Sample records for yield strength compared

  1. Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects

    PubMed Central

    Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2012-01-01

    The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated. PMID:28348301

  2. Fatigue behaviour of boron free and boron containing heat treated Ti-13Zr-13Nb alloy for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumdar, P., E-mail: m.pallab@gmail.com; Singh, S.B.; Chakraborty, M.

    2010-12-15

    Fatigue behaviour of heat treated Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys for biomedical implants has been investigated by rotating bending test. It was found that fatigue strength of TZN and TZNB alloys is comparable with that of conventionally used biomedical titanium alloys. Addition of boron to TZN alloy deteriorates fatigue strength. - Research Highlights: {yields}The microstructure of the aged TZN consists of {alpha} phase in {beta} matrix. {yields}Addition of boron to TZN leads to the formation of dispersed acicular TiB. {yields}Presence of TiB deteriorates the fatigue strength of TZN alloy. {yields}Fatigue strength of aged TZN/TZNB alloys is comparable with biomedicalmore » Ti-alloys.« less

  3. Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690

    NASA Astrophysics Data System (ADS)

    Bullens, Alexander L.; Bautista, Esteban; Jaye, Elizabeth H.; Vas, Nathaniel L.; Cain, Nathan B.; Mao, Keyou; Gandy, David W.; Wharry, Janelle P.

    2018-03-01

    This study compares thermal aging effects in Inconel 690 (IN690) produced by forging and powder metallurgy with hot isostatic pressing (PM-HIP). Isothermal aging is carried out over 400-800°C for up to 1000 h and then metallography and nanoindentation are utilized to relate grain microstructure with hardness and yield strength. The PM-HIP IN690 maintains a constant grain size through all aging conditions, while the forged IN690 exhibits limited grain growth at the highest aging temperature and longest aging time. The PM-HIP IN690 exhibits comparable mechanical integrity as the forged material throughout aging: hardness and yield strength are unchanged with 100 h aging, but increase after 1000 h aging at all temperatures. In both the PM-HIP and forged IN690, the Hall-Petch relationship for Ni-based superalloys predicts yield strength for 0-100 h aged specimens, but underestimates yield strength in the 1000 h aged specimens because of thermally induced precipitation.

  4. Low-energy modification of the γ strength function of the odd-even nucleus 115In

    NASA Astrophysics Data System (ADS)

    Versteegen, Maud; Denis-Petit, David; Méot, Vincent; Bonnet, Thomas; Comet, Maxime; Gobet, Franck; Hannachi, Fazia; Tarisien, Medhi; Morel, Pascal; Martini, Marco; Péru, Sophie

    2016-10-01

    Photoactivation yield measurements on 115In have been performed at the ELSA facility with Bremsstrahlung photon beams over a range of endpoint energies between 4.5 and 18 MeV. The measured photoexcitation yields of the Inm115 metastable state are compared with calculated yields using cross sections obtained with different models of the photon strength function. It is shown that additional photon strength with respect to the general Lorentzian model is needed at 8.1 MeV for the calculated yields to reproduce the data. The origin of this extra strength is unclear, because it is compatible with additional strength predicted in both E 1 and M 1 photon strength distributions by quasiparticle random-phase approximation calculations using the Gogny D1S force.

  5. Mechanical properties of nano and bulk Fe pillars using molecular dynamics and dislocation dynamics simulation

    NASA Astrophysics Data System (ADS)

    Nath, S. K. Deb

    2017-10-01

    Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young's modulus and yield strength. Then the comparative study of Young's modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young's modulus and yield strength of a Fe nanopillar are higher than those of tension Young's modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975)], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009).

  6. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison

    PubMed Central

    De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  7. Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel

    NASA Astrophysics Data System (ADS)

    Bae, Cheoljun; Kim, Rosa; Lee, Un-Hae; Kim, Jongryoul

    2017-09-01

    High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed.

  8. Extraction optimization and characterization of gelatine from fish dry skin of Spanish mackerel (Scomberromorus commersoni)

    NASA Astrophysics Data System (ADS)

    Kusumaningrum, I.; Pranoto, Y.; Hadiwiyoto, S.

    2018-04-01

    This work was to optimized gelatin extraction from dry skin of Spanish mackerel (Scomberromorus commersoni) using Response Surface Methodology (RSM). The aim of this study was to determine the optimal condition of temperature and time for extraction process and properties of the gelatin extracted from dry mackerel skin. The optimal condition for extraction was 59.71°C for 4.25 hours. Results showed that predicted yield by RSM was 13.69% and predicted gel strength was 291.93 Bloom, whereas the actual experiment for yield and gel strength were 13.03% and 291.33 Bloom, respectively. The gelatin extracted from dried skin were analyzed for their proximate composition, yield, gel strength, viscosity, color, and amino acid composition. The results of dried skin gelatin properties compared to the commercial gelatin. Gelatin extracted from the dried skin gave content lower moisture, ash and protein content but higher fat compared to commercial gelatin. This study also shows that the gelatin extracted from the dried skin gave higher gel strength and pH but the lower amino acid composition compared to commercial gelatin.

  9. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  10. Spherical Nanoindentation Stress-Strain Measurements of BOR-60 14YWT-NFA1 Irradiated Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan; Carvajal Nunez, Ursula; Krumwiede, David

    Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5 micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However, spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on the irradiated condition. It is believedmore » the difference in the predicted uniaxial yield strength between spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes under the indenter with the possibility of dislocation channeling under Berkovich hardness indents leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a radiological area were realized.« less

  11. Anisotropic nature of radially strained metal tubes

    NASA Astrophysics Data System (ADS)

    Strickland, Julie N.

    Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw yield strength to calculate these ratings. I set out to characterize the anisotropic nature of swaged metal. As expected, the tensile tests showed a difference between the axial and transverse tensile strength. The correlation was 12% difference in yield strength in the axial and transverse directions for strained material and 9% in strained and aged material. This means that the strength of the metal in the hoop (transverse) direction is approximately 10% stronger than in the axial direction, because the metal was work hardened during the swaging process. Therefore, the metal is more likely to fail in axial tension than in burst or collapse. I presented the findings from the microstructure examination, standard tensile tests, and SEM data. All of this data supported the findings of the mini-tensile tests. This information will help engineers set burst and collapse ratings and allow material scientists to predict the anisotropic characteristics of swaged steel tubes.

  12. Stochastic metallic-glass cellular structures exhibiting benchmark strength.

    PubMed

    Demetriou, Marios D; Veazey, Chris; Harmon, John S; Schramm, Joseph P; Johnson, William L

    2008-10-03

    By identifying the key characteristic "structural scales" that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date.

  13. High Strength and Thermally Stable Nanostructured Magnesium Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Wei

    Magnesium and its alloys are currently in the spotlight of global research because of the need to limit energy consumption and reduce the environmental impact. In particular, their low densities compared to other structural metals make them a very attractive alternative in the automobile and aerospace industries. However, their low strength compared to other structural materials (e.g. Al and steels) has limited their widespread application. This dissertation presents the results of developing and investigation of a high strength nanostructured magnesium-aluminum alloy and composite. The nanostructured magnesium alloy is prepared by cryomilling and consolidated by spark-plasma-sintering. Focused ion beam is used to prepare micropillars with different diameters ranging from 1.5 to 8 mum and micro-compression test is conducted by nanoindenter in order to evaluate the mechanical properties. The yield strength obtained in the present study is around three times higher than conventional magnesium alloys (120 MPa vs. 370 MPa). The yield strength of the nanostructured magnesium alloy is further improved through hot extrusion, resulting in a yield strength of 550 MPa and an ultimate strength of 580 MPa. The nanostructured magnesium alloy exhibits a strong size-dependence, and a significant improvement in strength is observed when the pillar diameter is reduced to below 3.5 mum. The deformation mechanisms of the compressed pillars were characterized using transmission electron microscopy. The size-induced strengthening is attributed to a less number of dislocation sources along with a higher activity of non-basal deformation mechanisms. We have also developed a high strength and thermally stable nanostructured magnesium composite by adding diamantane. A yield strength of 500 MPa is achieved, moreover, excellent thermal stability is demonstrated in the magnesium alloy containing diamantanes. The strength and grain size are thermally stable after annealing at 400°C for 100 hours. In contrast, the yield strength of the alloy without diamantanes decreases significantly after annealing due to severe grain growth. These results suggest that diamantanes are pinning the grain boundaries and inhibiting grain growth at elevated temperatures. Finally, molecular dynamics simulations and finite element analysis are used to explore the deformation mechanisms of magnesium with different grain sizes at atomic resolutions and correct tapering effect on micro-compression test, respectively. The results in the dissertation show that nanostructured Mg-Al alloy and Mg-Al-Diamantane composite are promising materials for aerospace and automobile industries.

  14. Thermal treatment and mechanical properties of aluminum-2021

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1970-01-01

    Mechanical properties, after thermal treatments, are summarized for sheet and plate of copper-rich, high-strength, heat-treatable aluminum-2021. The alloy is quench sensitive, quench rate and variations in aging affect corrosion behavior. Aging effects on yield strength, tensile strength, and elongation of sheet and plate are compared.

  15. Evaluation of bolted connections in wood-plastic composites

    NASA Astrophysics Data System (ADS)

    Arnandha, Yudhi; Satyarno, Iman; Awaludin, Ali; Irawati, Inggar Septia; Ihsan, Muhamad; Wijanarko, Felyx Biondy; William, Mahdinur, Fardhani, Arfiati

    2017-03-01

    Wood-plastic composite (WPC) is a relatively new material that consists of sawdust and plastic polymer using the extrusion process. Due to its attributes such as low water content, low maintenance, UV durability and being fungi and termite resistant. Nowadays, WPC has already been produced in Indonesia using sawdust from local wood such as Albizia (Paraserianthes falcataria) and Teak (Tectona grandis). Moreover preliminary studies about the physical and mechanical WPC board from Albizia sawdust and HDPE plastic have been carried out. Based on these studies, WPC has a high shear strength around 25-30 MPa higher than its original wood shear strength. This paper was a part of the research in evaluating WPC as potential sheathing in a shear wall system. Since still little is known about connection behavior in WPC using Indonesian local wood, this study evaluated the connection for both of these two types of wood-plastic composite. WPC board from Albizia sawdust will be projected as shear wall sheathing and WPC stud from Teak sawdust projected to be shear wall frame. For this study, the embedding strength for both WPC was determined according to ASTM D 5764 standard, using two types of bolts (stainless bolt and standard bolt) with several diameters as variation (6 mm, 8 mm, 10 and 12 mm). Hence, dowel-bearing test under fastened condition conducted accordance to ASTM D5652, hereby the yield strength then compared with the prediction yield strength from European Yield Model (EYM). According to both single and double shear connection, it can be concluded that yield strength from the EYM method tended to under-predict the 5% diameter offset yield than the actual yield strength from the test. The yield strength itself increase with the increase of bolt diameter. For single shear connection, the highest yield strength was 12 mm standard bolt around 9732 N, slightly higher than stainless bolt around 9393 N. Whereby for double shear connection, the highest yield strength was 12 mm standard bolt around 12009 N, slightly higher than stainless bolt around 12009 N. Using statistical approach ANOVA, the different type of bolt between stainless bolt and standard bolt gave an insignificant result. Both type of bolt can be used as structural connection, moreover it was recommended using a stainless bolt for outdoor purpose to reduce corrosion.

  16. Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles

    NASA Astrophysics Data System (ADS)

    Trojanová, Zuzanka; Dash, Khushbu; Máthis, Kristián; Lukáč, Pavel; Kasakewitsch, Alla

    2018-04-01

    Pure microcrystalline magnesium (µMg) was reinforced with hexagonal boron nitride (hBN) nanoparticles and was fabricated by powder metallurgy process followed by hot extrusion. For comparison pure magnesium powder was consolidated by hot extrusion too. Both materials exhibited a significant fiber texture. Mg-hBN nanocomposites (nc) and pure Mg specimens were deformed between room temperature and 300 °C under tension and compression mode. The yield strength and ultimate tensile and compression strength as well as characteristic stresses were evaluated and reported. The tensile and compressive strengths of Mg-hBN nc are quiet superior in values compared to monolithic counterpart as well as Mg alloys. The compressive yield strength of µMg was recorded as 90 MPa, whereas the Mg-hBN nancomposite shows 125 MPa at 200 °C. The tensile yield strength of µMg was computed as 67 MPa which is quite lower as compared to Mg-hBN nanocomposite's value which was recorded as 157 MPa at 200 °C. Under tensile stress the true stress-strain curves are flat in nature, whereas the stress-strain curves observed in compression at temperatures up to 100 °C exhibited small local maxima at the onset of deformation followed by a significant work hardening.

  17. The long-term strength of Europe and its implications for plate-forming processes.

    PubMed

    Pérez-Gussinyé, M; Watts, A B

    2005-07-21

    Field-based geological studies show that continental deformation preferentially occurs in young tectonic provinces rather than in old cratons. This partitioning of deformation suggests that the cratons are stronger than surrounding younger Phanerozoic provinces. However, although Archaean and Phanerozoic lithosphere differ in their thickness and composition, their relative strength is a matter of much debate. One proxy of strength is the effective elastic thickness of the lithosphere, Te. Unfortunately, spatial variations in Te are not well understood, as different methods yield different results. The differences are most apparent in cratons, where the 'Bouguer coherence' method yields large Te values (> 60 km) whereas the 'free-air admittance' method yields low values (< 25 km). Here we present estimates of the variability of Te in Europe using both methods. We show that when they are consistently formulated, both methods yield comparable Te values that correlate with geology, and that the strength of old lithosphere (> or = 1.5 Gyr old) is much larger (mean Te > 60 km) than that of younger lithosphere (mean Te < 30 km). We propose that this strength difference reflects changes in lithospheric plate structure (thickness, geothermal gradient and composition) that result from mantle temperature and volatile content decrease through Earth's history.

  18. Thermoplastic composites for veneering posterior teeth-a feasibility study.

    PubMed

    Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R

    2002-09-01

    This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.

  19. Holographic study of conventional and negative Poisson's ratio metallic foams - Elasticity, yield and micro-deformation

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Lakes, R. S.

    1991-01-01

    An experimental study by holographic interferometry is reported of the following material properties of conventional and negative Poisson's ratio copper foams: Young's moduli, Poisson's ratios, yield strengths and characteristic lengths associated with inhomogeneous deformation. The Young's modulus and yield strength of the conventional copper foam were comparable to those predicted by microstructural modeling on the basis of cellular rib bending. The reentrant copper foam exhibited a negative Poisson's ratio, as indicated by the elliptical contour fringes on the specimen surface in the bending tests. Inhomogeneous, non-affine deformation was observed holographically in both foam materials.

  20. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars

    NASA Astrophysics Data System (ADS)

    Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar

    2018-05-01

    The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.

  1. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Treesearch

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  2. Titanium/beryllium laminates: Fabrication, mechanical properties, and potential aerospace applications

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.

    1978-01-01

    The investigation indicated that structural laminates can be made which have: a modulus of elasticity comparable to steel, fracture strength of comparable to the yield strength of titanium, density comparable to aluminum, impact resistance comparable to titanium, and little or no notch sensitivity. These laminates can have stiffness and weight advantages over other materials including advanced fiber composites, in some aerospace applications where buckling resistance, vibration frequencies, and weight considerations control the design.

  3. Yield Strength Testing in Human Cadaver Nasal Septal Cartilage and L-Strut Constructs.

    PubMed

    Liu, Yuan F; Messinger, Kelton; Inman, Jared C

    2017-01-01

    To our knowledge, yield strength testing in human nasal septal cartilage has not been reported to date. An understanding of the basic mechanics of the nasal septum may help surgeons decide how much of an L-strut to preserve and how much grafting is needed. To determine the factors correlated with yield strength of the cartilaginous nasal septum and to explore the association between L-strut width and thickness in determining yield strength. In an anatomy laboratory, yield strength of rectangular pieces of fresh cadaver nasal septal cartilage was measured, and regression was performed to identify the factors correlated with yield strength. To measure yield strength in L-shaped models, 4 bonded paper L-struts models were constructed for every possible combination of the width and thickness, for a total of 240 models. Mathematical modeling using the resultant data with trend lines and surface fitting was performed to quantify the associations among L-strut width, thickness, and yield strength. The study dates were November 1, 2015, to April 1, 2016. The factors correlated with nasal cartilage yield strength and the associations among L-strut width, thickness, and yield strength in L-shaped models. Among 95 cartilage pieces from 12 human cadavers (mean [SD] age, 67.7 [12.6] years) and 240 constructed L-strut models, L-strut thickness was the only factor correlated with nasal septal cartilage yield strength (coefficient for thickness, 5.54; 95% CI, 4.08-7.00; P < .001), with an adjusted R2 correlation coefficient of 0.37. The mean (SD) yield strength R2 varied with L-strut thickness exponentially (0.93 [0.06]) for set widths, and it varied with L-strut width linearly (0.82 [0.11]) or logarithmically (0.85 [0.17]) for set thicknesses. A 3-dimensional surface model of yield strength with L-strut width and thickness as variables was created using a 2-dimensional gaussian function (adjusted R2 = 0.94). Estimated yield strengths were generated from the model to allow determination of the desired yield strength with different permutations of L-strut width and thickness. In this study of human cadaver nasal septal cartilage, L-strut thickness was significantly associated with yield strength. In a bonded paper L-strut model, L-strut thickness had a more important role in determining yield strength than L-strut width. Surgeons should consider the thickness of potential L-struts when determining the amount of cartilaginous septum to harvest and graft. NA.

  4. Tensile Properties of 17-7 PH and 12 MoV Stainless-Steel Sheet under Rapid-Heating and Constant-Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Manning, Charles R., Jr.; Price, Howard L.

    1961-01-01

    Results are presented of rapid-heating tests of 17-7 PH and 12 MoV stainless-steel sheet heated to failure at temperature rates from about 1 F to 170 F per second under constant-load conditions. Yield and rupture strengths obtained from rapid-heating tests are compared with yield and tensile strengths obtained from short-time elevated-temperature tensile tests (30-minute exposure). A rate-temperature parameter was used to construct master curves from which yield and rupture stresses or temperatures can be predicted. A method for measuring strain by optical means is described.

  5. An alternative approach for modeling strength differential effect in sheet metals with symmetric yield functions

    NASA Astrophysics Data System (ADS)

    Kurukuri, Srihari; Worswick, Michael J.

    2013-12-01

    An alternative approach is proposed to utilize symmetric yield functions for modeling the tension-compression asymmetry commonly observed in hcp materials. In this work, the strength differential (SD) effect is modeled by choosing separate symmetric plane stress yield functions (for example, Barlat Yld 2000-2d) for the tension i.e., in the first quadrant of principal stress space, and compression i.e., third quadrant of principal stress space. In the second and fourth quadrants, the yield locus is constructed by adopting interpolating functions between uniaxial tensile and compressive stress states. In this work, different interpolating functions are chosen and the predictive capability of each approach is discussed. The main advantage of this proposed approach is that the yield locus parameters are deterministic and relatively easy to identify when compared to the Cazacu family of yield functions commonly used for modeling SD effect observed in hcp materials.

  6. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    PubMed Central

    Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František

    2016-01-01

    In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514

  7. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  8. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE PAGES

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...

    2017-11-04

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  9. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression

    PubMed Central

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-01-01

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation. PMID:29072616

  10. The influence of heat treatments on several types of base-metal removable partial denture alloys.

    PubMed

    Morris, H F; Asgar, K; Rowe, A P; Nasjleti, C E

    1979-04-01

    Four removable partial denture alloys, Vitallium (Co-Cr alloy), Dentillium P.D. (Fe-Cr alloy), Durallium L.G. (Co-Cr-Ni alloy), and Ticonium 100 (Ni-Cr alloy), were evaluated in the as-cast condition and after heat treatment for 15 minutes at 1,300 degrees, 1,600 degrees, 1,900 degrees, and 2,200 degrees F followed by quenching in water. The following properties were determined and compared for each alloy at each heat treatment condition: the yield strengths at 0.01%, 0.1%, and 0.2% offsets, the ultimate tensile strength, the percent elongation, the modulus of elasticity, and the Knoop microhardness. The results were statistically analyzed. Photomicrographs were examined for each alloy and test condition. The following conclusions were made: 1. The "highest values" were exhibited by the as-cast alloy. 2. Heat treatment of the partial denture alloys tested resulted in reductions in strength, while the elongations varied. This study demonstrates that, in practice, one should avoid (a) prolonged "heat-soaking" while soldering and (b) grinding or polishing of the casting until the alloy is "red hot". 3. Durallium L.G. was the least affected by the various heat treatment conditions. 4. Conventional reporting of the yield strength at 0.2% offset, the ultimate tensile strength, and percent elongation are not adequate to completely describe and compare the mechanical behavior of alloys. The reporting of the yield strength at 0.01% offset, in addition to the other reported properties, will provide a more complete description of the behavior of the dental alloys.

  11. Mechanical and low-cycle fatigue behavior of stainless reinforcing steel for earthquake engineering applications

    NASA Astrophysics Data System (ADS)

    Zhou, Yihui; Ou, Yu-Chen; Lee, George C.; O'Connor, Jerome S.

    2010-09-01

    Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need to be investigated. These include specified and actual yield strengths, tensile strengths, uniform elongations and low-cycle fatigue behavior. Three types of SRSs (Talley S24100, Talley 316LN and Talley 2205) were tested and the results are reported in this paper. They were compared with the properties of A706 carbon reinforcing steel (RS), which is typical for seismic applications, and MMFX II, which is a high strength, corrosion resistant RS. Low-cycle fatigue tests of the RS coupons were conducted under strain control with constant amplitude to obtain strain life models of the steels. Test results show that the SRSs have slightly lower moduli of elasticity, higher uniform elongations before necking, and better low-cycle fatigue performance than A706 and MMFX II. All five types of RSs tested satisfy the requirements of the ACI 318 code on the lower limit of the tensile to yield strength ratio. Except Talley 2205, the other four types of RSs investigated meet the ACI 318 requirement that the actual yield strength does not exceed the specified yield strength by more than 18 ksi (124 MPa). Among the three types of SRSs tested, Talley S24100 possesses the highest uniform elongation before necking, and the best low-cycle fatigue performance.

  12. Residual Strength Prediction of Fuselage Structures with Multiple Site Damage

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This paper summarizes recent results on simulating full-scale pressure tests of wide body, lap-jointed fuselage panels with multiple site damage (MSD). The crack tip opening angle (CTOA) fracture criterion and the FRANC3D/STAGS software program were used to analyze stable crack growth under conditions of general yielding. The link-up of multiple cracks and residual strength of damaged structures were predicted. Elastic-plastic finite element analysis based on the von Mises yield criterion and incremental flow theory with small strain assumption was used. A global-local modeling procedure was employed in the numerical analyses. Stress distributions from the numerical simulations are compared with strain gage measurements. Analysis results show that accurate representation of the load transfer through the rivets is crucial for the model to predict the stress distribution accurately. Predicted crack growth and residual strength are compared with test data. Observed and predicted results both indicate that the occurrence of small MSD cracks substantially reduces the residual strength. Modeling fatigue closure is essential to capture the fracture behavior during the early stable crack growth. Breakage of a tear strap can have a major influence on residual strength prediction.

  13. Three-Dimensional Dynamic Loading of Sand

    DTIC Science & Technology

    2011-02-01

    strength yield strength of 40 MPa. In addition the inclusion of grain-on-grain stiction (friction) plays a major role in the compaction of sand at low...strains Figure 5 Stress-strain behavior for various grain and strength configurations When compared to experimental stre ss-strain data, both...of Materials, DYMAT 2009 Brussels Belgium, pg 1545–1551 [xi] Crawford, D.A. 2005. Using mesoscale modeling to investigate the role of material

  14. Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers.

    PubMed

    Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken

    2016-06-01

    The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-01-01

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiCx/Cu composite had higher ultimate compression strength (σUCS), yield strength (σ0.2), and electric conductivity, compared with those of spherical-TiCx/Cu composite. The σUCS, σ0.2, and electrical conductivity of cubic-TiCx/Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiCx/Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiCx/Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiCx/Cu composite with 46 nm in size. The σUCS, σ0.2, and electrical conductivity of spherical-TiCx/Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiCx/Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiCx particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiCx particles with small size led to the compression strength reduction of the composites. PMID:28772859

  16. Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Lei, Kun; Song, Peng; Liu, Xinqin; Zhang, Fei; Li, Jianfei; Chen, Jun

    2015-10-01

    Strengthening of aluminum alloy 2219 by thermo-mechanical treatment has been compared with artificial aging. Three simple deformation modes including pre-stretching, compression, and rolling have been used in thermo-mechanical treatment. The tensile strength, elongation, fracture feature, and precipitated phase have been investigated. The results show that the strengthening effect of thermo-mechanical treatment is better than the one of artificial aging. Especially, the yield strength significantly increases with a small decrease of elongation. When the specimen is pre-stretched to 8.0%, the yield strength reaches 385.0 MPa and increases by 22.2% in comparison to the one obtained in aging condition. The maximum tensile strength of 472.4 MPa is achieved with 4.0% thickness reduction by compression. The fracture morphology reveals locally ductile and brittle failure mechanism, while the coarse second-phase particles distribute on the fracture surface. The intermediate phases θ″ or θ' orthogonally precipitate in the matrix after thermo-mechanical treatment. As compared to artificial aging, the cold plastic deformation increases distribution homogeneity and the volume fraction of θ'' or θ' precipitates. These result in a better strengthening effect.

  17. On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour

    NASA Astrophysics Data System (ADS)

    Gorash, Yevgen; MacKenzie, Donald

    2017-06-01

    This study proposes cyclic yield strength as a potential characteristic of safe design for structures operating under fatigue and creep conditions. Cyclic yield strength is defined on a cyclic stress-strain curve, while monotonic yield strength is defined on a monotonic curve. Both values of strengths are identified using a two-step procedure of the experimental stress-strain curves fitting with application of Ramberg-Osgood and Chaboche material models. A typical S-N curve in stress-life approach for fatigue analysis has a distinctive minimum stress lower bound, the fatigue endurance limit. Comparison of cyclic strength and fatigue limit reveals that they are approximately equal. Thus, safe fatigue design is guaranteed in the purely elastic domain defined by the cyclic yielding. A typical long-term strength curve in time-to-failure approach for creep analysis has two inflections corresponding to the cyclic and monotonic strengths. These inflections separate three domains on the long-term strength curve, which are characterised by different creep fracture modes and creep deformation mechanisms. Therefore, safe creep design is guaranteed in the linear creep domain with brittle failure mode defined by the cyclic yielding. These assumptions are confirmed using three structural steels for normal and high-temperature applications. The advantage of using cyclic yield strength for characterisation of fatigue and creep strength is a relatively quick experimental identification. The total duration of cyclic tests for a cyclic stress-strain curve identification is much less than the typical durations of fatigue and creep rupture tests at the stress levels around the cyclic yield strength.

  18. Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics

    DOE PAGES

    Aagesen, L. K.; Miao, J.; Allison, J. E.; ...

    2018-03-05

    In this paper, dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg 17Al 12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa formore » the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. Finally, the predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.« less

  19. Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aagesen, L. K.; Miao, J.; Allison, J. E.

    In this paper, dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg 17Al 12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa formore » the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. Finally, the predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.« less

  20. Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics

    NASA Astrophysics Data System (ADS)

    Aagesen, L. K.; Miao, J.; Allison, J. E.; Aubry, S.; Arsenlis, A.

    2018-03-01

    Dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg17Al12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa for the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. The predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.

  1. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    NASA Astrophysics Data System (ADS)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  2. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The K JQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  3. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE PAGES

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; ...

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The K JQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  4. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  5. Effect of wear on the burst strength of l-80 steel casing

    NASA Astrophysics Data System (ADS)

    Irawan, S.; Bharadwaj, A. M.; Temesgen, B.; Karuppanan, S.; Abdullah, M. Z. B.

    2015-12-01

    Casing wear has recently become one of the areas of research interest in the oil and gas industry especially in extended reach well drilling. The burst strength of a worn out casing is one of the significantly affected mechanical properties and is yet an area where less research is done The most commonly used equations to calculate the resulting burst strength after wear are Barlow, the initial yield burst, the full yield burst and the rupture burst equations. The objective of this study was to estimate casing burst strength after wear through Finite Element Analysis (FEA). It included calculation and comparison of the different theoretical bursts pressures with the simulation results along with effect of different wear shapes on L-80 casing material. The von Misses stress was used in the estimation of the burst pressure. The result obtained shows that the casing burst strength decreases as the wear percentage increases. Moreover, the burst strength value of the casing obtained from the FEA has a higher value compared to the theoretical burst strength values. Casing with crescent shaped wear give the highest burst strength value when simulated under nonlinear analysis.

  6. Controlling the mechanical properties of carbon steel by thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Balavar, Mohsen; Mirzadeh, Hamed

    2018-01-01

    The effect of thermomechanical processing and heat treatment on the microstructure and mechanical properties of low carbon steel was studied. It was revealed that the dual phase ferritic-martensitic microstructure shows a good combination of tensile strength and ductility along with superior work hardening response. On the other hand, the bimodal-sized structure containing ultrafine grained (UFG) and micron-sized ferrite phase can be easily produced by cold rolling and annealing of the dual phase starting microstructure. This steel showed high yield stress, tensile strength, and ductility, but poor work hardening ability. The full annealed ferritic-pearlitic sheet with banded morphology exhibited low strength and high total elongation with the appearance of the yield point phenomenon. The martensitic steels, however, had high tensile strength and low ductility. By comparing the tensile properties of these steels, it was shown that it is possible to control the mechanical properties of low carbon steel by simple processing routes.

  7. Comparative study about the tensile strength and yielding mechanism of pacing lead among major manufacturers.

    PubMed

    Chi-Wo, Chan; Lip-Kiong, Chan; Tongny, Lam; Kin-Keung, Tsang; Kin-Wing, Chan

    2018-05-14

    With extraction of cardiovascular implantable electronic devices (CIED) increasingly necessitated, various studies have contemplated to investigate clinical predictors for its success and complications. Intrinsic parameters of CIED leads have been studied less extensively and are the foci of this study. Three major pacemaker manufacturers accepted invitation. Leads then underwent tensile test in-vitro with their composite tensile strength (TS) compared. Mechanism of yielding, under tensile stress, was also observed among them. All pacing leads, participated in this study, surpassed requirement of European Standard EN 45502-2-1. Boston Scientific's FINELINE II STENOX 4456/52 cm and Medtronic's CAPSURE SENSE 4074/52 cm showed similar composite TS and both were stronger compared with St. Jude Medical's ISOFLEX OPTIM 1948/52 cm (P < 0.001). Despite a difference in the exact site, the Medtronic 4074 and St. Jude Medical 1948 yielded similarly in that their distal tip electrode remained connected with a flimsy inner coil to proximal portion of the lead after their composite TS was exceeded. Boston Scientific 4456's insulation tubing and coil wire broke almost simultaneously and separated completely from the tip electrode when it yielded. FINELINE II STENOX 4456/52 cm and CAPSURE SENSE 4074/52 cm showed stronger composite tensile strength than ISOFLEX OPTIM 1948/52 cm. FINELINE II STENOX 4456 was found more prone to complete severance. Limitations and precautions to translate these differences directly into real-life scenario are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.

  9. Modelling the effect of shear strength on isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary

    2017-01-01

    Isentropic compression experiments (ICE) are a way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 - 102 GPa, while the yield strength of the material can be as low as 10-2 GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength compared with a model based purely on hydrodynamics.

  10. A study on tensile deformation at room temperature and 650 °C in the directional solidified Ni-base superalloy GTD-111

    NASA Astrophysics Data System (ADS)

    Pauzi, AA; Ghaffar, MH Abdul; Chang, SY; Ng, GP; Husin, S.

    2017-10-01

    GTD-111 DS generally used for gas turbine blades is a high performance Ni-base superalloy. This alloy, with high volume of γ’ phase, has excellent tensile properties at high temperature. The effect of temperature on the tensile deformation of GTD-111 DS was investigated by using tensile test and microstructure evaluation of the fractured specimens. The tensile behaviour of GTD-111 DS was studied in the room temperature (RT) and 650 °C. From the yield strength results, the yield strength decreases from the average of 702.72 MPa to the average of 645.62 MPa with the increase of temperature from RT to 650 °C. The scanning electron microscope (SEM) results on fractured specimens confirmed that the tensile behaviour affected by deformation of the surface at 650 °C compared to fractured surface at RT. Based on the laboratory testing results, the correlation between tensile deformation of fractured surface and yield strength were discussed.

  11. Elevated temperature mechanical properties of line pipe steels

    NASA Astrophysics Data System (ADS)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.

  12. The flexural properties of endodontic post materials.

    PubMed

    Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M; Lumley, Philip J

    2010-08-01

    To measure the flexural strengths and moduli of endodontic post materials and to assess the effect on the calculated flexural properties of varying the diameter/length (D/L) ratio of three-point bend test samples. Three-point bend testing of samples of 2mm diameter metal and fiber-reinforced composite (FRC) rods was carried out and the mechanical properties calculated at support widths of 16 mm, 32 mm and 64 mm. Weibull analysis was performed on the strength data. The flexural strengths of all the FRC post materials exceeded the yield strengths of the gold and stainless steel samples; the flexural strengths of two FRC materials were comparable with the yield strength of titanium. Stainless steel recorded the highest flexural modulus while the titanium and the two carbon fiber materials exhibited similar values just exceeding that of gold. The remaining glass fiber materials were of lower modulus within the range of 41-57 GPa. Weibull modulus values for the FRC materials ranged from 16.77 to 30.09. Decreasing the L/D ratio produced a marked decrease in flexural modulus for all materials. The flexural strengths of FRC endodontic post materials as new generally exceed the yield strengths of metals from which endodontic posts are made. The high Weibull modulus values suggest good clinical reliability of FRC posts. The flexural modulus values of the tested posts were from 2-6 times (FRC) to 4-10 times (metal) that of dentin. Valid measurement of flexural properties of endodontic post materials requires that test samples have appropriate L/D ratios. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Fracture behavior of the Fe-8Al alloy FAP-Y

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, D.J.

    The tensile and impact properties of two heats of the reduced aluminum alloy FAP-Y have been measured and compared to the Fe{sub 3}Al alloy FA-129. The FAP-Y material has similar yield strengths up to 400{degrees}C, and much better ductility and impact properties, as compared to the FA-129. Despite excellent room-temperature ductility, the ductile-to-brittle transition temperature is still quite high, around 150{degrees}C. The material is found to be strain-rate sensitive, with a significant increase in the yield strength at strain rates of about 10{sup 3} s{sup {minus}1}. It is believed that this strain-rate sensitivity is responsible, at least in part, formore » the high ductile-to-brittle transition temperature.« less

  14. Free-form reticulated shell structures searched for maximum buckling strength

    NASA Astrophysics Data System (ADS)

    Takiuchi, Yuji; Kato, Shiro; Nakazawa, Shoji

    2017-10-01

    In this paper, a scheme of shape optimization is proposed for maximum buckling strength of free-form steel reticulated shells. In order to discuss the effectiveness of objective functions with respect to maximizing buckling strength, several different optimizations are applied to shallow steel single layer reticulated shells targeting rigidly jointed tubular members. The objective functions to be compared are linear buckling load, strain energy, initial yield load, and elasto-plastic buckling strength evaluated based on Modified Dunkerley Formula. With respect to obtained free-forms based on the four optimization schemes, both of their elastic buckling and elasto-plastic buckling behaviour are investigated and compared considering geometrical imperfections. As a result, it is concluded that the first and fourth optimization methods are effective from a viewpoint of buckling strength. And the relation between generalized slenderness ratio and appropriate objective function applied in buckling strength maximization is made clear.

  15. Study of MA Effect on Yield Strength and Ductility of X80 Linepipe Steels Weld

    NASA Astrophysics Data System (ADS)

    Huda, Nazmul; Lazor, Robert; Gerlich, Adrian P.

    2017-09-01

    Multipass GMAW (Gas Metal Arc Welding) welding was used to join X80 linepipe materials using two weld metals of slightly different compositions. Welding wires with diameters of 0.984 and 0.909 mm were used while applying the same heat input in each pass. The slight difference in the wire diameters resulted in different HAZ microstructures. The microstructures in the doubly reheated HAZ of both welds were found to contain bainite-ferrite. However, etching also revealed a difference in martensite-austenite (MA) fraction in these reheated zones. The MA exhibited twice the hardness of ferrite when measured by nanoindentation. Tensile testing from the reheated zone of both welds revealed a difference in yield strength, tensile strength and elongation of the transverse weld specimens. In the reheated zone of weld A, (produced with a 0.984 mm wire) a higher fraction of MA was observed, which resulted in higher strength but lower elongation compared to weld B. The ductility of weld A was found severely impaired (to nearly half of weld B) due to formation of closely spaced voids around the MA, along with debonding of MA from the matrix, which occurs just above the yield stress.

  16. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smietana, Michael J.; Arruda, Ellen M.; Mechanical Engineering, University of Michigan, 2250 GG Brown, 2350 Hayward, Ann Arbor, MI 48109

    Research highlights: {yields} Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. {yields} Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. {yields} Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Micemore » deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1{sup -/-} mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1{sup -/-} mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm{sup 2}) and strength (MPa) is diminished in Sod1{sup -/-} compared to WT mice. Femurs were obtained from male and female WT and Sod1{sup -/-} mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1{sup -/-} mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1{sup -/-} mice compared to WT as well as between genders. These data indicate that increased oxidative stress, due to the deficiency of Sod1 is associated with decreased bone stiffness and strength and Sod1{sup -/-} mice may represent an appropriate model for studying disease processes in aging bone.« less

  17. New rapid method for determining edgewise compressive strength of corrugated fiberboard

    Treesearch

    John W. Koning

    1986-01-01

    The objective of this study was to determine if corrugated fiberboard specimens that had been necked down with a common router would yield acceptable edgewise compressive strength values. Tests were conducted on specimens prepared using a circular saw and router, and the results were compared with those obtained on specimens prepared according to TAPPI Test Method T...

  18. Microstructure-mechanical property relationships for Al-Cu-Li-Zr alloys with minor additions of cadmium, indium or tin

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.; Starke, E. A., Jr.

    1989-01-01

    Minor amounts of cadmium, indium or tin were added to a baseline alloy with the nominal composition of Al-2.4Cu-2.4Li-0.15Zr. These elements were added in an attempt to increase the age-hardening response of the material such that high strengths could be achieved through heat-treatment alone, without the need for intermediate mechanical working. The alloy variant containing indium achieved a higher peak hardness in comparison to the other alloy variations, including the baseline material, when aged at temperatures ranging from 160 C to 190 C. Tensile tests on specimens peak-aged at 160 indicated the yield strength of the indium-bearing alloy increased by approximately 15 percent compared to that of the peak-aged baseline alloy. In addition, the yield strength obtained in the indium-bearing alloy was comparable to that reported for similar baseline material subjected to a 6 percent stretch prior to peak-aging at 190 C. The higher strength levels obtaied for the indium-bearing alloy are attributed to increased number densities and homogeneity of both the T1 and theta-prime phases, as determined by TEM studies.

  19. A Modified HR3C Austenitic Heat-Resistant Steel for Ultra-supercritical Power Plants Applications Beyond 650 °C

    NASA Astrophysics Data System (ADS)

    Zhu, C. Z.; Yuan, Y.; Zhang, P.; Yang, Z.; Zhou, Y. L.; Huang, J. Y.; Yin, H. F.; Dang, Y. Y.; Zhao, X. B.; Lu, J. T.; Yan, J. B.; You, C. Y.

    2018-02-01

    A modified HR3C austenitic steel has been designed by optimizing the chemical composition. Compared with a commercial HR3C alloy, the modified steel has comparable oxidation resistance, yield strength, and plasticity, but higher creep rupture strength and impact toughness after long-term thermal exposure. The results suggest that the modified alloy is a promising candidate for the applications of ultra-supercritical power plants operating beyond 650 °C.

  20. Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Qin, Qingquan; Xu, Feng; Fan, Fengru; Ding, Yong; Zhang, Tim; Wiley, Benjamin J.; Wang, Zhong Lin

    2012-01-01

    This paper reports the quantitative measurement of a full spectrum of mechanical properties of fivefold twinned silver (Ag) nanowires (NWs), including Young's modulus, yield strength, and ultimate tensile strength. In-situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a scanning electron microscope (SEM). Young's modulus, yield strength, and ultimate tensile strength all increased as the NW diameter decreased. The maximum yield strength in our tests was found to be 2.64 GPa, which is about 50 times the bulk value and close to the theoretical value of Ag in the 110 orientation. The size effect in the yield strength is mainly due to the stiffening size effect in the Young's modulus. Yield strain scales reasonably well with the NW surface area, which reveals that yielding of Ag NWs is due to dislocation nucleation from surface sources. Pronounced strain hardening was observed for most NWs in our study. The strain hardening, which has not previously been reported for NWs, is mainly attributed to the presence of internal twin boundaries.

  1. Dynamic tensile characterization of Vascomax® maraging C250 and C300 alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Wakeland, Peter Eric; Furnish, Michael D.

    Vascomax® maraging C250 and C300 alloys were dynamically characterized in tension with Kolsky tension bar techniques. Compared with conventional Kolsky tension bar experiments, a pair of lock nuts was used to minimize the pseudo stress peak and a laser system was applied to directly measure the specimen displacement. Dynamic engineering stress–strain curves of the C250 and C300 alloys were obtained in tension at 1000 and 3000 s –1. The dynamic yield strengths for both alloys were similar, but significantly higher than those obtained from quasi-static indentation tests. Both alloys exhibited insignificant strain-rate effect on dynamic yield strength. The C300 alloymore » showed approximately 10 % higher in yield strength than the C250 alloy at the same strain rates. Necking was observed in both alloys right after yield. The Bridgman correction was applied to calculate the true stress and strain at failure for both alloys. The true failure stress showed a modest strain rate effect for both alloys but no significant difference between the two alloys at the same strain rate. As a result, the C250 alloy was more ductile than the C300 alloy under dynamic loading.« less

  2. Dynamic tensile characterization of Vascomax® maraging C250 and C300 alloys

    DOE PAGES

    Song, Bo; Wakeland, Peter Eric; Furnish, Michael D.

    2015-04-14

    Vascomax® maraging C250 and C300 alloys were dynamically characterized in tension with Kolsky tension bar techniques. Compared with conventional Kolsky tension bar experiments, a pair of lock nuts was used to minimize the pseudo stress peak and a laser system was applied to directly measure the specimen displacement. Dynamic engineering stress–strain curves of the C250 and C300 alloys were obtained in tension at 1000 and 3000 s –1. The dynamic yield strengths for both alloys were similar, but significantly higher than those obtained from quasi-static indentation tests. Both alloys exhibited insignificant strain-rate effect on dynamic yield strength. The C300 alloymore » showed approximately 10 % higher in yield strength than the C250 alloy at the same strain rates. Necking was observed in both alloys right after yield. The Bridgman correction was applied to calculate the true stress and strain at failure for both alloys. The true failure stress showed a modest strain rate effect for both alloys but no significant difference between the two alloys at the same strain rate. As a result, the C250 alloy was more ductile than the C300 alloy under dynamic loading.« less

  3. Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics.

    PubMed

    Dowthwaite, J N; Scerpella, T A

    2011-01-01

    Development of optimal skeletal strength should decrease adult bone fragility. Nongymnasts (NON): were compared with girls exposed to gymnastics during growth (EX/GYM: ), using peripheral quantitative computed tomography (pQCT) to evaluate postmenarcheal bone geometry, density, and strength. Pre- and perimenarcheal gymnastic loading yields advantages in indices of postmenarcheal bone geometry and skeletal strength. Two prior studies using pQCT have reported bone density and size advantages in Tanner I/II gymnasts, but none describe gymnasts' bone properties later in adolescence. The current study used pQCT to evaluate whether girls exposed to gymnastics during late childhood growth and perimenarcheal growth exhibited greater indices of distal radius geometry, density, and skeletal strength. Postmenarcheal subjects underwent 4% and 33% distal radius pQCT scans, yielding: 1) vBMD and cross-sectional areas (CSA) (total bone, compartments); 2) polar strength-strain index; 3) index of structural strength in axial compression. Output was compared for EX/GYM: vs. NON: , adjusting for gynecological age and stature (maturity and body size), reporting means, standard errors, and significance. Sixteen postmenarcheal EX/GYM: (age 16.7 years; gynecological age 3.4 years) and 13 NON: (age 16.2 years; gynecological age 3.6 years) were evaluated. At both diaphysis and metaphysis, EX/GYM: exhibited greater CSA and bone strength indices than NON; EX/GYM: exhibited 79% larger intramedullary CSA than NON: (p < 0.05). EX/GYM: had significantly higher 4% trabecular vBMD; differences were not detected for 4% total vBMD and 33% cortical vBMD. Following pre-/perimenarcheal gymnastic exposure, relative to nongymnasts, postmenarcheal EX/GYM: demonstrated greater indices of distal radius geometry and skeletal strength (metaphysis and diaphysis) with greater metaphyseal trabecular vBMD; larger intramedullary cavity size was particularly striking.

  4. Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics

    PubMed Central

    Scerpella, T. A.

    2011-01-01

    Summary Development of optimal skeletal strength should decrease adult bone fragility. Nongymnasts (NON) were compared with girls exposed to gymnastics during growth (EX/GYM), using peripheral quantitative computed tomography (pQCT) to evaluate postmenarcheal bone geometry, density, and strength. Pre- and perimenarcheal gymnastic loading yields advantages in indices of postmenarcheal bone geometry and skeletal strength. Introduction Two prior studies using pQCT have reported bone density and size advantages in Tanner I/II gymnasts, but none describe gymnasts’ bone properties later in adolescence. The current study used pQCT to evaluate whether girls exposed to gymnastics during late childhood growth and perimenarcheal growth exhibited greater indices of distal radius geometry, density, and skeletal strength. Methods Postmenarcheal subjects underwent 4% and 33% distal radius pQCT scans, yielding: 1) vBMD and cross-sectional areas (CSA) (total bone, compartments); 2) polar strength-strain index; 3) index of structural strength in axial compression. Output was compared for EX/GYM vs. NON, adjusting for gynecological age and stature (maturity and body size), reporting means, standard errors, and significance. Results Sixteen postmenarcheal EX/GYM (age 16.7 years; gynecological age 3.4 years) and 13 NON (age 16.2 years; gynecological age 3.6 years) were evaluated. At both diaphysis and metaphysis, EX/GYM exhibited greater CSA and bone strength indices than NON; EX/GYM exhibited 79% larger intramedullary CSA than NON (p<0.05). EX/GYM had significantly higher 4% trabecular vBMD; differences were not detected for 4% total vBMD and 33% cortical vBMD. Conclusions Following pre-/perimenarcheal gymnastic exposure, relative to nongymnasts, postmenarcheal EX/GYM demonstrated greater indices of distal radius geometry and skeletal strength (metaphysis and diaphysis) with greater metaphyseal trabecular vBMD; larger intramedullary cavity size was particularly striking. PMID:20419293

  5. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  6. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  7. Effect of hot extrusion, other constituents, and temperature on the strength and fracture of polycrystalline MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R.W.

    Improved agreement was confirmed between the Petch intercept and single-crystal yield stresses at 22 C. Hot-extruded MgO crystal specimens stressed parallel with the resultant axial texture (1) gave the highest and least-scattered strength-grain size results at 22 C, (2) showed direct fractographic evidence of microplastic initiated fracture at 22 C and showed macroscopic yield at 1,315 and especially 1,540 C, and (3) fractured entirely via transgranular cleavage, except for intergranular failure initiation from one or a few grain boundary surfaces exposed on the subsequent fracture surface, mainly at 1,540 C. Hot-extruded, hot-pressed MgO billets gave comparable strength when fracture initiatedmore » transgranularly, but lower strength when fracture initiated from one or especially a few grain boundary surfaces exposed on the fracture. The extent and frequency of such boundary fracture increased with test temperature. While oxide additions of [<=] 5% or impurities in hot-pressed or hot-extruded MgO can make limited strength increases at larger grain sizes, those having limited solubility can limit strength at finer grain sizes, as can coarser surface finish. Overall, MgO strength is seen as a balance between flaw and microplastic controlled failure, with several parameters shifting the balance.« less

  8. Theoretical Bounds for the Influence of Tissue-Level Ductility on the Apparent-Level Strength of Human Trabecular Bone

    PubMed Central

    Nawathe, Shashank; Juillard, Frédéric; Keaveny, Tony M.

    2015-01-01

    The role of tissue-level post-yield behavior on the apparent-level strength of trabecular bone is a potentially important aspect of bone quality. To gain insight into this issue, we compared the apparent-level strength of trabecular bone for the hypothetical cases of fully brittle versus fully ductile failure behavior of the trabecular tissue. Twenty human cadaver trabecular bone specimens (5 mm cube; BV/TV = 6–36%) were scanned with micro-CT to create 3D finite element models (22-micron element size). For each model, apparent-level strength was computed assuming either fully brittle (fracture with no tissue ductility) or fully ductile (yield with no tissue fracture) tissue-level behaviors. We found that the apparent-level ultimate strength for the brittle behavior was only about half the value of the apparent-level 0.2%-offset yield strength for the ductile behavior, and the ratio of these brittle to ductile strengths was almost constant (mean ± SD = 0.56 ± 0.02; n=20; R2 = 0.99 between the two measures). As a result of this small variation, although the ratio of brittle to ductile strengths was positively correlated with the bone volume fraction (R2=0.44, p=0.01) and structure model index (SMI, R2=0.58, p<0.01), these effects were small. Mechanistically, the fully ductile behavior resulted in a much higher apparent-level strength because in this case about 16-fold more tissue was required to fail than for the fully brittle behavior; also, there was more tensile- than compressive-mode of failure at the tissue level for the fully brittle behavior. We conclude that, in theory, the apparent-level strength behavior of human trabecular bone can vary appreciably depending on whether the tissue fails in a fully ductile versus fully brittle manner, and this effect is largely constant despite appreciable variations in bone volume fraction and microarchitecture. PMID:23497799

  9. Kinetics model of bainitic transformation with stress

    NASA Astrophysics Data System (ADS)

    Zhou, Mingxing; Xu, Guang; Hu, Haijiang; Yuan, Qing; Tian, Junyu

    2018-01-01

    Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.

  10. Yield strength measurement of shock-loaded metal by flyer-impact perturbation method

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojuan; Shi, Zhan

    2018-06-01

    Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-impact experiments on targets with machined grooves on the impact surface of shock 6061-T6 aluminum to between 32 and 61 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of 6061-T6 aluminum to be 1.31-1.75 GPa. These results are in agreement with values obtained from reshock and release wave profiles. We conclude that the flyer-impact perturbation method is indeed a new means to measure material strength.

  11. Photosensitized electron transfer processes in SiO2 colloids and sodium lauryl sulfate micellar systems: Correlation of quantum yields with interfacial surface potentials

    PubMed Central

    Laane, Colja; Willner, Itamar; Otvos, John W.; Calvin, Melvin

    1981-01-01

    The effectiveness of negatively charged colloidal SiO2 particles in controlling photosensitized electron transfer reactions has been studied and compared with that of the negatively charged sodium lauryl sulfate (NaLauSO4) micellar system. In particular, the photosensitized reduction of the zwitterionic electron acceptor propylviologen sulfonate (PVS0) with tris(2,2′-bipyridinium)ruthenium(II) [Ru(bipy)32+] as the sensitizer and triethanolamine as the electron donor is found to have a quantum yield of 0.033 for formation of the radical anion (PVS[unk]) in the SiO2 colloid compared with 0.005 in the homogeneous system and 0.0086 in a NaLauSO4 micellar solution. The higher quantum yields obtained with the SiO2 colloidal system are attributed to substantial stabilization against back reaction of the intermediate photoproducts—i.e., Ru(bipy)33+ and PVS[unk]—by electrostatic repulsion of the reduced electron acceptor from the negatively charged particle surface. The binding properties of the SiO2 particles and NaLauSO4 micelles were investigated by flow dialysis. The results show that the sensitizer binds to both interfaces and that the SiO2 interface is characterized by a much higher surface potential than the micellar interface (≈-170 mV vs. -85 mV). The effect of ionic strength on the surface potential was estimated from the Gouy-Chapman theory, and the measured quantum yields of photosensitized electron transfer were correlated with surface potential at different ionic strengths. This correlation shows that the quantum yield is not affected by surface potentials smaller than ≈-40 mV. At larger potentials, the quantum yield increases rapidly. The quantum yield obtained in the micellar system at different strengths fits nicely on the correlation curve for the colloid SiO2 system. These results indicate that the surface potential is the dominant factor in the quantum yield improvement for PVS0 reduction. PMID:16593095

  12. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.

    PubMed

    Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-03-01

    Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effect of coating mild steel with CNTs on its mechanical properties and corrosion behaviour in acidic medium

    NASA Astrophysics Data System (ADS)

    Abdulmalik Abdulrahaman, Mahmud; Kamaldeeen Abubakre, Oladiran; Ambali Abdulkareem, Saka; Oladejo Tijani, Jimoh; Aliyu, Ahmed; Afolabi, Ayo Samuel

    2017-03-01

    The study investigated the mechanical properties and corrosion behaviour of mild steel coated with carbon nanotubes at different coating conditions. Multi-walled carbon nanotubes (MWCNTs) were synthesized via the conventional chemical vapour deposition reaction using bimetallic Fe-Ni catalyst supported on kaolin, with acetylene gas as a carbon source. The HRSEM/HRTEM analysis of the purified carbon materials revealed significant reduction in the diameters of the purified MWCNT bundles from 50 nm to 2 nm and was attributed to the ultrasonication assisted dispersion with surfactant (gum arabic) employed in purification process. The network of the dispersed MWCNTs was coated onto the surfaces of mild steel samples, and as the coating temperature and holding time increased, the coating thickness reduced. The mechanical properties (tensile strength, yield strength, hardness value) of the coated steel samples increased with increase in coating temperature and holding time. Comparing the different coating conditions, coated mild steels at the temperature of 950 °C for 90 min holding time exhibited high hardness, yield strength and tensile strength values compared to others. The corrosion current and corrosion rate of the coated mild steel samples decreased with increase in holding time and coating temperature. The lowest corrosion rate was observed on sample coated at 950 °C for 90 min.

  14. Minimization of Residual Stress in an Al-Cu Alloy Forged Plate by Different Heat Treatments

    NASA Astrophysics Data System (ADS)

    Dong, Ya-Bo; Shao, Wen-Zhu; Jiang, Jian-Tang; Zhang, Bao-You; Zhen, Liang

    2015-06-01

    In order to improve the balance of mechanical properties and residual stress, various quenching and aging treatments were applied to Al-Cu alloy forged plate. Residual stresses determined by the x-ray diffraction method and slitting method were compared. The surface residual stress measured by x-ray diffraction method was consistent with that measured by slitting method. The residual stress distribution of samples quenched in water with different temperatures (20, 60, 80, and 100 °C) was measured, and the results showed that the boiling water quenching results in a 91.4% reduction in residual stress magnitudes compared with cold water quenching (20 °C), but the tensile properties of samples quenched in boiling water were unacceptably low. Quenching in 80 °C water results in 75% reduction of residual stress, and the reduction of yield strength is 12.7%. The residual stress and yield strength level are considerable for the dimensional stability of aluminum alloy. Quenching samples into 30% polyalkylene glycol quenchants produced 52.2% reduction in the maximum compressive residual stress, and the reduction in yield strength is 19.7%. Moreover, the effects of uphill quenching and thermal-cold cycling on the residual stress were also investigated. Uphill quenching and thermal-cold cycling produced approximately 25-40% reduction in residual stress, while the effect on tensile properties is quite slight.

  15. Grain orientation effects on dynamic strength of FCC multicrystals at low shock pressures: a hydrodynamic instability study

    DOE PAGES

    Peralta, P.; Loomis, E.; Chen, Y.; ...

    2015-04-09

    Variability in local dynamic plasticity due to material anisotropy in polycrystalline metals is likely to be important on damage nucleation and growth at low pressures. Hydrodynamic instabilities could be used to study these plasticity effects by correlating measured changes in perturbation amplitudes at free surfaces to local plastic behaviour and grain orientation, but amplitude changes are typically too small to be measured reliably at low pressures using conventional diagnostics. Correlations between strength at low shock pressures and grain orientation were studied in copper (grain size ≈ 800 μm) using the Richtmyer–Meshkov instability with a square-wave surface perturbation (wavelength = 150 μm, amplitude = 5 μm), shocked at 2.7 GPa using symmetric plate impacts. A Plexiglas window was pressed against the peaks of the perturbation, keeping valleys as free surfaces. This produced perturbation amplitude changes much larger than those predicted without the window. Amplitude reductions from 64 to 88% were measured in recovered samples and grains oriented close tomore » $$\\langle$$0 0 1$$\\rangle$$ parallel to the shock had the largest final amplitude, whereas grains with shocks directions close to $$\\langle$$1 0 1$$\\rangle$$ had the lowest. Finite element simulations were performed with elastic-perfectly plastic models to estimate yield strengths leading lead to those final amplitudes. Anisotropic elasticity and these yield strengths were used to calculate the resolved shear stresses at yielding for the two orientations. In conclusion, results are compared with reports on orientation dependence of dynamic yielding in Cu single crystals and the higher values obtained suggest that strength estimations via hydrodynamic instabilities are sensitive to strain hardening and strain rate effects.« less

  16. Evaluation of an alternative technique to optimize direct bonding of orthodontic brackets to temporary crowns.

    PubMed

    Dias, Francilena Maria Campos Santos; Pinzan-Vercelino, Célia Regina Maio; Tavares, Rudys Rodolfo de Jesus; Gurgel, Júlio de Araújo; Bramante, Fausto Silva; Fialho, Melissa Nogueira Proença

    2015-01-01

    To compare shear bond strength of different direct bonding techniques of orthodontic brackets to acrylic resin surfaces. The sample comprised 64 discs of chemically activated acrylic resin (CAAR) randomly divided into four groups: discs in group 1 were bonded by means of light-cured composite resin (conventional adhesive); discs in group 2 had surfaces roughened with a diamond bur followed by conventional direct bonding by means of light-cured composite resin; discs in group 3 were bonded by means of CAAR (alternative adhesive); and discs in group 4 had surfaces roughened with a diamond bur followed by direct bonding by means of CAAR. Shear bond strength values were determined after 24 hours by means of a universal testing machine at a speed of 0.5 mm/min, and compared by analysis of variance followed by post-hoc Tukey test. Adhesive remnant index (ARI) was measured and compared among groups by means of Kruskal-Wallis and Dunn tests. Groups 3 and 4 had significantly greater shear bond strength values in comparison to groups 1 and 2. Groups 3 and 4 yielded similar results. Group 2 showed better results when compared to group 1. In ARI analyses, groups 1 and 2 predominantly exhibited a score equal to 0, whereas groups 3 and 4 predominantly exhibited a score equal to 3. Direct bonding of brackets to acrylic resin surfaces using CAAR yielded better results than light-cured composite resin. Surface preparation with diamond bur only increased shear bond strength in group 2.

  17. Column strength of magnesium alloy AM-57S

    NASA Technical Reports Server (NTRS)

    Holt, M

    1942-01-01

    Tests were made to determine the column strength of extruded magnesium alloy AM-57S. Column specimens were tested with round ends and with flat ends. It was found that the compressive properties should be used in computations for column strengths rather than the tensile properties because the compressive yield strength was approximately one-half the tensile yield strength. A formula for the column strength of magnesium alloy AM-57S is given.

  18. Microstructure and properties of thermomechanically strengthened reinforcement bars: A comparative assessment of plain-carbon and low-alloy steel grades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, A.; Mukerjee, D.; Sen, S.K.

    1997-06-01

    An extensive investigation has been carried out to study structure-property characteristics and corrosion behavior in three varieties of thermomechanically treated (TMT) reinforcement bars (rebars) produced in an integrated steel plant under the Steel Authority of India Limited. Three experimental steel heats--one of plain-carbon and two of low-alloy chemistry--were chosen for the study. Of the two low-alloy heats, one was copper-bearing and the other contained both copper and chromium for improved corrosion resistance. Hot-rolled bars for each specific chemistry were subjected to in-line thermomechanical treatment, where quenching parameters were altered to achieve different yield strength levels. All the TMT rebars, regardlessmore » of chemistry and strength level, exhibited a composite microstructure consisting of ferrite-pearlite at the core and tempered martensite at the rim. Although a tendency toward formation of Widmanstaetten ferrite was evident in bars of 500 and 550 MPa yield strength levels, no adverse effect on their strength and ductility was observed. From the standpoint of mechanical properties, the rebars not only conformed to minimum yield strength requirements, but also exhibited high elongation values (21 to 28%) and excellent bendability. Corrosion studies of both TMT and cold-twisted and deformed (CTD) rebars subjected to different laboratory tests indicated that corrosion resistance increased in this order: CTD, plain-carbon TMT, copper-bearing TMT, and copper/chromium-bearing TMT.« less

  19. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    PubMed

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments. Compared to control, the bending strength of 3rd internode was increased by 14.47% in PCH-treated plants in 2011, increased by 18.40% in 2012, and the difference was significant. Puncture strength of 1st, 3rd and 5th internode was increased by 37.25%, 29.17% and 26.09% in 2011 and 34.04%, 25% and 23.68% in 2012, compared to control. Leaf area and dry weight per plant reduced significantly in CCC-treated plants, increased in DCPTA-treated and PCH-treated plants from 2011 to 2012. Chlorophyll content and chlorophyll fluorescence improved with CCC and DCPTA application. Due to the additive effect of DCPTA and CCC, PCH showed the significant effect on chlorophyll content and chlorophyll fluorescence. Compared to control, total enzyme activity (SOD, POD, CAT, APX and GR) and soluble protein content increased, malonaldehyde (MDA) and hydrogen peroxide (H2O2) content reduced in PCH-treated plants. The transportation of soluble sugar from leaf to kernel improved significantly at the late silking stage. The research provided the way for the further use of DCPTA and CCC into the production practice.

  20. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants

    PubMed Central

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments. Compared to control, the bending strength of 3rd internode was increased by 14.47% in PCH-treated plants in 2011, increased by 18.40% in 2012, and the difference was significant. Puncture strength of 1st, 3rd and 5th internode was increased by 37.25%, 29.17% and 26.09% in 2011 and 34.04%, 25% and 23.68% in 2012, compared to control. Leaf area and dry weight per plant reduced significantly in CCC-treated plants, increased in DCPTA-treated and PCH-treated plants from 2011 to 2012. Chlorophyll content and chlorophyll fluorescence improved with CCC and DCPTA application. Due to the additive effect of DCPTA and CCC, PCH showed the significant effect on chlorophyll content and chlorophyll fluorescence. Compared to control, total enzyme activity (SOD, POD, CAT, APX and GR) and soluble protein content increased, malonaldehyde (MDA) and hydrogen peroxide (H2O2) content reduced in PCH-treated plants. The transportation of soluble sugar from leaf to kernel improved significantly at the late silking stage. The research provided the way for the further use of DCPTA and CCC into the production practice. PMID:26872260

  1. Normalization of Impact Energy by Laminate Thickness for Compression After Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Hromisin, S. M.

    2013-01-01

    The amount of impact energy used to damage a composite laminate is a critical parameter when assessing residual strength properties. The compression after impact (CAI) strength of impacted laminates is dependent upon how thick the laminate is and this has traditionally been accounted for by normalizing (dividing) the impact energy by the laminate's thickness. However, when comparing CAI strength values for a given lay-up sequence and fiber/resin system, dividing the impact energy by the specimen thickness has been noted by the author to give higher CAI strength values for thicker laminates. A study was thus undertaken to assess the comparability of CAI strength data by normalizing the impact energy by the specimen thickness raised to a power to account for the higher strength of thicker laminates. One set of data from the literature and two generated in this study were analyzed by dividing the impact energy by the specimen thickness to the 1, 1.5, 2, and 2.5 powers. Results show that as laminate thickness and damage severity decreased, the value which the laminate thickness needs to be raised to in order to yield more comparable CAI data increases.

  2. Atomistic basis for the plastic yield criterion of metallic glass.

    PubMed

    Schuh, Christopher A; Lund, Alan C

    2003-07-01

    Because of their disordered atomic structure, amorphous metals (termed metallic glasses) have fundamentally different deformation mechanisms compared with polycrystalline metals. These different mechanisms give metallic glasses high strength, but the extent to which they affect other macroscopic deformation properties is uncertain. For example, the nature of the plastic-yield criterion is a point of contention, with some studies reporting yield behaviour roughly in line with that of polycrystalline metals, and others indicating strong fundamental differences. In particular, it is unclear whether pressure- or normal stress-dependence needs to be included in the plastic-yield criterion of metallic glasses, and how such a dependence could arise from their disordered structure. In this work we provide an atomic-level explanation for pressure-dependent yield in amorphous metals, based on an elementary unit of deformation. This simple model compares favourably with new atomistic simulations of metallic glasses, as well as existing experimental data.

  3. On improving the fracture toughness of a NiAl-based alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Kostrubanic, J.; Koss, D. A.; Locci, I. E.; Nathal, M.

    1991-01-01

    Mechanical alloying (MA) has been used to process the NiAl-based alloy Ni-35Al-20Fe, such that a fine-grain (about 2 microns) microstructure is obtained through the addition of 2 vol pct Y2O3 particles. When compared to a conventionally processed, coarse-grained (about 28 microns) Ni-35-20 alloy without the Y2O3 particles, the MA alloy exhibits two to three times higher fracture toughness values, despite a 50-percent increase in yield strength. Room-temperature K(O) values as high as 34 MPa sq rt m are observed, accompanied by a yield strength in excess of 1100 MPa. Fractography confirms a change in fracture characteristics of the fine-grained MA alloy.

  4. Nanoindentation of Electropolished FeCrAl Alloy Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan; Aydogan, Eda; Mara, Nathan Allan

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a largermore » reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.« less

  5. Relationship between compatibilizer and yield strength of PLA/PP Blend

    NASA Astrophysics Data System (ADS)

    Jariyakulsith, Pattanun; Puajindanetr, Somchai

    2018-01-01

    The aim of this research is to study the relationship between compatibilizer and yield strength of polylactic acid (PLA) and polypropylene (PP) blend. The PLA is blended with PP (PLA/PP) at the ratios of 70/30, 50/50 and 30/70. In addition, (1) polypropylene grafted maleic anhydride (PP-g-MAH) as a compatibilizer at 0.3 and 0.7 part per hundred of PLA/PP resin (phr) and (2) dicumyl peroxide (DCP) being an initiator at 0.03 and 0.07 phr are added in each composition. Yield strength is characterized to study the interaction between compatibilizer, initiator and yield strength by using experimental design of multilevel full factorial. The results show that (1) the yield strength of PLA/PP blend are increased after addition of compatibilizer. Because the adding of PP-g-MAH and DCP resulted in improving compatibility between PLA and PP. (2) there are interaction between PP-g-MAH and DCP that have affected the final properties of PLA/PP blend. The highest yield strength of 27.68 MPa is provided at the ratio of 70/30 blend by using the 0.3 phr of PP-g-MAH and 0.03 phr of DCP. Linear regression model is fitted and follow the assumptions of normal distribution.

  6. Data-driven reduced order models for effective yield strength and partitioning of strain in multiphase materials

    NASA Astrophysics Data System (ADS)

    Latypov, Marat I.; Kalidindi, Surya R.

    2017-10-01

    There is a critical need for the development and verification of practically useful multiscale modeling strategies for simulating the mechanical response of multiphase metallic materials with heterogeneous microstructures. In this contribution, we present data-driven reduced order models for effective yield strength and strain partitioning in such microstructures. These models are built employing the recently developed framework of Materials Knowledge Systems that employ 2-point spatial correlations (or 2-point statistics) for the quantification of the heterostructures and principal component analyses for their low-dimensional representation. The models are calibrated to a large collection of finite element (FE) results obtained for a diverse range of microstructures with various sizes, shapes, and volume fractions of the phases. The performance of the models is evaluated by comparing the predictions of yield strength and strain partitioning in two-phase materials with the corresponding predictions from a classical self-consistent model as well as results of full-field FE simulations. The reduced-order models developed in this work show an excellent combination of accuracy and computational efficiency, and therefore present an important advance towards computationally efficient microstructure-sensitive multiscale modeling frameworks.

  7. Jet formation in cerium metal to examine material strength

    DOE PAGES

    Jensen, B. J.; Cherne, F. J.; Prime, M. B.; ...

    2015-11-18

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Some recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solidmore » phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. And from these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. Finally, the data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.« less

  8. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it; Spigarelli, Stefano

    2011-10-15

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K weremore » carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: {yields} TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. {yields} The evaluation has been extended to different compression temperature conditions. {yields} Linear and Quadratic sum has been proposed and validated. {yields} Hall-Petch was found to be the most prominent strengthening contributions.« less

  9. Prediction of shear critical behavior of high-strength reinforced concrete columns using finite element methods

    NASA Astrophysics Data System (ADS)

    Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu

    2017-11-01

    This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.

  10. Anomalous softening of yield strength in tantalum at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Qiumin, E-mail: j-qm@163.com; Wu, Qiang; Xu, Ji-an

    2015-02-07

    The pressure dependence of the yield strength of tantalum was investigated experimentally up to 101 GPa at room temperature using a diamond anvil cell. A yield strength softening is observed between 52 and 84 GPa, whereas a normal trend is observed below 52 GPa and above 84 GPa. The onset pressure of the softening is in agreement with previous results obtained by the pressure gradient method and shock wave experiments. This unusual strength softening in tantalum is not related with structural transformation, preferred orientation, or material damage. Our measurements indicate that microscopic deviatoric strain is the major reason for the observed strength softening inmore » tantalum.« less

  11. Mechanical response of unidirectional boron/aluminum under combined loading

    NASA Technical Reports Server (NTRS)

    Becker, Wolfgang; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1987-01-01

    Three test methods were employed to characterize the response of unidirectional Boron/Aluminum metal matrix composite material under monotonic and cyclic loading conditions, namely, losipescu shear, off-axis tension and compression. The characterization of the elastic and plastic response includes the elastic material properties, yielding and subsequent hardening of the unidirectional composite under different stress ratios in the material principal coordinate system. Yield loci generated for different stress ratios are compared for the three different test methods, taking into account residual stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with the prediction of an analytical, micromechanical model. The influence of the scatter in the experimental data on the predicted yield surface is also analyzed. Lastly, the experimental material strengths in tension and compression are correlated with the maximum stress and the Tsai-Wu failure criterion.

  12. Development of Yield and Tensile Strength Design Curves for Alloy 617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nancy Lybeck; T. -L. Sham

    2013-10-01

    The U.S. Department of Energy Very High Temperature Reactor Program is acquiring data in preparation for developing an Alloy 617 Code Case for inclusion in the nuclear section of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code. A draft code case was previously developed, but effort was suspended before acceptance by ASME. As part of the draft code case effort, a database was compiled of yield and tensile strength data from tests performed in air. Yield strength and tensile strength at temperature are used to set time independent allowable stress for construction materials in B&PVmore » Code, Section III, Subsection NH. The yield and tensile strength data used for the draft code case has been augmented with additional data generated by Idaho National Laboratory and Oak Ridge National Laboratory in the U.S. and CEA in France. The standard ASME Section II procedure for generating yield and tensile strength at temperature is presented, along with alternate methods that accommodate the change in temperature trends seen at high temperatures, resulting in a more consistent design margin over the temperature range of interest.« less

  13. Trabecular Bone Strength Predictions of HR-pQCT and Individual Trabeculae Segmentation (ITS)-Based Plate and Rod Finite Element Model Discriminate Postmenopausal Vertebral Fractures

    PubMed Central

    Liu, X. Sherry; Wang, Ji; Zhou, Bin; Stein, Emily; Shi, Xiutao; Adams, Mark; Shane, Elizabeth; Guo, X. Edward

    2013-01-01

    While high-resolution peripheral quantitative computed tomography (HR-pQCT) has advanced clinical assessment of trabecular bone microstructure, nonlinear microstructural finite element (μFE) prediction of yield strength by HR-pQCT voxel model is impractical for clinical use due to its prohibitively high computational costs. The goal of this study was to develop an efficient HR-pQCT-based plate and rod (PR) modeling technique to fill the unmet clinical need for fast bone strength estimation. By using individual trabecula segmentation (ITS) technique to segment the trabecular structure into individual plates and rods, a patient-specific PR model was implemented by modeling each trabecular plate with multiple shell elements and each rod with a beam element. To validate this modeling technique, predictions by HR-pQCT PR model were compared with those of the registered high resolution μCT voxel model of 19 trabecular sub-volumes from human cadaveric tibiae samples. Both Young’s modulus and yield strength of HR-pQCT PR models strongly correlated with those of μCT voxel models (r2=0.91 and 0.86). Notably, the HR-pQCT PR models achieved major reductions in element number (>40-fold) and CPU time (>1,200-fold). Then, we applied PR model μFE analysis to HR-pQCT images of 60 postmenopausal women with (n=30) and without (n=30) a history of vertebral fracture. HR-pQCT PR model revealed significantly lower Young’s modulus and yield strength at the radius and tibia in fracture subjects compared to controls. Moreover, these mechanical measurements remained significantly lower in fracture subjects at both sites after adjustment for aBMD T-score at the ultradistal radius or total hip. In conclusion, we validated a novel HR-pQCT PR model of human trabecular bone against μCT voxel models and demonstrated its ability to discriminate vertebral fracture status in postmenopausal women. This accurate nonlinear μFE prediction of HR-pQCT PR model, which requires only seconds of desktop computer time, has tremendous promise for clinical assessment of bone strength. PMID:23456922

  14. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    PubMed

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  15. Formability of new high performance A710 grade 50 structural steel.

    DOT National Transportation Integrated Search

    2014-01-01

    This project compared the formability of modified ASTM A710 Grade B50 ksi yield strength steel, jointly developed by : Northwestern University and the Illinois Department of Transportation, with ASTM A606 Type 4 weathering steel used in Illinois : an...

  16. Design and development of a 3D printed UAV

    NASA Astrophysics Data System (ADS)

    Banfield, Christopher P.

    The purpose of this project was to investigate the viability and practicality of using a desktop 3D printer to fabricate small UAV airframes. To that end, ASTM based bending and tensile tests were conducted to assess the effects of print orientation, infill density, infill pattern, and infill orientation on the structural properties of 3D printed components. A Vernier Structures & Materials Tester was used to record force and displacement data from which stress-strain diagrams, yielding strength, maximum strength, and the moduli of elasticity were found. Results indicated that print orientation and infill density had the greatest impact on strength. In bending, vertically printed test pieces showed the greatest strength, with yield strengths 1.6 - 10.4% higher than conventionally extruded ABS's 64.0MPa average flexural strength. In contrast, the horizontally printed specimens showed yield strengths reduced anywhere from 17.0 - 34.9%. The tensile test specimens also exhibited reduced strength relative to ABS's average tensile yield strength of 40.7MPa. Test pieces with 20% infill density saw strength reductions anywhere from 47.8 - 55.6%, and those with 50% saw strength reductions from 33.6 - 47.8%. Only a single test piece with 100%, 45° crisscross infill achieved tensile performance on par with that of conventionally fabricated ABS. Its yield strength was 43MPa, a positive strength difference of 5.5%. As a supplement to the tensile and bending tests, a prototype printable airplane, the Phoebe, was designed. Its development process in turn provided the opportunity to develop techniques for printing various aircraft components such as fuselage sections, airfoils, and live-in hinges. Initial results seem promising, with the prototype's first production run requiring 19 hours of print time and an additional 4 - 5 hours of assembly time. The maiden flight test demonstrated that the design was stable and controllable in sustained flight.

  17. In situ frustum indentation of nanoporous copper thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ran; Pathak, Siddhartha; Mook, William M.

    Mechanical properties of thin films are often obtained solely from nanoindentation. At the same time, such measurements are characterized by a substantial amount of uncertainty, especially when mean pressure or hardness are used to infer uniaxial yield stress. In this paper we demonstrate that indentation with a pyramidal flat tip (frustum) indenter near the free edge of a sample can provide a significantly better estimate of the uniaxial yield strength compared to frequently used Berkovich indenter. This is first demonstrated using a numerical model for a material with an isotropic pressure sensitive yield criterion. Numerical simulations confirm that the indentermore » geometry provides a clear distinction of the mean pressure at which a material transitions to inelastic behavior. The mean critical pressure is highly dependent on the plastic Poisson ratio ν p so that at the 1% offset of normalized indent depth, the critical pressure p m c normalized to the uniaxial yield strength σ 0 is 1 < p m c/σ 0 < 1.3 for materials with 0 < ν p < 0.5. Choice of a frustum over Berkovich indenter reduces uncertainty in hardness by a factor of 3. These results are used to interpret frustum indentation experiments on nanoporous (NP) Copper with struts of typical diameter of 45 nm. An estimate of the yield strength of NP Copper is obtained 230 MPa < σ 0 < 300 MPa. Edge indentation further allows one to obtain in-plane strain maps near the critical pressure. Finally, comparison of the experimentally obtained in-plane strain maps of NP Cu during deformation and the strain field for different plastic Poisson ratios suggest that this material has a plastic Poisson ratio of the order of 0.2–0.3. However, existing constitutive models may not adequately capture post-yield behavior of NP metals.« less

  18. In situ frustum indentation of nanoporous copper thin films

    DOE PAGES

    Liu, Ran; Pathak, Siddhartha; Mook, William M.; ...

    2017-07-24

    Mechanical properties of thin films are often obtained solely from nanoindentation. At the same time, such measurements are characterized by a substantial amount of uncertainty, especially when mean pressure or hardness are used to infer uniaxial yield stress. In this paper we demonstrate that indentation with a pyramidal flat tip (frustum) indenter near the free edge of a sample can provide a significantly better estimate of the uniaxial yield strength compared to frequently used Berkovich indenter. This is first demonstrated using a numerical model for a material with an isotropic pressure sensitive yield criterion. Numerical simulations confirm that the indentermore » geometry provides a clear distinction of the mean pressure at which a material transitions to inelastic behavior. The mean critical pressure is highly dependent on the plastic Poisson ratio ν p so that at the 1% offset of normalized indent depth, the critical pressure p m c normalized to the uniaxial yield strength σ 0 is 1 < p m c/σ 0 < 1.3 for materials with 0 < ν p < 0.5. Choice of a frustum over Berkovich indenter reduces uncertainty in hardness by a factor of 3. These results are used to interpret frustum indentation experiments on nanoporous (NP) Copper with struts of typical diameter of 45 nm. An estimate of the yield strength of NP Copper is obtained 230 MPa < σ 0 < 300 MPa. Edge indentation further allows one to obtain in-plane strain maps near the critical pressure. Finally, comparison of the experimentally obtained in-plane strain maps of NP Cu during deformation and the strain field for different plastic Poisson ratios suggest that this material has a plastic Poisson ratio of the order of 0.2–0.3. However, existing constitutive models may not adequately capture post-yield behavior of NP metals.« less

  19. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    NASA Astrophysics Data System (ADS)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  20. Extended Hall-Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

    NASA Astrophysics Data System (ADS)

    Heo, N. H.; Heo, Y.-U.; Kwon, S. K.; Kim, N. J.; Kim, S.-J.; Lee, H.-C.

    2018-03-01

    Extended Hall-Petch relationships for yield ( σy ), cleavage ( σ_{cl} ) and intergranular fracture ( σ_{ig} ) strengths of pure iron have been established through the direct calculation of the proportional constant (k) and the estimation of the friction stress (σ0 ) . The magnitude orders of k and σ0 are generally ky < k_{cl} < k_{ig} and σ_{y0} < σ_{cl0} < σ_{ig0} , respectively. Based on the Hall-Petch relationships, micro-yielding in a bcc steel occurs at the instance that the pile-up dislocations within a specific grain showing the Schmid factor of 0.5 propagate into the neighboring grain. The initial brittle crack is formed at the instance that the flow strength exceeds the brittle fracture strength. Once the brittle crack is formed, it grows catastrophically. Due to the smallest and ky and σ_{y0} , the cleavage and the intergranular fracture occur always after micro-yielding. The {100} cleavage fracture of the steel is due to the lowest theoretical {100} cleavage strength. Due to the thermal components included in cleavage and intergranular fracture strengths, they show also the temperature and strain rate dependence observed in yield strength. The increase in susceptibility to brittle fracture with decreasing temperature and increasing strain rate is due to the increase in dislocation density which causes the high work hardening rate.

  1. Determination of Material Strengths by Hydraulic Bulge Test.

    PubMed

    Wang, Hankui; Xu, Tong; Shou, Binan

    2016-12-30

    The hydraulic bulge test (HBT) method is proposed to determine material tensile strengths. The basic idea of HBT is similar to the small punch test (SPT), but inspired by the manufacturing process of rupture discs-high-pressure hydraulic oil is used instead of punch to cause specimen deformation. Compared with SPT method, the HBT method can avoid some of influence factors, such as punch dimension, punch material, and the friction between punch and specimen. A calculation procedure that is entirely based on theoretical derivation is proposed for estimate yield strength and ultimate tensile strength. Both conventional tensile tests and hydraulic bulge tests were carried out for several ferrous alloys, and the results showed that hydraulic bulge test results are reliable and accurate.

  2. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.

    PubMed

    Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan

    2014-01-01

    Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P<.05). The porcelain bond strength of the SLM alloy was 55.78 ± 3.02 MPa, which was similar to that of the cast alloy, 54.17 ± 4.96 MPa (P>.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the porcelain, which resulted in an improved bonding interface. Compared with the currently used cast alloy, SLM alloy possessed improved mechanical properties and similar porcelain bond strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  3. Ethanol production from sorghum by a dilute ammonia pretreatment.

    PubMed

    Salvi, D A; Aita, G M; Robert, D; Bazan, V

    2010-01-01

    Sorghum fibers were pretreated with ammonium hydroxide and the effectiveness of the pretreatment evaluated by enzyme hydrolysis and ethanol production. The treatment was carried out by mixing sorghum fibers, ammonia, and water at a ratio of 1:0.14:8 at 160 degrees C for 1 h under 140-160 psi pressure. Approximately 44% lignin and 35% hemicellulose were removed during the process. Untreated and dilute-ammonia-treated fibers at 10% dry solids were hydrolyzed using combinations of commercially available enzymes, Spezyme CP and Novozyme 188. Enzyme combinations were tested at full strength (60 FPU Spezyme CP and 64 CBU Novozyme 188/g glucan) and at half strength (30 FPU Spezyme CP and 32 CBU Novozyme 188/g glucan). Biomass enzyme hydrolysis was conducted for 24 h. Saccharomyces cerevisiae D(5)A was added post hydrolysis for conversion of glucose to ethanol. Theoretical cellulose yields for treated biomass were 84% and 73%, and hemicellulose yields were 73% and 55% for full strength and half strength, respectively. Average cellulose yield was 38% and hemicellulose yield was 14.5% for untreated biomass. Ethanol yields were 25 g/100 g dry biomass and 21 g/100 g dry biomass for full strength and half strength enzyme concentrations, respectively. Controls averaged 10 g ethanol/100 g dry biomass.

  4. Factors that determine the level of the yield strength and the return of the yield-point elongation in low-alloy ferrite-martensite steels

    NASA Astrophysics Data System (ADS)

    Fonstein, N.; Kapustin, M.; Pottore, N.; Gupta, I.; Yakubovsky, O.

    2007-09-01

    The results of laboratory investigations of dual-phase steels with different contents of carbon and alloying elements after the controlled cooling from the two-phase field and the final low-temperature tempering are presented. It is shown that the ratio of the yield strength to the tensile strength of dual-phase steels, just as the return of the yield-point elongation, depends on the volume fraction of martensite, temperature of the martensite transformation of the austenite component, quenching stresses, concentration of carbon in ferrite, and the temperature of the final tempering.

  5. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less

  6. TRIP effect in austenitic-martensitic VNS9-Sh steel at various strain rates

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.

    2016-10-01

    The mechanical properties of austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) steel are studied at a static strain rate from 4.1 × 10-5 to 17 × 10-3 s-1 (0.05-20 mm/min). It is found that, as the strain rate increases, the ultimate tensile strength decreases and the physical yield strength remains unchanged (≈1400 MPa). As the strain rate increases, the yield plateau remains almost unchanged and the relative elongation decreases continuously. Because of high microplastic deformation, the conventional yield strength is lower than the physical yield strength over the entire strain rate range under study. The influence of the TRIP effect on the changes in the mechanical properties of VNS9-Sh steel at various strain rates is discussed.

  7. Unraveling the Age Hardening Response in U-Nb Alloys

    DOE PAGES

    Hackenberg, Robert Errol; Hemphill, Geralyn M. Sewald; Forsyth, Robert Thomas; ...

    2016-11-15

    Complicating factors that have stymied understanding of uranium-niobium’s aging response are briefly reviewed, including (1) niobium inhomogeneity, (2) machining damage effects on tensile properties, (3) early-time transients of ductility increase, and (4) the variety of phase transformations. A simple Logistic-Arrhenius model was applied to predict yield and ultimate tensile strengths and tensile elongation of U-4Nb as a function of thermal age. Lastly, fits to each model yielded an apparent activation energy that was compared with phase transformation mechanisms.

  8. Tempering of Mn and Mn-Si-V dual-phase steels

    NASA Astrophysics Data System (ADS)

    Speich, G. R.; Schwoeble, A. J.; Huffman, G. P.

    1983-06-01

    Changes in the yield behavior, strength, and ductility of a Mn and a Mn-Si-V d11Al-phase (ferrite-martensite) steel were investigated after tempering one hour at 200 to 600 °C. The change in yield behavior was complex in both steels with the yield strength first increasing and then decreasing as the tempering temperature was increased. This complex behavior is attributed to a combination of factors including carbon segregation to dislocations, a return of discontinuous yielding, and the relief of resid11Al stresses. In contrast, the tensile strength decreased continuously as the tempering temperature was increased in a manner that could be predicted from the change in hardness of the martensite phase using a simple composite strengthening model. The initial tensile ductility (total elongation) of the Mn-Si-V steel was much greater than that of the Mn steel. However, upon tempering up to 400 °C, the ductility of the Mn-Si-V decreased whereas that of the Mn steel increased. As a result, both steels had similar ductilities after tempering at 400 °C or higher temperatures. These results are attributed to the larger amounts of retained austenite in the Mn-Si-V steel (9 pct) compared to the Mn steel (3 pct) and its contribution to tensile ductility by transforming to martensite during plastic straining. Upon tempering at 400 °C, the retained austenite decomposes to bainite and its contribution to tensile ductility is eliminated.

  9. The fracture strength by a torsion test at the implant-abutment interface.

    PubMed

    Watanabe, Fumihiko; Hiroyasu, Kazuhiko; Ueda, Kazuhiko

    2015-12-01

    Fractured connections between implants and implant abutments or abutment screws are frequently encountered in a clinical setting. The purpose of this study was to investigate fracture strength using a torsion test at the interface between the implant and the abutment. Thirty screw-type implant with diameters of 3.3, 3.8, 4.3, 5.0, and 6.0 mm were submitted to a torsion test. Implants of each size were connected to abutments with abutment screws tightened to 20 N · cm. Mechanical stress was applied with a rotational speed of 3.6 °/min until fracture occurred, and maximum torque (fracture torque) and torsional yield strength were measured. The mean values were calculated and then compared using Tukey's test. The abutments were then removed, and the implant-abutment interfaces were examined using a scanning electron microscope (SEM). No significant differences in mean fracture torque were found among 3.3, 3.8, and 4.3 mm-diameter implants, but significant differences were found between these sizes and 5.0 and 6.0 mm-diameter implants (p < 0.01). Concerning mean torsional yield strength, significant differences were found between 3.3, 3.8, and 4.3 mm-diameter and 5.0 and 6.0 mm-diameter implants (p < 0.01). Observations under the SEM showed that all the projections of the abutment corresponding to the internal notches of the implant body had been destroyed. Smaller diameter implants demonstrated lower fracture torque and torsional yield strength than implants with larger diameters. In internal tube-in-tube connections, three abutment projections corresponding to rotation-prevention notches were destroyed in each implant.

  10. Nose Fairing Modeling and Simulation to Support Trident II D5 Lifecycle Extension

    DTIC Science & Technology

    2013-09-01

    Rupture Flexural Modulus Flexural Yield strength Compressive Yield strength Poissons Ratio Machinabi lily Shear strength Impact Work to...Categories: Ceramic; Glass; Glass Fiber , other Engineeting Material; C<>mposite Rbers Material Notes: Used as a reinforcing agent in fiber glass compos~es...MATWEB AMERICAN SITKA SPRUCE WOOD .......................35 APPENDIX B. MATWEB E–GLASS FIBER , GENERIC ......................................37 APPENDIX

  11. Material strength measured by flyer-impact perturbation method

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojuan; Asimow, Paul; Fatyanov, Oleg; Liu, Fusheng

    2017-06-01

    Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-plate impacts experiments on targets with machined grooves on the impact surface to shock aluminum to between 32 and 71 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins and fibers. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of aluminum to be 1.3-3.1 GPa. These results are in agreement with values obtained from reshock and release wave profiles as well as the result deduced from the SCG model. We conclude that the flyer-impact perturbation method is indeed a reliable means to measure material strength. This work was supported by the National Natural Science Foundation of China (Grant No. 41674088) and the State Scholarship Fund of China Scholarship Council.

  12. Impact of Tunnel-Barrier Strength on Magnetoresistance in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Morgan, Caitlin; Misiorny, Maciej; Metten, Dominik; Heedt, Sebastian; Schäpers, Thomas; Schneider, Claus M.; Meyer, Carola

    2016-05-01

    We investigate magnetoresistance in spin valves involving CoPd-contacted carbon nanotubes. Both the temperature and bias-voltage dependence clearly indicate tunneling magnetoresistance as the origin. We show that this effect is significantly affected by the tunnel-barrier strength, which appears to be one reason for the variation between devices previously detected in similar structures. Modeling the data by means of the scattering matrix approach, we find a nontrivial dependence of the magnetoresistance on the barrier strength. Furthermore, an analysis of the spin precession observed in a nonlocal Hanle measurement yields a spin lifetime of τs=1.1 ns , a value comparable with those found in silicon- or graphene-based spin-valve devices.

  13. Shock induced spall fracture in polycrystalline copper

    NASA Astrophysics Data System (ADS)

    Mukherjee, D.; Rav, Amit; Sur, Amit; Joshi, K. D.; Gupta, Satish C.

    2014-04-01

    The plate impact experiments have been conducted on commercially available 99.99% pure polycrystalline samples of copper using single stage gas gun facility. The free surface velocity history of the sample plate measured using VISAR instrument is utilized to determine the dynamic yield strength and spall strength of copper. The dynamic yield strength and spall strength of polycrystalline copper sample has been determined to be 0.14 GPa and 1.32 GPa, respectively with corresponding strain rates of the order of 104/s.

  14. Synthetic Aperture Sonar Imaging of Simple Finite Targets

    DTIC Science & Technology

    2011-03-15

    again including the geometric spreading. The target strength of a sphere, as given by Urick [22], is TSs = 10 log10(a2/4), which yields TSs = −19.58...respectively. find TSis = 12.63− 52.04 + 20.00 = −19.41 dB, which compares favorably with Urick’s value. From Urick , the target strength of a finite cylinder...is now TSic = 9.08 − 27.51 + 20.00 = 1.57, which is again in good agreement with Urick . It is noted that a value of N = 21.7 reproduces TSc. The final

  15. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE PAGES

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.; ...

    2018-01-24

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  16. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  17. Hypervelocity penetration against mechanical properties of target materials

    NASA Astrophysics Data System (ADS)

    Kamarudin, Khairul Hasni; Abdullah, Mohamad Faizal; Zaidi, Ahmad Mujahid Ahmad; Nor, Norazman M.; Ismail, Ariffin; Yusof, Mohammed Alias; Hilmi, Ahmad Humaizi

    2018-02-01

    This paper study the mechanical properties behavior of metal plates against hypervelocity penetration caused by shaped charge. Five different materials were used as target specimen fabricated from welded stacks of material plates, namely Rolled Homogeneous Armor (RHA), Hardox-500, mild steel, aluminum and brass. Specimens had undergone an initial monolithic test consist of tensile tests and microstructure observations, followed by series of hydrodynamics penetration blast tests using shape charge mechanism. Results from blast test shows that the least penetrated specimen is RHA (58mm) followed by Hardox-500 (92 mm), mild steel (110 mm), Brass (155 mm) and aluminum 238 mm). Comparing these with the specimen yield strength from the tensile test results shows that Hardox-500 has higher yield strength (Sy) followed by RHA, mild steel, brass and aluminum, which are 1370 MPa, 1320 MPa, 280,221 respectively, which are not inversely proportional to the penetration. However, the ultimate tensile strength (Sut) where the RHA were the highest followed by Hardox-500, mild steel, brass and aluminum, were inversely proportional with the depth of penetration. The penetration results also show consistence relation with energy absorption.

  18. The fracture strength of cryomilled 99.7 Al nanopowders consolidated by high frequency induction sintering

    NASA Astrophysics Data System (ADS)

    El-Danaf, Ehab A.; Baig, Muneer; Almajid, Abdulhakim A.; Soliman, Mahmoud S.

    2014-08-01

    Mechanical Attrition of metallic powders induces severe plastic deformation and consequently reduces the average grain size. Powders of 99.7 Al (45μm particle size), cryomilled for 7 hrs having a crystal size of ~ 20 nm, were consolidated by high frequency induction sintering under a constant pressure of 50 MPa and at two temperatures of 500 and 550 °C for two sintering dwell times of 1 and 3 minutes at a constant heating rate of 400 °C/min. The bright field TEM image and X-ray line broadening technique, for the cryomilled powders, were used to measure-the crystallite size. Simple compression at an initial strain rate of 10-4 s-1 was conducted at room temperature, 373 and 473 K, and the yield strength was documented and correlated with the sintering parameters. The as-received 99.7 Al powders-consolidated using one of the sintering parameters was used as a reference material to compare the mechanical properties. Hardness, density and crystal size of the consolidated sample, that gave the highest yield and fracture strength, were measured.

  19. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel

    PubMed Central

    Liu, Hanghang; Fu, Paixian; Liu, Hongwei; Li, Dianzhong

    2018-01-01

    The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron back-scattered diffraction (EBSD). The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT) possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT) steel. In addition, the test steel after austempering-tempering (A-T) demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17%) compared with the samples after N-QT (14.5%) treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels. PMID:29642642

  20. Optimization of BI test parameters to investigate mechanical properties of Grade 92 steel

    NASA Astrophysics Data System (ADS)

    Barbadikar, Dipika R.; Vincent, S.; Ballal, Atul R.; Peshwe, Dilip R.; Mathew, M. D.

    2018-04-01

    The ball indentation (BI) testing is used to evaluate the tensile properties of materials namely yield strength, strength coefficient, ultimate tensile strength, and strain hardening exponent. The properties evaluated depend on a number of BI test parameters. These parameters include the material constants like yield slope (YS), constraint factor (CF), yield offset parameter (YOP). Number of loading/unloading cycles, preload, indenter size and depth of penetration of indenter also affects the properties. In present investigation the effect of these parameters on the stress-strain curve of normalized and tempered Grade 92 steel is evaluated. Grade 92 is a candidate material for power plant application over austenitic stainless steel and derives its strength from M23C6, MX precipitates and high dislocation density. CF, YS and YOP changed the strength properties considerably. Indenter size effect resulted in higher strength for smaller indenter. It is suggested to use larger indenter diameter and higher number of loading cycles for GRADE 92 steel to get best results using BI technique.

  1. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  2. Summary of Structural Evaluation and Design Support for the Underground Nuclear Test Program.

    DTIC Science & Technology

    1979-07-01

    consider using API -5LX pipe as this pipe has been shown to have high ductility (better than A36). This pipe comes in several grades (X42, X46, X52 , X56, X60...X65, X70) with the grade number representing the yield strength (ksi) of the steel. Grades X42 and X52 are readily available while the higher yield...strength steels are less readily available. I believe X52 has certainly a high enough yield strength (52,000 psi) for your application and that even

  3. Strength and texture of Pt compressed to 63 GPa

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Shieh, Sean R.; Duffy, Thomas S.

    2015-02-01

    Angle- and energy-dispersive X-ray diffraction experiments in a radial geometry were performed in the diamond anvil cell on polycrystalline platinum samples at pressures up to 63 GPa. Observed yield strength and texture depend on grain size. For samples with 70-300-nm particle size, the yield strength is 5-6 GPa at ˜60 GPa. Coarse-grained (˜2-μm particles) Pt has a much lower yield strength of 1-1.5 GPa at ˜60 GPa. Face-centered cubic metals Pt and Au have lower strength to shear modulus ratio than body-centered cubic or hexagonal close-packed metals. While a 300-nm particle sample exhibits the <110> texture expected of face-centered-cubic metals under compression, smaller and larger particles show a weak mixed <110> and <100> texture under compression. Differences in texture development may also occur due to deviations from uniaxial stress under compression in the diamond anvil cell.

  4. Peat Soil Stabilization using Lime and Cement

    NASA Astrophysics Data System (ADS)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  5. Transverse and longitudinal tensile properties at 760 C of several oxide dispersion strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Anglin, A. E., Jr.

    1979-01-01

    The transverse and longitudinal tensile properties of the oxide dispersion strengthened nickel-base alloys were determined at 760 C. The alloys with small amounts of gamma prime have strength levels suitable for turbine vane applications, while other highly alloyed, gamma prime strengthened superalloys have strengths typical of turbine blade materials. These alloys were produced by mechanical alloying and extrusion and the turbine blade alloys were also directionally recrystallized. Resultant grain aspect ratios varied from 1:1 to over 20:1. Longitudinal tensile strengths ranged from 285 to 1175 MPa, while longitudinal elongations were in excess of 4 percent for all alloys. Transverse tensile strengths were comparable to longitudinal strengths, but transverse ductility levels were generally less than 2 percent elongation. Tensile and yield strengths increased with increasing strain rate over the range 0.001 to 0.05 per second. Ductility in both orientations was not strain rate sensitive but could be related to grain size and grain aspect ratio.

  6. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.

    PubMed

    Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro

    2012-06-01

    A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength-toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation.

  7. Strengthening of σ phase in a Fe20Cr9Ni cast austenite stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.Q., E-mail: yqwang@ahut.edu.cn; School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui, 243002; Han, J.

    2013-10-15

    The strengthening mechanism of σ phase in a Fe20Cr9Ni cast austenite stainless steel used for primary coolant pipes of nuclear power plants has been investigated. The yield and ultimate tensile strengths of aged specimens increased comparing with those of the unaged ones. It was found that the increase of strengths is due to the hard and brittle (σ + γ{sub 2}) structure which decomposed from α phase in the steel. Fracture surfaces of specimens after in situ tensile test showed that the inhibition of (σ + γ{sub 2}) structure on the dislocation movements was more significant than ferrite although cracksmore » started predominately at σ/γ{sub 2} interfaces. The (σ + γ{sub 2}) structure behaves like a fiber reinforced composite material. - Highlights: • The strengthening mechanism of σ phase in a Fe20Cr9Ni CASS is investigated. • The yield and ultimate tensile strengths increase with increasing of σ phase. • The increase of strengths is due to hard and brittle (σ + γ{sub 2}) structure. • The (σ + γ{sub 2}) structure in CASS behaves like a fibre reinforced composite material. • The σ/γ{sub 2} and α/σ/γ{sub 2} boundaries hinder the movement of dislocation.« less

  8. Assessment of the adhesive properties of the bacterial polysaccharide FucoPol.

    PubMed

    Araújo, Diana; Alves, Vitor D; Campos, Joana; Coelhoso, Isabel; Sevrin, Chantal; Grandfils, Christian; Freitas, Filomena; Reis, Maria A M

    2016-11-01

    To address the industry's interest in finding novel biobased glues, the adhesive properties of the bacterial polysaccharide FucoPol were evaluated through shear bond strength tests. A FucoPol solution was used to bond different materials, namely, wood, glass, cardboard and cellulose acetate film. The shear strength was compared to that of the same adherends bonded with commercial synthetic glues. Wood-wood joints bonded with FucoPol formulation withstood 742.2±9.8kPa shear strength without detachment. FucoPol adhesive capacity for cardboard was comparable to that of the tested commercial glues (425±8.9kPa), yielding similar shear strength values (416.0±12.9kPa), while improved performance was shown for glass (115.1±26.2kPa) and cellulose acetate film (153.7±11.3kPa) comparing to the commercial glues (67.7-97.5kPa and 79.4-92.7kPa, respectively). This study demonstrates the adhesive properties of FucoPol, opening up the opportunity of using this bacterial polysaccharide for the development of new natural water-based glues, suitable to bond different materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion.

    PubMed

    Um, Ho Yong; Park, Byung Ho; Ahn, Dong-Hyun; Abd El Aal, Mohamed Ibrahim; Park, Jaechan; Kim, Hyoung Seop

    2017-04-01

    Severe plastic deformation (SPD) has recently been advanced as the main process for fabricating bulk ultrafine grained or nanocrystalline metallic materials, which present much higher strength and better bio-compatibility than coarse-grained counterparts. Medical devices, such as aneurysm clips and dental implants, require high mechanical and biological performance (e.g., stiffness, yield strength, fatigue resistance, and bio-compatibility). These requirements match well the characteristics of SPD-processed materials. Typical aneurysm clips are made of a commercial Ti-6Al-4V alloy, which has higher yield strength than Ti. In this work, Ti and Ti-6Al-4V workpieces were processed by high-pressure torsion (HPT) to enhance their mechanical properties. Tensile tests and hardness tests were performed to evaluate their mechanical properties, and their microstructure was investigated. The hardness and yield stress of the HPT-processed Ti are comparable to those of the initial Ti-6Al-4V due to significantly refined microstructure. Finite element analyses for evaluating the opening performance of a specific geometry of the YASARGIL aneurysm clip were carried out using mechanical properties of the initial and HPT-processed Ti and Ti-6Al-4V. These results indicate that SPD-processed Ti could be a good candidate to substitute for Ti-6Al-4V in aneurysm clips. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Prediction of the Dynamic Yield Strength of Metals Using Two Structural-Temporal Parameters

    NASA Astrophysics Data System (ADS)

    Selyutina, N. S.; Petrov, Yu. V.

    2018-02-01

    The behavior of the yield strength of steel and a number of aluminum alloys is investigated in a wide range of strain rates, based on the incubation time criterion of yield and the empirical models of Johnson-Cook and Cowper-Symonds. In this paper, expressions for the parameters of the empirical models are derived through the characteristics of the incubation time criterion; a satisfactory agreement of these data and experimental results is obtained. The parameters of the empirical models can depend on some strain rate. The independence of the characteristics of the incubation time criterion of yield from the loading history and their connection with the structural and temporal features of the plastic deformation process give advantage of the approach based on the concept of incubation time with respect to empirical models and an effective and convenient equation for determining the yield strength in a wider range of strain rates.

  11. A damage-tolerant glass.

    PubMed

    Demetriou, Marios D; Launey, Maximilien E; Garrett, Glenn; Schramm, Joseph P; Hofmann, Douglas C; Johnson, William L; Ritchie, Robert O

    2011-02-01

    Owing to a lack of microstructure, glassy materials are inherently strong but brittle, and often demonstrate extreme sensitivity to flaws. Accordingly, their macroscopic failure is often not initiated by plastic yielding, and almost always terminated by brittle fracture. Unlike conventional brittle glasses, metallic glasses are generally capable of limited plastic yielding by shear-band sliding in the presence of a flaw, and thus exhibit toughness-strength relationships that lie between those of brittle ceramics and marginally tough metals. Here, a bulk glassy palladium alloy is introduced, demonstrating an unusual capacity for shielding an opening crack accommodated by an extensive shear-band sliding process, which promotes a fracture toughness comparable to those of the toughest materials known. This result demonstrates that the combination of toughness and strength (that is, damage tolerance) accessible to amorphous materials extends beyond the benchmark ranges established by the toughest and strongest materials known, thereby pushing the envelope of damage tolerance accessible to a structural metal.

  12. Analysis of three variables in sampling solutions used to assay bacteria of hands: type of solution, use of antiseptic neutralizers, and solution temperature.

    PubMed Central

    Larson, E L; Strom, M S; Evans, C A

    1980-01-01

    Tests were performed using the sterile bag technique to determine the effects of type of sampling solution, use of antiseptic neutralizers, and solution temperature on the detection and quantitation of bacteria on hands. Using paired hand cultures, three sampling solutions were compared: quarter-strength Ringer solution, a phosphate buffer containing Triton X-100, and the same buffer containing antiseptic neutralizers. The phosphate buffer containing Triton X-100 was significantly better than quarter-strength Ringer solution in mean bacterial yield; the neutralizer-containing sampling solution was slightly better than Triton X-100-containing solution, although differences were not significant at the P = 0.05 level. Temperature (6 or 23 degrees C) of the sampling solution showed no consistent effect on bacterial yield from hands tested with the fluid containing neutralizers. PMID:7012171

  13. Energy transfer mechanism and probability analysis of submarine pipe laterally impacted by dropped objects

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Yu, Jian-xing; Yu, Yang; Lam, W.; Zhao, Yi-yu; Duan, Jing-hui

    2016-06-01

    Energy transfer ratio is the basic-factor affecting the level of pipe damage during the impact between dropped object and submarine pipe. For the purpose of studying energy transfer and damage mechanism of submarine pipe impacted by dropped objects, series of experiments are designed and carried out. The effective yield strength is deduced to make the quasi-static analysis more reliable, and the normal distribution of energy transfer ratio caused by lateral impact on pipes is presented by statistic analysis of experimental results based on the effective yield strength, which provides experimental and theoretical basis for the risk analysis of submarine pipe system impacted by dropped objects. Failure strains of pipe material are confirmed by comparing experimental results with finite element simulation. In addition, impact contact area and impact time are proved to be the major influence factors of energy transfer by sensitivity analysis of the finite element simulation.

  14. Hydrogen Induced Stress Cracking of Materials Under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    LaCoursiere, Marissa P.

    Hydrogen embrittlement of AISI 4340, InconelRTM 718, Alloy 686 and Alloy 59 was studied using slow strain rate tests of both smooth and notched cylindrical specimens. Two heat treatments of the AISI 4340 material were used as a standard for two levels of yield strength: 1479 MPa, and 1140 MPa. A subset of the 1140 MPa AISI 4340 material also underwent plasma nitriding. The InconelRTM 718 material was hardened following AMS 5663M to obtain a yield strength of 1091 MPa. The Alloy 686 material was obtained in the Grade 3 condition with a minimum yield strength of 1034 MPa. The Alloy 59 material was obtained with a cold worked condition similar to the Alloy 686 and with a minimum yield strength of 1034 MPa. Ninety-nine specimens were tested, including smooth cylindrical tensile test specimens and smooth and notched cylindrical slow strain rate tensile tests specimens. Testing included specimens that had been precharged with hydrogen in 3.5% NaCl at 50°C for 2 weeks (AISI 4340), 4 weeks (InconelRTM 718, Alloy 686, Alloy 59) and 16 weeks (InconelRTM 718, Alloy 686, Alloy 59) using a potentiostat to deliver a cathodic potential of -1100 mV vs. SCE. The strain rate over the gauge section for the smooth specimens and in the notch root for the notched specimens was 1 x 10-6 /s. It was found that the AISI 4340 was highly embrittled in simulated ocean water when compared to the nickel based superalloys. The higher strength AISI 4340 showed much more embrittlement, as expected. Testing of the AISI 4340 at both 20°C and 4°C showed that the temperature had no effect on the hydrogen embrittlement response. The InconelRTM 718 was highly embrittled when precharged, although it only showed low levels of embrittlement when unprecharged. Both the Alloy 686 and Alloy 59 showed minimal embrittlement in all conditions. Therefore, for the materials examined, the use of Alloy 686 and Alloy 59 for components in salt water environments when under a cathodic potential of -1100 mV vs. SCE is recommended.

  15. Pressure and temperature dependence of shear modulus and yield strength for aluminum, copper, and tungsten under shock compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Jianxiang; Jing Fuqian; Li Dahong

    2005-07-01

    Experimental data for the shear modulus and yield strength of shocked aluminum, copper, and tungsten were systematically analyzed. Comparisons between these data and calculations using the Steinberg-Cochran-Guinan (SCG) constitutive model [D. J. Steinberg, S. G. Cochran, and M. W. Guinan, J. Appl. Phys. 51, 1498 (1980)] indicate that the yield strength has the same dependence on pressure and temperature as the shear modulus for aluminum for shock pressures up to 50 GPa, for copper to 100 GPa, and for tungsten to 200 GPa. Therefore, the assumption of Y{sub p}{sup '}/Y{sub 0}=G{sub p}{sup '}/G{sub 0},Y{sub T}{sup '}/Y{sub 0}=G{sub T}{sup '}/G{sub 0}more » is basically acceptable for these materials, and the SCG model can be used to describe the shear modulus and yield strength of the shocked material at high pressure and temperature.« less

  16. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Trent, D.S.

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results formore » solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.« less

  17. Character and dealing with laughter: the relation of self- and peer-reported strengths of character with gelotophobia, gelotophilia, and katagelasticism.

    PubMed

    Proyer, René T; Wellenzohn, Sara; Ruch, Willibald

    2014-01-01

    We hypothesized that gelotophobia (the fear of being laughed at), gelotophilia (the joy of being laughed at), and katagelasticism (the joy of laughing at others) relate differently to character strengths. In Study 1 (N = 5,134), self-assessed gelotophobia was primarily negatively related to strengths (especially to lower hope, zest, and love), whereas only modesty yielded positive relations. Gelotophilia demonstrated mainly positive relations with humor, zest, and social intelligence. Katagelasticism existed widely unrelated from character strengths with humor demonstrating the comparatively highest coefficients. Study 2 consisted of N = 249 participants who provided self- and peer-ratings of strengths and self-reports on the three dispositions. The results converged well with those from Study 1. When comparing self- and peer-reports, those higher in gelotophobia under-estimated and those higher in gelotophilia over-estimated their virtuousness, whereas those higher in katagelasticism seemed to have a realistic appraisal of their strengths. Peer-rated (low) hope and modesty contributed to the prediction of gelotophobia beyond self-reports. The same was true for low modesty, creativity, low bravery, and authenticity for gelotophilia and for low love of learning regarding katagelasticism. Results suggest that there is a stable relation between the way people deal with ridicule and laughing and their virtuousness.

  18. Development and freeze-thaw durability of high flyash-content concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadi, J.

    1987-01-01

    Objectives were to investigate the effects on concrete strength, drying shrinkage, freeze-thaw durability, and air-void system parameters of replacing various amounts of portland cement with different types of fly ash and to compare selected characteristics of such fly-ash concretes and fly-ash concretes containing a high-range water-reducing admixture to those of a control mixture. It was concluded that concrete mixtures with 90-day compressive strengths equal to the control could be produced when large amounts of cement were replaced by fly ash. In addition, when the high-range water-reducing admixtures was employed, very large amounts of cement could be replaced by fly ashmore » to yield mixtures whose compressive strengths were equal to or greater than the strengths of the control mix at all ages. The maximum amount of cement that could be replaced for equal-strength mixtures depended upon the nature of the fly ash. Drying shrinkage of plain fly-ash concretes and fly-ash concretes containing the high-range water-reducing admixture were similar to those of the control mix. The optimum fly-ash content in a concrete is comparable in strength and durability to a conventional (control) concrete was influenced by the chemical and physical characteristics of the fly ash.« less

  19. Cold-Drawn Bioabsorbable Ferrous and Ferrous Composite Wires: An Evaluation of Mechanical Strength and Fatigue Durability

    NASA Astrophysics Data System (ADS)

    Schaffer, Jeremy E.; Nauman, Eric A.; Stanciu, Lia A.

    2012-08-01

    Yield strengths exceeding 1 GPa with elastic strains exceeding 1 pct were measured in novel bioabsorbable wire materials comprising high-purity iron (Fe), manganese (Mn), magnesium (Mn), and zinc (Zn), which may enable the development of self-expandable, bioabsorbable, wire-based endovascular stents. The high strength of these materials is attributed to the fine microstructure and fiber textures achieved through cold drawing techniques. Bioabsorbable vascular stents comprising nutrient metal compositions may provide a means to overcome the limitations of polymer-based bioabsorbable stents such as excessive strut thickness and poor degradation rate control. Thin, 125- μm wires comprising combinations of ferrous alloys surrounding a relatively anodic nonferrous core were manufactured and tested using monotonic and cyclic techniques. The strength and durability properties are tested in air and in body temperature phosphate-buffered saline, and then they were compared with cold-drawn 316L stainless steel wire. The antiferromagnetic Fe35Mn-Mg composite wire exhibited more than 7 pct greater elasticity (1.12 pct vs 1.04 pct engineering strain), similar fatigue strength in air, an ultimate strength of more than 1.4 GPa, and a toughness exceeding 35 mJ/mm3 compared with 30 mJ/mm3 for 316L.

  20. The decrease in yield strength in NiAl due to hydrostatic pressure

    NASA Technical Reports Server (NTRS)

    Margevicius, R. W.; Lewandowski, J. J.; Locci, I.

    1992-01-01

    The decrease in yield strength in NiAl due to hydrostatic pressure is examined via a comparison of the tensile flow behavior in the low strain regime at 0.1 MPa for NiAl which was cast, extruded, and annealed for 2 hr at 827 C in argon and very slowly cooled to room temperature. Pressurization to 1.4 GPa produces a subsequent reduction at 0.1 MP in proportional limit by 40 percent as well as a 25-percent reduction in the 0.2-percent offset yield strength, while pressurization with lower pressures produces a similar reduction, although smaller in magnitude.

  1. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  2. The Mechanical Property of Batch Annealed High Strength Low Alloy Steel HC260LA

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojiang; Xia, Mingsheng; Zhang, Hongbo; Han, Bin; Li, Guilan

    Cold rolled high strength low alloy steel is widely applied in the automotive parts due to its excellent formability and weldability. In this paper, the steel grade HC260LA according to European Norm was developed with batch annealing process. With commercial C-Mn mild steel as a benchmark, three different groups of chemistry namely C-Mn-Si, C-Mn-Nb-Ti and C-Mn-Nb were compared in terms of yield-tensile strength (Y/T) ratio. Microstructure and mechanical properties were characterized as well. Based on industrial production results, chemistry and detailed process parameters for batch annealing were identified. In the end the optimal Y/T ratio was proposed for this steel grade under batch annealing process.

  3. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides

    NASA Astrophysics Data System (ADS)

    Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk

    2017-07-01

    Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.

  4. Using the Richtmyer-Meshkov flow to infer the strength of LY-12 aluminum at extreme conditions

    NASA Astrophysics Data System (ADS)

    Yin, Jianwei; Pan, Hao; Peng, Jiangxiang; Wu, Zihui; Yu, Yuying; Hu, Xiaomian

    2017-06-01

    An improved analytical model of the Richtmyer-Meshkov (RM) flow in the elastoplastic materials is presented in this paper. This model describes the stabilization by yield strength (Y) effect on the RM flow in solids and linear relationships between initial configurations of perturbation and the growth. Then we make use of the model to analysis the explosion driven RM flow experiments with solid LY12 and test our model by comparing the predicted Y of existing strength models. Finally, we perform a plate impact experiment with solid LY12 aluminium alloy to validate our model and infer Y is about 1.23 GPa for a 28 GPa shock and a strain rate of 7.5 ×106 .

  5. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  6. Ohmic Heating Assisted Lye Peeling of Pears.

    PubMed

    Gupta, Sarvesh; Sastry, Sudhir K

    2018-05-01

    Currently, high concentrations (15% to 18%) of lye (sodium hydroxide) are used in peeling pears, constituting a wastewater handling and disposal problem for fruit processors. In this study, the effect of ohmic heating on lye peeling of pears was investigated. Pears were peeled using 0.5%, 1%, 2%, and 3% NaOH under different electric field strengths at two run times and their peeled yields were compared to that obtained at 2% and 18% NaOH with conventional heating. Results revealed that ohmic heating results in greater than 95% peeled yields and the best peel quality at much lower concentrations of lye (2% NaOH at 532 V/m and 3% NaOH at 426 and 479 V/m) than those obtained under conventional heating conditions. Treatment times of 30 and 60 s showed no significant differences. Within the studied range, the effects of increasing field strength yielded no significant additional benefits. These results confirm that the concentration of lye can be significantly lowered in the presence of ohmic heating to achieve high peeled yields and quality. Our work shows that lye concentrations can be greatly reduced while peeling pears, resulting in significant savings in use of caustic chemicals, reduced costs for effluent treatment and waste disposal. © 2018 Institute of Food Technologists®.

  7. Classifying Multi-Model Wheat Yield Impact Response Surfaces Showing Sensitivity to Temperature and Precipitation Change

    NASA Technical Reports Server (NTRS)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; hide

    2017-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.

  8. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hyuk; Suh, Ho-Young; Han, Seul-Ki; Noh, Jae-Soo; Lee, Jong-Hyeon

    2016-10-01

    The intergranular carbide precipitation behavior and its effect on the tensile properties were investigated in alloy 690. The precipitation of intergranular carbides, identified as Cr-rich M23C6, was retarded on the low-angle grain boundaries and the coincidence-site lattice boundaries. The M23C6 carbides have a cube-cube orientation relationship with the matrix. The ultimate tensile strength, yield strength, and elongation of the solution annealed alloy 690 are 648.2 ± 8.2 MPa, 242.8 ± 10.5 MPa and 44.9 ± 2.3%, respectively. The ultimate tensile strength and the yield strength increased to 764.8 ± 7.8 MPa and 364.8 ± 10.2 MPa until the aging time reached 16 h. This increase is ascribed to the M23C6 carbide acting as reinforcements. However, when the aging time exceed 16 h, these properties gradually decreased with increasing aging time. The decrease in ultimate tensile strength, yield strength, and elongation were mainly caused by the intergranular cracking due to the low bond strength between the carbide and the matrix.

  9. Fabrication and mechanical behavior of dye-doped polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Changhong; Kuzyk, Mark G.; Ding, Jow-Lian; Johns, William E.; Welker, David J.

    2002-07-01

    The purpose of this article is to study the materials physics behind dye-doped polymethyl metharcylate (PMMA) that is important for the optical fiber drawing process. We report effects of the fabrication process on the mechanical properties of the final fiber. The qualitative degree of polymer chain alignment is found to increase with the drawing force, which in turn decreases with the drawing temperature and increases with the drawing ratio. The chain alignment relaxes when the fibers are annealed at 95 degC with a commensurate decrease in fiber length and increase in diameter. The annealed fiber has higher ductility but lower strength than the unannealed fiber. Both the yield and tensile strengths are dependent on the strain rate. The relationship between tensile strength, sigmab, and fiber diameter, d, is found empirically to be sigmab[is proportional to]d-0.5. The yield strength appears to be less sensitive to the fiber diameter than the tensile strength. For PMMA doped with disperse red 1 azo dye, the yield strength, tensile strength, and Young's modulus peak at a dye concentration of 0.0094 wt %. These results are useful for designing polymer optical fibers with well-defined mechanical properties.

  10. Correlations between the Stanford-Binet, 4th Edition, and the WISC-R with a Learning Disabled Population.

    ERIC Educational Resources Information Center

    Phelps, LeAdelle; And Others

    1988-01-01

    Compared Stanford-Binet (Fourth Edition) and the Wechsler Intelligence Scale for Children-Revised as instruments for assessing the intellectual strengths and weaknesses of students (N=35) classified as learning disabled in elementary and secondary grades. Results suggest the tests will yield similar intelligence quotients for the learning disabled…

  11. 49 CFR 192.107 - Yield strength (S) for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Yield strength (S) for steel pipe. 192.107 Section 192.107 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... (S) for steel pipe. (a) For pipe that is manufactured in accordance with a specification listed in...

  12. 49 CFR 192.107 - Yield strength (S) for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Yield strength (S) for steel pipe. 192.107 Section 192.107 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... (S) for steel pipe. (a) For pipe that is manufactured in accordance with a specification listed in...

  13. 49 CFR 192.107 - Yield strength (S) for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Yield strength (S) for steel pipe. 192.107 Section 192.107 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... (S) for steel pipe. (a) For pipe that is manufactured in accordance with a specification listed in...

  14. 49 CFR 192.107 - Yield strength (S) for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Yield strength (S) for steel pipe. 192.107 Section 192.107 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... (S) for steel pipe. (a) For pipe that is manufactured in accordance with a specification listed in...

  15. 49 CFR 192.107 - Yield strength (S) for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Yield strength (S) for steel pipe. 192.107 Section 192.107 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... (S) for steel pipe. (a) For pipe that is manufactured in accordance with a specification listed in...

  16. Peanut peg strength and associated pod yield and loss by cultivar

    USDA-ARS?s Scientific Manuscript database

    Peanut (Arachis hypogaea L.) peg strength and associated pod yield and digging loss were documented for nine cultivars and two breeding genotypes across three harvest dates at two Southwest Georgia locations during 2010 and 2011. Cultivars selected were Georgia Green, Georgia Greener, Georgia-02C, G...

  17. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGES

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  18. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength.

    PubMed

    Nandigam, R N K; Viswanathan, A; Delgado, P; Skehan, M E; Smith, E E; Rosand, J; Greenberg, S M; Dickerson, B C

    2009-02-01

    The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2-1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71-1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB.

  19. MR Imaging Detection of Cerebral Microbleeds: Effect of Susceptibility-Weighted Imaging, Section Thickness, and Field Strength

    PubMed Central

    Nandigam, R.N.K.; Viswanathan, A.; Delgado, P.; Skehan, M.E.; Smith, E.E.; Rosand, J.; Greenberg, S.M.; Dickerson, B.C.

    2009-01-01

    BACKGROUND AND PURPOSE: The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. MATERIALS AND METHODS: Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2–1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. RESULTS: With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71–1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. CONCLUSIONS: The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB. PMID:19001544

  20. Effect of Medium Salt Concentration on Differentiation and Maturation of Somatic Embryos of Cassava (Manihot esculenta Crantz)

    PubMed Central

    GROLL, J.; MYCOCK, D. J.; GRAY, V. M.

    2002-01-01

    Culture of cassava somatic embryos on media with an altered macro‐ and micro‐nutrient salt concentration affected embryo development and germination capability. In the tests, quarter‐, half‐, full‐ or double‐strength Murashige and Skoog (MS) media were compared. The maximum number of somatic embryos differentiated from a proliferative nodular embryogenic callus (NEC) on either half‐ or full‐strength MS medium, and the greatest numbers of cotyledonary stage embryos were formed on full‐strength MS medium. Developed somatic embryos were then desiccated above a saturated K2SO4 solution for 10 d. After transfer to germination medium, embryos that had developed on half‐ and full‐strength MS medium yielded 8·3 and 8·6 germinants g–1 NEC tissue, respectively. For this important but often disregarded culture factor, either half‐ or full‐strength MS medium is recommended for both the differentiation and development of cassava somatic embryos that are capable of germination. PMID:12099540

  1. FE Analysis of Buckling Behavior Caused by Welding in Thin Plates of High Tensile Strength Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jiangchao; Rashed, Sherif; Murakawa, Hidekazu

    2014-12-01

    The target of this study was to investigate buckling behavior during the entire welding process which consists of the heating and the cooling processes. For thin plate structures made of high tensile strength steel, not only residual buckling during or after cooling down but also transient buckling during heating may occur. The thermal elastic plastic FE analysis to investigate welding-induced buckling during the entire welding process is presented. Because of the high yield stress of high tensile strength steel, larger longitudinal compressive thermal stress is produced near the welding line compared with that in the case of carbon steel. Therefore, the plate may buckle due to thermal expansion, before the material nears yielding. During cooling down, the longitudinal compressive thermal stress close to the welding line disappears, and longitudinal tensile residual stress is produced due to contraction. Meanwhile, longitudinal compressive residual stress occurs far from the welding line to balance the tensile stress close to the welding line. This distribution of longitudinal residual stress would change the deformed dish shape of transient buckling into a saddle buckling type when the stress exceeds the critical buckling condition.

  2. Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coleman, Rashadd L.

    Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.

  3. Effect of moisture content on dowel-bearing strength

    Treesearch

    Douglas R. Rammer; Steve G. Winistorfer

    2001-01-01

    Dowel bearing strength (embedment strength) is a critical component of wood connection design. Previous tests have concentrated on defining the relationship between dowel-bearing strength, specific gravity, and fastener characteristics such as diameter. However, because adoption of yield theory in defining connection strength is relatively new in the United States, few...

  4. 49 CFR 195.306 - Test medium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... which produces a hoop stress of 50 percent of specified minimum yield strength; (3) The test section is... pressure is equal to or greater than a pressure that produces a hoop stress of 50 percent of specified minimum yield strength; (3) The maximum hoop stress during the test does not exceed 80 percent of...

  5. 49 CFR 195.306 - Test medium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... which produces a hoop stress of 50 percent of specified minimum yield strength; (3) The test section is... pressure is equal to or greater than a pressure that produces a hoop stress of 50 percent of specified minimum yield strength; (3) The maximum hoop stress during the test does not exceed 80 percent of...

  6. Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Sun, Yu; Zhang, Chuanyou; Wang, Qingfeng; Zhang, Fucheng

    2018-04-01

    Martensitic steels based on a composition of 25CrMo47NbVTi with different concentrations of Nb (0.003%–0.060%) were quenched (Q) at 900 °C and tempered (T) at 700 °C to obtain oil country tubular goods (OCTG) with higher yield strength. The precipitation and microstructures were characterized and quantified by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The results show that the increased Nb content led to an enhanced overall precipitation, the rising solution-precipitation temperature, the increased mass or volume fraction of the Nb-containing precipitates, and the decreased average diameter of Nb-containing particles. With the enhanced precipitation of small sized Nb-containing particles, the austenite grain and corresponding martensitic packet and block were evidently refined. In addition, the dislocation density increased slightly with increasing Nb addition. The yield strength was experimentally measured and quantitatively estimated. The findings based on theoretical calculations indicated that as a consequence of intensified strengthening from grain boundaries, precipitates and dislocations, the yield strength was enhanced significantly by Nb addition.

  7. Tribology behavior on scratch tests: Effects of yield strength

    DOE PAGES

    Feng, Biao

    2017-03-07

    In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less

  8. Tribology behavior on scratch tests: Effects of yield strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Biao

    In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less

  9. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.).

    PubMed

    Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua

    2017-01-01

    Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR , and OsCAD2 , and primary cell wall synthesis, OsCesA1, OsCesA3 , and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and cellulose in both sclerenchyma and parenchyma cells, which attribute to lignin and cellulose in culm tissue and weak mechanical tissue, consequently, result in poor stem strength and higher lodging risks. Highlights : (1) Shading decreases the stem mechanical strength of japonica rice by decreasing non-structural carbohydrate, sucrose, lignin, and cellulose accumulation in culms. (2) The decrease of carbon source under shading condition is the cause for the lower lignin and cellulose accumulation in culm. (3) The expression of genes involved in lignin and primarily cell wall cellulose biosynthesis ( OsCesA1, OsCesA3 , and OsCesA8 ) at the stem formation stage are down-regulated under shading condition, inducing defective cell wall development and poor lodging resistance.

  10. Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirka, Michael M.; Medina, Frank; Dehoff, Ryan R.

    Here, the electron beam melting (EBM) process was used to fabricate Inconel 718. The microstructure and tensile properties were characterized in both the as-fabricated and post-processed state transverse (T-orientation) and longitudinal (L-orientation) to the build direction. Post-processing involved both a hot isostatic pressing (HIP) and solution treatment and aging (STA) to homogenize the microstructure. In the as-fabricated state, EBM Inconel 718 exhibits a spatially dependent microstructure that is a function of build height. Spanning the last few layers is a cored dendritic structure comprised of the products (carbides and Laves phase) predicted under equilibrium solidification conditions. With increasing distance frommore » the build's top surface, the cored dendritic structure becomes increasingly homogeneous with complete dissolution of the secondary dendrite arms. Further, temporal phase kinetics are observed to lead to the dissolution of the strengthening γ"γ" and precipitation of networks of fine δ needles that span the grains. Microstructurally, post-processing resulted in dissolution of the δ networks and homogeneous precipitation of γ'"γ'" throughout the height of the build. In the as-fabricated state, the monotonic tensile behavior exhibits a height sensitivity within the T-orientation at both 20 and 650 °C. Along the L-orientation, the tensile behavior exhibits strength values comparable to the reference wrought material in the fully heat-treated state. After post-processing, the yield strength, ultimate strength, and elongation at failure for the EBM Inconel 718 were observed to have beneficially increased compared to the as-fabricated material. Further, as a result of post-processing the spatial variance of the ultimate yield strength and elongation at failure within the transverse direction decreased by 4 and 3× respectively.« less

  11. Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process

    DOE PAGES

    Kirka, Michael M.; Medina, Frank; Dehoff, Ryan R.; ...

    2016-10-21

    Here, the electron beam melting (EBM) process was used to fabricate Inconel 718. The microstructure and tensile properties were characterized in both the as-fabricated and post-processed state transverse (T-orientation) and longitudinal (L-orientation) to the build direction. Post-processing involved both a hot isostatic pressing (HIP) and solution treatment and aging (STA) to homogenize the microstructure. In the as-fabricated state, EBM Inconel 718 exhibits a spatially dependent microstructure that is a function of build height. Spanning the last few layers is a cored dendritic structure comprised of the products (carbides and Laves phase) predicted under equilibrium solidification conditions. With increasing distance frommore » the build's top surface, the cored dendritic structure becomes increasingly homogeneous with complete dissolution of the secondary dendrite arms. Further, temporal phase kinetics are observed to lead to the dissolution of the strengthening γ"γ" and precipitation of networks of fine δ needles that span the grains. Microstructurally, post-processing resulted in dissolution of the δ networks and homogeneous precipitation of γ'"γ'" throughout the height of the build. In the as-fabricated state, the monotonic tensile behavior exhibits a height sensitivity within the T-orientation at both 20 and 650 °C. Along the L-orientation, the tensile behavior exhibits strength values comparable to the reference wrought material in the fully heat-treated state. After post-processing, the yield strength, ultimate strength, and elongation at failure for the EBM Inconel 718 were observed to have beneficially increased compared to the as-fabricated material. Further, as a result of post-processing the spatial variance of the ultimate yield strength and elongation at failure within the transverse direction decreased by 4 and 3× respectively.« less

  12. Stress analysis on passenger deck due to modification from passenger ship to vehicle-carrying ship

    NASA Astrophysics Data System (ADS)

    Zubaydi, A.; Sujiatanti, S. H.; Hariyanto, T. R.

    2018-03-01

    Stress is a basic concept in learning about material mechanism. The main focus that needs to be brought to attention in analyzing stress is strength, which is the structural capacity to carry or distribute loads. The structural capacity not only measured by comparing the maximum stress with the material’s yield strength but also with the permissible stress required by the Indonesian Classification Bureau (BKI), which certainly makes it much safer. This final project analyzes stress in passenger deck that experiences modification due to load changes, from passenger load to vehicle one, carrying: 6-wheels truck with maximum weight of 14 tons, a passenger car with maximum weight of 3.5 tons, and a motorcycle with maximum weight of 0.4 tons. The deck structure is modelled using finite element software. The boundary conditions given to the structural model are fix and simple constraint. The load that works on this deck is the deck load which comes from the vehicles on deck with three vehicles’ arrangement plans. After that, software modelling is conducted for analysis purpose. Analysis result shows a variation of maximum stress that occurs i.e. 135 N/mm2, 133 N/mm2, and 152 N/mm2. Those maximum stresses will not affect the structure of passenger deck’s because the maximum stress that occurs indicates smaller value compared to the Indonesian Classification Bureau’s permissible stress (175 N/mm2) as well as the material’s yield strength (235 N/mm2). Thus, the structural strength of passenger deck is shown to be capable of carrying the weight of vehicles in accordance with the three vehicles’ arrangement plans.

  13. The polymethyl methacrylate cervical cage for treatment of cervical disk disease Part III. Biomechanical properties.

    PubMed

    Chen, Jyi-Feng; Lee, Shih-Tseng

    2006-10-01

    In a previous article, we used the PMMA cervical cage in the treatment of single-level cervical disk disease and the preliminary clinical results were satisfactory. However, the mechanical properties of the PMMA cage were not clear. Therefore, we designed a comparative in vitro biomechanical study to determine the mechanical properties of the PMMA cage. The PMMA cervical cage and the Solis PEEK cervical cage were compressed in a materials testing machine to determine the mechanical properties. The compressive yield strength of the PMMA cage (7030 +/- 637 N) was less than that of the Solis polymer cervical cage (8100 +/- 572 N). The ultimate compressive strength of the PMMA cage (8160 +/- 724 N) was less than that of the Solis cage (9100 +/- 634 N). The stiffness of the PMMA cervical cage (8106 +/- 817 N/mm) was greater than that of the Solis cage (6486 +/- 530 N/mm). The elastic modulus of the PMMA cage (623 +/- 57 MPa) was greater than that of the Solis cage (510 +/- 42 MPa). The elongation of PMMA cage (43.5 +/- 5.7%) was larger than that of the Solis cage (36.1 +/- 4.3%). Although the compressive yield strength and ultimate compressive strength of the PMMA cervical cage were less than those of the Solis polymer cage, the mechanical properties are better than those of the cervical vertebral body. The PMMA cage is strong and safe for use as a spacer for cervical interbody fusion. Compared with other cage materials, the PMMA cage has many advantages and no obvious failings at present. However, the PMMA cervical cage warrants further long-term clinical study.

  14. Evidence for Ni-56 yields Co-56 yields Fe-56 decay in type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Kirshner, Robert P.; Pinto, Philip A.; Leibundgut, Bruno

    1994-01-01

    In the prevailing picture of Type Ia supernovae (SN Ia), their explosive burning produces Ni-56, and the radioactive decay chain Ni-56 yields Co-56 yields Fe-56 powers the subsequent emission. We test a central feature of this theory by measuring the relative strengths of a (Co III) emission feature near 5900 A and a (Fe III) emission feature near 4700 A. We measure 38 spectra from 13 SN Ia ranging from 48 to 310 days after maximum light. When we compare the observations with a simple multilevel calculation, we find that the observed Fe/Co flux ratio evolves as expected when the Fe-56/Co-56 abundance ratio follows from Ni-56 yields Co-56 yields Fe-56 decay. From this agreement, we conclude that the cobalt and iron atoms we observe through SN Ia emission lines are produced by the radioactive decay of Ni-56, just as predicted by a wide range of models for SN Ia explosions.

  15. Yield stress and scaling of polyelectrolyte multilayer modified suspensions: effect of polyelectrolyte conformation during multilayer assembly.

    PubMed

    Hess, Andreas; Aksel, Nuri

    2013-09-10

    The yield stress of polyelectrolyte multilayer modified suspensions exhibits a surprising dependence on the polyelectrolyte conformation of multilayer films. The rheological data scale onto a universal master curve for each polyelectrolyte conformation as the particle volume fraction, φ, and the ionic strength of the background fluid, I, are varied. It is shown that rough films with highly coiled, brushy polyelectrolytes significantly enhance the yield stress. Moreover, via the ionic strength I of the background fluid, the dynamic yield stress of brushy polyelectrolyte multilayers can be finely adjusted over 2 decades.

  16. Biomechanical monitoring of healing bone based on acoustic emission technology.

    PubMed

    Hirasawa, Yasusuke; Takai, Shinro; Kim, Wook-Cheol; Takenaka, Nobuyuki; Yoshino, Nobuyuki; Watanabe, Yoshinobu

    2002-09-01

    Acoustic emission testing is a well-established method for assessment of the mechanical integrity of general construction projects. The purpose of the current study was to investigate the usefulness of acoustic emission technology in monitoring the yield strength of healing callus during external fixation. Thirty-five patients with 39 long bones treated with external fixation were evaluated for fracture healing by monitoring load for the initiation of acoustic emission signal (yield strength) under axial loading. The major criteria for functional bone union based on acoustic emission testing were (1) no acoustic emission signal on full weightbearing, and (2) a higher estimated strength than body weight. The yield strength monitored by acoustic emission testing increased with the time of healing. The external fixator could be removed safely and successfully in 97% of the patients. Thus, the acoustic emission method has good potential as a reliable method for monitoring the mechanical status of healing bone.

  17. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al 0.3 CoCrFeNi high entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwalani, B.; Soni, Vishal; Lee, Michael

    2017-05-01

    A successful demonstration of applying integrated strengthening using Hall-Petch strengthening (grains size effect) and precipitation strengthening is shown in the fcc based high entropy alloy (HEA) Al0.3CoCrFeNi, leading to quantitative determinations of the Hall-Petch coefficients for both hardness and tensile yield strength, aswell as the enhancements in the yield strength fromtwo distinct types of ordered precipitates, L12 and B2. An excellent combination of yield strength (~490MPa), ultimate tensile strength (~850MPa), and ductility (~45% elongation) was achieved by optimizing and coupling both strengtheningmechanisms, resulting from a refined grain size as well as both L12 and B2 ordered precipitates. This opens upmore » new avenues for the future development of HEAs, with the appropriate balance of properties required for engineering applications.« less

  18. Stress-strain relationship of high-strength steel (HSS) reinforcing bars

    NASA Astrophysics Data System (ADS)

    Anggraini, Retno; Tavio, Raka, I. Gede Putu; Agustiar

    2018-05-01

    The introduction of High-Strength Steel (HSS) reinforcing bars in reinforced concrete members has gained much attention in recent years and led to many advantages such as construction timesaving. It is also more economical since it can reduce the amount of reinforcing steel bars used in concrete members which in turn alleviates the congestion of reinforcement. Up to present, the building codes, e.g. American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013, still restrict the use of higher-strength steel reinforcing bars for concrete design up to Grade 420 MPa due to the possible suspected brittle behavior of concrete members. This paper evaluates the characteristics of stress-strain relationships of HSS bars if they are comparable to the characteristics of those of Grade 420 MPa. To achieve the objective of the study, a series of steel bars from various grades (420, 550, 650, and 700 MPa) was selected. Tensile tests of these steel samples were conducted under displacement-controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. The results indicate that all the steel bars tested had the actual yield strengths greater than the corresponding specified values. The stress-strain curves of HSS reinforcing bars (Grade 550, 650, and 700 MPa) performed slightly different characteristics with those of Grade 420 MPa.

  19. Microstructure control for high strength 9Cr ferritic-martensitic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Hoelzer, David T; Busby, Jeremy T

    2012-01-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literaturemore » data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.« less

  20. Chlorhexidine Prevents Root Dentine Mineral Loss and Fracture Caused by Calcium Hydroxide over Time

    PubMed Central

    Thomaz, Érika Bárbara Abreu Fonseca; Lima, Darlon Martins; Bauer, José

    2017-01-01

    Purpose. To evaluate the mineral ion loss of root dentine after treatment with 2% chlorhexidine solution (CHX) and to compare its yield and flexural strength (fs) after exposure to calcium hydroxide [Ca(OH)2]. Materials and Methods. Dentine bars (DB) were made from 90 roots of bovine incisors and randomized into three groups: GControl: distilled/deionized water (DDW), GNaOCl: 2.5% sodium hypochlorite + 17% EDTA, and GCHX: CHX + DDW. The release of phosphate (PO4) and calcium (Ca) ions was measured by spectrophotometry. The DB were exposed to Ca(OH)2 paste for 0, 30, 90, and 180 days. DB were subjected to the three-point bending test to obtain yield and fs values. The fracture patterns were evaluated (20x). Data were analyzed using Kruskal-Wallis and Dunn's post hoc tests or one- and two-way ANOVA followed by Tukey's post hoc test (α = 0.05). Results. GCHX showed lower PO43− and Ca2+ ionic release than GNaOCl (p < 0.001). For yield and fs, GCHX > GNaOCl in all periods (p < 0.001), except for yield strength values on 90 days (p = 0.791). A larger frequency of vertical fractures was observed in GNaOCl and that of oblique fractures in GCHX (p < 0.05). Conclusions. CHX prevented PO43− and Ca2+ loss and showed a tendency to preserve the yield and fs of root dentine over time following exposure to Ca(OH)2 paste. PMID:28539937

  1. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.

    2017-03-01

    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  2. Effect of Continuous Galvanizing Heat Treatments on the Microstructure and Mechanical Properties of High Al-Low Si Transformation Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Bellhouse, E. M.; McDermid, J. R.

    2010-02-01

    Heat treatments were performed using an isothermal bainitic transformation (IBT) temperature compatible with continuous hot-dip galvanizing on two high Al-low Si transformation induced plasticity (TRIP)-assisted steels. Both steels had 0.2 wt pct C and 1.5 wt pct Mn; one had 1.5 wt pct Al and the other had 1 wt pct Al and 0.5 wt pct Si. Two different intercritical annealing (IA) temperatures were used, resulting in intercritical microstructures of 50 pct ferrite (α)-50 pct austenite (γ) and 65 pct α-35 pct γ. Using the IBT temperature of 465 °C, five IBT times were tested: 4, 30, 60, 90, and 120 seconds. Increasing the IBT time resulted in a decrease in the ultimate tensile strength (UTS) and an increase in the uniform elongation, yield strength, and yield point elongation. The uniform elongation was higher when using the 50 pct α-50 pct γ IA temperature when compared to the 65 pct α-35 pct γ IA temperature. The best combinations of strength and ductility and their corresponding heat treatments were as follows: a tensile strength of 895 MPa and uniform elongation of 0.26 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 90-second IBT time; a tensile strength of 880 MPa and uniform elongation of 0.27 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 120-second IBT time; and a tensile strength of 1009 MPa and uniform elongation of 0.22 for the 1 pct Al-0.5 pct Si TRIP steel at the 50 pct γ IA temperature and 120-second IBT time.

  3. Does Kinesiotaping improve pain and functionality in patients with newly diagnosed lateral epicondylitis?

    PubMed

    Eraslan, Leyla; Yuce, Deniz; Erbilici, Arzu; Baltaci, Gul

    2018-03-01

    This study aimed to compare the short-term effects of kinesiotaping and extracorporeal shock wave therapy (ESWT) along with physiotherapy on pain, functionality, and grip strength in patients with newly diagnosed lateral epicondylitis undergoing rehabilitation. Forty-five voluntary patients (mean age 48 years) were randomly assigned to three groups. Patients in all groups received physiotherapy consisting of a cold pack and transcutaneous electrical nerve stimulation five times per week for a total of 15 sessions and a home exercise programme including stretching and eccentric strength exercises. In the second group, patients received kinesiotaping 5 days a week for 3 weeks. In the third group, ESWT was applied three times for 3 weeks. Patients were assessed by visual analogue scale for pain intensity, pain-free grip strength using a hand dynamometer, Cyriax Resisted Muscle Test, and Patient-Rated Tennis Elbow Evaluation Scale. All measurements were collected at baseline and after treatment. There were no significant differences in the demographic characteristics of the patients in all groups at baseline. Intra-group analysis revealed that pain intensity decreased, whereas maximum grip strength and functionality increased in all groups at the end of the treatment (p < 0.05). Inter-group analysis revealed that the kinesiotaping group yielded better results in decreasing pain intensity than the other groups (p < 0.05). The kinesiotaping group (p < 0.001) and ESWT group (p = 0.002) yielded better results in improving functionality than the physiotherapy group. There were significant differences in recovering pain-free grip strength in the kinesiotaping group (p < 0.05). Kinesiotaping was found to be effective for decreasing pain intensity, recovering grip strength, and improving functionality in patients with lateral epicondylitis undergoing rehabilitation. Therapeutic study, Level II.

  4. The length of pre-existing fissures effects on the mechanical properties of cracked red sandstone and strength design in engineering.

    PubMed

    Wu, Jiangyu; Feng, Meimei; Yu, Bangyong; Han, Guansheng

    2018-01-01

    It is important to study the mechanical properties of cracked rock to understand the engineering behavior of cracked rock mass. Consequently, the influence of the length of pre-existing fissures on the strength, deformation, acoustic emission (AE) and failure characteristics of cracked rock specimen was analyzed, and the optimal selection of strength parameter in engineering design was discussed. The results show that the strength parameters (stress of dilatancy onset and uniaxial compressive strength) and deformation parameters (axial strain and circumferential strain at dilatancy onset and peak point) of cracked rock specimen decrease with the increase of the number of pre-existing fissures, and the relations which can use the negative exponential function to fit. Compared with the intact rock specimens, the different degrees of stress drop phenomena were produced in the process of cracked rock specimens when the stress exceeds the dilatancy onset. At this moment, the cracked rock specimens with the existence of stress drop are not instantaneous failure, but the circumferential strain, volumetric strain and AE signals increase burstingly. And the yield platform was presented in the cracked rock specimen with the length of pre-existing fissure more than 23mm, the yield failure was gradually conducted around the inner tip of pre-existing fissure, the development of original fissures and new cracks was evolved fully in rock. However, the time of dilatancy onset is always ahead of the the time of that point with the existence of stress drop. It indicates that the stress of dilatancy onset can be as the parameter of strength design in rock engineering, which can effectively prevent the large deformation of rock. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Temperature effects on the mechanical properties of annealed and HERF 304L stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoun, Bonnie R.

    2004-11-01

    The effect of temperature on the tensile properties of annealed 304L stainless steel and HERF 304L stainless steel forgings was determined by completing experiments over the moderate range of -40 F to 160 F. Temperature effects were more significant in the annealed material than the HERF material. The tensile yield strength of the annealed material at -40 F averaged twenty two percent above the room temperature value and at 160 F averaged thirteen percent below. The tensile yield strength for the three different geometry HERF forgings at -40 F and 160 F changed less than ten percent from room temperature.more » The ultimate tensile strength was more temperature dependent than the yield strength. The annealed material averaged thirty six percent above and fourteen percent below the room temperature ultimate strength at -40 F and 160 F, respectively. The HERF forgings exhibited similar, slightly lower changes in ultimate strength with temperature. For completeness and illustrative purposes, the stress-strain curves are included for each of the tensile experiments conducted. The results of this study prompted a continuation study to determine tensile property changes of welded 304L stainless steel material with temperature, documented separately.« less

  6. Development of a High-Strength Ultrafine-Grained Ferritic Steel Nanocomposite

    NASA Astrophysics Data System (ADS)

    Rahmanifard, Roohollah; Farhangi, Hasan; Novinrooz, Abdul Javad; Moniri, Samira

    2013-02-01

    This article describes the microstructural and mechanical properties of 12YWT oxide-dispersion-strengthened (ODS)-ferritic steel nanocomposite. According to the annealing results obtained from X-ray diffraction line profile analysis on mechanically alloyed powders milled for 80 hours, the hot extrusion at 1123 K (850 °C) resulted in a nearly equiaxed ultrafine structure with an ultimate tensile strength of 1470 MPa, yield strength of 1390 MPa, and total elongation of 13 pct at room temperature comparable with high-strength 14YWT ODS steel. Maximum total elongation was found at 973 K (600 °C) where fractography of the tensile specimen showed a fully ductile dimple feature compared with the splitting cracks and very fine dimpled structure observed at room temperature. The presence of very small particles on the wall of dimples at 1073 K (800 °C) with nearly chemical composition of the matrix alloy was attributed to the activation of the boundaries decohesion mechanism as a result of diffusion of solute atoms. The results of Charpy impact test also indicated significant improvement of transition temperature with respect to predecessor 12YWT because of the decreased grain size and more homogeneity of grain size distribution. Hence, this alloy represented a good compromise between the strength and Charpy impact properties.

  7. Hardness - Yield Strength Relation of Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Praveen Sekhar, Aluru; Nandy, Supriya; Ray, Kalyan Kumar; Das, Debdulal

    2018-03-01

    Assessing the mechanical properties of materials through indentation hardness test is an attractive method, rather than obtaining the properties through destructive approach like tensile testing. The present work emphasizes on the relation between hardness and yield strength of Al-Mg-Si alloys considering Tabor type equations. Al-0.5Mg-0.4Si alloy has been artificially aged at various temperatures (100 to 250 °C) for different time durations (0.083 to 1000 h) and the ageing response has been assessed by measuring the Vickers hardness and yield strength. Correlations of the existing data from the open literature have also been reviewed. Lastly, it has been explained that the deviation in obtained relation from Tabor’s equation is owing to the dislocation accumulation during indentation.

  8. The Effect of Artificial Aging on the Tensile Properties of Alclad 24S-T and 24S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Kotanchik, Joseph N.; Woods, Walter; Zender, George W.

    1943-01-01

    An experimental study was made to determine the effect of artificial aging on the tensile properties of alclad 24S-T and 24S-T aluminum-alloy sheet material. The results of the tests show that certain combinations of aging time and temperature cause a marked increase in the yield strength and a small increase in the ultimate strength; these increases are accompanied by a very large decrease in elongation. A curve is presented that shows the maximum yield strengths that can be obtained by aging this material at various combinations of time and temperature. The higher values of yield stress are obtained in material aged at relatively longer times and lower temperatures.

  9. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    PubMed

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  11. High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Khosravani, Ali; Castillo, Andrew

    Recent spherical nanoindentation protocols have proven robust at capturing the local elastic-plastic response of polycrystalline metal samples at length scales much smaller than the grain size. In this work, we extend these protocols to length scales that include multiple grains to recover microindentation stress-strain curves. These new protocols are first established in this paper and then demonstrated for Al-6061 by comparing the measured indentation stress-strain curves with the corresponding measurements from uniaxial tension tests. More specifically, the scaling factors between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9, which is significantly lower thanmore » the value of 2.8 used commonly in literature. Furthermore, the reasons for this difference are discussed. Second, the benefits of these new protocols in facilitating high throughput exploration of process-property relationships are demonstrated through a simple case study.« less

  12. [Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production].

    PubMed

    Dai, Guanping; Sun, Tao; Miao, Liangtian; Li, Qingyan; Xiao, Dongguang; Zhang, Xueli

    2014-08-01

    β-carotene belongs to carotenoids family, widely applied in pharmaceuticals, neutraceuticals, cosmetics and food industries. In this study, three key genes (dxs, idi, and crt operon) within β-carotene synthetic pathway in recombinant Escherichia coli strain CAR005 were modulated with RBS Library to improve β-carotene production. There were 7%, 11% and 17% increase of β-carotene yield respectively after modulating dxs, idi and crt operon genes with RBS Library, demonstrating that modulating gene expression with regulatory parts libraries would have more opportunities to obtain optimal production of target compound. Combined modulation of crt operon, dxs and idi genes led to 35% increase of β-carotene yield compared to parent strain CAR005. The optimal gene expression strength identified in single gene modulation would not be the optimal strength when used in combined modulation. Our study provides a new strategy for improving production of target compound through modulation of gene expression.

  13. High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples

    DOE PAGES

    Weaver, Jordan S.; Khosravani, Ali; Castillo, Andrew; ...

    2016-06-14

    Recent spherical nanoindentation protocols have proven robust at capturing the local elastic-plastic response of polycrystalline metal samples at length scales much smaller than the grain size. In this work, we extend these protocols to length scales that include multiple grains to recover microindentation stress-strain curves. These new protocols are first established in this paper and then demonstrated for Al-6061 by comparing the measured indentation stress-strain curves with the corresponding measurements from uniaxial tension tests. More specifically, the scaling factors between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9, which is significantly lower thanmore » the value of 2.8 used commonly in literature. Furthermore, the reasons for this difference are discussed. Second, the benefits of these new protocols in facilitating high throughput exploration of process-property relationships are demonstrated through a simple case study.« less

  14. Flow Strength of Shocked Aluminum in the Solid-Liquid Mixed Phase Region

    NASA Astrophysics Data System (ADS)

    Reinhart, William

    2011-06-01

    Shock waves have been used to determine material properties under high shock stresses and very-high loading rates. The determination of mechanical properties such as compressive strength under shock compression has proven to be difficult and estimates of strength have been limited to approximately 100 GPa or less in aluminum. The term ``strength'' has been used in different ways. For a Von-Mises solid, the yield strength is equal to twice the shear strength of the material and represents the maximum shear stress that can be supported before yield. Many of these concepts have been applied to materials that undergo high strain-rate dynamic deformation, as in uni-axial strain shock experiments. In shock experiments, it has been observed that the shear stress in the shocked state is not equal to the shear strength, as evidenced by elastic recompressions in reshock experiments. This has led to an assumption that there is a yield surface with maximum (loading)and minimum (unloading), shear strength yet the actual shear stress lies somewhere between these values. This work provides the first simultaneous measurements of unloading velocity and flow strength for transition of solid aluminum to the liquid phase. The investigation describes the flow strength observed in 1100 (pure), 6061-T6, and 2024 aluminum in the solid-liquid mixed phase region. Reloading and unloading techniques were utilized to provide independent data on the two unknowns (τc and τo) , so that the actual critical shear strength and the shear stress at the shock state could be estimated. Three different observations indicate a change in material response for stresses of 100 to 160 GPa; 1) release wave speed (reloading where applicable) measurements, 2) yield strength measurements, and 3) estimates of Poisson's ratio, all of which provide information on the melt process including internal consistency and/or non-equilibrium and rate-dependent melt behavior. The study investigates the strength properties in the solid region and as the material transverses the solid-mixed-liquid regime. Differences observed appear to be the product of alloying and/or microstructural composition of the aluminum. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. Nerve Decompression Surgery After Total Hip Arthroplasty: What Are the Outcomes?

    PubMed

    Chughtai, Morad; Khlopas, Anton; Gwam, Chukwuwieke U; Elmallah, Randa K; Thomas, Melbin; Nace, James; Mont, Michael A

    2017-04-01

    The purpose of our study was to compare (1) muscle strength; (2) pain; (3) sensation; (4) various outcome measurement scales between post-total hip arthroplasty (THA) patients who had a sciatic nerve injury and did or did not receive decompression surgery for this condition; and (5) to compare these findings with current literature. Nineteen patients who had nerve injury after THA were reviewed. Patients were stratified into those who had a nerve decompression (n = 12), and those who had not (n = 7). Motor strength was evaluated using the Muscle Strength Testing Scale. Pain was evaluated by using the visual analogue scale. Systematic literature search was performed to compare the findings of this study with others currently published. The decompression group had a significant improvement in motor strength and the visual analog scale scores as compared with nonoperative group. Patients in decompression group had a significant larger increase in the mean Harris hip score and University of California Los Angeles score. There was no significant difference in the increase of Short Form-36 physical and mental scores between the 2 groups. Literature review for nonoperative management yielded 5 studies (93 patients), with 33% improvement. There were 7 studies (81 patients) on nerve decompression surgery, with 75% improvement. This study demonstrates the benefits of nerve decompression surgery in patients who had sciatic nerve injury after THA, as evidenced by results of standardized outcome measurement scales. It is possible to achieve improvements in terms of strength, pain, and clinical outcomes. Comparative studies with larger cohorts are needed to fully assess the best candidates for this procedure. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  17. The role of grain size and shape in the strengthening of dispersion hardened nickel alloys

    NASA Technical Reports Server (NTRS)

    Wilcox, B. A.; Clauer, A. H.

    1972-01-01

    Thermomechanical processing was used to develop various microsstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20CR-2ThO2, Ni-20Cr-10W-and Ni-20Cr-10W-2ThO2. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation, and substructure refinement was a much more potent means of strengthening than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength was the grain aspect ratio (grain length, L, divided by grain width, 1. The yield strength and creep strength increased linearly with increasing L/1.

  18. Processing, Microstructures and Properties of a Dual Phase Precipitation-Hardening PM Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schade, Christopher

    To improve the mechanical properties of PM stainless steels in comparison with their wrought counterparts, a PM stainless steel alloy was developed which combines a dual-phase microstructure with precipitation-hardening. The use of a mixed microstructure of martensite and ferrite results in an alloy with a combination of the optimum properties of each phase, namely strength and ductility. The use of precipitation hardening via the addition of copper results in additional strength and hardness. A range of compositions was studied in combination with various sintering conditions to determine the optimal thermal processing to achieve the desired microstructure. The microstructure could be varied from predominately ferrite to one containing a high percentage of martensite by additions of copper and a variation of the sintering temperature before rapid cooling. Mechanical properties (transverse rupture strength (TRS), yield strength, tensile strength, ductility and impact toughness) were measured as a function of the v/o ferrite in the microstructure. A dual phase alloy with the optimal combination of properties served as the base for introducing precipitation hardening. Copper was added to the base alloy at various levels and its effect on the microstructure and mechanical properties was quantified. Processing at various sintering temperatures led to a range of microstructures; dilatometry was used utilized to monitor and understand the transformations and the formation of the two phases. The aging process was studied as a function of temperature and time by measuring TRS, yield strength, tensile strength, ductility, impact toughness and apparent hardness. It was determined that optimum aging was achieved at 538°C for 1h. Aging at slightly lower temperatures led to the formation of carbides, which contributed to reduced hardness and tensile strength. As expected, at the peak aging temperature, an increase in yield strength and ultimate tensile strength as well as apparent hardness was found. Aging also lead to an unexpected and concurrent increase in ductility and impact toughness. The alloys also showed an increase in strain hardening on aging. The increase in ductility varied with the v/o martensite in the microstructure and was shown to occur after short time intervals at the optimum aging temperature. Compressive strength measurements revealed that the increase in ductility was due to the relaxation of residuals stresses that occur when the high temperature austenite transforms to martensite in the dual phase microstructure. The specific volume of martensite is much larger than that of austenite so that when the transformation takes place, a compressive stress is induced in the ferrite. In the sintered state, the residual stress leads to a higher work hardening rate in tension. When the alloy is aged, the work hardening rate is reduced and the ductility is increased compared with the sintered state, even though aging increases the strength and apparent hardness.

  19. The effect of yield strength and ductility to fatigue damage

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1973-01-01

    The cumulative damage of aluminium alloys with different yield strength and various ductility due to seismic loads was studied. The responses of an idealized beam with a centered mass at one end and fixed at the other end to El Centro's and Taft's earthquakes are computed by assuming that the alloys are perfectly elastoplastic materials and by using numerical technique. Consequently, the corresponding residual plastic strain can be obtained from the stress-strain relationship. The revised Palmgren-Miner cumulative damage theorem is utilized to calculate the fatigue damage. The numerical results show that in certain cases, the high ductility materials are more resistant to seismic loads than the high yield strength materials. The results also show that if a structure collapse during the earthquake, the collapse always occurs in the very early stage.

  20. Tensile behavior of the L(1)2 compound Al67Ti25Cr8

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.

    1992-01-01

    Temperature-related variations in tensile yield strength and ductility were studied on cast, homogenized and isothermally forged Al67Ti25Cr8. Yield strength dropped discontinuously between 623 K and 773 K and then decreased gradually with increasing temperature. Below 623 K, fracture occurred prior to macroscopic yielding. Ductility decreased from 0.2 percent at 623 K to zero at 773 K, but increased again at higher temperatures. At 1073 K, an elongation of 19 percent was obtainable, and ultimate tensile strength and localized necking were observed. Fracture surfaces and deformed microstructures were examined. The 1073 K tensile specimen that exhibited 19 percent elongation showed grain boundary serrations and some evidence of recrystallization (likely dynamic) although fracture occurred predominantly via an intergranular mode.

  1. Welding of titanium and stainless steel using the composite insert

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Mali, V. I.; Orishich, A. M.; Malikov, A. G.; Drozdov, V. O.; Malyutina, Y. N.

    2016-11-01

    The paper concerns the possibility of obtaining a lasting permanent joint of dissimilar metals: technically pure titanium and stainless steel using laser welding and an intermediate composite insert. The insert was a four-layer composition of plates of steel, copper, niobium, and titanium welded by explosion. The material layers used in the insert prevented the molten steel and titanium from mixing, which excluded the formation of brittle intermetallic compounds, such as FeTi and Fe2Ti. The optimization of explosion welding parameters provided a high quality of the four-layer composition and the absence of defects in the area of the joint of insert plates. The results of strength tests showed that values of the ultimate strength and yield of the permanent joint with the composite insert welded by explosion are comparable to the strength characteristics of titanium.

  2. Design with high strength steel: A case of failure and its implications

    NASA Astrophysics Data System (ADS)

    Rahka, Klaus

    1992-10-01

    A recent proof test failure of a high strength steel pressure vessel is scrutinized. Apparent deficiencies in the procedures to account for elasto-plastic local strain are indicated for the applicable routine (code) strength calculations. Tentative guidance is given for the use of material tensile fracture strain and its strain state (plane strain) correction in fracture margin estimation. A hypothesis that the calculated local strain is comparable with a gauge length weighted tensile ductility for fracture to initiate at a notch root is given. A discussion about the actual implications of the failure case and the suggested remedy in the light of the ASME Boiler and Pressure Vessel Code section 3 and 8 is presented. Further needs for research and development are delineated. Possible yield and ductility related design limits and their use as material quality indices are discussed.

  3. Terapascal static pressure generation with ultrahigh yield strength nanodiamond.

    PubMed

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-07-01

    Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.

  4. Terapascal static pressure generation with ultrahigh yield strength nanodiamond

    PubMed Central

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-01-01

    Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944

  5. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, p<0.01) for ablated/acid-etched samples, 5.2 MPa (s.d.=2.4, p<0.001) for ablated/non-etched samples, and 37.0 MPa (s.d.=3.6) for control. The results indicate that a rapid-scanning 300 Hz CO2 laser can effectively ablate dentin and enamel without excessive heat accumulation and with minimal thermal damage. It is not clear whether the small (16%) but statistically significant reduction in the shear bond strength to enamel is clinically significant since the mean shear bond strength exceeded 30 MPa.

  6. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index.

    PubMed

    Lofton, Josh; Tubana, Brenda S; Kanke, Yumiko; Teboh, Jasper; Viator, Howard; Dalen, Marilyn

    2012-01-01

    Estimating crop yield using remote sensing techniques has proven to be successful. However, sugarcane possesses unique characteristics; such as, a multi-year cropping cycle and plant height-limiting for midseason fertilizer application timing. Our study objective was to determine if sugarcane yield potential could be estimated using an in-season estimation of normalized difference vegetative index (NDVI). Sensor readings were taken using the GreenSeeker® handheld sensor from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was between 601-750 GDD. In-season estimated yield values improved the yield potential (YP) model compared to using NDVI. Generally, INSEY value showed a positive exponential relationship with yield (r(2) values 0.48 and 0.42 for cane tonnage and sugar yield, respectively). When models were separated based on canopy structure there was an increase the strength of the relationship for the erectophile varieties (r(2) 0.53 and 0.47 for cane tonnage and sugar yield, respectively); however, the model for planophile varieties weakened slightly. Results of this study indicate using an INSEY value for predicting sugarcane yield shows potential of being a valuable management tool for sugarcane producers in Louisiana.

  7. Processing and characterization of unidirectional thermoplastic nanocomposites

    NASA Astrophysics Data System (ADS)

    Narasimhan, Kameshwaran

    The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.

  8. Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid

    2014-04-01

    High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.

  9. Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering.

    PubMed

    Kang, Heesuk; Hollister, Scott J; La Marca, Frank; Park, Paul; Lin, Chia-Ying

    2013-10-01

    Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.

  10. The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy

    PubMed Central

    Zhou, Mingyang; Qu, Xiaoni; Ren, Lingbao; Fan, Lingling; Zhang, Yuwenxi; Guo, Yangyang; Quan, Gaofeng; Liu, Bin; Sun, Hao

    2017-01-01

    Carbon nanotube (CNT)-reinforced AZ31 matrix nanocomposites were successfully fabricated using a powder metallurgy method followed by hot extrusion. The influence of CNTs on microstructures, mechanical properties, and wear properties were systematically investigated by optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), hardness test, tensile test, and wear test. The results revealed that the nanocomposites showed a slightly smaller grain size compared with the matrix and uniform distribution that CNTs could achieve at proper content. As a result, the addition of CNTs could weaken basal plane texture. However, the yield strength and ultimate tensile strength of the composites were enhanced as the amount of CNTs increased up to 2.0 wt. %, reaching maximum values of 241 MPa (+28.2%) and 297 MPa (+6.1%), respectively. The load transfer mechanism, Orowan mechanism, and thermal mismatch mechanism played important roles in the enhancement of the yield strength, and several classical models were employed to predict the theoretical values. The effect of CNT content on the friction coefficient and weight loss of the nanocomposites was also studied. The relationships between the amount of CNTs, the friction coefficient, and weight loss could be described by the exponential decay model and the Boltzmann model, respectively. PMID:29207543

  11. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel

    PubMed Central

    Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro

    2012-01-01

    A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength–toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation. PMID:27877493

  12. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles

    PubMed Central

    Sarwar, A.; Nemirovski, A.; Shapiro, B.

    2011-01-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell’s equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm3 volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm3), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths. PMID:23335834

  13. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.

    PubMed

    Sarwar, A; Nemirovski, A; Shapiro, B

    2012-03-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm(3)), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.

  14. Crack Damage Parameters and Dilatancy of Artificially Jointed Granite Samples Under Triaxial Compression

    NASA Astrophysics Data System (ADS)

    Walton, G.; Alejano, L. R.; Arzua, J.; Markley, T.

    2018-06-01

    A database of post-peak triaxial test results was created for artificially jointed planes introduced in cylindrical compression samples of a Blanco Mera granite. Aside from examining the artificial jointing effect on major rock and rock mass parameters such as stiffness, peak strength and residual strength, other strength parameters related to brittle cracking and post-yield dilatancy were analyzed. Crack initiation and crack damage values for both the intact and artificially jointed samples were determined, and these damage envelopes were found to be notably impacted by the presence of jointing. The data suggest that with increased density of jointing, the samples transition from a combined matrix damage and joint slip yielding mechanism to yield dominated by joint slip. Additionally, post-yield dilation data were analyzed in the context of a mobilized dilation angle model, and the peak dilation angle was found to decrease significantly when there were joints in the samples. These dilatancy results are consistent with hypotheses in the literature on rock mass dilatancy.

  15. Nanoscale Roughness of Natural Fault Surfaces Controlled by Scale-Dependent Yield Strength

    NASA Astrophysics Data System (ADS)

    Thom, C. A.; Brodsky, E. E.; Carpick, R. W.; Pharr, G. M.; Oliver, W. C.; Goldsby, D. L.

    2017-09-01

    Many natural fault surfaces exhibit remarkably similar scale-dependent roughness, which may reflect the scale-dependent yield strength of rocks. Using atomic force microscopy (AFM), we show that a sample of the Corona Heights Fault exhibits isotropic surface roughness well-described by a power law, with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. The roughness data and a recently proposed theoretical framework predict that yield strength varies with length scale as λ-0.25+/-0.05. Nanoindentation tests on the Corona Heights sample and another fault sample whose topography was previously measured with AFM (the Yair Fault) reveal a scale-dependent yield stress with power-law exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08, respectively. These values are within one to two standard deviations of the predicted value, and provide experimental evidence that fault roughness is controlled by intrinsic material properties, which produces a characteristic surface geometry.

  16. On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Schultz, Benjamin F.; Venugopalan, Dev; Lopez, Hugo F.; Rohatgi, Pradeep K.; Cho, Kyu; Kim, Chang-Soo

    2014-03-01

    Yield strength improvement in dispersion strengthened alloys and nano particle-reinforced composites by well-known strengthening mechanisms such as solid solution, grain refinement, coherent and incoherent dispersed particles, and increased dislocation density resulting from work-hardening can all be described individually. However, there is no agreed upon description of how these mechanisms combine to determine the yield strength. In this work, we propose an analytical yield strength prediction model combining arithmetic and quadratic addition approaches based on the consideration of two types of yielding mechanisms; stress-activated and energy-activated. Using data available in the literature for materials of differing grain sizes, we consider the cases of solid solutions and coherent precipitates to show that they follow stress-activated behavior. Then, we applied our model with some empirical parameters to precipitationhardenable materials of various grain sizes in both coherent and incoherent precipitate conditions, which demonstrated that grain boundary and Orowan-strengthening can be treated as energy-activated mechanisms.

  17. Experimental Study on Basic Mechanical Properties of BFRP Bars

    NASA Astrophysics Data System (ADS)

    Fan, Xiaochun; Xu, Ting; Zhou, Zhengrong; Zhou, Xun

    2017-10-01

    Basalt Fiber Reinforced Polymer (BFRP) bars have the advantages of corrosion resistance, high strength, light weight, good dielectric properties, and they are new type of green reinforced alternative material. In order to determine the mechanical properties of BFRP bars, the tensile strength of basalt fiber bars was necessary to be studied. The diameters of the basalt fiber bars were compared by means of uniaxial tensile test in this article. Then the stress-strain curve can be drawn out. The results show that the stress - strain curve of BFRP bars present straight line relation, and there is no sign before failure; there is no yield platform on the stress-strain curve of BFRP bars, which are typical brittle material;the tensile strength of BFRP bars is about 3 times higher than that of ordinary steel bars. and the elastic modulus is about 1/5 of that of ordinary steel; the ultimate tensile strength of BFRP bars varies little with the increase of diameter, but there exist some differences in modulus values.

  18. 49 CFR 195.12 - What requirements apply to low-stress pipelines in rural areas?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... corresponding to: (A) A stress level equal to or less than 20-percent of the specified minimum yield strength of the line pipe; or (B) If the stress level is unknown or the pipeline is not constructed with steel... of the specified minimum yield strength of the line pipe; or (B) If the stress level is unknown or...

  19. 49 CFR 195.12 - What requirements apply to low-stress pipelines in rural areas?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... corresponding to: (A) A stress level equal to or less than 20-percent of the specified minimum yield strength of the line pipe; or (B) If the stress level is unknown or the pipeline is not constructed with steel... of the specified minimum yield strength of the line pipe; or (B) If the stress level is unknown or...

  20. 49 CFR 195.12 - What requirements apply to low-stress pipelines in rural areas?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... corresponding to: (A) A stress level equal to or less than 20-percent of the specified minimum yield strength of the line pipe; or (B) If the stress level is unknown or the pipeline is not constructed with steel... of the specified minimum yield strength of the line pipe; or (B) If the stress level is unknown or...

  1. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    NASA Astrophysics Data System (ADS)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends on the thickness, viscosity, and dynamic yield strength of the shear zone. Our model predicts a linear increase in slip with time during the landward motion and an exponential decrease in slip magnitude during the trenchward motion.

  2. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of <0.5 m3 s-1, while endogenous dome growth is predicted at higher flow rates (Qout > 3 m3 s-1) for magma with lower relative yield strengths (<1 MPa). At moderately high flow rates (Qout = 4 m3 s-1), the extrusion of magma with lower crystal content (62 per cent) and low interparticulate yield strength (0.6 MPa) results in the development of endogenous shear lobes. Our simulations model the periodic extrusion history at Mount St. Helens (1980-1983). Endogenous growth initiates in the simulated lava dome with the extrusion of low yield strength magma (ϕ = 0.63 and τp = 0.76 MPa) after the crystallized viscous plug (ϕ = 0.87 and τp = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 < Qout < 12 m3 s-1). The size of the endogenous viscous plug and the occurrence of exogenous growth depend on magma yield strength and the magma chamber volume, which control the periodicity of the effusion. Our simulations generate dome morphologies similar to those observed at Mount St Helens, and demonstrate the degree to which domes can sag and spread during and following extrusion pulses. This process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  3. The role of grain size and shape in strengthening of dispersion hardened nickel alloys.

    NASA Technical Reports Server (NTRS)

    Wilcox, B. A.; Clauer, A. H.

    1972-01-01

    Thermomechanical processing was used to develop various microstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20Cr-2ThO2, Ni-20Cr-10W and Ni-20Cr-10W-2ThO2, and the influence of microstructure on room temperature and elevated temperature strength was investigated. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation. It was found that substructure refinement was a much more potent means of strengthening at room temperature than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength of dispersion hardened nickel alloys was the grain aspect ratio, i.e. grain length, L, divided by grain width,l. The yield strength and creep strength increased linearly with increasing L/l.

  4. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  5. A comparative study of the mechanical performance of Glass and Glass/Carbon hybrid polymer composites at different temperature environments

    NASA Astrophysics Data System (ADS)

    Shukla, M. J.; Kumar, D. S.; Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Ray, B. C.

    2015-02-01

    Glass Fiber Reinforced Polymer (GFRP) composites have been widely accepted as high strength, low weight structural material as compared to their metallic counterparts. Some specific advanced high performance applications such as aerospace components still require superior specific strength and specific modulus. Carbon Fiber Reinforced Polymer (CFRP) composites exhibit superior specific strength and modulus but have a lower failure strain and high cost. Hence, the combination of both glass and carbon fiber in polymer composite may yield optimized mechanical properties. Further the in-service environment has a significant role on the mechanical performance of this class of materials. Present study aims to investigate the mechanical property of GFRP and Glass/Carbon (G/C hybrid) composites at room temperature, in-situ and ex-situ temperature conditions. In-situ testing at +70°C and +100°C results in significant loss in inter-laminar shear strength (ILSS) for both the composites as compared to room temperature. The ILSS was nearly equal for both the composite systems tested in-situ at +100°C and effect of fiber hybridisation was completely diminished there. At low temperature ex-situ conditioning significant reduction in ILSS was observed for both the systems. Further at -60°C G/C hybrid exhibited 32.4 % higher ILSS than GFRP. Hence this makes G/C hybrid a better choice of material in low temperature environmental applications.

  6. Microdomain Yield Behaviour in an Ultra-High Strength Low Alloy Steel for Marine Use with Low Sensitivity of SCC

    NASA Astrophysics Data System (ADS)

    Yin, Jiang; Tao, Anxiang; Xu, Pingguang; Ping, Dehai

    The present paper involves a fundamental research on microdomain yield behavior of an ultrahigh strength low alloy steel with high temperature tempered bainite. The smooth cylinder specimen was took from deep water mooring chain links from the steel with the chemical composition of 0.23C-0.25Si -0.70Mn-3.55 (Cr+Ni+Mo) -0.13 (V+Nb+Ti) (mass %) ,which was quenched from 1253K and then tempered at 873K Its macroscopic yield strength is 1120MPa and the tensile strength is 1250MPa In-situ neutron diffraction measurements of loading tension have suggested that a good linear elastic deformation can be kept up to 500MPa stress, and then (200) priority non-linear elastic strain, that is the yield of crystal lattice occur at 700MPa and the (110) non-linear elastic strain was found at 800MPa. The (200) and (110) nonlinear elastic strain increases gradually when the stress was further increased, however, the (211) kept its linear elastic deformation stage as before. The sub-microstructural analysis carried out using TEM and additional determine the nature and quantitative analysis has revealed that there are three kinds of alloy carbides: (1) θ-M3C cementites with an average particle size of less than 50 nm which inside laths and lath boundaries; (2) ɛ-M2C formed uniformly within the ferrites with a length of less than 200 nm and width of less than 20 nm; (3) ultra-fine high density MC cohered with matrix α-Fe and its particle size is about 2 nm. The whole microdomain yield behaviour of the material was possibly influenced by the fcc-MC with high density. The results of CLT (constant load), SSRT (slow strain rate) and KIscc test of the present chain in seawater solution indicate, that threshold value of SCC (stress corrosion cracking) stress exceed 0.8 tensile strength and the chain's KIscc value is double of KIscc value of 4340 steel type parts. MC not only form strong hydrogen trap, but also slow down microdomain yield likely by means of increasing yield strength of crystal lattice, thus reduce SCC sensibility of the steel.

  7. NemaFlex: a microfluidics-based technology for standardized measurement of muscular strength of C. elegans.

    PubMed

    Rahman, Mizanur; Hewitt, Jennifer E; Van-Bussel, Frank; Edwards, Hunter; Blawzdziewicz, Jerzy; Szewczyk, Nathaniel J; Driscoll, Monica; Vanapalli, Siva A

    2018-06-12

    Muscle strength is a functional measure of quality of life in humans. Declines in muscle strength are manifested in diseases as well as during inactivity, aging, and space travel. With conserved muscle biology, the simple genetic model C. elegans is a high throughput platform in which to identify molecular mechanisms causing muscle strength loss and to develop interventions based on diet, exercise, and drugs. In the clinic, standardized strength measures are essential to quantitate changes in patients; however, analogous standards have not been recapitulated in the C. elegans model since force generation fluctuates based on animal behavior and locomotion. Here, we report a microfluidics-based system for strength measurement that we call 'NemaFlex', based on pillar deflection as the nematode crawls through a forest of pillars. We have optimized the micropillar forest design and identified robust measurement conditions that yield a measure of strength that is independent of behavior and gait. Validation studies using a muscle contracting agent and mutants confirm that NemaFlex can reliably score muscular strength in C. elegans. Additionally, we report a scaling factor to account for animal size that is consistent with a biomechanics model and enables comparative strength studies of mutants. Taken together, our findings anchor NemaFlex for applications in genetic and drug screens, for defining molecular and cellular circuits of neuromuscular function, and for dissection of degenerative processes in disuse, aging, and disease.

  8. Earthflow yield strength constrained by lateral levee morphology

    NASA Astrophysics Data System (ADS)

    Nereson, A. L.; Finnegan, N. J.

    2015-12-01

    Slow-moving landslides, or earthflows, are characterized by persistent, flow-like motion that is commonly modeled using various viscous and viscoplastic rheologies. One of the manifestations of viscoplastic flow down a slope is the emergence of stationary bodies of fluid at the margins of the flow (i.e. lateral levees). These levees are common signatures of earthflow morphology and, while they are frequently used to outline boundaries for mapping purposes, they have received little attention for what they may indicate about the history and properties of the flow itself. In contrast, lateral levees along lava flows have long been used by physical volcanologists as tools to learn about their non-Newtonian rheologies and chemical compositions. Hulme (1974) was the first to note that, for a given slope, levee width may be characteristic of a fluids's yield strength and his methodology has been subsequently used to infer properties of lavas on the Earth, the Moon, and Mars. Using these lavas as analogies, we apply Hulme's approach to earthflows in a variety of settings globally. We find that calculated yield strengths for individual earthflows fall within a relatively narrow range between 101-102 kPa. In addition, individual earthflow complexes often preserve multiple generations of levees, which in some cases may record apparent reductions in yield strength over time for a given flow, possibly from weakening of previously failed material. Knowledge of earthflow yield strength permits the calculation of a critical earthflow thickness below which there will be no downslope motion for a given slope angle. Thicknesses calculated in this manner could thus be used to estimate the flux of landslide material for earthflows without direct depth constraints, provided that surface velocity measurements are obtained by other methods (e.g. InSAR, GPS, manual feature tracking).

  9. Composite-composite repair bond strength: effect of different adhesion primers.

    PubMed

    Tezvergil, A; Lassila, L V J; Vallittu, P K

    2003-11-01

    Recently, new products have been introduced to repair composite restorations that may be used as 'one-step' primers or monomers and silane compounds which are used separately as 'multi-step' primers. The aim of this study was to compare the shear bond strength of the new composite resin to aged composite, by using different adhesion primers. The substrates were particulate filler composite (Z250, 3M-ESPE), which was aged by boiling for 8 h and storing at 37 degrees C in water for 3 weeks. The aged substrate surfaces were wet-ground flat with 320-grit silicon carbide paper and subjected randomly (n=8) to either one-step adhesion primer: Compoconnect (CC) (Heraus Kulzer), or multi-step: Clearfil Repair (CF) (Kuraray) or an intermediate resin: Scothchbond Multi-purpose adhesive resin (3M-ESPE) according to the manufacturers' recommendations. Specimens with no surface treatment were used as control (C). New composite resin (Z250) was added to the substrate using 2 mm layer increments and light cured. The specimens were either water stored for 48 h or water stored for 24 h and then thermocycled for 6000 cycles. The shear bond strengths were measured with a crosshead speed of 1.0 mm/min using a universal testing machine. Data were analysed by two-way ANOVA and Tukey's post-hoc tests (p=0.05). All surface treatment methods showed significant difference compared to control (p<0.05). CF showed higher bond strength than CC and MP (p<0.05). Storage condition did not show a significant difference (p>0.05) in bond strength values. It was concluded that multi-step adhesion primer yielded higher bond strength compared to one-step primer or intermediate resin.

  10. Mechanical Loading during Growth Is Associated with Plane-specific Differences in Vertebral Geometry: A Cross-sectional Analysis Comparing Artistic Gymnasts vs. Non-gymnasts

    PubMed Central

    Dowthwaite, Jodi N.; Rosenbaum, Paula F.; Scerpella, Tamara A.

    2011-01-01

    Lumbar spine geometry, density and indices of bone strength were assessed relative to menarche status, using artistic gymnastics exposure during growth as a model of mechanical loading. Paired posteroanterior (PA) and supine lateral (LAT) DXA scans of L3 for 114 females (60 ex/gymnasts and 54 non-gymnasts) yielded output for comparison of paired (PALAT) versus standard PA and LAT outcomes. BMC, areal BMD, vertebral body dimensions, bone mineral apparent density (BMAD), axial compressive strength (IBS) and a fracture risk index were evaluated, modeling vertebral body geometry as an ellipsoid cylinder. Two-factor ANCOVA tested statistical effects of gymnastic exposure, menarche status and their interaction, adjusting for age and height as appropriate. Compared to non-gymnasts, ex/gymnasts exhibited greater PABMD, PABMC, PAWIDTH, PA CROSS-SECTIONAL AREA (CSA), PAVOLUME, LATBMD, LATBMAD, PALATCSA and PALATIBS (p<0.05). Non-gymnasts exhibited greater LATDEPTH/PAWIDTH, LATBMC/PABMC, LATVHEIGHT, LATAREA and Fracture Risk Index. Using ellipsoid vertebral geometric models, no significant differences were detected for PA or PALAT BMAD. In contrast, cuboid model results (Carter 1992) suggested erroneous ex/gymnast PABMAD advantages, resulting from invalid assumptions of proportional variation in linear skeletal dimensions. Gymnastic exposure was associated with shorter, wider vertebral bodies, yielding greater axial compressive strength and lower fracture risk, despite no BMAD advantage. Our results suggest the importance of plane-specific vertebral geometric adaptation to mechanical loading during growth. Paired scan output provides a more accurate assessment of this adaptation than PA or LAT plane scans alone. PMID:21839871

  11. Microstructural Evolution and Mechanical Properties of Simulated Heat-Affected Zones in Cast Precipitation-Hardened Stainless Steels 17-4 and 13-8+Mo

    NASA Astrophysics Data System (ADS)

    Hamlin, Robert J.; DuPont, John N.

    2017-01-01

    Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates, which was supported by the MatCalc modeling results. MatCalc modeling results for samples in the S-W-A condition predicted uniform size of precipitates across all regions of the HAZ, and these predictions were supported by the observed trends in mechanical properties. Cross-weld tensile tests performed on GMA welds showed the same trends in mechanical behavior as the simulated HAZ samples. Welding in the S-W-A condition resulted in over 90 pct retention in yield strength when compared to base metal strengths. These findings indicate that welding these PH stainless steels in the solution-treated condition and using a postweld age will provide better and more uniform mechanical properties in the HAZ that are more consistent with the base metal properties.

  12. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  13. CT-derived indices of canine osteosarcoma-affected antebrachial strength.

    PubMed

    Garcia, Tanya C; Steffey, Michele A; Zwingenberger, Allison L; Daniel, Leticia; Stover, Susan M

    2017-05-01

    To improve the prediction of fractures in dogs with bone tumors of the distal radius by identifying computed tomography (CT) indices that correlate with antebrachial bone strength and fracture location. Prospective experimental study. Dogs with antebrachial osteosarcoma (n = 10), and normal cadaver bones (n=9). Antebrachia were imaged with quantitative CT prior to biomechanical testing to failure. CT indices of structural properties were compared to yield force and maximum force using Pearson correlation tests. Straight beam failure (Fs), axial rigidity, curved beam failure (Fc), and craniocaudal bending moment of inertia (MOICrCd) CT indices most highly correlated (0.77 > R > 0.57) with yield and maximum forces when iOSA-affected and control bones were included in the analysis. Considering only OSA-affected bones, Fs, Fc, and axial rigidity correlated highly (0.85 > R > 0.80) with maximum force. In affected bones, the location of minimum axial rigidity and maximum MOICrCd correlated highly (R > 0.85) with the actual fracture location. CT-derived axial rigidity, Fs, and MOICrCd have strong linear relationships with yield and maximum force. These indices should be further evaluated prospectively in OSA-affected dogs that do, and do not, experience pathologic fracture. © 2017 The American College of Veterinary Surgeons.

  14. Investigation of specimen size effects by in-situ microcompression of equal channel angular pressed copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, C.; Frazer, D.; Lupinacci, A.

    Here, micropillar compression testing was implemented on Equal Channel Angular Pressed copper samples ranging from 200 nm to 10 µm in side length in order to measure the mechanical properties yield strength, first load drop during plastic deformation at which there was a subsequent stress decrease with increasing strain, work hardening, and strain hardening exponent. Several micropillars containing multiple grains were investigated in a 200 nm grain sample. The effective pillar diameter to grain size ratios, D/d, were measured to be between 1.9 and 27.2. Specimens having D/d ratios between 0.2 and 5 were investigated in a second sample thatmore » was annealed at 200 °C for 2 h with an average grain size of 1.3 µm. No yield strength or elastic modulus size effects were observed in specimens in the 200 nm grain size sample. However work hardening increases with a decrease in critical ratios and first stress drops occur at much lower stresses for specimens with D/d ratios less than 5. For comparison, bulk tensile testing of both samples was performed, and the yield strength values of all micropillar compression tests for the 200 nm grained sample are in good agreement with the yield strength values of the tensile tests.« less

  15. Investigation of specimen size effects by in-situ microcompression of equal channel angular pressed copper

    DOE PAGES

    Howard, C.; Frazer, D.; Lupinacci, A.; ...

    2015-09-30

    Here, micropillar compression testing was implemented on Equal Channel Angular Pressed copper samples ranging from 200 nm to 10 µm in side length in order to measure the mechanical properties yield strength, first load drop during plastic deformation at which there was a subsequent stress decrease with increasing strain, work hardening, and strain hardening exponent. Several micropillars containing multiple grains were investigated in a 200 nm grain sample. The effective pillar diameter to grain size ratios, D/d, were measured to be between 1.9 and 27.2. Specimens having D/d ratios between 0.2 and 5 were investigated in a second sample thatmore » was annealed at 200 °C for 2 h with an average grain size of 1.3 µm. No yield strength or elastic modulus size effects were observed in specimens in the 200 nm grain size sample. However work hardening increases with a decrease in critical ratios and first stress drops occur at much lower stresses for specimens with D/d ratios less than 5. For comparison, bulk tensile testing of both samples was performed, and the yield strength values of all micropillar compression tests for the 200 nm grained sample are in good agreement with the yield strength values of the tensile tests.« less

  16. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    NASA Astrophysics Data System (ADS)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  17. Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete

    PubMed Central

    Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying

    2016-01-01

    This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor (C) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results. PMID:28773402

  18. Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete.

    PubMed

    Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying

    2016-04-08

    This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor ( C ) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results.

  19. Examining Mechanical Strength Characteristics of Selective Inhibition Sintered HDPE Specimens Using RSM and Desirability Approach

    NASA Astrophysics Data System (ADS)

    Rajamani, D.; Esakki, Balasubramanian

    2017-09-01

    Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.

  20. Spall fracture in aluminium alloy at high strain rates

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Spall fracture strength and dynamic yield strength has been measured in 8mm thick target plates of aluminium alloy Al2024-T4 at high strain rates generated in three plate impact experiments carried out at impact velocities of 180 m/s, 370 m/s and 560m/s, respectively, using single stage gas gun facility. In each experiment, the free surface velocity history of the Al2024-T4 sample plate measured employing velocity interferometer system for any reflector (VISAR) is used to determine the spall strength and dynamic yield strength of this material. The spall strength of 1.11 GPa, 1.16 GPa and 1.43 GPa, determined from measured free surface velocity history of sample material in three experiments performed at impact velocity of 180 m/s, 370 m/s and 560 m/s, respectively, are higher than the quasi static value of 0.469 GPa and display almost linearly increasing trend with increasing impact velocity or equivalently with increasing strain rates. The average strain rates just ahead of the spall fracture are determined to be 1.9×10 4/s, 2.0×104/s and 2.5×104/s, respectively. The dynamic yield strength determined in the three experiments range from 0.383 GPa to 0.407 GPa, which is higher than the quasi static value of 0.324GPa.

  1. Enhancement of Strength and Ductility of Mg96Zn2Y2 Rolled Sheet by Controlling Structure and Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Noda, Masafumi; Kawamura, Yoshihito; Sakurai, Hiroshi; Funami, Kunio

    Mg-Zn-Y alloys are well known to possess greatly enhanced strength during plastic deformation because of the presence of kink bands in the LPSO phase and refinement of the grains of the alpha Mg phase. On the other hand, Mg-rare earth (RE) and Mg-Zn-RE alloys with a long period stacking order (LPSO) phase show a high tensile yield strength when subjected to an extrusion process but it is not known whether the LPSO and alpha Mg phases develop during plastic deformation. We examined the effect of the finely dispersed LPSO phase and the alpha Mg phase on the development of high strength in sheets of Mg96Zn2Y2 subjected to a few passes of rolling. The mechanical properties and thermal stability of the alloy were also investigated. The tensile yield strength of rolled sheets of Mg96Zn2Y2 was 360 MPa and its elongation was 5% when the material was subjected to thermomechanically controlled processing at 673 K with a four-pass rolling schedule. However, the tensile yield strength decreased and the elongation increased at annealing temperature of 623 K or above, because of the presence of grain growth in the alpha Mg phase and the restoration of kink bands in the LPSO phase.

  2. Effect of Cryorolling and Aging on Fatigue Behavior of Ultrafine-grained Al6061

    NASA Astrophysics Data System (ADS)

    Yadollahpour, M.; Hosseini-Toudeshky, H.; Karimzadeh, F.

    2016-05-01

    The effects of cryorolling (rolling at liquid nitrogen temperature) and heat treatment on tensile and high-cycle fatigue properties and fatigue crack growth rate of Al6061 alloy have been investigated in the present work. First, the solid solution-treated bulk Al6061 alloy was subjected to cryorolling with 90% total thickness reduction and subsequent short annealing at 205°C for 5 min and peak aging at 148°C for 39 h to achieve grain refinement and simultaneous improvement of the strength and ductility. Then, hardness measurements, tensile tests, fatigue life, and fatigue crack growth rate tests including fractography analyses using scanning electron microscopy were performed on bulk Al6061 alloy, cryorolled (CR), and cryorolled material followed by peak aging (PA). The PA specimen showed improved yield strength by 24%, ultimate tensile strength by 20%, and ductility by 12% as compared with the bulk Al6061 alloy. It is shown that the fatigue strength of both CR and PA specimens under a high-cycle fatigue regime are larger than that of the bulk Al6061 alloy. Also, fatigue crack growth rates of the CR and PA specimens show significant enhancement in fatigue crack growth resistances as compared with the bulk Al6061 alloy, as a result of grain refinement.

  3. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + <100> fiber texture, similar to rolled product, in the Skin regions and alpha <111> + <100> fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  4. An evaluation of the benefits of utilizing rapid solidification for development of 2XXX (Al-Cu-Mg) alloys

    NASA Technical Reports Server (NTRS)

    Paris, H. G.; Chellman, D. J.

    1986-01-01

    The advantages of rapid solidification processing over ingot metallurgy processing in the development of 2XXX aluminum alloy compositions were evaluated using a similarly processed ingot metallurgy (IM) control alloy. The powder metallurgy (PM) alloy extrusions showed a reduced age-hardening response in comparison with similar IM compositions, with higher tensile properties for naturally aged extrusions but lower properties for artificially aged ones. However, the tensile properties of naturally and artificially aged PM alloy extrusions based on a version of IM 2034 alloy, but containing 0.6 weight percent zirconium, were comparable to those of the IM control extrusions and had significantly superior combinations of strength and toughness. The tensile properties of this PM alloy showed even greater advantage in 6.4-mm (0.25-in.) and 1.8-mm (0.070-in.) plate and sheet, the yield strength being about 68 MPa (10 ksi) greater than reported values for the IM 2034 alloy sheet. An artificially aged PM alloy based on 2219 alloy also showed a strength and strength-toughness combination comparable to those of the PM Al-Cu-Mg-Zr alloy, substantially outperforming the IM 2219 alloy. These results show that rapid solidification offers the flexibility needed to modify conventional IM compositions to produce new alloy compositions with superior mechanical properties.

  5. Synthesis of an Al-Mn-Based Alloy Containing In Situ-Formed Quasicrystals and Evaluation of Its Mechanical and Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Naglič, Iztok; Samardžija, Zoran; Delijić, Kemal; Kobe, Spomenka; Leskovar, Blaž; Markoli, Boštjan

    2018-05-01

    An Al-Mn alloy with additions of copper, magnesium, and silicon was prepared and cast into a copper mold. It contains in situ-formed icosahedral quasicrystals (iQCs), as confirmed by electron backscatter diffraction. The aim of this work is to present the mechanical and corrosion properties of this alloy and compare its properties with some conventional commercial materials. The compressive strength and compressive yield strength were 751 MPa and 377 MPa, while the compressive fracture strain was 19%. It was observed that intensive shearing caused the final fracture of the specimens and the fractured iQC dendrites still showed cohesion with the α-Al matrix. The polarization resistance and corrosion rate of the artificially aged alloy were 7.30 kΩ and 1.2 μm/year. The evaluated properties are comparable to conventional, discontinuously reinforced aluminum metal-matrix composites and structural wrought aluminum alloys.

  6. How Judgments Change Following Comparison of Current and Prior Information

    PubMed Central

    Albarracin, Dolores; Wallace, Harry M.; Hart, William; Brown, Rick D.

    2013-01-01

    Although much observed judgment change is superficial and occurs without considering prior information, other forms of change also occur. Comparison between prior and new information about an issue may trigger change by influencing either or both the perceived strength and direction of the new information. In four experiments, participants formed and reported initial judgments of a policy based on favorable written information about it. Later, these participants read a second passage containing strong favorable or unfavorable information on the policy. Compared to control conditions, subtle and direct prompts to compare the initial and new information led to more judgment change in the direction of a second passage perceived to be strong. Mediation analyses indicated that comparison yielded greater perceived strength of the second passage, which in turn correlated positively with judgment change. Moreover, self-reports of comparison mediated the judgment change resulting from comparison prompts. PMID:23599557

  7. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-11

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 {mu}m size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely gamma-Methacryloxypropyltrimethoxysilanemore » (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.« less

  8. Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1

    NASA Astrophysics Data System (ADS)

    Li, Y.; Huang, Q.; Wu, Y.; Nagasaka, T.; Muroga, T.

    2007-08-01

    The tensile and impact properties of CLAM steel are compared to those of JLF-1 steel. Tensile testing revealed that the ultimate and yield strengths of the CLAM steel are 670 MPa and 512 MPa at room temperature, and 373 MPa and 327 MPa at 873 K, respectively. These values are higher than those measured for JLF-1. The ductile-to-brittle transition temperature (DBTT) of CLAM was found to be 171 K using one-third size Charpy V-notch specimens, which is 16 K lower than that of JLF-1. Microstructural analysis by SEM and TEM indicated that the prior austenite grain size and lath width for CLAM are smaller than those for JLF-1. The finer grain and lath structure is considered to be one of the main reasons for the higher strength and lower DBTT of the CLAM steel.

  9. Flat growth of 7075, 7475, 7050 and 7049 aluminum alloy plate in stress corrosion environments: 2-year marine atmosphere results

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1978-01-01

    Marine atmospheric exposure of smooth and precracked specimens from 7075, 7475, 7050 and 7049 plates support the conclusion that for a given strength level, the short transverse stress corrosion resistance of 7050-T7X and 7049-T7X is superior to that of 7075-T7X. The threshold stress intensity (K sub Iscc) for these alloys is about 25 MPa square root m at a yield strength of about 460 MPa; the corresponding yield strength level for 7075-T7X at this SCR level is about 425 MPa. Additional tests on two lots of high-toughness 7475 plate indicate that this alloy is capable of achieving K sub Iscc values of about 35 MPa square root m at yield strengths of 400-450 MPa. Precracked specimens from all these 7XXX-series alloys are subject to self loading from corrosion product wedging. This effect causes stress corrosion cracks to continue growing at very low apparent stress intensities, and should therefore be considered a potential driving force for stress corrosion in design and materials selection.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plucknett, K.P.; Becher, P.F.; Waters, S.B.

    TiC/Ni{sub 3}Al composites were prepared using a simple melt-infiltration process, performed at either 1300 or 1400 C, with the Ni{sub 3}Al content varied over the range of 8--25 vol%. Densities >96% of theoretical were obtained for all composites. Four-point flexure strengths at 22 C increased as the Ni{sub 3}Al content increased (i.e., {approximately}1,100 MPa at 20 vol% Ni{sub 3}Al), with the highest strengths being observed for composites processed at 1300 C, because of reduced TiC grain size. Strengths at elevated temperatures increased with test temperature, up to {approximately}1,000 C. As with the yielding behavior of the Ni{sub 3}Al alloy used,more » a maximum in composite strength ({approximately}1,350 MPa) versus temperature was observed; this occurred at 950 C, which is {approximately}300 C above the yield maximum for the alloy. Extensive plastic strain was achieved in the composites even at high loading rates at 1,135 C, and the yield stress was dependent on the applied loading rate.« less

  11. Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics.

    PubMed

    Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo

    2012-10-01

    This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P < 0.05), whereas the PLB and CPB + Activator groups had the highest pre- and post-thermocycling bond strengths in ZR-PO-AB and ZR-PO-HF specimens. Among CON disks without opaque material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P < 0.05). Feldspathic porcelain coating of a Katana zirconia framework enhanced the bond strength of Estenia C&B indirect composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.

  12. Use of Niobium High Strength Steels with 450 MPA Yield Strength for Construction

    NASA Astrophysics Data System (ADS)

    Silvestre, Leonardo; Langenberg, Peter; Amaral, Thiago; Carboni, Marcelo; Meira, Marcos; Jordão, Alexandre

    This paper presents an actual case of a new industrial building at CBMM's plant in Araxá, Brazil as an example of lean design using microalloyed steels. The structure consists mostly of microalloyed ASTM A572 steel grades 65 and 50 instead of the conventional carbon manganese ASTM A36 steel. The application of grade 65 with more than 450 MPa of yield strength is an innovative solution for this type of construction in South America. A complete welding evaluation performed on the low carbon, niobium microalloyed grade 65 steel showed the welding properties and benefits. Niobium's effect of increasing strength and toughness simultaneously resulted in relevant savings in total steel consumption for the project. The paper also quantifies the expected savings in costs, energy and carbon dioxide emissions.

  13. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    PubMed

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  14. Cold-Worked Inconel(R) 718 Bars

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1988-01-01

    Cold working and double aging yield high strength without sacrifice of resistance to corrosion. Report presents data on mechanical properties and stress-corrosion resistance of triple-melted, solution-treated, work-strengthened, direct-double-aged Inconel(R) 718 alloy. Triple melting consists of vacuum induction melting, electro-slag remelting, and vacuum arm remelting. Data indicate advance in processing of large-diameter bars. New process increases yield strength without reducing the elongation, reduction of area, and grain size.

  15. Development of Low-Carbon, Copper-Strengthened HSLA Steel Plate for Naval Ship Construction

    DTIC Science & Technology

    1990-06-01

    steel plate microstructures, 2% nital etch . ...................................................... 13 2. Charpy V-notch impact energy transition for...met a minimum yield strength requirement of 80 ksi yield strength through 3/4 inch gage, had high Charpy V-notch impact energy at low tempera- tures...tempered HSLA line-pipe steels, which typically could not meet the minimum Charpy V-notch impact toughness requirement of 35 ft-lb at -1 200 F. In 1984

  16. Toughening of Epoxies: Novel Self-Assembling Block Copolymers Versus Traditional Telechelic Oligomers

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    Epoxy resins are commonly utilized because of their adhesive capacity and high strength. However, epoxies are inherently brittle; so much research has been dedicated to improving their fracture toughness. This study will focus on a comparing a traditional telechelic oligomer, CTBN, and a novel self-assembling block copolymer, SBM, as it relates to improving the fracture toughness of a lightly crosslinked epoxy system. After characterizing the modified systems for fracture toughness, mechanical and thermal properties, namely yield stress and the glass transition, will be determined in order to discern the impact these modifiers have on the overall properties of the blend. TEM, SEM and TOM techniques will be utilized for characterizing morphology, fractography and subsurface damage, respectively. Once this was accomplished, it was deduced that the toughening mechanisms of CTBN and SBM-modified epoxies are very similar. The main difference between the two is that the inherent structure of SBM allows the SBM-modified epoxy to retain its compressive yield strength. This, consequently, makes SBM ideal for thin bondline applications in the industrial adhesive and/or electronics industry.

  17. On the Yield Strength of Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Jain, C.; Korenaga, J.; Karato, S. I.

    2017-12-01

    The origin of plate tectonic convection on Earth is intrinsically linked to the reduction in the strength of oceanic lithosphere at plate boundaries. A few mechanisms, such as deep thermal cracking [Korenaga, 2007] and strain localization due to grain-size reduction [e.g., Ricard and Bercovici, 2009], have been proposed to explain this reduction in lithospheric strength, but the significance of these mechanisms can be assessed only if we have accurate estimates on the strength of the undamaged oceanic lithosphere. The Peierls mechanism is likely to govern the rheology of old oceanic lithosphere [Kohlstedt et al., 1995], but the flow-law parameters for the Peierls mechanism suggested by previous studies do not agree with each other. We thus reanalyze the relevant experimental deformation data of olivine aggregates using Markov chain Monte Carlo inversion, which can handle the highly nonlinear constitutive equation of the Peierls mechanism [Korenaga and Karato, 2008; Mullet et al., 2015]. Our inversion results indicate nontrivial nonuniqueness in every flow-law parameter for the Peierls mechanism. Moreover, the resultant flow laws, all of which are consistent with the same experimental data, predict substantially different yield stresses under lithospheric conditions and could therefore have different implications for the origin of plate tectonics. We discuss some future directions to improve our constraints on lithospheric yield strength.

  18. Effect of yield curves and porous crush on hydrocode simulations of asteroid airburst

    NASA Astrophysics Data System (ADS)

    Robertson, D. K.; Mathias, D. L.

    2017-03-01

    Simulations of asteroid airburst are being conducted to obtain best estimates of damage areas and assess sensitivity to variables for asteroid characterization and mitigation efforts. The simulations presented here employed the ALE3D hydrocode to examine the breakup and energy deposition of asteroids entering the Earth's atmosphere, using the Chelyabinsk meteor as a test case. This paper examines the effect of increasingly complex material models on the energy deposition profile. Modeling the meteor as a rock having a single strength can reproduce airburst altitude and energy deposition reasonably well but is not representative of real rock masses (large bodies of material). Accounting for a yield curve that includes different tensile, shear, and compressive strengths shows that shear strength determines the burst altitude. Including yield curves and compaction of porous spaces in the material changes the detailed mechanics of the breakup but only has a limited effect on the burst altitude and energy deposition. Strong asteroids fail and create peak energy deposition close to the altitude at which ram dynamic pressure equals the material strength. Weak asteroids, even though they structurally fail at high altitude, require the increased pressure at lower altitude to disrupt and disperse the rubble. As a result, a wide range of weaker asteroid strengths produce peak energy deposition at a similar altitude.

  19. Strength enhancement process for prealloyed powder superalloys

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Freche, J. C.

    1977-01-01

    A technique involving superplastic processing and high pressure autoclaving was applied to a nickel base prealloyed powder alloy. Tensile strengths as high as 2865 MN/sq m at 480 C were obtained with as-superplastically deformed material. Appropriate treatments yielding materials with high temperature tensile and stress rupture strengths were also devised.

  20. Quantifying the mechanical effects of He, W and He + W ion irradiation on tungsten with spherical nanoindentation

    DOE PAGES

    Weaver, Jordan S.; Sun, Cheng; Wang, Yongqiang; ...

    2017-12-19

    Here, recent advances in spherical nanoindentation protocols have proven very useful for capturing the grain-scale mechanical response of different metals. This is achieved by converting the load–displacement response into an effective indentation stress–strain response which reveals latent information such as the elastic–plastic transition or indentation yield strength and work-hardening behavior and subsequently correlating the response with the material structure (e.g., crystal orientation) at the indentation site. Using these protocols, we systematically study and quantify the microscale mechanical effects of He, W, and He + W ion irradiation on commercially pure, polycrystalline tungsten. The indentation stress–strain response is correlated with themore » crystal orientation from electron backscatter diffraction, the defect structure from transmission electron microscopy micrographs, and the stopping range of ions in matter calculations of displacement damage and He concentration. He-implanted grains show a much higher indentation yield strength and saturation stress compared to W-ion-irradiated grains for the same displacement damage. There is also good agreement between the dispersed barrier hardening model with a barrier strength of 0.5–0.8 and void models (Bacon–Kochs–Scattergood and Osetsky–Bacon models) with the experimentally observed changes in indentation strength due to the presence of He bubbles. This finding indicates that a high density (~ 9 × 10 23 m –3) and concentration (~ 1.5 at.%) of small (~ 1 nm diameter) He bubbles can be moderate to strong barriers to dislocation slip in tungsten.« less

  1. Quantifying the mechanical effects of He, W and He + W ion irradiation on tungsten with spherical nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Sun, Cheng; Wang, Yongqiang

    Here, recent advances in spherical nanoindentation protocols have proven very useful for capturing the grain-scale mechanical response of different metals. This is achieved by converting the load–displacement response into an effective indentation stress–strain response which reveals latent information such as the elastic–plastic transition or indentation yield strength and work-hardening behavior and subsequently correlating the response with the material structure (e.g., crystal orientation) at the indentation site. Using these protocols, we systematically study and quantify the microscale mechanical effects of He, W, and He + W ion irradiation on commercially pure, polycrystalline tungsten. The indentation stress–strain response is correlated with themore » crystal orientation from electron backscatter diffraction, the defect structure from transmission electron microscopy micrographs, and the stopping range of ions in matter calculations of displacement damage and He concentration. He-implanted grains show a much higher indentation yield strength and saturation stress compared to W-ion-irradiated grains for the same displacement damage. There is also good agreement between the dispersed barrier hardening model with a barrier strength of 0.5–0.8 and void models (Bacon–Kochs–Scattergood and Osetsky–Bacon models) with the experimentally observed changes in indentation strength due to the presence of He bubbles. This finding indicates that a high density (~ 9 × 10 23 m –3) and concentration (~ 1.5 at.%) of small (~ 1 nm diameter) He bubbles can be moderate to strong barriers to dislocation slip in tungsten.« less

  2. Flowability parameters for chopped switchgrass, wheat straw and corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.

    2009-02-01

    A direct shear cell to measure the shear strength and flow properties of chopped switchgrass, wheat straw, and corn stover was designed, fabricated, and tested. Yield loci (r2=0.99) determined at pre-consolidation pressures of 3.80 kPa and 5.02 kPa indicated that chopped biomass followed Mohr-Coulomb failure. Normal stress significantly affected the displacement required for shear failure, as well as the friction coefficient values for all three chopped biomass types. Displacement at shear failure ranged from 30 to 80 mm, and depended on pre-consolidation pressure, normal stress, and particle size. Friction coefficient was inversely related to normal stress, and was highest formore » chopped corn stover. Also, chopped corn stover exhibited the highest angle of internal friction, unconfined yield strength, major consolidation strength, and cohesive strength, all of which indicated increased challenges in handling chopped corn stover. The measured angle of internal friction and cohesive strength indicated that chopped biomass cannot be handled by gravity alone. The measured angle of internal friction and cohesive strength were 43 and 0.75 kPa for chopped switchgrass; 44 and 0.49 kPa for chopped wheat straw; and 48 and 0.82 kPa for chopped corn stover. Unconfined yield strength and major consolidation strength used for characterization of bulk flow materials and design of hopper dimensions were 3.4 and 10.4 kPa for chopped switchgrass; 2.3 and 9.6 kPa for chopped wheat straw and 4.2 and 11.8 kPa for chopped corn stover. These results are useful for development of efficient handling, storage, and transportation systems for biomass in biorefineries.« less

  3. Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum).

    PubMed

    Lu, Quanwei; Shi, Yuzhen; Xiao, Xianghui; Li, Pengtao; Gong, Juwu; Gong, Wankui; Liu, Aiying; Shang, Haihong; Li, Junwen; Ge, Qun; Song, Weiwu; Li, Shaoqi; Zhang, Zhen; Rashid, Md Harun Or; Peng, Renhai; Yuan, Youlu; Huang, Jinling

    2017-10-05

    As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton ( Gossypium hirsutum ) crossed with high-quality Sea Island cotton ( G. barbadense ). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase ( MNS1 )], XLOC_029945 ( FLA8 ), and XLOC_075372 ( snakin-1 ), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding. Copyright © 2017 Lu et al.

  4. Using Qualitative Comparative Analysis (QCA) of Key Informant Interviews in Health Services Research: Enhancing a Study of Adjuvant Therapy Use in Breast Cancer Care

    PubMed Central

    McAlearney, Ann Scheck; Walker, Daniel; Moss, Alexandra DeNardis; Bickell, Nina A.

    2015-01-01

    Background Qualitative Comparative Analysis (QCA) is a methodology created to address causal complexity in social sciences research by preserving the objectivity of quantitative data analysis without losing detail inherent in qualitative research. However, its use in health services research (HSR) is limited, and questions remain about its application in this context. Objective To explore the strengths and weaknesses of using QCA for HSR. Research Design Using data from semi-structured interviews conducted as part of a multiple case study about adjuvant treatment underuse among underserved breast cancer patients, findings were compared using qualitative approaches with and without QCA to identify strengths, challenges, and opportunities presented by QCA. Subjects Ninety administrative and clinical key informants interviewed across ten NYC area safety net hospitals. Measures Transcribed interviews were coded by three investigators using an iterative and interactive approach. Codes were calibrated for QCA, as well as examined using qualitative analysis without QCA. Results Relative to traditional qualitative analysis, QCA strengths include: (1) addressing causal complexity, (2) results presentation as pathways as opposed to a list, (3) identification of necessary conditions, (4) the option of fuzzy-set calibrations, and (5) QCA-specific parameters of fit that allow researchers to compare outcome pathways. Weaknesses include: (1) few guidelines and examples exist for calibrating interview data, (2) not designed to create predictive models, and (3) unidirectionality. Conclusions Through its presentation of results as pathways, QCA can highlight factors most important for production of an outcome. This strength can yield unique benefits for HSR not available through other methods. PMID:26908085

  5. Using Qualitative Comparative Analysis of Key Informant Interviews in Health Services Research: Enhancing a Study of Adjuvant Therapy Use in Breast Cancer Care.

    PubMed

    McAlearney, Ann Scheck; Walker, Daniel; Moss, Alexandra D; Bickell, Nina A

    2016-04-01

    Qualitative comparative analysis (QCA) is a methodology created to address causal complexity in social sciences research by preserving the objectivity of quantitative data analysis without losing detail inherent in qualitative research. However, its use in health services research (HSR) is limited, and questions remain about its application in this context. To explore the strengths and weaknesses of using QCA for HSR. Using data from semistructured interviews conducted as part of a multiple case study about adjuvant treatment underuse among underserved breast cancer patients, findings were compared using qualitative approaches with and without QCA to identify strengths, challenges, and opportunities presented by QCA. Ninety administrative and clinical key informants interviewed across 10 NYC area safety net hospitals. Transcribed interviews were coded by 3 investigators using an iterative and interactive approach. Codes were calibrated for QCA, as well as examined using qualitative analysis without QCA. Relative to traditional qualitative analysis, QCA strengths include: (1) addressing causal complexity, (2) results presentation as pathways as opposed to a list, (3) identification of necessary conditions, (4) the option of fuzzy-set calibrations, and (5) QCA-specific parameters of fit that allow researchers to compare outcome pathways. Weaknesses include: (1) few guidelines and examples exist for calibrating interview data, (2) not designed to create predictive models, and (3) unidirectionality. Through its presentation of results as pathways, QCA can highlight factors most important for production of an outcome. This strength can yield unique benefits for HSR not available through other methods.

  6. Comparison of the Effect of two Denture Cleansers on Tensile bond Strength of a Denture Liner.

    PubMed

    Farzin, M; Bahrani, F; Adelpour, E

    2013-09-01

    One of the most clinical challenging issues in prosthodontics is debonding of soft liners from the denture base. The aim of this study was to evaluate and compare tensile bond strength between soft liner and heat-cured acrylic resin when immersed in two different types of denture cleanser and distilled water, at different period of times. In this experimental in vivo study, 238 heat-cured acrylic blocks were made. A soft liner was embedded between the acrylic blocks. Samples were divided into four groups: 17 samples were in the control group and were not soaked in any solution .The remaining samples were divided into 3 groups (Distilled water, Calgon and Fittydent). Each group was then subdivided into two subcategories, regarding the immersion time variable; 15 and 45 minutes. All samples were placed in tension force and tensile bond strength was recorded with the testing machine. One- way ANOVA and Tucky HSD post-hoc test were adopted to analyze the yielded data (α> 0.05). Specimens which were immersed in two denture cleansers (Fittydent and Calgon) and in distilled water showed significant difference (p= 0.001) in bonding strength when compared to the control group. The subjects immersed in denture cleanser solutions and distilled water did not reveal any significant difference (p= 0.90). For all groups; most of the bonding failures (72%) were cohesive type. The effect of the denture cleansers and distilled water on the bond strength was not statistically different; however, the difference was significant between the immersed groups with the non-immersed group. Moreover, type of the denture cleanser did not show any effect on the tensile strength. The tensile strength increases with time of immersion.

  7. Robustness of radiomic breast features of benign lesions and luminal A cancers across MR magnet strengths

    NASA Astrophysics Data System (ADS)

    Whitney, Heather M.; Drukker, Karen; Edwards, Alexandra; Papaioannou, John; Giger, Maryellen L.

    2018-02-01

    Radiomics features extracted from breast lesion images have shown potential in diagnosis and prognosis of breast cancer. As clinical institutions transition from 1.5 T to 3.0 T magnetic resonance imaging (MRI), it is helpful to identify robust features across these field strengths. In this study, dynamic contrast-enhanced MR images were acquired retrospectively under IRB/HIPAA compliance, yielding 738 cases: 241 and 124 benign lesions imaged at 1.5 T and 3.0 T and 231 and 142 luminal A cancers imaged at 1.5 T and 3.0 T, respectively. Lesions were segmented using a fuzzy C-means method. Extracted radiomic values for each group of lesions by cancer status and field strength of acquisition were compared using a Kolmogorov-Smirnov test for the null hypothesis that two groups being compared came from the same distribution, with p-values being corrected for multiple comparisons by the Holm-Bonferroni method. Two shape features, one texture feature, and three enhancement variance kinetics features were found to be potentially robust. All potentially robust features had areas under the receiver operating characteristic curve (AUC) statistically greater than 0.5 in the task of distinguishing between lesion types (range of means 0.57-0.78). The significant difference in voxel size between field strength of acquisition limits the ability to affirm more features as robust or not robust according to field strength alone, and inhomogeneities in static field strength and radiofrequency field could also have affected the assessment of kinetic curve features as robust or not. Vendor-specific image scaling could have also been a factor. These findings will contribute to the development of radiomic signatures that use features identified as robust across field strength.

  8. Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States.

    PubMed

    Kniss, Andrew R; Savage, Steven D; Jabbour, Randa

    2016-01-01

    Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 67% of conventional yield [corrected]. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap.

  9. Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States

    PubMed Central

    Savage, Steven D.; Jabbour, Randa

    2016-01-01

    Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 80% of conventional yield. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap. PMID:27552217

  10. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  11. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin.

    PubMed

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; Moraes, Rafael Ratto de

    2017-01-01

    This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup.

  12. Yield strength of Cu and an engineered material of Cu with 1% Pb

    NASA Astrophysics Data System (ADS)

    Buttler, William; Gray, George, III; Fensin, Saryu; Grover, Mike; Stevens, Gerald; Stone, Joseph; Turley, William

    2015-06-01

    To study the effects of engineered elastic-plastic yield on the mass-ejection from shocked materials we fielded explosively driven Cu and CuPb experiments. The Cu and CuPb experiments fielded fully annealed disks in contact with PBX 9501; the CuPb was extruded with 1% Pb that aggregates at the Cu grain boundaries. The elastic-plastic yield strength is explored as a difference of ejecta production of CuPb versus Cu, where the ejecta production of solid materials ties directly to the surface perturbation geometries of wavelengths (fixed at 65 μm) and amplitudes (which were varied). We observed that the Cu performs as expected, with ejecta turning on at the previously observed yield threshold, but the CuPb ejects mass in much larger quantities, at much lower wavenumber (k = 2 π/ λ) amplitude (h) products (kh), implying a reduced elastic-plastic yield stress of the engineered material, CuPb.

  13. Development of improved electroforming technique. [for fabricating regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Mccandles, L. C.; Davies, L. G.

    1973-01-01

    Techniques were studied to reinforce or strengthen electroformed nickel to allow a fuller utilization of electroforming as a reliable and low cost fabrication technique for regenerately cooled thrust chambers. Techniques for wire wrapping while electrodepositing were developed that can result in a structurally strong wall with less weight than a conventional electroformed wall. Also a technique of codepositing submicron sized THO2 particles with the nickel to form a dispersion strengthened structure was evaluated. The standard nickel cylinders exhibited an average hoop strength of 80,000 psi with a yield strength of 65,000 psi and a modulus of 25.6 x 10 to the 6th power psi. The as produced dispersion strengthened nickel showed a hoop strength of 97,000 psi with a yield strength of 67,000 psi. This is an increase of 17,000 psi or 21% over the standard nickel hoop strength. The wire wrapping cylinders showed an increased strength over the standard nickel test samples of 26,000 to 66,800 psi which is in the range of 26 to 104% increase in strength over the base standard nickel. These latter test results are indicative of a volume percent wire reinforcement from 15 to 31. The measured hoop strengths agree with calculated composite strengths based upon rule of mixtures.

  14. Mechanical Behavior of Commercially Pure Titanium Weldments at Lower Temperatures

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Xavier, X. Roshan

    2018-05-01

    Commercially pure titanium is used for low-temperature applications due to good toughness attributed to single-phase microstructure (α). Electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes have been used for welding two grades of commercially pure titanium (Grade 2 and Grade 4). Martensitic microstructure is found to be finer in the case of EBW joint as compared to GTAW joint due to faster rate of cooling in the former process. Weldments have been characterized to study the mechanical behavior at ambient (298 K) and cryogenic temperatures (20 and 77 K). Strength of weldments increases with the decrease in temperature, which is found to be more prominent in case of Grade 4 titanium as compared to Grade 2. Weld efficiency of Grade 4 is found to be higher at all the temperatures (ambient, 77 and 20 K). However, ultimate tensile strength/yield strength ratio is higher for Grade 2 as compared to Grade 4. % Elongation is found to increase/retained at cryogenic temperatures for Grade 2, and it is found to decrease for Grade 4. Electron backscattered diffraction analysis and transmission electron microscopy of deformed samples confirmed the presence of extensive twinning in Grade 2 and the presence of finer martensitic structure in Grade 4. Fractography analysis of tested specimens revealed the presence of cleavage facets in Grade 4 and dimples in specimens of Grade 2. Higher strength in Grade 4 is attributed to higher oxygen restricting the twin-assisted slip, which is otherwise prominent in Grade 2 titanium.

  15. Modeling of yield surface evolution in uniaxial and biaxial loading conditions using a prestrained large scale specimen

    NASA Astrophysics Data System (ADS)

    Zaman, Shakil Bin; Barlat, Frédéric; Kim, Jin Hwan

    2018-05-01

    Large-scale advanced high strength steel (AHSS) sheet specimens were deformed in uniaxial tension, using a novel grip system mounted on a MTS universal tension machine. After pre-strain, they were used as a pre-strained material to examine the anisotropic response in the biaxial tension tests with various load ratios, and orthogonal tension tests at 45° and 90° from the pre-strain axis. The flow curve and the instantaneous r-value of the pre-strained steel in each of the aforementioned uniaxial testing conditions were also measured and compared with those of the undeformed steel. Furthermore, an exhaustive analysis of the yield surface was also conducted and the results, prior and post-prestrain were represented and compared. The homogeneous anisotropic hardening (HAH) model [1] was employed to predict the behavior of the pre-strained material. It was found that the HAH-predicted flow curves after non-linear strain path change and the yield loci after uniaxial pre-strain were in good agreement with the experiments, while the r-value evolution after strain path change was qualitatively well predicted.

  16. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    PubMed

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiC p ) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiC p , which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  17. Evaluation of Sandwich Structure Bonding In Out-of-Autoclave Processing

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Baughman, James M.; Zimmerman, Thomas J.; Sutter, James K.; Gardner, John M.

    2010-01-01

    The out-of-autoclave-vacuum-bag-only (OOA-VBO) process is low in capital expenditures compared to the traditional autoclave, however, the material challenges for OOA-VBO workable material systems are high. Presently there are few such aerospace grade prepreg materials available commercially. In this study, we evaluated processing and properties of honeycomb sandwich structure (HC/SS) panels fabricated by co-curing composite face sheet with adhesives by the OOA-VBO process in an oven. The prepreg materials were IM7/MTM 45-1 and T40-800B/5320. Adhesives studied were AF-555M, XMTA-241/PM15, FM-309-1M and FM-300K. Aluminum H/C cores with and without perforations were included. It was found that adhesives in IM7/MTM 45-1/AF-555M, T40-800B/5320/FM 309-1M and T40-800B/5320/FM-300K panels all foamed but yielded high flatwise tensile (FWT) strength values above 8,275 kPA (1,200 psi). IM7/MTM 45-1/XMTA-241/PM15 did not foam, yet yielded a low FWT strength. SEM photomicrographs revealed that the origin of this low strength was poor adhesion in the interfaces between the adhesive and face sheet composite due to poor wetting associated with the high initial viscosity of the XMTA-241/PM15 adhesive.

  18. Polyimide Composites from 'Salt-Like' Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Hou, Tan H.; Weiser, Erik S.; SaintClair, Terry L.

    2001-01-01

    Four NASA Langley-developed polyimide matrix resins, LaRC(TM)-IA, LaRC(TM)-IAX, LaRC(TM)-8515 and LaRC(TM)-PETI-5, were produced via a 'saltlike' process developed by Unitika Ltd. The salt-like solutions (65% solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC multipurpose tape machine. Process parameters were determined and composite panels fabricated. The temperature dependent volatile depletion rates, the thermal crystallization behavior and the resin rheology were characterized. Composite molding cycles were developed which consistently yielded well consolidated, void-free laminated parts. Composite mechanical properties such as the short beam shear strength; the longitudinal and transverse flexural strength and flexural modulus; the longitudinal compression strength and modulus; and the open hole compression strength and compression after impact strength were measured at room temperature and elevated temperatures. The processing characteristics and the composite mechanical properties of the four intermediate modulus carbon fiber/polyimide matrix composites were compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (30-35% solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of the polyimide composites.

  19. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  20. Characteristics of epoxy resin/SiO2 nanocomposite insulation: effects of plasma surface treatment on the nanoparticles.

    PubMed

    Yan, Wei; Phung, B T; Han, Zhao Jun; Ostrikov, Kostya

    2013-05-01

    The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.

  1. Effect of thermally induced porosity on an as-HIP powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1979-01-01

    The impact of thermally induced porosity on the mechanical properties of an as-hot-isostatically-pressed and heat treated pressing made from low carbon Astroloy was determined. Porosity in the disk-shape pressing studied ranged from 2.6 percent at the bore to 1.4 percent at the rim. Tensile, yield strength, ductility, and rupture life of the rim of the porous pressing was only slightly inferior to the rim of sound pressings. The strength, ductility, and rupture life of the bore of the porous pressing was severely degraded compared to sound pressings. At strain ranges typical of commercial jet engine designs, the rim of the porous pressing had slightly inferior fatigue life to sound pressings.

  2. Effect of Heat Index on Microstructure and Mechanical Behavior of Friction Stir Processed AZ31

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Mishra, Rajiv S.

    Friction stir processing modifies the micro structure and properties of metals through intense plastic deformation. The frictional heat input affects the microstructure evolution and resulting mechanical properties. 2 mm thick commercial AZ31B-H24 Mg alloy was friction stir processed under various process parameter combinations to investigate the effect of heat index on micro structure and properties. Recrystallized grain structure in the nugget region was observed for all processing conditions with decrease in hardness. Results indicate a reduced tensile yield strength and ultimate tensile strength compared to the as-received material in H-temper, but with an improved hardening capacity. The strain hardening behavior of friction stir processed material is discussed.

  3. New Nano-Particle-Strengthened Ferritic/Martensitic Steels By Conventional Thermomechanical Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klueh, Ronald L; Hashimoto, Naoyuki; Maziasz, Philip J

    2007-01-01

    For increased fusion power plant efficiency, steels for operation at 650 C and higher are sought. Based on the science of precipitate strengthening, a thermo-mechanical treatment (TMT) was developed that increased the strength from room temperature to 700 C of commercial nitrogen-containing steels and new steels designed for the TMT. At 700 C increases in yield stress of 80 and 200% were observed for a commercial steel and a new steel, respectively, compared to commercial normalized-and-tempered steels. Creep-rupture strength was similarly improved. Depending on the TMT, precipitates were up to eight-times smaller at a number density four orders of magnitudemore » greater than those in a conventionally heat treated steel of similar composition.« less

  4. Fabrication of Carbon Nanofibers/A356 Nanocomposites by High-Intensity Ultrasonic Processing

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Jie; Yan, Hong

    2018-03-01

    A356 alloy reinforced with carbon nanofibers (CNFs) was fabricated by high-intensity ultrasonic vibration processing. The microstructure and mechanical properties were investigated. The distribution of CNFs became more and more uniform with the increase of ultrasonic power, and the mechanical properties of nanocomposites were significantly enhanced accordingly. The yield strength (YS), ultimate tensile strength (UTS), and microhardness of the nanocomposite increased by 38.3, 21.9, and 43.2 pct, respectively, at a CNF content of 0.9 wt pct compared with the matrix without CNF addition. The improvement in mechanical properties was the effect of CNFs on the thermal expansion mismatch strengthening of the nanocomposite, the grain refinement of the nanocomposite, and the load transfer from the matrix to the nanofibers.

  5. Fabrication of Carbon Nanofibers/A356 Nanocomposites by High-Intensity Ultrasonic Processing

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Jie; Yan, Hong

    2018-06-01

    A356 alloy reinforced with carbon nanofibers (CNFs) was fabricated by high-intensity ultrasonic vibration processing. The microstructure and mechanical properties were investigated. The distribution of CNFs became more and more uniform with the increase of ultrasonic power, and the mechanical properties of nanocomposites were significantly enhanced accordingly. The yield strength (YS), ultimate tensile strength (UTS), and microhardness of the nanocomposite increased by 38.3, 21.9, and 43.2 pct, respectively, at a CNF content of 0.9 wt pct compared with the matrix without CNF addition. The improvement in mechanical properties was the effect of CNFs on the thermal expansion mismatch strengthening of the nanocomposite, the grain refinement of the nanocomposite, and the load transfer from the matrix to the nanofibers.

  6. Mechanical characterization of TiO{sub 2} nanofibers produced by different electrospinning techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris; Institute of Silicate Materials, Riga Technical University, P. Valdena 3/7, Riga LV-1048

    2015-02-15

    In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. •more » Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.« less

  7. Radiative rates and electron impact excitation rate coefficients for Ne-like selenium, Se XXV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, K.; Chen, C.Y., E-mail: chychen@fudan.edu.cn; Huang, M.

    2011-07-15

    In this article we report calculations of energy levels, radiative rates, electron impact collision strengths, and effective collision strengths for transitions among the 241 fine-structure levels arising from 2l{sup 8} and 2l{sup 7}n{sup '}l{sup '} (n{sup '{<=}}6 and l{sup '{<=}}n{sup '}-1) configurations of Ne-like Se XXV using the Flexible Atomic Code. Energy levels and radiative rates are calculated within the relativistic configuration-interaction method. Direct excitation collision strengths are calculated using the relativistic distorted-wave approximation and high-energy collision strengths are obtained in the relativistic plane-wave approximation. Resonance contributions through the relevant Na-like doubly-excited configurations 2l{sup 7}n'l'n''l'' (3{<=}n'{<=}7, l'{<=}n'-1, n'{<=}n''{<=}50, and l''{<=}8)more » are explicitly taken into account via the independent-process and isolated-resonance approximation using distorted waves. Resonant stabilizing transitions and possibly important radiative decays from the resonances toward low-lying autoionizing levels are considered. In addition, the resonance contributions from Na-like 2l{sup 6}3l'3l'''n''' (n'''=3-6) configurations are included and found to be predominant for many transitions among the singly-excited states in Ne-like Se XXV. We present the radiative rates, oscillator strengths, and line strengths for all electric dipole, magnetic dipole, electric quadrupole, magnetic quadrupole, electric octopole, and magnetic octopole transitions among the 241 levels. The effective collision strengths are reported for all 28920 transitions among the 241 levels over a wide temperature range up to 10 keV. To assess the reliability and accuracy of the present collisional data, we have performed a 27-state close-coupling calculation, employing the Dirac R-matrix theory. The results from the close-coupling calculation and the independent-process calculation for the identical target states are found to be in good agreement. - Highlights: {yields} Radiative and collisional atomic data are presented for the lowest 241 fine-structure levels in Ne-like Se. {yields} Calculations are performed using the FAC package. {yields} Resonances enhance significantly a large amount of transitions. {yields} Radiative damping effects are significant for many transitions. {yields} Close-coupling effects are small in Ne-like Se.« less

  8. Development of steel foam processing methods and characterization of metal foam

    NASA Astrophysics Data System (ADS)

    Park, Chanman

    2000-10-01

    Steel foam was synthesized by a powder metallurgical route, resulting in densities less than half that of steel. Process parameters for foam synthesis were investigated, and two standard powder formulations were selected consisting of Fe-2.5% C and 0.2 wt% foaming agent (either MgCO3 or SrCO3). Compression tests were performed on annealed and pre-annealed foam samples of different density to determine mechanical response and energy absorption behavior. The stress-strain response was strongly affected by annealing, which reduced the carbon content and converted much of the pearlitic structure to ferrite. Different powder blending methods and melting times were employed and the effects on the geometric structure of steel foam were examined. Dispersion of the foaming agent affected the pore size distribution of the expanded foams. With increasing melt time, pores coalesced, leading to the eventual collapse of the foam. Inserting interlayer membranes in the powder compacts inhibited coalescence of pores and produced foams with more uniform cell size and distribution. The closed-cell foam samples exhibited anisotropy in compression, a phenomenon that was caused primarily by the ellipsoidal cell shapes within the foam. Yield strengths were 3x higher in the transverse direction than in the longitudinal direction. Yield strength also showed a power-law dependence on relative density (n ≅ 1.8). Compressive strain was highly localized and occurred in discrete bands that extended transverse to the loading direction. The yield strength of foam samples showed stronger strain rate dependence at higher strain rates. The increased strain rate dependence was attributed to microinertial hardening. Energy absorption was also observed to increase with strain rate. Measurements of cell wall curvature showed that an increased mean curvature correlated with a reduced yield strength, and foam strengths generally fell below predictions of Gibson-Ashby theory. Morphological defects reduced yield strength and altered the dependence on density. Microstructural analysis was performed on a porous Mg and AZ31 Mg alloy synthesized by the GASAR process. The pore distribution depended on the distance from the chill end of ingots. TEM observations revealed apparent gas tracks neat the pores and ternary intermetallic phases in the alloy.

  9. Crack Arrest Toughness of Two High Strength Steels (AISI 4140 and AISI 4340)

    NASA Astrophysics Data System (ADS)

    Ripling, E. J.; Mulherin, J. H.; Crosley, P. B.

    1982-04-01

    The crack initiation toughness ( K c ) and crack arrest toughness ( K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed on K a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures, K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, the K a values showed a more pronounced transition temperature than the K c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.

  10. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  11. Calibrating the Abaqus Crushable Foam Material Model using UNM Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schembri, Philip E.; Lewis, Matthew W.

    Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. Themore » model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.« less

  12. Mesoscale Phase Field Modeling of Glass Strengthening Under Triaxial Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Sun, Xin

    2015-09-28

    Recent hydraulic bomb and confined sleeve tests on transparent armor glass materials such as borosilicate glass and soda-lime glass showed that the glass strength was a function of confinement pressure. The measured stress-strain relation is not a straight line as most brittle materials behave under little or no confinement. Moreover, borosilicate glass exhibited a stronger compressive strength when compared to soda-lime glass, even though soda-lime has higher bulk and shear moduli as well as apparent yield strength. To better understand these experimental findings, a mesoscale phase field model is developed to simulate the nonlinear stress versus strain behaviors under confinementmore » by considering heterogeneity formation under triaxial compression and the energy barrier of a micro shear banding event (referred to as pseudo-slip hereafter) in the amorphous glass. With calibrated modeling parameters, the simulation results demonstrate that the developed phase field model can quantitatively predict the pressure-dependent strength, and it can also explain the difference between the two types of glasses from the perspective of energy barrier associated with a pseudo-slip event.« less

  13. Single fibre strength of cellulosic fibre extracted from "Belatlan roots" plant

    NASA Astrophysics Data System (ADS)

    M. Hanis. A., H.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Fahmi, I.

    2017-12-01

    The tensile strength of a fibre extracted from "Belatlan Root" plant was investigated as potential reinforcement material in polymeric composites. Following retting process, the fibres were manually extracted from "Belatlan" root's plant. The fibres were treated with 5 % 10 %, 15 %, and 20 % sodium hydroxide (NaOH) wt. % concentration for 24 h. The single fibre tests were then performed in accordance with ASTM D3822-07 standard. The surfaces of the fibres prior and after the treatment were observed with a metallurgical Microscope MT8100 and the physical properties were recorded. Physically, in the post treatment, the fibre showed a decrease in diameter with increase in NaOH concentration The results from the mechanical testing indicates that samples subjected to 5 % NaOH treatment yielded the highest tensile strength and elastic modulus at 89.05 MPa ± 2.75 and 3.81 GPa ± 0.09 respectively compared to untreated fibres. This represents an increase of almost 72 % in tensile strength and 42 % for elastic modulus. The findings support the preliminary information for incorporating the "Belatlan Root" as possible reinforcing materials in composite structures.

  14. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    PubMed Central

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-01-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation. PMID:21806256

  15. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.

  16. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage.

    PubMed

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO(2) lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO(2) laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO(2) lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.

  17. Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels.

    PubMed

    Sohn, Seok Su; Song, Hyejin; Jo, Min Chul; Song, Taejin; Kim, Hyoung Seop; Lee, Sunghak

    2017-04-28

    Needs for steel designs of ultra-high strength and excellent ductility have been an important issue in worldwide automotive industries to achieve energy conservation, improvement of safety, and crashworthiness qualities. Because of various drawbacks in existing 1.5-GPa-grade steels, new development of formable cold-rolled ultra-high-strength steels is essentially needed. Here we show a plausible method to achieve ultra-high strengths of 1.0~1.5 GPa together with excellent ductility above 50% by actively utilizing non-recrystallization region and TRansformation-Induced Plasticity (TRIP) mechanism in a cold-rolled and annealed Fe-Mn-Al-C-based steel. We adopt a duplex microstructure composed of austenite and ultra-fine ferrite in order to overcome low-yield-strength characteristics of austenite. Persistent elongation up to 50% as well as ultra-high yield strength over 1.4 GPa are attributed to well-balanced mechanical stability of non-crystallized austenite with critical strain for TRIP. Our results demonstrate how the non-recrystallized austenite can be a metamorphosis in 1.5-GPa-grade steel sheet design.

  18. Data of the properties of rebar steel brands in Lagos, Nigerian market used in reinforced concrete applications.

    PubMed

    Joshua, Opeyemi; Olusola, Kolapo O; Oyeyemi, Kehinde D; Ogunde, Ayodeji O; Amusan, Lekan M; Nduka, David O; Abuka-Joshua, Joyce

    2018-04-01

    The data presented herein are compilations of the research summary of "Assessment of the Quality of Steel Reinforcement Bars Available in Nigerian Market" (Joshua et al., 2013) [1]. This data article provides information on the properties and cost of steel rebars used in reinforced concrete in Lagos, Nigeria. The data is based on the properties of 12 mm rebar brands which are the most used steel diameter in construction and they include actual diameters, yield strengths, ultimate strengths, ultimate/yield strength ratio, ductility and the cost of each brand. This data also contains the limiting standard properties of the highlighted properties in this data.

  19. The effect of microstructure and strength on the fracture toughness of an 18 Ni, 300 grade maraging steel

    NASA Technical Reports Server (NTRS)

    Psioda, J. A.; Low, J. R., Jr.

    1977-01-01

    Fractography and metallographic sectioning were used to investigate the influence of microstructure and strength on the fracture toughness (KIc) and fracture mechanism of an 18 Ni, 300 grade maraging steel. Increased yield strength from 1442 to 2070 MN/m squared through precipitation hardening results in a KIc loss from 143 to 55 MN/m superscript 3/2. Ti (C,N) Ti2S, and TiC inclusions in sizes from 1 to 8, 1 to 15, and 0.1 to 2 microns respectively serve as sites for void nucleation and lead to fracture by the dimpled rupture process in all strength levels considered. TiC nucleated dimples occupy more than half the fracture in all conditions. Void nucleation rate and resultant number of dimples per unit area of fracture increase with increasing yield strength. Average dimple size decreases with increasing strength and/or overaging which follows from the decreasing amount of stable void growth measured by sectioning tensile specimens. Void growth is assisted by crack branching along a path of TiC inclusions. Coalescence occurs in the highest strength materials by a combination of TiC void nucleation and premature separation at strengthening precipitates.

  20. Microstructure evolution and mechanical properties degradation of HPNb alloy after a five-year service

    NASA Astrophysics Data System (ADS)

    Guo, Jingfeng; Cao, Tieshan; Cheng, Congqian; Meng, Xianming; Zhao, Jie

    2018-04-01

    The microstructure and mechanical properties of ethylene cracking furnace tube (HPNb alloy) are investigated by scanning electronic microscopy (SEM), tensile tests and Charpy impact tests at room temperature, tensile tests and creep tests at high temperature in this paper. The primary carbides of HPNb alloy coarsened and formed a continuous network after a five-year service. Furthermore, a lot of fine secondary carbides precipitated in the dendrite interior. The primary carbides M7C3 and NbC transformed into M23C6 and G phase after service, respectively. The furnace tube after service exhibits higher yield strength, lower tensile strength, worse ductility and toughness than as-cast tube at room temperature. At high temperature, the tensile strength and yield strength of service tube are higher than as-cast tube, but its tensile elongation is lower. The creep strength of HPNb alloy at high temperature decreases after a five-year service. Both microstructure and mechanical properties of ethylene cracking furnace tube have deteriorated after a five-year service.

  1. Development of High-Strength High-Temperature Cast Al-Ni-Cr Alloys Through Evolution of a Novel Composite Eutectic Structure

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Kashyap, S.; Tiwary, C. S.; Chattopadhyay, K.

    2017-12-01

    Aiming to develop high-strength Al-based alloys with high material index (strength/density) for structural application, this article reports a new class of multiphase Al alloys in the Al-Ni-Cr system that possess impressive room temperature and elevated temperature (≥ 200 °C) mechanical properties. The ternary eutectic and near eutectic alloys display a complex microstructure containing intermetallic phases displaying hierarchically arranged plate and rod morphologies that exhibit extraordinary mechanical properties. The yield strengths achieved at room temperatures are in excess of 350 MPa with compressive plastic strains of more than 30 pct (without fracturing) for these alloys. The stability of the complex microstructure also leads to a yield stress of 191 ± 8 to 232 ± 5 MPa at 250 °C. It is argued that the alloys derive their high strength and impressive plasticity through synergic effects of refined nanoeutectics of two different morphologies forming a core shell type of architecture.

  2. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  3. Magnetorheological properties of sodium sulphonate capped electrolytic iron based MR fluid: a comparison with CI based MR fluid

    NASA Astrophysics Data System (ADS)

    Vinod, Sithara; John, Reji; Philip, John

    2017-02-01

    Magnetorheological fluids have numerous engineering applications due to their interesting field assisted rheological behavior. Most commonly used dispersed phase in MR fluids is carbonyl iron (CI). The relatively high cost of CI warrants the need to develop cheaper alternatives to CI, without compromising rheological properties. With the above goal in mind, we have synthesized sodium sulphonate capped electrolytic iron based MR fluid and studied their magnetorheological properties. The results are compared with that of CI based MR fluid. EI and CI particles of average particle size of ∼10 μm with fumed silica particles additives are used in the present study. The dynamic yield stress for EI and CI based MR fluid were found to vary with field strength with an exponent of roughly 1.2 and 1.24, respectively. The slightly lower static and dynamic yield stress values of EI based MR fluid is attributed to the lower magnetization and polydispersity values. The dynamic yield stress showed a decrease of 18.73% and 61.8% for field strengths of 177 mT and 531 mT, respectively as the temperature was increased from 293 to 323 K. The optorheological studies showed a peak in the loss moduli, close to the crossover point of the storage and loss moduli, due to freely moving large sized aggregates along the shear direction that are dislodged from the rheometer plates at higher strains. Our results suggests that EI based MR fluids have magnetorheological behavior comparable to that of CI based MR fluids. As EI is much cheaper than CI, our findings will have important commercial implications in producing cost effective EI based MR fluids.

  4. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... alloy in the annealed condition. (c) Increased yield strength and tensile strength of a material at low temperature for independent tanks type A, B, and C must be specially approved by the Commandant (CG-522). [CGD...

  5. Establishment of a Plasma Melting Manufacturing Process for Production of Nickel-Base Alloys.

    DTIC Science & Technology

    1975-05-01

    7.1 Conclusions 40 7.2 Recommendations 41 8.0 REFERENCES ^2 1 . . . -— - •- - — ■•- lin ■■ - - -- - 1 ^H , r...high nitrogen steel is similar in chemical com- position to the Nitronic series marketed by Armco Steel in the U.S.A. The plasmarc remelted material in...the cast condition displays good ductility and yield strength comparable to Armco’s nitrogen strengthened austenitic steel Nitronic ^0. The Soviet

  6. Process for Design Optimization of Honeycomb Core Sandwich Panels for Blast Load Mitigation

    DTIC Science & Technology

    2012-12-01

    experiments. Numerical simulation using a single ‘Y’ cross-sectional unit cell model predicted the crush behavior quite well compared to experiments with...of foil glued together by an adhesive. LS-DYNA is used to carry out the virtual simulation . The foil is modeled by quadrilateral Belytschko-Tsay...aluminum alloy with bilinear isotropic-hardening elastoplastic material model is used for the foil. Since the yield and ultimate strength of the AL5052

  7. Crystal structure refinement of reedmergnerite, the boron analog of albite

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.

    1960-01-01

    Ordering of boron in a feldspar crystallographic site T1(0) has been found in reedmergnerite, which has silicon-oxygen and sodium-oxygen distances comparable to those in isostructural low albite. If a simple ionic model is assumed, calculated bond strengths yield a considerable charge imbalance in reedmergnerite, an indication of the inadequacy of the model with respect to these complex structures and of the speculative nature of conclusions based on such a model.

  8. Large scale shell model study of nuclear spectroscopy in nuclei around 132Sn

    NASA Astrophysics Data System (ADS)

    Lo Iudice, N.; Bianco, D.; Andreozzi, F.; Porrino, A.; Knapp, F.

    2012-10-01

    The properties of low-lying 2+ states in chains of nuclei in the proximity of the magic number N=82 are investigated within a new shell model approach exploiting an iterative algorithm alternative to Lanczos. The calculation yields levels and transition strengths in overall good agreement with experiments. The comparative analysis of the E2 and M1 transitions supports, in many cases, the scheme provided by the interacting boson model.

  9. Tensile and Microindentation Stress-Strain Curves of Al-6061

    DOE Data Explorer

    Weaver, Jordan S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT); Khosravani, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Castillo, Andrew [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidind, Surya R [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-13

    Recent spherical microindentation stress-strain protocols were developed and validated on Al-6061 (DOI: 10.1186/s40192-016-0054-3). The scaling factor between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9. The microindentation stress-strain protocols were then applied to a microstructurally graded sample in an effort to extract high throughput process-property relationships. The tensile and microindentation force-displacement and stress-strain data are presented in this data set.

  10. Highly oriented carbon fiber–polymer composites via additive manufacturing

    DOE PAGES

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; ...

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  11. Optimisation of gelatin extraction from Unicorn leatherjacket (Aluterus monoceros) skin waste: response surface approach.

    PubMed

    Hanjabam, Mandakini Devi; Kannaiyan, Sathish Kumar; Kamei, Gaihiamngam; Jakhar, Jitender Kumar; Chouksey, Mithlesh Kumar; Gudipati, Venkateshwarlu

    2015-02-01

    Physical properties of gelatin extracted from Unicorn leatherjacket (Aluterus monoceros) skin, which is generated as a waste from fish processing industries, were optimised using Response Surface Methodology (RSM). A Box-Behnken design was used to study the combined effects of three independent variables, namely phosphoric acid (H3PO4) concentration (0.15-0.25 M), extraction temperature (40-50 °C) and extraction time (4-12 h) on different responses like yield, gel strength and melting point of gelatin. The optimum conditions derived by RSM for the yield (10.58%) were 0.2 M H3PO4 for 9.01 h of extraction time and hot water extraction of 45.83 °C. The maximum achieved gel strength and melting point was 138.54 g and 22.61 °C respectively. Extraction time was found to be most influencing variable and had a positive coefficient on yield and negative coefficient on gel strength and melting point. The results indicated that Unicorn leatherjacket skins can be a source of gelatin having mild gel strength and melting point.

  12. Double row equivalent for rotator cuff repair: A biomechanical analysis of a new technique.

    PubMed

    Robinson, Sean; Krigbaum, Henry; Kramer, Jon; Purviance, Connor; Parrish, Robin; Donahue, Joseph

    2018-06-01

    There are numerous configurations of double row fixation for rotator cuff tears however, there remains to be a consensus on the best method. In this study, we evaluated three different double-row configurations, including a new method. Our primary question is whether the new anchor and technique compares in biomechanical strength to standard double row techniques. Eighteen prepared fresh frozen bovine infraspinatus tendons were randomized to one of three groups including the New Double Row Equivalent, Arthrex Speedbridge and a transosseous equivalent using standard Stabilynx anchors. Biomechanical testing was performed on humeri sawbones and ultimate load, strain, yield strength, contact area, contact pressure, and a survival plots were evaluated. The new double row equivalent method demonstrated increased survival as well as ultimate strength at 415N compared to the remainder testing groups as well as equivalent contact area and pressure to standard double row techniques. This new anchor system and technique demonstrated higher survival rates and loads to failure than standard double row techniques. This data provides us with a new method of rotator cuff fixation which should be further evaluated in the clinical setting. Basic science biomechanical study.

  13. Effect of Ultra-Fast Cooling on Microstructure and Properties of High Strength Steel for Shipbuilding

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng; Ye, Qibin; Yan, Ling

    The effect of ultra-fast cooling(UFC) and conventional accelerated cooling(AcC) on the mechanical properties and microstructure of controlled rolled AH32 grade steel plates on industrial scale were compared using tensile test, Charpy impact test, welding thermal simulation, and microscopic analysis. The results show that the properties of the plate produced by UFC are improved considerably comparing to that by AcC. The yield strength is increased with 54 MPa without deterioration in the ductility and the impact energy is improved to more than 260 J at -60 °C with much lower ductile-to-brittle transition temperature(DBTT). The ferrite grain size is refined to ASTM No. 11.5 in the UFC steel with uniform microstructure throughout the thickness direction, while that of the AcC steel is ASTM No. 9.5. The analysis of nucleation kinetics of α-ferrite indicates that the microstructure is refined due to the increased nucleation rate of α-ferrite by much lower γ→α transition temperature through the UFC process. The Hall-Petch effect is quantified for the improvement of the strength and toughness of the UFC steel attributed to the grain refinement.

  14. Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt

    2016-01-01

    Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.

  15. Effect of Hot Rolling on the Microstructure and Mechanical Properties of Nitrogen Alloyed Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Karthick, N. K.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.

    2018-05-01

    In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700-1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700-800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900-1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.

  16. Effect of Hot Rolling on the Microstructure and Mechanical Properties of Nitrogen Alloyed Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Karthick, N. K.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.

    2018-04-01

    In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700-1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700-800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900-1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.

  17. A biomechanical comparison of three sternotomy closure techniques.

    PubMed

    Cohen, David J; Griffin, Lanny V

    2002-02-01

    A biomechanical study of three sternotomy closure techniques (figure-of-eight stainless-steel wires, Pectofix Dynamic Sternal Fixation [DSF] stainless-steel plates, and figure-of-eight stainless-steel cables) was conducted to compare strength and stiffness variables in three clinically relevant loading modes (anterior-posterior shear, longitudinal shear, and lateral distraction). All tests were conducted on polyurethane foam sternal models that simulate the properties of cancellous bone. Each model was divided longitudinally and reconstructed using one of the sternotomy closure repair techniques. Tests were performed using a materials testing system that applies a continuously increasing amount of force in one direction to the model until it catastrophically breaks. A total of six trials of each fixation type in each of three test groups were prepared and tested, for a total of 54 tests. Strength and stiffness variables as well as a post-yield analysis of failure were evaluated. Sternums repaired using the DSF plate system are a more rigid construct than sternums repaired using the stainless-steel wires or cables in the distraction and transverse shear modes and they are not significantly different from sternums repaired with wires or cables in the longitudinal shear mode. The DSF plate system offers a 25% improvement in resistance to failure (yield) compared to wires when a transverse shear force is applied to the model. The cable system had a higher resistance to failure than the wires in all modes although the differences were not statistically significant. Additionally, the DSF plate system provides substantial reduction of the implant's cutting into the sternal model under loading as evidenced by the post-yield displacement when compared with either cables or wires for the distraction and longitudinal shear modes. For the transverse shear mode, the cables or wires would completely fail at the load for which cutting begins for the DSF. Both the DSF plate system and the stainless-steel cable system offer important advantages over figure-of-eight wire for sternal closure.

  18. Possibilities for specific utilization of material properties for an optimal part design

    NASA Astrophysics Data System (ADS)

    Beier, T.; Gerlach, J.; Roettger, R.; Kuhn, P.

    2017-09-01

    High-strength, cold-formable steels offer great potential for meeting cost and safety requirements in the automotive industry. In view of strengths of up to 1200 MPa now attainable, certain aspects need to be analysed and evaluated in advance in the development process using these materials. In addition to early assessment of crash properties, it is also highly important to adapt the forming process to match the material potential. The steel making companies have widened their portfolios of cold-rolled dual-phase steels well beyond the conventional high-strength steels. There are added new grades which offer a customized selection of high energy absorption, deformation resistance or enhanced cold-forming properties. In this article the necessary components for material modelling for finite element simulation are discussed. Additionally the required tests for material model calibration are presented and the potentials of the thyssenkrupp Steel material data base are introduced. Besides classical tensile tests at different angles to rolling direction and the forming limit curve, the hydraulic bulge test is now available for a wide range of modern steel grades. Using the conventional DP-K®60/98 and the DP-K®700Y980T with higher yield strength the method for calibrating yield locus, hardening and formability is given. With reference to the examples of an A-pillar reinforcement and different crash tests the procedure is shown how the customer can evaluate an optimal steel grade for specific requirements. Although the investigated materials have different yield strengths, no large differences in the forming process between the two steel grades can be found. However some advantages of the high-yield grade can be detected in crash performance depending on the specific boundary and loading conditions.

  19. Elasticity and breaking strength of synthetic suture materials incubated in various equine physiological and pathological solutions.

    PubMed

    Kearney, C M; Buckley, C T; Jenner, F; Moissonnier, P; Brama, P A J

    2014-07-01

    Selection of suture material in equine surgery is often based on costs or subjective factors, such as the surgeon's personal experience, rather than objective facts. The amount of objective data available on durability of suture materials with regard to specific equine physiological conditions is limited. To evaluate the effect of various equine physiological and pathological fluids on the rate of degradation of a number of commonly used suture materials. In vitro material testing. Suture materials were exposed in vitro to physiological fluid, followed by biomechanical analysis. Three absorbable suture materials, glycolide/lactide copolymer, polyglactin 910 and polydioxanone were incubated at 37°C for 7, 14 or 28 days in phosphate-buffered saline, equine serum, equine urine and equine peritoneal fluid from an animal with peritonitis. Five strands of each suture material type were tested to failure in a materials testing machine for each time point and each incubation medium. Yield strength, strain and Young's modulus were calculated, analysed and reported. For all suture types, the incubation time had a significant effect on yield strength, percentage elongation and Young's modulus in all culture media (P<0.0001). Suture type was also shown significantly to influence changes in each of yield strength, percentage elongation and Young's modulus in all culture media (P<0.0001). While the glycolide/lactide copolymer demonstrated the highest Day 0 yield strength, it showed the most rapid degradation in all culture media. For each of the 3 material characteristics tested, polydioxanone showed the least variation across the incubation period in each culture medium. The duration of incubation and the type of fluid have significant effects on the biomechanical properties of various suture materials. These findings are important for evidence-based selection of suture material in clinical cases. © 2013 EVJ Ltd.

  20. Effects of grain size on the strength and ductility of Ni sub 3 Al and Ni sub 3 Al + boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viens, D.V.; Weihs, T.P.; Baker, I.

    Tensile and compression experiments have been performed on Ni{sub 3}Al and on Ni{sub 3}Al + B at 77K to 1023K at 1 {times} 10{sup {minus}4}s{sup {minus}1}. At low temperatures yielding occurs discontinuously and the yield strength obeys the relationship {sigma}{sub y} = {sigma}{sub i} + kd{sup {minus}3/4} where {sigma}{sub i} and k are constants. Grain refinement has little effect on the ductility of the binary alloy, but leads to a brittle to ductile transition in the alloy containing boron. At high temperatures, grain refinement weakens the material, owing to grain boundary sliding. Dynamic recrystalization occurs and leads to another brittlemore » to ductile transition upon refining the grains. Under all conditions investigated, fracture occurs intergranularly. An analysis based upon a work-hardening model is given for the d{sup {minus}3/4} dependence of the yield strength at low temperatures.« less

  1. Metal nanoplates: Smaller is weaker due to failure by elastic instability

    NASA Astrophysics Data System (ADS)

    Ho, Duc Tam; Kwon, Soon-Yong; Park, Harold S.; Kim, Sung Youb

    2017-11-01

    Under mechanical loading, crystalline solids deform elastically, and subsequently yield and fail via plastic deformation. Thus crystalline materials experience two mechanical regimes: elasticity and plasticity. Here, we provide numerical and theoretical evidence to show that metal nanoplates exhibit an intermediate mechanical regime that occurs between elasticity and plasticity, which we call the elastic instability regime. The elastic instability regime begins with a decrease in stress, during which the nanoplates fail via global, and not local, deformation mechanisms that are distinctly different from traditional dislocation-mediated plasticity. Because the nanoplates fail via elastic instability, the governing strength criterion is the ideal strength, rather than the yield strength, and as a result, we observe a unique "smaller is weaker" trend. We develop a simple surface-stress-based analytic model to predict the ideal strength of the metal nanoplates, which accurately reproduces the smaller is weaker behavior observed in the atomistic simulations.

  2. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability.

    PubMed

    Brown, Christopher U; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  3. Effect of heat treatment on microstructure and mechanical properties of Mg-4Y-1.6Nd-1Sm-0.5Zr alloy

    NASA Astrophysics Data System (ADS)

    Jia, Guilong; Guo, Erjun; Feng, Yicheng; Wang, Liping; Wang, Changliang

    2018-03-01

    Microstructure and mechanical properties of Mg-4Y-1.6Nd-1Sm-0.5Zr alloy during heat treatments were investigated, while the room-temperature tensile fractographs were observed and analyzed. The results show that the eutectic phases almost dissolve into the matrix after being solutionized at 525 °C for 8 h. The ultimate tensile strength, yield strength and elongation reach 300 MPa, 219 MPa, 6.5% respectively after being under-aged at 200 °C for 16 h. The ultimate tensile strength and yield strength of the alloy decrease gradually, while the elongation increases gradually with increasing the test temperatures. The room-temperature tensile fracture modes of the as-cast alloy, solutionized alloy, aged alloy are mixed fracture of transgranular and intergranular, transgranular cleavage fracture, transgranular fracture, respectively.

  4. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability

    PubMed Central

    Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2017-01-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure. PMID:28243032

  5. Interlaboratory Study for Nickel Alloy 625 Made by Laser Powder Bed Fusion to Quantify Mechanical Property Variability

    NASA Astrophysics Data System (ADS)

    Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser powder bed fusion-additive manufacturing machines. The tensile specimens were heat treated and tensile tests were conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to four times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  6. Strength of orthotropic materials subjected to combined stresses

    Treesearch

    Charles B. Norris

    1962-01-01

    A theory of the strength of orthotropic materials subjected to combined stresses, based on the Henky-von Mises theory of energy due to change of shape, is presented. When this theory is applied to macroscopically isotropic materials, it yields the diagram currently used in design with metals. Equations relating the strength of orthotropic materials subjected to a...

  7. Mechanical design of mussel byssus: material yield enhances attachment strength

    PubMed

    Bell; Gosline

    1996-01-01

    The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

  8. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.

    PubMed

    Carpenter, R Dana; Beaupré, Gary S; Lang, Thomas F; Orwoll, Eric S; Carter, Dennis R

    2005-09-01

    The influence of fall orientation on femur strength has important implications for understanding hip fracture risk. A new image analysis technique showed that the strength of the femoral neck in 37 males varied significantly along the neck axis and that bending strength varied by a factor of up to 2.8 for different loading directions. Osteoporosis is associated with decreased BMD and increased hip fracture risk, but it is unclear whether specific osteoporotic changes in the proximal femur lead to a more vulnerable overall structure. Nonhomogeneous beam theory, which is used to determine the mechanical response of composite structures to applied loads, can be used along with QCT to estimate the resistance of the femoral neck to axial forces and bending moments. The bending moment [My(theta)] sufficient to induce yielding within femoral neck sections was estimated for a range of bending orientations (theta) using in vivo QCT images of 37 male (mean age, 73 years; range, 65-87 years) femora. Volumetric BMD, axial stiffness, average moment at yield (M(y,avg)), maximum and minimum moment at yield (M(y,max) and M(y,min)), bone strength index (BSI), stress-strain index (SSI), and density-weighted moments of resistance (Rx and Ry) were also computed. Differences among the proximal, mid-, and distal neck regions were detected using ANOVA. My(theta) was found to vary by as much as a factor of 2.8 for different bending directions. Axial stiffness, M(y,avg), M(y,max), M(y,min), BSI, and Rx differed significantly between all femoral neck regions, with an overall trend of increasing axial stiffness and bending strength when moving from the proximal neck to the distal neck. Mean axial stiffness increased 62% between the proximal and distal neck, and mean M(y,avg) increased 53% between the proximal and distal neck. The results of this study show that femoral neck strength strongly depends on both fall orientation and location along the neck axis. Compressive yielding in the superior portion of the femoral neck is expected to initiate fracture in a fall to the side.

  9. HSDP II Drill Core: Preliminary Rock Strength Results and Implications to Flank Stability, Mauna Kea Volcano

    NASA Astrophysics Data System (ADS)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2004-12-01

    Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.

  10. Effect of different surface treatments on shear bond strength of zirconia to three resin cements

    NASA Astrophysics Data System (ADS)

    Dadjoo, Nisa

    Statement of problem: There are no standard guidelines for material selection to obtain acceptable bonding to high-strength zirconium oxide ceramic. Studies suggest resin cements in combination with MDP-containing primer is a reasonable choice, however, the other cements cannot be rejected and need further investigation. Objective: The purpose of this in vitro study was the evaluation of the shear bond strength of three composite resin cements to zirconia ceramic after using different surface conditioning methods. Materials and methods: One hundred and twenty sintered Y-TZP ceramic (IPS e.max ZirCAD) squares (8 x 8 x 4 mm) were embedded in acrylic molds, then divided into three groups (n=40) based on the type of cement used. Within each group, the specimens were divided into four subgroups (n=10) and treated as follows: (1) Air abrasion with 50microm aluminum oxide (Al2O 3) particles (ALO); (2) Air abrasion + Scotchbond Universal adhesive (SBU); (3) Air abrasion + Monobond Plus (MBP); (4) Air abrasion + Z-Prime Plus (ZPP). Composite cylinders were used as carriers to bond to conditioned ceramic using (1) RelyX Ultimate adhesive resin cement (RX); (2) Panavia SA self-adhesive resin cement (PSA); (3) Calibra esthetic cement (CAL). The bonded specimens were submerged in distilled water and subjected to 24-hour incubation period at 37°C. All specimens were stressed in shear at a constant crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed by ANOVA. The bond strength values (MPa), means and standard deviations were calculated and data were analyzed using analysis of variance with Fisher's PLSD multiple comparison test at the 0.05 level of significance. The nature of failure was recorded. Results: The two-way ANOVA showed Panavia SA to have the highest strength at 44.3 +/- 16.9 MPa (p<0.05). The combination of Scotchbond Universal surface treatment with Panavia SA cement showed statistically higher bond strength (p=0.0054). The highest bond strengths for all three cements were observed with Scotchbond Universal surface treatment (p=0.0041). Calibra in combination with aluminum oxide air abrasion resulted in statistically lowest bond strength at 12.0 +/- 3.9 MPa. The predominant mode of failure was cohesive with cement remaining principally on the zirconium oxide samples in 57.5% of the specimens, followed by cement found on both the zirconium oxide samples and composite rods (mixed) in 32.5% of the samples. Only 10% of the specimens were found with cement on the composite rods (adhesive failure). Conclusions: Within the limitations of this in vitro study, the MDP-containing resin cement, Panavia SA, yielded the strongest bond to Y-TZP ceramic when compared to adhesive (RelyX Ultimate) or esthetic (Calibra) resin cements. Air abrasion particle + Scotchbond Universal surface treatment demonstrated the highest bond strength regardless of the cement. Significance: The variation of surface conditioning methods yielded different results in accordance with the cement types. Overall, Scotchbond Universal adhesive + air abrasion yielded the highest bond strengths among all three surface treatments. The phosphate monomer-containing luting system, Panavia SA, is acceptable for bonding to zirconia ceramics.

  11. Comparative Evaluation of Fracture Strength of Different Types of Composite Core Build-up Materials: An in vitro Study.

    PubMed

    Gowda, Srinivasa; Quadras, Dilip D; Sesappa, Shetty R; Maiya, G R Ramakrishna; Kumar, Lalit; Kulkarni, Dinraj; Mishra, Nitu

    2018-05-01

    The aim of the study was to evaluate the fracture strength of three types of composite core build-up materials. The objectives were to study and evaluate the fracture strength and type of fracture in composite core build-up in restoration of endodonti-cally treated teeth with or without a prefabricated metallic post. A total of 60 freshly extracted mandibular premolars free of caries, cracks, or fractures were end-odontically treated and restored with composite core build-up with prefabricated metallic posts cemented with resin luting cement (group I) and without a post (group II). This was followed by a core build-up of 10 teeth each with three different types of composite materials: Hybrid composite, nanocomposite, and ormocer respectively. The samples were mounted on polyvinyl chloride block and then loaded in the universal load frame at 90° to the long axis of tooth. The fracture strength of the samples was directly obtained from the load indicator attached to the universal load frame. Analysis of variance (ANOVA) test revealed that teeth restored with post exhibited highest fracture strength (1552.32 N) and teeth restored without post exhibited lowest fracture strength (232.20 N). Bonferroni's test revealed that values for hybrid composite (Z-100, 3M ESPE) with post, nanocomposite (Z-350, 3M ESPE) with post, ormocer composite (Admira-VOCO) with post, and nanocomposite (Z-350, 3M ESPE) without post were not significantly different from each other. Teeth restored with post and core using hybrid composite yielded the highest values for fracture strength. Teeth restored with ormocer core without post exhibited the lowest values. Teeth restored with nanocomposite core without post exhibited strength that was comparable with hybrid composite core but higher than that of ormocer. Mutilated endodontically treated teeth can be prosthetically rehabilitated successfully by using adhesive composite core build-up along with post to meet anatomical, functional, and esthetic demands.

  12. Experimental investigation of the influence of nanoparticles on water-based mud

    NASA Astrophysics Data System (ADS)

    Dhiman, Paritosh; Cheng, Yaoze; Zhang, Yin; Patil, Shirish

    2018-03-01

    This study has investigated the influence of nanoparticles including nanoparticle concentration, size, and type on water-based mud (WBM) properties including rheology, filtration, and lubricity through experimental tests, while the influence of temperature and aging on these properties have been investigated. It has been found that adding SiO2 nanoparticles increase the plastic viscosity and decrease the yield points and gel strengths with the increase of nanoparticle concentration. At fixed 0.5 wt%, the plastic viscosity decreases with the increase of TiO2 nanoparticle size, but the influence of TiO2 nanoparticle size on yield points and gel strengths is not monotonous. In general, adding negative charged SiO2 nanoparticles reduce the yield points and gel strengths, while adding positively charged TiO2, Al2O3, and Fe3O4 nanoparticles increase yield points and gel strengths. Adding lower concentrations (< 0.05 wt%) of SiO2 nanoparticles improved mud filtration and lubricity properties, but higher concentrations are adverse to these properties and adding 0.5 wt% TiO2, Al2O3 and Fe3O4 nanoparticles impaired these properties. Besides, it is found that there is no consistent influence of aging on mud properties and adding nanoparticles cannot improve aging resistance of mud. Although adding nanoparticles can significantly affect WBM properties, their influences are not consistency, depending on the integrated impact of the nanoparticle properties, such as surface electrical property, specific surface area, concentration, and size.

  13. Ulmus davidiana extract improves lumbar vertebral parameters in ovariectomized osteopenic rats

    PubMed Central

    Zhuang, Xinming; Fu, Changfeng; Liu, Wanguo; Wang, Yuanyi; Xu, Feng; Zhang, Qi; Liu, Yadong; Liu, Yi

    2016-01-01

    The aim of this study was to determine the skeletal effect of total ethanolic extract from the stem-bark of Ulmus davidiana (UDE) in a rat model of postmenopausal bone loss. Effective dose of UDE was determined in adult female Sprague-Dawley (SD) rats by measuring bone regeneration at fracture site. UDE (250 mg/kg p.o.) was administered to ovariectomized (OVX) osteopenic SD rats for 12 weeks. OVX rats treated with vehicle or 17β-estradiol, and sham-operated rats treated with vehicle served as various controls. Bone mineral density (BMD), microarchitecture, biomechanical strength, turnover markers, and uterotrophic effect were studied. Bioactive markers in UDE were analyzed by HPLC. Human osteoblasts was used to study the effect of compounds on differentiation by alkaline phosphase assay. One-way ANOVA was used to test significance of effects. OVX+UDE group showed BMD, microarchitectural parameters and compressive strength at lumbar vertebra (L5) comparable to sham. At proximal femur, OVX+UDE group exhibited significantly higher BMD, better microarchitecture and compressive strength compared with OVX+vehicle. OVX-induced decrease in Ca/P ratio was completely restored at both skeletal sites by UDE treatment. Serum procollagen N-terminal propeptide and carboxy-terminal collagen crosslinks were respectively higher and lower in OVX+UDE group compared with OVX+vehicle group. Osteogenic genes were upregulated in L5 and anti-resorptive genes were suppressed in proximal femur of OVX+UDE group compared with OVX+vehicle. UDE had no uterine estrogenicity. Analysis of markers yielded two osteogenic isoforms of catechin. In conclusion, UDE completely restored vertebral trabecular bones and strength in osteopenic rats by an osteogenic mechanism and prevented bone loss at proximal femur. PMID:27158327

  14. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin

    PubMed Central

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; de Moraes, Rafael Ratto

    2017-01-01

    Abstract Objectives: This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Material and methods: Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. Results: In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Conclusion: Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup. PMID:29069150

  15. Naval Structural Materials: Requirements, Issues, and Opportunities.

    DTIC Science & Technology

    1981-04-10

    because of the alloy’s relatively good corrosion resistance at high strength levels. The data 0 of Fig. 5 show the effects of electrochemical potential...STRENGTH,a-y (ksi) Fig. 5 Stress corrosion cracking data for high strength stainless steel (17-4PH) of different yield strengths under four electrochemical ... behavior . In contrast to the previously discussed results for low-carbon steel , heat treatment has only a small effect on the fatigue behavior of either

  16. Requirements of Inconel 718 alloy for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Ghiban, Brandusa; Elefterie, Cornelia Florina; Guragata, Constantin; Bran, Dragos

    2018-02-01

    The main requirements imposed by aviation components made from super alloys based on Nickel are presented in present paper. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Inconel 718 alloy. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, creep, density, yield strength, fracture toughness, fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength, durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it what limits the lifetime of the airframe. The excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  17. Aeronautical requirements for Inconel 718 alloy

    NASA Astrophysics Data System (ADS)

    Elefterie, C. F.; Guragata, C.; Bran, D.; Ghiban, B.

    2017-06-01

    The project goal is to present the requirements imposed by aviation components made from super alloys based on Nickel. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Alloy 718. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, yield strength and fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it’s what limits the lifetime of the airframe. Also, the excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  18. Improvement of mechanical properties on metastable stainless steels by reversion heat treatments

    NASA Astrophysics Data System (ADS)

    Mateo, A.; Zapata, A.; Fargas, G.

    2013-12-01

    AISI 301LN is a metastable austenitic stainless steel that offers an excellent combination of high strength and ductility. This stainless grade is currently used in applications where severe forming operations are required, such as automotive bodies. When these metastable steels are plastically deformed at room temperature, for example by cold rolling, austenite transforms to martensite and, as a result, yield strength increases but ductility is reduced. Grain refinement is the only method that allows improving strength and ductility simultaneously. Several researchers have demonstrated that fine grain AISI 301LN can be obtained by heat treatment after cold rolling. This heat treatment is called reversion because it provokes the reversion of strain induced martensite to austenite. In the present work, sheets of AISI 301LN previously subjected to 20% of cold rolling reduction were treated and a refined grain austenitic microstructure was obtained. Mechanical properties, including fatigue limit, were determined and compared with those corresponding to the steel both before and after the cold rolling.

  19. Reuse of industrial sludge as construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  20. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Mathew, M. D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24-0.60% have been examined in the temperature range 300-873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24-0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  1. An Analysis of Mechanical Properties of Anodized Aluminum Film at High Stress

    NASA Astrophysics Data System (ADS)

    Zhao, Xixi; Wei, Guoying; Yu, Yundan; Guo, Yuemei; Zhang, Ao

    2015-10-01

    In this paper, a new environmental-friendly electrolyte containing sulfuric acid and tartaric acid has been used as the substitute of chromic acid for anodization. The work discussed the influence of anodizing voltages on the fatigue life of anodized Al 2024-T3 by performing fatigue tests with 0.1 stress ratio (R) at 320 MPa. Meanwhile the fatigue cycles to failure, yield strength, tensile strength and fracture surface of anodic films at different conditions were investigated. The results showed that the fatigue life of anodized and sealed specimens reduced a lot compared to aluminum alloy, which can be attributed to the crack sites initiated at the oxide layer. The fracture surface analyses also revealed that the number of crack initiation sites enlarged with the increase of anodizing voltage.

  2. Comparing the use of sewage sludge ash and glass powder in cement mortars.

    PubMed

    Chen, Zhen; Poon, Chi Sun

    2017-06-01

    This study explored the suitability of using sewage sludge ash (SSA) and mixed-colored glass powder (MGP) as construction materials in cement mortars. Positive findings from this study may help promote the recycling of waste SSA and MGP in construction works. The results indicated that the SSA decreased while MGP improved the mortar workability. The SSA exhibited very low pozzolanic activity, but the cement mortar prepared with 20% SSA yielded strength values slightly superior to those of the glass mortars due to its water absorption ability. MGP can serve as a pozzolan and when 20% of cement was replaced by MGP, apparent compressive strength gains were found at later curing ages. The SSA could be used to mitigate ASR expansion while the MGP was superior in resisting drying shrinkage.

  3. Evaluation of omniweave reinforcement for composite fabrication

    NASA Technical Reports Server (NTRS)

    Belman, R.; Edighoffer, H.; Fenton, R.; Lowe, D.; Wexler, M.

    1971-01-01

    Molded composites made from type-2 Morganite and/or boron are suitable for structural skins. Layered-in-depth omniweave construction yields higher in-plane strength characteristics than fiber-pitch angle construction, and strength and moduli data vary with fiber orientation.

  4. Development of high strength and high ductility nanostructured TWIP steel

    NASA Astrophysics Data System (ADS)

    Kou, Hong Ning

    Strength and ductility are two exclusive mechanical properties of structural materials. One challenge for material research is to develop bulk nanostructured metals with simultaneous high strength and good ductility. To meet this objective, steels with twinning induced plasticity (TWIP) effect are selected for surface mechanical attrition treatment (SMAT) in this study. Tensile tests reveal extremely high yield strength and simultaneously sufficient ductility in these SMATed TWIP steel samples. With the duration increase of SMAT, both yield strength and tensile strength firstly monotonically increase to a maximum value of 2.25GPa with 18% total elongation. However, further increase of SMAT duration results in decreases of both strength and elongation. The excellent ductility of coarse-grained TWIP steels is attributed to the instantaneous generation of deformation twins in tension. Based on this, an interesting hierarchically tertiary twinning system is revealed by TEM/HRTEM in SMATed samples, composed of multi-scale twins respectively produced by annealing treatment, SMAT and tensile deformation. On one hand, boundaries of hierarchical twins with different orientations form three-dimensional networks that restrict each other and act as strong barriers to dislocation motion, leading to ultrahigh strength. On the other hand, stress concentration is relieved due to deformation transfer caused by twinning from grain to grain, resulting in large plasticity. Therefore, the hierarchical twinning structure is regarded as the most effective element that induces both extraordinary ultrahigh strength and good elongation in SMATed TWIP. The stable austenite also contributes to the preservation of good ductility. Martensite is only observed in SMATed TWIP by longest SMAT duration. Another route of fabricating nanostructured TWIP is performed by combining SMAT and thermomechanical treatment. The interval heat treatment between double SMAT benefits the total elongation to over 50%, with 980 MPa yield strength. Nanograins are observed at 60mum depth, different from their usual emergence on top surface. Martensitic phase transformation is discovered. Most nanostructured SMATed TWIP samples demonstrate typical ductile fractures with large quantities of dimples in different sizes, following the same trend of gradient grains. Long SMAT duration produces slight brittle crack with tearing ribs. Microvoids coalescence with manganese carbides leads to final rupture.

  5. Effect of Thermal Exposure on the Tensile Properties of Aluminum Alloys for Elevated Temperature Service

    NASA Technical Reports Server (NTRS)

    Edahl, Robert A., Jr.; Domack, Marcia

    2004-01-01

    Tensile properties were evaluated for four aluminum alloys that are candidates for airframe applications on high speed transport aircraft. These alloys included the Al-Cu-Mg-Ag alloys C415 and C416 and the Al-Cu-Li-Mg-Ag alloys RX818 and ML377. The Al-Cu-Mg alloys CM001, which was used on the Concorde SST, and 1143, which was modified from the alloy used on the TU144 Russian supersonic aircraft, were tested for comparison. The alloys were subjected to thermal exposure at 200 F, 225 F and 275 F for times up to 30,000 hours. Tensile tests were performed on thermally-exposed and as-received material at -65 F, room temperature, 200 F, 225 F and 275 F. All four candidate alloys showed significant tensile property improvements over CM001 and 1143. Room temperature yield strengths of the candidate alloys were at least 20% greater than for CM001 and 1143, for both the as-received and thermally-exposed conditions. The strength levels of alloy RX818 were the highest of all materials investigated, and were 5-10% higher than for ML377, C415 and C416 for the as-received condition and after 5,000 hours thermal exposure. RX818 was removed from this study after 5,000 hours exposure due to poor fracture toughness performance observed in a parallel study. After 30,000 hours exposure at 200 F and 225 F, the alloys C415, C416 and ML377 showed minor decreases in yield strength, tensile strength and elongation when compared to the as-received properties. Reductions in tensile strength from the as-received values were up to 25% for alloys C415, C416 and ML377 after 15,000 hours exposure at 275 F.

  6. The effect of pre-straining and pre-ageing on a novel thermomechanical treatment for improving the mechanical properties of AA2139 aerospace aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bakare, F.; Alsubhi, Y.; Ragkousis, A.; Ebomwonyi, O.; Damisa, J.; Okunzuwa, S.

    2017-07-01

    The novel thermomechanical treatment employed by Wang Z et al (2014 Mater. Sci. Eng. A 607 313-7) in enhancing the mechanical and microstructure properties of 6000 series aluminium alloys has been replicated for AA2139 aerospace aluminium alloys. The novel route which involves under-ageing, cold-rolling reductions and re-ageing at a fixed temperature has been carried out focusing on the effect of pre-straining and pre-ageing on the alloy properties. The influence of varying cold-rolling reductions and pre-ageing has been examined by tensile testing, hardness testing, differential scanning calorimetry, thermoelectric power measurements and scanning electron microscope (SEM). Further analyses were conducted with DSC and TEP measurements to check for precipitation sequence and solute retention respectively. On comparing the hardness and strength of the non pre-aged to the pre-aged samples, there is a remarkable increase in the hardness and strength of the aerospace alloy showing the huge influence of both pre-ageing and pre-straining stage of the novel thermomechanical treatment as observed in the 6000 series alloy, albeit at a higher rate. The treatments that exhibited the most promising mechanical properties (hardness, yield and ultimate tensile strength, elongation to failure) were found to be at a pre-ageing temperature of 175 °C for 1.5 h, 40% cold-rolling and re-ageing at 150 °C. The material was found to have yield strength of 590 MPa and 8.1% uniform elongation, which is well above the 5% acceptable value for structural applications and with strength levels adaptable for aerospace industries. The presence of higher volume fraction of well dispersed precipitates observed in the SEM further shows that intermediate cold-rolling reductions combines well with pre-ageing to give the best mechanical properties in this alloy.

  7. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    DOE PAGES

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric; ...

    2015-07-01

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolishedmore » by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.« less

  8. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolishedmore » by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.« less

  9. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BastaniNejad, Mahzad, E-mail: Mahhzad@gmail.com; Elmustafa, Abdelmageed A.; Forman, Eric

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (∼nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolishedmore » by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The authors speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.« less

  10. HZE particle shielding using confined magnetic fields. [high-energy heavy ions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1983-01-01

    The great rigidities characteristic of high energy heavy ion (HZE) particles are judged to preclude near term use of confined magnetic fields of reasonable dimensions and strengths for small spacecraft shielding on long duration manned missions. It is noted that a Mars mission-class shield, although effective against solar protons, would be useless for HZE particles unless the mass and size of the shield are increased by several orders of magnitude (to yield a shield comparable to those contemplated for permanent space stations).

  11. The effect of cushion-ram pulsation on hot stamping

    NASA Astrophysics Data System (ADS)

    Landgrebe, Dirk; Rautenstrauch, Anja; Kunke, Andreas; Polster, Stefan; Kriechenbauer, Sebastian; Mauermann, Reinhard

    2016-10-01

    Hot stamping is an important technology for manufacturing high-strength components. This technology offers the possibility to achieve significant weight reductions. In this study, cushion-ram pulsation (CRP), a new technology for hot stamping on servo-screw presses, was investigated and applied for hot stamping. Compared to a conventional process, the tests yielded a significantly higher drawing depth. In this paper, the CRP technology and the first test results with hot stamping were described in comparison to the conventional process.

  12. Enhancing overall tensile and compressive response of pure Mg using nano-TiB{sub 2} particulates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meenashisundaram, Ganesh Kumar; Seetharaman, Sankaranarayanan; Gupta, Manoj, E-mail: mpegm@nus.edu.sg

    2014-08-15

    A novel attempt is made to synthesize and study the isolated effects of less than two volume fraction TiB{sub 2} nanoparticulates (60 nm) on pure magnesium. New light weight Mg–TiB{sub 2} nanocomposites with superior mechanical properties compared to pure magnesium are synthesized using disintegrated melt deposition technique followed by hot extrusion. The microstructural characterization studies revealed that the samples exhibited fairly uniform distribution of TiB{sub 2} nanoparticulates with minimal porosity and good interfacial integrity between Mg matrix and TiB{sub 2} particulates. The coefficient of thermal expansion results indicates that the addition of 0.58, 0.97, and 1.98 vol.% TiB{sub 2} nanoparticulatesmore » marginally improves the dimensional stability of pure magnesium. A significant improvement in the room temperature tensile properties of pure magnesium was observed with the addition of less than two volume fraction TiB{sub 2} nanoparticulates. The synthesized Mg 1.98 vol.% TiB{sub 2} nanocomposite revealed the best room temperature tensile properties with a significant increase in the 0.2% tensile yield strength by ∼ 54%, ultimate tensile strength by ∼ 15% and fracture strain by ∼ 79% when compared to pure Mg. The X-ray diffraction studies indicated changes in the basal plane orientation of pure Mg with the addition of nano-TiB{sub 2} particulates. A maximum tensile fracture strain of ∼ 16% is achieved with the addition of 0.97 vol.% TiB{sub 2}. The room temperature compressive properties of the nanocomposites reveal that the addition of 1.98 TiB{sub 2} increases the 0.2% compressive yield strength of Mg by ∼ 47% and ultimate compressive strength by ∼ 10% with a marginal increase in the fracture strain (∼ 11%). Reduction in tensile–compression yield asymmetry was observed for Mg 0.58 and 0.97 vol.% TiB{sub 2} nanocomposites which can be attributed to the weakening of the strong basal texture of pure Mg. - Highlights: • First attempt is made to synthesize and characterize Mg-TiB{sub 2} nanocomposites. • XRD studies indicate nano TiB{sub 2} addition modifies the basal texture of pure Mg. • Maximum tensile fracture strain of ∼ 16 % in Mg 0.97 vol.% TiB{sub 2} nanocomposite. • Hardness values of Mg-TiB{sub 2} composites indicate superior tribological properties.« less

  13. Analysis of unclad and sub-clad semi-elliptical flaws in pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irizarry-Quinones, H.; Macdonald, B.D.; McAfee, W.J.

    This study was conducted to support warm prestressing experiments on unclad and sub-clad flawed beams loaded in pure bending. Two cladding yield strengths were investigated: 0.6 Sy and 0.8 Sy, where Sy is the yield strength of the base metal. Cladding and base metal were assumed to be stress free at the stress relief temperature for the 3D elastic-plastic finite element analysis used to model the experiments. The model results indicated that when cooled from the stress relief temperature, the cladding was put in tension due to its greater coefficient of thermal expansion. When cooled, the cladding exhibited various amountsmore » of tensile yielding. The degree of yielding depended on the amount of cooling and the strength of the cladding relative to that of the base metal. When subjected to tensile bending stress, the sub-clad flaw elastic-plastic stress intensity factor, K{sub I}(J), was at first dominated by crack closing force due to tensile yielding in the cladding. Thus, imposed loads initially caused no increase in K{sub I}(J) near the clad-base interface. However, K{sub I}(J) at the flaw depth was little affected. When the cladding residual stress was overcome, K{sub I}(J) gradually increased until the cladding began to flow. Thereafter, the rate at which K{sub I}(J) increased with load was the same as that of an unclad beam. A plastic zone corrected K{sub I} approximation for the unclad flaw was found by the superposition of standard Newman and Raju solutions with those due to a cladding crack closure force approximated by the Kaya and Erdogan solution. These elastic estimates of the effect of cladding in reducing the crack driving force were quite in keeping with the 3D elastic-plastic finite element solution for the sub-clad flaw. The results were also compared with the analysis of clad beam experiments by Keeney and the conclusions by Miyazaki, et al. A number of sub-clad flaw specimens not subjected to warm prestressing were thought to have suffered degraded toughness caused by locally intensified strain aging embrittlement (LISAE) due to welding over the preexisting flaw.« less

  14. Alveolar bone stress around implants with different abutment angulation: an FE-analysis of anterior maxilla.

    PubMed

    Sadrimanesh, Roozbeh; Siadat, Hakimeh; Sadr-Eshkevari, Pooyan; Monzavi, Abbas; Maurer, Peter; Rashad, Ashkan

    2012-06-01

    To comparatively assess the masticatory stress distribution in bone around implants placed in the anterior maxilla with three different labial inclinations. Three-dimensional finite element models were fabricated for three situations in anterior maxilla: (1) a fixture in contact with buccal cortical plate restored by straight abutment, (2) a fixture inclined at 15 degrees, and (3) 20 degrees labially restored with corresponding angled abutment. A palatal bite force of 146 N was applied to a point 3 mm below the incisal edge. Stress distribution around the bone-fixture interface was determined using ANSYS software. The maximum compressive stress, concentrated in the labial crestal cortical bone, was measured to be 62, 108, and 122 MPa for 0-, 15-, and 20-degree labially inclined fixtures, respectively. The maximum tensile stress, concentrated in the palatal crestal cortical bone, was measured to be 60, 108, and 120 MPa for 0-, 15-, and 20-degree labially inclined fixtures, respectively. While all compressive stress values were under the cortical yield strength of 169 MPa, tensile stress values partially surpassed the yield strength (104 MPa) especially when a 20-degree inclination was followed for fixture placement.

  15. Effect of Additives on Green Sand Molding Properties using Design of Experiments and Taguchi's Quality Loss Function - An Experimental Study

    NASA Astrophysics Data System (ADS)

    Desai, Bhagyashree; Mokashi, Pavani; Anand, R. L.; Burli, S. B.; Khandal, S. V.

    2016-09-01

    The experimental study aims to underseek the effect of various additives on the green sand molding properties as a particular combination of additives could yield desired sand properties. The input parameters (factors) selected were water and powder (Fly ash, Coconut shell and Tamarind) in three levels. Experiments were planned using design of experiments (DOE). On the basis of plans, experiments were conducted to understand the behavior of sand mould properties such as compression strength, shear strength, permeability number with various additives. From the experimental results it could be concluded that the factors have significant effect on the sand properties as P-value found to be less than 0.05 for all the cases studied. The optimization based on quality loss function was also performed. The study revealed that the quality loss associated with the tamarind powder was lesser compared to other additives selected for the study. The optimization based on quality loss function and the parametric analysis using ANOVA suggested that the tamarind powder of 8 gm per Kg of molding sand and moisture content of 7% yield better properties to obtain sound castings.

  16. Constitutive modeling of the mechanical behavior of high strength ferritic steels for static and dynamic applications

    NASA Astrophysics Data System (ADS)

    Abed, Farid H.

    2010-11-01

    A constitutive relation is presented in this paper to describe the plastic behavior of ferritic steel over a broad range of temperatures and strain rates. The thermo-mechanical behavior of high strength low alloy (HSLA-65) and DH-63 naval structural steels is considered in this study at strains over 40%. The temperatures and strain rates are considered in the range where dynamic strain aging is not effective. The concept of thermal activation analysis as well as the dislocation interaction mechanism is used in developing the flow model for both the isothermal and adiabatic viscoplastic deformation. The flow stresses of the two steels are very sensitive to temperature and strain rate, the yield stresses increase with decreasing temperatures and increasing strain rates. That is, the thermal flow stress is mainly captured by the yield stresses while the hardening stresses are totally pertained to the athermal component of the flow stress. The proposed constitutive model predicts results that compare very well with the measured ones at initial temperature range of 77 K to 1000 K and strain rates between 0.001 s-1 and 8500 s-1 for both steels.

  17. Sharp improvement of flashover strength from composite micro-textured surfaces

    NASA Astrophysics Data System (ADS)

    Huo, Yankun; Liu, Wenyuan; Ke, Changfeng; Chang, Chao; Chen, Changhua

    2017-09-01

    A composite micro-textured surface structure is proposed and demonstrated to enhance the surface flashover strength of polymer insulators used in vacuum. The structure is fabricated in two stages, with periodic triangular grooves of approximately 210 μm in width formed in the first stage and micro-holes of approximately 2 μm coated on the inner surface of grooves in the second. The aim is to exploit the synergistic effects between the grooves and micro-holes to suppress the secondary electron yield to obtain a better flashover performance. To acquire insulators with the composite micro-textured surface, the CO2 laser processing technique is applied to treat the surface of the PMMA insulators. The test results show that the flashover voltages of the insulators with the two-stage fabricated structure increase by 150% compared with the untreated samples in the best state. Compared with the traditional macro-groove structures on insulators, the proposed composite micro-textured insulators exhibit a better surface flashover performance.

  18. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    PubMed Central

    Khashaba, Rania M.; Moussa, Mervet; Koch, Christopher; Jurgensen, Arthur R.; Missimer, David M.; Rutherford, Ronny L.; Chutkan, Norman B.; Borke, James L.

    2011-01-01

    Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications. PMID:21941551

  19. Imaging carbon nanotube interactions, diffusion, and stability in nanopores.

    PubMed

    Eichmann, Shannon L; Smith, Billy; Meric, Gulsum; Fairbrother, D Howard; Bevan, Michael A

    2011-07-26

    We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled carbon nanotubes (MWCNTs) in nanoscale silica slit pores. Trajectories are analyzed to nonintrusively measure MWCNT interactions, diffusion, and stability as a function of pH and ionic strength. Evanescent wave scattering is used to track MWCNT positions normal to pore walls with nanometer-scale resolution, and video microscopy is used to track lateral positions with spatial resolution comparable to the diffraction limit. Analysis of MWCNT excursions normal to pore walls yields particle-wall potentials that agree with theoretical electrostatic and van der Waals potentials assuming a rotationally averaged potential of mean force. MWCNT lateral mean square displacements are used to quantify translational diffusivities, which are comparable to predictions based on the best available theories. Finally, measured MWCNT pH and ionic strength dependent stabilities are in excellent agreement with predictions. Our findings demonstrate novel measurement and modeling tools to understand the behavior of confined MWCNTs relevant to a broad range of applications.

  20. Utilization of ground waste seashells in cement mortars for masonry and plastering.

    PubMed

    Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn

    2012-11-30

    In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Mechanical properties of high-Si plate steel produced by the quenching and partitioning process

    NASA Astrophysics Data System (ADS)

    Hong, Seung Chan; Ahn, Jae Cheon; Nam, Sang Yong; Kim, Seog Ju; Yang, Hee Choon; Speer, John G.; Matlock, David K.

    2007-12-01

    The microstructures and mechanical properties of a high-Si (1.5 wt.%) steel produced by a novel process of quenching and partitioning (Q & P) were compared with those obtained using traditional heat treatments (i.e. austempering, intercritical annealing for dual phase, quench and tempering). Plate steel was included for exploration of the Q & P process in applications requiring strength and toughness (such as an API line pipe), where retained austenite may contribute to the overall toughness via the TRIP phenomenon at a crack top. The Q & P process is based on the partial transformation of austenite to martensite, followed by partitioning of carbon from martensite into austenite, which leads to an untypical microstructure. Retained austenite amounts up to 6 vol.% with a carbon content of up to 0.88 wt.% were achieved in 0.1% carbon steel using Q & P. Superior impact toughness at higher yield strength levels was found after Q & P compared to other traditional heat treatments with equivalent partitioning, austempering or tempering conditions.

  2. Comparative shock response of additively manufactured versus conventionally wrought 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.; Palmer, T. A.

    2017-01-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens that were machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology permits direct fabrication of net- or near-net-shape metal parts. For the present investigation, velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response for one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.0 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. The possible contributions of various factors, such as composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and/or sample axis orientation relative to the additive manufacturing deposition trajectory, are considered to explain differences between the AM and baseline 304L dynamic material results.

  3. A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression.

    PubMed

    Persson, Ann-Sofie; Alderborn, Göran

    2018-04-01

    The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ductile properties and compared to predicted SPR based on a three-stage approach. The prediction was based on the Kawakita b -1 parameter and the in-die Heckel yield stress, an estimate of maximal tensile strength, and a parameter proportionality factor α. Three values of α were used to investigate the influence of the parameter on the SPR. The experimental SPR could satisfactorily be described by the three stage model, however for sodium bicarbonate the tensile strength plateau could not be observed experimentally. The shape of the predicted SPR was to a minor extent influenced by the Kawakita b -1 but the width of the linear region was highly influenced by α. An increased α increased the width of the linear region and thus also the maximal predicted tablet tensile strength. Furthermore, the correspondence between experimental and predicted SPR was influenced by the α value and satisfactory predictions were in general obtained for α = 4.1 indicating the predictive potential of the hybrid approach. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. The effect of shear strength on isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary

    2015-06-01

    Isentropic compression experiments (ICE) are a novel way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 -102 GPa, while the yield strength of the material can be as low as 10-1GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. We will also show using a systematic asymptotic analysis that entropy changes are universally negligible in the absence of shocks. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength over a model based purely on hydrodynamics.

  5. Investigation on mechanical behavior and material characteristics of various weight composition of SiCp reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman

    2018-02-01

    Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.

  6. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing.

    PubMed

    Bhattacharjee, T; Wani, I S; Sheikh, S; Clark, I T; Okawa, T; Guo, S; Bhattacharjee, P P; Tsuji, N

    2018-02-19

    Nano-lamellar (L1 2  + B2) AlCoCrFeNi 2.1 eutectic high entropy alloy (EHEA) was processed by cryo-rolling and annealing. The EHEA developed a novel hierarchical microstructure featured by fine lamellar regions consisting of FCC lamellae filled with ultrafine FCC grains (average size ~200-250 nm) and B2 lamellae, and coarse non-lamellar regions consisting of ultrafine FCC (average size ~200-250 nm), few coarse recrystallized FCC grains and rather coarse unrecrystallized B2 phase (~2.5 µm). This complex and hierarchical microstructure originated from differences in strain-partitioning amongst the constituent phases, affecting the driving force for recrystallization. The hierarchical microstructure of the cryo-rolled and annealed material resulted in simultaneous enhancement in strength (Yield Strength/YS: 1437 ± 26 MPa, Ultimate Tensile Strength/UTS: 1562 ± 33 MPa) and ductility (elongation to failure/e f  ~ 14 ± 1%) as compared to the as-cast as well as cold-rolled and annealed materials. The present study for the first time demonstrated that cryo-deformation and annealing could be a novel microstructural design strategy for overcoming strength-ductility trade off in multiphase high entropy alloys.

  7. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel

    PubMed Central

    Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-01

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743

  8. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel.

    PubMed

    Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-22

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.

  9. Further constraints for the Plio-Pleistocene geomagnetic field strength: New results from the Los Tuxtlas volcanic field (Mexico)

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.

    2001-09-01

    A rock-magnetic, paleomagnetic and paleointensity study was carried out on 13 Plio-Pleistocene volcanic flows from the Los Tuxtlas volcanic field (Trans Mexican Volcanic Belt) in order to obtain some decisive constraints for the geomagnetic field strength during the Plio-Pleistocene time. The age of the volcanic units, which yielded reliable paleointensity estimates, lies between 2.2 and 0.8 Ma according to the available K/Ar radiometric data. Thermomagnetic investigations reveal that remanence is carried in most cases by Ti-poor titanomagnetite, resulting from oxy-exsolution that probably occurred during the initial flow cooling. Unblocking temperature spectra and relatively high coercivity point to 'small' pseudo-single domain magnetic grains for these (titano)magnetites. Single-component, linear demagnetization plots were observed in most cases. Six flows yield reverse polarity magnetization, five flows are normally magnetized, and one flow shows intermediate polarity magnetization. Evidence of a strong lightning-produced magnetization overprint was detected for one site. The mean pole position obtained in this study is Plat = 83.7°, Plong = 178.1°, K = 36, A95 = 8.1°, N =10 and the corresponding mean paleodirection is I = 31.3°, D = 352°, k = 37, a95 = 8.2°, which is not significantly different from the expected direction estimated from the North American apparent polar wander path. Thirty-nine samples were pre-selected for Thellier palaeointensity experiments because of their stable remanent magnetization and relatively weak-within-site dispersion. Only 21 samples, coming from four individual basaltic lava flows, yielded reliable paleointensity estimates with the flow-mean virtual dipole moments (VDM) ranging from 6.4 to 9.1 × 1022 Am2. Combining the coeval Mexican data with the available comparable quality Pliocene paleointensity results yield a mean VDM of 6.4 × 1022 Am2, which is almost 80% of the present geomagnetic axial dipole. Reliable paleointensity results for the last 5~Ma are still scarce and are of dissimilar quality. Additional high-quality absolute intensity determinations are needed to better constraint the geomagnetic field strength during the Plio-Pleistocene time.

  10. Research on Submarine Pipeline Steel with High Performance

    NASA Astrophysics Data System (ADS)

    Ren, Yi; Liu, Wenyue; Zhang, Shuai; Wang, Shuang; Gao, Hong

    Submarine pipeline steel has largely uniform elongation, low yield ratio and good balance between high strength and high plasticity because of the microstructure with dual phase. In this work, the microstructure and properties of the submarine pipeline steel are studied. The results show that the matrix structure is consisted of ferrite, bainite and martensite -austenite islands. The structure has a tight relationship with the thermal-mechanical controlled process. Fine dual phase shows good plasticity and low yield ratio, which can support the good balance between high strength and high plasticity.

  11. Static Properties of Fibre Metal Laminates

    NASA Astrophysics Data System (ADS)

    Hagenbeek, M.; van Hengel, C.; Bosker, O. J.; Vermeeren, C. A. J. R.

    2003-07-01

    In this article a brief overview of the static properties of Fibre Metal Laminates is given. Starting with the stress-strain relation, an effective calculation tool for uniaxial stress-strain curves is given. The method is valid for all Glare types. The Norris failure model is described in combination with a Metal Volume Fraction approach leading to a useful tool to predict allowable blunt notch strength. The Volume Fraction approach is also useful in the case of the shear yield strength of Fibre Metal Laminates. With the use of the Iosipescu test shear yield properties are measured.

  12. Testing Bonds Between Brittle And Ductile Films

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Ohsaki, Hiroyuki

    1989-01-01

    Simple uniaxial strain test devised to measure intrinsic shear strength. Brittle film deposited on ductile stubstrate film, and combination stretched until brittle film cracks, then separates from substrate. Dimensions of cracked segments related in known way to tensile strength of brittle film and shear strength of bond between two films. Despite approximations and limitations of technique, tests show it yields semiquantitative measures of bond strengths, independent of mechanical properties of substrates, with results reproducible with plus or minus 6 percent.

  13. Divergence between strength indicators in packaging and cigarette engineering: a case study of Marlboro varieties in Australia and the USA.

    PubMed

    King, Bill; Borland, Ron; Abdul-Salaam, Shadeed; Polzin, Gregory; Ashley, David; Watson, Clifford; O'Connor, Richard J

    2010-10-01

    To investigate how the tobacco industry is adapting to regulatory action in accordance with provisions of the Framework Convention on Tobacco Control that targets misleading packaging and labelling. To relate the packaging and labelling of new cigarette varieties to their construction and performance. The principal design features and tar, nicotine and carbon monoxide yields of the Marlboro 'brand family' in Australia were measured and compared with those of the US equivalents. Marlboro Red and Blue/Medium, could not be differentiated in preliminary tests in Australia, but were different in the USA. However, yield testing showed Marlboro Blue/Medium did not have lower tar and nicotine yields in either country, indeed being higher in Australia. Colour can be used to market cigarettes as 'milder', independently of ISO yields and 'Light'/'Mild' descriptors. Banning of 'Light' and 'Mild' brand descriptors may be inadequate to end belief in less harmful cigarettes so long as the tobacco industry remains free to engineer 'mildness' and to use colours, other descriptors and design features to characterise varieties it wants to market as 'milder'.

  14. Effect of dislocation pile-up on size-dependent yield strength in finite single-crystal micro-samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp; Zhang, Xu

    2015-07-07

    Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources andmore » pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.« less

  15. A Constitutive Equation Relating Composition and Microstructure to Properties in Ti-6Al-4V: As Derived Using a Novel Integrated Computational Approach

    NASA Astrophysics Data System (ADS)

    Ghamarian, Iman; Samimi, Peyman; Dixit, Vikas; Collins, Peter C.

    2015-11-01

    While it is useful to predict properties in metallic materials based upon the composition and microstructure, the complexity of real, multi-component, and multi-phase engineering alloys presents difficulties when attempting to determine constituent-based phenomenological equations. This paper applies an approach based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and Monte Carlo simulations to determine a mechanism-based equation for the yield strength of α+ β processed Ti-6Al-4V (all compositions in weight percent) which consists of a complex multi-phase microstructure with varying spatial and morphological distributions of the key microstructural features. Notably, this is an industrially important alloy yet an alloy for which such an equation does not exist in the published literature. The equation ultimately derived in this work not only can accurately describe the properties of the current dataset but also is consistent with the limited and dissociated information available in the literature regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium. In addition, this equation suggests new interesting opportunities for controlling yield strength by controlling the relative intrinsic strengths of the two phases through solid solution strengthening.

  16. Porcelain surface conditioning protocols and shear bond strength of orthodontic brackets.

    PubMed

    Lestrade, Ashley M; Ballard, Richard W; Xu, Xiaoming; Yu, Qingzhao; Kee, Edwin L; Armbruster, Paul C

    2016-05-01

    The objective of the present study was to determine which of six bonding protocols yielded a clinically acceptable shear bond strength (SBS) of metal orthodontic brackets to CAD/CAM lithium disilicate porcelain restorations. A secondary aim was to determine which bonding protocol produced the least surface damage at debond. Sixty lithium disilicate samples were fabricated to replicate the facial surface of a mandibular first molar using a CEREC CAD/CAM machine. The samples were split into six test groups, each of which received different mechanical/chemical pretreatment protocols to roughen the porcelain surface prior to bonding a molar orthodontic attachment. Shear bond strength testing was conducted using an Instron machine. The mean, maximum, minimal, and standard deviation SBS values for each sample group including an enamel control were calculated. A t-test was used to evaluate the statistical significance between the groups. No significant differences were found in SBS values, with the exception of surface roughening with a green stone prior to HFA and silane treatment. This protocol yielded slightly higher bond strength which was statistically significant. Chemical treatment alone with HFA/silane yielded SBS values within an acceptable clinical range to withstand forces applied by orthodontic treatment and potentially eliminates the need to mechanically roughen the ceramic surface.

  17. Peanut peg strength and post harvest pod scavenging for full phenotypic yield over digging date and variety

    USDA-ARS?s Scientific Manuscript database

    New peanut cultivars are available with very high yield potential and high levels of disease resistance. With rising input costs and shrinking return margins, all efforts must be made to harvest the full yield produced. Peanut crops are susceptible to high levels of pod loss during digging from a ...

  18. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S.

    NASA Technical Reports Server (NTRS)

    Mladenova, Iliana E.; Bolten, John D.; Crow, Wade T.; Anderson, Martha C.; Hain, C. R.; Johnson, David M.; Mueller, Rick

    2017-01-01

    This paper presents an intercomparative study of 12 operationally produced large-scale datasets describing soil moisture, evapotranspiration (ET), and or vegetation characteristics within agricultural regions of the contiguous United States (CONUS). These datasets have been developed using a variety of techniques, including, hydrologic modeling, satellite-based retrievals, data assimilation, and survey in-field data collection. The objectives are to assess the relative utility of each dataset for monitoring crop yield variability, to quantitatively assess their capacity for predicting end-of-season corn and soybean yields, and to examine the evolution of the yield-index correlations during the growing season. This analysis is unique both with regards to the number and variety of examined yield predictor datasets and the detailed assessment of the water availability timing on the end-of-season crop production during the growing season. Correlation results indicate that over CONUS, at state-level soil moisture and ET indices can provide better information for forecasting corn and soybean yields than vegetation-based indices such as normalized difference vegetation index. The strength of correlation with corn and soybean yields strongly depends on the interannual variability in yield measured at a given location. In this case study, some of the remotely derived datasets examined provide skill comparable to that of in situ field survey-based data further demonstrating the utility of these remote sensing-based approaches for estimating crop yield.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less

  20. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    PubMed

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (p<0.001) among the non-welded materials, the Co-Cr alloy being the most resistant to deflection. Comparing the welding processes, significant differences (p<0.001) where found between TIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  1. A novel ultrafine-grained Fe−22Mn−0.6C TWIP steel with superior strength and ductility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Y.Z., E-mail: yztian@imr.ac.cn

    A fully recrystallized ultrafine-grained (UFG) Fe−22wt.%Mn−0.6wt.%C twinning-induced plasticity (TWIP) steel with mean grain size of 576 nm was fabricated by cold rolling and annealing process. Tensile test showed that this UFG steel possessed high yield strength of 785 MPa, and unprecedented uniform elongation of 48%. The Hall-Petch relationship was verified from the coarse-grained (CG) regime to the ultrafine-grained (UFG) regime. The microstructures at specified tensile strains were characterized by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The microstructures and strain hardening behavior of the UFG TWIP steel were compared with the CG counterpart. The strong strain hardening capabilitymore » of the UFG steel is supposed to be responsible for the high strength and good ductility. - Highlights: • A fully recrystallized Fe−22Mn−0.6C TWIP steel with mean grain size of 576 nm was fabricated. • The ultrafine-grained (UFG) steel exhibits strong strain-hardening capability, excellent strength and ductility. • The Hall-Petch relationship is fitted well from the CG regime to the UFG regime.« less

  2. A Progressive Damage Methodology for Residual Strength Predictions of Center-Crack Tension Composite Panels

    NASA Technical Reports Server (NTRS)

    Coats, Timothy William

    1996-01-01

    An investigation of translaminate fracture and a progressive damage methodology was conducted to evaluate and develop a residual strength prediction capability for laminated composites with through penetration notches. This is relevant to the damage tolerance of an aircraft fuselage that might suffer an in-flight accident such as an uncontained engine failure. An experimental characterization of several composite materials systems revealed an R-curve type of behavior. Fractographic examinations led to the postulate that this crack growth resistance could be due to fiber bridging, defined here as fractured fibers of one ply bridged by intact fibers of an adjacent ply. The progressive damage methodology is currently capable of predicting the initiation and growth of matrix cracks and fiber fracture. Using two difference fiber failure criteria, residual strength was predicted for different size panel widths and notch lengths. A ply discount fiber failure criterion yielded extremely conservative results while an elastic-perfectly plastic fiber failure criterion showed that the fiber bridging concept is valid for predicting residual strength for tensile dominated failure loads. Furthermore, the R-curves predicted by the model using the elastic-perfectly plastic fiber criterion compared very well with the experimental R-curves.

  3. Static strength of molybdenum to 92 GPa under radial X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Tu, P.; Li, B.; Wu, S. Y.; Hao, J. B.; Bai, L. G.; Li, X. D.; Liu, J.

    2018-06-01

    The high-pressure strength of molybdenum (Mo) to 92 GPa has been studied by radial X-ray diffraction (RXRD) technique. The ratio of t/G is found to decrease above ˜24 GPa, showing the yield of Mo which is caused by plastic deformation at this pressure. Combined with high-pressure shear modulus, it was found that the differential stress corresponding to the yield of Mo at 24 GPa due to plastic deformation is 1.73 GPa. The second increase of t values occurs after ˜66 GPa, suggesting the strength of Mo with a differential stress of ˜1.93 GPa. In addition, the maximum difference stress of molybdenum at 87 GPa is 3.01 GPa.

  4. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appmmore » over 7 dpa appears to have little effect on the mechanical properties of the alloys.« less

  5. Ductility and fracture in B2 FeAl alloys. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Crimp, Martin A.

    1987-01-01

    The mechanical behavior of B2FeAl alloys was studied. Stoichiometric Fe-50Al exhibits totally brittle behavior while iron-rich Fe-40Al yields and displays about 3% total strain. This change in behavior results from large decreases in the yield strength with iron-rich deviations from stoichiometry while the fracture stress remains essentially constant. Single crystal studies show that these yield strength decreases are directly related to decreases in the critical resolved shear stress for a group of zone axes /111/ set of (110) planes slip. This behavior is rationalized in terms of the decrease in antiphase boundary energy with decreasing aluminum content. The addition of boron results in improvements in the mechanical behavior of alloys on the iron-rich side of stoichiometry. These improvements are increased brittle fracture stresses of near-stoichiometric alloys, and enhanced ductility of up to 6% in Fe-40Al. These effects were attributed to increased grain boundary adhesion as reflected by changes in fracture mode from intergranular to transgranular failure. The increases in yield strength, which are observed in both polycrystals and single crystals, result from the quenching in of large numbers of thermal vacancies. Hall-Petch plots show that the cooling rate effects are a direct result of changes in the Hall-Petch intercept/lattice resistance flow.

  6. Variations in the microstructure and properties of Mn-Ti multiple-phase steel with high strength under different tempering temperatures

    NASA Astrophysics Data System (ADS)

    Li, Dazhao; Li, Xiaonan; Cui, Tianxie; Li, Jianmin; Wang, Yutian; Fu, Peimao

    2015-03-01

    There are few relevant researches on coils by tempering, and the variations of microstructure and properties of steel coil during the tempering process also remain unclear. By using thermo-mechanical control process(TMCP) technology, Mn-Ti typical HSLA steel coils with yield strength of 920 MPa are produced on the 2250 hot rolling production line. Then, the samples are taken from the coils and tempered at the temperatures of 220 °C, 350 °C, and 620 °C respectively. After tempering the strength, ductility and toughness of samples are tested, and meanwhile microstructures are investigated. Precipitates initially emerge inside the ferrite laths and the density of the dislocation drops. Then, the lath-shaped ferrites begin to gather, and the retained austenite films start to decompose. Finally, the retained austenite films are completely decomposed into coarse and short rod-shape precipitates composed of C and Ti compounds. The yield strength increases with increasing tempering temperature due to the pinning effect of the precipitates, and the dislocation density decreases. The yield strength is highest when the steel is tempered at 220 °C because of pinning of the precipitates to dislocations. The total elongation increases in all samples because of the development of ferrites during tempering. The tensile strength and impact absorbed energy decline because the effect of impeding crack propagation weakens as the retained austenite films completely decompose and the precipitates coarsen. This paper clarifies the influence of different tempering temperatures on phase transformation characteristics and process of Mn-Ti typical multiphase steels, as well as its resulting performance variation rules.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasemer, Matthew; Quey, Romain; Dawson, Paul

    Discussed is a computational study of the influence of the microstructure’s geometric morphology on the yield strength and ductility of Ti-6Al-4V. Uniaxial tension tests were conducted on physical specimens to determine the macroscopic yield strength and ductility of two microstructural variations (mill annealed and β annealed) to establish comparisons of macroscopic properties. A multi-experimental approach was utilized to gather two dimensional and three dimensional data, which were used to inform the construction of representative β annealed polycrystals. A highly parallelized crystal plasticity finite element framework was employed to model the deformation response of the generated polycrystals subjected to uniaxial tension.more » To gauge the macroscopic response’s sensitivity to the morphology of the geometry, the key geometrical features - namely the number of high temperature β phase grains, α phase colonies, and size of remnant secondary β phase lamellae - were altered systematically in a suite of simulations. Both single phase and dual phase aggregates were studied. Presented are the calculated yield strengths and ductilities, and the resulting trends as functions of geometric parameters are examined in light of the heterogeneity in deformation at the crystal scale.« less

  8. Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium

    DTIC Science & Technology

    2011-09-01

    nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3

  9. Bearing Strengths of Some Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  10. Steel skin - SMC laminate structures for lightweight automotive manufacturing

    NASA Astrophysics Data System (ADS)

    Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo

    2017-09-01

    In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.

  11. Development of improved low-strain creep strength in Cabot alloy R-41 sheet. [nickel base sheet alloy for reentry shielding

    NASA Technical Reports Server (NTRS)

    Rothman, M. F.

    1984-01-01

    The feasibility of improving the low-strain creep properties of a thin gauge nickel base sheet alloy through modified heat treatment or through development of a preferred crystal-lographic texture was investigated. The basic approach taken to improve the creep strength of the material by heat treatment was to increase grain size by raising the solution treatment temperature for the alloy to the range of 1420 K to 1475 K (2100 F to 2200 F). The key technical issue involved was maintenance of adequate tensile ductility following the solutioning of M6C primary carbides during the higher temperature solution treatment. The approach to improve creep properties by developing a sheet texture involved varying both annealing temperatures and the amount of prior cold work. Results identified a heat treatment for alloy R-14 sheet which yields a substantial creep-life advantage at temperatures above 1090 K (1500 F) when compared with material given the standard heat treatment. At the same time, this treatment provides reasonable tensile ductility over the entire temperature range of interest. The mechanical properties of the material given the new heat treatment are compared with those for material given the standard heat treatment. Attempts to improve creep strength by developing a sheet texture were unsuccessful.

  12. An entropy and viscosity corrected potential method for rotor performance prediction

    NASA Technical Reports Server (NTRS)

    Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.

    1988-01-01

    An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.

  13. Revealing Black Holes with Gaia

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Chatterjee, Sourav; Larson, Shane L.

    2017-11-01

    We estimate the population of black holes with luminous stellar companions (BH-LCs) in the Milky Way (MW) observable by Gaia. We evolve a realistic distribution of BH-LC progenitors from zero-age to the current epoch taking into account relevant physics, including binary stellar evolution, BH-formation physics, and star formation rate, in order to estimate the BH-LC population in the MW today. We predict that Gaia will discover between 3800 and 12,000 BH-LCs by the end of its 5 {years} mission, depending on BH natal kick strength and observability constraints. We find that the overall yield, and distributions of eccentricities and masses of observed BH-LCs, can provide important constraints on the strength of BH natal kicks. Gaia-detected BH-LCs are expected to have very different orbital properties compared to those detectable via radio, X-ray, or gravitational-wave observations.

  14. A novel method of testing the shear strength of thick honeycomb composites

    NASA Technical Reports Server (NTRS)

    Hodge, A. J.; Nettles, A. T.

    1991-01-01

    Sandwich composites of aluminum and glass/phenolic honeycomb core were tested for shear strength before and after impact damage. The assessment of shear strength was performed in two ways; by four point bend testing of sandwich beams and by a novel double lap shear (DLS) test. This testing technique was developed so smaller specimens could be used, thus making the use of common lab scale fabrication and testing possible. The two techniques yielded similar data. The DLS test gave slightly lower shear strength values of the two methods but were closer to the supplier's values for shear strength.

  15. Accessing ultrahigh-pressure, quasi-isentropic states of mattera)

    NASA Astrophysics Data System (ADS)

    Lorenz, K. T.; Edwards, M. J.; Glendinning, S. G.; Jankowski, A. F.; McNaney, J.; Pollaine, S. M.; Remington, B. A.

    2005-05-01

    A new approach to the study of material strength of metals at extreme pressures has been developed on the Omega laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, inferred from interferometric measurements of velocity, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation [J. Edwards et al., Phys. Rev. Lett. 92, 075002 (2004)]. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor unstable interfaces. This paper reports the first attempt to use this new laser-driven, quasi-isentropic technique for determining material strength in high-pressure solids. Modulated foils of Al-6061-T6 were accelerated and compressed to peak pressures of ˜200kbar. Modulation growth was recorded at a series of times after peak acceleration and well into the release phase. Fits to the growth data, using a Steinberg-Guinan constitutive strength model, give yield strengths 38% greater than those given by the nominal parameters for Al-6061-T6. Calculations indicate that the dynamic enhancement to the yield strength at ˜200kbar is a factor of ˜3.6× over the ambient yield strength of 2.9kbar. Experimental designs based on this drive developed for the National Ignition Facility laser [W. Hogan, E. Moses, B. Warner, M. Sorem, and J. Soures, Nuclear Fusion 41, 567 (2001)] predict that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega, accessing new regimes of dense, high-pressure matter.

  16. Effectiveness of acute in-hospital physiotherapy with knee-extension strength training in reducing strength deficits in patients with a hip fracture: A randomised controlled trial

    PubMed Central

    2017-01-01

    Question Is acute in-hospital physiotherapy with additional progressive knee-extension strength training (ST) of the fractured limb more effective in reducing knee-extension strength deficit at follow-up compared to physiotherapy without strength training in patients with a hip fracture? Design Assessor blinded, randomised controlled trial with intention-to-treat analysis. Participants 90 patients with a hip fracture admitted to an acute orthopaedic Hip Fracture Unit at a university hospital between October 2013 and May 2015. Intervention Daily physiotherapy with or without progressive knee-extension strength training (10RM), 3 x 10 repetitions, of the fractured limb using ankle weight cuffs conducted by ward physical therapists during hospital stay. Outcome measures Primary outcome was the change in maximal isometric knee-extension strength in the fractured limb in percentage of the non-fractured limb from inclusion to postoperative day 10 or discharge (follow-up). Secondary outcome was Timed Up and Go test measured early after surgery and at follow-up. Results In the intention-to-treat analysis of between-group differences, the primary outcome improved 8.1% (95% CI -2.3; 18.4) by additional strength training from baseline to follow-up. In the per-protocol analysis of non-missing data, significant between-group improvements by 10.5% (95% CI 0.3; 20.7) were found in favour of additional ST. No significant between-group differences were found in any secondary outcome. Conclusion Physiotherapy with addition of 5 sessions of ST yielded no additional improvements compared to physiotherapy without strength training in reducing the knee-extension strength deficit at follow-up in patients with a hip fracture. It is debatable whether larger improvements than the observed 8–10% can be expected given that only five exercise sessions, on average, were completed. In fragile patients with a hip fracture in the acute phase, where the ability to participate in functional exercise is compromised, we still consider early strength training a possibility to improve outcomes of clinical importance, given the results of the per-protocol analysis. The present data provides an important basis and call for future investigations including longer term interventions. Trial registration Clinicaltrials.gov NCT00848913 PMID:28662153

  17. Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Woods, Walter

    1946-01-01

    Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.

  18. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    NASA Astrophysics Data System (ADS)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03-7971-2013 about Cold formed steel.

  19. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    NASA Astrophysics Data System (ADS)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971- 2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03- 7971-2013 about Cold formed steel.

  20. Characterization of Environmentally Assisted Cracking for Design: State of the Art.

    DTIC Science & Technology

    1982-01-01

    Barsom, J.M., Effect of cyclic stress form on corrosion fatigue crack propagation below Kiscc in a high yield strength steel , in Corrosion Fatigue... Effect of Prestressing on the Stress Corrosion Resistance of Two High Strength Steels , Boeing Document D6-25275, Boeing Company, Seattle, Washington...sT’e Residual stress Crack growth High strength steel Seawater Crack initiation Hydrogen embrittlement Stress corrosion Design Linear elastic fracture

  1. Mechanics of Interface Cracks

    DTIC Science & Technology

    1990-09-27

    strength and thus were intended to provide a full account is taken of finite changes in geometry, comprehensive picture of stress and strain fields large...b, serv’es as a ecritical normal separation beyond which allappit matrix yield strength. Within the context of atom- adhesion is lost. Thus the

  2. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  3. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  4. Comparing Prognostic Strength of Acute Corticospinal Tract Injury Measured by a New Diffusion Tensor Imaging Based Template Approach Versus Common Approaches

    PubMed Central

    Hirai, Kelsi K.; Groisser, Benjamin N.; Copen, William A.; Singhal, Aneesh B.; Schaechter, Judith D.

    2015-01-01

    Background Long-term motor outcome of acute stroke patients with severe motor impairment is difficult to predict. While measure of corticospinal tract (CST) injury based on diffusion tensor imaging (DTI) in subacute stroke patients strongly predicts motor outcome, its predictive value in acute stroke patients is unclear. Using a new DTI-based, density-weighted CST template approach, we demonstrated recently that CST injury measured in acute stroke patients with moderately-severe to severe motor impairment of the upper limb strongly predicts motor outcome of the limb at 6 months. New Method The current study compared the prognostic strength of CST injury measured in 10 acute stroke patients with moderately-severe to severe motor impairment of the upper limb by the new density-weighted CST template approach versus several variants of commonly used DTI-based approaches. Results and Comparison with Existing Methods Use of the density-weighted CST template approach yielded measurements of acute CST injury that correlated most strongly, in absolute magnitude, with 6-month upper limb strength (rs = 0.93), grip (rs = 0.94) and dexterity (rs = 0.89) compared to all other 11 approaches. Formal statistical comparison of correlation coefficients revealed that acute CST injury measured by the density-weighted CST template approach correlated significantly more strongly with 6-month upper limb strength, grip and dexterity than 9, 10 and 6 of the 11 alternative measurements, respectively. Conclusions Measurements of CST injury in acute stroke patients with substantial motor impairment by the density-weighted CST template approach may have clinical utility for anticipating healthcare needs and improving clinical trial design. PMID:26386285

  5. Simulation of fruit-set and trophic competition and optimization of yield advantages in six Capsicum cultivars using functional-structural plant modelling.

    PubMed

    Ma, Y T; Wubs, A M; Mathieu, A; Heuvelink, E; Zhu, J Y; Hu, B G; Cournède, P H; de Reffye, P

    2011-04-01

    Many indeterminate plants can have wide fluctuations in the pattern of fruit-set and harvest. Fruit-set in these types of plants depends largely on the balance between source (assimilate supply) and sink strength (assimilate demand) within the plant. This study aims to evaluate the ability of functional-structural plant models to simulate different fruit-set patterns among Capsicum cultivars through source-sink relationships. A greenhouse experiment of six Capsicum cultivars characterized with different fruit weight and fruit-set was conducted. Fruit-set patterns and potential fruit sink strength were determined through measurement. Source and sink strength of other organs were determined via the GREENLAB model, with a description of plant organ weight and dimensions according to plant topological structure established from the measured data as inputs. Parameter optimization was determined using a generalized least squares method for the entire growth cycle. Fruit sink strength differed among cultivars. Vegetative sink strength was generally lower for large-fruited cultivars than for small-fruited ones. The larger the size of the fruit, the larger variation there was in fruit-set and fruit yield. Large-fruited cultivars need a higher source-sink ratio for fruit-set, which means higher demand for assimilates. Temporal heterogeneity of fruit-set affected both number and yield of fruit. The simulation study showed that reducing heterogeneity of fruit-set was obtained by different approaches: for example, increasing source strength; decreasing vegetative sink strength, source-sink ratio for fruit-set and flower appearance rate; and harvesting individual fruits earlier before full ripeness. Simulation results showed that, when we increased source strength or decreased vegetative sink strength, fruit-set and fruit weight increased. However, no significant differences were found between large-fruited and small-fruited groups of cultivars regarding the effects of source and vegetative sink strength on fruit-set and fruit weight. When the source-sink ratio at fruit-set decreased, the number of fruit retained on the plant increased competition for assimilates with vegetative organs. Therefore, total plant and vegetative dry weights decreased, especially for large-fruited cultivars. Optimization study showed that temporal heterogeneity of fruit-set and ripening was predicted to be reduced when fruits were harvested earlier. Furthermore, there was a 20 % increase in the number of extra fruit set.

  6. Yield Potential of Sugar Beet – Have We Hit the Ceiling?

    PubMed Central

    Hoffmann, Christa M.; Kenter, Christine

    2018-01-01

    The yield of sugar beet has continuously increased in the past decades. The question arises, whether this progress will continue in the future. A key factor for increasing yield potential of the crop is breeding progress. It was related to a shift in assimilate partitioning in the plant toward more storage carbohydrates (sucrose), whereas structural carbohydrates (leaves, cell wall compounds) unintendedly declined. The yield potential of sugar beet was estimated at 24 t sugar ha-1. For maximum yield, sufficient growth factors have to be available and the crop has to be able to fully utilize them. In sugar beet, limitations result from the lacking coincidence of maximum irradiation rates and full canopy cover, sink strength for carbon assimilation and high water demand, which cannot be met by rainfall alone. After harvest, sugar losses during storage occur. The paper discusses options for a further increase in yield potential, like autumn sowing of sugar beet, increasing sink strength and related constraints. It is prospected that yield increase by further widening the ratio of storage and structural carbohydrates will come to its natural limit as a certain cell wall stability is necessary. New challenges caused by climate change and by prolonged processing campaigns will occur. Thus breeding for improved pathogen resistance and storage properties will be even more important for successful sugar beet production than a further increase in yield potential itself. PMID:29599787

  7. Improvement of high-yield pulp properties by using a small amount of bleached wheat straw pulp.

    PubMed

    Zhang, Hongjie; He, Zhibin; Ni, Yonghao

    2011-02-01

    In this study, the potential of using bleached wheat straw pulp (BWSP) was explored to improve the tensile strength of the high-yield pulp (HYP) while preserving its high bulk property. The results showed that with the addition of 5-10% refined BWSP, the HYP tensile strength can be increased by about 10-20% without sacrificing the bulk. Similar results were obtained by adding refined BWSP into a mixed furnish of bleached kraft pulps (BKPs) and HYP. The explanation was that micro fines from refined BWSP can act as binders to improve the HYP interfiber bonding, as a result, the HYP tensile strength can be improved by using a small amount of BWSP, while the HYP bulk is not significantly affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Preparation and evaluation of a novel star-shaped polyacid-constructed dental glass-ionomer system.

    PubMed

    Howard, Leah; Weng, Yiming; Xie, Dong

    2014-06-01

    The objective of this study was to synthesize and characterize novel star-shaped poly(acrylic acid-co-itaconic acid)s via chain-transfer radical polymerization technique, use these polyacids to formulate the resin-modified glass-ionomer cements, and evaluate the mechanical strengths of the formed cements The star-shaped poly(acrylic acid-co-itaconic acid)s were synthesized via a chain-transfer radical polymerization reaction using a newly synthesized star-shaped chain-transfer agent. The effects of MW, GM-tethering ratio, P/L ratio and aging on the compressive properties of the formed experimental cements were studied. Compressive, diametral tensile as well as flexural strengths were evaluated and compared to those of Fuji II and Fuji II LC cements. The star-shaped polyacids showed significantly lower viscosities in water as compared to their linear counterparts. The cements formulated with these novel polyacids showed significantly improved mechanical strengths i.e., 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS and 36% in FS, higher than commercial Fuji II LC. After aging in water for 30 days, the compressive strengths of the experimental cements were significantly changed with an increase of 29% in YS, 19% in modulus as well as 23% in CS and a decrease of 5% in toughness, indicating that aging in water enhances the salt-bridge formation and increases brittleness. A novel light-cured glass-ionomer cement system composed of the star-shaped poly(carboxylic acid)s has been developed via a cost-effective and time-efficient chain-transfer radical polymerization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. A bioinspired elastin-based protein for a cytocompatible underwater adhesive.

    PubMed

    Brennan, M Jane; Kilbride, Bridget F; Wilker, Jonathan J; Liu, Julie C

    2017-04-01

    The development of adhesives that can be applied and create strong bonds underwater is a significant challenge for materials engineering. When the adhesive is intended for biomedical applications, further criteria, such as biocompatibility, must be met. Current biomedical adhesive technologies do not meet these needs. In response, we designed a bioinspired protein system that shows promise to achieve biocompatible underwater adhesion coupled with environmentally responsive behavior that is "smart" - that is, it can be tuned to suit a specific application. The material, ELY 16 , is constructed from an elastin-like polypeptide (ELP) that can be produced in high yields from Escherichia coli and can coacervate in response to environmental factors such as temperature, pH, and salinity. To confer wet adhesion, we utilized design principles from marine organisms such as mussels and sandcastle worms. When expressed, ELY 16 is rich in tyrosine. Upon modification with the tyrosinase enzyme to form mELY 16 , the tyrosine residues are converted to 3,4-dihydroxyphenylalanine (DOPA). Both ELY 16 and mELY 16 exhibit cytocompatibility and significant dry adhesion strength (>2 MPa). Modification with DOPA increases protein adsorption to glass and provides moderate adhesion strength (∼240 kPa) in a highly humid environment. Furthermore, this ELP exhibits a tunable phase transition behavior that can be formulated to coacervate in physiological conditions and provides a convenient mechanism for application underwater. Finally, mELY 16 possesses significantly higher adhesion strength in dry, humid, and underwater environments compared with a commercially available fibrin sealant. To our knowledge, mELY 16 provides the strongest bonds of any rationally designed protein when used completely underwater, and its high yields make it more viable for commercial application compared to natural adhesive proteins. In conclusion, this ELP shows great potential to be a new "smart" underwater adhesive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Photoionization and Photofragmentation of the Endohedral Xe C60+ Molecular Ion

    NASA Astrophysics Data System (ADS)

    Aryal, Nagendra Bahadur

    An experimental study of photoionization and fragmentation of the Xe C 60+ endohedral molecular ion is presented in the photon energy range of the well-known Xe 4d giant resonance, and evidence of redistribution of the Xe 4d oscillator strength in photon energy due to multipath interference is reported. Experiments were conducted at undulator beamline 10.0.1 of the Advanced Light Source (ALS) using the merged-beams technique. Prior to these measurements, macroscopic samples containing endohedral Xe C60 were prepared using a setup developed at the ALS. Endohedral Xe C60 yields as high as 2.5x10 -4 were synthesized and a pure Xe C60+ ion beam current of up to 5.5 pA was obtained for the merged-beams experiments. Cross sections were measured in the photon energy range 60 - 150 eV in 0.5 eV steps for single, double, and triple photoionization of endohedral Xe C 60+ accompanied by the loss of n pairs of carbon atoms yielding Xe C60-2n2+ (n = 0, 1), Xe C60-2n 3+ (n = 0, 1, 2, 3), and Xe C584+ photoion products. Reference absolute cross-section measurements were made for empty C60+ for the corresponding reaction channels. The spectroscopic measurements with Xe C60+ were placed onto an absolute scale by normalization to the reference cross sections for C60+ in ranges of photon energies where the Xe 4d contributions were negligible. Results for single photoionization and fragmentation of Xe C60+ show no evidence of the presence of the caged Xe atom. The measurements of double and triple photoionization with fragmentation of Xe C60+ exhibit prominent signatures of the Xe 4d resonance and together account for 6.6 +/- 1.5 of the total Xe 4d oscillator strength of 10. Compared to that for a free Xe atom, the Xe oscillator strength in Xe C60+ is redistributed in photon energy due to multipath interference of outgoing Xe 4d photoelectron waves that may be transmitted or reflected by the spherical C60+ molecular cage, yielding so-called confinement resonances. The experimental data are compared with numerous theoretical predictions for this novel single-molecule photoelectron interferometer system. The comparison indicates that the interference structure is sensitive to the geometry of the molecular cage.

  11. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    PubMed

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds

    PubMed Central

    Liu, Xuesong; Berto, Filippo

    2018-01-01

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140

  13. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.

    PubMed

    Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J

    2018-04-24

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  14. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  15. Repeatability and Reproducibility of Compression Strength Measurements Conducted According to ASTM E9

    NASA Technical Reports Server (NTRS)

    Luecke, William E.; Ma, Li; Graham, Stephen M.; Adler, Matthew A.

    2010-01-01

    Ten commercial laboratories participated in an interlaboratory study to establish the repeatability and reproducibility of compression strength tests conducted according to ASTM International Standard Test Method E9. The test employed a cylindrical aluminum AA2024-T351 test specimen. Participants measured elastic modulus and 0.2 % offset yield strength, YS(0.2 % offset), using an extensometer attached to the specimen. The repeatability and reproducibility of the yield strength measurement, expressed as coefficient of variations were cv(sub r)= 0.011 and cv(sub R)= 0.020 The reproducibility of the test across the laboratories was among the best that has been reported for uniaxial tests. The reported data indicated that using diametrically opposed extensometers, instead of a single extensometer doubled the precision of the test method. Laboratories that did not lubricate the ends of the specimen measured yield stresses and elastic moduli that were smaller than those measured in laboratories that lubricated the specimen ends. A finite element analysis of the test specimen deformation for frictionless and perfect friction could not explain the discrepancy, however. The modulus measured from stress-strain data were reanalyzed using a technique that finds the optimal fit range, and applies several quality checks to the data. The error in modulus measurements from stress-strain curves generally increased as the fit range decreased to less than 40 % of the stress range.

  16. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel

    PubMed Central

    Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Krscanski, Sanjin; Brcic, Marino; Li, Qiang; Niu, Jitai

    2016-01-01

    The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed. PMID:28773424

  17. Do patients with diabetic neuropathy use a higher proportion of their maximum strength when walking?

    PubMed

    Brown, Steven J; Handsaker, Joseph C; Bowling, Frank L; Maganaris, Costantinos N; Boulton, Andrew J M; Reeves, Neil D

    2014-11-28

    Diabetic patients have an altered gait strategy during walking and are known to be at high risk of falling, especially when diabetic peripheral neuropathy is present. This study investigated alterations to lower limb joint torques during walking and related these torques to maximum strength in an attempt to elucidate why diabetic patients are more likely to fall. 20 diabetic patients with moderate/severe peripheral neuropathy (DPN), 33 diabetic patients without peripheral neuropathy (DM), and 27 non-diabetic controls (Ctrl) underwent gait analysis using a motion analysis system and force plates to measure kinetic parameters. Lower limb peak joint torques and joint work done (energy expenditure) were calculated during walking. The ratio of peak joint torques and individual maximum joint strengths (measured on a dynamometer) was then calculated for 59 of the 80 participants to yield the ‘operating strength’ for those participants. During walking DM and DPN patients showed significantly reduced peak torques at the ankle and knee. Maximum joint strengths at the knee were significantly less in both DM and DPN groups than Ctrls, and for the DPN group at the ankle. Operating strengths were significantly higher at the ankle in the DPN group compared to the Ctrls. These findings show that diabetic patients walk with reduced lower limb joint torques; however due to a decrement in their maximum ability at the ankle and knee, their operating strengths are higher. This allows less reserve strength if responding to a perturbation in balance, potentially increasing their risk of falling.

  18. Papermaking properties of aspen ultrahigh-yield mechanical pulps

    Treesearch

    J. N. McGovern; T. H. Wegner

    1991-01-01

    Eleven types of aspen ultra-high-yield (90% and above) mechanical pubs were evaluated for their chemical compositions (including sulfur), handsheet strength, and optical properties, fiber length indices, and fiberizing energies. The pulping processes were stone groundwood, pressurized stone groundwood, refiner mechanical, thermomechanical, chemimechanical (alkaline...

  19. Dynamic Yielding and Spall Behavior of Commercially Pure Grade 4 Titanium

    NASA Astrophysics Data System (ADS)

    Thadhani, Naresh; Whelchel, R. L.; Sanders, Tom; Mehkote, D. S.; Iyer, K. A.; Georgia Instiutute of Technology Collaboration; Johns Hopkins University, Applied Physics Labortaory Collaboration

    2015-06-01

    The dynamic yielding and fracture (spalling) of commercially pure (grade 4) titanium are investigated using symmetric plate impact experiments over a peak stress range of 5.6 GPa to 12.5 GPa, using the 80-mm single-stage gas-gun. VISAR rear free surface velocity profiles display both a Hugoniot elastic limit (HEL) and a velocity pullback, which are indicative of dynamic compressive yielding and tensile fracture (spalling), respectively. The HEL values appear to show a slight decrease with peak stress from 2.2 GPa to 2.0 GPa along with a corresponding increase in twinning observed in recovered impacted samples. The spall strength on the other hand increases with peak stress from a value of 3.3 GPa to 3.8 GPa and shows a good power law fit with the decompression strain rate. The differing responses in dynamic yield and fracture behavior suggest that void nucleation may be the dominant mechanism affecting the spall strength of grade 4 titanium.

  20. Yielding and deformation behavior of the single crystal nickel-base superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Milligan, W. W., Jr.

    1986-01-01

    Interrupted tensile tests were conducted to fixed plastic strain levels in 100 ordered single crystals of the nickel based superalloy PWA 1480. Testing was done in the range of 20 to 1093 C, at strain rate of 0.5 and 50%/min. The yield strength was constant from 20 to 760 C, above which the strength dropped rapidly and became a stong function of strain rate. The high temperature data were represented very well by an Arrhenius type equation, which resulted in three distinct temperature regimes. The deformation substructures were grouped in the same three regimes, indicating that there was a fundamental relationship between the deformation mechanisms and activation energies. Models of the yielding process were considered, and it was found that no currently available model was fully applicable to this alloy. It was also demonstrated that the initial deformation mechanism (during yielding) was frequently different from that which would be inferred by examining specimens which were tested to failure.

  1. Character strengths and well-being across the life span: data from a representative sample of German-speaking adults living in Switzerland

    PubMed Central

    Martínez-Martí, María L.; Ruch, Willibald

    2014-01-01

    Character strengths are positive, morally valued traits of personality. This study aims at assessing the relationship between character strengths and subjective well-being (i.e., life satisfaction, positive and negative affect) in a representative sample of German-speaking adults living in Switzerland (N = 945). We further test whether this relationship is consistent at different stages in life. Results showed that hope, zest, love, social intelligence and perseverance yielded the highest positive correlations with life satisfaction. Hope, zest, humor, gratitude and love presented the highest positive correlations with positive affect. Hope, humor, zest, honesty, and open-mindedness had the highest negative correlations with negative affect. When examining the relationship between strengths and well-being across age groups, in general, hope, zest and humor consistently yielded the highest correlations with well-being. Additionally, in the 27–36 years group, strengths that promote commitment and affiliation (i.e., kindness and honesty) were among the first five positions in the ranking of the relationship between strengths and well-being. In the 37–46 years group, in addition to hope, zest and humor, strengths that promote the maintenance of areas such as family and work (i.e., love, leadership) were among the first five positions in the ranking. Finally, in the 47–57 years group, in addition to hope, zest and humor, strengths that facilitate integration and a vital involvement with the environment (i.e., gratitude, love of learning) were among the first five positions in the ranking. This study partially supports previous findings with less representative samples on the association between character strengths and well-being, and sheds light on the relative importance of some strengths over others for well-being across the life span. PMID:25408678

  2. Effects of porosity on weld-joint tensile strength of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1974-01-01

    Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.

  3. Study made of pneumatic high pressure piping materials /10,000 psi/

    NASA Technical Reports Server (NTRS)

    Loeb, M. B.; Smith, J. C.

    1967-01-01

    Evaluations of five types of steel for use in high pressure pneumatic piping systems include tests for impact strength, tensile and yield strengths, elongation and reduction in area, field weldability, and cost. One type, AISI 4615, was selected as most advantageous for extensive use in future flight vehicles.

  4. Accelerated curing and strength-modulus correlation for lime-stabilized soils : final report, January 2010.

    DOT National Transportation Integrated Search

    2010-01-01

    This study sought to identify the equivalent 105F curing duration for lime-stabilized soil (LSS) that will : yield the equivalent unconfined compressive strength (UCS) to that resulting from 28-day, 73F curing. Both : 5-day and 7-day 105F (or 1...

  5. Improved Warm-Working Process For An Iron-Base Alloy

    NASA Technical Reports Server (NTRS)

    Cone, Fred P.; Cryns, Brendan J.; Miller, John A.; Zanoni, Robert

    1992-01-01

    Warm-working process produces predominantly unrecrystallized grain structure in forgings of iron-base alloy A286 (PWA 1052 composition). Yield strength and ultimate strength increased, and elongation and reduction of area at break decreased. Improved process used on forgings up to 10 in. thick and weighing up to 900 lb.

  6. Influence of primary α-phase volume fraction on the mechanical properties of Ti-6Al-4V alloy at different strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing

    2018-03-01

    Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.

  7. Friction Stir Welding of Low-Carbon AISI 1006 Steel: Room and High-Temperature Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Shunmugasamy, Vasanth C.; Mansoor, Bilal; Ayoub, Georges; Hamade, Ramsey

    2018-03-01

    Friction stir welding (FSW) is an ecologically benign solid-state joining process. In this work, FSW of low-carbon AISI 1006 steel was carried out to study the microstructure and mechanical properties of the resulting joints at both room temperature (RT) and 200 °C. In the parameter space investigated here, a rotational tool speed and translation feed combination of 1200 rpm and 60 mm/min produced a defect-free weld with balanced mechanical properties and a superior Vickers microhardness profile compared to all other conditions and to base metal (BM). At faster translation feeds (100 and 150 mm/min), wormhole defects were observed in the weld microstructure and were attributed to higher strain rate experienced by the weld zone. Under tensile loading, welded material exhibited yield strength that was up to 86 and 91% of the BM at RT and 200 °C, respectively. On the other hand, tensile strength of welded material was nearly similar to that of the base metal at both RT and 200 °C. However, at both temperatures the tensile ductility of the welded joints was observed to be significantly lower than the BM. Annealing of the 1200 rpm and 60 mm/min FSW specimen resulted in tensile strength of 102% compared to base material and 47% increase in the strain at failure compared to the as-welded specimen. The Charpy impact values revealed up to 62 and 53% increase in the specific impact energy for the 1200 rpm and 60 mm/min welded joints as compared with the BM.

  8. Probabilistic and Possibilistic Analyses of the Strength of a Bonded Joint

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Krishnamurthy, T.; Smith, Steven A.

    2001-01-01

    The effects of uncertainties on the strength of a single lap shear joint are explained. Probabilistic and possibilistic methods are used to account for uncertainties. Linear and geometrically nonlinear finite element analyses are used in the studies. To evaluate the strength of the joint, fracture in the adhesive and material strength failure in the strap are considered. The study shows that linear analyses yield conservative predictions for failure loads. The possibilistic approach for treating uncertainties appears to be viable for preliminary design, but with several qualifications.

  9. Fatigue testing of weldable high strength steels under simulated service conditions

    NASA Astrophysics Data System (ADS)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue testing. This has resulted in recommendations on the methods for generating standard load histories.

  10. Genotype × Environment Interactions of Yield Traits in Backcross Introgression Lines Derived from Oryza sativa cv. Swarna/Oryza nivara

    PubMed Central

    Balakrishnan, Divya; Subrahmanyam, Desiraju; Badri, Jyothi; Raju, Addanki Krishnam; Rao, Yadavalli Venkateswara; Beerelli, Kavitha; Mesapogu, Sukumar; Surapaneni, Malathi; Ponnuswamy, Revathi; Padmavathi, G.; Babu, V. Ravindra; Neelamraju, Sarla

    2016-01-01

    Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions. PMID:27807437

  11. Modeling of High-Strain-Rate Deformation, Fracture, and Impact Behavior of Advanced Gas Turbine Engine Materials at Low and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Nathenson, David; Prakash, Vikas

    2003-01-01

    Gamma titanium aluminides have received considerable attention over the last decade. These alloys are known to have low density, good high temperature strength retention, and good oxidation and corrosion resistance. However, poor ductility and low fracture toughness have been the key limiting factors in the full utilization of these alloys. More recently, Gamma-met PX has been developed by GKSS, Germany. These alloys have been observed to have superior strengths at elevated temperatures and quasi-static deformation rates and good oxidation resistance at elevated temperatures when compared with other gamma titanium aluminides. The present paper discusses results of a study to understand dynamic response of gamma-met PX in uniaxial compression. The experiments were conducted by using a modified split Hopkinson pressure bar between room temperature and 900 C and strain rates of up to 3500 per second. The Gamma met PX alloy showed superior strength when compared to nickel based superalloys and other gamma titanium aluminides at all test temperatures. It also showed strain and strain-rate hardening at all levels of strain rates and temperatures and without yield anomaly up to 900 C. After approximately 600 C, thermal softening is observed at all strain rates with the rate of thermal softening increasing dramatically between 800 and 900 C. However, these flow stress levels are comparatively higher in Gamma met PX than those observed for other TiAl alloys.

  12. Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2.

    PubMed

    Kumar, Sumit; Chaitanya, Bharatula S K; Ghatty, Sreenivas; Reddy, Attipalli R

    2014-11-01

    Jatropha (Jatropha curcas) is a non-edible oil producing plant which is being advocated as an alternative biofuel energy resource. Its ability to grow in diverse soil conditions and minimal requirements of essential agronomical inputs compared with other oilseed crops makes it viable for cost-effective advanced biofuel production. We designed a study to investigate the effects of elevated carbon dioxide concentration ([CO(2)]) (550 ppm) on the growth, reproductive development, source-sink relationships, fruit and seed yield of J. curcas. We report, for the first time that elevated CO(2) significantly influences reproductive characteristics of Jatropha and improve its fruit and seed yields. Net photosynthetic rate of Jatropha was 50% higher in plants grown in elevated CO(2) compared with field and ambient CO(2) -grown plants. The study also revealed that elevated CO(2) atmosphere significantly increased female to male flower ratio, above ground biomass and carbon sequestration potential in Jatropha (24 kg carbon per tree) after 1 year. Our data demonstrate that J. curcas was able to sustain enhanced rate of photosynthesis in elevated CO(2) conditions as it had sufficient sink strength to balance the increased biomass yields. Our study also elucidates that the economically important traits including fruit and seed yield in elevated CO(2) conditions were significantly high in J. curcas that holds great promise as a potential biofuel tree species for the future high CO(2) world. © 2014 Scandinavian Plant Physiology Society.

  13. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    PubMed

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  14. Consolidation of commercial pure aluminum particles by hot ECAP

    NASA Astrophysics Data System (ADS)

    Gudimetla, Kondaiah; Kumar, S. Ramesh; Ravisankar, B.; Prasad Prathipati, R.; Kumaran, S.

    2018-03-01

    In the current study undertaken, aluminum particles of commercial purity grade were compacted using hot ECAP. Investigation of the structural evolution and mechanical properties was done. Measurements of the densities of the samples was done for the purpose of evaluation the performance of the consolidation process. A tensile strength (UTS) of 98 MPa (after first pass) was obtained under tensile loads and the percent elongation to fracture was found to be 5.5%, which indicated good tensile strength and ductility as compared to the commercial pure Al powders consolidated by ambient temperature ECAP and other techniques. The relative density and Rockwell hardness (HRB) of compacts (after first pass) was 99% and 42 respectively. This is indisputable proof for establishing the compatibility of ECAP in the matter of producing bulk materials. Characterization of the material microstructure and fracture behavior was done through use of optical and scanning electron microscopy (SEM). The Al powders consolidated at 400°C through ECAP process, exhibited the best combination of yield strength and ductility and hence hot ECAP is suitable method for consolidation of micro powders.

  15. Study on Flexural Behaviour of Ternary Blended Reinforced Self Compacting Concrete Beam with Conventional RCC Beam

    NASA Astrophysics Data System (ADS)

    Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.

  16. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  17. Effect of cold rolling on the microstructure and mechanical properties of Al 0.25CoCrFe 1.25Ni 1.25 high-entropy alloy

    DOE PAGES

    Wang, Z.; Gao, M. C.; Ma, S. G.; ...

    2015-08-05

    Cold rolling can break down the as-cast dendrite microstructure and thus may have pronounced impact on the mechanical behavior of the alloy. In the present study, the effect of cold rolling on the microstructure and mechanical properties of Al 0.25CoCrFe 1.25Ni 1.25 high-entropy alloy in the face-centered cubic structure was investigated. With increasing the thickness reduction from cold rolling, the hardness, the yield strength, and the fracture strength increased at the cost of reducing ductility. At the thickness reduction of 80%, the tensile strength (hardness) was 702 MPa (406 MPa), 1.62 (2.43) times that in the as-cast condition. Compared tomore » traditional alloys, Al 0.25CoCrFe 1.25Ni 1.25 has the highest hardening rate with respect to CR thickness reduction. Lastly, the phase relation and the mixing properties of Gibbs free energy, enthalpy and entropy of Al xCoCrFe 1.25Ni 1.25 were predicted using the CALPHAD method.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plucknett, K.P.; Tiegs, T.N.; Becher, P.F.

    Ductile Ni{sub 3}Al alloys have been used as binder phase for fabrication of TiC and WC matrix composites. Ni{sub 3}Al has good corrosion resistance to aqueous acidic environments, and its yield strength increases with temperature to a max at 700-800 C; this combined with high tensile ductilities (up to 50% strain) make Ni{sub 3}Al attractive for replacing Co in cemented carbides. Materials have been fabricated by both hot pressing and vacuum sintering, with Ni{sub 3}Al contents of 15 to 95 vol%. Vacuum sintering cycles, similar to those used for WC/Co and TiC/Ni (1450-1600 C), resulted in sintered densities >95% theoretical.more » WC/Ni{sub 3}Al materials showed an order of magnitude improvement in corrosion resistance over WC/Co, in sulfuric/nitric acid. These materials also had improved high temperature strength retention compared to WC/Co cermets, though initial RT strengths were lower. Fracture toughness varied between 8 and 25 MPa.m{sup 1/2} and depended primarily on Ni{sub 3}Al content and composition.« less

  19. Comments on extracting the resonance strength parameter from yield data

    DOE PAGES

    Croft, Stephen; Favalli, Andrea

    2015-06-23

    The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF 6. At the present time there remains some considerable uncertainty (of the order of ± 20%) in the thick target integrated over angle (α,n) yield from 19F (100% natural abundance) and its compounds as discussed. An important thin target cross-section measurement is that of Wrean and Kavanagh who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV withmore » fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF 2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the 19F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3 ± 0.8) eV based on a determination by Becker et al. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to explain the origin of the reported resonance strength. Fortunately the original notes spanning the period 12 January 1988 to 16 January 1990 were available to consult. Finally, in hindsight there is certainly a case of excessive brevity to rectify. In essence the step requiring explanation is how to compute the resonance strength, ω γ, from the reported thick target resonance yield Y.« less

  20. A model for extreme plasticity

    NASA Astrophysics Data System (ADS)

    Thomson, S. J.; Howell, P. D.

    2016-09-01

    We present a mathematical model for elastoplasticity in the regime where the applied stress greatly exceeds the yield stress. This scenario is typically found in violent impact testing, where millimetre thick metal samples are subjected to pressures on the order of 10-102 GPa, while the yield stress can be as low as 10-2 GPa. In such regimes the metal can be treated as a barotropic compressible fluid in which the strength, measured by the ratio of the yield stress to the applied stress, is negligible to lowest order. Our approach is to exploit the smallness of this ratio by treating the effects of strength as a small perturbation to a leading order barotropic model. We find that for uniaxial deformations, these additional effects give rise to features in the response of the material which differ significantly from the predictions of barotropic flow.

  1. Comparative efficacy of Er,Cr:YSGG and Er:YAG lasers for etching of composite for orthodontic bracket bonding.

    PubMed

    Mirhashemi, Amir Hossein; Chiniforush, Nasim; Sharifi, Nastaran; Hosseini, Amir Mehdi

    2018-05-01

    Several techniques have been proposed to obtain a durable bond, and the efficacy of these techniques is assessed by measuring parameters such as bond strength. Laser has provided a bond strength as high as that of acid etching in vitro and has simpler use with shorter clinical time compared to acid etching. This study aimed to compare the efficacy of Er:YAG and Er,Cr:YSGG lasers for etching and bonding of composite to orthodontic brackets. No previous study has evaluated the effect of these particular types of laser. A total of 70 composite blocks were randomly divided into five groups (n = 14): group 1, etching with phosphoric acid for 20 s; group 2, Er:YAG laser irradiation with 2 W power for 10 s; group 3, Er:YAG laser with 3 W power for 10 s; group 4, Er,Cr:YSGG laser with 2 W power for 10 s; group 5, Er,Cr:YSGG laser with 3 W power for 10 s. Metal brackets were then bonded to composites, and after 5000 thermal cycles, they were subjected to shear bond strength test in a universal testing machine after 24 h of water storage. One sample of each group was evaluated under a scanning electron microscope (SEM) to assess changes in composite surface after etching. The adhesive remnant index (ARI) was calculated under a stereomicroscope. Data were statistically analyzed. The mean and standard deviation of shear bond strength were 18.65 ± 3.36, 19.68 ± 5.34, 21.31 ± 4.03, 17.38 ± 6.94, and 16.45 ± 4.26 MPa in groups 1-5, respectively. The ARI scores showed that the bond failure mode in all groups was mainly mixed. The groups were not significantly different in terms of shear bond strength. Er:YAG and Er,Cr:YSGG lasers with the mentioned parameters yield optimal shear bond strength and can be used as an alternative to acid etching for bracket bond to composite.

  2. Alloys For Corrosive, Hydrogen-Rich Environments

    NASA Technical Reports Server (NTRS)

    Mcpherson, William B.; Bhat, Biliyar N.; Chen, Po-Shou; Kuruvilla, A. K.; Panda, Binayak

    1993-01-01

    "NASA-23" denotes class of alloys resisting both embrittlement by hydrogen and corrosion. Weldable and castable and formed by such standard processes as rolling, forging, and wire drawing. Heat-treated to obtain desired combinations of strength and ductility in ranges of 100 to 180 kpsi yield strength, 120 to 200 kpsi ultimate tensile strength, and 10 to 30 percent elongation at break. Used in place of most common aerospace structural alloy, Inconel(R) 718.

  3. Large transient nonproton ion movements in purple membrane suspensions are abolished by solubilization in Triton X-100.

    PubMed Central

    Marinetti, T; Mauzerall, D

    1986-01-01

    Light-induced release/uptake of both protons and other ions cause transient changes in conductivity in suspensions of purple membrane (PM) fragments (Marinetti, Tim, and David Mauzerall, 1983, Proc. Natl. Acad. Sci. USA, 80:178-180). We find that the release/uptake of nonproton ions with quantum yield greater than 1 is observed at most pHs and ionic strengths. Only at both low pH and low ionic strength is the conductivity transient mostly due to protons. Our hypothesis is that during the photocycle, changes occur in the PM's dense surface charge distribution that result in changes in the number of counterions bound or condensed at the membrane surface. To test this, the PM structure was perturbed with the nonionic detergent Triton X-100. Immediately after addition, Triton does not abolish the nonproton ion movements; in fact at low detergent concentrations (0.02% vol/vol) the signal amplitudes increased considerably. However, when PM is completely solubilized into monomers in Triton, the conductivity transients are due to protons alone, though at lower quantum yield compared with native PM. These results suggest that changes in the surface charge distribution in native PM's photocycle could contribute to proton transfer between the aqueous phase and bR itself. PMID:3019444

  4. Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Chen, Li-jia; Zhang, Guo-qiang; Han, Dong; Li, Xiao-wu

    2018-06-01

    To explore the influence of cyclic pre-deformation on the mechanical behavior of ultrafine-grained (UFG) materials with a high stacking fault energy (SFE), UFG Al processed by equal-channel angular pressing (ECAP) was selected as a target material and its tensile behavior at different pre-cyclic levels D ( D = N i / N f, where N i and N f are the applied cycles and fatigue life at a constant stress amplitude of 50 MPa, respectively) along with the corresponding microstructures and deformation features were systematically studied. The cyclic pre-deformation treatment on the ECAPed UFG Al led to a decrease in flow stress, and a stress quasi-plateau stage was observed after yielding for all of the different-state UFG Al samples. The yield strength σ YS, ultimate tensile strength σ UTS, and uniform strain ɛ exhibited a strong dependence on D when D ≤ 20%; however, when D was in the range from 20% to 50%, no obvious change in mechanical properties was observed. The micro-mechanism for the effect of cyclic pre-deformation on the tensile properties of the ECAPed UFG Al was revealed and compared with that of ECAPed UFG Cu through the observations of deformation features and microstructures.

  5. Nanomechanical Characterization of Temperature-Dependent Mechanical Properties of Ion-Irradiated Zirconium with Consideration of Microstructure and Surface Damage

    NASA Astrophysics Data System (ADS)

    Marsh, Jonathan; Zhang, Yang; Verma, Devendra; Biswas, Sudipta; Haque, Aman; Tomar, Vikas

    2015-12-01

    Zirconium alloys for nuclear applications with different microstructures were produced by manufacturing processes such as chipping, rolling and annealing. The two Zr samples, rolled and rolled-annealed were subjected to different levels of irradiation, 1 keV and 100 eV, to study the effect of irradiation dosages. The effect of microstructure and irradiation on the mechanical properties (reduced modulus, hardness, indentation yield strength) was analyzed with nanoindentation experiments, which were carried out in the temperature range of 25°C to 450°C to investigate temperature dependence. An indentation size effect analysis was performed and the mechanical properties were also corrected for the oxidation effects at high temperatures. The irradiation-induced hardness was observed, with rolled samples exhibiting higher increase compared to rolled and annealed samples. The relevant material parameters of the Anand viscoplastic model were determined for Zr samples containing different level of irradiation to account for viscoplasticity at high temperatures. The effect of the microstructure and irradiation on the stress-strain curve along with the influence of temperature on the mechanisms of irradiation creep such as formation of vacancies and interstitials is presented. The yield strength of irradiated samples was found to be higher than the unirradiated samples which also showed a decreasing trend with the temperature.

  6. Agarose electrophoresis of DNA in discontinuous buffers, using a horizontal slab apparatus and a buffer system with improved properties.

    PubMed

    Zsolnai, A; Orbán, L; Chrambach, A

    1993-03-01

    Using a horizontal slab apparatus with a buffer in the reservoirs at the level of the gel ("sea-level electrophoresis"), the retrograde discontinuous buffer system reported by Wiltfang et al. for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins was applied to DNA electrophoresis. This application yielded the advantages of an increased displacement rate of the moving boundary front and a decrease in the concentration of the counterion base in the resolving phase, which yielded reduced relative mobility values at equivalent gel concentrations and practicable low buffer concentrations. The change of relative mobilities (Rf) with a variation of field strength is decreased compared to that of the migration rate in the continuous Tris-boric-acid-EDTA (TBE) buffer and thus the robustness of the system is improved, as well as the efficiency of separation. The system of Wiltfang et al. has in common with previously described discontinuous DNA system, that it is able to stack DNA from dilute samples and is insensitive to sample components with lower net mobilities than DNA, such as acetate. However, the variance of Rf at constant current density in the discontinuous buffer system is not improved over that of the migration rate at constant field strength in the continuous TBE buffer.

  7. Environmental modification of yield and nutrient composition of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Chun, C.; Brandt, W. E.; Nielsen, S. S.

    1997-01-01

    Leaf number, dry weight, and nutrient composition of Lactuca sativa L. cv. Waldmann's Green leaves were compared following 9 days of treatment in a controlled environment room under various combinations of photosynthetic photon flux (PPF:350 vs 800 micromoles m-2 s-1), atmospheric CO2 level (ambient vs 1500 micromoles mol-1), and single-strength (1X:15 mM) vs double-strength (2X:30 mM) nitrogen (N) as NO3- alone or as NH4(+) + NO3- (1:5 molar ratio). CO2 enrichment greatly enhanced leaf number under all PPF and N conditions, but increased leaf dry weight only at high PPF. Conditions favoring high photosynthesis enhanced leaf starch content 3-fold, and protein content increased as much as 64% with 2X NH4(+)+NO3-. Free sugar content was 6 to 9% of leaf dry weight for all treatment combinations, while fat was 1.5 to 3.5%. Ash content varied from 15 to 20% of leaf dry weight. Modified controlled environments can be used to enhance the nutritional content as well as the yield of crops to be used for life support in space-deployed, self-sustaining human habitats. Leaf lettuce is a useful model crop for demonstrating the potential of nutritional value added by environmental manipulation.

  8. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong

    2016-07-01

    High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

  9. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    DOE PAGES

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; ...

    2017-06-27

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less

  10. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    NASA Astrophysics Data System (ADS)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.

    2017-09-01

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.

  11. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less

  12. Reinforcing effect of discontinuous microglass fibers on resin-modified glass ionomer cement.

    PubMed

    Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo

    2018-06-08

    This study investigated the reinforcing effect of discontinuous-glass fiber fillers with different loading-fractions on selected mechanical properties and wear of resin-modified glass ionomer cement (RMGIC). Experimental fiber-reinforced RMGIC (Exp-RMGIC) was prepared by adding discontinuous-glass fiber of 200-500 µm in length to the powder of RMGIC (GC Fuji II LC) with different weight ratios (15, 20, 25 and 30 wt%). Mechanical properties and wear were determined for each experimental and control material. Scanning electron microscopy was used to evaluate the microstructure of the Exp-RMGICs. Wear pattern was analyzed by a three-dimensional (3D) noncontact optical profilometer. Fiber-reinforced RMGIC (30 wt%) had significantly higher mechanical performance of fracture toughness (1.9 MPa•m 1/2 ), flexural strength (90.3 MPa), and diametral tensile strength (31 MPa) (p<0.05) compared to unreinforced material (0.8 MPa•m 1/2 , 51.9 and 20.7 MPa). The use of discontinuous-glass fiber fillers with RMGIC matrix is novel reinforcement and yielded superior toughening and flexural performance compared to conventional RMGIC.

  13. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    PubMed

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.

  14. Study of the SCC Behavior of 7075 Aluminum Alloy After One-Step Aging at 163 °C

    NASA Astrophysics Data System (ADS)

    Silva, G.; Rivolta, B.; Gerosa, R.; Derudi, U.

    2013-01-01

    For the past many years, 7075 aluminum alloys have been widely used especially in those applications for which high mechanical performances are required. It is well known that the alloy in the T6 condition is characterized by the highest ultimate and yield strengths, but, at the same time, by poor stress corrosion cracking (SCC) resistance. For this reason, in the aeronautic applications, new heat treatments have been introduced to produce T7X conditions, which are characterized by lower mechanical strength, but very good SCC behavior, when compared with the T6 condition. The aim of this study is to study the tensile properties and the SCC behavior of 7075 thick plates when submitted to a single-step aging by varying the aging times. The tests were carried out according to the standards and the data obtained from the SCC tests were analyzed quantitatively using an image analysis software. The results show that, when compared with the T7X conditions, the single-step aging performed in the laboratory can produce acceptable tensile and SCC properties.

  15. Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy.

    PubMed

    Soni, V; Senkov, O N; Gwalani, B; Miracle, D B; Banerjee, R

    2018-06-11

    Typically, refractory high-entropy alloys (RHEAs), comprising a two-phase ordered B2 + BCC microstructure, exhibit extraordinarily high yield strengths, but poor ductility at room temperature, limiting their engineering application. The poor ductility is attributed to the continuous matrix being the ordered B2 phase in these alloys. This paper presents a novel approach to microstructural engineering of RHEAs to form an "inverted" BCC + B2 microstructure with discrete B2 precipitates dispersed within a continuous BCC matrix, resulting in improved room temperature compressive ductility, while maintaining high yield strength at both room and elevated temperature.

  16. An Experimental Study on the Edgewise Compressive Failure of Paper Honeycomb Sandwich Panels with Respect to Various Aspect Ratios

    NASA Astrophysics Data System (ADS)

    Samad, W. A.; Warsame, A. A.; Khan, A.

    2018-04-01

    The present work investigates the edgewise compression failure for honeycomb paperboards. Various panels are tested under a fixed loading rate with varying aspect ratios. The influence of the varying properties aspect ratio on yield strength is recorded. The experimental results indicate that the honeycomb paperboards are subject a decrease in yield strength with an increase in aspect ratio towards more slender bodies. Buckling was not observed in any of the tested specimens. All experiments are conducted under the general framework of ASTM C364/C364M -16 with a few noted changes.

  17. High strength W/TiNi micro-laminated composite with transformation-mediated ductility

    DOE PAGES

    Shao, Yang; Yu, Kaiyuan; Jiang, Daqiang; ...

    2016-06-06

    A laminated W/TiNi composite is fabricated by hot pressing under vacuum and subsequent forging. The W and TiNi constituents are about 250 μm and 80 μm respectively in thicknesses and their interfaces are chemically sharp with negligible intermixing. The material exhibits two yielding plateaus and excellent strength-ductility combination during compression tests. In situ X-ray technique is employed to demonstrate that the unusual yielding phenomenon is related to the reversible thermoelastic phase transformation of TiNi layers. Furthermore, such mechanisms also contribute to the damage tolerance of the materials by inhibiting crack propagation in W.

  18. Transformation of localized necking of strain space into stress space for advanced high strength steel sheet

    NASA Astrophysics Data System (ADS)

    Nakwattanaset, Aeksuwat; Suranuntchai, Surasak

    2018-03-01

    Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.

  19. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim

    Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less

  20. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

    DOE PAGES

    Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim; ...

    2017-10-19

    Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less

  1. Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss).

    PubMed

    Tabarestani, H Shahiri; Maghsoudlou, Y; Motamedzadegan, A; Mahoonak, A R Sadeghi

    2010-08-01

    Physico-chemical properties of gelatin extracted from rainbow trout (Onchorhynchus mykiss) skin were optimized using response surface methodology (RSM). Central rotatable composite design was applied to study the combined effects of NaOH concentration (0.01-0.21 N), acetic acid concentration (0.01-0.21 N) and pre-treatment time (1-3h) on yield, molecular weight distribution, gel strength, viscosity and melting point of gelatin. Regression models were developed to predict the variables. Predict values of multiple response at optimal condition were that yield=9.36%, alpha(1)/alpha(2) chain ratio=1.76, beta chain percent=32.81, gel strength=459 g, viscosity=3.2 mPa s and melting point=20.4 degrees C. The optimal condition was obtained using 0.19 N NaOH and 0.121 N acetic acid for 3h. The results showed that the concentration of H(+) during pre-treatment had significant effect on molecular weight distribution, melting point and gel strength. The concentration of OH(-) had significant effect on viscosity and for extraction yield, pretreatment time was the critical factor. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1988-01-01

    This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.

  3. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  4. A study of compressibility and compactibility of directly compressible tableting materials containing tramadol hydrochloride.

    PubMed

    Mužíková, Jitka; Kubíčková, Alena

    2016-09-01

    The paper evaluates and compares the compressibility and compactibility of directly compressible tableting materials for the preparation of hydrophilic gel matrix tablets containing tramadol hydrochloride and the coprocessed dry binders Prosolv® SMCC 90 and Disintequik™ MCC 25. The selected types of hypromellose are Methocel™ Premium K4M and Methocel™ Premium K100M in 30 and 50 % concentrations, the lubricant being magnesium stearate in a 1 % concentration. Compressibility is evaluated by means of the energy profile of compression process and compactibility by the tensile strength of tablets. The values of total energy of compression and plasticity were higher in the tableting materials containing Prosolv® SMCC 90 than in those containing Disintequik™ MCC 25. Tramadol slightly decreased the values of total energy of compression and plasticity. Tableting materials containing Prosolv® SMCC 90 yielded stronger tablets. Tramadol decreased the strength of tablets from both coprocessed dry binders.

  5. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties

    PubMed Central

    Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi

    2016-01-01

    In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites. PMID:27941839

  6. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties

    NASA Astrophysics Data System (ADS)

    Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi

    2016-12-01

    In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites.

  7. Scissors mode of Gd nuclei studied from resonance neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, J.; Baramsai, B.; Becker, J. A.

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information.more » Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.« less

  8. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  9. Stochastic transport in the presence of spatial disorder: Fluctuation-induced corrections to homogenization

    NASA Astrophysics Data System (ADS)

    Russell, Matthew J.; Jensen, Oliver E.; Galla, Tobias

    2016-10-01

    Motivated by uncertainty quantification in natural transport systems, we investigate an individual-based transport process involving particles undergoing a random walk along a line of point sinks whose strengths are themselves independent random variables. We assume particles are removed from the system via first-order kinetics. We analyze the system using a hierarchy of approaches when the sinks are sparsely distributed, including a stochastic homogenization approximation that yields explicit predictions for the extrinsic disorder in the stationary state due to sink strength fluctuations. The extrinsic noise induces long-range spatial correlations in the particle concentration, unlike fluctuations due to the intrinsic noise alone. Additionally, the mean concentration profile, averaged over both intrinsic and extrinsic noise, is elevated compared with the corresponding profile from a uniform sink distribution, showing that the classical homogenization approximation can be a biased estimator of the true mean.

  10. Microstructural and mechanical evolutions during the forging step of the COBAPRESS, a casting/forging process

    NASA Astrophysics Data System (ADS)

    Perrier, Frédéric; Desrayaud, Christophe; Bouvier, Véronique

    Aluminum casting/forging processes are used to produce parts for the automotive industry. In this study, we examined the influence of the forging step on the microstructure and the mechanical properties of an A356 aluminum alloy modified with strontium. Firstly, a design of samples which allows us to test mechanically the alloy before and after forging was created. A finite element analysis with the ABAQUS software predicts a maximum of strain in the core of the specimens. Observations with the EBSD technique confirm a more intense sub-structuration of the dendrite cells in this zone. Yield strength, ultimate tensile strength, elongation and fatigue lives were then improved for the casting/forging samples compared to the only cast specimens. The closure of the porosities and the improvement of the surface quality during the forging step enhance also the fatigue resistance of the samples.

  11. Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.

    PubMed

    Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J

    1975-03-01

    Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.

  12. Microalloying Ultrafine Grained Al Alloys with Enhanced Ductility

    PubMed Central

    Jiang, L.; Li, J. K.; Cheng, P. M.; Liu, G.; Wang, R. H.; Chen, B. A.; Zhang, J. Y.; Sun, J.; Yang, M. X.; Yang, G.

    2014-01-01

    Bulk ultrafine grained (UFG)/nanocrystal metals possess exceptional strength but normally poor ductility and thermal stability, which hinder their practical applications especially in high-temperature environments. Through microalloying strategy that enables the control of grains and precipitations in nanostructured regime, here we design and successfully produce a highly microstructure-stable UFG Al-Cu-Sc alloy with ~275% increment in ductility and simultaneously ~50% enhancement in yield strength compared with its Sc-free counterpart. Although the precipitations in UFG alloys are usually preferentially occurred at grain boundaries even at room temperature, minor Sc addition into the UFG Al-Cu alloys is found to effectively stabilize the as-processed microstructure, strongly suppress the θ-Al2Cu phase precipitation at grain boundary, and remarkably promote the θ′-Al2Cu nanoparticles dispersed in the grain interior in artificial aging. A similar microalloying strategy is expected to be equally effective for other UFG heat-treatable alloys. PMID:24398915

  13. Stress corrosion evaluation of HP 9Ni-4Co-0.20C steel

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1993-01-01

    A stress corrosion cracking (SCC) evaluation was undertaken on HP 9Ni-4Co-0.20C steel in support of the Advanced Solid Rocket Motor (ASRM) program. This alloy was tested in plate, bar, and ring forging forms. Several heat treating procedures yielded ultimate tensile strengths ranging from 1,407 to 1,489 MPa (204 to 216 ksi). The test environments were high humidity, alternate immersion in 3.5-percent NaCl, and 5-percent salt spray. Stress levels ranged from 25 to 90 percent of the yield strengths. The majority of the tests were conducted for 90 days. Even though the specimens rusted significantly in salt spray and alternate immersion, no failures occurred. Therefore, it can be concluded that this alloy, in the forms and at the strength levels tested, is highly resistant to SCC in salt and high humidity environments.

  14. Procedure for chromatography involving sample solvent with higher elution strength than the mobile phase.

    PubMed

    Patil, Nitin S; Mendhe, Rakesh B; Sankar, Ajeet A; Iyer, Harish

    2008-01-11

    In preparative chromatography, often the solubility of the sample in the mobile phase is limited, making the mobile phase unsuitable as a solvent for preparation of load. Generally, solvents that have high solubility for the sample also have higher elution strengths than the mobile phase. Additionally, at high loading volumes, these strong sample solvents are known to adversely affect the band profiles leading to poor chromatographic performance. Here, we show that controlling the mobile phase strength during loading and post-load elution resulted in improved band profiles when the sample solvent was stronger than the mobile phase. Such an approach improves performance in preparative chromatography by allowing either higher sample loading or higher organic content in mobile phase (without loss of yield). Alternately, the approach can be used for improvement in performance by increase in yield or product purity.

  15. On the Yield Strength of Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Jain, Chhavi; Korenaga, Jun; Karato, Shun-ichiro

    2017-10-01

    The yield strength of oceanic lithosphere determines the mode of mantle convection in a terrestrial planet, and low-temperature plasticity in olivine aggregates is generally believed to govern the plastic rheology of the stiffest part of lithosphere. Because, so far, proposed flow laws for this mechanism exhibit nontrivial discrepancies, we revisit the recent high-pressure deformation data of Mei et al. (2010) with a comprehensive inversion approach based on Markov chain Monte Carlo sampling. Our inversion results indicate that the uncertainty of the relevant flow law parameters is considerably greater than previously thought. Depending on the choice of flow law parameters, the strength of oceanic lithosphere would vary substantially, carrying different implications for the origin of plate tectonics on Earth. To reduce the flow law ambiguity, we suggest that it is important to establish a theoretical basis for estimating macroscopic stress in high-pressure experiments and also to better utilize marine geophysical observations.

  16. Mechanical Properties of Lightweight Porous Magnesium Processed Through Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Zou, Ning; Li, Qizhen

    2018-02-01

    Porous magnesium (Mg) samples with various overall porosities (28.4 ± 1.8%, 35.5 ± 2.5%, 45.4 ± 1.9%, and 62.4 ± 2.2%) were processed through powder metallurgy and characterized to study their mechanical properties. Different porosities were obtained by utilizing different mass fractions of space holder camphene. Camphene was removed by sublimation before sintering and contributed to processing porous Mg with high purity and small average pore size. The average pore size increased from 5.2 µm to 15.1 µm with increase of the porosity from 28.4 ± 1.8% to 62.4 ± 2.2%. Compressive strain-stress data showed that the strain hardening rate, yield strength, and ultimate compressive strength decreased with increase of the porosity. The theoretical yield strength of porous Mg obtained using the Gibson-Ashby model agreed with experimental data.

  17. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    NASA Astrophysics Data System (ADS)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  18. High-Temperature Cast Aluminum for Efficient Engines

    NASA Astrophysics Data System (ADS)

    Bobel, Andrew C.

    Accurate thermodynamic databases are the foundation of predictive microstructure and property models. An initial assessment of the commercially available Thermo-Calc TCAL2 database and the proprietary aluminum database of QuesTek demonstrated a large degree of deviation with respect to equilibrium precipitate phase prediction in the compositional region of interest when compared to 3-D atom probe tomography (3DAPT) and transmission electron microscopy (TEM) experimental results. New compositional measurements of the Q-phase (Al-Cu-Mg-Si phase) led to a remodeling of the Q-phase thermodynamic description in the CALPHAD databases which has produced significant improvements in the phase prediction capabilities of the thermodynamic model. Due to the unique morphologies of strengthening precipitate phases commonly utilized in high-strength cast aluminum alloys, the development of new microstructural evolution models to describe both rod and plate particle growth was critical for accurate mechanistic strength models which rely heavily on precipitate size and shape. Particle size measurements through both 3DAPT and TEM experiments were used in conjunction with literature results of many alloy compositions to develop a physical growth model for the independent prediction of rod radii and rod length evolution. In addition a machine learning (ML) model was developed for the independent prediction of plate thickness and plate diameter evolution as a function of alloy composition, aging temperature, and aging time. The developed models are then compared with physical growth laws developed for spheres and modified for ellipsoidal morphology effects. Analysis of the effect of particle morphology on strength enhancement has been undertaken by modification of the Orowan-Ashby equation for 〈110〉 alpha-Al oriented finite rods in addition to an appropriate version for similarly oriented plates. A mechanistic strengthening model was developed for cast aluminum alloys containing both rod and plate-like precipitates. The model accurately accounts for the temperature dependence of particle nucleation and growth, solid solution strengthening, Si eutectic strength, and base aluminum yield strength. Strengthening model predictions of tensile yield strength are in excellent agreement with experimental observations over a wide range of aluminum alloy systems, aging temperatures, and test conditions. The developed models enable the prediction of the required particle morphology and volume fraction necessary to achieve target property goals in the design of future aluminum alloys. The effect of partitioning elements to the Q-phase was also considered for the potential to control the nucleation rate, reduce coarsening, and control the evolution of particle morphology. Elements were selected based on density functional theory (DFT) calculations showing the prevalence of certain elements to partition to the Q-phase. 3DAPT experiments were performed on Q-phase containing wrought alloys with these additions and show segregation of certain elements to the Q-phase with relative agreement to DFT predictions.

  19. The development of ultrahigh strength low alloy cast steels with increased toughness

    NASA Astrophysics Data System (ADS)

    Lynch, Paul C.

    This work describes the initial work on the development of the next generation of ultrahigh strength low alloy (UHSLA) cast steels. These UHSLA cast steels have both ultrahigh strength levels and good impact toughness. The influence of heat treatment, secondary processing using hot isostatic processing (HIP), and chemical composition on the microstructure and properties of UHSLA cast steels have been evaluated. The extent of microsegregation reduction expected during the heat treatment of UHSLA cast steels has also been estimated by diffusion modeling. This new family of UHSLA cast steels is similar in composition and properties to UHSLA wrought steels. However, the heat treatment and secondary processing of the UHSLA cast steels is used to develop microstructures and properties typically developed through thermomechanical processing and heat treatment for wrought UHSLA steels. Two martensitic UHSLA steels, 4340+ (silicon modified 4340) and ES-1 were investigated for this study. For the 4340+ alloy, heat treatment variables evaluated include homogenization temperature and time, tempering temperature, and austempering temperature and time. For the ES-1 alloy, heat treatment variables evaluated include homogenization temperature and time, austenization temperature, cryogenic treatment, and tempering temperature. The effect of high temperature hot isostatic processing (HIP) on the 4340+ and ES- 1 alloys was also investigated. Tensile properties, charpy v-notch impact toughness (CVN), microstructures, and fractographs have all been characterized after heat treatment. The effects of HIP on microporosity reduction in the ES-1 alloy were also investigated. The experiments carried out on the investment cast 4340+ alloy have shown that increasing the homogenization temperature can increase CVN without changing the ultimate tensile strength (UTS) or yield strength (YS) of the cast material. By replacing the homogenization step in the conventional heat treatment process with a high temperature HIP treatment, both the CVN and ductility of the alloy was found to increase while maintaining comparable ultimate tensile strength (UTS) and yield strength (YS) levels as compared to the original homogenization treatment. Austempering the (IC) 4340+ material led to a significant increase in CVN and ductility at the expense of UTS and yield strength as the primarily martensitic microstructure was converted to a mixed martensitic-bainitic structure. An initial heat of induction melted, aluminum deoxidized investment cast ES-1 with 0.06 wt % of aluminum showed that the average -40°F and +72°F impact toughness, % elongation, and UTS and YS of the fully heat treated investment cast + HIP ES-1 material lagged significantly behind that of the vacuum degassed cast + HIP ES-1 ingot material. Even though the % elongation and impact toughness of the investment cast ES-1 material changed between heat treatment conditions, the average UTS and YS values remained relatively unchanged throughout the heat treatments for the investment cast study. Etched micrographs of the investment cast ES-1 material showed evidence of significant differences in microsegregation reduction between the samples homogenized at 2125°F for 4 hours and those not homogenized at 2125°F for 4 hours. SEM fracture surface work performed on the investment cast material clearly showed that the induction melted investment and aluminum killed cast material contained significant amounts of MnS and Al2O3 inclusions that were not discovered in the vacuum degassed cast ingot material. Lastly, the results of a third heat of induction melted, aluminum deoxidized investment cast ES-1 material possessing just 0.01wt% of aluminum showed that the decrease in aluminum content from the first experimental heat did not improve the mechanical properties of the investment cast material. (Abstract shortened by UMI.)

  20. Hydrothermal deformation of granular quartz sand

    NASA Astrophysics Data System (ADS)

    Karner, Stephen L.; Kronenberg, Andreas K.; Chester, Frederick M.; Chester, Judith S.; Hajash, Andrew

    2008-05-01

    Isotropic and triaxial compression experiments were performed on porous aggregates of St Peter quartz sand to explore the influence of temperature (to 225°C). During isotropic stressing, samples loaded at elevated temperature exhibit the same sigmoidal stress-strain curves and non-linear acoustic emission rates as have previously been observed from room temperature studies on sands, sandstones, and soils. However, results from our hydrothermal experiments show that the critical effective pressure (P*) associated with the onset of significant pore collapse and pervasive cataclastic flow is lower at increased temperature. Samples subjected to triaxial loading at elevated temperature show yield behavior resembling that observed from room temperature studies on granular rocks and soils. When considered in terms of distortional and mean stresses, the yield strength data for a given temperature define an elliptical envelope consistent with critical state and CAP models from soil mechanics. For the conditions we tested, triaxial yield data at low effective pressure are essentially temperature-insensitive whereas yield levels at high effective pressure are lowered as a function of elevated temperature. We interpret our yield data in a manner consistent with Arrhenius behavior expected for thermally assisted subcritical crack growth. Taken together, our results indicate that increased stresses and temperatures associated with subsurface burial will significantly alter the yield strength of deforming granular media in systematic and predictable ways.

  1. Reproducibility of MR-Based Liver Fat Quantification Across Field Strength: Same-Day Comparison Between 1.5T and 3T in Obese Subjects

    PubMed Central

    Artz, Nathan S.; Haufe, William M.; Hooker, Catherine A.; Hamilton, Gavin; Wolfson, Tanya; Campos, Guilherme M.; Gamst, Anthony C.; Schwimmer, Jeffrey B.; Sirlin, Claude B.; Reeder, Scott B.

    2016-01-01

    Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths. Materials and Methods This Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38–53 kg/m2) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths. Results 1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R2 values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI-C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI-M (m = 1.0 [0.90, 1.08], b = −1.4 [−2.4, −0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [−0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R2 = 0.98 (m = 1.1 [1.02, 1.16], b = −1.8 [−2.8, −1.1]) at 1.5T, and R2 = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T. Conclusion This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods. PMID:25620624

  2. Reproducibility of MR-based liver fat quantification across field strength: Same-day comparison between 1.5T and 3T in obese subjects.

    PubMed

    Artz, Nathan S; Haufe, William M; Hooker, Catherine A; Hamilton, Gavin; Wolfson, Tanya; Campos, Guilherme M; Gamst, Anthony C; Schwimmer, Jeffrey B; Sirlin, Claude B; Reeder, Scott B

    2015-09-01

    To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths. This Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38-53 kg/m(2) ) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths. 1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R(2) values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI-C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI-M (m = 1.0 [0.90, 1.08], b = -1.4 [-2.4, -0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [-0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R(2)  = 0.98 (m = 1.1 [1.02, 1.16], b = -1.8 [-2.8, -1.1]) at 1.5T, and R(2)  = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T. This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods. © 2015 Wiley Periodicals, Inc.

  3. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC.

  4. Standard Methods for Bolt-Bearing Testing of Textile Composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.; Masters, J. E.

    1995-01-01

    The response of three 2-D braided materials to bolt bearing loading was evaluated using data generated by Boeing Defense and Space Group in Philadelphia, PA. Three test methods, stabilized single shear, unstabilized single shear, and double shear, were compared. In general, these textile composites were found to be sensitive to bolt bearing test methods. The stabilized single shear method yielded higher strengths than the unstabilized single shear method in all cases. The double shear test method always produced the highest strengths but these results may be somewhat misleading. It is therefore recommended that standard material comparisons be made using the stabilized single shear test method. The effects of two geometric parameters, W/D and e/D, were also studied. An evaluation of the effect of the specimen width (W) to hole diameter (D) ratio concluded that bolt bearing responses were consistent with open hole tension results. A W/D ratio of 6 or greater should be maintained. The proximity of the hole to the specimen edge significantly affected strength. In all cases, strength was improved by increasing the ratio of the distance from the hole center to the specimen edge (e) to the hole diameter (D) above 2. An e/D ratio of 3 or greater is recommended.

  5. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  6. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  7. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  8. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  9. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  10. 49 CFR 238.230 - Safety appliances-new equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a minimum weld strength, based on yield, of three times the strength of the number of SAE grade 2, 1...; (v) The weld is designed for infinite fatigue life in the application that it will be placed; (vi... upon request. At a minimum, this record shall include the date, time, location, identification of the...

  11. Estimating Critical Values for Strength of Alignment among Curriculum, Assessments, and Instruction

    ERIC Educational Resources Information Center

    Fulmer, Gavin W.

    2010-01-01

    School accountability decisions based on standardized tests hinge on the degree of alignment of the test with a state's standards. Yet no established criteria were available for judging strength of alignment. Previous studies of alignment among tests, standards, and teachers' instruction have yielded mixed results that are difficult to interpret…

  12. Estimating Critical Values for Strength of Alignment among Curriculum, Assessments, and Instruction

    ERIC Educational Resources Information Center

    Fulmer, Gavin W.

    2011-01-01

    School accountability decisions based on standardized tests hinge on the degree of alignment of the test with the state's standards documents. Yet, there exist no established criteria for judging strength of alignment. Previous measures of alignment among tests, standards, and teachers' instruction have yielded mixed results that are difficult to…

  13. Low temperature mechanical properties, fractographic and metallographic evaluation of several alloy steels

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.

  14. Materials studies for magnetic fusion energy applications at low temperatures, 7

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Simon, N. J.

    1984-05-01

    Work leading toward development of strong, tough structural alloys for use in superconducting magnets of magnetic fusion power plants is reported. Low temperature studies were conducted to assess the quantitative dependence of the yield strength, density, and elastic constants of AISI 304 stainless steels upon carbon and nitrogen concentration. Tensile property measurements of developmental austenitic steels confirmed the dependence of yield strength upon temperature. Evidence is presented to show that the flow strength and austenite stability of stainless steels are not significantly affected by 8-T fields at 4 K. Instrumentation developed for low temperature testing included a computer assisted apparatus used to measure threshold fatigue. Low temperature welding research involved an investigation of the weld reinforcement effect on the weld joint strength and measurements of the 4 K fracture toughness of magnesium-chromium steel weldments and electroodes. In the area of non-metallics, a standardized test specimen was devised to aid in screening radiation-resistant composites for magnet insulation. Mechanical properties of concrete mortar and polyurethane foam at 4 K are reported.

  15. Effect of ZnO nanoparticles to mechanical properties of thixoformed Mg-Al-Zn alloy

    NASA Astrophysics Data System (ADS)

    Kusharjanto; Soepriyanto, Syoni; Ardian Korda, Akhmad; Adi Dwiwanto, Supono

    2018-03-01

    Magnesium alloys are lightweight metallic materials with low mechanical properties. Therefore, in order to meet the requirements in various industrial sector applications such as automotive, aerospace and electronic frame, improvement strength and ductility is required. The purpose of this research is to investigate the effect of adding ZnO nanoparticles to changes in microstructure, hardness, mechanical properties regarding with yield and ultimate strength. In this research, the molten Mg-Al-Zn alloy is added ZnO nanoparticles with a various range of 0, 1; 3 and 5 wt% and then cooling in the room temperature. Futhermore, Mg-Al-Zn-ZnO is heated at a temperature of 530 °C (in the semi-solid temperature range 470 °C–595 °C or 53% solid fraction) and then thixoforming process is performed. The characterization results of the thixoforming product show that, the microstructure is globular in shape with maximum hardness value of 107.14 VHN, the yield strength of 214.87 MPa, and the ultimate tensile strength of 311.25 MPa in 5 wt% ZnO nanoparticles.

  16. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.

    PubMed

    Koike, Mari; Hummel, Susan K; Ball, John D; Okabe, Toru

    2012-06-01

    Although pure titanium is known to have good biocompatibility, a titanium alloy with better strength is needed for fabricating clinically acceptable, partial removable dental prosthesis (RDP) frameworks. The mechanical properties of an experimental Ti-5Al-5Cu alloy cast with a 2-step investment technique were examined for RDP framework applications. Patterns for tests for various properties and denture frameworks for a preliminary trial casting were invested with a 2-step coating method using 2 types of mold materials: a less reactive spinel compound (Al(2)O(3)·MgO) and a less expensive SiO(2)-based material. The yield and tensile strength (n=5), modulus of elasticity (n=5), elongation (n=5), and hardness (n=8) of the cast Ti-5Al-5Cu alloy were determined. The external appearance and internal porosities of the preliminary trial castings of denture frameworks (n=2) were examined with a conventional dental radiographic unit. Cast Ti-6Al-4V alloy and commercially pure titanium (CP Ti) were used as controls. The data for the mechanical properties were statistically analyzed with 1-way ANOVA (α=.05). The yield strength of the cast Ti-5Al-5Cu alloy was 851 MPa and the hardness was 356 HV. These properties were comparable to those of the cast Ti-6Al-4V and were higher than those of CP Ti (P<.05). One of the acrylic resin-retention areas of the Ti-5Al-5Cu frameworks was found to have been incompletely cast. The cast biocompatible experimental Ti-5Al-5Cu alloy exhibited high strength when cast with a 2-step coating method. With a dedicated study to determine the effect of sprue design on the quality of castings, biocompatible Ti-5Al-5Cu RDP frameworks for a clinical trial can be produced. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  17. Biomechanical characteristics of the horizontal mattress stitch: implication for double-row and suture-bridge rotator cuff repair.

    PubMed

    Tamboli, Mallika; Mihata, Teruhisa; Hwang, James; McGarry, Michelle H; Kang, Yangmi; Lee, Thay Q

    2014-03-01

    We investigated the effects of bite-size horizontal mattress stitch (distance between the limbs passed through the tendon) on the biomechanical properties of the repaired tendon. We anchored 20 bovine Achilles tendons to bone using no. 2 high-strength suture and 5-mm titanium suture anchors in a mattress-suture technique. Tendons were allocated randomly into two groups of ten each to receive stitches with a 4- or 10-mm bite. Specimens underwent cyclic loading from 5 to 30 N at 1 mm/s for 30 cycles, followed by tensile testing to failure. Gap formation, tendon strain, hysteresis, stiffness, yield load, ultimate load, energy to yield load, and energy to ultimate load were compared between groups using unpaired t tests. The 4-mm group had less (p < 0.05) gap formation and less (p < 0.05) longitudinal strain than did the 10-mm group. Ultimate load (293.6 vs. 148.9 N) and energy to ultimate load (2,563 vs. 1,472 N-mm) were greater (p < 0.001) for the 10-mm group than the 4-mm group. All tendons repaired with 4-mm suturing failed at the suture-tendon interface, with sutures pulling through the tendon, whereas the suture itself failed before the tendon did in seven of the ten specimens in the 10-mm group. Whereas a 4-mm bite fixed the tendon more tightly but at the cost of decreased ultimate strength, a 10-mm bite conveyed greater ultimate strength but with increased gap and strain. These results suggest that for the conventional double-row repair, small mattress stitches provide a tighter repair, whereas large stitches are beneficial to prevent sutures from pulling through the tendon after surgery. For suture-bridge rotator cuff repair, large stitches are beneficial because the repaired tendon has a higher strength, and the slightly mobile medial knot can be tightened by lateral fixation.

  18. Gingiva laser welding: preliminary study on an ex vivo porcine model.

    PubMed

    Rasca, Emilia; Nyssen-Behets, Catherine; Tielemans, Marc; Peremans, André; Hendaoui, Nordine; Heysselaer, Daniel; Romeo, Umberto; Nammour, Samir

    2014-08-01

    The use of lasers to fuse different tissues has been studied for 50 years. As none of these experiments concerned the oral soft tissues, our objective was to assess the feasibility of laser gingiva welding. Porcine full-thickness gingival flaps served to prepare calibrated samples in the middle of which a 2 cm long incision was closed, either by conventional suture or by laser tissue welding (LTW). To determine the irradiation conditions yielding the best tensile strength, 13 output power values, from 0.5 to 5 W, delivered either at 10 Hz or in continuous wave mode, were tested on six indocyanine green (ICG) concentrations, from 8% to 13% (588 samples). Then, some samples served to compare the tensile strength between the laser welded and the sutured gingiva; the other samples were histologically processed in order to evaluate the thermal damage extent. The temperature rise during the LTW was measured by thermocouples. Another group of 12 samples was used to measure the temperature elevation by thermal camera. In the laser welding groups, the best tensile strength (p<0.05) was yielded by the 9% ICG saline solution (117 mM) at 4.5 W, 10 Hz, and a fluence of 31.3 kJ/cm(2). The apposition strength revealed no statistically significant difference (p<0.05) between the sutured and the laser welded gingiva at 4.5 W, 10 Hz, and 9% ICG solution. The mean temperature was 74±5.4°C at the upper surface and 42±8.9°C at the lower surface. The damaged zone averaged 333 μm at the upper surface. The 808 nm diode laser associated with ICG can achieve oral mucosa LTW, which is conceivable as a promising technique of gingival repair.

  19. Development of Ferrium S53 High-Strength, Corrosion-Resistant Steel

    DTIC Science & Technology

    2009-01-01

    strength steel used in landing gear, and equivalent in corrosion resistance to the lower strength 15-5PH stainless steel used in actuators. It also...5PH stainless steel used in modern aerospace actuators. These objectives were met, with two minor exceptions: (1) the tensile yield of S53 is... stainless steel used in modern aerospace actuators. The work was initially funded as a 1-year SERDP proof-of-principle project. In this first

  20. Application of natural seaweed modified mortar for sustainable concrete production

    NASA Astrophysics Data System (ADS)

    Siddique, M. N. I.; Zularisam, A. W.

    2018-04-01

    The effect of seaweed such as Eucheuma Cottonii (gel) and Gracilaria Sp. modified mortar on the properties of sustainable concrete was investigated. Pre-experiment and main-experiment was conducted to carry out this study. Pre-experiment was conducted to study the compressive strength of the sustainable concrete. The main-experiment studied the compressive and splitting strength. Results showed that seaweed modified mortar yielded satisfactory compressive and splitting strength of 30 MPa and 5 MPa at 28 days.

Top