irrigation could significantly benefit farmers in the region if applied judiciously. A weekly irrigation sequence was developed that maintained the available water on the crops that exhibited the most significant combination of water sensitivity and cash value.
Maheshwari, Manish; Ketkar, Anant R; Chauhan, Bhaskar; Patil, Vinay B; Paradkar, Anant R
2003-08-11
Ibuprofen (IBU) exhibits short half-life, poor compressibility, flowability and caking tendency. IBU melt has sufficiently low viscosity and exhibits interfacial tension sufficient to form droplet even at low temperature. A single step novel melt solidification technique (MST) was developed to produce IBU beads with lower amounts of excipient. Effect of variables was studied using a 3(2) factorial approach with speed of agitation and amount of cetyl alcohol (CA) as variables. The beads were evaluated using DSC, FT-IR and scanning electron microscope (SEM). Yield, micromeritic properties, crushing strength and release kinetics were also studied. Spherical beads with a method yield of above 90% were obtained. The data was analyzed by response surface methodology. The variables showed curvilinear relationship with yield in desired particle size range, crushing strength and, bulk and tap density. The drug release followed non-Fickian case II transport and the release rate decreased linearly with respect to amount of CA in the initial stages followed by curvilinearity at later stages of elution. The effect of changing porosity and tortuosity was well correlated.
PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits.more » 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels for the 9977 shipping package using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per particle' for each neutron and photon spectral group. The source spectrum for each isotope generated using the ORIGEN-S and RASTA computer codes was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits contained in 10 CFR 71.47 for dose rate at the surface of the package is determined. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.« less
NASA Astrophysics Data System (ADS)
Hale, R. L.; Grimm, N. B.; Vorosmarty, C. J.
2014-12-01
An ongoing challenge for society is to harness the benefits of phosphorus (P) while minimizing negative effects on downstream ecosystems. To meet this challenge we must understand the controls on the delivery of anthropogenic P from landscapes to downstream ecosystems. We used a model that incorporates P inputs to watersheds, hydrology, and infrastructure (sewers, waste-water treatment plants, and reservoirs) to reconstruct historic P yields for the northeastern U.S. from 1930 to 2002. At the regional scale, increases in P inputs were paralleled by increased fractional retention, thus P loading to the coast did not increase significantly. We found that temporal variation in regional P yield was correlated with P inputs. Spatial patterns of watershed P yields were best predicted by inputs, but the correlation between inputs and yields in space weakened over time, due to infrastructure development. Although the magnitude of infrastructure effect was small, its role changed over time and was important in creating spatial and temporal heterogeneity in input-yield relationships. We then conducted a hierarchical cluster analysis to identify a typology of anthropogenic P cycling, using data on P inputs (fertilizer, livestock feed, and human food), infrastructure (dams, wastewater treatment plants, sewers), and hydrology (runoff coefficient). We identified 6 key types of watersheds that varied significantly in climate, infrastructure, and the types and amounts of P inputs. Annual watershed P yields and retention varied significantly across watershed types. Although land cover varied significantly across typologies, clusters based on land cover alone did not explain P budget patterns, suggesting that this variable is insufficient to understand patterns of P cycling across large spatial scales. Furthermore, clusters varied over time as patterns of climate, P use, and infrastructure changed. Our results demonstrate that the drivers of P cycles are spatially and temporally heterogeneous, yet they also suggest that a relatively simple typology of watersheds can be useful for understanding regional P cycles and may help inform P management approaches.
The energetic and nutritional yields from insectivory for Kasekela chimpanzees.
O'Malley, Robert C; Power, Michael L
2014-06-01
Insectivory is hypothesized to be an important source of macronutrients, minerals, and vitamins for chimpanzees (Pan troglodytes), yet nutritional data based on actual intake are lacking. Drawing on observations from 2008 to 2010 and recently published nutritional assays, we determined the energy, macronutrient and mineral yields for termite-fishing (Macrotermes), ant-dipping (Dorylus), and ant-fishing (Camponotus) by the Kasekela chimpanzees of Gombe National Park, Tanzania. We also estimated the yields from consumption of weaver ants (Oecophylla) and termite alates (Macrotermes and Pseudacanthotermes). On days when chimpanzees were observed to prey on insects, the time spent in insectivorous behavior ranged from <1 min to over 4 h. After excluding partial bouts and those of <1 min duration, ant-dipping bouts were of significantly shorter duration than the other two forms of tool-assisted insectivory but provided the highest mass intake rate. Termite-fishing bouts were of significantly longer duration than ant-dipping and had a lower mass intake rate, but provided higher mean and maximum mass yields. Ant-fishing bouts were comparable to termite-fishing bouts in duration but had significantly lower mass intake rates. Mean and maximum all-day yields from termite-fishing and ant-dipping contributed to or met estimated recommended intake (ERI) values for a broad array of minerals. The mean and maximum all-day yields of other insects consistently contributed to the ERI only for manganese. All forms of insectivory provided small but probably non-trivial amounts of fat and protein. We conclude that different forms of insectivory have the potential to address different nutritional needs for Kasekela chimpanzees. Other than honeybees, insects have received little attention as potential foods for hominins. Our results suggest that ants and (on a seasonal basis) termites would have been viable sources of fat, high-quality protein and minerals for extinct hominins employing Pan-like subsistence technology in East African woodlands. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yin, Xijie; Chen, Zhigang
2014-12-01
The thermal conversion/elemental analyzer-isotope ratio mass spectrometer (TC/EA-IRMS) is widely used to measure the δ(18) O value of various substances. A premise for accurate δ(18) O measurement is that the oxygen in the sample can be converted into carbon monoxide (CO) quantitatively or at least proportionally. Therefore, a precise method to determine the oxygen yield of TC/EA-IRMS measurements is needed. Most studies have used the CO peak area obtained from a known amount of a solid reference material (for example, benzoic acid) to calibrate the oxygen yield of the sample. Although it was assumed that the oxygen yield of the solid reference material is 100%, no direct evidence has been provided. As CO is the analyte gas for δ(18) O measurement by IRMS, in this study, we use a six-port valve to inject CO gas into the TC/EA. The CO is carried to the IRMS by the He carrier gas and the CO peak area is measured by the IRMS. The CO peak area thus obtained from a known amount of the injected CO is used to calibrate the oxygen yield of the sample. The oxygen yields of commonly used organic and inorganic reference materials such as benzoic acid (C6 H5 COOH), silver phosphate (Ag3 PO4 ), calcium carbonate (CaCO3 ) and silicon dioxide (SiO2 ) are investigated at different reactor temperatures and sample sizes. We obtained excellent linear correlation between the peak area for the injected CO and its oxygen atom amount. C6 H5 COOH has the highest oxygen yield, followed by Ag3 PO4 , CaCO3 and SiO2 . The oxygen yields of TC/EA-IRMS are less than 100% for both organic and inorganic substances, but the yields are relatively stable at the specified reactor temperature and for a given quantity of sample. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Wilson, Lester A.
2005-01-01
Soybeans were chosen for hmar and planetary missions due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to crew consumption. Wilson et al. (2003) raised questions about (1) the influence of radiation (on germination and functional properties) that the soybeans would be exposed to during bulk storage for a Mars mission, and (2) the impact of using hydroponically grown versus field grown soybeans on the yield and quality of soyfoods. The influence of radiation can be broken down into two components: (A) affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (a Hazard Analysis Critical Control Point), and (B) affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants and free radical formation and oxidation induced changes in the soybean (lipid, protein, etc.) will influence the nutritional value, texture, quality, and safety of soyfoods made from them. The objectives of this project are to (1) evaluate the influence of gamma and electron beam radiation on bulk soybeans (HACCP, CCP) on the microbial load, germination, ease of processing, and quality of soymilk and tofu; (2) provide scale up and mass balance data for Advanced Life Support subsystems including Biomass, Solid Waste Processing, and Water Recovery Systems; and (3) to compare Hoyt field grown to hydroponically grown Hoyt soybeans for soymilk and tofu production. The soybean cultivar Hoyt, a small standing, high protein cultivar that could grow hydroponically in the AIMS facility on Mars) was evaluated for the production of soymilk and tofu. The quality and yield of the soymilk and tofu from hydroponic Hoyt, was compared to Vinton 81 (a soyfood industry standard), field Hoyt, IA 2032LS (lipoxygenase-free), and Proto (high protein and antioxidant potential). Soymilk and tofu were produced using the Japanese method. The soymilk was coagulated with calcium sulfate dihydrate. Soybeans and tofu were evaluated using chemical, microbial, and instrumental sensory methods. The surface radiation of whole dry soybeans using electron beam or gamma rays at 10 or 30 kGy did provide microbial safety for the astronauts. However, these doses caused oxidative changes that resulted in tofu with rancid aroma, darkening of the tofu, lower tofu yields, more solid waste, and loss of the ability of the seeds to germinate. While lower doses may reduce these problems, we lose the ability to insure microbial safety (cross-contamination) of bulk soybeans for the astronauts. Counter measures could include vacuum packaging, radiating under freezing conditions. A No Effect Dose for food quality, below 10 kGy needs to be determined. Better estimates of the radiation that the food will be exposed to need to determined and shared. Appropriate shielding for the food as well as the astronauts needs to be developed. The Hoyt soybean did not provide a high yielding, high quality tofu. A new small scale system for evaluating soybeans was developed using 50 g quantities of soybeans.
Jitrwung, Rujira; Yargeau, Viviane
2015-01-01
Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750
Jitrwung, Rujira; Yargeau, Viviane
2015-05-11
Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.
Charles B. Briscoe; F. Bruce Lamb
1962-01-01
A study was made of the putative hybrid of bigleaf and small-leaf mahoganies. Initial measurements indicated that bigleaf mahogany can be distinguished from small-leaf mahogany by gross measurements of leaflets. Isolated mother trees yield typical progeny. Typical mother trees in mixed stands yield like progeny plus, usually, mediumleaf progeny. Mediumleaf mother trees...
Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E
2014-09-01
Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Chiara, Gabriele; Fazio, Rosario; Montangero, Simone
In this paper we present an approach to quantum cloning with unmodulated spin networks. The cloner is realized by a proper design of the network and a choice of the coupling between the qubits. We show that in the case of phase covariant cloner the XY coupling gives the best results. In the 1{yields}2 cloning we find that the value for the fidelity of the optimal cloner is achieved, and values comparable to the optimal ones in the general N{yields}M case can be attained. If a suitable set of network symmetries are satisfied, the output fidelity of the clones doesmore » not depend on the specific choice of the graph. We show that spin network cloning is robust against the presence of static imperfections. Moreover, in the presence of noise, it outperforms the conventional approach. In this case the fidelity exceeds the corresponding value obtained by quantum gates even for a very small amount of noise. Furthermore, we show how to use this method to clone qutrits and qudits. By means of the Heisenberg coupling it is also possible to implement the universal cloner although in this case the fidelity is 10% off that of the optimal cloner.« less
Research on solvent-refined coal. Quarterly technical progress report, April 1, 1981-June 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-10-01
This report describes progress on the Research on Solvent Refined Coal project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during the second quarter of 1981. Alexander Mine coal was evaluated as a feedstock for major liquefaction facilities and had a yield structure similar to other reactive Pittsburgh seam coals at standard SRC II conditions. Two lots of coal from the Ireland Mine (Pittsburgh seam) were found to be of nearly the same composition and produced essentially the same yields. Two experiments in which coal-derived nonvolatile organic matter was processed without fresh coal feed indicate constant rates ofmore » conversion of SRC to oil and gas. Insoluble organic matter (IOM) remained unconverted. The naphtha and middle distillate products from the deep conversion contained less sulfur but more nitrogen than those from conventional SRC II processing. Encouraging results were obtained when a very small amount of iron oxide dispersed on alumina was added to Kaiparowits coal which cannot be processed at normal SRC II conditions without added catalyst. Subbituminous coals from the McKinley and Edna Mines were processed successfully with added pyrite but would not run when the added catalyst was removed.« less
Influence of mixing conditions on the rheological properties and structure of capillary suspensions
Bossler, Frank; Weyrauch, Lydia; Schmidt, Robert; Koos, Erin
2017-01-01
The rheological properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk liquid. These capillary suspensions exist either in the pendular state where the secondary fluid preferentially wets the particles or the capillary state where the bulk fluid is preferentially wetting. The yield stress, as well as storage and loss moduli, depends on the size and distribution of secondary phase droplets created during sample preparation. Enhanced droplet breakup leads to stronger sample structures. In capillary state systems, this can be achieved by increasing the mixing speed and time of turbulent mixing using a dissolver stirrer. In the pendular state, increased mixing speed also leads to better droplet breakup, but spherical agglomeration is favored at longer times decreasing the yield stress. Additional mixing with a ball mill is shown to be beneficial to sample strength. The influence of viscosity variance between the bulk and second fluid on the droplet breakup is excluded by performing experiments with viscosity-matched fluids. These experiments show that the capillary state competes with the formation of Pickering emulsion droplets and is often more difficult to achieve than the pendular state. PMID:28194044
NASA Astrophysics Data System (ADS)
Hai, Thien An Phung; Sugimoto, Ryuichi
2017-10-01
Poly(3-hexylthiophene) (P3HT) was successfully prepared by oxidative polymerization of 3-hexylthiophene (3HT) using FeCl3 in various solvents, including hexane, nitrobenzene, and acetonitrile. The range of molar ratios between the oxidant and monomer used in the reactions was 1:1-1:10. A similar result was obtained when the polymerization was conducted in ethanol-free chloroform, which indicated that the Lewis acidity of anhydrous FeCl3 was significantly affected by even a small amount of ethanol. The yield of P3HT obtained in the above solvents was proportional to the monomer/FeCl3 molar ratio, and the yield in hexane was the highest among all solvents. Analysis of the methanol extract of P3HT using Surface-Assisted Laser Desorption/Ionization Time-Of-Light Mass Spectrometry (SALDI TOF MS) showed that the 3HT dimer was formed at the initial stage of polymerization. The structure of the oligomer was also analyzed using SALDI TOF MS and 1H NMR. These results provide detailed insights into the polymerization mechanism of 3HT with FeCl3 as oxidant.
Biofuel production utilizing a dual-phase cultivation system with filamentous cyanobacteria.
Aoki, Jinichi; Kawamata, Toru; Kodaka, Asuka; Minakawa, Masayuki; Imamura, Nobukazu; Tsuzuki, Mikio; Asayama, Munehiko
2018-04-17
Biomass yields and biofuel production were examined in a dual (solid and liquid)-phase cultivation system (DuPHA) with the unique filamentous cyanobacteria, Pseudanabaena sp. ABRG 5-3 and Limnothrix sp. SK1-2-1. Continuous circular cultivation was driven under the indoor closed (IC) or indoor opened (IO) conditions and provided biomass yields of approximately 8 to 27 g dry cell weight (DCW) floor m -2 d -1 . Alkanes of heptadecane (C 17 H 36 ) or pentadecane (C 15 H 32 ) as liquid biofuels were also recovered from the lower liquid-phase, in which cyanobacteria were dropped from the upper solid-phase and continuously cultivated with a small amount of medium. After the main cultivation in DuPHA, the upper solid-phase of a cotton cloth on which cyanobacteria grew was dried and directly subjected to a combustion test. This resulted in the thermal power (kJ s -1 ) of the cloth with microalgae increasing approximately 20 to 50% higher than that of the cloth only, suggesting a possibility of using the solid phase with microalgae as solid biofuel. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Armstrong, D. E. J.; Hardie, C. D.; Gibson, J. S. K. L.; Bushby, A. J.; Edmondson, P. D.; Roberts, S. G.
2015-07-01
This paper demonstrates the ability of advanced micro-mechanical testing methods, based on FIB machined micro-cantilevers, to measure the mechanical properties of ion implanted layers without the influence of underlying unimplanted material. The first section describes a study of iron-12 wt% chromium alloy implanted with iron ions. It is shown that by careful cantilever design and finite element modelling that changes in yield stress after implantation can be measured even with the influence of a strong size effect. The second section describes a study of tungsten implanted with both tungsten ions and tungsten and helium ions using spherical and sharp nanoindentation, and micro-cantilevers. The spherical indentation allows yield properties and work hardening behaviour of the implanted layers to be measured. However the brittle nature of the implanted tungsten is only revealed when using micro-cantilevers. This demonstrates that when applying micro-mechanical methods to ion implanted layers care is needed to understand the nature of size effects, careful modelling of experimental procedure is required and multiple experimental techniques are needed to allow the maximum amount of mechanical behaviour information to be collected.
Son, Jung Tae; Lee, Eunjoo
2015-08-01
To determine the effect of the amount of rice carbohydrates consumed during mealtime on the extent of decrease in postprandial blood pressure in older people with postprandial hypotension. The incidence of postprandial hypotension is as high as 74% in older people with hypertension. A within-subjects repeated measures design was used. Thirty-nine older people in nursing homes received a full serving and a half-serving of rice on two separate days, in random order blood pressure and heart rate were measured before each meal and every 15 minutes for a total of 120 minutes after each meal. Data were analysed using repeated measures analysis of variance and the paired t-test with a Bonferroni adjustment using IBM spss version 19.0. The control and intervention conditions yielded significantly different patterns in systolic blood pressure and diastolic blood pressure. Postprandial hypotension was less frequent under the intervention condition; however, decrease in rice intake did not significantly affect heart rate. Reducing the amount of rice intake per meal prevents postprandial blood pressure decreases in the older people. Small and frequent meals with decreased carbohydrate content are recommended to prevent postprandial hypotension and its complications in the older people. Patients, dieticians and caregivers of older patients should be aware of the importance of diet, especially of decreasing the amount of carbohydrate in a meal. Smaller and more frequent meals are recommended for older people to slow gastric emptying. © 2015 John Wiley & Sons Ltd.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Sosa Vazquez, Xochitl A.; Isborn, Christine M.
2015-12-22
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
Size-dependent error of the density functional theory ionization potential in vacuum and solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
Santella, Chiara; Cafiero, Lorenzo; De Angelis, Doina; La Marca, Floriana; Tuffi, Riccardo; Vecchio Ciprioti, Stefano
2016-08-01
Pyrolysis seems a promising route for recycling of heterogeneous, contaminated and additives containing plastics from waste electrical and electronic equipment (WEEE). This study deals with the thermal and catalytic pyrolysis of a synthetic mixture containing real waste plastics, representative of polymers contained in small WEEE. Two zeolite-based catalysts were used at 400°C: HUSY and HZSM-5 with a high silica content, while three different temperatures were adopted for the thermal cracking: 400, 600 and 800°C. The mass balance showed that the oil produced by pyrolysis is always the main product regardless the process conditions selected, with yields ranging from 83% to 93%. A higher yield was obtained when pyrolysis was carried out with HZSM-5 at 400°C and without catalysts, but at 600 and 800°C. Formation of a significant amount of solid residue (about 13%) is observed using HUSY. The oily liquid product of pyrolysis, analysed by GC-MS and GC-FID, as well as by elemental analysis and for energy content, appeared lighter, less viscous and with a higher concentration of monoaromatics under catalytic condition, if compared to the liquid product derived from thermal degradation at the same temperature. HZSM-5 led to the production of a high yield of styrene (17.5%), while HUSY favoured the formation of ethylbenzene (15%). Energy released by combustion of the oil was around 39MJ/kg, thus suggesting the possibility to exploit it as a fuel, if the recovery of chemical compounds could not be realised. Elemental and proximate analysis of char and GC-TCD analysis of the gas were also performed. Finally, it was estimated to what extent these two products, showing a relevant ability to release energy, could fulfil the energy demand requested in pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of activated air following high yield shots in the NIF
Khater, Hesham; Brereton, Sandra
2015-07-24
During the ignition experimental campaign, the National Ignition Facility (NIF) is expected to perform shots with varying fusion yield (up to 20 MJ or 7.1 x 10 18 neutrons per shot) and a maximum annual yield of 1200 MJ. A detailed MCNP model of the Target Bay (TB) and the two switchyards (SY) has been developed to estimate the post-shot radiation environment inside the facility. During D-T shots, a pulse of 14.1 MeV neutrons streaming outside the Target Chamber (TC) will activate the air present inside the TB and the argon gas inside the laser tubes. Smaller levels of activitymore » are also generated in the SY air and in the argon portion of the SY laser beam path. The activated TB air will be mixed with fresh air from the Operations Support Building (OSB) before release through the stack. Flow of activated air from the Target Bay is controlled by the heating, ventilating, and air conditioning (HVAC) system. 16N (T 1/2 = 7.13 s) dominates the radiation levels during the first minute following the shot. It is expected that 16N will decay away during the confinement time before releasing the TB air through the stack. The other major contributors are 13N (T 1/2 = 9.97 min) and 41Ar (T 1/2 = 1.83 h). In general a low dose rate of < 1 μSv/h is expected near the stack during the first few hours following a 20 MJ shot. Here, the amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. In the mean time, due to a very small leakage rate out of the laser tubes, the activated argon gas decays within the tubes and any resulting release to the environment is insignificant.« less
Analysis of activated air following high yield shots in the NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khater, Hesham; Brereton, Sandra
During the ignition experimental campaign, the National Ignition Facility (NIF) is expected to perform shots with varying fusion yield (up to 20 MJ or 7.1 x 10 18 neutrons per shot) and a maximum annual yield of 1200 MJ. A detailed MCNP model of the Target Bay (TB) and the two switchyards (SY) has been developed to estimate the post-shot radiation environment inside the facility. During D-T shots, a pulse of 14.1 MeV neutrons streaming outside the Target Chamber (TC) will activate the air present inside the TB and the argon gas inside the laser tubes. Smaller levels of activitymore » are also generated in the SY air and in the argon portion of the SY laser beam path. The activated TB air will be mixed with fresh air from the Operations Support Building (OSB) before release through the stack. Flow of activated air from the Target Bay is controlled by the heating, ventilating, and air conditioning (HVAC) system. 16N (T 1/2 = 7.13 s) dominates the radiation levels during the first minute following the shot. It is expected that 16N will decay away during the confinement time before releasing the TB air through the stack. The other major contributors are 13N (T 1/2 = 9.97 min) and 41Ar (T 1/2 = 1.83 h). In general a low dose rate of < 1 μSv/h is expected near the stack during the first few hours following a 20 MJ shot. Here, the amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. In the mean time, due to a very small leakage rate out of the laser tubes, the activated argon gas decays within the tubes and any resulting release to the environment is insignificant.« less
78 FR 11795 - Minimum Technical Standards for Class II Gaming Systems and Equipment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... threshold amount. The Commission increased that amount in the MICS from $1,000,000 to $3,000,000. The... considered to be small entities for the purposes of the Regulatory Flexibility Act. Small Business Regulatory Enforcement Fairness Act The proposed rule is not a major rule under 5 U.S.C. 804(2), the Small Business...
Ferrell, Gloria M.
2001-01-01
Transport rates for total solids, total nitrogen, total phosphorus, biochemical oxygen demand, chromium, copper, lead, nickel, and zinc during 1994–98 were computed for six stormwater-monitoring sites in Mecklenburg County, North Carolina. These six stormwater-monitoring sites were operated by the Mecklenburg County Department of Environmental Protection, in cooperation with the City of Charlotte, and are located near the mouths of major streams. Constituent transport at the six study sites generally was dominated by nonpoint sources, except for nitrogen and phosphorus at two sites located downstream from the outfalls of major municipal wastewater-treatment plants.To relate land use to constituent transport, regression equations to predict constituent yield were developed by using water-quality data from a previous study of nine stormwater-monitoring sites on small streams in Mecklenburg County. The drainage basins of these nine stormwater sites have relatively homogeneous land-use characteristics compared to the six study sites. Mean annual construction activity, based on building permit files, was estimated for all stormwater-monitoring sites and included as an explanatory variable in the regression equations. These regression equations were used to predict constituent yield for the six study sites. Predicted yields generally were in agreement with computed yields. In addition, yields were predicted by using regression equations derived from a national urban water-quality database. Yields predicted from the regional regression equations generally were about an order of magnitude lower than computed yields.Regression analysis indicated that construction activity was a major contributor to transport of the constituents evaluated in this study except for total nitrogen and biochemical oxygen demand. Transport of total nitrogen and biochemical oxygen demand was dominated by point-source contributions. The two study basins that had the largest amounts of construction activity also had the highest total solids yields (1,300 and 1,500 tons per square mile per year). The highest total phosphorus yields (3.2 and 1.7 tons per square mile per year) attributable to nonpoint sources also occurred in these basins. Concentrations of chromium, copper, lead, nickel, and zinc were positively correlated with total solids concentrations at most of the study sites (Pearson product-moment correlation >0.50). The site having the highest median concentrations of chromium, copper, and nickel also was the site having the highest computed yield for total solids.
Fracture behavior of unidirectional boron/aluminum composite laminates
NASA Technical Reports Server (NTRS)
Goree, J. G.; Jones, W. F.
1983-01-01
An experiment was conducted to verify the results of mathematical models which predict the stresses and displacements of fibers and the amount of damage growth in a center-notched lamina as a function of the applied remote stress and the matrix and fiber material properties. A brittle lacquer coating was used to detect the yielding in the matrix while X-ray techniques were used to determine the number of broken fibers in the laminate. The notched strengths and the amounts of damage found in the specimens agree well with those predicted by the mathematical model. It is shown that the amount of damage and the crack opening displacement does not depend strongly on the number of plies in the laminate for a given notch width. By heat-treating certain laminates to increase the yield stress of the alumina matrix, the effect of different matrix properties on the fracture behavior was investigated. The stronger matrix is shown to weaken the notched laminate by decreasing the amount of matrix damage, thereby making the laminate more notch sensitive.
Stanton, Ronald W.; Warwick, Peter D.; Swanson, Sharon M.
2005-01-01
Tar yields from low-temperature carbonization correlate with the amount of crypto-eugelinite in samples selected to represent petrographically distinct coal facies of the Wyodak-Anderson coal zone. Tar yields from Fischer Assay range from <1 to 11 wt.% on a dry basis and correspond (r = 0.72) to crypto-eugelinite contents of the coal that range from 15 to 60 vol.%. Core and highwall samples were obtained from active surface mines in the Gillette field, Powder River Basin, Wyoming. Because the rank of the samples is essentially the same, differences in low-temperature carbonization yields are interpreted from compositional differences, particularly the crypto-eugelinite content. In the Wyodak-Anderson coal zone, crypto-eugelinite probably was derived from degraded humic matter which absorbed decomposition products from algae, fungi, bacteria, and liptinitic plant parts (materials possibly high in hydrogen). Previous modeling of the distribution of crypto-eugelinite in the discontinuous Wyodak-Anderson coal zone indicated that tar yields should be greater from coal composing the upper part and interior areas than from coal composing the lower parts and margins of the individual coal bodies. It is possible that hydrocarbon yields from natural coalification processes would be similar to yields obtained from laboratory pyrolysis. If so, the amount of crypto-eugelinite may also be an important characteristic when evaluating coal as source rock for migrated hydrocarbons.
Esquível, M G; Matos, A R; Marques Silva, J
2017-07-01
Photosynthesis and lipid allocation were investigated in Rubisco small subunit mutants of the microalga Chlamydomonas reinhardtii. Comparative analyses were undertaken with cells grown photoheterotrophically under sulphur-replete or sulphur-depleted conditions. The Y67A Rubisco mutant, which has previously demonstrated a pronounced reduction in Rubisco levels and higher hydrogen production rates than the wild type, also shows the following divergences in photosynthetic phenotype and lipid allocation: (i) low Fv/Fm (maximum photochemical efficiency), (ii) low effective quantum yield of photosystem II (ΦPSII), (iii) low effectiveness at protection against high light intensities, (iv) a higher level of total lipids per pigment and (v) changes in the relative proportions of different fatty acids, with a marked decrease in unsaturated fatty acids (FAs). The most abundant thylakoid membrane lipid, monogalactosyldiacylglycerol, decreased in amount, while the neutral lipid/polar lipid ratio increased in the mutant. The low amount and activity of the mutated Rubisco Y67A enzyme seems to have an adverse effect on photosynthesis and causes changes in carbon allocation in terms of membrane fatty acid composition and storage lipid accumulation. Our results suggest that Rubisco mutants of Chlamydomonas might be useful in biodiesel production.
Fabrication of high quality cDNA microarray using a small amount of cDNA.
Park, Chan Hee; Jeong, Ha Jin; Jung, Jae Jun; Lee, Gui Yeon; Kim, Sang-Chul; Kim, Tae Soo; Yang, Sang Hwa; Chung, Hyun Cheol; Rha, Sun Young
2004-05-01
DNA microarray technology has become an essential part of biological research. It enables the genome-scale analysis of gene expression in various types of model systems. Manufacturing high quality cDNA microarrays of microdeposition type depends on some key factors including a printing device, spotting pins, glass slides, spotting solution, and humidity during spotting. UsingEthe Microgrid II TAS model printing device, this study defined the optimal conditions for producing high density, high quality cDNA microarrays with the least amount of cDNA product. It was observed that aminosilane-modified slides were superior to other types of surface modified-slides. A humidity of 30+/-3% in a closed environment and the overnight drying of the spotted slides gave the best conditions for arraying. In addition, the cDNA dissolved in 30% DMSO gave the optimal conditions for spotting compared to the 1X ArrayIt, 3X SSC and 50% DMSO. Lastly, cDNA in the concentration range of 100-300 ng/ micro l was determined to be best for arraying and post-processing. Currently, the printing system in this study yields reproducible 9000 spots with a spot size 150 mm diameter, and a 200 nm spot spacing.
The organic matrix of gallstones
Sutor, D. June; Wooley, Susan E.
1974-01-01
Dissolution of gallstones consisting of cholesterol, calcium carbonate, or calcium phosphate in different solvents left an amorphous organic gel-like substance (the matrix). Matrix from cholesterol stones could be colourless but was usually orange, yellow, or brown while that from calcium carbonate and calcium phosphate stones was almost invariably coloured black or dark brown. These pigments were also shown to be organic and amorphous. The amount of matrix present and its structure varied with the texture of the crystalline material. Irrespective of their composition, laminated pieces of material yielded compact laminated matrix of the same shape as the original piece and areas of loose crystalline material gave small pieces of non-cohesive matrix. Only large cholesterol crystals which usually radiate from the stone nucleus had no associated matrix. ImagesFig 1Fig 2Fig 3Fig 4Fig 5 PMID:4854981
Quantum-locked key distribution at nearly the classical capacity rate.
Lupo, Cosmo; Lloyd, Seth
2014-10-17
Quantum data locking is a protocol that allows for a small secret key to (un)lock an exponentially larger amount of information, hence yielding the strongest violation of the classical one-time pad encryption in the quantum setting. This violation mirrors a large gap existing between two security criteria for quantum cryptography quantified by two entropic quantities: the Holevo information and the accessible information. We show that the latter becomes a sensible security criterion if an upper bound on the coherence time of the eavesdropper's quantum memory is known. Under this condition, we introduce a protocol for secret key generation through a memoryless qudit channel. For channels with enough symmetry, such as the d-dimensional erasure and depolarizing channels, this protocol allows secret key generation at an asymptotic rate as high as the classical capacity minus one bit.
Computational model for living nematic
NASA Astrophysics Data System (ADS)
Genkin, Mikhail; Sokolov, Andrey; Lavrentovich, Oleg; Aranson, Igor
A realization of an active system has been conceived by combining swimming bacteria and a lyotropic nematic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics we developed a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the nematic director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields testable prediction on the accumulation and transport of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our new experiment on motile bacteria suspended in a free-standing liquid crystalline film fully confirmed this prediction. This effect can be used to capture and manipulation of small amounts of bacteria.
Local structure and structural rigidity of the green phosphor β -SiAlON:Eu 2+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brgoch, J.; Gaultois, M. W.; Balasubramanian, M.
Eu2+ inserted in beta-Si3-xAlxOxN4-x is a material that shows exceptional promise as a green-emitting phosphor. Synchrotron X-ray and neutron scattering, in conjunction with first-principles calculations and Eu L-3 X-ray absorption measurements, yield a consistent picture of the composition, and the favorable position for Eu2+ substitution in the crystal structure. The Debye temperature Theta(D), which is a proxy for structural rigidity relating to effectiveness as a phosphor, is very high for the starting beta-Si3N4 framework and is determined to decrease only slightly for the small amounts of Al3+ and O2- co-substitution that are required for charge balance associated with Eu2+ insertion.more » (C) 2014 AIP Publishing LLC.« less
Viking on Mars - The carbon assimilation experiments
NASA Technical Reports Server (NTRS)
Horowitz, N. H.; Hobby, G. L.; Hubbard, J. S.
1977-01-01
A fixation of atmospheric carbon, presumably into organic form, occurs in Martian surface material under conditions approximating the actual Martian ones. The reaction showed the following characteristics. The amount of carbon fixed is small by terrestrial standards; highest yields were observed in the light, but some dark activity was also detected; and heating the surface material to 90 C for nearly 2 hours had no effect on the reaction, but heating to 175 C for 3 hours reduced it by nearly 90%. New data from Mars do not support an earlier suggestion that the reaction is inhibited by traces of water. There is evidence of considerable heterogeneity among different samples, but different aliquots from the same sample are remarkably uniform in their carbon-fixing capacity. In view of its thermostability it is unlikely that the reaction is biological.
Supramolecular Rotor and Translator at Work: On-Surface Movement of Single Atoms.
Ohmann, Robin; Meyer, Jörg; Nickel, Anja; Echeverria, Jorge; Grisolia, Maricarmen; Joachim, Christian; Moresco, Francesca; Cuniberti, Gianaurelio
2015-08-25
A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8 × 10(-21) J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3 × 10(-21) W.
Solak, Agnieszka; Rutkowski, Piotr
2014-02-01
Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 - montmorillonite K10, KSF - montmorillonite KSF, B - Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500°C with heating rate of 100°C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3-79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500°C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst. Copyright © 2013 Elsevier Ltd. All rights reserved.
Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; ...
2016-04-27
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N 2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L -1, similar to small-scale batches.more » The 900-L pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less
Joule heating induced stream broadening in free-flow zone electrophoresis.
Dutta, Debashis
2018-03-01
The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E
2016-09-01
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.
Sun, Mei; Huo, Zailin; Zheng, Yanxia; Dai, Xiaoqin; Feng, Shaoyuan; Mao, Xiaomin
2018-02-01
Quantitatively ascertaining and analyzing long-term responses of crop yield and nitrate leaching on varying irrigation and fertilization treatments are focal points for guaranteeing crop yield and reducing nitrogen loss. The calibrated agricultural-hydrological RZWQM2 model was used to explore the long-term (2003-2013) transport processes of water and nitrogen and the nitrate leaching amount into groundwater in summer maize and winter wheat rotation field in typical intensive plant area in the North China Plain, Daxing district of Beijing. Simulation results showed that application rates of irrigation and nitrogen fertilizer have couple effects on crop yields and nitrogen leaching of root zone. When both the irrigation and fertilizer for summer maize and winter wheat were 400mm and 400kgNha -1 , respectively, nitrate leaching into groundwater accounted for 47.9% of application amount of nitrogen fertilizer. When application amount of irrigation is 200mm and fertilization is 200kgNha -1 , NUPE (nitrogen uptake efficiency), NUE (nitrogen use efficiency), NPFP (nitrogen partial factor productivity), and W pi (irrigation water productive efficiency) were in general higher than that under other irrigation and fertilization condition (irrigation from 104-400mm, fertilizer 104-400kgNha -1 ). Irrigation bigger than 200mm could shorten the response time of nitrate leaching in deeper soil layer in different irrigation treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Mia, Baset M A; Islam, Md Serajul; Miah, Md Yunus; Das, M R; Khan, H I
2014-02-01
Assessment of growth regulator and NPK fertilization effects are important tools for flower stimulation and yield improvement in cucurbits. This investigation demonstrates the comparative male-female flower induction and fruit yield of small sized bitter gourd treated with NPK fertilizers and plant growth regulators. Namely, two experiments having three replicates were conducted in a Randomized Complete Block Design (RCBD) with NPK fertilization and plant growth regulators-GA3, NAA and Ethophon application on small sized bitter gourd-genotype BG5 at the research field of the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU). In experiment 1, different doses of NPK fertilizers comprised of 10 treatments and in that of experiment 2, different levels of plant growth regulators indicated 10 treatments. The results indicated that application of different doses of NPK fertilizer and plant growth regulators significantly (< or = 0.05) influenced over the flower initiation and fruit setting. The application of N90-P45-K60 fertilizer along with Ethophon spraying resulted in the better yield of small sized bitter gourd.
Irrigation scheduling: When, where, and how much?
USDA-ARS?s Scientific Manuscript database
Irrigation scheduling, a key element of proper water management, is the accurate forecasting of water application (amount and timing) for optimal crop production (yield and fruit quality). The goal is to apply the correct amount of water at the right time to minimize irrigation costs and maximize cr...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Hua; Lin, Yingbo; Badin, Margherita
2011-01-14
Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclearmore » IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over-accumulation of nIGF-1R. Over-accumulation of nIGF-1R may contribute to deregulated gene expression and therewith play a pathophysiological role in cancer cells.« less
Butnaru, Gallia; Sarac, Ioan; Ciulca, Sorin
2014-01-01
The paper assesses the behavior of triticale genotypes in the evolution of the environment in Timisoara area during 2001 - 2011. The triticale varieties and lines were bred in the Eastern part of Romania [RICIC Fundulea] with a different climate pattern than Timisoara. We intended to see the yield evolution during a long period of cultivation [10 years--3 varieties bred before 2000; Group 1] and the new genotypes bred after 2000; Group 2] cultivated during 6 - 2 years. Each year, new different varieties (in total 32) and new lines (in total 78) were also under observation. For 10 years, the best variety from the first Group was Titan [5643.2 ± 710.2 kg/ha; CV% = 39.8]. From the second Group, the highest yield average revealed Haiduc variety [6207.2 ± 715.0 kg/ha; CV% = 34.6. During 3 years of cultivation Nera, Matroz and Negoiu pointed out 7936 kg/ha, 7542 kg/ha and 7266 kg/ha respectively. Nedeea and Oda overpasses 8500 and 7500 kg/ha during 2010 - 2011 respectively. The 2011 agricultural year was improper for cereals. It was affected by high temperature, and small amounts of precipitations. Only 64.16% of the average amounts of precipitation were accumulated. In these conditions the best varieties were Gorun and Haiduc performing 7190 kg/ha and 7058 kg/ha respectively. 40% of the tested varieties yielded less than 4500 kg/ha. From the farmers' point of view the best varieties were Titan and Gorun. In terms of the eight plant traits studied in 2011, the phenotypic similarity [ps] between varieties was variable. According to obtained results, we advise the farmers to compose a complex of varieties that should be proper for their specific environment. The favorable combination for cultivation in a stable environmental condition are Gorun [7190 kg/ha] and Matroz [6863 kg/ha] with ps = 93.23% revealing a high similarity. In an unstable environment, the best variety combination for cultivation are: Titan [6025 kg/ha] and Haiduc [7058 kg/ha] [ps = 49.94%], Titan [6025 kg/ha] and Gorun [7190 kg/ha] [ps = 47.93%]. The biplot analysis for the quantitative and qualitative traits highlighted the significant contribution of the number of spikes per unit area.
Soil nitrogen dynamics and Capsicum Annuum sp. plant response to biochar amendment in silt loam soil
NASA Astrophysics Data System (ADS)
Horel, Agota; Gelybo, Gyorgyi; Dencso, Marton; Toth, Eszter; Farkas, Csilla; Kasa, Ilona; Pokovai, Klara
2017-04-01
The present study investigated the growth of Capsicum Annuum sp. (pepper) in small-scale experiment to observe changes in plant growth and health as reflected by leaf area, plant height, yield, root density, and nitrogen usage. Based on field conditions, part of the study aimed to examine the photosynthetic and photochemical responses of plants to treatments resulting from different plant growth rates. During the 12.5 week long study, four treatments were investigated with biochar amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. The plants were placed under natural environmental conditions, such that photosynthetic activities from photosynthetically active radiation (PAR) and the plants photochemical reflectance index (PRI) could be continuously measured after exposure to sunlight. In this study we found that benefits from biochar addition to silt loam soil most distinguishable occurred in the BC2.5 treatments, where the highest plant yield, highest root density, and highest leaf areas were observed compared to other treatments. Furthermore, data showed that too low (0.5%) or too high (5.0%) biochar addition to the soil had diminishing effects on Capsicum Annuum sp. growth and yield over time. At the end of the 12th week, BC2.5 had 22.2%, while BC0.5 and BC5.0 showed 17.4% and 15.7% increase in yield dry weight respectively compared to controls. The collected data also showed that the PRI values of plants growing on biochar treated soils were generally lower compared to control treatments, which could relate to leaf nitrogen levels. Total nitrogen amount showed marginal changes over time in all treatments. The total nitrogen concentration showed 28.6% and 17.7% increase after the 6th week of the experiment for BC2.5 and BC5.0, respectively, while inorganic nutrients of NO3-N and NH4+-N showed a continuous decrease during the course of the study, with a substantial drop during the first few weeks. The present study provides evidence for impact of biochar on plant stress levels and growth function in biochar amended soils. Our findings emphasize the necessity for optimization to local parameters prior to biochar additions to soils.
NASA Astrophysics Data System (ADS)
Yuliusman; Afdhol, M. K.; Sanal, Alristo
2018-03-01
Carbon monoxide and methane gas are widely present in oil refineries. Off-potential gas is used as raw material for the petrochemical industry. In order for this off-gas to be utilized, carbon monoxide and methane must be removed from off-gas. This study aims to adsorb carbon monoxide and methane using activated carbon of palm shells and commercial activated carbon simultaneously. This research was conducted in 2 stages: 1) Preparation and characterization of activated carbon, 2) Carbon monoxide and methane adsorption test. The activation experiments using carbon dioxide at a flow rate of 150 ml/min yielded a surface area of 978.29 m2/g, Nitrogen at flow rate 150 ml/min yielded surface area 1241.48 m2/g, and carbon dioxide and nitrogen at a flow rate 200 ml/min yielded a surface area 300.37 m2/g. Adsorption of carbon monoxide and methane on activated carbon of palm shell systems yielded results in the amount of 0.5485 mg/g and 0.0649 mg/g and using commercial activated carbon yielded results in the amount of 0.5480 mg/g and 0.0650 mg/g
Mafic-crystal distributions, viscosities, and lava structures of some Hawaiian lava flows
NASA Astrophysics Data System (ADS)
Rowland, Scott K.; Walker, George P. L.
1988-09-01
The distribution patterns of mafic phenocrysts in some Hawaiian basalt flows are consistent with simple in situ gravitational settling. We use the patterns to estimate the crystal settling velocity and hence viscosity of the lava, which in turn can be correlated with surface structures. Numerical modeling generates theoretical crystal concentration profiles through lava flow units of different thicknesses for differing settling velocities. By fitting these curves to field data, crystal-settling rates through the lavas can be estimated, from which the viscosities of the flows can be determined using Stokes' Law. Lavas in which the crystal settling velocity was relatively high (on the order of 5 × 10 -4 cm/sec) show great variations in phenocryst content, both from top to bottom of the same flow unit, and from one flow unit to another. Such lava is invariably pahoehoe, flow units of which are usually less than 1 m thick. Lavas in which the crystal-settling velocity was low show a small but measurable variation in phenocryst content. These lavas are part of a progression from a rough pahoehoe to toothpaste lava to a'a. Toothpaste lava is characterized by spiny texture as well as the ability to retain surface grooves during solidification, and flow units are usually thicker than 1 m. In the thickest of Hawaiian a'a flows, those of the distal type, no systematic crystal variations are observed, and high viscosity coupled with a finite yield strength prevented crystal settling. The amount of crystal settling in pahoehoe indicates that the viscosity ranged from 600 to 6000 Pa s. The limited amount of settling in toothpaste lava indicates a viscosity greater than this value, approaching 12,000 Pa s. We infer that distal-type a'a had a higher viscosity still and also possessed a yield strength.
Photolysis of Pure Solid O3 and O2 Films at 193nm
NASA Technical Reports Server (NTRS)
Raut, U.; Loeffler, M. J.; Fama, M.; Baragiola, R. A.
2011-01-01
We studied quantitatively the photochemistry of solid O3 and O2 films at 193 nm and 22 K with infrared spectroscopy and microgravimetry. Photolysis of pure ozone destroyed O3, but a small amount of ozone remained in the film at high fluence. Photolysis of pure O2 produced O3 in an amount that increased with photon fluence to a stationary level. For both O2 and O3 films, the O3:O2 ratio at large fluences is ?0.07, about two orders of magnitude larger than those obtained in gas phase photolysis. This enhancement is attributed to the increased photodissociation of O2 due to photoabsorption by O2 dimers, a process significant at solid-state densities. We obtain initial quantum yield for ozone synthesis from solid oxygen, phi (O3) = 0.24 0.06, and quantum yields for destruction of O3 and O2 in their parent solids, phi(-O3) = 1.0 0.2 and phi(-O2) = 0.36 0.1. Combined with known photoabsorption cross sections, we estimate probabilities for geminate recombination of 0.5 0.1 for O3 fragments and 0.88 0.03 for oxygen atoms from O2 dissociation. Using a single parameter kinetic model, we deduce the ratio of reaction cross sections for an O atom with O2 vs. O3 to be 0.1 0.2. The general good agreement of the model with the data suggests the validity of the central assumption of efficient energy and spin relaxation of photofragments in the solid prior to their reactions with other species.
NASA Astrophysics Data System (ADS)
Panigrahi, B. K.; Srikanth, S.; Sahoo, G.
2009-11-01
The effect of copper, phosphorus, and chromium present in a semikilled reinforcing bar steel produced by in-line quenching [thermomechanical treatment (TMT)] process on the tensile properties, microstructure, and corrosion resistance of steel in simulated chloride environment has been investigated. The results have been compared with that of a semikilled C-Mn reinforcing bar steel without these alloying elements produced by the same process route. Though the amount of phosphorus (0.11 wt.%) was higher than that specified by ASTM A 706 standard, the Cu-P-Cr steel exhibited a composite microstructure, and good balance of yield stress, tensile stress, elongation, and ultimate tensile to yield stress ratio. Two conventional test methods, namely, the salt fog, and potentiodynamic polarization tests, were used for the corrosion test. The rust formed on Cu-P-Cr steel was adherent, and was of multiple colors, while the corrosion products formed on the C-Mn steel were weakly adherent and relatively darker blue. Also, the free corrosion potential of the Cu-P-Cr steel was nobler, and the corrosion current was markedly lower than that of a C-Mn rebar. The Cu-P-Cr steel did not develop any pits/deep grooves on its surface even after the prolonged exposure to salt fog. The improved corrosion resistance of the Cu-P-Cr steel has been attributed to the presence of copper, phosphorus, and small amount of chromium in the dense, adherent rust layer on the surface of reinforcing steel bar. A schematic mechanism of charge transfer has been proposed to explain the improved corrosion resistance of the Cu-P-Cr alloyed TMT rebar.
Photolysis of pure solid O{sub 3} and O{sub 2} films at 193 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raut, U.; Loeffler, M. J.; Fama, M.
2011-05-21
We studied quantitatively the photochemistry of solid O{sub 3} and O{sub 2} films at 193 nm and 22 K with infrared spectroscopy and microgravimetry. Photolysis of pure ozone destroyed O{sub 3}, but a small amount of ozone remained in the film at high fluence. Photolysis of pure O{sub 2} produced O{sub 3} in an amount that increased with photon fluence to a stationary level. For both O{sub 2} and O{sub 3} films, the O{sub 3}:O{sub 2} ratio at large fluences is {approx}0.07, about two orders of magnitude larger than those obtained in gas phase photolysis. This enhancement is attributed tomore » the increased photodissociation of O{sub 2} due to photoabsorption by O{sub 2} dimers, a process significant at solid-state densities. We obtain initial quantum yield for ozone synthesis from solid oxygen, {Phi}(O{sub 3}) = 0.24 {+-} 0.06, and quantum yields for destruction of O{sub 3} and O{sub 2} in their parent solids, {Phi}(-O{sub 3}) = 1.0 {+-} 0.2 and {Phi}(-O{sub 2}) = 0.36 {+-} 0.1. Combined with known photoabsorption cross sections, we estimate probabilities for geminate recombination of 0.5 {+-} 0.1 for O{sub 3} fragments and 0.88 {+-} 0.03 for oxygen atoms from O{sub 2} dissociation. Using a single parameter kinetic model, we deduce the ratio of reaction cross sections for an O atom with O{sub 2} vs. O{sub 3} to be 0.1-0.2. The general good agreement of the model with the data suggests the validity of the central assumption of efficient energy and spin relaxation of photofragments in the solid prior to their reactions with other species.« less
Non-Contact Acousto-Thermal Signatures of Plastic Deformation in TI-6AL-4V
NASA Astrophysics Data System (ADS)
Welter, J. T.; Malott, G.; Schehl, N.; Sathish, S.; Jata, K. V.; Blodgett, M. P.
2010-02-01
Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.
NASA Astrophysics Data System (ADS)
Matsuoka, Masanori; Takahashi, Fumiki; Asakura, Yoshiyuki; Jin, Jiye
2016-07-01
The sonochemiluminescence (SCL) behavior of lucigenin (Luc2+) has been studied in aqueous solutions irradiated with 500 kHz ultrasound. Compared with the SCL of a luminol system, a tremendously increased SCL intensity is observed from 50 µM Luc2+ aqueous solution (pH =11) when small amounts of coreactants such as 2-propanol coexist. It is shown that SCL intensity strongly depends on the presence of dissolved gases such as air, O2, N2, and Ar. The highest SCL intensity is obtained in an O2-saturated solution, indicating that molecular oxygen is required to generate SCL. Since SCL intensity is quenched completely in the presence of superoxide dismutase (SOD), an enzyme that can catalyze the disproportionation of O2 •-, the generation of O2 •- in the ultrasonic reaction field is important in the SCL of Luc2+. In this work, the evidence of O2 •- production is examined by a spectrofluorometric method using 2-(2-pyridyl)benzothiazoline as the fluorescent probe. The results indicate that the yield of O2 •- is markedly increased in the O2-saturated solutions when a small amount of 2-propanol coexists, which is consistent with the results of SCL measurements. 2-Propanol in the interfacial region of a cavitation bubble reacts with a hydroxyl radical (•OH) to form a 2-propanol radical, CH3C•(OH)CH3, which can subsequently react with dissolved oxygen to generate O2 •-. The most likely pathways for SCL as well as the spatial distribution of SCL in a microreactor are discussed in this study.
NASA Astrophysics Data System (ADS)
Heo, Joon-Young; Gwon, Jin-Han; Park, Jong-Kwan; Lee, Kee-Ahn
2018-05-01
Hypereutectic Al-Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al-Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al-Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 ( θ) and AlCuMgSi ( Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT 300 °C: 351 93 MPa) than after sintering (RT 300 °C: 210 89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.
E, Sheng Zhe; Yang, Zhi Qi; Zeng, Xi Bai; Wang, Ya Nan; Luo, Zhao Xia; Yuan, Jin Hua; Che, Zong Xian
2017-11-01
The changing trend of soil available phosphorus (Olsen-P) content in soil and its relationship with soil phosphorus surplus and crop yield are fundamental when making appropriate phosphate fertilizer recommendations. In this paper, the influences of long-term fertilization on crops phosphorus uptake, soil phosphorus surplus, changing trend of soil available phosphorus content and relationships of soil available phosphorus content with soil phosphorus surplus and crop yield were investigated through 34 years (1981-2015) long-term trial in loessial soil region on the Loess Plateau. The experiment had a completely-randomized-block split-plot design in triplicate. Two main-plot treatments were no farmyard manure and farmyard manure (M), and four subplot treatments were CK (no fertilizer), N (application of chemical fertilizer N), NP (application of chemical fertilizer NP) and NPK (balanced application of chemical fertilizer NPK), respectively. The results showed that fertilization treatments and crop types significantly influenced uptake amount of phosphorus and soil phosphorus surplus. Averaged over time from 1981 to 2015, wheat mean phosphorus uptake amounts of CK, N, NP, NPK, M, MN, MNP and MNPK were 8.63, 10.64, 16.22, 16.21, 16.25, 17.83, 20.39 and 20.27 kg·hm -2 , while rape phosphorus uptakeamounts of eight treatments were 4.40, 8.38, 15.08, 15.71, 10.52, 11.23, 17.96 and 17.66 kg·hm -2 , respectively. The surplus amount of soil phosphorus significantly correlated with the amount of phosphorus applied to soil. When soil phosphorus surplus amount equal zero, wheat and rape phosphorus input amounts were 10.47 kg·hm -2 and 6.97 kg·hm -2 , respectively. Soil phosphorus surplus amount significantly influenced the changing trend of available phosphorus content in soil. CK and N treatments had no phosphorus input, and soil available phosphorus content exhibited a declining trend, annually decreased by 0.16 mg·kg -1 and 0.15 mg·kg -1 , respectively. In contrast, NP, NPK, M, MN, MNP and MNPK six treatments were applied with phosphate fertilizer every years, and available phosphorus content gradually increased along with the duration of trial, with annual increase by 0.02-0.33 mg·kg -1 . Soil available phosphorus content significantly correlated with phosphorus accumulative surplus amount, and the linear models were y=0.012x+9.33 and y=0.009x+11.72 in manure and no manure treatments, respectively. In no manure treatments, wheat yields significantly positively correlated with soil available phosphorus content, however, in manure treatments, their relationships did not reach a significant level. The relationship of wheat grain yield with available phosphorus content could be significantly fitted by piecewise linear model, and available phosphorus agronomy threshold of wheat was 14.99 mg·kg -1 . Rape grain yield also increased with increasing soil available phosphorus content, but the relationship was not significant. This indicated when soil available P content is higher than 14.99 mg·kg -1 , application of phosphate fertili-zer should be reduced or even avoided for planting wheat in loessial soil region on the Loess Plateau.
Flammability Parameters of Candles
NASA Astrophysics Data System (ADS)
Balog, Karol; Kobetičová, Hana; Štefko, Tomáš
2017-06-01
The paper deals with the assessment of selected fire safety characteristics of candles. Weight loss of a candle during the burning process, candle burning rate, soot index, heat release rate and yield of carbon oxides were determined. Soot index was determined according to EN 15426: 2007 - Candles - Specification for Sooting Behavior. All samples met the prescribed amount of produced soot. Weight loss, heat release rate and the yield of carbon oxides were determined for one selected sample. While yield of CO increased during the measurement, the yield of CO2 decreased by half in 40 minutes.
Solute-Filled Syringe For Formulating Intravenous Solution
NASA Technical Reports Server (NTRS)
Owens, Jim; Bindokas, AL; Dudar, Tom; Finley, Mike; Scharf, Mike
1993-01-01
Prefilled syringe contains premeasured amount of solute in powder or concentrate form used to deliver solute to sterile interior of large-volume parenteral (LVP) bag. Predetermined amount of sterile water also added to LVP bag through sterilizing filter, and mixed with contents of syringe, yielding sterile intravenous solution of specified concentration.
Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions
NASA Astrophysics Data System (ADS)
Mumford, S. J.; Fedun, V.; Erdélyi, R.
2015-01-01
Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.
Bosshart, Andreas; Wagner, Nina; Lei, Lei; Panke, Sven; Bechtold, Matthias
2016-02-01
Rare sugars are monosaccharides that do not occur in nature in large amounts. However, many of them demonstrate high potential as low-calorie sweetener, chiral building blocks or active pharmaceutical ingredients. Their production by enzymatic means from broadly abundant epimers is an attractive alternative to synthesis by traditional organic chemical means, but often suffers from low space-time yields and high enzyme costs due to rapid enzyme degradation. Here we describe the detailed characterization of two variants of d-tagatose epimerase under operational conditions that were engineered for high stability and high catalytic activity towards the epimerization of d-fructose to d-psicose and l-sorbose to l-tagatose, respectively. A variant optimized for the production of d-psicose showed a very high total turnover number (TTN) of up to 10(8) catalytic events over a catalyst's lifetime, determined under operational conditions at high temperatures in an enzyme-membrane reactor (EMR). Maximum space-time yields as high as 10.6 kg L(-1) d(-1) were obtained with a small laboratory-scale EMR, indicating excellent performance. A variant optimized for the production of l-tagatose performed less stable in the same setting, but still showed a very good TTN of 5.8 × 10(5) and space-time yields of up to 478 g L(-1) d(-1) . Together, these results confirm that large-scale enzymatic access to rare sugars is feasible. © 2015 Wiley Periodicals, Inc.
Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A; Chauhan, Sunanda
2018-01-01
Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material.
Anisotropic nature of radially strained metal tubes
NASA Astrophysics Data System (ADS)
Strickland, Julie N.
Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw yield strength to calculate these ratings. I set out to characterize the anisotropic nature of swaged metal. As expected, the tensile tests showed a difference between the axial and transverse tensile strength. The correlation was 12% difference in yield strength in the axial and transverse directions for strained material and 9% in strained and aged material. This means that the strength of the metal in the hoop (transverse) direction is approximately 10% stronger than in the axial direction, because the metal was work hardened during the swaging process. Therefore, the metal is more likely to fail in axial tension than in burst or collapse. I presented the findings from the microstructure examination, standard tensile tests, and SEM data. All of this data supported the findings of the mini-tensile tests. This information will help engineers set burst and collapse ratings and allow material scientists to predict the anisotropic characteristics of swaged steel tubes.
Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai
2018-01-01
In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other plant density treatments. The combination of black film mulching and density of 82500 plants·hm -2 significantly improved the water use efficiency of maize, which increased by 4.6%-40.9% compared with other treatments. In addition, it increased yield by 3.0%-39.7% compared with other treatments. At heading stage, the correlation between the dry matter amount of stalk and leaf and the yield and yield components was the biggest. Decreasing 1 kg·hm -2 dry matter amount of stalk and leaf would decrease the population yield by almost 0.79 kg·hm -2 . Decreasing 10% dry matter amount of stalk and leaf would decrease the yield by almost 10%. Based on increasing plant density, black film mulching was beneficial for increasing the dry matter accumulation and improving grain yield and water use efficiency of spring maize.
Şahin, Selin; Samli, Ruya; Tan, Ayşe Seher Birteksöz; Barba, Francisco J; Chemat, Farid; Cravotto, Giancarlo; Lorenzo, José M
2017-06-24
Response surface methodology (RSM) and artificial neural networks (ANN) were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC) and oleuropein yields in olive tree leaf ( Olea europaea ) extracts, obtained after solvent-free microwave-assisted extraction (SFMAE). The SFMAE processing conditions were: microwave irradiation power 250-350 W, extraction time 2-3 min, and the amount of sample 5-10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm) was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis , with a minimum inhibitory concentration (MIC) value of 1.25 mg/mL.
Nanoengineered Carbon-Based Materials For Reactive Adsorption of Toxic Industrial Compounds
2015-01-13
in phenolic, sulfonic, thioethers and pyrrolic groups. 29. Addition of small amount of sulfanilic acid (grafting with acid) to silica-carbons...thioethers and pyrrolic groups. 29. Addition of small amount of sulfanilic acid (grafting with acid) to silica-carbons composites increases NO2
Pérez-Carrillo, Esther; Luisa Cortés-Callejas, M; Sabillón-Galeas, Luis E; Montalvo-Villarreal, Jorge L; Canizo, Jesica R; Georgina Moreno-Zepeda, M; Serna-Saldivar, Sergio O
2011-02-01
The efficiency of ethanol fermentation, as affected by grain source (maize and decorticated red sorghum), total sugar concentration (13 or 20° Plato) and type of microorganism (Saccharomyces cerevisiae or Zymomonas mobilis) was studied. Maize mashes yielded 0.32 l ethanol kg(-1) ground grain whereas mashes prepared with decorticated red sorghum produced 0.28 l ethanol kg(-1). Both microorganisms yielded similar amounts of ethanol. However, high-gravity mashes (20° Plato) yielded lower amounts of ethanol compared to counterparts adjusted to 13° Plato (0.28 vs. 0.22 l ethanol kg(-1) ground grains). In decorticated sorghum mashes adjusted to 20° P, Z. mobilis produced 40 ml kg(-1) more ethanol compared to S. cerevisiae. In addition, Z. mobilis had a lower dependency on nitrogenous compounds.
NASA Astrophysics Data System (ADS)
Adhikari, P.; Gowda, P. H.; Northup, B. K.; Rocateli, A.
2017-12-01
In this study a well calibrated and validated DSSAT-CROPGRO-Cotton model was used for assessing the irrigation management in the Texas High Plains (THP). Long term (1924-2012) historic lint yield were simulated under different irrigation management practices which were commonly used in the THP. The simulation treatments includes different amount of irrigation water high (H; 6.4 mm d-1), medium (M; 3.2 mm d-1) and low (L; 0 mm d-1) during emergence (S1), vegetative (S2) and maturity (S3) stage. The combination of these treatments resulted into 27 treatments. The amount and date of irrigation for each stage were obtained from the recent cotton irrigation experiment at Halfway, TX (Brodovsky, et al., 2015). Similarly, calibrated model was also used to observe the effect of plantation date on crop yield in the THP regions.
Production yield of rare-earth ions implanted into an optical crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornher, Thomas, E-mail: t.kornher@physik.uni-stuttgart.de; Xia, Kangwei; Kolesov, Roman
2016-02-01
Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.
14 CFR 1274.103 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Subcontracting dollar threshold. The dollar amount of the cooperative agreement subject to the small business subcontracting policies (includes small business, veteran-owned small business, service-disabled veteran-owned small business, historically underutilized small business, small disadvantaged business, women-owned...
Too much FCC catalyst activity can cut yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichers, W.R.; Upson, L.
1984-03-19
For many people working in the field of catalytic cracking, high equilibrium catalyst activity is inherently good. It is surprising how many times this line of reasoning is accepted by the refiner. There also seems to be something psychologically satisfying in seeing an equilibrium catalyst report where the catalyst activity is reported as a high number. Generally, everyone is happy when the reported activity of equilibrium catalyst is increasing and unhappy when it is going down. In the past, increasing catalyst activity did result in improved operations. For units that operated with substantial amounts of bed cracking, higher activity catalystmore » allowed the amount of bed cracking to be reduced and the relative amount of cracking that occurred in the riser to be increased. The switch from bed to riser cracking decreased catalytic coke make and gasoline overcracking, thus reducing regenerator temperature and improving gasoline yields.« less
Stocking, growth, and yield of birch stands
Dale S. Solomon; William B. Leak
1969-01-01
Intensive forest management depends heavily upon our ability to measure, control, and predict the growth, yield, or general development of timber stands, regardless of whether the management goal is for timber, aesthetics, recreation, water, or wildlife. A large amount of mensurational data about birch stands has been developed in recent years or synthesized from...
Peck, Grantley R; Bowden, Timothy R; Shiell, Brian J; Michalski, Wojtek P
2014-01-01
EnBase (BioSilta, Finland) is a microbial cultivation system that replicates fed-batch systems through sustained release of glucose by enzymatic degradation of a polymeric substrate. Achievable bacterial cell densities and recombinant capripoxvirus protein expression levels, solubility, and antigenicity using the EnBase system were assessed. BL21-AI Escherichia coli expressing capripoxvirus proteins achieved up to eightfold higher cell densities when grown in EnBase media compared with standard media. Greater yields of capripoxvirus proteins were attained using EnBase media, either through increases in the amount of expressed protein per cell in conjunction with higher cell density or through the increase in cell density alone. Addition of EnBase booster enhanced protein yield for one of the proteins tested but reduced yield for the other. However, the amount of soluble forms of the capripoxvirus proteins tested was not different from that observed from cultures grown under standard conditions. Purified capripoxvirus proteins expressed using EnBase or standard media were assessed for their performance by enzyme-linked immunosorbent assay (ELISA) and were shown to be equally capable of specifically binding capripoxvirus antibodies.
Satellite-based studies of maize yield spatial variations and their causes in China
NASA Astrophysics Data System (ADS)
Zhao, Y.
2013-12-01
Maize production in China has been expanding significantly in the past two decades, but yield has become relatively stagnant in the past few years, and needs to be improved to meet increasing demand. Multiple studies found that the gap between potential and actual yield of maize is as large as 40% to 60% of yield potential. Although a few major causes of yield gap have been qualitatively identified with surveys, there has not been spatial analysis aimed at quantifying relative importance of specific biophysical and socio-economic causes, information which would be useful for targeting interventions. This study analyzes the causes of yield variation at field and village level in Quzhou county of North China Plain (NCP). We combine remote sensing and crop modeling to estimate yields in 2009-2012, and identify fields that are consistently high or low yielding. To establish the relationship between yield and potential factors, we gather data on those factors through a household survey. We select targeted survey fields such that not only both extremes of yield distribution but also all soil texture categories in the county is covered. Our survey assesses management and biophysical factors as well as social factors such as farmers' access to agronomic knowledge, which is approximated by distance to the closest demonstration plot or 'Science and technology backyard'. Our survey covers 10 townships, 53 villages and 180 fields. Three to ten farmers are surveyed depending on the amount of variation present among sub pixels of each field. According to survey results, we extract the amount of variation within as well as between villages and or soil type. The higher within village or within field variation, the higher importance of management factors. Factors such as soil type and access to knowledge are more represented by between village variation. Through regression and analysis of variance, we gain more quantitative and thorough understanding of causes to yield variation at village scale, which further explains the gap between average and highest achieved yield.
Determination of small amounts of molybdenum in tungsten and molybdenum ores
Grimaldi, F.S.; Wells, R.C.
1943-01-01
A rapid method has been developed for the determination of small amounts of molybdenum in tungsten and molybdenum ores. After removing iron and other major constituents the molybdenum thiocyanate color is developed in water-acetone solutions, using ammonium citrate to eliminate the interference of tungsten. Comparison is made by titrating a blank with a standard molybdenum solution. Aliquots are adjusted to deal with amounts of molybdenum ranging from 0.01 to 1.30 mg.
Liu, Huan; Pang, Bo; Wang, Haisong; Li, Haiming; Lu, Jie; Niu, Meihong
2015-04-01
In this study, alkaline sulfite pretreatment of corn stover was optimized. The influences of pretreatments on solid yield, delignification, and carbohydrate recovery under different pretreatment conditions and subsequent enzymatic hydrolysis were investigated. The effect of pretreatment was evaluated by enzymatic hydrolysis efficiency and the total sugar yield. The optimum pretreatment conditions were obtained, as follows: the total titratable alkali (TTA) of 12%, liquid/solid ratio of 6:1, temperature of 140 °C, and holding time of 20 min. Under those conditions, the solid yield was 55.24%, and the removal of lignin was 82.68%. Enzymatic hydrolysis rates of glucan and xylan for pretreated corn stover were 85.38% and 70.36%, and the total sugar yield was 74.73% at cellulase loading of 20 FPU/g and β-glucosidase loading of 10 IU/g for 48 h. Compared with sodium hydroxide pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 10.43%. Additionally, the corn stover pretreated under the optimum pretreatment conditions was beaten by PFI at 1500 revolutions. After beating, enzymatic hydrolysis rates of glucan and xylan were 89.74% and 74.06%, and the total sugar yield was 78.58% at the same enzymatic hydrolysis conditions. Compared with 1500 rpm of PFI beating after sodium pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 14.05%.
Statistical Analysis Techniques for Small Sample Sizes
NASA Technical Reports Server (NTRS)
Navard, S. E.
1984-01-01
The small sample sizes problem which is encountered when dealing with analysis of space-flight data is examined. Because of such a amount of data available, careful analyses are essential to extract the maximum amount of information with acceptable accuracy. Statistical analysis of small samples is described. The background material necessary for understanding statistical hypothesis testing is outlined and the various tests which can be done on small samples are explained. Emphasis is on the underlying assumptions of each test and on considerations needed to choose the most appropriate test for a given type of analysis.
Boal Carvalho, Pedro; Magalhães, Joana; Dias de Castro, Francisca; Gonçalves, Tiago Cúrdia; Rosa, Bruno; Moreira, Maria João; Cotter, José
2016-02-01
Small bowel capsule endoscopy represents the initial investigation for obscure gastrointestinal bleeding. Flexible spectral imaging colour enhancement (FICE) is a virtual chromoendoscopy technique designed to enhance mucosal lesions, available in different settings according to light wavelength-- FICE1, 2 and 3. To compare the diagnostic yield of FICE1 and white light during capsule endoscopy in patients with obscure gastrointestinal bleeding. Retrospective single-centre study including 60 consecutive patients referred for small bowel capsule endoscopy for obscure gastrointestinal bleeding. Endoscopies were independently reviewed in FICE1 and white light; findings were then reviewed by another researcher, establishing a gold standard. Diagnostic yield was defined as the presence of lesions with high bleeding potential (P2) angioectasias, ulcers or tumours. Diagnostic yield using FICE1 was significantly higher than white light (55% vs. 42%, p=0.021). A superior number of P2 lesions was detected with FICE1 (74 vs. 44, p=0.003), particularly angioectasias (54 vs. 26, p=0.002), but not ulcers or tumours. FICE1 was significantly superior to white light, resulting in a 13% improvement in diagnostic yield, and potentially bleeding lesions particularly angioectasias were more often observed. Our results support the use of FICE1 while reviewing small bowel capsule endoscopy for obscure gastrointestinal bleeding. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Newly Formed Dust in the Core-Collapse Supernova Remnant E0102
NASA Astrophysics Data System (ADS)
Ludwig, Bethany; Sandstrom, Karin; Bolatto, Alberto
2018-01-01
The mechanism of interstellar dust formation is a matter of continuing debate. In the very early universe, some high redshift galaxies are observed to have a substantial amount of dust. This has led to the suggestion that core collapse supernovae must be the producers of much of the dust in the universe. However, most observed supernova remnants (SNRs) in the local universe have measured dust yields far below the necessary levels. Cassiopeia A and SN 1987A are exceptions--in these young remnants, Herschel Space Observatory observations found large quantities of newly-formed dust. In these two cases, the SNR is young enough that the reverse shock has not yet interacted with most of the newly formed dust. To study supernova dust production, we observe SNR 1E0102.2-7219, which is approximately 1000 years old with a reverse shock that has only reached into a small part of its ejecta making it an excellent candidate to search for newly formed dust that has not yet been destroyed by those shocks. Using Herschel data, we carefully model the background around the remnant to remove emission that is unrelated to the SNR. We then measure the mass, temperature, and chemical composition of the dust by fitting the spectral energy distribution. Our findings reveal a substantial amount of previously undetected cold dust in the remnant, suggesting that indeed core collapse supernovae may host substantial amounts of newly formed dust, at least prior to the passage of the reverse shock.
Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; George, Anthe
2016-01-01
The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena. PMID:26978265
Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe
2016-01-01
The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.
2013-03-01
amounts of time and effort to implement. Future testing with commercial, fault-tolerant synthesis software, under a radiation environment, will yield ...initial viewpoint of the author is to take the flash-based FPGA route. This will yield a simple, reconfigurable circuit while providing the added...structure seen in Figure 30. Each of these full adder blocks were replaced in subsequent iterations to yield proper comparison with this baseline
Austin, Melissa C; Smith, Christina; Pritchard, Colin C; Tait, Jonathan F
2016-02-01
Complex molecular assays are increasingly used to direct therapy and provide diagnostic and prognostic information but can require relatively large amounts of DNA. To provide data to pathologists to help them assess tissue adequacy and provide prospective guidance on the amount of tissue that should be procured. We used slide-based measurements to establish a relationship between processed tissue volume and DNA yield by A260 from 366 formalin-fixed, paraffin-embedded tissue samples submitted for the 3 most common molecular assays performed in our laboratory (EGFR, KRAS, and BRAF). We determined the average DNA yield per unit of tissue volume, and we used the distribution of DNA yields to calculate the minimum volume of tissue that should yield sufficient DNA 99% of the time. All samples with a volume greater than 8 mm(3) yielded at least 1 μg of DNA, and more than 80% of samples producing less than 1 μg were extracted from less than 4 mm(3) of tissue. Nine square millimeters of tissue should produce more than 1 μg of DNA 99% of the time. We conclude that 2 tissue cores, each 1 cm long and obtained with an 18-gauge needle, will almost always provide enough DNA for complex multigene assays, and our methodology may be readily extrapolated to individual institutional practice.
NASA Astrophysics Data System (ADS)
Gerten, Dieter; Jägermeyr, Jonas; Heck, Vera
2016-04-01
Staying within the safe and just operating space as defined by multiple planetary boundaries will be a major challenge especially in view of anticipated future increases in food demand, the potential need for balancing climate change (e.g. through terrestrial carbon dioxide removal) and its impacts, and the water and land demand associated with these goals and measures. This presentation will show simulation results from a comprehensive model-based study on the global potentials of diverse crop management options considered as opportunities to stay within the planetary boundaries for human freshwater use and land-system change. The quantified on-farm options include rainwater harvesting, soil conservation and more efficient irrigation, all of which are designed to use neither more water nor more land for agriculture than is presently the case. Results show that irrigation efficiency improvements could save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ambitious scenario), and if rerouted to irrigate neighbouring rainfed systems, could at the same time boost kilocalorie production by 26% globally. Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, such ambitious yet achievable integrated water management strategies could increase global kcal production by 41% and close the water-related yield gap by 62%. Global climate change would have adverse effects on crop yields in many regions, but the improvements in water management quantified here could buffer such effects to a significant degree. Thus, a substantial amount of anticipated future needs for food production could be fulfilled without further approaching / transgressing planetary boundaries. In addition, it will be shown how large-scale biomass plantations for the purpose of terrestrial CO2 removal (climate engineering, potentially implemented should the planetary boundary for climate change be further transgressed) would impact on land and water resources and, thus, how such measures would compromise attempts to stay within the safe operating space. In conclusion, this presentation provides new quantitative evidence for significant interactions and tradeoffs among different planetary boundaries.
Kusakiewicz-Dawid, Anna; Masiukiewicz, Elzbieta; Rzeszotarska, Barbara; Dybała, Izabela; Kozioł, Anna Eugenia; Broda, Małgorzata Anna
2007-05-01
Ethyl 3-amino-1H-pyrazole-4-carboxylate (1) was yielded through total synthesis and reacted with acetic anhydride to give the acetylated products 2-6. Compounds 1-6 were studied with HPLC, X-ray, FT-IR, (1)H-NMR, (13)C-NMR and MS. Acetylation was carried out in solvents of various polarity, namely; chloroform; dioxane; DMF; acetic anhydride, at room temperature and at boiling points; and in the presence and absence of DMAP. The acetylated products are mainly nitrogen atoms in the ring. The position of the ring proton in the solution was based on NOESY; multinuclear HMBC, HSQC spectra and calculations. For equivalent amounts (1-1.5 mol) of acetic anhydride at room temperature two products of monoacetylation are produced in the ring: 2 and 3, ca. 2 : 1 and at the same time only small amount of the third product of monoacetylated, 5 in DMF, as well the product diacetylated, 4. The greatest amount of the product 4 is produced during the reaction with chloroform. However, in this solvent and in dioxane no product 5 is produced. Compound 2 is, largely, formed in dimethylformamide, in the presence DMAP, 0.2 eq. In the presence of this catalytic base, for the first hour, there is a mixture 2 and 3 to the ratio ca. 95 : 5. With 8 eq of Ac(2)O at reflux, after another hour, the compounds 3, 4 and 6 appear about equal amounts. After a longer time, the compound, which appears most in this mixture is triacetylated derivative 6. The structural and spectroscopic characteristics of compounds 1-6 have been given and the methods for their preparation have been provided.
Gosecka, Monika; Chehimi, Mohamed M; Basinska, Teresa; Slomkowski, Stanislaw; Makowski, Tomasz
2017-12-01
We investigated the distribution of polyglycidol and polystyrene on the surface of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres (random distribution or segregated into hydrophilic and hydrophobic patches), using fibrinogen (Fb) as a macromolecular probe. The fibrinogen was adsorbed or covalently attached to the surface of the poly(styrene-co-α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGLy)) microspheres. The P(S/PGLy) particles were prepared by emulsion copolymerization of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol (PGLy) macromonomer initiated with potassium persulfate. The polymerizations yielded P(S/PGLy) particles with various surface fractions of polyglycidol, depending on the amount of added macromonomer and the addition process. In some syntheses, the entire macromonomer amount was added once at the beginning of the polymerization, while in others, the macromonomer was added gradually after the formation of particle seeds from pure polystyrene. XPS studies revealed that the fraction of polyglycidol in the interfacial layer of the microspheres was larger when the entire amount of macromonomer was added at the beginning of the polymerization than when it was added after formation of the polystyrene seeds. Studies of fibrinogen adsorption provided the first evidence of segregation of the hydrophobic (polystyrene) and hydrophilic (polyglycidol) components at the surface of the composite P(S/PGLy) microspheres into patches. The hydrophobic patches are composed mainly of polystyrene. However, they also contain a small amount of polyglycidol chains, making the adsorption of fibrinogen weaker than the adsorption onto the pure polystyrene. Studies of covalent immobilization of fibrinogen on the microspheres via 1,3,5-trichlorotriazine confirmed these findings. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hereford, Richard
1987-10-01
Alluvium deposited in a reservoir from 1937 to 1976 records the sediment-yield history of a small (2.8 km2), high-relief basin in semiarid southern Utah. Stratification in the alluvium shows that sediment was deposited in the reservoir only 21 times in 38 yr, a runoff recurrence interval of 1.8 yr. Thus, on average, the particular combination of rainfall intensity, duration, and antecedent moisture conditions producing runoff did not recur often. On the basis of the volume of beds in the reservoir fill, sediment yield of individual runoff events averaged 2500 m3/km2 (5.3 a-ft/mi2) with slightly less than one order of magnitude variation. This low variation is not expected of small basins and probably resulted from limited hillslope sediment supply, suggesting that transport processes were more rapid than weathering processes. Sediment yield, therefore, was evidently controlled by the availability of freshly weathered material.
Hendrickson, Kelsie L; Rasmussen, Erin B; Lawyer, Steven R
2015-07-01
The present study established a brief measure of delay discounting for food, the Food Choice Questionnaire (FCQ), and compared it to another more established measure of food discounting that uses the adjusting amount (AA) procedure. One hundred forty-four undergraduate participants completed either two measures of hypothetical food discounting (a computerized food AA procedure or the FCQ) or two measures of hypothetical money discounting [a computerized monetary AA procedure or the Monetary Choice questionnaire (MCQ)]. The money condition was used as a replication of previous work. Results indicated that the FCQ yielded consistent data that strongly correlated with the AA food discounting task. Moreover, a magnitude effect was found with the FCQ, such that smaller amounts of food were discounted more steeply than larger amounts. In addition, individuals with higher percent body fat (PBF) discounted food more steeply than individuals with lower PBF. The MCQ, which also produced a magnitude effect, and the monetary adjusting amount procedure yielded data that were orderly, consistent, and correlated strongly with one another, replicating previous literature. This study is the first to show that a novel measure of food discounting (the FCQ) yields consistent data strongly correlated with an established measure of food discounting and is sensitive to PBF. Moreover, the FCQ is easier and quicker to administer than the AA procedure, which may interest researchers who use discounting tasks in food-related research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Glycosylation and sulfation of emodin by Gliocladium deliquescens NRRL 1086.
Xu, Shao-Hua; DU, Chen-Hui; Zhang, Jian; Yu, Bo-Yang
2015-10-01
The present study was designed to explore the substrate scope and biocatalytic capability of Gliocladium deliquescens NRRL 1086 on phenolic natural products. Emodin was subjected to the fermentation culture of Gliocladium deliquescens NRRL 1086 according to the standard two-stage protocol. The biotransformation process was monitored by HPLC-DAD-MS, the main product was isolated by column chromatography, and the structure was elucidated on the basis of NMR spectroscopy. Emodin could be fully metabolized by Gliocladium deliquescens NRRL 1086, resulting in high yield of emodin 6-O-β-D-glucopyranoside and small amount of sulfated product. In conclusion, our results may provide a convenient method to prepare emodin 6-O-β-D-glucopyranoside and the microbe catalyzed glucosylation/sulfation will give an inspiration to pharmacokinetic model studies in vitro. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Pei-quan; Li, Leijun, E-mail: leijun.li@ualberta.ca; Zhang, Chunbo
The as-welded microstructure of laser-welded Ti-6Al-4V is characterized as a function of CO2 key-hole mode laser welding speed. Martensitic α′ is the predominant phase, with some α and retained β. Phase transformation is affected by the cooling rate through laser welding speed. A higher welding speed of 1.6 to 2.0 m/min produced more martensite α′ and less retained β in the welds. 1.4 m/min welding speed produced small amounts of α, besides the martensite α′. A trace of δ titanium hydride phase seems to have formed in the weld fusion zone. Moiré fringes are a common feature in the TEMmore » microstructure, due to abundance of multi-phase interfaces. Tensile twins and clusters of dislocations indicate that plastic deformation has happened in the as-welded microstructure, indicating the local stress levels to be approaching the yield stress on-cooling during laser welding.« less
Observational Evidence for Small-Scale Mixture of Weak and Strong Fields in the Quiet Sun
NASA Astrophysics Data System (ADS)
Socas-Navarro, H.; Lites, B. W.
2004-11-01
Three different maps of the quiet Sun, observed with the Advanced Stokes Polarimeter (ASP) and the Diffraction-Limited Stokes Polarimeter (DLSP), show evidence of strong (~=1700 G) and weak (<500 G) fields coexisting within the resolution element at both network and internetwork locations. The angular resolution of the observations is of 1" (ASP) and 0.6" (DLSP). Even at the higher DLSP resolution, a significant fraction of the network magnetic patches harbor a mixture of strong and weak fields. Internetwork elements that exhibit kG fields when analyzed with a single-component atmosphere are also shown to harbor considerable amounts of weak fields. Only those patches for which a single-component analysis yields weak fields do not show this mixture of field strengths. Finally, there is a larger fractional area of weak fields in the convective upflows than in the downflows.
Li, Xingang; San, Xiaoguang; Zhang, Yi; Ichii, Takashi; Meng, Ming; Tan, Yisheng; Tsubaki, Noritatsu
2010-10-25
Ethanol was directly synthesized from dimethyl ether (DME) and syngas with the combined H-Mordenite and Cu/ZnO catalysts that were separately loaded in a dual-catalyst bed reactor. Methyl acetate (MA) was formed by DME carbonylation over the H-Mordenite catalyst. Thereafter, ethanol and methanol were produced by MA hydrogenation over the Cu/ZnO catalyst. With the reactant gas containing 1.0% DME, the optimized temperature for the reaction was at 493 K to reach 100% conversion. In the products, the yield of methanol and ethanol could reach 46.3% and 42.2%, respectively, with a small amount of MA, ethyl acetate, and CO(2). This process is environmentally friendly as the main byproduct methanol can be recycled to DME by a dehydration reaction. In contrast, for the physically mixed catalysts, the low conversion of DME and high selectivity of methanol were observed.
Sewu, Divine Damertey; Boakye, Patrick; Jung, Hwansoo; Woo, Seung Han
2017-11-01
The potential of activating terrestrial biomass (spent mushroom substrate, SMS) with ash-laden marine biomass [kelp seaweed, KE] via co-pyrolysis in the field of adsorption was first investigated. KE biochar (KBC), SMS biochar (SMSBC), biochar (SK10BC) from 10%-KE added SMS, and biochar (ESBC) from KE-extract added SMS were used for the adsorption of cationic dye crystal violet (CV). ESBC had highest fixed carbon content (70.60%) and biochar yield (31.6%). SK10BC exhibited high ash content, abundant functional groups, coarser surface morphology and Langmuir maximum adsorptive capacity (610.1mg/g), which is 2.2 times higher than that of SMSBC (282.9mg/g). Biochar activated by a small amount of high ash-containing biomass such as seaweed via co-pyrolysis can serve as viable alternative adsorbent for cationic dye removal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Earth-like aqueous debris-flow activity on Mars at high orbital obliquity in the last million years
de Haas, T.; Hauber, E.; Conway, S. J.; van Steijn, H.; Johnsson, A.; Kleinhans, M. G.
2015-01-01
Liquid water is currently extremely rare on Mars, but was more abundant during periods of high obliquity in the last few millions of years. This is testified by the widespread occurrence of mid-latitude gullies: small catchment-fan systems. However, there are no direct estimates of the amount and frequency of liquid water generation during these periods. Here we determine debris-flow size, frequency and associated water volumes in Istok crater, and show that debris flows occurred at Earth-like frequencies during high-obliquity periods in the last million years on Mars. Results further imply that local accumulations of snow/ice within gullies were much more voluminous than currently predicted; melting must have yielded centimetres of liquid water in catchments; and recent aqueous activity in some mid-latitude craters was much more frequent than previously anticipated. PMID:26102485
Espresso coffee residues as a nitrogen amendment for small-scale vegetable production.
Cruz, Soraia; Marques dos Santos Cordovil, Cláudia S C
2015-12-01
Espresso coffee grounds constitute a residue which is produced daily in considerable amounts, and is often pointed out as being potentially interesting for plant nutrition. Two experiments (incubations and field experiments) were carried out to evaluate the potential nitrogen (N) and phosphorus (P) supply for carrot (Daucus carota L.), spinach (Spinacea oleracea L.) and lettuce (Lactuca sativa L.) nutrition. Immobilisation of nitrogen and phosphorus was detected in all the incubations and, in the field experiments, germination and yield growth were decreased by the presence of espresso coffee grounds, in general for all the species studied. The study showed an inhibition of N and P mineralisation and a reduction of plant germination and growth. Further research is required to determine whether this is related to the immobilising capacity of the residue or possibly due to the presence of caffeine. © 2015 Society of Chemical Industry.
Plant Metabolomics: An Indispensable System Biology Tool for Plant Science
Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin
2016-01-01
As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266
Neutron and electron diffraction studies of La(Zn1/2Ti1/2)O3 perovskite.
Ubic, Rick; Hu, Yi; Abrahams, Isaac
2006-08-01
The crystallography and microwave dielectric properties of La(Zn(1/2)Ti(1/2))O(3) (LZT) ceramics prepared via the mixed-oxide route were investigated in this study. While samples were largely single phase, small amounts of ZnO impurity were detected in sintered pellets. Observed reflections in electron and neutron diffraction patterns indicate that the symmetry of LZT is P2(1)/n. The B site is ordered on {110} or pseudocubic {111}, but the presence of the pseudocubic 1/2(111) reflection is in itself insufficient to indicate the existence of such order. Rietveld refinements of the neutron diffraction data yield an excellent fit for such a model. The structure is highly twinned, with variants related through common {211} composition planes and 90 degrees rotations about <011>. The microwave dielectric properties measured were epsilon(r) = 34, Qf = 36,090 and tau(f) = -70 MK(-1).
Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment
NASA Technical Reports Server (NTRS)
White, D. H.; Erickson, J. C.
1980-01-01
The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic proto-enzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judd, R.C.; Caldwell, H.D.
1985-01-01
The objective of this study was to determine if in-gel chloramine-T radioiodination adequately labels OM proteins to allow for accurate and precise structural comparison of these molecules. Therefore, intrinsically /sup 14/C-amino acid labeled proteins and /sup 125/I-labeled proteins were cleaved with two endopeptidic reagents and the peptide fragments separated by HPLC. A comparison of retention times of the fragments, as determined by differential radiation counting, thus indicated whether /sup 125/Ilabeling identified of all the peptide peaks seen in the /sup 14/Clabeled proteins. Results demonstrated that radioiodination yields complete and accurate information about the primary structure of outer membrane proteins. Inmore » addition, it permits the use of extremely small amounts of protein allowing for method optimization and multiple separations to insure reproducibility.« less
Possibilities for drag reduction by boundary layer control
NASA Technical Reports Server (NTRS)
Naiman, I.
1946-01-01
The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.
Major wildfires at the Cretaceous-Tertiary boundary
NASA Technical Reports Server (NTRS)
Gilmour, Iain; Wolbach, Wendy S.; Anders, Edward
1989-01-01
K-T boundary (KTB) clays from five sites are enriched in soot and charcoal by factors of 100-1000 over Cretaceous levels, apparently due to a global fire. The soot profile nearly coincides with the Ir profile, implying that the fire was triggered by the impact. Much or all of the fuel was biomass, as indicated by the presence of retene and by the C isotopic composition. The amount of elemental C at the KTB (0.012 g/sq cm) is very large, and requires either that most of the Cretaceous biomass burned down or that the soot yield was higher than in small fires. At undisturbed sites, soot correlates tightly with Ir, As, Sb, and Zn. Apparently soot and Ir-bearing ejecta particles coagulated in the stratosphere and then scavenged additional chalcophiles from the hydrosphere. In view of this coagulation, the K-T fire would only slightly prolong the period of darkness and cold caused by impact ejecta.
Dentinger, Bryn T M; Margaritescu, Simona; Moncalvo, Jean-Marc
2010-07-01
We present two methods for DNA extraction from fresh and dried mushrooms that are adaptable to high-throughput sequencing initiatives, such as DNA barcoding. Our results show that these protocols yield ∼85% sequencing success from recently collected materials. Tests with both recent (<2 year) and older (>100 years) specimens reveal that older collections have low success rates and may be an inefficient resource for populating a barcode database. However, our method of extracting DNA from herbarium samples using small amount of tissue is reliable and could be used for important historical specimens. The application of these protocols greatly reduces time, and therefore cost, of generating DNA sequences from mushrooms and other fungi vs. traditional extraction methods. The efficiency of these methods illustrates that standardization and streamlining of sample processing should be shifted from the laboratory to the field. © 2009 Blackwell Publishing Ltd.
The physical, behavioral, and psychosocial consequences of Internet use in college students.
Clark, Deborah J; Frith, Karen H; Demi, Alice S
2004-01-01
The purposes of this study were to identify the physical, behavioral, and psychosocial consequences of Internet use in undergraduate college students; and to evaluate whether time, social norms, and adopter category predict the consequences of Internet use. Rogers' model for studying consequences of innovation was adapted for this study. A descriptive, correlational design was used. Convenience sampling yielded 293 undergraduate students who answered the online survey. Consequences of Internet use were assessed with the researcher-developed instrument, the Internet Consequences Scale (ICONS). Mean scores on the behavioral and psychosocial subscales of the ICONS indicated positive consequences of Internet use, while the physical consequences subscale revealed negative consequences. Multiple regression analyses revealed a small, but significant, amount of variance in consequences of Internet use that could be explained by time, social norms, and adopter category, thus supporting the adapted model for the study of consequences of Internet use in college students.
Identification of strengthening phases in Al-Cu-Li alloy Weldalite 049
NASA Technical Reports Server (NTRS)
Langan, T. J.; Pickens, J. R.
1989-01-01
The tensile properties in the peak-strength T8 temper for Weldalite 049, a family of ultrahigh-strength weldable Al-Cu-Li-based alloys with a Li content ranging from 0 to 1.9 wt percent, are investigated, and strengthening precipitates at selected Li levels are identified. Relatively small amounts of Ag and Mg were found to be extremely effective in stimulating precipitation in Weldalite 049, resulting in a homogeneous distribution of fine, platelike precipitates with a 111-type habit plane in the peak-aged, T8 temper. The yield and tensile strengths are strongly dependent on Li content, with a peak in the range of 1.1 to 1.4 wt percent Li. At above 1.4 wt percent Li, strength decreases rapidly, which is associated with delta-prime precipitation. For high-resolution TEM, the structure of T(1)-type precipitates in Weldalite 049 is similar to that of T(1) platelets in 2090.
Toward exascale production of recombinant adeno-associated virus for gene transfer applications.
Cecchini, S; Negrete, A; Kotin, R M
2008-06-01
To gain acceptance as a medical treatment, adeno-associated virus (AAV) vectors require a scalable and economical production method. Recent developments indicate that recombinant AAV (rAAV) production in insect cells is compatible with current good manufacturing practice production on an industrial scale. This platform can fully support development of rAAV therapeutics from tissue culture to small animal models, to large animal models, to toxicology studies, to Phase I clinical trials and beyond. Efforts to characterize, optimize and develop insect cell-based rAAV production have culminated in successful bioreactor-scale production of rAAV, with total yields potentially capable of approaching the exa-(10(18)) scale. These advances in large-scale AAV production will allow us to address specific catastrophic, intractable human diseases such as Duchenne muscular dystrophy, for which large amounts of recombinant vector are essential for successful outcome.
Determination of small and large amounts of fluorine in rocks
Grimaldi, F.S.; Ingram, B.; Cuttitta, F.
1955-01-01
Gelatinous silica and aluminum ions retard the distillation of fluorine in the Willard and Winter distillation method. A generally applicable, simple method for the determination of fluorine in rocks containing aluminum or silicon or both as major constituents was desired. In the procedure developed, the sample is fused with a mixture of sodium carbonate and zinc oxide, leached with water, and filtered. The residue is granular and retains nearly all of the silica. The fluorine in the filtrate is distilled directly from a perchloric acid-phosphoric acid mixture. Phosphoric acid permits the quantitative distillation of fluorine in the presence of much aluminum at the usual distillation temperature and without the collection of large volumes of distillate. The fluorine is determined either by microtitration with thorium nitrate or colorimetrically with thoron. The procedure is rapid and has yielded excellent results on silicate rocks and on samples from the aluminum phosphate (leached) zone of the Florida phosphate deposits.
Hydrogen production from alcohol reforming in a microwave ‘tornado’-type plasma
NASA Astrophysics Data System (ADS)
Tatarova, E.; Bundaleska, N.; Dias, F. M.; Tsyganov, D.; Saavedra, R.; Ferreira, C. M.
2013-12-01
In this work, an experimental investigation of microwave plasma-assisted reforming of different alcohols is presented. A microwave (2.45 GHz) ‘tornado’-type plasma with a high-speed tangential gas injection (swirl) at atmospheric pressure is applied to decompose alcohol molecules, namely methanol, ethanol and propanol, and to produce hydrogen-rich gas. The reforming efficiency is investigated both in Ar and Ar+ water vapor plasma environments. The hydrogen yield dependence on the partial alcohol flux is analyzed. Mass spectrometry and Fourier transform infrared spectroscopy are used to detect the outlet gas products from the decomposition process. Hydrogen, carbon monoxide, carbon dioxide and solid carbon are the main decomposition by-products. A significant increase in the hydrogen production rate is observed with the addition of a small amount of water. Furthermore, optical emission spectroscopy is applied to detect the radiation emitted by the plasma and to estimate the gas temperature and electron density.
Miao, Chengxia; Li, Xiao-Xi; Lee, Yong-Min; Xia, Chungu; Wang, Yong; Nam, Wonwoo; Sun, Wei
2017-11-01
The highly efficient catalytic oxidation and oxidative kinetic resolution (OKR) of secondary alcohols has been achieved using a synthetic manganese catalyst with low loading and hydrogen peroxide as an environmentally benign oxidant in the presence of a small amount of sulfuric acid as an additive. The product yields were high (up to 93%) for alcohol oxidation and the enantioselectivity was excellent (>90% ee) for the OKR of secondary alcohols. Mechanistic studies revealed that alcohol oxidation occurs via hydrogen atom (H-atom) abstraction from an α-CH bond of the alcohol substrate and a two-electron process by an electrophilic Mn-oxo species. Density functional theory calculations revealed the difference in reaction energy barriers for H-atom abstraction from the α-CH bonds of R - and S -enantiomers by a chiral high-valent manganese-oxo complex, supporting the experimental result from the OKR of secondary alcohols.
Two tautomeric forms of 2-amino-5,6-dimethylpyrimidin-4-one.
Hall, Victoria M; Bertke, Jeffery A; Swift, Jennifer A
2016-06-01
Derivatives of 4-hydroxypyrimidine are an important class of biomolecules. These compounds can undergo keto-enol tautomerization in solution, though a search of the Cambridge Structural Database shows a strong bias toward the 3H-keto tautomer in the solid state. Recrystallization of 2-amino-5,6-dimethyl-4-hydroxypyrimidine, C6H9N3O, from aqueous solution yielded triclinic crystals of the 1H-keto tautomer, denoted form (I). Though not apparent in the X-ray data, the IR spectrum suggests that small amounts of the 4-hydroxy tautomer are also present in the crystal. Monoclinic crystals of form (II), comprised of a 1:1 ratio of both the 1H-keto and the 3H-keto tautomers, were obtained from aqueous solutions containing uric acid. Forms (I) and (II) exhibit one-dimensional and three-dimensional hydrogen-bonding motifs, respectively.
Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.
Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin
2016-06-01
As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.
Local structure and structural rigidity of the green phosphor β-SiAlON:Eu{sup 2+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brgoch, J., E-mail: jbrgoch@uh.edu; Gaultois, M. W., E-mail: mgaultois@mrl.ucsb.edu; Seshadri, R.
Eu{sup 2+} inserted in β-Si{sub 3−x}Al{sub x}O{sub x}N{sub 4−x} is a material that shows exceptional promise as a green-emitting phosphor. Synchrotron X-ray and neutron scattering, in conjunction with first-principles calculations and Eu L{sub 3} X-ray absorption measurements, yield a consistent picture of the composition, and the favorable position for Eu{sup 2+} substitution in the crystal structure. The Debye temperature Θ{sub D}, which is a proxy for structural rigidity relating to effectiveness as a phosphor, is very high for the starting β-Si{sub 3}N{sub 4} framework and is determined to decrease only slightly for the small amounts of Al{sup 3+} and O{supmore » 2−} co-substitution that are required for charge balance associated with Eu{sup 2+} insertion.« less
Automated X-Ray Diffraction of Irradiated Materials
Rodman, John; Lin, Yuewei; Sprouster, David; ...
2017-10-26
Synchrotron-based X-ray diffraction (XRD) and small-angle Xray scattering (SAXS) characterization techniques used on unirradiated and irradiated reactor pressure vessel steels yield large amounts of data. Machine learning techniques, including PCA, offer a novel method of analyzing and visualizing these large data sets in order to determine the effects of chemistry and irradiation conditions on the formation of radiation induced precipitates. In order to run analysis on these data sets, preprocessing must be carried out to convert the data to a usable format and mask the 2-D detector images to account for experimental variations. Once the data has been preprocessed, itmore » can be organized and visualized using principal component analysis (PCA), multi-dimensional scaling, and k-means clustering. In conclusion, from these techniques, it is shown that sample chemistry has a notable effect on the formation of the radiation induced precipitates in reactor pressure vessel steels.« less
Microdeformation and subcritical cracking in chalk
NASA Astrophysics Data System (ADS)
Bergsaker, Anne; Dysthe, Dag Kristian
2016-04-01
Deformation processes in chalks, both in relation to changing pore fluids and stress conditions has been of great interest as chalk is an important reservoir rock for both hydrocarbons and ground water. Lately it has also gained interest as a potential reservoir rock for captured CO2. Chalks are composed of large amounts of biogenic calcite grains, the skeletal debris of marine microorganisms. Its deformation is highly time and stress dependent, and governed by a transition from distributed to localized deformation at the onset of yield, affected by mechanisms such as subcritical crack growth and pore collapse. We present a microdeformation rig which makes use of thermal expansion as a means of subjecting small samples to strictly controlled tensile stresses. High resolution imaging provides resolutions down to 0.5 micrometers, enabling study of pore scale processes during slow deformation. Examples of localized and distributed deformation are presented.
Tran, Duc Trung; Thieffry, Guillemette; Jacob, Matthieu; Batiot-Dupeyrat, Catherine; Teychene, Benoit
2015-01-01
In this study, carbon nanotubes (CNTs) were successfully grown on tubular ceramic membranes using the catalytic chemical vapor deposition (CCVD) method. CNTs were synthesized at 650°C for 3-6 h under a 120 mL min(-1) flow of C2H6 on ceramic membranes impregnated with iron salt. The synthesis procedure was beforehand optimized in terms of catalyst amount, impregnation duration and reaction temperature, using small pieces of tubular ceramic membranes. The yield, size and structure of the CNTs produced were characterized using thermogravimetric analysis and microscopic imaging techniques. Afterwards, preliminary filtration tests with alginate and phenol were performed on two modified tubular membranes. The results indicate that the addition of CNTs on the membrane material increased the permeability of ceramic membrane and its ability to reject alginate and adsorb phenol, yet decreased its fouling resistance.
Srivastava, Madhur; Freed, Jack H
2017-11-16
Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.
Suppression of H-/O2- exchange by incorporated nitride anions in the perovskite lattice
NASA Astrophysics Data System (ADS)
Takeiri, Fumitaka; Yajima, Takeshi; Yamamoto, Takafumi; Kobayashi, Yoji; Matsui, Toshiaki; Hester, James; Kageyama, Hiroshi
2017-12-01
We investigate the low temperature anion exchange behavior of hydride and oxide in perovskite oxynitrides. CaH2 reduction of (Sr1-xLax)Ti(O3-xNx) (0
Warth, Arne; Muley, Thomas; Meister, Michael; Weichert, Wilko
2015-01-01
Preanalytic sampling techniques and preparation of tissue specimens strongly influence analytical results in lung tissue diagnostics both on the morphological but also on the molecular level. However, in contrast to analytics where tremendous achievements in the last decade have led to a whole new portfolio of test methods, developments in preanalytics have been minimal. This is specifically unfortunate in lung cancer, where usually only small amounts of tissue are at hand and optimization in all processing steps is mandatory in order to increase the diagnostic yield. In the following, we provide a comprehensive overview on some aspects of preanalytics in lung cancer from the method of sampling over tissue processing to its impact on analytical test results. We specifically discuss the role of preanalytics in novel technologies like next-generation sequencing and in the state-of the-art cytology preparations. In addition, we point out specific problems in preanalytics which hamper further developments in the field of lung tissue diagnostics.
Lightning and Life on Exoplanets
NASA Astrophysics Data System (ADS)
Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane
2016-07-01
Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude with a discussion on a promising alternative to lightning driven prebiotic chemistry, ultraviolet light (UV) driven chemistry, and will discuss why a UV source breaking bonds seems more effective than lightning shocks at producing a variety of prebiotic species.
NASA Astrophysics Data System (ADS)
Heinen, Wolfgang; Lauwers, Anne Marie
1996-04-01
The reaction of iron sulfide (FeS) with H2S in water, in presence of CO2 under anaerobic conditions was found to yield H2 and a variety of organic sulfur compounds, mainly thiols and small amounts of CS2 and dimethyldisulfide. The same compounds were produced when H2S was replaced by HCl, in the H2S-generating system FeS/HCl/CO2. The identification of the products was confirmed by GC-MS analyses and the incorporation of H2 in the organic sulfur compounds was demonstrated by experiments in which all hydrogen compounds were replaced by deuterium compounds. Generation of H2 and the synthesis of thiols were both dependent upon the relative abundance of FeS and HCl or H2S, i.e. the FeS/HCl- or FeS/H2S-proportions. Whether thiols or CS2 were formed as the main products depended also on the FeS/HCl-ratio: All conditions which create a H2 deficiency were found to initiate a proportional increase in the amount of CS2. The quantities of H2 and thiols generated depended on temperature: the production of H2 was significantly accelerated from 50°C onward and thiol synthesis above 75°C. The yield of thiols increased with the amount of FeS and HCl (H2S), given a certain FeS/HCl-ratio and a surplus of CO2. A deficiency of CO2 results in lower thiol systhesis. The end product, pyrite (FeS2), was found to appear as a silvery granular layer floating on the aqueous surface. The identity of the thiols was confirmed by mass spectrometry, and the reduction of CO2 demonstrated by the determination of deuterium incorporation with DCl and D2O. The described reactions can principally proceed under the conditions comparable to those obtaining around submarine hydrothermal vents, or the global situation about 4 billion years ago, before the dawn of life, and could replace the need for a reducing atmosphere on the primitive earth.
Bulk Fermi Surfaces of the Dirac Type-II Semimetallic Candidates M Al3 (Where M =V , Nb, and Ta)
NASA Astrophysics Data System (ADS)
Chen, K.-W.; Lian, X.; Lai, Y.; Aryal, N.; Chiu, Y.-C.; Lan, W.; Graf, D.; Manousakis, E.; Baumbach, R. E.; Balicas, L.
2018-05-01
We report a de Haas-van Alphen (dHvA) effect study on the Dirac type-II semimetallic candidates M Al3 (where, M =V , Nb and Ta). The angular dependence of their Fermi surface (FS) cross-sectional areas reveals a remarkably good agreement with our first-principles calculations. Therefore, dHvA supports the existence of tilted Dirac cones with Dirac type-II nodes located at 100, 230 and 250 meV above the Fermi level ɛF for VAl3 , NbAl3 and TaAl3 respectively, in agreement with the prediction of broken Lorentz invariance in these compounds. However, for all three compounds we find that the cyclotron orbits on their FSs, including an orbit nearly enclosing the Dirac type-II node, yield trivial Berry phases. We explain this via an analysis of the Berry phase where the position of this orbit, relative to the Dirac node, is adjusted within the error implied by the small disagreement between our calculations and the experiments. We suggest that a very small amount of doping could displace ɛF to produce topologically nontrivial orbits encircling their Dirac node(s).
Rats’ preferences for high fructose corn syrup vs. sucrose and sugar mixtures
Ackroff, Karen; Sclafani, Anthony
2011-01-01
High fructose corn syrup (HFCS) has replaced sucrose in many food products, which has prompted research comparing these two sweeteners in rodents. The present study examined the relative palatability of HFCS and sucrose for rats, offering 11% carbohydrate solutions to match the content of common beverages for human consumption. The animals initially preferred HFCS to sucrose but after separate experience with each solution they switched to sucrose preference. Approximating the composition of HFCS with a mixture of fructose and glucose (55:45) yielded a solution that was less attractive than sucrose or HFCS. However, HFCS contains a small amount of glucose polymers, which are very attractive to rats. A 55:42:3 mixture of fructose, glucose and glucose polymers (Polycose) was equally preferred to HFCS and was treated similarly to HFCS in comparisons vs. sucrose. Post-oral effects of sucrose, which is 50% fructose and 50% glucose, may be responsible for the shift in preference with experience. This shift, and the relatively small magnitude of differences in preference for HFCS and sucrose, suggest that palatability factors probably do not contribute to any possible difference in weight gain responses to these sweeteners. PMID:21236278
High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrach, R.J.
1989-07-24
A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less
Preparation, purification, and characterization of aminopropyl-functionalized silica sol.
Pálmai, Marcell; Nagy, Lívia Naszályi; Mihály, Judith; Varga, Zoltán; Tárkányi, Gábor; Mizsei, Réka; Szigyártó, Imola Csilla; Kiss, Teréz; Kremmer, Tibor; Bóta, Attila
2013-01-15
A new, simple, and "green" method was developed for the surface modification of 20 nm diameter Stöber silica particles with 3-aminopropyl(diethoxy)methylsilane in ethanol. The bulk polycondensation of the reagent was inhibited and the stability of the sol preserved by adding a small amount of glacial acetic acid after appropriate reaction time. Centrifugation, ultrafiltration, and dialysis were compared in order to choose a convenient purification technique that allows the separation of unreacted silylating agent from the nanoparticles without destabilizing the sol. The exchange of the solvent to acidic water during the purification yielded a stable colloid, as well. Structural and morphological analysis of the obtained aminopropyl silica was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared (FTIR), (13)C and (29)Si MAS nuclear magnetic resonance (NMR) spectroscopies, as well as small angle X-ray scattering (SAXS). Our investigations revealed that the silica nanoparticle surfaces were partially covered with aminopropyl groups, and multilayer adsorption followed by polycondensation of the silylating reagent was successfully avoided. The resulting stable aminopropyl silica sol (ethanolic or aqueous) is suitable for biomedical uses due to its purity. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Christen, H. M.; Rouleau, C. M.; Ohkubo, I.; Zhai, H. Y.; Lee, H. N.; Sathyamurthy, S.; Lowndes, D. H.
2003-09-01
A method for continuous compositional-spread (CCS) thin-film fabrication based on pulsed-laser deposition (PLD) is introduced. This approach is based on a translation of the substrate heater and the synchronized firing of the excimer laser, with the deposition occurring through a slit-shaped aperture. Alloying is achieved during film growth (possible at elevated temperature) by the repeated sequential deposition of submonolayer amounts. Our approach overcomes serious shortcomings in previous in situ implementation of CCS based on sputtering or PLD, in particular the variation of thickness across the compositional spread and the differing deposition energetics as a function of position. While moving-shutter techniques are appropriate for PLD approaches yielding complete spreads on small substrates (i.e., small as compared to distances over which the deposition parameters in PLD vary, typically ≈1 cm), our method can be used to fabricate samples that are large enough for individual compositions to be analyzed by conventional techniques, including temperature-dependent measurements of resistivity and dielectric and magnetic properties (i.e., superconducting quantum interference device magnetometry). Initial results are shown for spreads of (Sr1-xCax)RuO3.
An optimized method for measuring fatty acids and cholesterol in stable isotope-labeled cells
Argus, Joseph P.; Yu, Amy K.; Wang, Eric S.; Williams, Kevin J.; Bensinger, Steven J.
2017-01-01
Stable isotope labeling has become an important methodology for determining lipid metabolic parameters of normal and neoplastic cells. Conventional methods for fatty acid and cholesterol analysis have one or more issues that limit their utility for in vitro stable isotope-labeling studies. To address this, we developed a method optimized for measuring both fatty acids and cholesterol from small numbers of stable isotope-labeled cultured cells. We demonstrate quantitative derivatization and extraction of fatty acids from a wide range of lipid classes using this approach. Importantly, cholesterol is also recovered, albeit at a modestly lower yield, affording the opportunity to quantitate both cholesterol and fatty acids from the same sample. Although we find that background contamination can interfere with quantitation of certain fatty acids in low amounts of starting material, our data indicate that this optimized method can be used to accurately measure mass isotopomer distributions for cholesterol and many fatty acids isolated from small numbers of cultured cells. Application of this method will facilitate acquisition of lipid parameters required for quantifying flux and provide a better understanding of how lipid metabolism influences cellular function. PMID:27974366
NASA Technical Reports Server (NTRS)
1993-01-01
Surface modifications to composite materials induced by long term exposure in low earth orbit (LEO) were dominated by atomic oxygen erosion and micrometeoroid and space debris impacts. As expected, calculated erosion rates were peculiar to material type and within the predicted order of magnitude. Generally, about one ply of the carbon fiber composites was eroded during the 70 month LDEF experiment. Matrix erosion was greater than fiber erosion and was more evident for a polysulfone matrix than for epoxy matrices. Micrometeoroid and space debris impacts resulted in small (less than 1mm) craters and splattered contaminants on all samples. Surfaces became more diffuse and darker with small increases in emissivity and absorption. Tensile strength decreased roughly with thickness loss, and epoxy matrices apparently became slightly embrittled, probably as a result of continued curing under UV and/or electron bombardment. However, changes in the ultimate yield stress of the carbon reinforced epoxy composites correlate neither with weave direction nor fiber type. Unexpected developments were the discovery of new synergistic effects of the space environment in the interaction of atomic oxygen and copious amounts of contamination and in the induced luminescence of many materials.
Rats' preferences for high fructose corn syrup vs. sucrose and sugar mixtures.
Ackroff, Karen; Sclafani, Anthony
2011-03-28
High fructose corn syrup (HFCS) has replaced sucrose in many food products, which has prompted research comparing these two sweeteners in rodents. The present study examined the relative palatability of HFCS and sucrose for rats, offering 11% carbohydrate solutions to match the content of common beverages for human consumption. The animals initially preferred HFCS to sucrose but after separate experience with each solution they switched to sucrose preference. Approximating the composition of HFCS with a mixture of fructose and glucose (55:45) yielded a solution that was less attractive than sucrose or HFCS. However, HFCS contains a small amount of glucose polymers, which are very attractive to rats. A 55:42:3 mixture of fructose, glucose and glucose polymers (Polycose) was equally preferred to HFCS and was treated similarly to HFCS in comparisons vs. sucrose. Post-oral effects of sucrose, which is 50% fructose and 50% glucose, may be responsible for the shift in preference with experience. This shift, and the relatively small magnitude of differences in preference for HFCS and sucrose, suggest that palatability factors probably do not contribute to any possible difference in weight gain responses to these sweeteners. Copyright © 2011 Elsevier Inc. All rights reserved.
Innovative use of lamella clarifiers for central stormwater treatment in separate sewer systems.
Weiss, Gebhard
2014-01-01
Lamella settlers have been used in the past few years for the sedimentation of particles in wastewater and stormwater applications. A new and very innovative approach for the treatment of stormwater flows is proposed which extends the portfolio of solutions beyond traditional settling tanks. Surface runoff is stored in a sewer or a basin and finally treated in a small but continuously operated lamella clarifier. The low throughput flow will yield good treatment efficiency at a small footprint. The possibilities of using existing storage volume in a storm sewer, as well as the structural flexibility of the arrangement are decisive benefits. As a large operational advantage, the lamellae may be cleaned mechanically, e.g. by pivoting under water. Finally, the flow and the sludge which will be sent to the downstream treatment plant will be minimized. A new comparative simulation method is proposed in order to assess an equivalent degree of stormwater treatment, either by achieving an equal annual volume of treated stormwater or, more directly, an equal amount of spilled pollutant load. The new solution is compared with a traditional settling tank according to current German design rules. Additionally, a case study from a real installation will be presented.
Sakai, Kaori; Taconnat, Ludivine; Borrega, Nero; Yansouni, Jennifer; Brunaud, Véronique; Paysant-Le Roux, Christine; Delannoy, Etienne; Martin Magniette, Marie-Laure; Lepiniec, Loïc; Faure, Jean Denis; Balzergue, Sandrine; Dubreucq, Bertrand
2018-01-01
Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm 2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.
3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, T., E-mail: shimizu@solar.isas.jaxa.jp; Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
2015-10-15
The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at themore » photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.« less
Historical analysis of experience with small bowel capsule endoscopy in a spanish tertiary hospital.
Egea Valenzuela, Juan; Carrilero Zaragoza, Gabriel; Iglesias Jorquera, Elena; Tomás Pujante, Paula; Alberca de Las Parras, Fernando; Carballo Álvarez, Fernando
2017-02-01
Capsule endoscopy was approved by the FDA in 2001. Gastrointestinal bleeding and inflammatory bowel disease are the main indications. It has been available in our hospital since 2004. We retrospectively analysed data from patients who underwent small bowel capsule endoscopy in our hospital from October 2004 to April 2015. Indications were divided into: Obscure gastrointestinal bleeding (occult and overt), inflammatory bowel disease, and other indications. Findings were divided into: Vascular lesions, inflammatory lesions, other lesions, normal studies, and inconclusive studies. A total of 1027 out of 1291 small bowel studies were included. Mean patient age was 56.45 years; 471 were men and 556 women. The most common lesion observed was angiectasia, as an isolated finding or associated with other lesions. Findings were significant in up to 80% of studies when the indication was gastrointestinal bleeding, but in only 50% of studies in inflammatory bowel disease. Diagnostic yield was low in the group «other indications». No major complications were reported. Small bowel capsule endoscopy has high diagnostic yield in patients with gastrointestinal bleeding, but yield is lower in patients with inflammatory bowel disease. Our experience shows that capsule endoscopy is a safe and useful tool for the diagnosis of small bowel disease. The diagnostic yield of the technique in inflammatory bowel disease must be improved. Copyright © 2016 Elsevier España, S.L.U., AEEH y AEG. All rights reserved.
Overturning dogma: tolerance of insects to mixed-sterol diets is not universal.
Behmer, Spencer T
2017-10-01
Insects cannot synthesize sterols de novo, but like all eukaryotes they use them as cell membrane inserts where they influence membrane fluidity and rigidity. They also use a small amount for metabolic purposes, most notably as essential precursors for steroid hormones. It has been a long-held view that most insects require a small amount of specific sterol (often cholesterol) for metabolic purposes, but for membrane purposes (where the bulk of sterols are used) specificity in sterol structure was less important. Under this model, it was assumed that insects could tolerate mixed-sterol diets as long as a small amount of cholesterol was available. In the current paper this dogma is overturned, using data from plant-feeding insects that were fed mixed-sterol diets with different amounts and ratios of dietary sterols. Copyright © 2017 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0529] Burden of Food and Drug Administration Food Safety Modernization Act Fee Amounts on Small Business; Extension of Comment Period AGENCY: Food and Drug Administration, HHS. ACTION: Notice; extension of comment...
76 FR 63933 - Notice of Adjustment of Disaster Grant Amounts
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... amount for Small Project Grants to State and local governments and private nonprofit facilities for... DEPARTMENT OF HOMELAND SECURITY Notice of Adjustment of Disaster Grant Amounts AGENCY: Federal... grant amount made under section 422, Simplified Procedures, relating to the Public Assistance program...
Severe hypokalaemia with paralysis induced by small doses of liquorice.
Cumming, A. M.; Boddy, K.; Brown, J. J.; Fraser, R.; Lever, A. F.; Padfield, P. L.; Robertson, J. I.
1980-01-01
A patient, who presented with a flaccid quadriplegia due to profound hypokalaemia, is described. Hypokalaemia and myoglobinuria were caused by the ingestion of small amounts of liquorice contained in a laxative preparation. Subsequent controlled administration of small amounts of this preparation induced marked hypokalaemia. This was associated with sodium retention and potassium loss confirming a mineralocorticoid-like action. The sodium retention was associated with suppression of plasma levels of renin and aldosterone. PMID:7443613
Addition of simethicone improves small bowel capsule endoscopy visualisation quality.
Krijbolder, M S; Grooteman, K V; Bogers, S K; de Jong, D J
2018-01-01
Small bowel capsule endoscopy (SBCE) is an important diagnostic tool for small-bowel diseases but its quality may be hampered by intraluminal gas. This study evaluated the added value of the anti-foaming agent, simethicone, to a bowel preparation with polyethylene glycol (PEG) on the quality of small bowel visualisation and its use in the Netherlands. This was a retrospective, single-blind, cohort study. Patients in the PEG group only received PEG prior to SBCE. Patients in the PEG-S group ingested additional simethicone. Two investigators assessed the quality of small-bowel visualisation using a four-point scale for 'intraluminal gas' and 'faecal contamination'. By means of a survey, the use of anti-foaming agents was assessed in a random sample of 16 Dutch hospitals performing SBCE. The quality of small bowel visualisation in the PEG group (n = 33) was significantly more limited by intraluminal gas when compared with the PEG-S group (n = 31): proximal segment 83.3% in PEG group vs. 18.5% in PEG-S group (p < 0.01), distal segment 66.7% vs. 18.5% respectively (p < 0.01). No difference was observed in the amount of faecal contamination (proximal segment 80.0% PEG vs. 59.3% PEG-S, p = 0.2; distal segment 90.0% PEG vs. 85.2% PEG-S, p = 0.7), mean small bowel transit times (4.0 PEG vs. 3.9 hours PEG-S, p = 0.7) and diagnostic yield (43.3% PEG vs. 22.2% PEG-S, p = 0.16). Frequency of anti-foaming agent use in the Netherlands was low (3/16, 18.8%). Simethicone is of added value to a PEG bowel preparation in improving the quality of visualisation of the small bowel by reducing intraluminal gas. At present, the use of anti-foaming agents in SBCE preparation is not standard practice in the Netherlands.
Ohta, Tomoaki; Maeda, Hiroyuki; Kubota, Ryuji; Koga, Akiko; Terada, Katsuhide
2014-09-10
The ratio of high potent materials in the new chemical entities has recently increased in the pharmaceutical industry. Generally, most of them are highly hazardous, but there is little toxicity information about the active pharmaceutical ingredients in the early development period. Even if their handling amount is quite small, the dustiness of high potent powder generated in the manufacturing process has an important impact on worker health; thus, it is important to understand the powder dustiness. The purpose of this study was to establish a method to evaluate the powder dustiness by the consumption of small amount of samples. The optimized measurement conditions for a commercially available dustmeter were confirmed using lactose monohydrate and naproxen sodium. The optimized test conditions were determined: the dustmeter mode, the flow rate, the drum rotation speed, the total measurement time, and sample loaded weight were type I mode, 4 L/min, 10 rpm, 1 min and 1-10 g , respectively. The setup conditions of the dustmeter are considerably valuable to pharmaceutical industries, especially, at the early development stage and especially for expensive materials, because the amount of air-borne dust can be evaluated with accuracy by the consumption of small amount of samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1
NASA Astrophysics Data System (ADS)
1992-07-01
The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.
Gustafsson, Anna M. K.; Björefors, Fredrik; Steenari, Britt-Marie
2015-01-01
Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901
NASA Astrophysics Data System (ADS)
Warriner, Heidi E.; Safinya, Cyrus R.
1997-03-01
Using two complimentary techniques, we have measured repulsive interactions in the L_α phase of very flexible membranes composed of the surfactant C12E5 and small amounts of polymer-lipids derived from polyethylene glycol (PEG-DMPE 5000, PEG-DMPE 2000 and PEG-DMPE 550). In the first method, the lamellar repeat distance of samples in equilibrium with a dextran solution of known osmotic pressure is determined, yielding a direct measurement of pressure versus distance. These data immediately differentiate the repulsive interaction between flexible polymer-decorated membranes from polymer-brush forces found in rigid lamellar systems. In the second method, fits to high-resolution x-ray data yield the η parameter, proportional to (κB)-1\\over2, where B is the layer compressional modulus and κ is the bending rigidity of a single membrane. Combining the two types of data to eliminate B, one can quantitatively determine the κ of a decorated membrane as a function of polymer-lipid concentration. For the bare C12E5 membrane, where κ is known , a direct comparison of the compressibility modulus values derived via the two methods is also possible. This work supported by NSF-DMR-9624091; PRF-31352-AC7 CULAR-STB/UC:96-118.
Hunt, R.J.; Borchardt, M. A.; Richards, K.D.; Spencer, S. K.
2010-01-01
This study investigated the source, transport, and occurrence of human enteric viruses in municipal well water, focusing on sanitary sewer sources. A total of 33 wells from 14 communities were sampled once for wastewater tracers and viruses. Wastewater tracers were detected in four of these wells, and five wells were virus- positive by qRT-PCR. These results, along with exclusion of wells with surface water sources, were used to select three wells for additional investigation. Viruses and wastewater tracers were found in the groundwater at all sites. Some wastewater tracers, such as ionic detergents, flame retardants, and cholesterol, were considered unambiguous evidence of wastewater. Sampling at any given time may not show concurrent virus and tracer presence; however, given sufficient sampling over time, a relation between wastewater tracers and virus occurrence was identified. Presence of infectious viruses at the wellhead demonstrates that high-capacity pumping induced sufficiently short travel times for the transport of infectious viruses. Therefore, drinking-water wells are vulnerable to contaminants that travel along fast groundwater flowpaths even if they contribute a small amount of virus-laden water to the well. These results suggest that vulnerability assessments require characterization of "low yield-fast transport" in addition to traditional "high yield-slow transport", pathways. ?? 2010 American Chemical Society.
Kokkat, Theresa J.; McGarvey, Diane; Patel, Miral S.; Tieniber, Andrew D.; LiVolsi, Virginia A.; Baloch, Zubair W.
2013-01-01
Background: Methanol fixed and paraffin embedded (MFPE) cellblocks are an essential cytology preparation. However, MFPE cellblocks often contain limited material and their relatively small size has caused them to be overlooked in biomarker discovery. Advances in the field of molecular biotechnology have made it possible to extract proteins from formalin fixed and paraffin embedded (FFPE) tissue blocks. In contrast, there are no established methods for extracting proteins from MFPE cellblocks. We investigated commonly available CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate) buffer, as well as two commercially available Qiagen® kits and compared their effectiveness on MFPE tissue for protein yields. Materials and Methods: MFPE blocks were made by Cellient™ automated system using human tissue specimens from normal and malignant specimens collected in ThinPrep™ Vials. Protein was extracted from Cellient-methanol fixed and paraffin embedded blocks with CHAPS buffer method as well as FFPE and Mammalian Qiagen® kits. Results: Comparison of protein yields demonstrated the effectiveness of various protein extraction methods on MFPE cellblocks. Conclusion: In the current era of minimally invasive techniques to obtain minimal amount of tissue for diagnostic and prognostic purposes, the use of commercial and lab made buffer on low weight MFPE scrapings obtained by Cellient® processor opens new possibilities for protein biomarker research. PMID:24403950
Frégeau, Chantal J; Lett, C Marc; Fourney, Ron M
2010-10-01
A semi-automated DNA extraction process for casework samples based on the Promega DNA IQ™ system was optimized and validated on TECAN Genesis 150/8 and Freedom EVO robotic liquid handling stations configured with fixed tips and a TECAN TE-Shake™ unit. The use of an orbital shaker during the extraction process promoted efficiency with respect to DNA capture, magnetic bead/DNA complex washes and DNA elution. Validation studies determined the reliability and limitations of this shaker-based process. Reproducibility with regards to DNA yields for the tested robotic workstations proved to be excellent and not significantly different than that offered by the manual phenol/chloroform extraction. DNA extraction of animal:human blood mixtures contaminated with soil demonstrated that a human profile was detectable even in the presence of abundant animal blood. For exhibits containing small amounts of biological material, concordance studies confirmed that DNA yields for this shaker-based extraction process are equivalent or greater to those observed with phenol/chloroform extraction as well as our original validated automated magnetic bead percolation-based extraction process. Our data further supports the increasing use of robotics for the processing of casework samples. Crown Copyright © 2009. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Alizadeh, Elahe; Sanche, Léon
2014-04-01
A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.
Deep-learning derived features for lung nodule classification with limited datasets
NASA Astrophysics Data System (ADS)
Thammasorn, P.; Wu, W.; Pierce, L. A.; Pipavath, S. N.; Lampe, P. D.; Houghton, A. M.; Haynor, D. R.; Chaovalitwongse, W. A.; Kinahan, P. E.
2018-02-01
Only a few percent of indeterminate nodules found in lung CT images are cancer. However, enabling earlier diagnosis is important to avoid invasive procedures or long-time surveillance to those benign nodules. We are evaluating a classification framework using radiomics features derived with a machine learning approach from a small data set of indeterminate CT lung nodule images. We used a retrospective analysis of 194 cases with pulmonary nodules in the CT images with or without contrast enhancement from lung cancer screening clinics. The nodules were contoured by a radiologist and texture features of the lesion were calculated. In addition, sematic features describing shape were categorized. We also explored a Multiband network, a feature derivation path that uses a modified convolutional neural network (CNN) with a Triplet Network. This was trained to create discriminative feature representations useful for variable-sized nodule classification. The diagnostic accuracy was evaluated for multiple machine learning algorithms using texture, shape, and CNN features. In the CT contrast-enhanced group, the texture or semantic shape features yielded an overall diagnostic accuracy of 80%. Use of a standard deep learning network in the framework for feature derivation yielded features that substantially underperformed compared to texture and/or semantic features. However, the proposed Multiband approach of feature derivation produced results similar in diagnostic accuracy to the texture and semantic features. While the Multiband feature derivation approach did not outperform the texture and/or semantic features, its equivalent performance indicates promise for future improvements to increase diagnostic accuracy. Importantly, the Multiband approach adapts readily to different size lesions without interpolation, and performed well with relatively small amount of training data.
Oceanic loading of wildfire-derived organic compounds from a small mountainous river
Hunsinger, G.B.; Mitra, Siddhartha; Warrick, J.A.; Alexander, C.R.
2008-01-01
Small mountainous rivers (SMRs) export substantial amounts of sediment into the world's oceans. The concomitant yield of organic carbon (OC) associated with this class of rivers has also been shown to be significant and compositionally unique. We report here excessively high loadings of polycyclic aromatic hydrocarbons (PAHs), lignin, and levoglucosan, discharged from the Santa Clara River into the Santa Barbara Channel. The abundance of PAHs, levoglucosan, and lignin in Santa Barbara Channel sediments ranged from 201.7 to 1232.3 ng gdw-1, 1.3 to 6.9 ??g gdw-1, and 0.3 to 2.2 mg per 100 mg of the sedimentary OC, respectively. Assuming a constant rate of sediment accumulation, the annual fluxes of PAHs, levoglucosan, and lignin, to the Santa Barbara Channel were respectively, 885.5 ?? 170.2 ng cm-2 a-1, 3.5 ?? 1.9 ??g cm-2 a-1 and 1.4 ?? 0.3 mg per 100 mg OC cm-2 a-1, over ???30 years. The close agreement between PAHs, levoglucosan, and lignin abundance suggests that the depositional flux of these compounds is largely biomass combustion-derived. To that end, use of the Santa Clara River as a model for SMRs suggests this class of rivers may be one of the largest contributors of pyrolyzed carbon to coastal systems and the open ocean. Wildfire associated carbon discharged from other high yield fluvial systems, when considered collectively, may be a significant source of lignin, pyrolytic PAHs, and other pyrogenic compounds to the ocean. Extrapolating these methods over geologic time may offer useful historical information about carbon sequestration and burial in coastal sediments and affect coastal carbon budgets. Copyright 2008 by the American Geophysical Union.
Extraction of Solar Wind Nitrogen and Noble Gases From the Genesis Gold Foil Collector
NASA Astrophysics Data System (ADS)
Schlutter, D. J.; Pepin, R. O.
2005-12-01
The Genesis gold foil is a bulk solar wind collector, integrating fluences from all three of the wind regimes. Pyrolytic extraction of small foil samples at Minnesota yielded He fluences, corrected for backscatter, in good agreement with measurements by on-board spacecraft instruments, and He/Ne elemental ratios close to those implanted in collector foils deployed on the lunar surface during the Apollo missions. Isotopic distributions of He, Ne and Ar are under study. Pyrolysis to temperatures above the gold melting point generates nitrogen blanks large enough to obscure the solar-wind nitrogen component. An alternative technique for nitrogen and noble gas extraction, by room-temperature amalgamation of the gold foil surface, will be discussed. Ne and Ar releases in preliminary tests of this technique on small foil samples were close to 100% of the amounts expected from the high-temperature pyrolysis yields, indicating that amalgamation quantitatively liberates gases from several hundred angstroms deep in the gold, beyond the implantation depth of most of the solar wind. Present work is focused on two problems currently interfering with accurate nitrogen measurements at the required picogram to sub-picogram levels: a higher than expected blank likely due to tiny air bubbles rolled into the gold sheet during fabrication, and the presence of a refractory hydrocarbon film on Genesis collector surfaces (the "brown stain") that, if left in place on the foil, shields the underlying gold from mercury attack. We have found, however, that the film is efficiently removed within tens of seconds by oxygen plasma ashing. Potential nitrogen contaminants introduced during the crash of the sample return canister are inert in amalgamation, and so are not hazards to the measurements.
Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.
Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A
2014-09-02
Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.
Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars
Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.
2014-01-01
Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169
Inter-event variability in urban stormwater runoff response associated with hydrologic connectivity
NASA Astrophysics Data System (ADS)
Hondula, K. L.
2015-12-01
Urbanization alters the magnitude and composition of hydrologic and biogeochemical fluxes from watersheds, with subsequent deleterious consequences for receiving waters. Projected changes in storm characteristics such as rainfall intensity and event size are predicted to amplify these impacts and render current regulations inadequate for protecting surface water quality. As stormwater management practices (BMPs) are increasingly being relied upon to reduce excess nutrient pollution in runoff from residential development, empirical investigation of their performance across a range of conditions is warranted. Despite substantial investment in urban and suburban BMPs, significant knowledge gaps exist in understanding how landscape structure and precipitation event characteristics influence the amount of stormwater runoff and associated nutrient loads from these complex catchments. Increasing infiltration of stormwater before it enters the sewer network (source control) is hypothesized to better mimic natural hydrologic and biogeochemical fluxes compared to more centralized BMPs at sewer outlets such as wet and dry ponds. Rainfall and runoff quality and quantity were monitored in four small (1-5 ha) residential catchments in Maryland to test the efficacy of infiltration-based stormwater management practices in comparison to end-of-pipe BMPs. Results indicated that reduced hydrologic connectivity associated with infiltration-based practices affected the relationship between the magnitude of rainfall events and water yield , but only for small precipitation events: compared to end-of-pipe BMPs, source control was associated with both lower runoff ratios and lower nutrient export per area for a given rainfall event size. We found variability in stormwater runoff responses (water yield, quality, and nutrient loads) was associated with precipitation event size, antecedent rainfall, and hydrologic connectivity as quantified by a modified directional connectivity index. Accounting for the interactive effects of landscape structure and precipitation event characteristics can reduce the uncertainty surrounding stormwater runoff responses in complex urban watersheds.
Predicted green lumber and residue yields from the merchantable stem of Yellow-Poplar
Alexander Clark; Michael A. Taras; James G. Schroeder
1974-01-01
Because of increasing demands for timber and changing utilization practices, chippable residues are now marketable products. Timber appraisals, therefore, should consider not only volumes o f lumber anticpated but also amounts (weights) of chippable residue produced when processing sale trees. Some information is available on saw-log weight and amount of chippable...
The Effects of Scholarship Amount on Yield and Success for Master's Students in Education
ERIC Educational Resources Information Center
Porter, Andy; Yang, Rui; Hwang, Jun; McMaken, Jennifer; Rorison, Jamey
2014-01-01
The amount of merit-based scholarship support for graduate students in the United States has increased dramatically. Given this increased investment, does increasing the size of scholarships awarded to the most academically able admitted students substantially increase their probability of enrollment? We found no support for a positive answer to…
78 FR 14913 - Domestic Baggage Liability
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
...,500 x 1.355], which yields $3,387.50. (The base amount of $2,500 in the formula was the minimum... was the CPI-U for July 2012, and 168.8 was the CPI-U for December 1999. The CPI-U data are from the...), the Department required the amount of compensation due to passengers in instances of denied boarding...
USDA-ARS?s Scientific Manuscript database
A protocol was established for plant regeneration from leaf protoplasts of guava (Psidium guajava L.) using mixture-amount (concentration) experiments. A protoplast yield of 3.7 × 106 (viability > 90 percent) was obtained when 1 g leaf strips were digested in a solution of approximately 0.75 M osmot...
Böcker, Ulrich; Dinter, Dietmar; Litterer, Caroline; Hummel, Frank; Knebel, Phillip; Franke, Andreas; Weiss, Christel; Singer, Manfred V; Löhr, J-Matthias
2010-04-01
New technology has considerably advanced the diagnosis of small-bowel pathology. However, its significance in clinical algorithms has not yet been fully assessed. The aim of the present analysis was to compare the diagnostic utility and yield of video-capsule enteroscopy (VCE) to that of magnetic resonance imaging (MRI) in patients with suspected or established Crohn's disease (Group I), obscure gastrointestinal blood loss (Group II), or suspected tumors (Group III). Forty-six out of 182 patients who underwent both modalities were included: 21 in Group I, 20 in Group II, and five in Group III. Pathology was assessed in three predetermined sections of the small bowel (upper, middle, and lower). The McNemar and Wilcoxon tests were used for statistical analysis. In Group I, lesions were found by VCE in nine of the 21 patients and by MRI in six. In five patients, both modalities showed pathology. In Group II, pathological changes were detected in 11 of the 20 patients by VCE and in eight patients by MRI. In five cases, pathology was found with both modalities. In Group III, neither modality showed small-bowel pathology. For the patient groups combined, diagnostic yield was 43% with VCE and 30% with MRI. The diagnostic yield of VCE was superior to that of MRI in the upper small bowel in both Groups I and II. VCE is superior to MRI for the detection of lesions related to Crohn's disease or obscure gastrointestinal bleeding in the upper small bowel.
1991-12-01
Kalman filtering. As GPS usage expands throughout the military and civilian communities, I hope this thesis provides a small contribution in this area...of the measurement’equation. In this thesis, some of the INS states not part of a measurement equation need a small amount of added noise to...estimating the state, but the variance often goes negative. A small amount of added noise in the filter keeps the variance of the state positive and does not
12 CFR 32.7 - Residential real estate loans, small business loans, and small farm loans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... total outstanding amount of a national bank's loans and extensions of credit to one borrower made under... surplus. (5) The total outstanding amount of a national bank's loans and extensions of credit to all of... concerns about credit quality, undue concentrations in the bank's portfolio of residential real estate...
Water erosion and climate change in a small alpine catchment
NASA Astrophysics Data System (ADS)
Berteni, Francesca; Grossi, Giovanna
2017-04-01
WATER EROSION AND CLIMATE CHANGE IN A SMALL ALPINE CATCHMENT Francesca Berteni, Giovanna Grossi A change in the mean and variability of some variables of the climate system is expected to affect the sediment yield of mountainous areas in several ways: for example through soil temperature and precipitation peak intensity change, permafrost thawing, snow- and ice-melt time shifting. Water erosion, sediment transport and yield and the effects of climate change on these physical phenomena are the focus of this work. The study area is a small mountainous basin, the Guerna creek watershed, located in the Central Southern Alps. The sensitivity of sediment yield estimates to a change of condition of the climate system may be investigated through the application of different models, each characterized by its own features and limits. In this preliminary analysis two different empirical mathematical models are considered: RUSLE (Revised Universal Soil Loss Equation; Renard et al., 1991) and EPM (Erosion Potential Method; Gavrilovic, 1988). These models are implemented in a Geographical Information System (GIS) supporting the management of the territorial database used to estimate relevant geomorphological parameters and to create different thematic maps. From one side the geographical and geomorphological information is required (land use, slope and hydrogeological instability, resistance to erosion, lithological characterization and granulometric composition). On the other side the knowledge of the weather-climate parameters (precipitation and temperature data) is fundamental as well to evaluate the intensity and variability of the erosive processes and estimate the sediment yield at the basin outlet. Therefore different climate change scenarios were considered in order to tentatively assess the impact on the water erosion and sediment yield at the small basin scale. Keywords: water erosion, sediment yield, climate change, empirical mathematical models, EPM, RUSLE, GIS, Guerna
Predicting cotton yield of small field plots in a cotton breeding program using UAV imagery data
NASA Astrophysics Data System (ADS)
Maja, Joe Mari J.; Campbell, Todd; Camargo Neto, Joao; Astillo, Philip
2016-05-01
One of the major criteria used for advancing experimental lines in a breeding program is yield performance. Obtaining yield performance data requires machine picking each plot with a cotton picker, modified to weigh individual plots. Harvesting thousands of small field plots requires a great deal of time and resources. The efficiency of cotton breeding could be increased significantly while the cost could be decreased with the availability of accurate methods to predict yield performance. This work is investigating the feasibility of using an image processing technique using a commercial off-the-shelf (COTS) camera mounted on a small Unmanned Aerial Vehicle (sUAV) to collect normal RGB images in predicting cotton yield on small plot. An orthonormal image was generated from multiple images and used to process multiple, segmented plots. A Gaussian blur was used to eliminate the high frequency component of the images, which corresponds to the cotton pixels, and used image subtraction technique to generate high frequency pixel images. The cotton pixels were then separated using k-means cluster with 5 classes. Based on the current work, the calculated percentage cotton area was computed using the generated high frequency image (cotton pixels) divided by the total area of the plot. Preliminary results showed (five flights, 3 altitudes) that cotton cover on multiple pre-selected 227 sq. m. plots produce an average of 8% which translate to approximately 22.3 kgs. of cotton. The yield prediction equation generated from the test site was then use on a separate validation site and produced a prediction error of less than 10%. In summary, the results indicate that a COTS camera with an appropriate image processing technique can produce results that are comparable to expensive sensors.
NASA Astrophysics Data System (ADS)
Kang, E.; Root, M. J.; Brune, W. H.
2006-12-01
A new concept, the Potential Aerosol Mass (PAM), is being developed and tested in the laboratory with the goal of deploying instruments to measure PAM in the atmosphere. PAM can be defined as the maximum aerosol mass that precursor gases can be oxidized to form. In the PAM concept, all precursor gases are oxidized to low volatile compounds with excessive amount of oxidants in a small continuous-flow Teflon cylinder, resulting in aerosol formation. Excessive amounts of OH and O3 are produced by a UV light that shines into the Teflon chamber. For our studies, the aerosol mass is then detected with a real-time aerosol mass measurement instrument, the Rupprecht and Patashnick Tapered Element Oscillating Microbalance (TEOM) and Filter Dynamic Measurement System (FDMS). As a test of the system, SO2 was oxidized to sulfate; the measured and calculated conversion ratios of sulfate aerosol mass to SO2 mass agree to within 10%. We will discuss the results of a series of laboratory tests that have been conducted with α-pinene to determine the variables that most affect its Secondary Organic Aerosol (SOA) yield. We will also discuss the results of some atmospheric measurement tests made at a site on the Penn State University campus.
Beigbeder, Alexandre; Mincheva, Rosica; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Claes, Michael; Dubois, Philippe
2010-05-01
The present work reports on the influence of the dispersion quality of multiwall carbon nanotubes (MWCNTs) in a silicone matrix on the marine fouling-release performance of the resulting nanocomposite coatings. A first set of coatings filled with different nanofiller contents was prepared by the dilution of a silicone/MWCNTs masterbatch within a hydrosilylation-curing polydimethylsiloxane resin. The fouling-release properties of the nanocomposite coatings were studied through laboratory assays with the marine alga (seaweed) Ulva, a common fouling species. As reported previously (see Ref. [19]), the addition of a small (0.05%) amount of carbon nanotubes substantially improves the fouling-release properties of the silicone matrix. This paper shows that this improvement is dependent on the amount of filler, with a maximum obtained with 0.1 wt% of multiwall carbon nanotubes (MWCNTs). The method of dispersion of carbon nanotubes in the silicone matrix is also shown to significantly (p = 0.05) influence the fouling-release properties of the coatings. Dispersing 0.1% MWCNTs using the masterbatch approach yielded coatings with circa 40% improved fouling-release properties over those where MWCNTs were dispersed directly in the polymeric matrix. This improvement is directly related to the state of nanofiller dispersion within the cross-linked silicone coating.
Gabriel, Frédéric L P; Mora, Mauricio Arrieta; Kolvenbach, Boris A; Corvini, Philippe F X; Kohler, Hans-Peter E
2012-06-05
In many environmental compartments, microbial degradation of α-quaternary nonylphenols proceeds along an ipso-substitution pathway. It has been reported that technical nonylphenol contains, besides α-quaternary nonylphenols, minor amounts of various α-H, α-methyl substituted tertiary isomers. Here, we show that potentially toxic metabolites of such minor components are formed during ipso-degradation of technical nonylphenol by Sphingobium xenophagum Bayram, a strain isolated from activated sewage sludge. Small but significant amounts of nonylphenols were converted to the corresponding nonylhydroquinones, which in the presence of air oxygen oxidized to the corresponding nonyl-p-benzoquinones-yielding a complex mixture of potentially toxic metabolites. Through reduction with ascorbic acid and subsequent analysis by gas chromatography-mass spectrometry, we were able to characterize this unique metabolic fingerprint and to show that its components originated for the most part from α-tertiary nonylphenol isomers. Furthermore, our results indicate that the metabolites mixture also contained several α, β-dehydrogenated derivatives of nonyl-p-benzoquinones that originated by hydroxylation induced rearrangement, and subsequent ring and side chain oxidation from α-tertiary nonylphenol isomers. We predict that in nonylphenol polluted natural systems, in which microbial ipso-degradation is prominent, 2-alkylquinone metabolites will be produced and will contribute to the overall toxicity of the remaining material.
Grain-Refined AZ92 Alloy with Superior Strength and Ductility
NASA Astrophysics Data System (ADS)
Lee, Jong Un; Kim, Sang-Hoon; Jo, Wan-Kuen; Hong, Won-Hwa; Kim, Woong; Bae, Jun Ho; Park, Sung Hyuk
2018-03-01
Grain-refined AZ92 (GR-AZ92) alloy with superior tensile properties is developed by adding 1 wt% Zn and a very small amount of SiC (0.17 wt%) to commercial AZ91 alloy for enhancing the solid-solution strengthening effect and refining the crystal grains, respectively. The homogenized GR-AZ92 alloy with an average grain size of 91 μm exhibits a tensile yield strength (TYS) of 125 MPa, ultimate tensile strength (UTS) of 281 MPa, and elongation of 12.1%, which are significantly higher than those of AZ91 alloy with a grain size of 420 μm (TYS of 94 MPa, UTS of 192 MPa, and elongation of 7.0%). The peak-aging time of GR-AZ92 alloy (8 h) is significantly shorter than that of AZ91 alloy (32 h) owing to a larger amount of grain boundaries in the former, which serve as nucleation sites of Mg17Al12 precipitates. A short-aging treatment for less than 1 h of the GR-AZ92 alloy causes an effective improvement in its strength without a significant reduction in its ductility. The 30-min-aged GR-AZ92 alloy has an excellent combination of strength and ductility, with a TYS of 142 MPa, UTS of 304 MPa, and elongation of 8.0%.
He, Guoai; Tan, Liming; Liu, Feng; Huang, Lan; Huang, Zaiwang; Jiang, Liang
2017-01-01
Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX) process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs) to high angle grain boundaries (HAGBs) and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary. PMID:28772514
Processing scale-up of sicklepod (Senna obtusifolia L.) seed.
Harry-O'Kuru, Rogers E; Mohamed, Abdellatif
2009-04-08
Sicklepod (Senna obtusifolia L.) is an invasive weed species especially of soybean and other field crops in the southeastern United States. The seeds contain a small amount (5-7%) of a highly colored fat as well as various phenolics, proteins, and galactomannans. The color of sicklepod seed oil is such that the presence of a small amount of the weed seed in a soybean crush lowers the quality of the soybean oil. Sicklepod is very prolific, and even volunteer stands yield >1000 lb of seed per acre, and prudence calls for tapping the potential of this weed as an alternative economic crop in the affected region. Pursuant to this, we have shown in laboratory-scale work the feasibility of separating the components of sicklepod seed. However, at kilogram and higher processing quantities, difficulties arise leading to modification of the earlier approach in order to efficiently separate components of the defatted seed meal. In a version for cleanly separating the proteins, the defatted meal was extracted with 0.5 M NaCl solution to remove globular proteins. Prolamins were extracted from the pellet left after salt extraction using 80% ethanol, and glutelins were then obtained in 0.1 N alkali from the residual solids left from ethanol treatment. In a pilot-scale version for water-soluble polysaccharides, the defatted meal was stirred with deionized water (DI) and centrifuged. The pooled centrifugates were heated to 92 degrees C (20-25 min), filtered, cooled to room temperature, and passed through a column of Amberlite XAD-4 to separate the polysaccharides from the anthraquinones. Senna obtusifolia L. is a one-stop-shop of a seed (from food components to medicinals).
Impact of teaching and assessment format on electrocardiogram interpretation skills.
Raupach, Tobias; Hanneforth, Nathalie; Anders, Sven; Pukrop, Tobias; Th J ten Cate, Olle; Harendza, Sigrid
2010-07-01
Interpretation of the electrocardiogram (ECG) is a core clinical skill that should be developed in undergraduate medical education. This study assessed whether small-group peer teaching is more effective than lectures in enhancing medical students' ECG interpretation skills. In addition, the impact of assessment format on study outcome was analysed. Two consecutive cohorts of Year 4 medical students (n=335) were randomised to receive either traditional ECG lectures or the same amount of small-group, near-peer teaching during a 6-week cardiorespiratory course. Before and after the course, written assessments of ECG interpretation skills were undertaken. Whereas this final assessment yielded a considerable amount of credit points for students in the first cohort, it was merely formative in nature for the second cohort. An unannounced retention test was applied 8 weeks after the end of the cardiovascular course. A significant advantage of near-peer teaching over lectures (effect size 0.33) was noted only in the second cohort, whereas, in the setting of a summative assessment, both teaching formats appeared to be equally effective. A summative instead of a formative assessment doubled the performance increase (Cohen's d 4.9 versus 2.4), mitigating any difference between teaching formats. Within the second cohort, the significant difference between the two teaching formats was maintained in the retention test (p=0.017). However, in both cohorts, a significant decrease in student performance was detected during the 8 weeks following the cardiovascular course. Assessment format appeared to be more powerful than choice of instructional method in enhancing student learning. The effect observed in the second cohort was masked by an overriding incentive generated by the summative assessment in the first cohort. This masking effect should be considered in studies assessing the effectiveness of different teaching methods.
de Oliveira, Daniel Luiz; Smiderle, Oscar Jose; Paulino, Pollyana Priscila Schuertz; Souza, Aline das Graças
2016-12-01
Acacia is an important forest species of rapid growth whose seeds have tegument dormancy. In this work it was intended to characterize water absorption pattern after seed dormancy break, and to determine the amount of water, container size and the need of breaking the tegument dormancy, as to perform electrical conductivity test in small and large seeds of Acacia mangium (Fabaceae). The seeds were collected from 10, 8 and 6 years old trees established in poor yielding-capacity soils on savannah areas of Roraima, Brazil; seeds were classified in six lots concerning to seed size and tree age. Germination tests (50 seeds and four replications per lot) were carried out on germitest® paper maintained on gerbox at 25 °C. Imbibition was verified by seed weighing at different times (0, 2, 5, 8, 12, 16, 24, 36, 48, 60, 72, 84, 96 and 120 hours). The electrical conductivity test consisted of three experiments, distinguished by the amount of water used and by the container size in which seeds were immersed. Seeds of A. mangium coming from 10 years old trees presented increased germination percent and germination speed than seeds of six-year old trees. Small seeds presented increased in electrical conductivity and water absorption until 120 hours when compared to large seeds. The immersion of seeds of A. mangium in 40 mL of distilled water into 180 mL plastic containers, after dormancy break, it is indicated for the determination of electrical conductivity test. The ratio of electrolytes by seed mass, after 24 hours of immersion in water, turns electrical conductivity test more accurate concerning A. mangium seeds.
NASA Astrophysics Data System (ADS)
Ward-Duong, K.; Patience, J.; Bulger, J.; van der Plas, G.; Ménard, F.; Pinte, C.; Jackson, A. P.; Bryden, G.; Turner, N. J.; Harvey, P.; Hales, A.; De Rosa, R. J.
2018-02-01
We report 885 μm ALMA continuum flux densities for 24 Taurus members spanning the stellar/substellar boundary with spectral types from M4 to M7.75. Of the 24 systems, 22 are detected at levels ranging from 1.0 to 55.7 mJy. The two nondetections are transition disks, though other transition disks in the sample are detected. Converting ALMA continuum measurements to masses using standard scaling laws and radiative transfer modeling yields dust mass estimates ranging from ∼0.3 to 20 M ⊕. The dust mass shows a declining trend with central object mass when combined with results from submillimeter surveys of more massive Taurus members. The substellar disks appear as part of a continuous sequence and not a distinct population. Compared to older Upper Sco members with similar masses across the substellar limit, the Taurus disks are brighter and more massive. Both Taurus and Upper Sco populations are consistent with an approximately linear relationship in M dust to M star, although derived power-law slopes depend strongly upon choices of stellar evolutionary model and dust temperature relation. The median disk around early-M stars in Taurus contains a comparable amount of mass in small solids as the average amount of heavy elements in Kepler planetary systems on short-period orbits around M-dwarf stars, with an order of magnitude spread in disk dust mass about the median value. Assuming a gas-to-dust ratio of 100:1, only a small number of low-mass stars and brown dwarfs have a total disk mass amenable to giant planet formation, consistent with the low frequency of giant planets orbiting M dwarfs.
13 CFR 108.2020 - Amount of Operational Assistance grant.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Amount of Operational Assistance grant. 108.2020 Section 108.2020 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW... NMVC Companies and SSBICs § 108.2020 Amount of Operational Assistance grant. (a) Amount of grant to...
13 CFR 108.2020 - Amount of Operational Assistance grant.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Amount of Operational Assistance grant. 108.2020 Section 108.2020 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW... NMVC Companies and SSBICs § 108.2020 Amount of Operational Assistance grant. (a) Amount of grant to...
Agricultural land use and water quality in the upper St. Joseph River basin, Michigan
Cummings, T. Ray
1978-01-01
Land use in the upper St. Joseph River basin of south-central Michigan is primarily agricultural. In the 144-square-mile area, the chemical and physical characteristics of water are determined by the climate and soils, as well as by land conservation practices. Municipal waste discharges affect water quality at some locations, as do the larger lakes and ponds. Data indicate that mean discharge from the basin is 135 cubic feet per second. About half this flow is contributed to the St. Joseph River by three major tributaries: Beebe Creek (36 cubic feet per second); Sand Creek (24 cubic feet per second); and Soap Creek (13 cubic feet per second). Runoff from 21 drainage areas delineated for the investigation ranged from 0.22 to 4.07 cubic feet per second per square mile; both the higher and lower values are largely the result of naturally occurring inter- and intrabasin transfers of water.Suspended-sediment concentrations are low throughout the basin, rarely exceeding 100 milligrams per liter. Mean concentrations at four daily sampling stations on the major tributaries and on the St. Joseph River ranged from 9.7 milligrams per liter to 38 milligrams per liter. The maximum sediment yield was 182 pounds per acre per year. Deposition of sediment in five of the 21 areas resulted in a net loss of sediment transported, and thus “negative” yields.Nitrogen and phosphorus concentrations do not vary greatly from site to site. Mean concentrations of total nitrogen at downstream sites on Beebe, Sand, and Soap Creeks, and on the St. Joseph River ranged from 1.5 to 1.8 milligrams per liter. About 90 percent of all nitrogen, and 66 percent of all phosphorus, is transported in solution. Land used principally for agriculture has a mean total nitrogen yield of 4.9 pounds per acre per year and a mean total phosphorus yield of 0.13 pounds per year. A comparison of total nitrogen and total phosphorus yields with type of agricultural use showed few relationships; nitrogen yield, however, seems to decrease as the percentage of land in row crop and small grain increases. A relation between amount of fertilizer applied to land and the amount in streams could not be demonstrated.Only about 6 percent of the total nitrogen and about 1 percent of the total phosphorus added to the land in animal wastes, in precipitation, and applied as fertilizer, is transported from the basin by the St. Joseph River at Clarendon. Estimates also suggest that almost three times as much nitrogen, and twice as much phosphorus, fall in precipitation on the basin as is transported from the basin by runoff. In general, land conservation practices of the past seem to have been effective in minimizing erosion and leaching of soils in the basin.
Stygar, Anna Helena; Krogh, Mogens Agerbo; Kristensen, Troels; Østergaard, Søren; Kristensen, Anders Ringgaard
2017-07-01
Evolutionary operations is a method to exploit the association of often small changes in process variables, planned during systematic experimentation and occurring during the normal production flow, to production characteristics to find a way to alter the production process to be more efficient. The objective of this study was to construct a tool to assess the intervention effect on milk production in an evolutionary operations setup. The method used for this purpose was a dynamic linear model (DLM) with Kalman filtering. The DLM consisted of parameters describing milk yield in a herd, individual cows from a herd, and an intervention effect on a given day. The model was constructed to handle any number of cows, experimental interventions, different data sources, or presence of control groups. In this study, data from 2 commercial Danish herds were used. In herd 1, data on 98,046 and 12,133 milkings registered from an automatic milking system (AMS) were used for model building and testing, respectively. In herd 2, data on 3,689 milkings on test days were used for estimating the initial model parameters. For model testing, data from both bulk tank milk yield (85 observations) and test-day milkings (1,471) were used. In herd 1, the manager wanted to explore the possibility of reducing the amount of concentrate provided to the cows in an AMS. In herd 2, the manager wanted to know if the milk yield could be increased by elevating the energy level provided to the cows in a total mixed ration. The experiment conducted in herd 1 was designed with a treatment and a control group, whereas in herd 2 we used a pretest/posttest design. The constructed tool provided estimates (mean and confidence intervals) for each of 3 interventions carried out in both herds. In herd 1, we concluded that the reduction in concentrate amount provided in the AMS had no negative influence on milk yield. For herd 2, the increased level of energy had a significant positive effect on milk yield but only for the first intervention. In this herd, the effect of intervention was also evaluated for cows in the first lactation and without bulk tank records. The presented model proved to be a flexible and dynamic tool, and it was successfully applied for systematic experimentation in dairy herds. The model can serve as a decision support tool for on-farm process optimization exploiting planned changes in process variables and the response of production characteristics. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Özparpucu, Merve
2018-01-01
Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars due to the presence of lignin. To render lignocellulosic biomass a suitable feedstock for the bio-based economy, plants can be engineered to have decreased amounts of lignin. However, engineered plants with the lowest amounts of lignin exhibit collapsed vessels and yield penalties. Previous efforts were not able to fully overcome this phenotype without settling in sugar yield upon saccharification. Here, we reintroduced CINNAMOYL-COENZYME A REDUCTASE1 (CCR1) expression specifically in the protoxylem and metaxylem vessel cells of Arabidopsis (Arabidopsis thaliana) ccr1 mutants. The resulting ccr1 ProSNBE:CCR1 lines had overcome the vascular collapse and had a total stem biomass yield that was increased up to 59% as compared with the wild type. Raman analysis showed that monolignols synthesized in the vessels also contribute to the lignification of neighboring xylary fibers. The cell wall composition and metabolome of ccr1 ProSNBE:CCR1 still exhibited many similarities to those of ccr1 mutants, regardless of their yield increase. In contrast to a recent report, the yield penalty of ccr1 mutants was not caused by ferulic acid accumulation but was (largely) the consequence of collapsed vessels. Finally, ccr1 ProSNBE:CCR1 plants had a 4-fold increase in total sugar yield when compared with wild-type plants. PMID:29158331
Mackin, Robert B
2014-01-01
The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix.
Mackin, Robert B.
2014-01-01
The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix. PMID:26150942
USDA-ARS?s Scientific Manuscript database
Ammonia (NH3) scrubbers reduce amounts of NH3 and dust released from animal rearing facilities, while generating nitrogen (N) rich solutions, which may be used as fertilizer. The objective of this study was to determine the effects of various NH3 scrubber solutions on yields, N uptake by forage, so...
Forest biomass and tree planting for fossil fuel offsets in the Colorado Front Range
Mike A. Battaglia; Kellen Nelson; Dan Kashian; Michael G. Ryan
2010-01-01
This study estimates the amount of carbon available for removal in fuel reduction and reforestation treatments in montane forests of the Colorado Front Range based on site productivity, pre-treatment basal area, and planting density. Thinning dense stands will yield the greatest offsets for biomass fuel. However, this will also yield the greatest carbon losses, if the...
Secilia, J; Bagyaraj, D J
1994-07-01
Grain yields of the rice cultivar 'Prakash' were improved upon inoculation with Glomus intraradices and G. fasciculatum, by 11% and 8%, respectively, compared with an uninoculated control. The results indicate that the amount of phosphate fertilizer usually applied to rice may be decreased by 50%, without affecting yield, if G. intraradices is inoculated.
Mark H. Eisenbies; M.B. Adams; W. Michael Aust; James A. Burger
2007-01-01
Floods continue to cause significant damage in the United States and elsewhere, and questions about the causes of flooding continue to be debated. A significant amount of research has been conducted on the relationship between forest management activities and water yield, peak flows, and flooding; somewhat less research has been conducted on the modeling of these...
Code of Federal Regulations, 2014 CFR
2014-01-01
... activities by considering a bank's home mortgage, small business, small farm, and community development... following criteria: (1) Lending activity. The number and amount of the bank's home mortgage, small business... distribution. The geographic distribution of the bank's home mortgage, small business, small farm, and consumer...
Code of Federal Regulations, 2013 CFR
2013-01-01
... activities by considering a bank's home mortgage, small business, small farm, and community development... following criteria: (1) Lending activity. The number and amount of the bank's home mortgage, small business... distribution. The geographic distribution of the bank's home mortgage, small business, small farm, and consumer...
Metal-assisted SIMS and cluster ion bombardment for ion yield enhancement
NASA Astrophysics Data System (ADS)
Heile, A.; Lipinsky, D.; Wehbe, N.; Delcorte, A.; Bertrand, P.; Felten, A.; Houssiau, L.; Pireaux, J.-J.; De Mondt, R.; Van Vaeck, L.; Arlinghaus, H. F.
2008-12-01
In addition to structural information, a detailed knowledge of the local chemical environment proves to be of ever greater importance, for example for the development of new types of materials as well as for specific modifications of surfaces and interfaces in multiple fields of materials science or various biomedical and chemical applications. But the ongoing miniaturization and therefore reduction of the amount of material available for analysis constitute a challenge to the detection limits of analytical methods. In the case of time-of-flight secondary ion mass spectrometry (TOF-SIMS), several methods of secondary ion yield enhancement have been proposed. This paper focuses on the investigation of the effects of two of these methods, metal-assisted SIMS and polyatomic primary ion bombardment. For this purpose, thicker layers of polystyrene (PS), both pristine and metallized with different amounts of gold, were analyzed using monoatomic (Ar +, Ga +, Xe +, Bi +) and polyatomic (SF 5+, Bi 3+, C 60+) primary ions. It was found that polyatomic ions generally induce a significant increase of the secondary ion yield. On the other hand, with gold deposition, a yield enhancement can only be detected for monoatomic ion bombardment.
Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A.; Chauhan, Sunanda
2018-01-01
Background: Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. Materials and Methods: We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. Results: We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Conclusions: Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material. PMID:29643653
Extractability, plant yield and toxicity thresholds for boron in compost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinton, W.F.; Evans, E.; Blewett, C.
Boron (B) is a trace element essential to crop growth in small soil concentrations (0.2-1.5ppm), yet may produce plant toxicity symptoms readily as the amount in the soil solution increases over 2ppm. Our study examined commercial compost made with coal fly-ash used to prepare growing media for cultivars of varying sensitivity (corn, beans, cucumber, peas). We examined total vs. extractable boron content and relate final visual symptoms of B-toxicity to yields and tissue concentrations. Visual toxicity effects included tip burn (corn), leaf mottling and necrosis (beans and peas) and leaf mottling and cupping (cucumbers). Fly ash added to compost increasedmore » hot-water soluble (HWS) B in proportion to rate and in dependence on pH, with 30% and 10% of total-B expressed as HWS-B at a media pH of 6 and 7.5, respectively. Biomass for bean and cucumber was significantly reduced by 45 to 55%, respectively, by addition of 33% fly-ash compost to growing media (28ppm total-B) while plant tissue-B increased by 6- to 4-fold, respectively. Economic yield depressions in compost media are evident for all crops and appeared at levels of HWS-B in compost media exceeding 5 ppm. The study underscores the need for careful management of exogenous factors that may be present in composts and suggests detailed understanding of media-pH and cultivar preferences may be required in preparation of growing media in order to reduce potential negative growth effects.« less
Lee, Dustin C; Perkins, Kenneth A; Zimmerman, Eli; Robbins, Glenn; Kelly, Thomas H
2011-10-01
Previous studies have indicated that high sensation seekers are more sensitive to the reinforcing effects of nicotine, initiate smoking at an earlier age, and smoke greater amounts of cigarettes. This study examined the influence of sensation-seeking status on tobacco smoking following deprivation in regular tobacco users. Twenty healthy tobacco-smoking volunteers with low or high impulsive sensation-seeking subscale scores completed 2 consecutive test days per week for 3 consecutive weeks. Each week, a range of self-report, performance, and cardiovascular assessments were completed during ad libitum smoking on Day 1 and before and after the paced smoking of a tobacco cigarette containing 0.05, 0.6, or 0.9 mg of nicotine following 24 hr of tobacco deprivation on Day 2. In addition, self-administration behavior was analyzed during a 2-hr free access period after the initial tobacco administration. In high sensation seekers, tobacco smoking independent of nicotine yield ameliorated deprivation effects, whereas amelioration of deprivation effects was dependent on nicotine yield among low sensation seekers. However, this effect was limited to a small subset of measures. Subsequent cigarette self-administration increased in a nicotine-dependent manner for high sensation seekers only. Compared with low sensation seekers, high sensation seekers were more sensitive to the withdrawal relieving effects of nonnicotine components of smoking following 24 hr of deprivation on selective measures and more sensitive to nicotine yield during subsequent tobacco self-administration. These results are consistent with studies suggesting that factors driving tobacco dependence may vary as a function of sensation-seeking status.
Perkins, Kenneth A.; Zimmerman, Eli; Robbins, Glenn; Kelly, Thomas H.
2011-01-01
Introduction: Previous studies have indicated that high sensation seekers are more sensitive to the reinforcing effects of nicotine, initiate smoking at an earlier age, and smoke greater amounts of cigarettes. This study examined the influence of sensation-seeking status on tobacco smoking following deprivation in regular tobacco users. Methods: Twenty healthy tobacco-smoking volunteers with low or high impulsive sensation-seeking subscale scores completed 2 consecutive test days per week for 3 consecutive weeks. Each week, a range of self-report, performance, and cardiovascular assessments were completed during ad libitum smoking on Day 1 and before and after the paced smoking of a tobacco cigarette containing 0.05, 0.6, or 0.9 mg of nicotine following 24 hr of tobacco deprivation on Day 2. In addition, self-administration behavior was analyzed during a 2-hr free access period after the initial tobacco administration. Results: In high sensation seekers, tobacco smoking independent of nicotine yield ameliorated deprivation effects, whereas amelioration of deprivation effects was dependent on nicotine yield among low sensation seekers. However, this effect was limited to a small subset of measures. Subsequent cigarette self-administration increased in a nicotine-dependent manner for high sensation seekers only. Conclusions: Compared with low sensation seekers, high sensation seekers were more sensitive to the withdrawal relieving effects of nonnicotine components of smoking following 24 hr of deprivation on selective measures and more sensitive to nicotine yield during subsequent tobacco self-administration. These results are consistent with studies suggesting that factors driving tobacco dependence may vary as a function of sensation-seeking status. PMID:21690318
Kuechel, A F; Schoenfuss, T C
2018-04-01
Nondigestible carbohydrates with a degree of polymerization between 3 and 10 (oligosaccharides) are commonly used as dietary fiber ingredients in the food industry, once they have been confirmed to have positive effects on human health by regulatory authorities. These carbohydrates are produced through chemical or enzymatic synthesis. Polylactose, a polymerization product of lactose and glucose, has been produced by reactive extrusion using a twin-screw extruder, with citric acid as the catalyst. Trials using powdered cheese whey permeate as the lactose source for this reaction were unsuccessful. The development of a laboratory method was necessary to investigate the effect of ingredients present in permeate powder that could be inhibiting polymerization. A Mars 6 Microwave Digestion System (CEM Corp., Matthews, NC) was used to heat and polymerize the sugars. The temperatures had to be lowered from extrusion conditions to produce a caramel-like product and not decompose the sugars. Small amounts of water had to be added to the reaction vessels to allow consistent heating of sugars between vessels. Elevated levels of water (22.86 and 28.57%, vol/wt) and calcium phosphate (0.928 and 1.856%, wt/wt) reduced the oligosaccharide yield in the laboratory method. Increasing the citric acid (catalyst) concentration increased the oligosaccharide yield for the pure sugar blend and when permeate powder was used. The utility of the laboratory method to predict oligosaccharide yields was confirmed during extrusion trials of permeate when this increased acid catalyst concentration resulted in similar oligosaccharide concentrations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Nava-Sedeno, J. Manik; Ortiz-Cervantes, Adrian; Segura, Antigona; Domagal-Goldman, Shawn D.
2016-01-01
Lifeless planets with CO2 atmospheres produce CO by CO2 photolysis. On planets around M dwarfs, CO is a long-lived atmospheric compound, as long as UV emission due to the stars chromospheric activity lasts, and the sink of CO and O2 in seawater is small compared to its atmospheric production. Atmospheres containing reduced compounds, like CO, may undergo further energetic and chemical processing to give rise to organic compounds of potential importance for the origin of life. We calculated the yield of organic compounds from CO2-rich atmospheres of planets orbiting M dwarf stars, which were previously simulated by Domagal- Goldman et al. (2014) and Harman et al. (2015), by cosmic rays and lightning using results of experiments by Miyakawaet al. (2002) and Schlesinger and Miller (1983a, 1983b). Stellar protons from active stars may be important energy sources for abiotic synthesis and increase production rates of biological compounds by at least 2 orders of magnitude compared to cosmic rays. Simple compounds such as HCN and H2CO are more readily synthesized than more complex ones, such as amino acids and uracil (considered here as an example), resulting in higher yields for the former and lower yields for the latter. Electric discharges are most efficient when a reducing atmosphere is present. Nonetheless, atmospheres with high quantities of CO2 are capable of producing higher amounts of prebiotic compounds, given that CO is constantly produced in the atmosphere. Our results further support planetary systems around M dwarf stars as candidates for supporting life or its origin.
Eppard, Elisabeth; de la Fuente, Ana; Mohr, Nicole; Allmeroth, Mareli; Zentel, Rudolf; Miederer, Matthias; Pektor, Stefanie; Rösch, Frank
2018-02-27
In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.
Protease and Hemicellulase Assisted Extraction of Dietary Fiber from Wastes of Cynara cardunculus
Santo Domingo, Cinthia; Soria, Marcelo; Rojas, Ana M.; Fissore, Eliana N.; Gerschenson, Lía N.
2015-01-01
The action of protease and hemicellulase for the extraction of fractions enriched in soluble fiber from bracts and stems of Cynara cardunculus was evaluated. Using a two-factor simplex design comprising protease amounts of 0–200 μL and hemicellulase amounts of 0–200 mg for 5 g of material, we explored the effect of a 5 h enzymatic treatment at 40 °C on the chemical composition and yield of the fractions isolated. The fractions contained inulin and pectin. In general, the protein, inulin, and polyphenol contents and also the yields were higher for fractions obtained from stems. The most marked effects were observed when enzymes were used at higher concentrations, especially for hemicellulase. The inclusion of a pre-heating step increased the yield and the inulin content for fractions isolated from bracts and stems and decreased the protein and polyphenol contents, and the galacturonic acid for bracts. These fractions, in general, contained the polyphenolic compounds monocaffeoylquinic acid, apigenin, and pinoresinol. PMID:25809605
Water yield issues in the jarrah forest of south-western Australia
NASA Astrophysics Data System (ADS)
Ruprecht, J. K.; Stoneman, G. L.
1993-10-01
The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge this complexity and evaluate forest management strategies both at the large catchment scale and at long time-scales. The extensive network of small catchment experiments, regional studies, process studies and catchment modelling at both the small and large scale, which are carried out in the jarrah forest, are all considered as integral components of the research to develop these management strategies to optimise water yield from the jarrah forest, without forfeiting other forest values.
Vaz, João M; Ferreira, José S; Dias-Ferreira, Celia
2015-12-01
São Tomé and Principe archipelago in West Africa is a Small Island Developing State facing acute waste management problems. This article describes the implementation of selective collection of biowaste combined with composting in São Tomé, as a case-study of an innovative action in the framework of a Small Island Developing State. Collection was designed to gather 225 t y(-1), targeting non-domestic biowaste producers, namely local businesses, municipal markets and municipal green waste. A municipal composting plant was built using basic facilities and windrow composting. The total investment amounted to €50,000, mainly supported by external aid. Biowaste producers reacted very positively, source segregating enthusiastically. Irregular service - collection collapsed each time the old vehicle was repaired - together with political disengagement and unmotivated work force were the major constrains. Biowaste was intermittently delivered to the composting plant and yielded 2 t of compost from July to December 2013 and 10 t during 2014. Compost was sold as organic fertiliser to a touristic resource, to small farmers and to gardeners, at a market price slightly below production costs, meaning the process is not economically sustainable without support. Nevertheless, biowaste is one of the few waste fractions (other than glass) that can be turned into a product that has both market value and a real demand, showing the enormous potential of composting source-separated biowaste in this part of the world. © The Author(s) 2015.
Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments
Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; ...
2015-11-12
For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T ion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent T ion and DSR.
Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel; Vázquez-Rodríguez, Gabriela
2015-01-01
In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4 (+), NO2 (-), and NO3 (-), and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents.
Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel
2015-01-01
In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4 +, NO2 −, and NO3 −, and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents. PMID:26495313
Simultaneous Use of Multiple Answer Copying Indexes to Improve Detection Rates
ERIC Educational Resources Information Center
Wollack, James A.
2006-01-01
Many of the currently available statistical indexes to detect answer copying lack sufficient power at small [alpha] levels or when the amount of copying is relatively small. Furthermore, there is no one index that is uniformly best. Depending on the type or amount of copying, certain indexes are better than others. The purpose of this article was…
Code of Federal Regulations, 2013 CFR
2013-01-01
... assessment area(s) through its lending activities by considering a bank's home mortgage, small business... and amount of the bank's home mortgage, small business, small farm, and consumer loans, if applicable... bank's home mortgage, small business, small farm, and consumer loans, if applicable, based on the loan...
Water resources of part of Canyonlands National Park, southeastern Utah
Sumsion, C.T.; Bloke, E.L.
1972-01-01
Canyonlands National Park is in about the center of the Canyon Lands section of the Colorado Plateaus physiographic province in southeastern Utah. The part of the park discussed embraces an area of about 400 square miles comprising isolated mesas, precipitous canyons, and dissected broad benches near the confluence of the Green and Colorado Rivers, the only perennial streams in the area. The climate is arid to semiarid; normal annual precipitation ranges from less than 8 to about 10 inches. Potential evapotranspiration is about 41 inches annually.Geology of the park is characterized by nearly horizontal strata that dip gently northward. Exposed rock formations and deposits range in age from Middle Pennsylvanian to Holocene. Owing to the elevated and deeply dissected topography, only parts of the Cedar Mesa and White Rim Sandstone Members of the Cutler Formation of Permian age have potential for development of wells. Strata above and below them support only small springs, are dry, or contain brine.In the northwest part of the park, the Green River at Taylor Canyon is a potential source of surface water for public supplies for the Island In The Sky area and a small part of the northwest White Rim area. It will require filtration and treatment before use. In the same area, two unused wells in Taylor Canyon will supply enough water for present requirements from the White Rim Sandstone Member of the Cutler Formation, about 140 gallons per minute combined, but yield mineralized water that will require treatment before use. Springs yielding good water at the Island In The Sky and White Rim are mostly intermittent and too small for public-water supply. Most of the White Rim area is dry, having no usable ground water. In The Needles area, wells provide water of good quality from the Cedar Mesa Sandstone Member of the Cutler Formation. Springs yielding good water in the same area are available for supplementary supplies. West of The Needles, The Grabens area is without springs or potential aquifers bearing usable water.During 1970 about 510,000 gallons of water was used in Canyonlands National Park. Of this amount, 110,000 gallons was supplied to Island In The Sky by tank truck from a source outside the park, and about 400,000 gallons was withdrawn from the well in use at The Needles. Estimated total annual requirements in 10 years (1980) may be as much as 6 million gallons. Sources of water supplies within the park now in use and potential sources of surface water or ground water outlined by this investigation will meet the estimated requirements. Development of rainfall-collection and cistern-storage systems could furnish small emergency sources of water for waterless areas on the White Rim and in The Grabens.
NASA Astrophysics Data System (ADS)
Zhao, Erni; Xu, Lirong; Wang, Rongzhen
2018-01-01
Unreasonable application of irrigation and fertilizer will cause the waste of water and nitrogen and environmental pollution. In this paper, a series of soil-pit experiments were carried out to study the distribution and leaching loss of nitrogen in winter wheat’s soil. The results showed that NO3 - concentration at 20-80cm depth mainly responded to fertilizer application at the beginning of field experiment, but the amount of irrigation became the dominant factor with the growth of winter wheat. It is noteworthy that the distribution of NO3 - was mainly affected by the amount of fertilizer applied at the depth of 120-160cm in the whole period of growth of winter wheat. The accumulation position of NH4 + was deepened as the amount of irrigation increased, however, the maximum aggregation depth of ammonium nitrogen was no more than 80cm owing to its poor migration. It can be concluded that the influence of irrigation amount on the concentration of NH4 + in soil solution was more obvious than that of fertilizer. Compared with fertilizer, the amount of irrigation played a leading role in the utilization ratio of nitrogen and the yield of winter wheat. In summary, the best water and fertilizer treatment occurred in No.3 soil-pit, which meant that the middle amount of water and fertilizer could get higher wheat yield and less nitrogen leaching losses in the study area.
Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.
2014-01-01
Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.
Hu, Yufei; Zhang, Zhujun; Yang, Chunyan
2008-07-01
Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.
Matthew S. Scholl; Janice K. Wiedenbeck; Paul R. Blankenhorn; Charles D. Ray; Lee R. Stover; Brian W. Beakler
2008-01-01
With high stumpage prices, many sawmills are interested in the feasibility of processing smaller diameter hardwood logs. Most of these mills do not know the lumber yield, lumber grade, or cost of processing these logs. In this project we investigated the impact of alternative dry kiln schedules on the grade yields and defect occurrence in lumber sawn from small-...
Nonlinear restrictions on dynamo action. [in magnetic fields of astrophysical objects
NASA Technical Reports Server (NTRS)
Vainshtein, Samuel I.; Cattaneo, Fausto
1992-01-01
Astrophysical dynamos operate in the limit of small magnetic diffusivity. In order for magnetic reconnection to occur, very small magnetic structures must form so that diffusion becomes effective. The formation of small-scale fields is accompanied by the stretching of the field lines and therefore by an amplification of the magnetic field strength. The back reaction of the magnetic field on the motions leads to the eventual saturation of the dynamo process, thus posing a constraint on the amount of magnetic flux that can be generated by dynamo action, It is argued that in the limit of small diffusivity only a small amount of flux, many orders of magnitude less than the observed fluxes, can be created by dynamo processes.
A continental scale model for dissolved silica mobilization in North America
NASA Astrophysics Data System (ADS)
Jansen, N.; Lauerwald, R.; Hartmann, J.; Dürr, H. H.; Loos, S.; Kempe, S.; Middelkoop, H.
2009-04-01
Silicon is one of the few elements that link to both the organic and inorganic carbon cycles. Dissolved silicon (DSi) is an important nutrient in terrestrial and aquatic ecosystems. Cations accompanying the release of DSi by chemical silicate rock weathering are generally balanced by soil/atmospheric CO2. Chemical weathering is the major source of "new" bioavailable DSi for continental aquatic systems to compensate for the loss of DSi by outflow or organic precipitation and burial. We use river water chemistry data from 164 monitoring stations from the conterminous United States (WQN and NAWQA networks). Selected stations are characterized by low population density and low influence of water bodies to minimize human and DSi retention impact. Observed DSi yield in these catchments is assumed to represent natural DSi mobilization by chemical weathering. The catchments have an average size of 4400 km2 (Median: 991 km2) with a discharge weighted average DSi yield of 4.34 t SiO2 km-2a-1. To predict mobilization of DSi from chemical weathering a lumped non-linear empirical model is developed, considering control factors such as climate, morphology, hydrology, land cover, soil and lithology. A multi-lithological model approach is chosen because only very few mono-lithological catchments were identified in the dataset. The model is then extrapolated to the conterminous United States to regionally quantify the amount of DSi that is released into the river systems by chemical weathering. Small outcrops of certain lithological classes characterized by a high DSi yield are not represented on previously available small scale lithological maps. Because such localities may have a major influence on DSi fluxes from small catchments (Hartmann et al., 2009) a new high resolution lithological vector-map for North America is developed and applied in the introduced model. In accordance with previous studies, runoff and lithology are identified as the major predictors for specific DSi flux (Bluth and Kump, 1994; Hartmann et al., 2009). Only in relation to some lithological classes, temperature and terrain slope constitute significant predictors. An influence of land cover, soil properties or other predictors is not observed. This is partly attributed to geodata resolution and classification. Lithological classes "Basic Volcanics and Pyroclastics" and "Basic and Intermediate Plutonics" show the highest DSi yields, with respect to a given discharge. The lithological class "Siliciclastic Sedimentary Rocks" is characterized by the lowest DSi yield. The model explains 89% of the DSi yield variance; the average yield of catchments employed in model calibration is 4.32 t SiO2 km-2a-1, somewhat above the global average yield of 3.3 t SiO2 km-2a-1 (Dürr et al., 2009). The model quantifies DSi fluxes from the terrestrial into the continental aquatic systems. This helps to estimate DSi retention within fluvial systems (Lauerwald et al., submitted) and improves understanding of this part of the silicon cycle. References: Bluth, G.J.S., and Kump, L.R., 1994, Lithologic and Climatologic Controls of River Chemistry: Geochimica Cosmochimica Acta, 58, 2341-2359. Dürr, H.H., Meybeck, M., Hartmann, J., Laruelle, G.G., and Roubeix, V., 2009, Global Spatial distribution of natural riverine silica inputs to the coastal zone: Biogeosciences, (in review), bgd-2008-0173. Hartmann, J., Jansen, N., Dürr, H.H., Harashima, A., Okubo, K., and Kempe, S., 2009, Predicting riverine dissolved silica fluxes into coastal zones from a hyperactive region and analysis of their first order controls: International Journal of Earth Sciences, (DOI 10.1007/s00531-008-0381-5). Lauerwald, R., Jansen N., Hartmann, J., Dürr, H.H., Loos, S., Kempe, S., Middelkoop, H., submitted, Modeling dissolved silica retention in the limnic system of North America. (Submitted to this session).
Lesnik, Julie J
2014-06-01
Termite foraging by chimpanzees and present-day modern humans is a well-documented phenomenon, making it a plausible hypothesis that early hominins were also utilizing this resource. Hominin termite foraging has been credited by some to be the explanation for the unexpected carbon isotope signatures present in South African hominin teeth, which suggest the diet was different from that of extant non-human great apes, consisting of a significant amount of resources that are not from woody-plants. Grass-eating termites are one potential resource that could contribute to the carbon signature. However, not all termites eat grasses, and in fact, the termites that are most widely consumed by chimpanzees and by many present-day human populations at best have a mixed diet that includes small amounts of grasses. Here I review the ecology of termites and how it affects their desirability as a food resource for hominins, and conduct a meta-analysis of nutritional values for various genera, species and castes from the literature. Termites are very diverse, even within species, and this variability affects both their carbon signatures and nutritional value, hindering generalizations regarding the contribution of termites to the hominin diet. It is concluded here that a combination of soldiers and alates of the genus Macrotermes be used to model the insectivory component of the Plio-Pleistocene hominin diet due to their significant amounts of energy-yielding nutrients and potential role as a critical resource for supporting larger-brained hominins. Copyright © 2014. Published by Elsevier Ltd.
Milbury, Coren A.; Chen, Clark C.; Mamon, Harvey; Liu, Pingfang; Santagata, Sandro; Makrigiorgos, G. Mike
2011-01-01
Thorough screening of cancer-specific biomarkers, such as DNA mutations, can require large amounts of genomic material; however, the amount of genomic material obtained from some specimens (such as biopsies, fine-needle aspirations, circulating-DNA or tumor cells, and histological slides) may limit the analyses that can be performed. Furthermore, mutant alleles may be at low-abundance relative to wild-type DNA, reducing detection ability. We present a multiplex-PCR approach tailored to amplify targets of interest from small amounts of precious specimens, for extensive downstream detection of low-abundance alleles. Using 3 ng of DNA (1000 genome-equivalents), we amplified the 1 coding exons (2-11) of TP53 via multiplex-PCR. Following multiplex-PCR, we performed COLD-PCR (co-amplification of major and minor alleles at lower denaturation temperature) to enrich low-abundance variants and high resolution melting (HRM) to screen for aberrant melting profiles. Mutation-positive samples were sequenced. Evaluation of mutation-containing dilutions revealed improved sensitivities after COLD-PCR over conventional-PCR. COLD-PCR improved HRM sensitivity by approximately threefold to sixfold. Similarly, COLD-PCR improved mutation identification in sequence-chromatograms over conventional PCR. In clinical specimens, eight mutations were detected via conventional-PCR-HRM, whereas 12 were detected by COLD-PCR-HRM, yielding a 33% improvement in mutation detection. In summary, we demonstrate an efficient approach to increase screening capabilities from limited DNA material via multiplex-PCR and improve mutation detection sensitivity via COLD-PCR amplification. PMID:21354058
Czarnecki, John B.; Clark, Brian R.; Stanton, Gregory P.
2003-01-01
The Mississippi River Valley alluvial aquifer is a water-bearing assemblage of gravels and sands that underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. Because of the heavy demands placed on the aquifer, several large cones of depression have formed in the potentiometric surface, resulting in lower well yields and degraded water quality in some areas. A ground-water flow model of the alluvial aquifer was previously developed for an area covering 3,826 square miles, extending south from the Arkansas River into the southeastern corner of Arkansas, parts of northeastern Louisiana, and western Mississippi. The flow-model results indicated that continued ground-water withdrawals at rates commensurate with those of 1997 could not be sustained indefinitely without causing water levels to decline below half the original saturated thickness of the aquifer. Conjunctive-use optimization modeling was applied to the flow model of the alluvial aquifer to develop withdrawal rates that could be sustained relative to the constraints of critical ground-water area designation. These withdrawal rates form the basis for estimates of sustainable yield from the alluvial aquifer and from rivers specified within the alluvial aquifer model. A management problem was formulated as one of maximizing the sustainable yield from all ground-water and surface-water withdrawal cells within limits imposed by plausible withdrawal rates, and within specified constraints involving hydraulic head and streamflow. Steady-state conditions were selected because the maximized withdrawals are intended to represent sustainable yield of the system (a rate that can be maintained indefinitely).One point along the Arkansas River and one point along Bayou Bartholomew were specified for obtaining surface-water sustainable-yield estimates within the optimization model. Streamflow constraints were specified at two river cells based on average 7-day low flows with 10-year recurrence intervals. Sustainable-yield estimates were affected by the allowable upper limit on withdrawals from wells specified in the optimization model. Withdrawal rates were allowed to increase to 200 percent of the withdrawal rate in 1997. As the overall upper limit is increased, the sustainable yield generally increases. Tests with the optimization model show that without limits on pumping, wells adjacent to sources of water, such as large rivers, would have optimal withdrawal rates that were orders of magnitude larger than rates corresponding to those of 1997. Specifying an upper withdrawal limit of 100 percent of the 1997 withdrawal rate, the sustainable yield from ground water for the entire study area is 70.3 million cubic feet per day, which is about 96 percent of the amount withdrawn in 1997 (73.5 million cubic feet per day). If the upper withdrawal limit is increased to 150 percent of the 1997 withdrawal rate, the sustainable yield from ground water for the entire study area is 80.6 million cubic feet per day, which is about 110 percent of the amount withdrawn in 1997. If the upper withdrawal limit is increased to 200 percent of the 1997 withdrawal rate, the sustainable yield from ground water for the entire study area is 110.2 million cubic feet per day, which is about 150 percent of the amount withdrawn in 1997. Total sustainable yield from the Arkansas River and Bayou Bartholomew is about 4,900 million cubic feet per day, or about 6,700 percent of the amount of ground-water withdrawn in 1997. The large, sustainable yields from surface water represent a potential source of water that could supplement ground water and meet the total water demand. Unmet demand (defined as the difference between the optimized withdrawal rate or sustainable yield, and the anticipated demand) was calculated using different demand rates based on multiples of the 1997-withdrawal rate. Assuming that demand is the 1997 withdrawal rate, and that sustainable-
12 CFR 195.42 - Data collection, reporting, and disclosure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... calendar year: (1) Small business and small farm loan data. For each geography in which the savings association originated or purchased a small business or small farm loan, the aggregate number and amount of... each small business or small farm loan originated or purchased by the savings association: (1) A unique...
12 CFR 195.42 - Data collection, reporting, and disclosure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... calendar year: (1) Small business and small farm loan data. For each geography in which the savings association originated or purchased a small business or small farm loan, the aggregate number and amount of... each small business or small farm loan originated or purchased by the savings association: (1) A unique...
12 CFR 228.42 - Data collection, reporting, and disclosure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... data for each small business or small farm loan originated or purchased by the bank: (1) A unique... for the prior calendar year: (1) Small business and small farm loan data. For each geography in which the bank originated or purchased a small business or small farm loan, the aggregate number and amount...
12 CFR 195.42 - Data collection, reporting, and disclosure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... calendar year: (1) Small business and small farm loan data. For each geography in which the savings association originated or purchased a small business or small farm loan, the aggregate number and amount of... each small business or small farm loan originated or purchased by the savings association: (1) A unique...
12 CFR 228.42 - Data collection, reporting, and disclosure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... data for each small business or small farm loan originated or purchased by the bank: (1) A unique... for the prior calendar year: (1) Small business and small farm loan data. For each geography in which the bank originated or purchased a small business or small farm loan, the aggregate number and amount...
Charles J. Gatchell; Charles J. Gatchell
1991-01-01
Gang-ripping technology that uses a movable (floating) outer blade to eliminate unusable edgings is described, including new tenn1nology for identifying preferred and minimally acceptable strip widths. Because of the large amount of salvage required to achieve total yields, floating blade gang ripping is not recommended for boards with crook. With crook removed by...
Deer forage in a loblolly pine plantation
Robert M. Blair
1967-01-01
Browse yields in a 30-year-old plantation thinned at ages 20 and 25 years were directly related to the amount of pine removed and varied from 154 lb (oven-dry) per acre under light thinning to 199 lb/acre under heavy thinning. At plantation age 35, five growing seasons after a third thinning, browse yields were inversely related to pine-thinning intensity, ranging from...
Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L)
Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan
2017-01-01
Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65–70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency. PMID:28384647
Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L).
Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan
2017-01-01
Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65-70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency.
Kargar, S; Ghorbani, G R; Khorvash, M; Sadeghi-Sefidmazgi, A; Schingoethe, D J
2014-11-01
The effect of barley-based (BBD) or corn-based diets (CBD), or their equal blend (BCBD) on dry matter (DM) intake, feeding and chewing behavior, and production performance of lactating dairy cows was evaluated. Nine multiparous Holstein cows (75.6 ± 11.0 d in milk) were used in a triplicate 3 × 3 Latin square design with 21-d periods. Forage-to-concentrate ratio (40:60), forage neutral detergent fiber (20% of DM), total neutral detergent fiber (>29% of DM), and geometric mean particle size (4.3mm) were similar among treatments. Meal patterns, including meal size and intermeal interval, were not affected by the dietary treatments and DM intake (25.6 kg/d) was not different among treatments. Ether extract intake increased linearly with increasing amount of the corn grain in the diets. Due to similar feed intake, actual milk (48.6 kg/d), 4% fat-corrected milk (36.8 kg/d), and fat- and protein-corrected milk (38.1 kg/d) yields were not affected by treatments. Average milk protein percentage and yield were 2.83% and 1.37 kg/d, respectively, and were not different across treatments. Milk fat percentage increased linearly with increasing amount of corn grain in the diets and was greater in CBD relative to BCBD but not BBD (2.31, 2.28, and 2.57%, for BBD, BCBD, and CBD, respectively). However, milk fat yield tended to show a linear increase as the amount of corn grain included in the diets increased. Results indicated that changing diet fermentability by replacing barley grain for corn grain in oil-supplemented diets did not influence feeding patterns and thereby no changes in feed intake and milk yield occurred. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
How much land is needed for feral pig hunting in Hawai'i?
Hess, Steven C.; Jacobi, James D.
2014-01-01
Hunting is often considered to be incompatible with conservation of native biota and watershed functions in Hawai'i. Management actions for conservation generally exclude large non-native mammals from natural areas, thereby reducing the amount of land area available for hunting activities and the maintenance of sustainable game populations. An approach which may be useful in addressing the necessary minimum amount of land area allocated for hunting in Hawai'i is to determine the amount of land area necessary for sustaining populations of hunted animals to meet current levels harvested by the public. We ask: What is the total amount of land necessary to provide sustained-yield hunting of game meat for food at the current harvest level on Hawai'i Island if only feral pigs (Sus scrofa) were to be harvested? We used a simplistic analysis to estimate that 1 317.6 km2-1 651.4 km2 would be necessary to produce 187 333.6 kg of feral pig meat annually based on the range of dressed weight per whole pig, the proportion of a pig population that can be sustainably removed annually, and the density of pig populations in the wild. This amount of area comprises 12.6-15.8% of the total land area of Hawai'i Island, but more likely represents 27.6-43.5% of areas that may be compatible with sustained-yield hunting.
Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi
2015-01-01
Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed.
Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi
2015-01-01
Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed. PMID:26318000
NASA Astrophysics Data System (ADS)
Hernandez-Santana, V.; Zhou, X.; Helmers, M. J.; Asbjornsen, H.; Kolka, R.; Tomer, M.
2013-01-01
SummaryIntensively managed annual cropping systems have produced high crop yields but have often produced significant ecosystem services alteration, in particular hydrologic regulation loss. Reconversion of annual agricultural systems to perennial vegetation can lead to hydrologic function restoration, but its effect is still not well understood. Therefore, our objective was to assess the effects of strategic introduction of different amounts and location of native prairie vegetation (NPV) within agricultural landscapes on hydrological regulation. The study was conducted in Iowa (USA), and consisted of a fully balanced, replicated, incomplete block design whereby 12 zero-order ephemeral flow watersheds received four treatments consisting of varying proportions (0%, 10%, and 20%) of prairie vegetation located in different watershed positions (footslope vs. contour strips). Runoff volume and rate were measured from 2008 to 2010 (April-October) with an H-Flume installed in each catchment, and automated ISCO samplers. Over the entire study period, we observed a total of 129 runoff events with an average runoff volume reduction of 37% based on the three treatments with NPV compared to watersheds with row crops. We observed a progressively greater reduction across the 3 years of the study as the perennial strips became established with the greatest differences among treatments occurring in 2010. The differences among the watersheds were attributed mainly to NPV amount and position, with the 10% NPV at footslope treatment having the greatest runoff reduction probably because the portion of NPV filter strip that actually contacted watershed runoff was greater with the 10% NPV at footslope. We observed greater reductions in runoff in spring and fall likely because perennial prairie plants were active and crops were absent or not fully established. High antecedent soil moisture sometimes led to little benefit of the NPV treatments but in general the NPV treatments were effective during both small and large events. We conclude that, small amounts of NPV strategically incorporated into corn-soybean watersheds in the Midwest US can be used to effectively reduce runoff.
Janku, F; Huang, H J; Fujii, T; Shelton, D N; Madwani, K; Fu, S; Tsimberidou, A M; Piha-Paul, S A; Wheler, J J; Zinner, R G; Naing, A; Hong, D S; Karp, D D; Cabrilo, G; Kopetz, E S; Subbiah, V; Luthra, R; Kee, B K; Eng, C; Morris, V K; Karlin-Neumann, G A; Meric-Bernstam, F
2017-03-01
Cell-free DNA (cfDNA) from plasma offers easily obtainable material for KRAS mutation analysis. Novel, multiplex, and accurate diagnostic systems using small amounts of DNA are needed to further the use of plasma cfDNA testing in personalized therapy. Samples of 16 ng of unamplified plasma cfDNA from 121 patients with diverse progressing advanced cancers were tested with a KRASG12/G13 multiplex assay to detect the seven most common mutations in the hotspot of exon 2 using droplet digital polymerase chain reaction (ddPCR). The results were retrospectively compared to mutation analysis of archival primary or metastatic tumor tissue obtained at different points of clinical care. Eighty-eight patients (73%) had KRASG12/G13 mutations in archival tumor specimens collected on average 18.5 months before plasma analysis, and 78 patients (64%) had KRASG12/G13 mutations in plasma cfDNA samples. The two methods had initial overall agreement in 103 (85%) patients (kappa, 0.66; ddPCR sensitivity, 84%; ddPCR specificity, 88%). Of the 18 discordant cases, 12 (67%) were resolved by increasing the amount of cfDNA, using mutation-specific probes, or re-testing the tumor tissue, yielding overall agreement in 115 patients (95%; kappa 0.87; ddPCR sensitivity, 96%; ddPCR specificity, 94%). The presence of ≥ 6.2% of KRASG12/G13 cfDNA in the wild-type background was associated with shorter survival (P = 0.001). Multiplex detection of KRASG12/G13 mutations in a small amount of unamplified plasma cfDNA using ddPCR has good sensitivity and specificity and good concordance with conventional clinical mutation testing of archival specimens. A higher percentage of mutant KRASG12/G13 in cfDNA corresponded with shorter survival. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Mountain, David; Keijzers, Gerben; Chu, Kevin; Joseph, Anthony; Read, Catherine; Blecher, Gabriel; Furyk, Jeremy; Bharat, Chrianna; Velusamy, Karthik; Munro, Andrew; Baker, Kylie; Kinnear, Frances; Mukherjee, Ahses; Watkins, Gina; Buntine, Paul; Livesay, Georgia; Fatovich, Daniel
2016-01-01
Overuse of CT Pulmonary Angiograms (CTPA) for diagnosing pulmonary embolism (PE), particularly in Emergency Departments (ED), is considered problematic. Marked variations in positive CTPA rates are reported, with American 4-10% yields driving most concerns. Higher resolution CTPA may increase sub-segmental PE (SSPE) diagnoses, which may be up to 40% false positive. Excessive use and false positives could increase harm vs. benefit. These issues have not been systematically examined outside America. To describe current yield variation and CTPA utilisation in Australasian ED, exploring potential factors correlated with variation. A retrospective multi-centre review of consecutive ED-ordered CTPA using standard radiology reports. ED CTPA report data were inputted onto preformatted data-sheets. The primary outcome was site level yield, analysed both intra-site and against a nominated 15.3% yield. Factors potentially associated with yield were assessed for correlation. Fourteen radiology departments (15 ED) provided 7077 CTPA data (94% ≥64-slice CT); PE were reported in 1028 (yield 14.6% (95%CI 13.8-15.4%; range 9.3-25.3%; site variation p <0.0001) with four sites significantly below and one above the 15.3% target. Admissions, CTPA usage, PE diagnosis rates and size of PE were uncorrelated with yield. Large PE (≥lobar) were 55% (CI: 52.1-58.2%) and SSPE 8.8% (CI: 7.1-10.5%) of positive scans. CTPA usage (0.2-1.5% adult attendances) was correlated (p<0.006) with PE diagnosis but not SSPE: large PE proportions. We found significant intra-site CTPA yield variation within Australasia. Yield was not clearly correlated with CTPA usage or increased small PE rates. Both SSPE and large PE rates were similar to higher yield historical cohorts. CTPA use was considerably below USA 2.5-3% rates. Higher CTPA utilisation was positively correlated with PE diagnoses, but without evidence of increased proportions of small PE. This suggests that increased diagnoses seem to be of clinically relevant sized PE.
Tests of Rock Cores Scott Study Area, Missouri
1970-05-01
porphyry with some granodiorite and small amounts of dolomite, acid metavolcanics, and dark gray volcanic breccia. Specific gravity, * Schmidt...petrographically identified as predominantly rhyolite and dacite porphyry with some granodiorite and small amounts of dolomite, acid metavolcanics, and dark...exhibit- ing little, if any, hysteresis. 9. Direct and indirect tensile strengths exhibited by tne rhyro- lite and dacite porphyry and granite are very high
Study of μDBO overlay target size reduction for application broadening
NASA Astrophysics Data System (ADS)
Calado, Victor; Dépré, Jérôme; Massacrier, Clément; Tarabrin, Sergey; van Haren, Richard; Dettoni, Florent; Bouyssou, Régis; Dezauzier, Christophe
2018-03-01
With these proceedings we present μ-diffraction-based overlay (μDBO) targets that are well below the currently supported minimum size of 10×10 μm2 . We have been capable of measuring overlay targets as small as 4×4 μm2 with our latest generation YieldStar system. Furthermore we find an excellent precision (TMU < 0.33 nm for 6 × 6 μm2 ) without any compromise on throughput (MAM time < 60 ms). At last a study that compares four generations of YieldStar systems show clearly that the latest generation YieldStar systems is much better capable of reading small overlay targets such that the performance of a 16 × 16 μm2 on an early generation YieldStar 2nd-gen is comparable to that of a 8 × 8 μm2 on the latest YieldStar 5th-gen. This work enables a smaller metrology footprint, more placement flexibility and in-die overlay metrology solutions.
A hybrid (Monte Carlo/deterministic) approach for multi-dimensional radiation transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bal, Guillaume, E-mail: gb2030@columbia.edu; Davis, Anthony B., E-mail: Anthony.B.Davis@jpl.nasa.gov; Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106-4030
2011-08-20
Highlights: {yields} We introduce a variance reduction scheme for Monte Carlo (MC) transport. {yields} The primary application is atmospheric remote sensing. {yields} The technique first solves the adjoint problem using a deterministic solver. {yields} Next, the adjoint solution is used as an importance function for the MC solver. {yields} The adjoint problem is solved quickly since it ignores the volume. - Abstract: A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumination, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a small detector located in the sky (mounted on a satellite or amore » airplane). It uses a deterministic approximation of an adjoint transport solution to reduce variance, computed quickly by ignoring atmospheric interactions. This allows significant variance and computational cost reductions when the atmospheric scattering and absorption coefficient are small. When combined with an atmospheric photon-redirection scheme, significant variance reduction (equivalently acceleration) is achieved in the presence of atmospheric interactions.« less
Dornblaser, Mark M.; Striegl, Robert G.
2015-01-01
Hydrologic exports of dissolved inorganic and organic carbon (DIC, DOC) reflect permafrost conditions in arctic and subarctic river basins. DIC yields in particular, increase with decreased permafrost extent. We investigated the influence of permafrost extent on DIC and DOC yield in a tributary of the Yukon River, where the upper watershed has continuous permafrost and the lower watershed has discontinuous permafrost. Our results indicate that DIC versus DOC predominance switches with interannual changes in water availability and flow routing in intermediate-size watersheds having mixed permafrost coverage. Large water yield and small concentrations from mountainous headwaters and small water yield and high concentrations from lowlands produced similar upstream and downstream carbon yields. However, DOC export exceeded DIC export during high-flow 2011 while DIC predominated during low-flow 2010. The majority of exported carbon derived from near-surface organic sources when landscapes were wet or frozen and from mineralized subsurface sources when infiltration increased.
Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential (in MIXED)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woick, B.; Friedrich, R.
1981-09-01
Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.
Particulates generated from combustion of polymers (plastics).
Shemwell, B E; Levendis, Y A
2000-01-01
This is an experimental study on the characterization of particulate (soot) emissions from burning polymers. Emissions of polystyrene (PS), polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), and polyvinyl chloride (PVC) plastics were studied. Combustion took place in a laboratory-scale, electrically heated, drop-tube furnace at temperatures of 1300 and 1500 K, in air. The nominal bulk (global) equivalence ratio, phi, was varied in the range of 0.5-1.5, and the gas residence time in the nearly isothermal radiation zone of the furnace was approximately 1 sec. The particulate emissions were size-classified at the exit of the furnace, using a multi-stage inertial particle impactor. Results showed that both the yields and the size distributions of the emitted soot were remarkably different for the five plastics burned. Soot yields increased with an increasing bulk equivalence ratio. Combustion of PS yielded the highest amounts of soot (most highly agglomerated), several times more than the rest of the polymers. More soot was emitted from PS at 1500 than at 1300 K. Substantial amounts of soot agglomerates were larger than 9 microns. At 1500 and 1300 K, 35 and 29% of the soot mass, respectively, was PM2 (2 microns or smaller). Emissions from PE and PP were remarkably similar to each other. These polymers produced very low emissions at phi < or = 0.5, but emissions increased drastically with phi, and most of the soot was very fine (70-97% of the mass was PM2, depending on phi). Emissions from the combustion of PMMA were comparatively low and were the least influenced by the bulk phi, and 79-95% of the emissions were PM2. Combustion of PVC yielded the lowest amounts of soot; moreover, only 13-34% of the mass was PM2. On a comparative basis, at 1500 K, the following ranges of particulate yields were PM2: 19-75 mg/g of PS, 8-36 mg/g of PE, 1.5-47 mg/g of PP, 11-20 mg/g of PMMA, and 2-8 mg/g of PVC, depending on phi. These comparative results demonstrate that PS produces the highest amounts of fine particulates, followed by PP, PE, and PMMA, and then PVC. Burning these materials with excess oxygen drastically reduces the particulate emissions of PE and PP, substantially reduces those of PS, and mildly reduces those of PMMA and PVC.
Bourgou, Soumaya; Bettaieb, Iness; Saidani, Moufida; Marzouk, Brahim
2010-12-08
This research evaluated the effect of saline conditions on fruit yield, fatty acids, and essential oils compositions and phenolics content of black cumin (Nigella sativa). This plant is one of the most commonly found aromatics in the Mediterranean kitchen. Increasing NaCl levels to 60 mM decreased significantly the fruits yield by 58% and the total fatty acids amount by 35%. Fatty acids composition analysis indicated that linoleic acid was the major fatty acid (58.09%) followed by oleic (19.21%) and palmitic (14.77%) acids. Salinity enhanced the linoleic acid percentage but did not affect the unsaturation degree of the fatty acids pool and thus the oil quality. The essential oil yield was 0.39% based on the dry weight and increased to 0.53, 0.56, and 0.72% at 20, 40, and 60 mM NaCl. Salinity results on the modification of the essential oil chemotype from p-cymene in controls to γ-terpinene/p-cymene in salt-stressed plants. The amounts of total phenolics were lower in the treated plants. Salinity decreased mainly the amount of the major class, benzoics acids, by 24, 29, and 44% at 20, 40, and 60 mM NaCl. The results suggest that salt treatment may regulate bioactive compounds production in black cumin fruits, influencing their nutritional and industrial values.
Metal oxide coating of carbon supports for supercapacitor applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, Timothy J.; Tribby, Louis, J; Lakeman, Charles D. E.
2008-07-01
The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark}more » is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christman, E.A.; Appleby, A.; Jayko, M.
1980-07-01
Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.
Preston, E; Foster, D O; Mills, P A
1998-01-01
Radiolabeled sucrose is often used to assess blood-brain barrier (BBB) injury in the rat, but published transfer constants (K[i]s) for sucrose permeation of the intact BBB (control K[i]s) are highly discrepant. A potential problem with the commonly used tracer, [14C(U)]sucrose, is radiolytic generation, preuse, of radiocontaminants that might readily penetrate the BBB. How such contaminants might affect measurements of sucrose K(i)s was examined for both the intact and the ischemically injured BBB. Three stocks of [14C(U)]sucrose were studied: newly purchased ("new"), 4-year-old, and 7-year-old. A high purity (99.9%) "new" and a 2-year-old stock of [3H(fructose-1)]sucrose were also tested. Pentobarbital-anesthetized male Sprague-Dawley rats were injected i.v. with each tracer separately (six to eight rats) and K(i)s in five brain regions were measured by the multiple-time graphical method. The "new" 14C-, "new" 3H-, and 2-year-old 3H-sucrose yielded comparable K(i)s , ranging from 1.2 +/- 0.1 to 2.4 +/- 0.3 nl x g(-1) x s(-1) (mean +/- SE) across the regions. The two old stocks of 14C-sucrose yielded significantly higher regional K(i)s : 5.1-6.3 (4-year-old) and 8.4-9.7 (7-year-old). Thin-layer chromatography of the three 14C-tracers revealed that each contained radioimpurities (ca. 2% in both the "new" and 4-year-old, and 9% in the 7-year-old), but that the old stocks contained larger amounts of relatively mobile (more lipophilic) impurities, which can be suspected as the main cause of the elevated K(i)s obtained. Additional rats were subjected to 10 min of cerebral ischemia, which effects a delayed BBB injury, and 6 h later the "new" 3H- and the 4-year-old 14C-sucrose were injected together. The K(i)s for both tracers were elevated by like, absolute amounts (deltaK[i]s), but by very different percentages, over their disparate baseline values in uninjured rats (for striatum and hippocampus, the most injured regions, deltaK(i)s were 3.9 to 4.4 nl x g[-1] x s[-1]). It is concluded that radiolysis of [14C(U)]sucrose yields certain labeled products that readily cross the BBB and that can seriously distort baseline K(i)s , even if present only in very small amounts. While this appears not to compromise assessment of BBB injury, definition of the authentic range of baseline, sucrose K(i)s for the rat BBB would appear to remain a challenge.
Seifertová, Marta; Čechová, Eliška; Llansola, Marta; Felipo, Vicente; Vykoukalová, Martina; Kočan, Anton
2017-10-01
We developed a simple analytical method for the simultaneous determination of representatives of various groups of neurotoxic insecticides (carbaryl, chlorpyrifos, cypermethrin, and α-endosulfan and β-endosulfan and their metabolite endosulfan sulfate) in limited amounts of animal tissues containing different amounts of lipids. Selected tissues (rodent fat, liver, and brain) were extracted in a special in-house-designed mini-extractor constructed on the basis of the Soxhlet and Twisselmann extractors. A dried tissue sample placed in a small cartridge was extracted, while the nascent extract was simultaneously filtered through a layer of sodium sulfate. The extraction was followed by combined clean-up, including gel permeation chromatography (in case of high lipid content), ultrasonication, and solid-phase extraction chromatography using C 18 on silica and aluminum oxide. Gas chromatography coupled with high-resolution mass spectrometry was used for analyte separation, detection, and quantification. Average recoveries for individual insecticides ranged from 82 to 111%. Expanded measurement uncertainties were generally lower than 35%. The developed method was successfully applied to rat tissue samples obtained from an animal model dealing with insecticide exposure during brain development. This method may also be applied to the analytical treatment of small amounts of various types of animal and human tissue samples. A significant advantage achieved using this method is high sample throughput due to the simultaneous treatment of many samples. Graphical abstract Optimized workflow for the determination of selected insecticides in small amounts of animal tissue including newly developed mini-extractor.
USDA-ARS?s Scientific Manuscript database
Yield estimation is a critical task in crop management. A number of traditional methods are available for crop yield estimation but they are costly, time-consuming and difficult to expand to a relatively large field. Remote sensing provides techniques to develop quick coverage over a field at any sc...
NASA Astrophysics Data System (ADS)
Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.
2015-01-01
In this study we use a high quality dataset of in-situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We inter-compare crop yield loss estimates according to different exposure metrics such as AOT40 and M7 for the two major crop growing seasons of Kharif (June-October) and Rabi (November-April) and establish a new crop yield exposure relationship for South Asian wheat and rice cultivars. These are a factor of two more sensitive to ozone induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27-41% for wheat, 21-26% for rice, 9-11% for maize and 47-58% for cotton. Crop production losses for wheat amounted to 20.8 million t in fiscal year 2012-2013 and 10.3 million t in fiscal year 2013-2014 for Punjab and Haryana jointly. Crop production losses for rice totalled 5.4 million t in fiscal year 2012-2013 and 3.2 million t year 2013-2014 for Punjab and Haryana jointly. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice/wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. Mitigation of ozone related crop production losses in Punjab and Haryana alone could provide >50% of the wheat and ~10% of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 billion in the fiscal year 2012-2013 and USD 3.7 billion in the fiscal year 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone related crop yield losses in entire India currently amounts to 3.5-20% of India's GDP. Mitigation of high surface ozone would require relatively little investment in comparison to economic losses incurred presently. Therefore, ozone mitigation can yield massive benefits in terms of ensuring food security and boosting the economy. Co-benefits of ozone mitigation also include a decrease in the ozone related mortality, morbidity and a reduction of the ozone induced warming in the lower troposphere.
Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang
2017-12-01
A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil NO 3 - -N accumulation layer moved downward. By comprehensively considering above-ground biomass, seed cotton yield, water and nitrogen uptake and utilization, and soil NO 3 - -N accumulation in the soil profile, the treatment N 3 I 1 could be recommended as the optimal water and nitrogen application pattern for summer cotton production in the experimental region.
Leighton, Jonathan A; Helper, Debra J; Gralnek, Ian M; Dotan, Iris; Fernandez-Urien, Ignacio; Lahat, Adi; Malik, Pramod; Mullin, Gerard E; Rosa, Bruno
2017-01-01
Crohn's disease (CD) is typically diagnosed with ileocolonoscopy (IC); however, when inflammation is localized solely in the small bowel, visualization of the entire small-bowel mucosa can be challenging. The aim of this study was to compare the diagnostic yield of a pan-enteric video capsule endoscope (small-bowel colon [SBC] capsule) versus IC in patients with active CD. This was a prospective, multicenter study. Patients with known active CD and proven bowel luminal patency underwent a standardized colon cleansing protocol followed by ingestion of the capsule. After passage of the capsule, IC was performed and recorded. Lesions indicative of active CD were assessed. One hundred fourteen subjects were screened; 66 subjects completed both endoscopic procedures. The per-subject diagnostic yield rate for active CD lesions was 83.3% for SBC and 69.7% for IC (yield difference, 13.6%; 95% confidence interval [CI], 2.6%-24.7%); 65% of subjects had active CD lesions identified by both modalities. Of the 12 subjects who were positive for active CD by SBC only, 5 subjects were found to have active CD lesions in the terminal ileum. Three subjects were positive for active CD by IC only. Three hundred fifty-five classifying bowel segments were analyzed; the per-segment diagnostic yield rate was 40.6% for SBC and 32.7% for IC (yield difference 7.9%; 95% CI, 3.3%-12.4%). This preliminary study shows that the diagnostic yields for SBC might be higher than IC; however, the magnitude of difference between the two is difficult to estimate. Further study is needed to confirm these findings. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Improved detergent-based recovery of polyhydroxyalkanoates (PHAs).
Yang, Yung-Hun; Brigham, Christopher; Willis, Laura; Rha, ChoKyun; Sinskey, Anthony
2011-05-01
Extracting polyhydroxyalkanoate (PHA) polymer from bacterial cells often involves harsh conditions, including use of environmentally harmful solvents. We evaluated different detergents under various conditions to extract PHA from Ralstonia eutropha and Escherichia coli cells. Most detergents tested recovered highly pure PHA polymer from cells in amounts that depended on the percentage of polymer present in the cell. Detergents such as linear alkylbenzene sulfonic acid (LAS-99) produced a high yield of high purity polymer, and less detergent was needed compared to the amount of SDS to produce comparable yields. LAS-99 also has the advantage of being biodegradable and environmentally safe. Chemical extraction of PHA with detergents could potentially minimize or eliminate the need to use harsh organic solvents, thus making industrial PHA production a cleaner technology process. © Springer Science+Business Media B.V. 2011
Receptive Field Inference with Localized Priors
Park, Mijung; Pillow, Jonathan W.
2011-01-01
The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets. PMID:22046110
Markova, Svetlana V; Larionova, Marina D; Gorbunova, Darya A; Vysotski, Eugene S
2017-10-01
The bioluminescence of a marine copepod Metridia longa is determined by a small secreted coelenterazine-dependent luciferase that uses coelenterazine as a substrate of enzymatic reaction to generate light (λ max =480nm). To date, four different isoforms of the luciferase differing in size, sequences, and properties have been cloned by functional screening. All of them contain ten conserved Cys residues that suggests up to five SS intramolecular bonds per luciferase molecule. Whereas the use of copepod luciferases as bioluminescent reporters in biomedical research in vivo is growing from year to year, their application for in vitro assays is still limited by the difficulty in obtaining significant amounts of luciferase. The most cost-effective host for producing recombinant proteins is Escherichia coli. However, prokaryotic and eukaryotic cells maintain the reductive environment in cytoplasm that hinders the disulfide bond formation and consequently the proper folding of luciferase. Here we report the expression of the MLuc7 isoform of M. longa luciferase in E. coli cells and the efficient procedure for refolding from inclusion bodies yielding a high-active monomeric protein. Furthermore, in a set of identical experiments we demonstrate that bioluminescent and structural features of MLuc7 produced in bacterial cells are identical to those of MLuc7 isoform produced from culture medium of insect cells. Although the yield of high-purity protein is only 6mg/L, the application of E. coli cells to produce the luciferase is simpler and more cost-effective than the use of insect cells. We expect that the suggested technology of Metridia luciferase production allows obtaining of sufficient amounts of protein both for the development of novel in vitro analytical assays with the use of MLuc7 as a label and for structural studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Accurately Mapping M31's Microlensing Population
NASA Astrophysics Data System (ADS)
Crotts, Arlin
2004-07-01
We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity function over much of M31.
Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L
2013-12-17
Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.
NASA Astrophysics Data System (ADS)
Adhikari, Arijit A.
Trichloroacetimidates are known to be excellent alkylating agents when activated by a catalytic amount of a Bronsted or Lewis acid. Work described herein involved taking advantage of the favorable reactivity of trichloroacetimidates to establish several different synthetic protocols, including the application of these reagents in the synthesis of pyrroloindoline based natural products, 3,3'-disubstituted indolenines and benzylic trichloroacetamides. Initial investigations on the utilization of the reactivity of trichloroacetimidates found that diphenylmethyl trichloroacetimidate, which is a precursor to a highly stabilized carbocation, undergoes facile displacement with carboxylic acids providing the ester product without the need of any exogenous catalyst. Both hindered and unhindered carboxylic acids were esterified with high yields, with no preference for aromatic or aliphatic carboxylic acids. Carboxylic acids with unprotected hydroxyl groups or beta-lactam rings were esterified efficiently. Substrates that are highly prone to elimination or retro-aldol were also esterified in high yields. Carboxylic acids with highly enolizable alpha-stereocenters were esterified without any racemization. Mechanistic studies indicate that the carboxylic acid substrate itself is acidic enough to be effective at promoting the esterification reaction. During our studies on esterification with imidates it was found that these imidates also showed a tendency to undergo rearrangement to the corresponding trichloroacetamides. Two different sets of conditions, thermal and Lewis acid catalyzed, were established which provided these rearranged products with high yields. Various benzylic trichloroacetimidates were shown to undergo these transformations under the established conditions. Based on the observations discussed in this work a cationic mechanism is proposed. After the preliminary studies on alkylation of benzylic trichloroacetimidate with different nucleophiles, this chemistry was applied towards the synthesis of natural products and their analogs. The pyrroloindoline ring system is found in many alkaloids and cyclic peptides which mainly differ in the substitution at the C3a position. To provide rapid access to these natural products a diversity-oriented strategy was established via displacement of C3a-trichloroacetimidate pyrroloindoline. Carbon, oxygen, sulfur and nitrogen nucleophiles were all shown to undergo substitution reactions with these trichloroacetimidates in the presence of a Lewis acid catalyst. In order to demonstrate the utility of this new method it was applied towards the synthesis of arundinine and a formal synthesis of psychotriasine. Current investigations involve the application of this method towards the synthesis of a complex pyrroloindoline natural product kapakahine C and the progress made therein has been discussed. The reactivity of trichloroacetimidates was also investigated for the selective C3-alkylation of 2,3-disubstituted indoles to provide indolenines. Indolenines serve as useful intermediates in the synthesis of many complex alkaloids. Different benzylic and allylic trichloroacetimidates were shown to provide 3,3'-disubstituted indolenines with high yields in the presence of catalytic amounts of Lewis acids. Various substituted indoles were evaluated under these reaction conditions. This methodology was also applied towards the synthesis of the core tetracyclic ring system found in communesin natural products. In addition to the above work, synthesis of small molecule inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP) has also been described. Aberrations in the phosphoinositide 3-kinase (PI3K) cellular signaling pathway can lead to diseased cellular states like cancer. Herein we have reported stereoselective synthesis of two quinoline based small molecule SHIP inhibitors. The lead compounds and their analogs were tested for their activities against SHIP by Malachite green assay and the discoveries made therein are discussed. In addition to this synthesis of a tryptamine based SHIP inhibitor has also been reported.
[Lactose-containing tablets for patients with lactose intolerance?].
Picksak, Gesine; Stichtenoth, Dirk O
2009-01-01
Lactose is often used as an excipient in tablets because of its ideal characteristics. Most patients with lactose intolerance tolerate small amounts of lactose. However, the nocebo effect must be considered. Thus, patients should be informed about the very small amounts of lactose in the medication. If the patient is still suffering from gastrointestinal symptoms and there is no lactose-free alternative, the enzyme lactase can be substituted individually.
Determining the impact of sorting capacity on rip-first rough mill yield
Edward Thomas; John Brown
2003-01-01
The problem of increasing gang-rip-first rough mill yield often amounts to little more than optimizing the fit of needed parts into strips. However, it is rare when a part or combination of parts fits precisely in the area between two defects. Intuition tells us that the more lengths we have to choose from, the greater the chance of completely filling such an area....
Reddi, Rambabu N; Malekar, Pushpa V; Sudalai, Arumugam
2013-10-14
An N-heterocyclic carbene (NHC)-catalyzed reaction of alkenes with aromatic aldehydes providing for a high yield synthesis of α-acyloxy ketones and esters has been described. This unprecedented regioselective oxidative process employs NBS and Et3N in stoichiometric amounts and O2 (1 atm) as an oxidant under ambient conditions in DMSO as a solvent.
Tolunay, Ahmet; Adıyaman, Elif; Akyol, Ayhan; İnce, Duygu; Türkoğlu, Türkay; Ayhan, Veysel
2014-01-01
This study investigated grazing capacities of maquis scrubland and preparation principles of grazing management in forest resources. Kermes oak (Quercus coccifera L.), which is widespread as a main shrub species in maquis vegetation in Turkey, and pure hair goats (Capra hircus L.) feeding on shoots and leaves of this shrub were selected for study. The study was conducted in two stages. Green leaf and shoot samples were taken from kermes oaks in the first stage and the amount of green herbage yield (g ∗ m(-1)) and dry matter yield (kg ∗ ha(-1)) that may be obtained per unit area from these samples was identified. The considered amount of dry matter consumed by pure hair goats daily and the number of goats being fed within 1 year on land of 1 ha according to different land coverage rates of kermes oaks (goat head ∗ ha ∗ yr) were calculated. In the second stage, grazing capacities of sample areas where kermes oak spread were identified and compared with the grazing plan prepared by the forestry administration for this area. Forage yield variance according to land coverage rates of maquis scrublands should be considered when determining optimum animal numbers for grazing per area for sustainable goat farming.
Tolunay, Ahmet; Adıyaman, Elif; İnce, Duygu; Ayhan, Veysel
2014-01-01
This study investigated grazing capacities of maquis scrubland and preparation principles of grazing management in forest resources. Kermes oak (Quercus coccifera L.), which is widespread as a main shrub species in maquis vegetation in Turkey, and pure hair goats (Capra hircus L.) feeding on shoots and leaves of this shrub were selected for study. The study was conducted in two stages. Green leaf and shoot samples were taken from kermes oaks in the first stage and the amount of green herbage yield (g∗m−1) and dry matter yield (kg∗ha−1) that may be obtained per unit area from these samples was identified. The considered amount of dry matter consumed by pure hair goats daily and the number of goats being fed within 1 year on land of 1 ha according to different land coverage rates of kermes oaks (goat head∗ha∗yr) were calculated. In the second stage, grazing capacities of sample areas where kermes oak spread were identified and compared with the grazing plan prepared by the forestry administration for this area. Forage yield variance according to land coverage rates of maquis scrublands should be considered when determining optimum animal numbers for grazing per area for sustainable goat farming. PMID:25379526
Silica-promoted Diels-Alder reactions in carbon dioxide from gaseous to supercritical conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, R.D.; Renslo, A.R.; Danheiser, R.L.
1999-04-15
Amorphous fumed silica (SiO{sub 2}) was shown to increase yields and selectivities of several Diels-Alder reactions in gaseous and supercritical CO{sub 2}. Pressure effects on the Diels-Alder reaction were explored using methyl vinyl ketone and penta-1,3-diene at 80 C. The selectivity of the reaction was not affected by pressure/density. As pressure was increased, the yield decreased. At the reaction temperature, adsorption isotherms at various pressures were obtained for the reactants and the Diels-Alder adduct. As expected when pressure is increased, the ratio of the amount of reactants adsorbed to the amount of reactants in the fluid phase decreases, thus causingmore » the yield to decrease. The Langmuir adsorption model fit the adsorption data. The Langmuir equilibrium partitioning constants all decreased with increasing pressure. The effect of temperature on adsorption was experimentally determined and traditional heats of adsorption were calculated. However, since supercritical CO{sub 2} is a highly compressible fluid, it is logical to examine the effect of temperature at constant density. In this case, entropies of adsorption were obtained. The thermodynamic properties that influence the real enthalpy and entropy of adsorption were derived. Methods of doping the silica and improving yields and selectivities were also explored.« less
NASA Astrophysics Data System (ADS)
Svimonishvili, Tengiz; Zameroski, Nathan; Gilmore, Mark; Schamiloglu, Edl; Gaudet, John; Yan, Lincan
2004-11-01
Secondary Electron Emission (SEE) results from bombarding materials with electrons, atoms, or ions. The amount of secondary emission depends on factors such as bulk and surface properties of materials, energy of incident particles, and their angle of incidence. Total secondary electron emission yield, defined as the number of secondary electrons ejected per primary electron, is an important material parameter. Materials with high yield find use, for instance, in photomultiplier tubes, whereas materials with low yield, such as graphite, are used for SEE suppression in high-power microwave devices. The lower the SEE yield, the better the performance of high-power microwave devices (for example, gyrotrons). Employing a low-energy electron gun (energy range from 5 eV to 2000 eV), our work aims at characterizing and eventually identifying novel materials (with the lowest possible SEE yield) that will enhance operation and efficiency of high-power microwave devices.
Turk, Mohammad F; Baron, Alain; Vorobiev, Eugene
2010-09-08
This study explored the effect of pulsed electric field (PEF) treatment (E=450 V/cm; tt=10 ms; E<3 kJ/kg) and apple mash size on juice yield, polyphenolic compounds, sugars, and malic acid. Juice yield increased significantly after PEF treatment of large mash (Y=71.4%) and remained higher than the juice yield obtained for a control small mash (45.6%). The acid sweet balance was not altered by PEF. A correlation was established between the decrease of light absorbance (control: 1.43; treated: 1.10) and the decline of native polyphenols yield due to PEF treatment (control: 9.6%; treated: 5.9% for small mash). An enhanced oxidation of phenolic compounds in cells due to electroporation of the inner cell membrane and the adsorption of the oxidized products on the mash may explain both the lower light absorbance and the lower native polyphenol concentration.
Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling
2013-01-01
Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604
Cloud Water Content Sensor for Sounding Balloons and Small UAVs
NASA Technical Reports Server (NTRS)
Bognar, John A.
2009-01-01
A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.
2011-03-01
These flows are crucial to the economic viability and vitality of the state of North Dalcota. In addition, the State ofNorth Dakota made a ...estimates that only 77 percent of the small municipal and industrial water users would enter into a surplus water agreement in the next ten years. The...water will normally be for small amount of water; 257,000 acre-feet is not a small amount. The 1958 Water Supply Act provides the legal authority to
Isolation and analysis of group 2 innate lymphoid cells in mice.
Moro, Kazuyo; Ealey, Kafi N; Kabata, Hiroki; Koyasu, Shigeo
2015-05-01
Recent studies have identified distinct subsets of innate lymphocytes, collectively called innate lymphoid cells (ILCs), which lack antigen receptor expression but produce various effector cytokines. Group 2 ILCs (ILC2s) respond to epithelial cell-derived cytokines such as interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), produce large amounts of type 2 cytokines, and have a key role in anti-helminth innate immunity and in the pathophysiology of allergic inflammation. The reported phenotypic characteristics of mouse ILC2s vary, depending on the tissue source and preparation method. This protocol describes improved methods for tissue-specific isolation and analysis of mouse ILC2s of high purity and yield from fat tissue, lung, bronchoalveolar lavage fluid (BALF) and small intestine. These improved methods are the result of our thorough investigation of enzymes used for tissue digestion, methods for the elimination of undesired cells, and a combination of antibodies for the detection and isolation of ILC2s. In addition, this new protocol now enables the isolation of ILC2s of high yield, even from inflamed tissues. Depending on the tissue being analyzed, it takes ∼2-4 h for isolation and flow cytometric analysis of ILC2s from the various tissues of a single mouse and ∼4-8 h to sort purified ILC2s from pooled tissues of multiple mice.
Bharier, Michael; Allis, David
1974-01-01
Axial filaments have been purified from Treponema phagedenis biotype reiterii (the Reiter treponeme) and partially characterized chemically. The preparations consist largely of protein but also contain small amounts of hexose (3%). Filaments dissociate to subunits in acid, alkali, urea, guanidine, and various detergents. Amino acid analyses show an overall resemblance to other spirochetal axial filaments and to bacterial flagella. Dissociated filaments migrate as a single band upon acrylamide gel electrophoresis at pH 4.3 (in 4 M urea and 10 3 M ethylenediaminetetraacetate) and at pH 12, but in sodium dodecyl sulfate gels, three bands are obtained under a wide variety of conditions. Two of these bands migrate very close together, with molecular weights of 33,000 ± 500. The other band has a molecular weight of 36,500 ± 500. Analysis of axial filaments by the dansyl chloride method yields both methionine and glutamic acid as amino terminal end groups. Sedimentation equilibrium measurements on dissociated axial filaments in 7 M guanidine hydrochloride yield plots of log C against ϰ2 which vary with the speed and initial protein concentration used. Molecular weight values calculated from these plots are consistent with a model in which axial filament subunits are heterogeneous with respect to molecular weight in the approximate range of 32,000 to 36,000. Images PMID:4436261
The decomposition of peroxynitrite to nitroxyl anion (NO−) and singlet oxygen in aqueous solution
Khan, Ahsan Ullah; Kovacic, Dianne; Kolbanovskiy, Alexander; Desai, Mehul; Frenkel, Krystyna; Geacintov, Nicholas E.
2000-01-01
The mechanism of decomposition of peroxynitrite (OONO−) in aqueous sodium phosphate buffer solution at neutral pH was investigated. The OONO− was synthesized by directly reacting nitric oxide with superoxide anion at pH 13. The hypothesis was explored that OONO−, after protonation at pH 7.0 to HOONO, decomposes into 1O2 and HNO according to a spin-conserved unimolecular mechanism. Small aliquots of the concentrated alkaline OONO− solution were added to a buffer solution (final pH 7.0–7.2), and the formation of 1O2 and NO− in high yields was observed. The 1O2 generated was trapped as the transannular peroxide (DPAO2) of 9,10-diphenylanthracene (DPA) dissolved in carbon tetrachloride. The nitroxyl anion (NO−) formed from HNO (pKa 4.5) was trapped as nitrosylhemoglobin (HbNO) in an aqueous methemoglobin (MetHb) solution. In the presence of 25 mM sodium bicarbonate, which is known to accelerate the rate of decomposition of OONO−, the amount of singlet oxygen trapped was reduced by a factor of ≈2 whereas the yield of trapping of NO− by methemoglobin remained unaffected. Because NO3− is known to be the ultimate decomposition product of OONO−, these results suggest that the nitrate anion is not formed by a direct isomerization of OONO−, but by an indirect route originating from NO−. PMID:10716721
Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils
Kharaka, Y.K.; Lundegard, P.D.; Ambats, G.; Evans, William C.; Bischoff, J.L.
1993-01-01
Two crude oils with relatively high (0.60 wt%) and low (0.18 wt%) oxygen contents were heated in the presence of water in gold-plated reactors at 300??C for 2348 h. The high-oxygen oil was also heated at 200??C for 5711 h. The compositions of aqueous organic acid anions of the oils and of the headspace gases were monitored inn order to investigate the distribution of organic acids that can be generated from liquid petroleum. The oil with higher oxygen content generated about five times as much organic anions as the other oil. The dominant organic anions produced were acetate, propionate and butyrate. Small amounts of formate, succinate, methyl succinate and oxalate were also produced. The dominant oxygen-containing product was CO2, as has been observed in similar studies on the hydrous pyrolysis of kerogen. These results indicate that a significant portion (10-30%) of organic acid anions reported i be generated by thermal alteration of oils in reservoir rocks. The bulk of organic acid anions present in formation waters, however, is most likely generated by thermal alteration of kerogen in source rocks. Kerogen is more abundant than oil in sedimentary basins and the relative yields of organic acid anions reported from the hydrous pyrolysis of kerogen are much higher than the yields obtained for the two oils. ?? 1993.