Sample records for yield thermodynamic values

  1. Viscoplasticity: A thermodynamic formulation

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Chaboche, J. L.

    1989-01-01

    A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity, as it applies to initially isotropic materials. Three fundamental internal state variables are admitted. They are: a tensor valued back stress for kinematic effects, and the scalar valued drag and yield strengths for isotropic effects. All three are considered to phenomenologically evolve according to competitive processes between strain hardening, strain induced dynamic recovery, and time induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is put forth. This theory allows each of the three fundamental internal variables to be composed as a sum of independently evolving constituents.

  2. An Experimental Determination of Thermodynamic Values

    ERIC Educational Resources Information Center

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  3. Thermodynamics of Bioreactions.

    PubMed

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  4. The third law of thermodynamics and the fractional entropies

    NASA Astrophysics Data System (ADS)

    Baris Bagci, G.

    2016-08-01

    We consider the fractal calculus based Ubriaco and Machado entropies and investigate whether they conform to the third law of thermodynamics. The Ubriaco entropy satisfies the third law of thermodynamics in the interval 0 < q ≤ 1 exactly where it is also thermodynamically stable. The Machado entropy, on the other hand, yields diverging inverse temperature in the region 0 < q ≤ 1, albeit with non-vanishing negative entropy values. Therefore, despite the divergent inverse temperature behavior, the Machado entropy fails the third law of thermodynamics. We also show that the aforementioned results are also supported by the one-dimensional Ising model with no external field.

  5. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    PubMed

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  6. Freebies for Investors--Precise Incremental Yield Value

    ERIC Educational Resources Information Center

    Michelson, Irving

    1977-01-01

    Competition for savings dollars has led to free gift bonus offers as incentive for new deposits. A concise new formula presented here permits calculation of the total yield using an inexpensive minicomputer. Yield is expressed in terms of interest rate, effective discount value of gift bonus, and period of deposit. (Author/MA)

  7. Predictive thermodynamics for ionic solids and liquids.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a

  8. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  9. Kinetics and Thermodynamics of Watson-Crick Base Pairing Driven DNA Origami Dimerization.

    PubMed

    Zenk, John; Tuntivate, Chanon; Schulman, Rebecca

    2016-03-16

    We investigate the kinetics and thermodynamics of DNA origami dimerization using flat rectangle origami components and different architectures of Watson-Crick complementary single-stranded DNA ("sticky end") linking strategies. We systematically vary the number of linkers, the length of the sticky ends on the linker, and linker architecture and measure the corresponding yields as well as forward and reverse reaction rate constants through fluorescence quenching assays. Yields were further verified using atomic force microscopy. We calculate values of H° and ΔS° for various interface designs and find nonlinear van't Hoff behavior, best described by two linear equations, suggesting distinct regimes of dimerization between those with and those without well-formed interfaces. We find that self-assembly reactions can be tuned by manipulating the interface architecture without suffering a loss in yield, even when yield is high, ∼75-80%. We show that the second-order forward reaction rate constant (k(on)) depends on both linker architecture and number of linkers used, with typical values on the order of 10(5)-10(6) (M·s)(-1), values that are similar to those of bimolecular association of small, complementary DNA strands. The k(on) values are generally non-Arrhenius, tending to increase with decreasing temperature. Finally, we use kinetic and thermodynamic information about the optimal linking architecture to extend the system to an infinite, two-component repeating lattice system and show that we can form micron-sized lattices, with well-formed structures up to 8 μm(2).

  10. The buffer value of groundwater when well yield is limited

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozović, N.; Speir, C.

    2017-04-01

    A large proportion of the total value of groundwater in conjunctive use systems is associated with the ability to smooth out shortfalls in surface water supply during droughts. Previous research has argued that aquifer depletion in these regions will impact farmers negatively by reducing the available stock of groundwater to buffer production in future periods, and also by increasing the costs of groundwater extraction. However, existing studies have not considered how depletion may impact the productivity of groundwater stocks in conjunctive use systems through reductions in well yields. In this work, we develop a hydro-economic modeling framework to quantify the effects of changes in well yields on the buffer value of groundwater, and apply this model to an illustrative case study of tomato production in California's Central Valley. Our findings demonstrate that farmers with low well yields are forced to forgo significant production and profits because instantaneous groundwater supply is insufficient to buffer surface water shortfalls in drought years. Negative economic impacts of low well yields are an increasing function of surface water variability, and are also greatest for farmers operating less efficient irrigation systems. These results indicate that impacts of well yield reductions on the productivity of groundwater are an important economic impact of aquifer depletion, and that failure to consider this feedback may lead to significant errors in estimates of the value of groundwater management in conjunctive use systems.

  11. Lumber yield and log values of Shasta red fir.

    Treesearch

    John B. Grantham; Douglas L. Hunt

    1963-01-01

    The value of lumber produced from each of 362 Shasta red fir logs of southern Oregon was determined through a cooperative study in 1960. Lumber grade yield from each log provided the basis for calculating the comparative value of each log grade-log diameter class, in accordance with grading and scaling practices used both east and west of the...

  12. Effect of the Yield Stress and r-value Distribution on the Earing Profile of Cup Drawing with Yld2000-2d Yield Function

    NASA Astrophysics Data System (ADS)

    Lou, Yanshan; Bae, Gihyun; Lee, Changsoo; Huh, Hoon

    2010-06-01

    This paper deals with the effect of the yield stress and r-value distribution on the earing in the cup drawing. The anisotropic yield function, Yld2000-2d yield function, is selected to describe the anisotropy of two metal sheets, 719B and AA5182-O. The tool dimension is referred from the Benchmark problem of NUMISHEET'2002. The Downhill Simplex method is applied to identify the anisotropic coefficients in Yld2000-2d yield function. Simulations of the drawing process are performed to investigate the earing profile of two materials. The earing profiles obtained from simulations are compared with the analytical model developed by Hosford and Caddell. Simulations are conducted with respect to the change of the yield stress and r-value distribution, respectively. The correlation between the anisotropy and the earing tendency is investigated based on simulation data. Finally, the earing mechanism is analyzed through the deformation process of the blank during the cup deep drawing. It can be concluded that ears locate at angular positions with lower yield stress and higher r-value while the valleys appear at the angular position with higher yield stress and lower r-value. The effect of the yield stress distribution is more important for the cup height distribution than that of the r-value distribution.

  13. 31 CFR 351.10 - What do I need to know about market yields, or market bid yields, to understand redemption value...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., SERIES EE Maturities, Redemption Values, and Investment Yields of Series EE Savings Bonds General... securities. This curve relates the yield on a security to its time to maturity. Yields at particular points...

  14. 31 CFR 351.10 - What do I need to know about market yields, or market bid yields, to understand redemption value...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., SERIES EE Maturities, Redemption Values, and Investment Yields of Series EE Savings Bonds General... securities. This curve relates the yield on a security to its time to maturity. Yields at particular points...

  15. 31 CFR 351.10 - What do I need to know about market yields, or market bid yields, to understand redemption value...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., SERIES EE Maturities, Redemption Values, and Investment Yields of Series EE Savings Bonds General... securities. This curve relates the yield on a security to its time to maturity. Yields at particular points...

  16. Thermodynamically consistent model calibration in chemical kinetics

    PubMed Central

    2011-01-01

    Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC) method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints) into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new models. Furthermore, TCMC can

  17. Fluctuations of thermodynamic quantities calculated from the fundamental equation of thermodynamics

    NASA Astrophysics Data System (ADS)

    Yan, Zijun; Chen, Jincan

    1992-02-01

    On the basis of the probability distribution of the various values of the fluctuation and the fundamental equation of thermodynamics of any given system, a simple and useful method of calculating the fluctuations is presented. By using the method, the fluctuations of thermodynamic quantities can be directly determined from the fundamental equation of thermodynamics. Finally, some examples are given to illustrate the use of the method.

  18. Unifying mechanical and thermodynamic descriptions across the thioredoxin protein family.

    PubMed

    Mottonen, James M; Xu, Minli; Jacobs, Donald J; Livesay, Dennis R

    2009-05-15

    We compare various predicted mechanical and thermodynamic properties of nine oxidized thioredoxins (TRX) using a Distance Constraint Model (DCM). The DCM is based on a nonadditive free energy decomposition scheme, where entropic contributions are determined from rigidity and flexibility of structure based on distance constraints. We perform averages over an ensemble of constraint topologies to calculate several thermodynamic and mechanical response functions that together yield quantitative stability/flexibility relationships (QSFR). Applied to the TRX protein family, QSFR metrics display a rich variety of similarities and differences. In particular, backbone flexibility is well conserved across the family, whereas cooperativity correlation describing mechanical and thermodynamic couplings between the residue pairs exhibit distinctive features that readily standout. The diversity in predicted QSFR metrics that describe cooperativity correlation between pairs of residues is largely explained by a global flexibility order parameter describing the amount of intrinsic flexibility within the protein. A free energy landscape is calculated as a function of the flexibility order parameter, and key values are determined where the native-state, transition-state, and unfolded-state are located. Another key value identifies a mechanical transition where the global nature of the protein changes from flexible to rigid. The key values of the flexibility order parameter help characterize how mechanical and thermodynamic response is linked. Variation in QSFR metrics and key characteristics of global flexibility are related to the native state X-ray crystal structure primarily through the hydrogen bond network. Furthermore, comparison of three TRX redox pairs reveals differences in thermodynamic response (i.e., relative melting point) and mechanical properties (i.e., backbone flexibility and cooperativity correlation) that are consistent with experimental data on thermal stabilities

  19. The Value Versus Volume Yield Problem for Live-Sawn Hardwood Sawlogs

    Treesearch

    Philip H. Steele; Francis G. Wagner; Lalit Kumar; Philip A. Araman

    1993-01-01

    The potential conflict between value and volume maximization in sawing hardwood sawlogs by the live sawing method was analyzed. Twenty-four digitally described red oak sawlogs were sawn at the log orientation of highest value yield. Five opening face sawlines were iteratively placed in the sawlog a 1/4-inch intervals and lumber grades, volumes, and values from...

  20. Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.

    2014-12-01

    Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.

  1. Thermodynamics of the Trp-cage Miniprotein Unfolding in Urea

    PubMed Central

    Wafer, Lucas N. R.; Streicher, Werner W.; Makhatadze, George I.

    2010-01-01

    The thermodynamic properties of unfolding of the Trp-cage mini protein in the presence of various concentrations of urea have been characterized using temperature-induced unfolding monitored by far-UV circular dichroism spectroscopy. Analysis of the data using a two-state model allowed the calculation of the Gibbs energy of unfolding at 25°C as a function of urea concentration. This in turn was analyzed by the linear extrapolation model that yielded the dependence of Gibbs energy on urea concentration, i.e. the m-value for Trp-cage unfolding. The m-value obtained from the experimental data, as well as the experimental heat capacity change upon unfolding, were correlated with the structural parameters derived from the three dimensional structure of Trp-cage. It is shown that the m-value can be predicted well using a transfer model, while the heat capacity changes are in very good agreement with the empirical models based on model compounds studies. These results provide direct evidence that Trp-cage, despite its small size, is an excellent model for studies of protein unfolding and provide thermodynamic data that can be used to compare with atomistic computer simulations. PMID:20112418

  2. N fertilization for improved forage yields has little impact on nutritive value

    USDA-ARS?s Scientific Manuscript database

    Applications of soil amendments or fertilizers containing nitrogen are a routine part of most grass forage management strategies, with the primary goal of improving forage yields. But an increase in yield is usually accompanied by a decrease in nutritive value. In order to better evaluate this trade...

  3. Effect of drying on yield and calorific values of extractables from leafy spurge (Euphorbia esula)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiatr, S.M.

    1984-04-01

    The effect of dehydration on yield and calorific values has been investigated for oils, hydrocarbons, and poly-phenols extracted from leaves of Euphorbia esula (leafy spurge). Methods of dehydration employed were with a warm oven (50 degrees C), a hot oven (105 degrees C), at room temperature (25 degrees C), and with freeze drying. Generally, dehydration resulted in a loss of yield for all extractives. Noteworthy exceptions were oil yields from the warm-oven or air-dried biomass which did not differ significantly from fresh tissue. Significant differences in calorific values (range 4643-5192 cal/g) were observed for each category of whole leafy biomassmore » dehydrated as indicated above. Dehydration reduced the calorific value of oils (range 9483-10,095 cal/g) but tended to increase the calorific values of polyphenols (range 4178-6033 cal/g). NMR spectroscopy of the oil fraction suggested that dehydration did not grossly alter the composition of oils, despite differences in yield and calorific values.« less

  4. Effect of drying on yield and calorific values of extractables from leafy spurge (Euphorbia esula)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiatr, S.M.

    1984-01-01

    The effect of dehydration on yield and calorific values has been investigated for oils, hydrocarbons, and polyphenols extracted from leaves of Euphorbia esula (leafy spurge). Methods of dehydration employed were with a warm oven (50/sup 0/C), a hot oven (105/sup 0/C), at room temperature (25/sup 0/C), and with freeze drying. Generally, dehydration resulted in a loss of yield for all extractives. Noteworthy exceptions were oil yields from the warm-oven- or air-dried biomass which did not differ significantly from fresh tissue. Significant differences in calorific values (range 4643-5192 cal/g) were observed for each category of whole leafy biomass dehydrated as indicatedmore » above. Dehydration reduced the calorific value of oils (range 9483-10,095 cal/g) but tended to increase the calorific values of polyphenols (range 4178-6033 cal/g). NMR spectroscopy of the oil fraction suggested that dehydration did not grossly alter the composition of oils, despite differences in yield and calorific values.« less

  5. Thermodynamic holography.

    PubMed

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-10-19

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics.

  6. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  7. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.

    PubMed

    Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M

    2016-08-16

    Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.

  8. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate

  9. Comparison of the exact thermodynamics of the AF Blume-Emery-Grifiths and of the spin-1 ferromagnetic Ising models

    NASA Astrophysics Data System (ADS)

    Corrêa Silva, E. V.; Thomaz, M. T.

    2016-11-01

    We study in detail the thermodynamics of the anti-ferromagnetic Blume-Emery-Griffiths (AF BEG) model in the presence of a longitudinal magnetic field. Its thermodynamics is derived from the exact Helmholtz free energy (HFE) of the model, valid for T > 0. Numerical simulations of this model on a periodic space chain with 10 sites (N=10) yield the energy spectra of the model at K/J = 2 for D/J = 1 and D/J = 2, thus helping us compare, for a broad range of temperature, how some (per site) thermodynamic functions with the same value of K/J but distinct values of D/J behave, namely: the z-component of the magnetization, the specific heat and the entropy. These thermodynamic functions of the AF BEG model at K/|J| = 2 are compared to those of the spin-1 ferromagnetic Ising model with D/|J| > 1.5, for which the T=0 phase diagrams of both models are identical. This comparison is done in a large interval of temperature.

  10. Equilibration of tert-alkylphenols (thermodynamic analysis of the alkylation of phenols using branched-chain olefins)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesterova, T.N.; Malova, T.N.; Pil'shchikov, V.A.

    1985-09-01

    The authors describe the results of a study to evaluate the thermodynamic properties of t-Alk phi. These results, combined with earlier results, have enabled the authors to complete a thermodynamic analysis of the process for preparing tertiary alkylphenols which are widely used as additives in lubricating and fuel oils. Research was conducted over a fairly wide temperature range, in which the median temperature value corresponds to the upper temperature limit for a continuous process utilizing a type KU-2 ion-exchange resin catalyst; continuous operations are currently the most widely used method for industrial preparation of alkylphenols. Experimentally determined values of themore » equilibrium constants in a table indicate that they are influenced primarily by the nature of the reaction, and do not depend on the size of the tertiary alkyl substituents. Data in another table demonstrate that the thermodynamic properties of a given reaction are determined by the reaction type and are independent of the size of the tertiary alkylphenols. It was discovered that in order to increase the yield of the desired tert-alkylphenol product, the process should be carried out at the minimum possible temperature, using catalysts which are sufficiently active to guarantee thermodynamic control.« less

  11. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.

    PubMed

    Liebermeister, Wolfram; Uhlendorf, Jannis; Klipp, Edda

    2010-06-15

    Standard rate laws are a key requisite for systematically turning metabolic networks into kinetic models. They should provide simple, general and biochemically plausible formulae for reaction velocities and reaction elasticities. At the same time, they need to respect thermodynamic relations between the kinetic constants and the metabolic fluxes and concentrations. We present a family of reversible rate laws for reactions with arbitrary stoichiometries and various types of regulation, including mass-action, Michaelis-Menten and uni-uni reversible Hill kinetics as special cases. With a thermodynamically safe parameterization of these rate laws, parameter sets obtained by model fitting, sampling or optimization are guaranteed to lead to consistent chemical equilibrium states. A reformulation using saturation values yields simple formulae for rates and elasticities, which can be easily adjusted to the given stationary flux distributions. Furthermore, this formulation highlights the role of chemical potential differences as thermodynamic driving forces. We compare the modular rate laws to the thermodynamic-kinetic modelling formalism and discuss a simplified rate law in which the reaction rate directly depends on the reaction affinity. For automatic handling of modular rate laws, we propose a standard syntax and semantic annotations for the Systems Biology Markup Language. An online tool for inserting the rate laws into SBML models is freely available at www.semanticsbml.org. Supplementary data are available at Bioinformatics online.

  12. Catalytic supercritical water gasification of primary paper sludge using a homogeneous and heterogeneous catalyst: Experimental vs thermodynamic equilibrium results.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-02-01

    H2, CH4, CO and CO2 yields were measured during supercritical water gasification (SCWG) of primary paper waste sludge (PWS) at 450°C. Comparing these yields with calculated thermodynamic equilibrium values offer an improved understanding of conditions required to produce near-equilibrium yields. Experiments were conducted at different catalyst loads (0-1g/gPWS) and different reaction times (15-120min) in a batch reactor, using either K2CO3 or Ni/Al2O3-SiO2 as catalyst. K2CO3 up to 1g/gPWS increased the H2 yield significantly to 7.5mol/kgPWS. However, these yields and composition were far from equilibrium values, with carbon efficiency (CE) and energy recovery (ER) of only 29% and 20%, respectively. Addition of 0.5-1g/gPWS Ni/Al2O3-SiO2 resulted in high H2 and CH4 yields (6.8 and 14.8mol/kgPWS), CE of 84-90%, ER of 83% and a gas composition relatively close to the equilibrium values (at hold times of 60-120min). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Simulated pressure denaturation thermodynamics of ubiquitin.

    PubMed

    Ploetz, Elizabeth A; Smith, Paul E

    2017-12-01

    Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  15. Bifurcation and Stability Analysis of the Equilibrium States in Thermodynamic Systems in a Small Vicinity of the Equilibrium Values of Parameters

    NASA Astrophysics Data System (ADS)

    Barsuk, Alexandr A.; Paladi, Florentin

    2018-04-01

    The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.

  16. Effects of food processing on the thermodynamic and nutritive value of foods: literature and database survey.

    PubMed

    Prochaska, L J; Nguyen, X T; Donat, N; Piekutowski, W V

    2000-02-01

    One of the goals of our society is to provide adequate nourishment for the general population of humans. In the strictness sense, the foodstuffs which we ingest are bundles of thermodynamic energy. In our post-industrial society, food producers provide society with the bioenergetic content of foods, while stabilizing the food in a non-perishable form that enables the consumer to access foods that are convenient and nutritious. As our modern society developed, the processing of foodstuffs increased to allow consumers flexibility in their choice in which foods to eat (based on nutritional content and amount of post-harvest processing). The thermodynamic energy content of foodstuffs is well documented in the literature by the use of bomb calorimetry measurements. Here, we determine the effects of processing (in most cases by the application of heat) on the thermodynamic energy content of foods in order to investigate the role of processing in daily nutritional needs. We also examine which processing procedures affect the nutritive quality (vitamin and mineral content) and critically assess the rational, advantages and disadvantages of additives to food. Finally, we discuss the role of endogenous enzymes in foods not only on the nutritive quality of the food but also on the freshness and flavor of the food. Our results show that a significant decrease in thermodynamic energy content occurs in fruits, vegetables, and meat products upon processing that is independent of water content. No significant change in energy content was observed in cereals, sugars, grains, fats and oils, and nuts. The vitamin content of most foods was most dramatically decreased by canning while smaller effects were observed upon blanching and freezing. We found that most food additives had very little effect on thermodynamic energy content due to their presence in minute quantities and that most were added to preserve the foodstuff or supplement its vitamin content. The endogenous food enzymes

  17. Clock-Work Trade-Off Relation for Coherence in Quantum Thermodynamics

    NASA Astrophysics Data System (ADS)

    Kwon, Hyukjoon; Jeong, Hyunseok; Jennings, David; Yadin, Benjamin; Kim, M. S.

    2018-04-01

    In thermodynamics, quantum coherences—superpositions between energy eigenstates—behave in distinctly nonclassical ways. Here we describe how thermodynamic coherence splits into two kinds—"internal" coherence that admits an energetic value in terms of thermodynamic work, and "external" coherence that does not have energetic value, but instead corresponds to the functioning of the system as a quantum clock. For the latter form of coherence, we provide dynamical constraints that relate to quantum metrology and macroscopicity, while for the former, we show that quantum states exist that have finite internal coherence yet with zero deterministic work value. Finally, under minimal thermodynamic assumptions, we establish a clock-work trade-off relation between these two types of coherences. This can be viewed as a form of time-energy conjugate relation within quantum thermodynamics that bounds the total maximum of clock and work resources for a given system.

  18. The thermodynamic scale of inorganic crystalline metastability

    PubMed Central

    Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William D.; Gamst, Anthony C.; Persson, Kristin A.; Ceder, Gerbrand

    2016-01-01

    The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. PMID:28138514

  19. Local thermodynamic mapping for effective liquid density-functional theory

    NASA Technical Reports Server (NTRS)

    Kyrlidis, Agathagelos; Brown, Robert A.

    1992-01-01

    The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.

  20. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    PubMed

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting

  1. Thermodynamic theory of dislocation-enabled plasticity

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2017-11-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  2. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar

    PubMed Central

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487

  3. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar.

    PubMed

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.

  4. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis.

    PubMed

    Xu, Yiliang; Chen, Baoliang

    2013-10-01

    The thermodynamic parameters of the conversion of two companion pair materials, i.e., rice straw vs dairy manure, and rice bran vs chicken manure, to biochars were characterized by thermogravimetric analysis. The overall changes of activation energy (Ea) were well described by the Flynn-Wall method. The Ea values increased steeply from about 120 to 180 kJ/mol at the mass conversion (α) at 0.2-0.4, followed by a relatively steady change at 0.4<α<0.65, thereafter showed a quick increase at α>0.65. The higher contents of minerals in manures resulted in the larger Ea. The individual conversion of hemicellulose, cellulose and lignin in the feedstocks was identified and their thermodynamic parameters (ΔH°, ΔG° and ΔS°) were calculated. The yields of biochars calculated from TG curve were compared with the determined yields of biochars using muffle pyrolysis. Along with Fourier transform infrared spectra data, the distinct decompositions of biomasses and manures were evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Chemical and biochemical thermodynamics: Is it time for a reunification?

    PubMed

    Iotti, Stefano; Raff, Lionel; Sabatini, Antonio

    2017-02-01

    The thermodynamics of chemical reactions in which all species are explicitly considered with atoms and charge balanced is compared with the transformed thermodynamics generally used to treat biochemical reactions where atoms and charges are not balanced. The transformed thermodynamic quantities suggested by Alberty are obtained by execution of Legendre transformation of the usual thermodynamic potentials. The present analysis demonstrates that the transformed values for Δ r G' 0 and Δ r H' 0 can be obtained directly without performing Legendre transformations by simply writing the chemical reactions with all the pseudoisomers explicitly included and charges balanced. The appropriate procedures for computing the stoichiometric coefficients for the pseudoisomers are fully explained by means of an example calculation for the biochemical ATP hydrolysis reaction. It is concluded that the analysis has reunited the "two separate worlds" of conventional thermodynamics and transformed thermodynamics. In addition, it is also shown that the value of the conditional Gibbs energy of reaction, Δ r G', for a biochemical reaction is the same of the value of Δ r G for any chemical reaction involving pseudoisomers of the biochemical reagents. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Universalities of thermodynamic signatures in topological phases

    PubMed Central

    Kempkes, S. N.; Quelle, A.; Smith, C. Morais

    2016-01-01

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter. PMID:27929041

  7. Universalities of thermodynamic signatures in topological phases.

    PubMed

    Kempkes, S N; Quelle, A; Smith, C Morais

    2016-12-08

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter.

  8. Inflight thermodynamic properties

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.

    1973-01-01

    The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.

  9. Thermodynamic theory of dislocation-enabled plasticity

    DOE PAGES

    Langer, J. S.

    2017-11-30

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects,more » yielding transitions, and adiabatic shear banding.« less

  10. Thermodynamical and structural insights of orange II adsorption by Mg{sub R}AlNO{sub 3} layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustapha Bouhent, Mohamed; Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal, F-63177 Aubiere Cedex; Derriche, Zoubir, E-mail: derriche_zoubir@yahoo.co

    2011-05-15

    [Mg{sub 1-x} Al{sub x}(OH){sub 2}][(NO{sub 3}){sub x}, nH{sub 2}O] Layered Double Hydroxide (LDH) sorbents with variable Mg/Al molar (R=(1-x)/x) ratios were investigated for adsorption of azo dye, orange II (OII) at various pH and temperature conditions. Mg{sub 2}AlNO{sub 3} displays the highest adsorption capacity with 3.611 mmol of OII per gram of Mg{sub 2}AlNO{sub 3} at 40 {sup o}C. Adsorption isotherms have been fitted using the Langmuir model and free energy of adsorption ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}) and entropy ({Delta}S{sup o}) were calculated. The experimental values for {Delta}G{sup o} in temperature range between 10 and 40 {sup o}C weremore » found to be negative indicating that a spontaneous process occurred. Positive calculated enthalpy values, characteristic of an endothermic process were found. Characterization of solids (PXRD, FTIR, UV-vis, TGA/DTA, adsorption isotherm BET analysis, SEM and Zetametry) before and after adsorption showed that adsorption proceeds in two steps. First, adsorption occurs at the LDH surface, followed by intercalation via anion exchange. -- Graphical Abstract: Structural and thermodynamical insight of adsorption/Intercalation of OII in Mg{sub R}Al LDH Display Omitted Highlights: {yields} The nitrate containing hydrotalcite-like compounds (Mg{sub R}AlNO{sub 3} LDH) were prepared by the coprecipitation method. {yields} Adsorption of anionic orange dye(OII) is studied on LDHs at different temperatures. {yields} The adsorption process is well described by the Langmuir isotherm model. {yields} Mg{sub 2}AlNO{sub 3} displays the highest adsorption capacity with 3.611 mmol of OII per gram of Mg{sub 2}AlNO{sub 3} at 40 {sup o}C. {yields} Adsorption process does not occur on the surface of the LDH only but an intercalation process is also occurring concomitantly according to the thermodynamical values.« less

  11. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.

    PubMed

    Teh, Kwee-Yan; Lutz, Andrew E

    2010-05-17

    Thermodynamic concepts have been used in the past to predict microbial growth yield. This may be the key consideration in many industrial biotechnology applications. It is not the case, however, in the context of ethanol fuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker's yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of bio-ethanol production. We find that anaerobic metabolism of yeast is very efficient; the process retains more than 90% of the maximum work that could be extracted from the growth medium supplied to the chemostat reactor. Yeast cells and other metabolic by-products are also formed, which reduces the glucose-to-ethanol conversion efficiency to less than 75%. Varying the specific ATP consumption rate, which is the fundamental parameter in this paper for modeling the energy demands of cell growth, shows the usual trade-off between ethanol production and biomass yield. The minimum ATP consumption rate required for synthesizing cell materials leads to biomass yield and Gibbs energy dissipation limits that are much more severe than those imposed by mass balance and thermodynamic equilibrium constraints. 2010 Elsevier B.V. All rights reserved.

  12. THERMODYNAMICS OF THE ACTINIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated frommore » spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)« less

  13. Finite gradient elasticity and plasticity: a constitutive thermodynamical framework

    NASA Astrophysics Data System (ADS)

    Bertram, Albrecht

    2016-05-01

    In Bertram (Continuum Mech Thermodyn. doi: 10.1007/s00161-014-0387-0 , 2015), a mechanical framework for finite gradient elasticity and plasticity has been given. In the present paper, this is extended to thermodynamics. The mechanical theory is only briefly repeated here. A format for a rather general constitutive theory including all thermodynamic fields is given in a Euclidian invariant setting. The plasticity theory is rate-independent and unconstrained. The Clausius-Duhem inequality is exploited to find necessary and sufficient conditions for thermodynamic consistency. The residual dissipation inequality restricts the flow and hardening rules in combination with the yield criterion.

  14. Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production

    NASA Astrophysics Data System (ADS)

    Judge, W. D.; Azimi, G.

    2017-10-01

    Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.

  15. Specific yield: compilation of specific yields for various materials

    USGS Publications Warehouse

    Johnson, A.I.

    1967-01-01

    Specific yield is defined as the ratio of (1) the volume of water that a saturated rock or soil will yield by gravity to (2) the total volume of the rock or soft. Specific yield is usually expressed as a percentage. The value is not definitive, because the quantity of water that will drain by gravity depends on variables such as duration of drainage, temperature, mineral composition of the water, and various physical characteristics of the rock or soil under consideration. Values of specific yields nevertheless offer a convenient means by which hydrologists can estimate the water-yielding capacities of earth materials and, as such, are very useful in hydrologic studies. The present report consists mostly of direct or modified quotations from many selected reports that present and evaluate methods for determining specific yield, limitations of those methods, and results of the determinations made on a wide variety of rock and soil materials. Although no particular values are recommended in this report, a table summarizes values of specific yield, and their averages, determined for 10 rock textures. The following is an abstract of the table. [Table

  16. Thermodynamics-Based Metabolic Flux Analysis

    PubMed Central

    Henry, Christopher S.; Broadbelt, Linda J.; Hatzimanikatis, Vassily

    2007-01-01

    A new form of metabolic flux analysis (MFA) called thermodynamics-based metabolic flux analysis (TMFA) is introduced with the capability of generating thermodynamically feasible flux and metabolite activity profiles on a genome scale. TMFA involves the use of a set of linear thermodynamic constraints in addition to the mass balance constraints typically used in MFA. TMFA produces flux distributions that do not contain any thermodynamically infeasible reactions or pathways, and it provides information about the free energy change of reactions and the range of metabolite activities in addition to reaction fluxes. TMFA is applied to study the thermodynamically feasible ranges for the fluxes and the Gibbs free energy change, ΔrG′, of the reactions and the activities of the metabolites in the genome-scale metabolic model of Escherichia coli developed by Palsson and co-workers. In the TMFA of the genome scale model, the metabolite activities and reaction ΔrG′ are able to achieve a wide range of values at optimal growth. The reaction dihydroorotase is identified as a possible thermodynamic bottleneck in E. coli metabolism with a ΔrG′ constrained close to zero while numerous reactions are identified throughout metabolism for which ΔrG′ is always highly negative regardless of metabolite concentrations. As it has been proposed previously, these reactions with exclusively negative ΔrG′ might be candidates for cell regulation, and we find that a significant number of these reactions appear to be the first steps in the linear portion of numerous biosynthesis pathways. The thermodynamically feasible ranges for the concentration ratios ATP/ADP, NAD(P)/NAD(P)H, and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin

  17. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    PubMed

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  18. Estimation of genomic breeding values for milk yield in UK dairy goats.

    PubMed

    Mucha, S; Mrode, R; MacLaren-Lee, I; Coffey, M; Conington, J

    2015-11-01

    The objective of this study was to estimate genomic breeding values for milk yield in crossbred dairy goats. The research was based on data provided by 2 commercial goat farms in the UK comprising 590,409 milk yield records on 14,453 dairy goats kidding between 1987 and 2013. The population was created by crossing 3 breeds: Alpine, Saanen, and Toggenburg. In each generation the best performing animals were selected for breeding, and as a result, a synthetic breed was created. The pedigree file contained 30,139 individuals, of which 2,799 were founders. The data set contained test-day records of milk yield, lactation number, farm, age at kidding, and year and season of kidding. Data on milk composition was unavailable. In total 1,960 animals were genotyped with the Illumina 50K caprine chip. Two methods for estimation of genomic breeding value were compared-BLUP at the single nucleotide polymorphism level (BLUP-SNP) and single-step BLUP. The highest accuracy of 0.61 was obtained with single-step BLUP, and the lowest (0.36) with BLUP-SNP. Linkage disequilibrium (r(2), the squared correlation of the alleles at 2 loci) at 50 kb (distance between 2 SNP) was 0.18. This is the first attempt to implement genomic selection in UK dairy goats. Results indicate that the single-step method provides the highest accuracy for populations with a small number of genotyped individuals, where the number of genotyped males is low and females are predominant in the reference population. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavatskiy, K. S.

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can bemore » derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.« less

  20. Calculation of kinetic rate constants from thermodynamic data

    NASA Technical Reports Server (NTRS)

    Marek, C. John

    1995-01-01

    A new scheme for relating the absolute value for the kinetic rate constant k to the thermodynamic constant Kp is developed for gases. In this report the forward and reverse rate constants are individually related to the thermodynamic data. The kinetic rate constants computed from thermodynamics compare well with the current kinetic rate constants. This method is self consistent and does not have extensive rules. It is first demonstrated and calibrated by computing the HBr reaction from H2 and Br2. This method then is used on other reactions.

  1. Stochastic approach to plasticity and yield in amorphous solids.

    PubMed

    Hentschel, H G E; Jaiswal, Prabhat K; Procaccia, Itamar; Sastry, Srikanth

    2015-12-01

    We focus on the probability distribution function (PDF) P(Δγ;γ) where Δγ are the measured strain intervals between plastic events in a athermal strained amorphous solids, and γ measures the accumulated strain. The tail of this distribution as Δγ→0 (in the thermodynamic limit) scales like Δγ(η). The exponent η is related via scaling relations to the tail of the PDF of the eigenvalues of the plastic modes of the Hessian matrix P(λ) which scales like λ(θ), η=(θ-1)/2. The numerical values of η or θ can be determined easily in the unstrained material and in the yielded state of plastic flow. Special care is called for in the determination of these exponents between these states as γ increases. Determining the γ dependence of the PDF P(Δγ;γ) can shed important light on plasticity and yield. We conclude that the PDF's of both Δγ and λ are not continuous functions of γ. In slowly quenched amorphous solids they undergo two discontinuous transitions, first at γ=0(+) and then at the yield point γ=γ(Y) to plastic flow. In quickly quenched amorphous solids the second transition is smeared out due to the nonexisting stress peak before yield. The nature of these transitions and scaling relations with the system size dependence of 〈Δγ〉 are discussed.

  2. Thermodynamic properties of pressurized PH3 superconductor

    NASA Astrophysics Data System (ADS)

    Koka, S.; Rao, G. Venugopal

    2018-05-01

    The paper presents the superconducting thermodynamic functions determined for pressurized phosphorus trihydride (PH3). In particular, free energy difference ΔF, thermodynamic critical field Hc, specific heat etc. have been calculated using analytical expressions. The calculations were performed in the frame work of the strong-coupling formalism. The obtained dimensionless parameters: RΔ ≡ 2Δ(0)/kBTc, RC ≡ ΔC(Tc)/CN(Tc) and RH≡TcCN(Tc)/Hc2(0) are 4.05, 1.96 and 0.156 respectively, which significantly differ from the values arising from the BCS theory of superconductivity. The thermodynamic properties strongly depend on the depairing electron correlations and retardation effects.

  3. Thermodynamic Diagrams

    NASA Astrophysics Data System (ADS)

    Chaston, Scot

    1999-02-01

    Thermodynamic data such as equilibrium constants, standard cell potentials, molar enthalpies of formation, and standard entropies of substances can be a very useful basis for an organized presentation of knowledge in diverse areas of applied chemistry. Thermodynamic data can become particularly useful when incorporated into thermodynamic diagrams that are designed to be easy to recall, to serve as a basis for reconstructing previous knowledge, and to determine whether reactions can occur exergonically or only with the help of an external energy source. Few students in our chemistry-based courses would want to acquire the depth of knowledge or rigor of professional thermodynamicists. But they should nevertheless learn how to make good use of thermodynamic data in their professional occupations that span the chemical, biological, environmental, and medical laboratory fields. This article discusses examples of three thermodynamic diagrams that have been developed for this purpose. They are the thermodynamic energy account (TEA), the total entropy scale, and the thermodynamic scale diagrams. These diagrams help in the teaching and learning of thermodynamics by bringing the imagination into the process of developing a better understanding of abstract thermodynamic functions, and by allowing the reader to keep track of specialist thermodynamic discourses in the literature.

  4. Is applicable thermodynamics of negative temperature for living organisms?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  5. Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases.

    PubMed

    Mohammadzadeh, Hosein; Adli, Fereshteh; Nouri, Sahereh

    2016-12-01

    We investigate perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. We show that the intrinsic statistical interaction of nonextensive Bose (Fermi) gas is attractive (repulsive) similar to the extensive case but the value of thermodynamic curvature is changed by a nonextensive parameter. In contrary to the extensive ideal classical gas, the nonextensive one may be divided to two different regimes. According to the deviation parameter of the system to the nonextensive case, one can find a special value of fugacity, z^{*}, where the sign of thermodynamic curvature is changed. Therefore, we argue that the nonextensive parameter induces an attractive (repulsive) statistical interaction for zz^{*}) for an ideal classical gas. Also, according to the singular point of thermodynamic curvature, we consider the condensation of nonextensive Boson gas.

  6. Exp6-polar thermodynamics of dense supercritical water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastea, S; Fried, L E

    2007-12-13

    We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar moleculesmore » and their mixtures.« less

  7. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    NASA Astrophysics Data System (ADS)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  8. Thermodynamic equilibrium with acceleration and the Unruh effect

    NASA Astrophysics Data System (ADS)

    Becattini, F.

    2018-04-01

    We address the problem of thermodynamic equilibrium with constant acceleration along the velocity field lines in a quantum relativistic statistical mechanics framework. We show that for a free scalar quantum field, after vacuum subtraction, all mean values vanish when the local temperature T is as low as the Unruh temperature TU=A /2 π where A is the magnitude of the acceleration four-vector. We argue that the Unruh temperature is an absolute lower bound for the temperature of any accelerated fluid at global thermodynamic equilibrium. We discuss the conditions of this bound to be applicable in a local thermodynamic equilibrium situation.

  9. A Priori Estimation of Organic Reaction Yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emami, Fateme S.; Vahid, Amir; Wylie, Elizabeth K.

    2015-07-21

    A thermodynamically guided calculation of free energies of substrate and product molecules allows for the estimation of the yields of organic reactions. The non-ideality of the system and the solvent effects are taken into account through the activity coefficients calculated at the molecular level by perturbed-chain statistical associating fluid theory (PC-SAFT). The model is iteratively trained using a diverse set of reactions with yields that have been reported previously. This trained model can then estimate a priori the yields of reactions not included in the training set with an accuracy of ca. ±15 %. This ability has the potential tomore » translate into significant economic savings through the selection and then execution of only those reactions that can proceed in good yields.« less

  10. Thermodynamic properties by Equation of state of liquid sodium under pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Sun, Yongli; Zhang, Xiaoxiao; Li, Mo

    Isothermal bulk modulus, molar volume and speed of sound of molten sodium are calculated through an equation of state of a power law form within good precision as compared with the experimental data. The calculated internal energy data show the minimum along the isothermal lines as the previous result but with slightly larger values. The calculated values of isobaric heat capacity show the unexpected minimum in the isothermal compression. The temperature and pressure derivative of various thermodynamic quantities in liquid Sodium are derived. It is discussed about the contribution from entropy to the temperature and pressure derivative of isothermal bulk modulus. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid Sodium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. By comparison with the results from experimental measurements and quasi-thermodynamic theory, the calculated values are found to be very close at melting point at ambient condition. Furthermore, several other thermodynamic quantities are also presented. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 11204200.

  11. Nonperturbative quark-gluon thermodynamics at finite density

    NASA Astrophysics Data System (ADS)

    Andreichikov, M. A.; Lukashov, M. S.; Simonov, Yu. A.

    2018-03-01

    Thermodynamics of the quark-gluon plasma at finite density is studied in the framework of the Field Correlator Method, where thermodynamical effects of Polyakov loops and color magnetic confinement are taken into account. Having found good agreement with numerical lattice data for zero density, we calculate pressure P(T,μ), for 0 < μ < 400 MeV and 150 < T < 1000 MeV. For the first time, the explicit integral form is found in this region, demonstrating analytic structure in the complex μ plane. The resulting multiple complex branch points are found at the Roberge-Weiss values of Imμ, with Reμ defined by the values of Polyakov lines and color magnetic confinement.

  12. Indirect Determination of the Thermodynamic Temperature of a Gold Fixed-Point Cell

    NASA Astrophysics Data System (ADS)

    Battuello, M.; Girard, F.; Florio, M.

    2010-09-01

    Since the value T 90(Au) was fixed on the ITS-90, some determinations of the thermodynamic temperature of the gold point have been performed which form, with other renormalized results of previous measurements by radiation thermometry, the basis for the current best estimates of ( T - T 90)Au = 39.9 mK as elaborated by the CCT-WG4. Such a value, even if consistent with the behavior of T - T 90 differences at lower temperatures, is quite influenced by the low values of T Au as determined with few radiometric measurements. At INRIM, an independent indirect determination of the thermodynamic temperature of gold was performed by means of a radiation thermometry approach. A fixed-point technique was used to realize approximated thermodynamic scales from the Zn point up to the Cu point. A Si-based standard radiation thermometer working at 900 nm and 950 nm was used. The low uncertainty presently associated to the thermodynamic temperature of fixed points and the accuracy of INRIM realizations, allowed scales with an uncertainty lower than 0.03 K in terms of the thermodynamic temperature to be realized. A fixed-point cell filled with gold, 99.999 % in purity, was measured, and its freezing temperature was determined by both interpolation and extrapolation. An average T Au = 1337.395 K was found with a combined standard uncertainty of 23 mK. Such a value is 25 mK higher than the presently available value as derived by the CCT-WG4 value of ( T - T 90)Au = 39.9 mK.

  13. Biochemical thermodynamics: applications of Mathematica.

    PubMed

    Alberty, Robert A

    2006-01-01

    The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94

  14. Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics

    PubMed Central

    2015-01-01

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125

  15. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    PubMed Central

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  16. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    ERIC Educational Resources Information Center

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  17. An approach to get thermodynamic properties from speed of sound

    NASA Astrophysics Data System (ADS)

    Núñez, M. A.; Medina, L. A.

    2017-01-01

    An approach for estimating thermodynamic properties of gases from the speed of sound u, is proposed. The square u2, the compression factor Z and the molar heat capacity at constant volume C V are connected by two coupled nonlinear partial differential equations. Previous approaches to solving this system differ in the conditions used on the range of temperature values [Tmin,Tmax]. In this work we propose the use of Dirichlet boundary conditions at Tmin, Tmax. The virial series of the compression factor Z = 1+Bρ+Cρ2+… and other properties leads the problem to the solution of a recursive set of linear ordinary differential equations for the B, C. Analytic solutions of the B equation for Argon are used to study the stability of our approach and previous ones under perturbation errors of the input data. The results show that the approach yields B with a relative error bounded basically by that of the boundary values and the error of other approaches can be some orders of magnitude lager.

  18. Nutrient retention values and cooking yield factors for three South African lamb and mutton cuts.

    PubMed

    van Heerden, Salomina M; Strydom, Phillip E

    2017-11-01

    Nutrient content of raw and cooked foods is important for formulation of healthy diets. The retention of nutrients during cooking can be influenced by various factors, including animal age, carcass characteristics and cooking method, and these factors are often unique to specific countries. Here the effects of animal age (lamb and mutton) and carcass cut (shoulder, loin and leg) combined with cooking method (moist heat and dry heat) on yield and nutrient retention of selected nutrients of South African sheep carcasses were studied. Cooking yields and moisture retention were lower for lamb loin but higher for lamb leg. Energy and fat retention were higher for all cuts of mutton compared with lamb, while higher retention values for cholesterol were recorded for lamb. Mutton retained more iron (P = 0.10) and zinc and also more vitamin B 2 , B 6 and B 12 than lamb. Shoulder cooked according to moist heat cooking method retained more magnesium, potassium and sodium. Incorporating these retention and yield values into the South African Medical Research Council's Food Composition Tables provides a reliable reference to all concerned with nutrient content of food. It will also guide practitioners and primary industry to adjust animal production aimed at optimum nutrient content to specific diets. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Roothaan approach in the thermodynamic limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, G.; Plastino, A.

    1982-02-01

    A systematic method for the solution of the Hartree-Fock equations in the thermodynamic limit is presented. The approach is seen to be a natural extension of the one usually employed in the finite-fermion case, i.e., that developed by Roothaan. The new techniques developed here are applied, as an example, to neutron matter, employing the so-called V/sub 1/ Bethe homework potential. The results obtained are, by far, superior to those that the ordinary plane-wave Hartree-Fock theory yields.

  20. Deconstructing thermodynamic parameters of a coupled system from site-specific observables.

    PubMed

    Chowdhury, Sandipan; Chanda, Baron

    2010-11-02

    Cooperative interactions mediate information transfer between structural domains of a protein molecule and are major determinants of protein function and modulation. The prevalent theories to understand the thermodynamic origins of cooperativity have been developed to reproduce the complex behavior of a global thermodynamic observable such as ligand binding or enzyme activity. However, in most cases the measurement of a single global observable cannot uniquely define all the terms that fully describe the energetics of the system. Here we establish a theoretical groundwork for analyzing protein thermodynamics using site-specific information. Our treatment involves extracting a site-specific parameter (defined as χ value) associated with a structural unit. We demonstrate that, under limiting conditions, the χ value is related to the direct interaction terms associated with the structural unit under observation and its intrinsic activation energy. We also introduce a site-specific interaction energy term (χ(diff)) that is a function of the direct interaction energy of that site with every other site in the system. When combined with site-directed mutagenesis and other molecular level perturbations, analyses of χ values of site-specific observables may provide valuable insights into protein thermodynamics and structure.

  1. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    NASA Astrophysics Data System (ADS)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  2. Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures

    EPA Pesticide Factsheets

    This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics

  3. Thermodynamics of enzyme-catalyzed esterifications: II. Levulinic acid esterification with short-chain alcohols.

    PubMed

    Altuntepe, Emrah; Emel'yanenko, Vladimir N; Forster-Rotgers, Maximilian; Sadowski, Gabriele; Verevkin, Sergey P; Held, Christoph

    2017-10-01

    Levulinic acid was esterified with methanol, ethanol, and 1-butanol with the final goal to predict the maximum yield of these equilibrium-limited reactions as function of medium composition. In a first step, standard reaction data (standard Gibbs energy of reaction Δ R g 0 ) were determined from experimental formation properties. Unexpectedly, these Δ R g 0 values strongly deviated from data obtained with classical group contribution methods that are typically used if experimental standard data is not available. In a second step, reaction equilibrium concentrations obtained from esterification catalyzed by Novozym 435 at 323.15 K were measured, and the corresponding activity coefficients of the reacting agents were predicted with perturbed-chain statistical associating fluid theory (PC-SAFT). The so-obtained thermodynamic activities were used to determine Δ R g 0 at 323.15 K. These results could be used to cross-validate Δ R g 0 from experimental formation data. In a third step, reaction-equilibrium experiments showed that equilibrium position of the reactions under consideration depends strongly on the concentration of water and on the ratio of levulinic acid: alcohol in the initial reaction mixtures. The maximum yield of the esters was calculated using Δ R g 0 data from this work and activity coefficients of the reacting agents predicted with PC-SAFT for varying feed composition of the reaction mixtures. The use of the new Δ R g 0 data combined with PC-SAFT allowed good agreement to the measured yields, while predictions based on Δ R g 0 values obtained with group contribution methods showed high deviations to experimental yields.

  4. Global Passivity in Microscopic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Uzdin, Raam; Rahav, Saar

    2018-04-01

    The main thread that links classical thermodynamics and the thermodynamics of small quantum systems is the celebrated Clausius inequality form of the second law. However, its application to small quantum systems suffers from two cardinal problems. (i) The Clausius inequality does not hold when the system and environment are initially correlated—a commonly encountered scenario in microscopic setups. (ii) In some other cases, the Clausius inequality does not provide any useful information (e.g., in dephasing scenarios). We address these deficiencies by developing the notion of global passivity and employing it as a tool for deriving thermodynamic inequalities on observables. For initially uncorrelated thermal environments the global passivity framework recovers the Clausius inequality. More generally, global passivity provides an extension of the Clausius inequality that holds even in the presences of strong initial system-environment correlations. Crucially, the present framework provides additional thermodynamic bounds on expectation values. To illustrate the role of the additional bounds, we use them to detect unaccounted heat leaks and weak feedback operations ("Maxwell demons") that the Clausius inequality cannot detect. In addition, it is shown that global passivity can put practical upper and lower bounds on the buildup of system-environment correlations for dephasing interactions. Our findings are highly relevant for experiments in various systems such as ion traps, superconducting circuits, atoms in optical cavities, and more.

  5. Thermodynamically Feasible Kinetic Models of Reaction Networks

    PubMed Central

    Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts the concepts of potentials and forces from irreversible thermodynamics to kinetic modeling. In the proposed formalism, the thermokinetic potential of a compound is proportional to its concentration. The proportionality factor is a compound-specific parameter called capacity. The thermokinetic force of a reaction is a function of the potentials. Every reaction has a resistance that is the ratio of thermokinetic force and reaction rate. For mass-action type kinetics, the resistances are constant. Since it relies on the thermodynamic concept of potentials and forces, the TKM formalism structurally observes detailed balance for all values of capacities and resistances. Thus, it provides an easy way to formulate physically feasible, kinetic models of biological reaction networks. The TKM formalism is useful for modeling large biological networks that are subject to many detailed balance relations. PMID:17208985

  6. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  7. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    PubMed

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  8. Systematic assignment of thermodynamic constraints in metabolic network models

    PubMed Central

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    Background The availability of genome sequences for many organisms enabled the reconstruction of several genome-scale metabolic network models. Currently, significant efforts are put into the automated reconstruction of such models. For this, several computational tools have been developed that particularly assist in identifying and compiling the organism-specific lists of metabolic reactions. In contrast, the last step of the model reconstruction process, which is the definition of the thermodynamic constraints in terms of reaction directionalities, still needs to be done manually. No computational method exists that allows for an automated and systematic assignment of reaction directions in genome-scale models. Results We present an algorithm that – based on thermodynamics, network topology and heuristic rules – automatically assigns reaction directions in metabolic models such that the reaction network is thermodynamically feasible with respect to the production of energy equivalents. It first exploits all available experimentally derived Gibbs energies of formation to identify irreversible reactions. As these thermodynamic data are not available for all metabolites, in a next step, further reaction directions are assigned on the basis of network topology considerations and thermodynamics-based heuristic rules. Briefly, the algorithm identifies reaction subsets from the metabolic network that are able to convert low-energy co-substrates into their high-energy counterparts and thus net produce energy. Our algorithm aims at disabling such thermodynamically infeasible cyclic operation of reaction subnetworks by assigning reaction directions based on a set of thermodynamics-derived heuristic rules. We demonstrate our algorithm on a genome-scale metabolic model of E. coli. The introduced systematic direction assignment yielded 130 irreversible reactions (out of 920 total reactions), which corresponds to about 70% of all irreversible reactions that are required to

  9. Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations

    NASA Astrophysics Data System (ADS)

    Cerino, Luca; Puglisi, Andrea; Vulpiani, Angelo

    2016-04-01

    We investigate a kinetic heat engine model composed of particles enclosed in a box where one side acts as a thermostat and the opposite side is a piston exerting a given pressure. Pressure and temperature are varied in a cyclical protocol of period τ : their relative excursions, δ and ɛ , respectively, constitute the thermodynamic forces dragging the system out of equilibrium. The analysis of the entropy production of the system allows us to define the conjugated fluxes, which are proportional to the extracted work and the consumed heat. In the limit of small δ and ɛ the fluxes are linear in the forces through a τ -dependent Onsager matrix whose off-diagonal elements satisfy a reciprocal relation. The dynamics of the piston can be approximated, through a coarse-graining procedure, by a Klein-Kramers equation which—in the linear regime—yields analytic expressions for the Onsager coefficients and the entropy production. A study of the efficiency at maximum power shows that the Curzon-Ahlborn formula is always an upper limit which is approached at increasing values of the thermodynamic forces, i.e., outside of the linear regime. In all our analysis the adiabatic limit τ →∞ and the the small-force limit δ ,ɛ →0 are not directly related.

  10. Thermodynamic properties of tungsten

    NASA Astrophysics Data System (ADS)

    Grimvall, Göran; Thiessen, Maria; Guillermet, Armando Fernández

    1987-11-01

    Tungsten has several unusual thermodynamic properties, e.g., very high values of the melting point, the entropy of fusion, the expansion on melting and the lattice anharmonicity. These features are given a semiquantitative explanation, based on the electron density of states N(E). Our treatment includes a numerical calculation of the electronic heat capacity from N(E) and a calculation of the entropy Debye temperature FTHETAS(T) from the vibrational part of the experimental heat capacity. FTHETAS(T) decreases by 36% from 300 K to the melting temperature 3695 K, the largest drop in FTHETAS for elemental metals. Recent quantum-mechanical ab initio calculations of the difference, Hβ/α, in Gibbs energy at T=0 K between the metastable fcc tungsten and the stable bcc phase yield Hβ/α=50+/-5 kJ/mol, which is much larger than the ``experimental'' values Hβ/α=10 and 19 kJ/mol derived from previous semiempirical analyses [the so-called calculation of phase diagrams (``CALPHAD'') method] of binary phase diagrams containing tungsten. We have reanalyzed CALPHAD data, using the results of the first part of this paper. Because of the shapes of N(E) of α-W and β-W, some usually acceptable CALPHAD procedures give misleading results. We give several estimates of Hβ/α, using different assumptions about the hypothetical melting temperature Tβf of fcc W. The more realistic of our estimates gives Hβ/α=30 kJ/mol or larger, thus reducing considerably the previous discrepancy between CALPHAD and ab initio results. The physical picture emerging from this work should be of importance in refinements of the CALPHAD method.

  11. Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90

    PubMed Central

    Kazlauskas, Egidijus; Petrikaitė, Vilma; Michailovienė, Vilma; Revuckienė, Jurgita; Matulienė, Jurgita; Grinius, Leonas; Matulis, Daumantas

    2012-01-01

    The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic Kd approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors. PMID:22655030

  12. Methodology of Thermodynamics

    ERIC Educational Resources Information Center

    Mohan, Gyan

    1969-01-01

    Presents a systematization of the mathematical formulae in thermodynamics. From the set of thermodynamic variables, four equations are derived which contain the total mathematical jargon of thermodynamics. (LC)

  13. Thermodynamics of k-essence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilic, Neven

    We discuss thermodynamic properties of dark energy using the formalism of field theory at finite temperature. In particular, we apply our formalism to a purely kinetic type of k-essence. We show quite generally that the entropy associated with dark energy is always equal or greater than zero. Hence, contrary to often stated claims, a violation of the null energy condition (phantom dark energy) does not necessarily yield a negative entropy. In addition, we find that the thermal fluctuations of a k-essence field may be represented by a free boson gas with an effective number of degrees of freedom equal tomore » c{sub s}{sup -3}.« less

  14. Finite size effects in the thermodynamics of a free neutral scalar field

    NASA Astrophysics Data System (ADS)

    Parvan, A. S.

    2018-04-01

    The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.

  15. Effect of plastic viscosity and yield value on spray characteristics of magnesium-slurry fuel

    NASA Technical Reports Server (NTRS)

    Prok, George M

    1957-01-01

    Magnesium slurries were sprayed onto a sheet of paper from an air-atomizing injector. Drop sizes and distributions were then determined from photomicrographs. Four different surface-active additives were used in preparing the slurries to give plastic viscosities between 0.22 and 0.51 poise and yield values between 150 and 810 dynes-cm(exp 2). It was found that there was no significant variation in the spray characteristics of these slurries when tested under the same conditions.

  16. Biomass yield and feeding value of rye, triticale, and wheat straw produced under a dual-purpose management system.

    PubMed

    Ates, S; Keles, G; Demirci, U; Dogan, S; Ben Salem, H

    2017-11-01

    Dual-purpose management of winter cereals for grazing and grain production provides highly nutritive forage for ruminants in the spring and may positively affect straw feeding value. A 2-yr study investigated the effect of spring defoliation of triticale, wheat, and rye at the tillering and stem elongation stages on total biomass, grain yields, and straw quality. Furthermore, straws of spring-defoliated and undefoliated (control) cereal crops were evaluated for nutritional value and voluntary intake as a means of assessing the efficiency of dual-purpose management systems from the winter feeding context as well. The feeding study consisted of 9 total mixed rations (TMR), each containing 35% triticale, rye, or wheat straw obtained under 3 spring-defoliation regimens. The TMR were individually fed to fifty-four 1-yr-old Anatolian Merino ewes for 28 d. Defoliation of the crops at tillering did not affect the total biomass production or grain yields. However, biomass and grain yields were reduced ( < 0.01) by 55 and 52%, respectively, in crops defoliated at stem elongation. Straw of spring-defoliated cereals had less NDF and ADF concentrations ( < 0.01) but greater CP ( < 0.01), nonfiber carbohydrates ( < 0.01), and ME concentrations ( < 0.01) compared with straw from undefoliated crops. The increase in the nutritive value of straw led to greater nutrient digestion ( < 0.01) and intake of DM and OM of ewes ( < 0.01). However, sheep live weight gain did not differ among treatments ( > 0.77). This study indicated that straw feeding value and digestibility can be increased through spring defoliation.

  17. RNA Thermodynamic Structural Entropy

    PubMed Central

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  18. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  19. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.

    PubMed

    Nath, Sunil

    2016-12-01

    As the chief energy source of eukaryotic cells, it is important to determine the thermodynamic efficiency of ATP synthesis in oxidative phosphorylation (OX PHOS). Previous estimates of the thermodynamic efficiency of this vital process have ranged from Lehninger's original back-of-the-envelope calculation of 38% to the often quoted value of 55-60% in current textbooks of biochemistry, to high values of 90% from recent information theoretic considerations, and reports of realizations of close to ideal 100% efficiencies by single molecule experiments. Hence this problem has been reinvestigated from first principles. The overall thermodynamic efficiency of ATP synthesis in the mitochondrial energy transduction OX PHOS process has been found to lie between 40 and 41% from four different approaches based on a) estimation using structural and biochemical data, b) fundamental nonequilibrium thermodynamic analysis, c) novel insights arising from Nath's torsional mechanism of energy transduction and ATP synthesis, and d) the overall balance of cellular energetics. The torsional mechanism also offers an explanation for the observation of a thermodynamic efficiency approaching 100% in some experiments. Applications of the unique, molecular machine mode of functioning of F 1 F O -ATP synthase involving direct inter-conversion of chemical and mechanical energies in the design and fabrication of novel, man-made mechanochemical devices have been envisaged, and some new ways to exorcise Maxwell's demon have been proposed. It is hoped that analysis of the fundamental problem of energy transduction in OX PHOS from a fresh perspective will catalyze new avenues of research in this interdisciplinary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The thermodynamic properties of oxygen and nitrogen

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Jacobsen, R. T.; Myers, A. F.

    1972-01-01

    The development of a single equation of state for oxygen and nitrogen based on the thermodynamic properties of the gases is described. The coefficients of the equation of state were determined by simultaneous least squares fits to values of isochoric heat capacity and saturation density values used to define the criteria for phase equilibrium. Tables of data for the conditions of both gases are included.

  1. The thermodynamic properties of the earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Anderson, Orson L.; Sumino, Yoshio

    1980-12-01

    The thermodynamic properties of the lower mantle are determined from the seismic profile, where the primary thermodynamic variables are the bulk modulus K and density ρ. It is shown that the Bullen law ( K ∝ P) holds in the lower mantle with a high correlation coefficient for the seismic parametric Earth model (PEM). Using this law produces no ambiguity or trade-off between ρ0 and K0, since both K0 and K' 0 are exactly determined by applying a linear K- ρ relationship to the data. On the other hand, extrapolating the velocity data to zero pressure using a Birch-Murnaghan equation of state (EOS) results in an ambiguous answer because there are three unknown adjustable parameters ( ρ0, K0, K' 0) in the EOS. From the PEM data, K = 232.4 + 3.19 P (GPa). The PEM yields a hot uncompressed density of 3.999 ± 0.0026 g cm -3 for material decompressed from all parts of the lower mantle. Even if the hot uncompressed density were uniform for all depths in the lower mantle, the cold uncompressed mantle would be inhomogeneous because the decompression given by the Bullen law crosses isotherms; for example, the temperature is different at different depths. To calculate the density distribution correctly, an isothermal EOS must be used along an isotherm, and temperature corrections must be placed in the thermal pressure PTH. The thermodynamic parameters of the lower mantle are found by iteration. Values of the three uncompressed anharmonic parameters are first arbitrarily selected: α0 (hot), the coefficient of thermal expansion; γ0, the Grüneisen parameter; and δ, the second Grüneisen parameter. Using γ0 and the measured ρ0 (hot) and K0 (hot), the values of θ0 (Debye temperature) and q = dln γ/dln ρ are found from the measured seismic velocities. Then from ( αKT) 0 and q the thermal pressure PTH at all high temperatures is found. Correlating PTH against T to the geotherm for the lower mantle, PTH is found at all depths Z. The isothermal pressure, along the 0 K

  2. Some comments on thermodynamic consistency for equilibrium mixture equations of state

    DOE PAGES

    Grove, John W.

    2018-03-28

    We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.

  3. Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles

    PubMed Central

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638

  4. Correlations for determining thermodynamic properties of hydrogen-helium gas mixtures at temperatures from 7,000 to 35,000 K

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Gnoffo, P. A.; Graves, R. A., Jr.

    1976-01-01

    Simple relations for determining the enthalpy and temperature of hydrogen-helium gas mixtures were developed for hydrogen volumetric compositions from 1.0 to 0.7. These relations are expressed as a function of pressure and density and are valid for a range of temperatures from 7,000 to 35,000 K and pressures from 0.10 to 3.14 MPa. The proportionality constant and exponents in the correlation equations were determined for each gas composition by applying a linear least squares curve fit to a large number of thermodynamic calculations obtained from a detailed computer code. Although these simple relations yielded thermodynamic properties suitable for many engineering applications, their accuracy was improved significantly by evaluating the proportionality constants at postshock conditions and correlating these values as a function of the gas composition and the product of freestream velocity and shock angle. The resulting equations for the proportionality constants in terms of velocity and gas composition and the corresponding simple realtions for enthalpy and temperature were incorporated into a flow field computational scheme. Comparison was good between the thermodynamic properties determined from these relations and those obtained by using a detailed computer code to determine the properties. Thus, an appreciable savings in computer time was realized with no significant loss in accuracy.

  5. Natural thermodynamics

    NASA Astrophysics Data System (ADS)

    Annila, Arto

    2016-02-01

    The principle of increasing entropy is derived from statistical physics of open systems assuming that quanta of actions, as undividable basic build blocks, embody everything. According to this tenet, all systems evolve from one state to another either by acquiring quanta from their surroundings or by discarding quanta to the surroundings in order to attain energetic balance in least time. These natural processes result in ubiquitous scale-free patterns: skewed distributions that accumulate in a sigmoid manner and hence span log-log scales mostly as straight lines. Moreover, the equation for least-time motions reveals that evolution is by nature a non-deterministic process. Although the obtained insight in thermodynamics from the notion of quanta in motion yields nothing new, it accentuates that contemporary comprehension is impaired when modeling evolution as a computable process by imposing conservation of energy and thereby ignoring that quantum of actions are the carriers of energy from the system to its surroundings.

  6. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    PubMed

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  7. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delage-Santacreu, Stephanie; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr; Hoang, Hai

    2015-05-07

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach formore » each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.« less

  8. Holographic free energy and thermodynamic geometry

    NASA Astrophysics Data System (ADS)

    Ghorai, Debabrata; Gangopadhyay, Sunandan

    2016-12-01

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2+1 dimensions. The gravitational theory in the bulk dual to this 2+1-dimensional strongly coupled theory lives in the 3+1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method.

  9. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    USGS Publications Warehouse

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  10. Thermodynamic study of gaseous CsBO2 by Knudsen effusion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Takai, T.; Furukawa, T.; Osaka, M.

    2017-08-01

    One of the main chemical forms of cesium in the gas phase during severe light-water reactor accidents is expected to be cesium metaborate, CsBO2, according to thermodynamic equilibrium calculations considering its reaction with boron. However, the accuracy of the thermodynamic data of the gaseous metaborate, CsBO2(g), has been judged as poor. Thus, Knudsen effusion mass spectrometric measurements of CsBO2 were carried out to obtain reliable thermodynamic data. The evaluated values of the standard enthalpy of formation of CsBO2(g), obtained by the 2nd and 3rd-law treatments, are -700.7 ± 10.7 kJ/mol and -697.0 ± 10.6 kJ/mol, respectively, and agree with each other within the experimental errors, which indicates that our data are reliable. Furthermore, it was found that the existing data of the Gibbs energy function and the standard enthalpy of formation agreed well with the values evaluated in this study, which indicates that the existing thermodynamic data are also reliable.

  11. Shear-transformation-zone theory of yielding in athermal amorphous materials

    DOE PAGES

    Langer, J. S.

    2015-07-22

    Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. Specifically, for realistic many-body models withmore » short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.« less

  12. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals.

    PubMed

    Satoh, Katsuhiko

    2013-03-07

    Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.

  13. Thermodynamics of Radiation Modes

    ERIC Educational Resources Information Center

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  14. Climate Variability and Sugarcane Yield in Louisiana.

    NASA Astrophysics Data System (ADS)

    Greenland, David

    2005-11-01

    This paper seeks to understand the role that climate variability has on annual yield of sugarcane in Louisiana. Unique features of sugarcane growth in Louisiana and nonclimatic, yield-influencing factors make this goal an interesting and challenging one. Several methods of seeking and establishing the relations between yield and climate variables are employed. First, yield climate relations were investigated at a single research station where crop variety and growing conditions could be held constant and yield relations could be established between a predominant older crop variety and a newer one. Interviews with crop experts and a literature survey were used to identify potential climatic factors that control yield. A statistical analysis was performed using statewide yield data from the American Sugar Cane League from 1963 to 2002 and a climate database. Yield values for later years were adjusted downward to form an adjusted yield dataset. The climate database was principally constructed from daily and monthly values of maximum and minimum temperature and daily and monthly total precipitation for six cooperative weather-reporting stations representative of the area of sugarcane production. The influence of 74 different, though not independent, climate-related variables on sugarcane yield was investigated. The fact that a climate signal exists is demonstrated by comparing mean values of the climate variables corresponding to the upper and lower third of adjusted yield values. Most of these mean-value differences show an intuitively plausible difference between the high- and low-yield years. The difference between means of the climate variables for years corresponding to the upper and lower third of annual yield values for 13 of the variables is statistically significant at or above the 90% level. A correlation matrix was used to identify the variables that had the largest influence on annual yield. Four variables [called here critical climatic variables (CCV

  15. Scalar charges and the first law of black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Astefanesei, Dumitru; Ballesteros, Romina; Choque, David; Rojas, Raúl

    2018-07-01

    We present a variational formulation of Einstein-Maxwell-dilaton theory in flat spacetime, when the asymptotic value of the scalar field is not fixed. We obtain the boundary terms that make the variational principle well posed and then compute the finite gravitational action and corresponding Brown-York stress tensor. We show that the total energy has a new contribution that depends on the asymptotic value of the scalar field and discuss the role of scalar charges for the first law of thermodynamics. We also extend our analysis to hairy black holes in Anti-de Sitter spacetime and investigate the thermodynamics of an exact solution that breaks the conformal symmetry of the boundary.

  16. He I lines in B stars - Comparison of non-local thermodynamic equilibrium models with observations

    NASA Technical Reports Server (NTRS)

    Heasley, J. N.; Timothy, J. G.; Wolff, S. C.

    1982-01-01

    Profiles of He gamma-gamma 4026, 4387, 4471, 4713, 5876, and 6678 have been obtained in 17 stars of spectral type B0-B5. Parameters of the nonlocal thermodynamic equilibrium models appropriate to each star are determined from the Stromgren index and fits to H-alpha line profiles. These parameters yield generally good fits to the observed He I line profiles, with the best fits being found for the blue He I lines where departures from local thermodynamic equilibrium are relatively small. For the two red lines it is found that, in the early B stars and in stars with log g less than 3.5, both lines are systematically stronger than predicted by the nonlocal thermodynamic equilibrium models.

  17. Advanced classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided.

  18. Thermodynamic studies for adsorption of ionizable pharmaceuticals onto soil.

    PubMed

    Maszkowska, Joanna; Wagil, Marta; Mioduszewska, Katarzyna; Kumirska, Jolanta; Stepnowski, Piotr; Białk-Bielińska, Anna

    2014-09-01

    Although pharmaceutical compounds (PCs) are being used more and more widely, and studies have been carried out to assess their presence in the environment, knowledge of their fate and behavior, especially under different environmental conditions, is still limited. The principle objective of the present work, therefore, is to evaluate the adsorption behavior of three ionizable, polar compounds occurring in different forms: cationic (propranolol - PRO), anionic (sulfisoxazole - SSX) and neutral (sulfaguanidine - SGD) onto soil under various temperature conditions. The adsorption thermodynamics of these researched compounds were extensively investigated using parameters such as enthalpy change (ΔH°), Gibbs free energy change (ΔG°) as well as entropy change (ΔS°). These calculations reveal that sorption of PRO is exothermic, spontaneous and enthalpy driven, sorption of SGD is endothermic, spontaneous and entropy driven whereas sorption of SSX is endothermic, spontaneous only above the temperature of 303.15K and entropy driven. Furthermore, we submit that the calculated values yield valuable information regarding the sorption mechanism of PRO, SGD and SSX onto soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Thermodynamics of Host–Guest Interactions between Fullerenes and a Buckycatcher

    PubMed Central

    2015-01-01

    1H NMR and isothermal titration calorimetry (ITC) experiments were employed to obtain reliable thermodynamic data for the formation of the 1:1 inclusion complexes of fullerenes C60 and C70 with the buckycatcher (C60H28). NMR measurements were done in toluene-d8 and chlorobenzene-d5 at 288, 298, and 308 K, while the ITC titrations were performed in toluene, chlorobenzene, o-dichlorobenzene, anisole, and 1,1,2,2-tetrachloroethane at temperatures from 278 to 323 K. The association constants, Ka, obtained with both techniques are in very good agreement. The thermodynamic data obtained by ITC indicate that generally the host–guest association is enthalpy-driven. Interestingly, the entropy contributions are, with rare exceptions, slightly stabilizing or close to zero. Neither ΔH nor ΔS is constant over the temperature range studied, and these thermodynamic functions exhibit classical enthalpy/entropy compensation. The ΔCp values calculated from the temperature dependence of the calorimetric ΔH values are negative for the association of both fullerenes with the buckycatcher in toluene. The negative ΔCp values are consistent with some desolvation of the host-cavity and the guest in the inclusion complexes, C60@C60H28 and C70@C60H28. PMID:25248285

  20. A thermodynamic definition of protein domains.

    PubMed

    Porter, Lauren L; Rose, George D

    2012-06-12

    Protein domains are conspicuous structural units in globular proteins, and their identification has been a topic of intense biochemical interest dating back to the earliest crystal structures. Numerous disparate domain identification algorithms have been proposed, all involving some combination of visual intuition and/or structure-based decomposition. Instead, we present a rigorous, thermodynamically-based approach that redefines domains as cooperative chain segments. In greater detail, most small proteins fold with high cooperativity, meaning that the equilibrium population is dominated by completely folded and completely unfolded molecules, with a negligible subpopulation of partially folded intermediates. Here, we redefine structural domains in thermodynamic terms as cooperative folding units, based on m-values, which measure the cooperativity of a protein or its substructures. In our analysis, a domain is equated to a contiguous segment of the folded protein whose m-value is largely unaffected when that segment is excised from its parent structure. Defined in this way, a domain is a self-contained cooperative unit; i.e., its cooperativity depends primarily upon intrasegment interactions, not intersegment interactions. Implementing this concept computationally, the domains in a large representative set of proteins were identified; all exhibit consistency with experimental findings. Specifically, our domain divisions correspond to the experimentally determined equilibrium folding intermediates in a set of nine proteins. The approach was also proofed against a representative set of 71 additional proteins, again with confirmatory results. Our reframed interpretation of a protein domain transforms an indeterminate structural phenomenon into a quantifiable molecular property grounded in solution thermodynamics.

  1. Contact symmetries and Hamiltonian thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravetti, A., E-mail: bravetti@correo.nucleares.unam.mx; Lopez-Monsalvo, C.S., E-mail: cesar.slm@correo.nucleares.unam.mx; Nettel, F., E-mail: Francisco.Nettel@roma1.infn.it

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendremore » symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.« less

  2. Dynamics versus thermodynamics

    NASA Astrophysics Data System (ADS)

    Berdichevsky, V. L.

    1991-05-01

    An effort is made to characterize the ways in which the approaches of statistical mechanics and thermodynamics can be useful in the study of the dynamic behavior of structures. This meditation proceeds through consideration of such wide-ranging and deliberately provocative questions as: 'What are to be considered values in a stress-distribution function?' and 'How many degrees-of-freedom has a beam?'; it then gives attention to the hierarchy of vibrations, the interaction of the mechanism of dissipation with invisible degrees of freedom, and a plausible view of vibrations for the case of small dissipation.

  3. Fluctuating Thermodynamics for Biological Processes

    NASA Astrophysics Data System (ADS)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  4. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation

    PubMed Central

    van Lingen, Henk J.; Plugge, Caroline M.; Fadel, James G.; Kebreab, Ermias; Bannink, André; Dijkstra, Jan

    2016-01-01

    Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH

  5. Thermodynamic basis for evolution of apatite in calcified tissues (Invited)

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Drouet, C.; Rollin-Martinet, S.; Champion, E.; Grossin, D.

    2013-12-01

    Bone remodeling and tooth enamel maturation are biological processes which alter the physico-chemical features of biominerals with time. However, although the ubiquity of bone remodeling is clear, why is well crystallized bone mineral systematically replaced by immature nanocrystalline inorganic material? In enamel, a clear evolution is also seen from the first mineral formed during the secretory stage to its mature well crystalline form, which then changes little in the adult tooth. This contribution provides the thermodynamic basis underlying these biological processes. We determined the energetics of biomimetic apatites corresponding to an increasing degree of maturation. Our data point out the progressive evolution of the enthalpy (ΔHf°) and free energy (ΔGf°) of formation toward more negative values upon maturation. Entropy contributions to ΔGf° values are small compared to enthalpy contributions. ΔHf° varies from -12058.9 × 12.2 to -12771.0 × 21.4 kJ/mol for maturation times increasing from 20 min to 3 weeks, approaching the value for stoichiometric hydroxyapatite, -13431.0 × 22.7 kJ/mol. Apatite thermodynamic stability increases as its composition moved toward stoichiometry. These findings imply diminishing aqueous solubility of calcium and phosphate ions as well as decreased surface reactivity. Such thermodynamically-driven maturation is favorable for enamel maturation since this biomineral must resist external aggressions such as contact with acids. In contrast, maintaining a metastable highly reactive and soluble form of apatite is essential to the effective participation of bone as a source of calcium and phosphate for homeostasis. Therefore our data strongly suggest that, far from being trivial, the intrinsic thermodynamic properties of apatite represent a critical driving force for continuous bone remodeling, in contrast to current views favoring a purely biologically driven cycle. These thermodynamic data may prove helpful in other domains

  6. Improved Estimates of Thermodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  7. Standard Model thermodynamics across the electroweak crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, M.; Meyer, M., E-mail: laine@itp.unibe.ch, E-mail: meyer@itp.unibe.ch

    Even though the Standard Model with a Higgs mass m{sub H} = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a 'soft point' at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The resultsmore » are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial 'structure' visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.« less

  8. Standard Model thermodynamics across the electroweak crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, M.; Meyer, M.

    Even though the Standard Model with a Higgs mass m{sub \\tiny H}=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulatedmore » in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV.« less

  9. Thermodynamic Hydricity of Transition Metal Hydrides

    DOE PAGES

    Wiedner, Eric S.; Chambers, Matthew B.; Pitman, Catherine L.; ...

    2016-08-02

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bondbreaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H -). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H 2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H 2more » in the presence of a base, and the potential-pK a method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Finally, methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO 2, and the production and oxidation of hydrogen.« less

  10. In search of annual legumes to improve forage sorghum yield and nutritive value in the southern high plains

    USDA-ARS?s Scientific Manuscript database

    Livestock production is significant in the Southern High Plains of the USA and demand is increasing for greater forage dry matter (DM) yield with increased nutritive value. Forage sorghum (FS)[Sorghum bicolor (L.) Moench] is commonly used, although, it is low in crude protein (CP) and high in fiber....

  11. Thermodynamic screening of metal-substituted MOFs for carbon capture.

    PubMed

    Koh, Hyun Seung; Rana, Malay Kumar; Hwang, Jinhyung; Siegel, Donald J

    2013-04-07

    Metal-organic frameworks (MOFs) have emerged as promising materials for carbon capture applications due to their high CO2 capacities and tunable properties. Amongst the many possible MOFs, metal-substituted compounds based on M-DOBDC and M-HKUST-1 have demonstrated amongst the highest CO2 capacities at the low pressures typical of flue gasses. Here we explore the possibility for additional performance tuning of these compounds by computationally screening 36 metal-substituted variants (M = Be, Mg, Ca, Sr, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Sn, and Pb) with respect to their CO2 adsorption enthalpy, ΔH(T=300K). Supercell calculations based on van der Waals density functional theory (vdW-DF) yield enthalpies in good agreement with experimental measurements, out-performing semi-empirical (DFT-D2) and conventional (LDA & GGA) functionals. Our screening identifies 13 compounds having ΔH values within the targeted thermodynamic window -40 ≤ ΔH ≤ -75 kJ mol(-1): 8 are based on M-DODBC (M = Mg, Ca, Sr, Sc, Ti, V, Mo, and W), and 5 on M-HKUST-1 (M = Be, Mg, Ca, Sr and Sc). Variations in the electronic structure and the geometry of the structural building unit are examined and used to rationalize trends in CO2 affinity. In particular, the partial charge on the coordinatively unsaturated metal sites is found to correlate with ΔH, suggesting that this property may be used as a simple performance descriptor. The ability to rapidly distinguish promising MOFs from those that are "thermodynamic dead-ends" will be helpful in guiding synthesis efforts towards promising compounds.

  12. Ab initio interatomic potentials and the thermodynamic properties of fluids

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-07-01

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  13. Ab initio interatomic potentials and the thermodynamic properties of fluids.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-07-14

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  14. Thermodynamic properties of oxygen and nitrogen III

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Jacobsen, R. T.; Myers, A. F.

    1972-01-01

    The final equation for nitrogen was determined. In the work on the equation of state for nitrogen, coefficients were determined by constraining the critical point to selected critical point parameters. Comparisons of this equation with all the P-density-T data were made, as well as comparisons to all other thermodynamic data reported in the literature. The extrapolation of the equation of state was studied for vapor to higher temperatures and lower temperatures, and for the liquid surface to the saturated liquid and the fusion lines. A new vapor pressure equation was also determined which was constrained to the same critical temperature, pressure, and slope (dP/dT) as the equation of state. Work on the equation of state for oxygen included studies for improving the equation at the critical point. Comparisons of velocity of sound data for oxygen were also made between values calculated with a preliminary equation of state and experimental data. Functions for the calculation of the derived thermodynamic properties using the equation of state are given, together with the derivative and integral functions for the calculation of the thermodynamic properties using the equations of state. Summary tables of the thermodynamic properties of nitrogen and oxygen are also included to serve as a check for those preparing computer programs using the equations of state.

  15. Independent-Trajectory Thermodynamic Integration: a practical guide to protein-drug binding free energy calculations using distributed computing.

    PubMed

    Lawrenz, Morgan; Baron, Riccardo; Wang, Yi; McCammon, J Andrew

    2012-01-01

    The Independent-Trajectory Thermodynamic Integration (IT-TI) approach for free energy calculation with distributed computing is described. IT-TI utilizes diverse conformational sampling obtained from multiple, independent simulations to obtain more reliable free energy estimates compared to single TI predictions. The latter may significantly under- or over-estimate the binding free energy due to finite sampling. We exemplify the advantages of the IT-TI approach using two distinct cases of protein-ligand binding. In both cases, IT-TI yields distributions of absolute binding free energy estimates that are remarkably centered on the target experimental values. Alternative protocols for the practical and general application of IT-TI calculations are investigated. We highlight a protocol that maximizes predictive power and computational efficiency.

  16. A pseudo-thermodynamic description of dispersion for nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yan; Beaucage, Gregory; Vogtt, Karsten

    Dispersion in polymer nanocomposites is determined by the kinetics of mixing and chemical affinity. Compounds like reinforcing filler/elastomer blends display some similarity to colloidal solutions in that the filler particles are close to randomly dispersed through processing. It is attractive to apply a pseudo-thermodynamic approach taking advantage of this analogy between the kinetics of mixing for polymer compounds and thermally driven dispersion for colloids. In order to demonstrate this pseudo-thermodynamic approach, two polybutadienes and one polyisoprene were milled with three carbon blacks and two silicas. These samples were examined using small-angle x-ray scattering as a function of filler concentration tomore » determine a pseudo-second order virial coefficient, A2, which is used as an indicator for compatibility of the filler and polymer. It is found that A2 follows the expected behavior with lower values for smaller primary particles indicating that smaller particles are less compatible and more difficult to mix. The measured values of A2 can be used to specify repulsive interaction potentials for coarse grain DPD simulations of filler/elastomer systems. In addition, new methods to quantify the filler percolation threshold and filler mesh size as a function of filler concentration are obtained. Moreover, the results represent a new approach to understanding and predicting compatibility in polymer nanocomposites based on a pseudo-thermodynamic approach.« less

  17. A pseudo-thermodynamic description of dispersion for nanocomposites

    DOE PAGES

    Jin, Yan; Beaucage, Gregory; Vogtt, Karsten; ...

    2017-09-18

    Dispersion in polymer nanocomposites is determined by the kinetics of mixing and chemical affinity. Compounds like reinforcing filler/elastomer blends display some similarity to colloidal solutions in that the filler particles are close to randomly dispersed through processing. It is attractive to apply a pseudo-thermodynamic approach taking advantage of this analogy between the kinetics of mixing for polymer compounds and thermally driven dispersion for colloids. In order to demonstrate this pseudo-thermodynamic approach, two polybutadienes and one polyisoprene were milled with three carbon blacks and two silicas. These samples were examined using small-angle x-ray scattering as a function of filler concentration tomore » determine a pseudo-second order virial coefficient, A2, which is used as an indicator for compatibility of the filler and polymer. It is found that A2 follows the expected behavior with lower values for smaller primary particles indicating that smaller particles are less compatible and more difficult to mix. The measured values of A2 can be used to specify repulsive interaction potentials for coarse grain DPD simulations of filler/elastomer systems. In addition, new methods to quantify the filler percolation threshold and filler mesh size as a function of filler concentration are obtained. Moreover, the results represent a new approach to understanding and predicting compatibility in polymer nanocomposites based on a pseudo-thermodynamic approach.« less

  18. Thermodynamic data for biomass conversion and waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domalski, E.S.; Jobe, T.L. Jr; Milne, T.A.

    1986-09-01

    The general purpose of this collection of thermodynamic data of selected materials is to make property information available to the engineering community on chemical mixtures, polymers, composite materials, solid wastes, biomass, and materials not easily identifiable by a single stoichiometric formula. More than 700 materials have been compiled covering properties such as specific heat, gross heat of combustion, heat of fusion, heat of vaporization, and vapor pressure. The information was obtained from the master files of the NBS Chemical Thermodynamics Data Center, the annual issues of the Bulletin of Chemical Thermodynamics, intermittent examinations of the Chemical Abstracts subject indexes, individualmore » articles by various authors, and other general reference sources. The compilation is organized into several broad categories; materials are listed alphabetically within each category. For each material, the physical state, information as to the composition or character of the material, the kind of thermodynamic property reported, the specific property values for the material, and citations to the reference list are given. In addition, appendix A gives an empirical formula that allows heats of combustion of carbonaceous materials to be predicted with surprising accuracy when the elemental composition is known. A spread sheet illustrates this predictability with examples from this report and elsewhere. Appendix B lists some reports containing heats of combustion not included in this publication. Appendix C contains symbols, units, conversion factors, and atomic weights used in evaluating and compiling the thermodynamic data.« less

  19. Glass transition temperature and thermodynamic scaling under extreme compression

    NASA Astrophysics Data System (ADS)

    Oliver, William; Ransom, Timothy

    Direct measurements of the glass transition temperature Tg between pressures 1 atm and 4.55 GPa in the glass-forming liquid isopropylbenzene (IPB) will be presented. These data were obtained using a diamond anvil cell enabling measurement of Tg to pressures of 10 GPa or greater. A new method was employed that takes advantage of the large increase in the volume expansion coefficient αp at Tg as the supercooled or superpressed liquid is entered by heating from the glass. Accurate Tg (P) values in IPB allow us to show that thermodynamic scaling holds along this isochronous line up to pressures nearly an order of magnitude greater than any previous study on viscoelastic systems concomitant with an unprecedented density change of 29.4%. Our results for IPB over this huge compression range yield ργ / T = C , where C is a constant and where γ = 4 . 77 +/- 0 . 02 for this non-associated liquid glass-forming system. Finally, high pressure IPB viscosity data from the literature taken at much lower pressures and several different temperatures, corresponding to a dynamic range of nearly 13 orders of magnitude, are shown to superimpose on a plot of η vs. ργ / T using the same value of the scaling exponent γ. Support from the National Science Foundation-DMR, Ray Hughes Fellowship, and the University of Arkansas Honors College are gratefully acknowledged.

  20. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  1. Effects of Nitrogen Application Rate on the Yields, Nutritive Value and Silage Fermentation Quality of Whole-crop Wheat.

    PubMed

    Li, C J; Xu, Z H; Dong, Z X; Shi, S L; Zhang, J G

    2016-08-01

    Whole-crop wheat (Triticum aestivum L.) as forage has been extensively used in the world. In this study, the effects of N application rates on the yields, nutritive value and silage quality were investigated. The N application rates were 0, 75, 150, 225, and 300 kg/ha. The research results indicated that the dry matter yield of whole-crop wheat increased significantly with increasing N rate up to 150 kg/ha, and then leveled off. The crude protein content and in vitro dry matter digestibility of whole-crop wheat increased significantly with increasing N up to 225 kg/ha, while they no longer increased at N 300 kg/ha. On the contrary, the content of various fibers tended to decrease with the increase of N application. The content of lactic acid, acetic acid and propionic acid in silages increased with the increase of N rate (p<0.05). The ammonia-N content of silages with higher N application rates (≥225 kg/ha) was significantly higher than that with lower N application rates (≤150 kg/ha). Whole-crop wheat applied with high levels of N accumulated more nitrate-N. In conclusion, taking account of yields, nutritive value, silage quality and safety, the optimum N application to whole-crop wheat should be about 150 kg/ha at the present experiment conditions.

  2. Consistency of the structure of Legendre transform in thermodynamics with the Kolmogorov-Nagumo average

    NASA Astrophysics Data System (ADS)

    Scarfone, A. M.; Matsuzoe, H.; Wada, T.

    2016-09-01

    We show the robustness of the structure of Legendre transform in thermodynamics against the replacement of the standard linear average with the Kolmogorov-Nagumo nonlinear average to evaluate the expectation values of the macroscopic physical observables. The consequence of this statement is twofold: 1) the relationships between the expectation values and the corresponding Lagrange multipliers still hold in the present formalism; 2) the universality of the Gibbs equation as well as other thermodynamic relations are unaffected by the structure of the average used in the theory.

  3. A Hamiltonian approach to Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldiotti, M.C., E-mail: baldiotti@uel.br; Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br; Molina, C., E-mail: cmolina@usp.br

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensivelymore » used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.« less

  4. On the universal behavior of some thermodynamic properties along the whole liquid-vapor coexistence curve

    NASA Astrophysics Data System (ADS)

    Román, F. L.; White, J. A.; Velasco, S.; Mulero, A.

    2005-09-01

    When thermodynamic properties of a pure substance are transformed to reduced form by using both critical- and triple-point values, the corresponding experimental data along the whole liquid-vapor coexistence curve can be correlated with a very simple analytical expression that interpolates between the behavior near the triple and the critical points. The leading terms of this expression contain only two parameters: the critical exponent and the slope at the triple point. For a given thermodynamic property, the critical exponent has a universal character but the slope at the triple point can vary significantly from one substance to another. However, for certain thermodynamic properties including the difference of coexisting densities, the enthalpy of vaporization, and the surface tension of the saturated liquid, one finds that the slope at the triple point also has a nearly universal value for a wide class of fluids. These thermodynamic properties thus show a corresponding apparently universal behavior along the whole coexistence curve.

  5. Discrete Thermodynamics

    DOE PAGES

    Margolin, L. G.; Hunter, A.

    2017-10-18

    Here, we consider the dependence of velocity probability distribution functions on the finite size of a thermodynamic system. We are motivated by applications to computational fluid dynamics, hence discrete thermodynamics. We then begin by describing a coarsening process that represents geometric renormalization. Then, based only on the requirements of conservation, we demonstrate that the pervasive assumption of local thermodynamic equilibrium is not form invariant. We develop a perturbative correction that restores form invariance to second-order in a small parameter associated with macroscopic gradients. Finally, we interpret the corrections in terms of unresolved kinetic energy and discuss the implications of ourmore » results both in theory and as applied to numerical simulation.« less

  6. Discrete Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, L. G.; Hunter, A.

    Here, we consider the dependence of velocity probability distribution functions on the finite size of a thermodynamic system. We are motivated by applications to computational fluid dynamics, hence discrete thermodynamics. We then begin by describing a coarsening process that represents geometric renormalization. Then, based only on the requirements of conservation, we demonstrate that the pervasive assumption of local thermodynamic equilibrium is not form invariant. We develop a perturbative correction that restores form invariance to second-order in a small parameter associated with macroscopic gradients. Finally, we interpret the corrections in terms of unresolved kinetic energy and discuss the implications of ourmore » results both in theory and as applied to numerical simulation.« less

  7. Corridor of existence of thermodynamically consistent solution of the Ornstein-Zernike equation.

    PubMed

    Vorob'ev, V S; Martynov, G A

    2007-07-14

    We obtain the exact equation for a correction to the Ornstein-Zernike (OZ) equation based on the assumption of the uniqueness of thermodynamical functions. We show that this equation is reduced to a differential equation with one arbitrary parameter for the hard sphere model. The compressibility factor within narrow limits of this parameter variation can either coincide with one of the formulas obtained on the basis of analytical solutions of the OZ equation or assume all intermediate values lying in a corridor between these solutions. In particular, we find the value of this parameter when the thermodynamically consistent compressibility factor corresponds to the Carnahan-Stirling formula.

  8. Evolution in thermodynamics

    NASA Astrophysics Data System (ADS)

    Bejan, Adrian

    2017-03-01

    This review covers two aspects of "evolution" in thermodynamics. First, with the constructal law, thermodynamics is becoming the domain of physics that accounts for the phenomenon of evolution in nature, in general. Second, thermodynamics (and science generally) is the evolving add-on that empowers humans to predict the future and move more easily on earth, farther and longer in time. The part of nature that thermodynamics represents is this: nothing moves by itself unless it is driven by power, which is then destroyed (dissipated) during movement. Nothing evolves unless it flows and has the freedom to change its architecture such that it provides greater and easier access to the available space. Thermodynamics is the modern science of heat and work and their usefulness, which comes from converting the work (power) into movement (life) in flow architectures that evolve over time to facilitate movement. I also review the rich history of the science, and I clarify misconceptions regarding the second law, entropy, disorder, and the arrow of time, and the supposed analogy between heat and work.

  9. Revised values for the Gibbs free energy of formation of [Al(OH)4 aq-], diaspore, boehmite and bayerite at 298.15 K and 1 bar, the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.; Kittrick, J.A.

    1978-01-01

    Solution calorimetric measurements compared with solubility determinations from the literature for the same samples of gibbsite have provided a direct thermochemical cycle through which the Gibbs free energy of formation of [Al(OH)4 aq-] can be determined. The Gibbs free energy of formation of [Al(OH)4 aq-] at 298.15 K is -1305 ?? 1 kJ/mol. These heat-of-solution results show no significant difference in the thermodynamic properties of gibbsite particles in the range from 50 to 0.05 ??m. The Gibbs free energies of formation at 298.15 K and 1 bar pressure of diaspore, boehmite and bayerite are -9210 ?? 5.0, -918.4 ?? 2.1 and -1153 ?? 2 kJ/mol based upon the Gibbs free energy of [A1(OH)4 aq-] calculated in this paper and the acceptance of -1582.2 ?? 1.3 and -1154.9 ?? 1.2 kJ/mol for the Gibbs free energy of formation of corundum and gibbsite, respectively. Values for the Gibbs free energy formation of [Al(OH)2 aq+] and [AlO2 aq-] were also calculated as -914.2 ?? 2.1 and -830.9 ?? 2.1 kJ/mol, respectively. The use of [AlC2 aq-] as a chemical species is discouraged. A revised Gibbs free energy of formation for [H4SiO4aq0] was recalculated from calorimetric data yielding a value of -1307.5 ?? 1.7 kJ/mol which is in good agreement with the results obtained from several solubility studies. Smoothed values for the thermodynamic functions CP0, ( HT0 - H2980) T, ( GT0 - H2980) T, ST0 - S00, ??Hf{hook},2980 kaolinite are listed at integral temperatures between 298.15 and 800 K. The heat capacity of kaolinite at temperatures between 250 and 800 K may be calculated from the following equation: CP0 = 1430.26 - 0.78850 T + 3.0340 ?? 10-4 T2 -1.85158 ?? 10-4 T2 1 2 + 8.3341 ?? 106 T-2. The thermodynamic properties of most of the geologically important Al-bearing phases have been referenced to the same reference state for Al, namely gibbsite. ?? 1978.

  10. Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions

    NASA Astrophysics Data System (ADS)

    Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.

    2017-01-01

    Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.

  11. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria

    USGS Publications Warehouse

    Sverjensky, D.A.; Hemley, J.J.; d'Angelo, W. M.

    1991-01-01

    The thermodynamic properties of minerals retrieved from consideration of solid-solid and dehydration equilibria with calorimetric reference values, and those of aqueous species derived from studies of electrolytes, are not consistent with experimentally measured high-temperature solubilities in the systems K2O- and Na2O-Al2O3-SiO2-H2O-HCl (e.g., K-fs - Ms - Qtz - K+ - H+). This introduces major inaccuracies into the computation of ionic activity ratios and the acidities of diagenetic, metamorphic, and magmatic hydrothermal fluids buffered by alkali silicate-bearing assemblages. We report a thermodynamic analysis of revised solubility equilibria in these systems that integrates the thermodynamic properties of minerals obtained from phase equilibria studies (Berman, 1988) with the properties of aqueous species calculated from a calibrated equation of state (Shock and Helgeson, 1988). This was achieved in two separate steps. First, new values of the free energies and enthalpies of formation at 25??C and 1 bar for the alkali silicates muscovite and albite were retrieved from the experimental solubility equilibria at 300??C and Psat. Because the latter have stoichiometric reaction coefficients different from those for solid-solid and dehydration equilibria, our procedure preserves exactly the relative thermodynamic properties of the alkali-bearing silicates (Berman, 1988). Only simple arithmetic adjustments of -1,600 and -1,626 (??500) cal/mol to all the K- and Na-bearing silicates, respectively, in Berman (1988) are required. In all cases, the revised values are within ??0.2% of calorimetric values. Similar adjustments were derived for the properties of minerals from Helgeson et al. (1978). Second, new values of the dissociation constant of HCl were retrieved from the solubility equilibria at temperatures and pressures from 300-600??C and 0.5-2.0 kbars using a simple model for aqueous speciation. The results agree well with the conductance-derived dissociation

  12. Bounded energy exchange as an alternative to the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Heidrich, Matthias

    2016-10-01

    This paper introduces a postulate explicitly forbidding the extraction of an infinite amount of energy from a thermodynamic system. It also introduces the assumption that no measuring equipment is capable of detecting arbitrarily small energy exchanges. The Kelvin formulation of the second law is reinterpreted accordingly. Then statements related to both the unattainability version and the entropic version of the third law are derived. The value of any common thermodynamic potential of a one-component system at absolute zero of temperature is ascertained if some assumptions with regard to the state space can be made. The point of view is the phenomenological, macroscopic and non-statistical one of classical thermodynamics.

  13. Development of a CSP plant energy yield calculation tool applying predictive models to analyze plant performance sensitivities

    NASA Astrophysics Data System (ADS)

    Haack, Lukas; Peniche, Ricardo; Sommer, Lutz; Kather, Alfons

    2017-06-01

    At early project stages, the main CSP plant design parameters such as turbine capacity, solar field size, and thermal storage capacity are varied during the techno-economic optimization to determine most suitable plant configurations. In general, a typical meteorological year with at least hourly time resolution is used to analyze each plant configuration. Different software tools are available to simulate the annual energy yield. Software tools offering a thermodynamic modeling approach of the power block and the CSP thermal cycle, such as EBSILONProfessional®, allow a flexible definition of plant topologies. In EBSILON, the thermodynamic equilibrium for each time step is calculated iteratively (quasi steady state), which requires approximately 45 minutes to process one year with hourly time resolution. For better presentation of gradients, 10 min time resolution is recommended, which increases processing time by a factor of 5. Therefore, analyzing a large number of plant sensitivities, as required during the techno-economic optimization procedure, the detailed thermodynamic simulation approach becomes impracticable. Suntrace has developed an in-house CSP-Simulation tool (CSPsim), based on EBSILON and applying predictive models, to approximate the CSP plant performance for central receiver and parabolic trough technology. CSPsim significantly increases the speed of energy yield calculations by factor ≥ 35 and has automated the simulation run of all predefined design configurations in sequential order during the optimization procedure. To develop the predictive models, multiple linear regression techniques and Design of Experiment methods are applied. The annual energy yield and derived LCOE calculated by the predictive model deviates less than ±1.5 % from the thermodynamic simulation in EBSILON and effectively identifies the optimal range of main design parameters for further, more specific analysis.

  14. Thermodynamic work from operational principles

    NASA Astrophysics Data System (ADS)

    Gallego, R.; Eisert, J.; Wilming, H.

    2016-10-01

    In recent years we have witnessed a concentrated effort to make sense of thermodynamics for small-scale systems. One of the main difficulties is to capture a suitable notion of work that models realistically the purpose of quantum machines, in an analogous way to the role played, for macroscopic machines, by the energy stored in the idealisation of a lifted weight. Despite several attempts to resolve this issue by putting forward specific models, these are far from realistically capturing the transitions that a quantum machine is expected to perform. In this work, we adopt a novel strategy by considering arbitrary kinds of systems that one can attach to a quantum thermal machine and defining work quantifiers. These are functions that measure the value of a transition and generalise the concept of work beyond those models familiar from phenomenological thermodynamics. We do so by imposing simple operational axioms that any reasonable work quantifier must fulfil and by deriving from them stringent mathematical condition with a clear physical interpretation. Our approach allows us to derive much of the structure of the theory of thermodynamics without taking the definition of work as a primitive. We can derive, for any work quantifier, a quantitative second law in the sense of bounding the work that can be performed using some non-equilibrium resource by the work that is needed to create it. We also discuss in detail the role of reversibility and correlations in connection with the second law. Furthermore, we recover the usual identification of work with energy in degrees of freedom with vanishing entropy as a particular case of our formalism. Our mathematical results can be formulated abstractly and are general enough to carry over to other resource theories than quantum thermodynamics.

  15. Biochemical Thermodynamics under near Physiological Conditions

    ERIC Educational Resources Information Center

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  16. Determination of Thermodynamic Properties of Alkaline Earth-liquid Metal Alloys Using the Electromotive Force Technique

    PubMed Central

    Nigl, Thomas P.; Smith, Nathan D.; Lichtenstein, Timothy; Gesualdi, Jarrod; Kumar, Kuldeep; Kim, Hojong

    2017-01-01

    A novel electrochemical cell based on a CaF2 solid-state electrolyte has been developed to measure the electromotive force (emf) of binary alkaline earth-liquid metal alloys as functions of both composition and temperature in order to acquire thermodynamic data. The cell consists of a chemically stable solid-state CaF2-AF2 electrolyte (where A is the alkaline-earth element such as Ca, Sr, or Ba), with binary A-B alloy (where B is the liquid metal such as Bi or Sb) working electrodes, and a pure A metal reference electrode. Emf data are collected over a temperature range of 723 K to 1,123 K in 25 K increments for multiple alloy compositions per experiment and the results are analyzed to yield activity values, phase transition temperatures, and partial molar entropies/enthalpies for each composition. PMID:29155770

  17. Statistical Thermodynamics and Microscale Thermophysics

    NASA Astrophysics Data System (ADS)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  18. Chemical thermodynamic data. 1. The concept of links to the chemical elements and the historical development of key thermodynamic data

    NASA Astrophysics Data System (ADS)

    Wolery, Thomas J.; Jové Colón, Carlos F.

    2017-09-01

    Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data. Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO2, water, and aqueous species such as Na+ and Cl-. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15 K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of "links" to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare "key" or "reference" datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of two or more inconsistent

  19. Estimating milk yield and value losses from increased somatic cell count on US dairy farms.

    PubMed

    Hadrich, J C; Wolf, C A; Lombard, J; Dolak, T M

    2018-04-01

    Milk loss due to increased somatic cell counts (SCC) results in economic losses for dairy producers. This research uses 10 mo of consecutive dairy herd improvement data from 2013 and 2014 to estimate milk yield loss using SCC as a proxy for clinical and subclinical mastitis. A fixed effects regression was used to examine factors that affected milk yield while controlling for herd-level management. Breed, milking frequency, days in milk, seasonality, SCC, cumulative months with SCC greater than 100,000 cells/mL, lactation, and herd size were variables included in the regression analysis. The cumulative months with SCC above a threshold was included as a proxy for chronic mastitis. Milk yield loss increased as the number of test days with SCC ≥100,000 cells/mL increased. Results from the regression were used to estimate a monetary value of milk loss related to SCC as a function of cow and operation related explanatory variables for a representative dairy cow. The largest losses occurred from increased cumulative test days with a SCC ≥100,000 cells/mL, with daily losses of $1.20/cow per day in the first month to $2.06/cow per day in mo 10. Results demonstrate the importance of including the duration of months above a threshold SCC when estimating milk yield losses. Cows with chronic mastitis, measured by increased consecutive test days with SCC ≥100,000 cells/mL, resulted in higher milk losses than cows with a new infection. This provides farm managers with a method to evaluate the trade-off between treatment and culling decisions as it relates to mastitis control and early detection. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. On the interfacial thermodynamics of nanoscale droplets and bubbles

    NASA Astrophysics Data System (ADS)

    Corti, David S.; Kerr, Karl J.; Torabi, Korosh

    2011-07-01

    We present a new self-consistent thermodynamic formalism for the interfacial properties of nanoscale embryos whose interiors do not exhibit bulklike behavior and are in complete equilibrium with the surrounding mother phase. In contrast to the standard Gibbsian analysis, whereby a bulk reference pressure based on the same temperature and chemical potentials of the mother phase is introduced, our approach naturally incorporates the normal pressure at the center of the embryo as an appropriate reference pressure. While the interfacial properties of small embryos that follow from the use of these two reference pressures are different, both methods yield by construction the same reversible work of embryo formation as well as consistency between their respective thermodynamic and mechanical routes to the surface tension. Hence, there is no a priori reason to select one method over another. Nevertheless, we argue, and demonstrate via a density-functional theory (with the local density approximation) analysis of embryo formation in the pure component Lennard-Jones fluid, that our new method generates more physically appealing trends. For example, within the new approach the surface tension at all locations of the dividing surface vanishes at the spinodal where the density profile spanning the embryo and mother phase becomes completely uniform (only the surface tension at the Gibbs surface of tension vanishes in the Gibbsian method at this same limit). Also, for bubbles, the location of the surface of tension now diverges at the spinodal, similar to the divergent behavior exhibited by the equimolar dividing surface (in the Gibbsian method, the location of the surface of tension vanishes instead). For droplets, the new method allows for the appearance of negative surface tensions (the Gibbsian method always yields positive tensions) when the normal pressures within the interior of the embryo become less than the bulk pressure of the surrounding vapor phase. Such a

  1. Bounded energy exchange as an alternative to the third law of thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Matthias, E-mail: Heidrich_Matthias@web.de

    This paper introduces a postulate explicitly forbidding the extraction of an infinite amount of energy from a thermodynamic system. It also introduces the assumption that no measuring equipment is capable of detecting arbitrarily small energy exchanges. The Kelvin formulation of the second law is reinterpreted accordingly. Then statements related to both the unattainability version and the entropic version of the third law are derived. The value of any common thermodynamic potential of a one-component system at absolute zero of temperature is ascertained if some assumptions with regard to the state space can be made. The point of view is themore » phenomenological, macroscopic and non-statistical one of classical thermodynamics.« less

  2. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril.

    PubMed

    Nguyen, Crystal N; Young, Tom Kurtzman; Gilson, Michael K

    2012-07-28

    The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a three-dimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and

  3. Grid inhomogeneous solvation theory: Hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril

    PubMed Central

    Nguyen, Crystal N.; Kurtzman Young, Tom; Gilson, Michael K.

    2012-01-01

    The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a three-dimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and

  4. Thermodynamics of organisms in the context of dynamic energy budget theory.

    PubMed

    Sousa, Tânia; Mota, Rui; Domingos, Tiago; Kooijman, S A L M

    2006-11-01

    We carry out a thermodynamic analysis to an organism. It is applicable to any type of organism because (1) it is based on a thermodynamic formalism applicable to all open thermodynamic systems and (2) uses a general model to describe the internal structure of the organism--the dynamic energy budget (DEB) model. Our results on the thermodynamics of DEB organisms are the following. (1) Thermodynamic constraints for the following types of organisms: (a) aerobic and exothermic, (b) anaerobic and exothermic, and (c) anaerobic and endothermic; showing that anaerobic organisms have a higher thermodynamic flexibility. (2) A way to compute the changes in the enthalpy and in the entropy of living biomass that accompany changes in growth rate solving the problem of evaluating the thermodynamic properties of biomass as a function of the amount of reserves. (3) Two expressions for Thornton's coefficient that explain its experimental variability and theoretically underpin its use in metabolic studies. (4) A mechanism that organisms in non-steady-state use to rid themselves of internal entropy production: "dilution of entropy production by growth." To demonstrate the practical applicability of DEB theory to quantify thermodynamic changes in organisms we use published data on Klebsiella aerogenes growing aerobically in a continuous culture. We obtain different values for molar entropies of the reserve and the structure of Klebsiella aerogenes proving that the reserve density concept of DEB theory is essential in discussions concerning (a) the relationship between organization and entropy and (b) the mechanism of storing entropy in new biomass. Additionally, our results suggest that the entropy of dead biomass is significantly different from the entropy of living biomass.

  5. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E.

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that hasmore » only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.« less

  6. Mass-independent area (or entropy) and thermodynamic volume products in conformal gravity

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2017-06-01

    In this work, we investigate the thermodynamic properties of conformal gravity in four dimensions. We compute the area (or entropy) functional relation for this black hole (BH). We consider both de Sitter (dS) and anti-de Sitter (AdS) cases. We derive the Cosmic-Censorship-Inequality which is an important relation in general relativity that relates the total mass of a spacetime to the area of all the BH horizons. Local thermodynamic stability is studied by computing the specific heat. The second-order phase transition occurs at a certain condition. Various types of second-order phase structure have been given for various values of a and the cosmological constant Λ in the Appendix. When a = 0, one obtains the result of Schwarzschild-dS and Schwarzschild-AdS cases. In the limit aM ≪ 1, one obtains the result of Grumiller spacetime, where a is nontrivial Rindler parameter or Rindler acceleration and M is the mass parameter. The thermodynamic volume functional relation is derived in the extended phase space, where the cosmological constant is treated as a thermodynamic pressure and its conjugate variable as a thermodynamic volume. The mass-independent area (or entropy) functional relation and thermodynamic volume functional relation that we have derived could turn out to be a universal quantity.

  7. Thermodynamics and Spontaneity

    NASA Astrophysics Data System (ADS)

    Ochs, Raymond S.

    1996-10-01

    Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject. Generally students recognize that the information is significant, yet do not assimilate it into later studies, especially in applied fields such as biology and biochemistry. A clear sense of the problem is reflected in a number of other contributions to this Journal (e.g., 1 - 6). Most (1 - 4, 6) recommend increased rigor in derivation of equations. This may appeal to students in advanced courses in chemical thermodynamics, but not to most. A few other suggestions are to introduce the subject earlier in general chemistry courses (2) or to provide innovative ways to visualize reaction changes (3). I suggest that the problem lies at another level entirely: the meanings of the terms are not clear. Recently, MacNeal (7) introduced the concept of mathsemantics, the joining of mathematics with a deep understanding of the sense (semantics) in which it operates. For example, the author argues that not only can we add apples and oranges (yielding total fruit), but that anything less than such a synthesis is trivial. Mathematics is hard, not because of the actual mathematical part of the problem but because of the semantics. As discussed thoroughly by Weinburg (8), the very names we affix to ideas dominate how we think about them. A similar reorientation would benefit chemical education. By way of example, the word "spontaneous" is widely used in thermodynamics, presumably because the word is familiar and assists understanding of this subject. In the following, I will provide evidence that this word has contributed more to the obfuscation of chemical ideas than it has helped elucidate them. Literature Cited 1. Redlich, O. J. Chem. Educ. 1975, 52, 374 - 376. 2. Bergquist, W.; Heikkinen, H. J. Chem. Educ. 1990, 67, 1000 - 1003. 3. Macomber, R. S. J. Chem. Educ. 1994, 71, 311 - 312. 4. Sanchez, K. S.; Vergenz, R

  8. Coefficients for calculating thermodynamic and transport properties of individual species

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford; Reno, Martin A.

    1993-01-01

    Libraries of thermodynamic data and transport properties are given for individual species in the form of least-squares coefficients. Values of C(sup 0)(sub p)(T), H(sup 0)(T), and S(sup 0)(T) are available for 1130 solid, liquid, and gaseous species. Viscosity and thermal conductivity data are given for 155 gases. The original C(sup 0)(sub p)(T) values were fit to a fourth-order polynomial with integration constants for H(sup 0)(T) and S(sup 0)(T). For each species the integration constant for H(sup 0)(T) includes the heat of formation. Transport properties have a different functional form. The temperature range for most of the data is 300 to 5000 K, although some of the newer thermodynamic data have a range of 200 to 6000 K. Because the species are mainly possible products of reaction, the data are useful for chemical equilibrium and kinetics computer codes. Much of the data has been distributed for several years with the NASA Lewis equilibrium program CET89. The thermodynamic properties of the reference elements were updated along with about 175 species that involve the elements carbon, hydrogen, oxygen, and nitrogen. These sets of data will be distributed with the NASA Lewis personal computer program for calculating chemical equilibria, CETPC.

  9. Thermodynamics of adaptive molecular resolution.

    PubMed

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  10. Thermodynamics of adaptive molecular resolution

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.

    2016-11-01

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U(1)-U(0). The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al., J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as `real' thermodynamic variables. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  11. Influence of ultrasound pretreatment on enzymolysis kinetics and thermodynamics of sodium hydroxide extracted proteins from tea residue.

    PubMed

    Ayim, Ishmael; Ma, Haile; Alenyorege, Evans Adingba; Ali, Zeshan; Donkor, Prince Ofori

    2018-03-01

    The effect of ultrasound pretreatment using Single Frequency Counter Current Ultrasound (SFCCU) on the enzymolysis of tea residue protein (TRP) extracted with sodium hydroxide was investigated. The concentration of TRP hydrolysate, enzymolysis kinetics and thermodynamic parameters after SFCCU pretreatment were determined and compared with traditional enzymolysis. The results indicated that both ultrasound assisted and traditional enzymolysis conformed to first-order kinetics within the limits of the studied parameters. Temperature and sonication had affirmative effect on the enzymolysis of TRP with temperature yielding greater impact. Michaelis constant ( K M ) in ultrasonic pretreated enzymolysis decreased by 32.7% over the traditional enzymolysis. The highest polypeptide concentration of 24.12 mg ml -1 was obtained with the lowest energy requirement at improved conditions of 50 g L -1 of TRP, alcalase concentration of 2000 U g -1 , time of 10 min and temperature of 50 °C for the ultrasonic treated enzymolysis. The values of reaction rate constant ( k ) for TRP enzymolysis increased by 78, 40, 82 and 60% at 20, 30, 40 and 50 °C, respectively. The thermodynamic properties comprising activation energy ( Ea ), change in enthalpy (∆H ) and entropy (∆S ) were reduced by ultrasound pretreatment whereas Gibbs free energy (∆G ) was increased.

  12. Thermodynamics of Cadmium Sorption on Different Soils of West Bengal, India

    PubMed Central

    Paul, Ranjit Kumar; Das, D. K.; Boruah, Romesh K.; Sonar, Indira

    2014-01-01

    A sorption study was conducted on different soils collected from five agroecological zones of West Bengal, India, to understand the soil environmental behavior and fate of cadmium. For this purpose batch adsorption experiments were carried out at the native soil pH and at three different temperatures (25°C, 35°C, and 45°C). The adsorption data fitted by a linear least squares technique to the different sorption isotherms. Most data obtained give the good fit to both Freundlich and modified Langmuir isotherms, but they are not consistent with the linear Langmuir adsorption model. Thermodynamic parameters, namely, thermodynamics equilibrium constant at a particular temperature T  (K T 0), Gibbs free energy at a particular temperature T  (ΔG T 0), and change of enthalpy (ΔH 0) and change of entropy at temperature T  (ΔS T 0), were also determined by applying sorption value and concentrations of Cd in equilibrium solution within the temperature range. The thermodynamic parameters revealed that Cd sorption increases as the values of K T 0, ΔG T 0, ΔH 0, and ΔS T 0 were increased on reaction temperatures. The spontaneous sorption reaction can be concluded due to high values of ΔG T 0. The positive values of ΔH 0 indicated that the Cd sorption is an endothermic one. Under these present conditions, the soil and its components possibly supply a number of sites having different adsorption energies for cadmium sorption. PMID:24683322

  13. Thermodynamics of proton transport coupled ATP synthesis.

    PubMed

    Turina, Paola; Petersen, Jan; Gräber, Peter

    2016-06-01

    The thermodynamic H(+)/ATP ratio of the H(+)-ATP synthase from chloroplasts was measured in proteoliposomes after energization of the membrane by an acid base transition (Turina et al. 2003 [13], 418-422). The method is discussed, and all published data obtained with this system are combined and analyzed as a single dataset. This meta-analysis led to the following results. 1) At equilibrium, the transmembrane ΔpH is energetically equivalent to the transmembrane electric potential difference. 2) The standard free energy for ATP synthesis (reference reaction) is ΔG°(ref)=33.8±1.3kJ/mol. 3) The thermodynamic H(+)/ATP ratio, as obtained from the shift of the ATP synthesis equilibrium induced by changing the transmembrane ΔpH (varying either pH(in) or pH(out)) is 4.0±0.1. The structural H(+)/ATP ratio, calculated from the ratio of proton binding sites on the c-subunit-ring in F(0) to the catalytic nucleotide binding sites on the β-subunits in F(1), is c/β=14/3=4.7. We infer that the energy of 0.7 protons per ATP that flow through the enzyme, but do not contribute to shifting the ATP/(ADP·Pi) ratio, is used for additional processes within the enzyme, such as activation, and/or energy dissipation, due e.g. to internal uncoupling. The ratio between the thermodynamic and the structural H(+)/ATP values is 0.85, and we conclude that this value represents the efficiency of the chemiosmotic energy conversion within the chloroplast H(+)-ATP synthase. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Supercritical water gasification of biomass: Thermodynamic constraints.

    PubMed

    Castello, Daniele; Fiori, Luca

    2011-08-01

    In the present work, the supercritical water gasification (SCWG) of biomass is analyzed with a view to outlining the possible thermodynamic constraints that must be taken into account to develop this new process. In particular, issues concerning the formation of solid carbon and the process heat duty are discussed. The analysis is conducted by means of a two-phase non-stoichiometric thermodynamic model, based on Gibbs free energy minimization. Results show that char formation at equilibrium only occurs at high biomass concentrations, with a strong dependence on biomass composition. As regards the process heat duty, SCWG is mostly endothermic when biomass concentration is low, although a very small amount of oxidizing agent is able to make the process exothermic, with only a small loss in the heating value of the syngas produced. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A simulation assessment of the thermodynamics of dense ion-dipole mixtures with polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastea, Sorin, E-mail: sbastea@llnl.gov

    Molecular dynamics (MD) simulations are employed to ascertain the relative importance of various electrostatic interaction contributions, including induction interactions, to the thermodynamics of dense, hot ion-dipole mixtures. In the absence of polarization, we find that an MD-constrained free energy term accounting for the ion-dipole interactions, combined with well tested ionic and dipolar contributions, yields a simple, fairly accurate free energy form that may be a better option for describing the thermodynamics of such mixtures than the mean spherical approximation (MSA). Polarization contributions induced by the presence of permanent dipoles and ions are found to be additive to a good approximation,more » simplifying the thermodynamic modeling. We suggest simple free energy corrections that account for these two effects, based in part on standard perturbative treatments and partly on comparisons with MD simulation. Even though the proposed approximations likely need further study, they provide a first quantitative assessment of polarization contributions at high densities and temperatures and may serve as a guide for future modeling efforts.« less

  16. Comparing contribution of flexural and planar modes to thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja; Jindal, V. K.

    2017-05-01

    Graphene, the most studied and explored 2D structure has unusual thermal properties such as negative thermal expansion, high thermal conductivity etc. We have already studied the thermal expansion behavior and various thermodynamic properties of pure graphene like heat capacity, entropy and free energy. The results of thermal expansion and various thermodynamic properties match well with available theoretical studies. For a deeper understanding of these properties, we analyzed the contribution of each phonon branch towards the total value of the individual property. To compute these properties, the dynamical matrix was calculated using VASP code where the density functional perturbation theory (DFPT) is employed under quasi-harmonic approximation in interface with phonopy code. It is noticed that transverse mode has major contribution to negative thermal expansion and all branches have almost same contribution towards the various thermodynamic properties with the contribution of ZA mode being the highest.

  17. The thermodynamic properties of benzothiazole and benzoxazole

    NASA Astrophysics Data System (ADS)

    Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.

    1991-08-01

    This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments.

  18. pKa values of hyodeoxycholic and cholic acids in the binary mixed micelles sodium-hyodeoxycholate-Tween 40 and sodium-cholate-Tween 40: Thermodynamic stability of the micelle and the cooperative hydrogen bond formation with the steroid skeleton.

    PubMed

    Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita

    2017-01-01

    Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary

  19. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    PubMed Central

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  20. Fluid Dynamics and Thermodynamics of Vapor Phase Crystal Growth

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1985-01-01

    The ground-based research effort under this program is concerned with systematic studies of the effects of variations: (1) of the relative importance of buoyancy-driven convection, and (2) of diffusion and viscosity conditions on crystal properties. These experimental studies are supported by thermodynamic characterizations of the systems, based on which fluid dynamic parameters can be determined. The specific materials under investigation include: the GeSe-GeI4, Ge-GeI4, HgTe-HgI2, and Hg sub (1-x)Cd sub (x) Te-HgI2 systems. Mass transport rate studies of the GeSe-GeI system as a function of orientation of the density gradient relative to the gravity vector demonstrated the validity of flux anomalies observed in earlier space experiments. The investigation of the effects of inert gases on mass flux yielded the first experimental evidence for the existence of a boundary layer in closed ampoules. Combined with a thorough thermodynamic analysis, a transport model for diffusive flow including chemical vapor transport, sublimation, and Stefan flow was developed.

  1. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.

    PubMed

    Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q

    2017-03-22

    Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.

  2. Chemical thermodynamics of ultrasound speed in solutions and liquid mixtures.

    PubMed

    Reis, João Carlos R; Santos, Angela F S; Lampreia, Isabel M S

    2010-02-01

    A comprehensive formalism is developed to treat thermodynamically speed of ultrasound data for solutions and liquid mixtures. For solutions, the apparent speed of ultrasound of a solute is introduced and proposed to take the place of empirically defined quantities. The partial speed of ultrasound of a solute is defined and related to the partial molar volume and partial molar isentropic compression. For liquid mixtures, the concept of speed of sound before mixing pure liquids is presented and used to define the change in speed of ultrasound upon ideal mixing, which is predicted to be generally a negative quantity. A new thermodynamic equation is derived linking the values for excess speed of ultrasound, excess molar volume and excess molar isentropic compression of a mixture, and its applications are discussed. Ideal and excess apparent speeds of ultrasound, as well as ideal and excess partial speeds of ultrasound, are defined for substances making up a liquid mixture. Accurate speeds of ultrasound in 31 mixtures of water with the amphiphile 2-(ethylamino)ethanol at 293.15 K are reported. These data are used to demonstrate the ability of the apparent speed of ultrasound to describe the impact of solutes on sonic properties of solutions and the advantages of analysing thermodynamic properties of binary liquid mixtures in terms of the dependence on composition of Balankina's ratios between excess and ideal values. It is concluded that the new thermodynamic functions defined for speeds of ultrasound in solutions and liquid mixtures give, at the least, equivalent information on molecular aspects to the usual functions related to the isentropic compressibility, without needing density data for this purpose.

  3. The thermodynamical foundation of electronic conduction in solids

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    2018-03-01

    In elementary textbooks, the microscopic justification of Ohm’s local law in a solid medium starts with Drude’s classical model of electron transport and next discusses the quantum-dynamical and statistical amendments. In this paper, emphasis is laid instead upon the thermodynamical background motivated by the Joule-Lenz heating effect accompanying conduction and the fact that the conduction electrons are thermalized at the lattice temperature. Both metals and n-type semiconductors are considered; but conduction under a magnetic field is not. Proficiency in second-year thermodynamics and vector analysis is required from an undergraduate university student in physics so that the content of the paper can be taught to third-year students. The necessary elements of quantum mechanics are posited in this paper without detailed justification. We start with the equilibrium-thermodynamic notion of the chemical potential of the electron gas, the value of which distinguishes metals from semiconductors. Then we turn to the usage of the electrochemical potential in the description of near-equilibrium electron transport. The response of charge carriers to the electrochemical gradient involves the mobility, which is the reciprocal of the coefficient of the effective friction force opposing the carrier drift. Drude’s calculation of mobility is restated with the dynamical requirements of quantum physics. Where the carrier density is inhomogeneous, there appears diffusion, the coefficient of which is thermodynamically related to the mobility. Next, it is remarked that the release of heat was ignored in Drude’s original model. In this paper, the flow of Joule heat is handled thermodynamically within an energy balance where the voltage generator, the conduction electrons and the host lattice are involved in an explicit way. The notion of dissipation is introduced as the rate of entropy creation in a steady state. The body of the paper is restricted to the case of one

  4. Thermodynamic properties and atomic structure of Ca-based liquid alloys

    NASA Astrophysics Data System (ADS)

    Poizeau, Sophie

    To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were determined by emf measurements. It was found that Sb as positive electrode would provide the highest voltage for Ca-based liquid metal batteries (1 V). The price of such a battery would be competitive for the grid-scale energy storage market. The impact of Pb, a natural impurity of Sb, was predicted successfully and confirmed via electrochemical measurements. It was shown that the impact on the open circuit voltage would be minor. Indeed, the interaction between Ca and Sb was demonstrated to be much stronger than between Ca and Pb using thermodynamic modeling, which explains why the partial thermodynamic properties of Ca would not vary much with the addition of Pb to Sb. However, the usage of the positive electrode would be reduced, which would limit the interest of a Pb-Sb positive electrode. Throughout this work, the molecular interaction volume model (MIVM) was used for the first time for alloys with thermodynamic properties showing strong negative deviation from ideality. This model showed that systems such as Ca-Sb have strong short-range order: Ca is most stable when its first nearest neighbors are Sb. This is consistent with what the more traditional thermodynamic model, the regular association model, would predict. The advantages of the MIVM are the absence of assumption regarding the composition of an associate, and the reduced number of fitting parameters (2 instead of 5). Based on the parameters derived from the thermodynamic modeling using the MIVM, a new potential of mixing for liquid alloys was defined to compare the strength of interaction in different Ca-based alloys. Comparing this trend with the strength of interaction in the solid state of these systems (assessed by the energy of formation of the intermetallics), the systems with

  5. Microcomputer Calculation of Thermodynamic Properties from Molecular Parameters of Gases.

    ERIC Educational Resources Information Center

    Venugopalan, Mundiyath

    1990-01-01

    Described in this article is a problem-solving activity which integrates the application of microcomputers with the learning of physical chemistry. Students use the program with spectroscopic data to calculate the thermodynamic properties and compare them with the values from the thermochemical tables. (Author/KR)

  6. Quartz: heat capacities from 340 to 1000 K and revised values for the thermodynamic properties.

    USGS Publications Warehouse

    Hemingway, B.S.

    1987-01-01

    New heat-capacity data for quartz have been measured over the T interval 340-1000 K by differential scanning calorimetry. The data were combined with recent heat-content and heat-capacity data to provide a significantly revised set of thermodynamic properties for alpha -quartz and to resolve the problem of disparate heat-content and heat-capacity data for alpha - and beta -quartz.-J.A.Z.

  7. Estimation of thermodynamic acidity constants of some penicillinase-resistant penicillins.

    PubMed

    Demiralay, Ebru Çubuk; Üstün, Zehra; Daldal, Y Doğan

    2014-03-01

    In this work, thermodynamic acidity constants (pssKa) of methicillin, oxacillin, nafcillin, cloxacilin, dicloxacillin were determined with reverse phase liquid chromatographic method (RPLC) by taking into account the effect of the activity coefficients in hydro-organic water-acetonitrile binary mixtures. From these values, thermodynamic aqueous acidity constants of these drugs were calculated by different approaches. The linear relationships established between retention factors of the species and the polarity parameter of the mobile phase (ET(N)) was proved to predict accurately retention in LC as a function of the acetonitrile content (38%, 40% and 42%, v/v). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  9. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  10. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  11. Thermodynamically efficient solar concentrators

    NASA Astrophysics Data System (ADS)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  12. The OpenCalphad thermodynamic software interface.

    PubMed

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2016-12-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into "lookup tables" to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility.

  13. Quantifying losses and thermodynamic limits in nanophotonic solar cells

    NASA Astrophysics Data System (ADS)

    Mann, Sander A.; Oener, Sebastian Z.; Cavalli, Alessandro; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.; Garnett, Erik C.

    2016-12-01

    Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly and the record open-circuit voltages are becoming comparable to the records for planar equivalents. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).

  14. Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.

    PubMed

    Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola

    2014-10-01

    Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.

  15. Thermodynamic and Optical Response of Multiply Shocked Liquid Nitromethane

    NASA Astrophysics Data System (ADS)

    Flanders, B. M.; Winey, J. M.; Gupta, Y. M.

    2015-06-01

    To investigate the thermodynamic and optical response of multiply shocked liquids, particle velocity profiles were measured for liquid nitromethane (NM) subjected to stepwise loading to a peak pressure of 10 GPa. Using a multi-point velocity interferometer (VISAR), wave profiles were obtained at both the front and rear interfaces of the thin (200 μm) liquid sample to obtain data regarding the thermodynamic response and the refractive index at the intermediate stepwise loading states, in addition to the peak state. Changes in the apparent velocity at the front sample interface were well accounted for by using a Gladstone-Dale relationship to describe the NM index of refraction. The thermodynamic states of multiply shocked NM were examined by comparing the measured wave profiles to those calculated using a published NM equation of state. Although the calculated and measured particle velocity states are in good overall agreement, comparison of the calculated shock wave reverberation times at the front and rear sample interfaces with the measured values suggests that the published NM equation of state can be improved. Work supported by DOE/NNSA.

  16. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  17. Thermodynamics and evolution.

    PubMed

    Demetrius, L

    2000-09-07

    The science of thermodynamics is concerned with understanding the properties of inanimate matter in so far as they are determined by changes in temperature. The Second Law asserts that in irreversible processes there is a uni-directional increase in thermodynamic entropy, a measure of the degree of uncertainty in the thermal energy state of a randomly chosen particle in the aggregate. The science of evolution is concerned with understanding the properties of populations of living matter in so far as they are regulated by changes in generation time. Directionality theory, a mathematical model of the evolutionary process, establishes that in populations subject to bounded growth constraints, there is a uni-directional increase in evolutionary entropy, a measure of the degree of uncertainty in the age of the immediate ancestor of a randomly chosen newborn. This article reviews the mathematical basis of directionality theory and analyses the relation between directionality theory and statistical thermodynamics. We exploit an analytic relation between temperature, and generation time, to show that the directionality principle for evolutionary entropy is a non-equilibrium extension of the principle of a uni-directional increase of thermodynamic entropy. The analytic relation between these directionality principles is consistent with the hypothesis of the equivalence of fundamental laws as one moves up the hierarchy, from a molecular ensemble where the thermodynamic laws apply, to a population of replicating entities (molecules, cells, higher organisms), where evolutionary principles prevail. Copyright 2000 Academic Press.

  18. Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX.

    PubMed

    Linkuvienė, Vaida; Matulienė, Jurgita; Juozapaitienė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Matulis, Daumantas

    2016-04-01

    Human carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding. The observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry. The pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was -24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM. The intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship. It is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The OpenCalphad thermodynamic software interface

    PubMed Central

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2017-01-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838

  20. Black hole chemistry: thermodynamics with Lambda

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  1. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  2. Thermodynamics of organic compounds

    NASA Astrophysics Data System (ADS)

    Gammon, B. E.; Smith, N. K.

    1982-11-01

    This research program consisted of an integrated and interrelated effort of basic and applied research in chemical thermodynamics and thermochemistry. Knowledge of variation of physical and thermodynamic properties with molecular structure was used to select compounds for study that because of high ring strain or unusual steric effects may have good energy characteristics per unit volume or per unit mass and thus be useful in the synthesis of high energy fuels. These materials were synthesized, and their thermodynamic properties were evaluated. In cooperation with researcher at Wright-Patterson Air Force Base, ramjet fuels currently in use were subjected to careful thermodynamic evaluation by measurements of heat capacity, enthalpy of combustion and vapor pressure. During the last year of this effort, seven kerosene-type fuels produced by British Petroleum and seven jet fuels produced from shale oil were studied.

  3. Thermodynamic Constraints Improve Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2017-08-08

    In pursuit of establishing a realistic metabolic phenotypic space, the reversibility of reactions is thermodynamically constrained in modern metabolic networks. The reversibility constraints follow from heuristic thermodynamic poise approximations that take anticipated cellular metabolite concentration ranges into account. Because constraints reduce the feasible space, draft metabolic network reconstructions may need more extensive reconciliation, and a larger number of genes may become essential. Notwithstanding ubiquitous application, the effect of reversibility constraints on the predictive capabilities of metabolic networks has not been investigated in detail. Instead, work has focused on the implementation and validation of the thermodynamic poise calculation itself. With the advance of fast linear programming-based network reconciliation, the effects of reversibility constraints on network reconciliation and gene essentiality predictions have become feasible and are the subject of this study. Networks with thermodynamically informed reversibility constraints outperformed gene essentiality predictions compared to networks that were constrained with randomly shuffled constraints. Unconstrained networks predicted gene essentiality as accurately as thermodynamically constrained networks, but predicted substantially fewer essential genes. Networks that were reconciled with sequence similarity data and strongly enforced reversibility constraints outperformed all other networks. We conclude that metabolic network analysis confirmed the validity of the thermodynamic constraints, and that thermodynamic poise information is actionable during network reconciliation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. The H[subscript 3]PO[subscript 4] Acid Ionization Reactions: A Capstone Multiconcept Thermodynamics General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca; Wise, Lindy; McMills, Lauren

    2013-01-01

    The thermodynamic properties of weak acid ionization reactions are determined. The thermodynamic properties are corresponding values of the absolute temperature (T), the weak acid equilibrium constant (K[subscript a]), the enthalpy of ionization (delta[subscript i]H[degrees]), and the entropy of ionization (delta[subscript i]S[degrees]). The…

  5. Numeric Databases in Chemical Thermodynamics at the National Institute of Standards and Technology

    PubMed Central

    Chase, Malcolm W.

    1989-01-01

    During the past year the activities of the Chemical Thermodynamics Data Center and the JANAF Thermochemical Tables project have been combined to obtain an extensive collection of thermodynamic information for many chemical species, including the elements. Currently available are extensive bibliographic collections and data files of heat capacity, enthalpy, vapor pressure, phase transitions, etc. Future plans related to materials science are to improve the metallic oxide temperature dependent tabulations, upgrade the recommended values periodically, and maintain the bibliographic citations and the thermochemical data current. The recommended thermochemical information is maintained on-line, and tied to the calculational routines within the data center. Recent thermodynamic evaluations on the elements and oxides will be discussed, as well as studies in related activities at NIST. PMID:28053395

  6. Effects of chemical structure on the thermodynamic efficiency of radical chain carriers for organic synthesis.

    PubMed

    Lin, Ching Yeh; Peh, Jessie; Coote, Michelle L

    2011-03-18

    The chain carrier index (CCI), defined as the ratio of the bond dissociation free energies (BDFE) of corresponding chain carrier halides and hydrides, is proposed as a measure of the thermodynamic efficiency of chain carriers for radical dehalogenation. The larger this value is relative to the corresponding value of the organic substrate, the more thermodynamically efficient the process. The chloride and bromide CCIs were evaluated at the G3(MP2)-RAD(+) level of theory for 120 different R-groups, covering a broad range of carbon-centered and noncarbon-centered species; the effects of solvent and temperature have also been studied. The broad finding from this work is that successful chain carriers generally maximize the strength of their halide (versus hydride bonds) through charge-shift bonding. As a result, the thermodynamic efficiency of a chain carrier tends to increase down the periodic table, and also with the inclusion of stronger electron donating substituents. The CCIs of carbon-centered species fall into a relatively narrow range so that, even when the CCI is maximized through inclusion of lone pair donor OMe or NMe(2) groups, the thermodynamic driving force for dehalogenation of other organic substrates is modest at best, and the process is likely to be kinetically hampered. Among the noncarbon-centered species studied, bismuth- and borane-centered compounds have some of the highest CCI values and, although their kinetics requires further optimization, these classes of compounds would be worth further investigation as tin-free radical reducing agents.

  7. Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides.

    PubMed

    Stewart, Sydney M; Hofstetter, Thomas B; Joshi, Prachi; Gorski, Christopher A

    2018-05-15

    Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe 2+ ) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential ( E H ) values for oxide-bound Fe 2+ species. Recently, our group demonstrated that E H values for hematite- and goethite-bound Fe 2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated E H values for oxide-bound Fe 2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant ( k SA ) values and E H and pH values [log( k SA ) = - E H /0.059 V - pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe 2+ relates to redox reaction kinetics.

  8. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hao; Mey, Antonia S. J. S.; Noé, Frank

    2014-12-07

    We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing configuration-space-discretized simulation trajectories produced at different thermodynamic states (temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sampled from global equilibrium, and can thus produce superior estimates for enhanced sampling data such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In addition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized state-space trajectories at all thermodynamic states. Under suitablemore » conditions, these MSMs can be used to calculate kinetic quantities (e.g., rates, timescales). In the limit of a single thermodynamic state, dTRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators.« less

  9. Acquisition and evaluation of thermodynamic data for morenosite-retgersite equilibria at 0.1 MPa

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R.

    2003-01-01

    Metal-sulfate salts in mine drainage environments commonly occur as solid solutions containing Fe, Cu, Mg, Zn, Al, Mn, Ni, Co, Cd, and other elements. Thermodynamic data for some of the end-member salts containing Fe, Cu, Zn, and Mg have been collected and evaluated previously, and the present study extends to the system containing Ni. Morenosite (NiSO4-7H2O)-retgersite (NiSO4-6H2O) equilibria were determined along five humidity buffer curves at 0.1 MPa and between 5 and 22??C. Reversals along these humidity-buffer curves yield In K = 17.58-6303.35/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 8.84 kJ/mol, which agrees very well with the values of 8.90, 8.83, and 8.85 kJ/mol based on the vapor pressure measurements of Schumb (1923), Bonnell and Burridge (1935), and Stout et al. (1966). respectively. This value also agrees reasonably well with the values of 8.65 and 9.56 kJ/mol calculated from the data compiled by Wagman et al. (1982) and DeKock (1982), respectively. The temperature-humidity relationships defined by this study for dehydration equilibria between morenosite and retgersite explain the more common occurrence of retgersite relative to morenosite in nature.

  10. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  11. Indirect determination of the thermodynamic temperature of the copper point by a multi-fixed-point technique

    NASA Astrophysics Data System (ADS)

    Battuello, M.; Florio, M.; Girard, F.

    2010-06-01

    An indirect determination of the thermodynamic temperature of the fixed point of copper was made at INRIM by measuring four cells with a Si-based and an InGaAs-based precision radiation thermometer carrying approximated thermodynamic scales realized up to the Ag point. An average value TCu = 1357.840 K was found with a standard uncertainty of 0.047 K. A consequent (T - T90)Cu value of 70 mK can be derived which is 18 mK higher than, but consistent with, the presently available (T - T90)Cu as elaborated by the CCT-WG4.

  12. Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-08-15

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.

  13. Thermodynamic properties of gaseous ruthenium species.

    PubMed

    Miradji, Faoulat; Souvi, Sidi; Cantrel, Laurent; Louis, Florent; Vallet, Valérie

    2015-05-21

    The review of thermodynamic data of ruthenium oxides reveals large uncertainties in some of the standard enthalpies of formation, motivating the use of high-level relativistic correlated quantum chemical methods to reduce the level of discrepancies. The reaction energies leading to the formation of ruthenium oxides RuO, RuO2, RuO3, and RuO4 have been calculated for a series of reactions. The combination of different quantum chemical methods has been investigated [DFT, CASSCF, MRCI, CASPT2, CCSD(T)] in order to predict the geometrical parameters, the energetics including electronic correlation and spin-orbit coupling. The most suitable method for ruthenium compounds is the use of TPSSh-5%HF for geometry optimization, followed by CCSD(T) with complete basis set (CBS) extrapolations for the calculation of the total electronic energies. SO-CASSCF seems to be accurate enough to estimate spin-orbit coupling contributions to the ground-state electronic energies. This methodology yields very accurate standard enthalpies of formations of all species, which are either in excellent agreement with the most reliable experimental data or provide an improved estimate for the others. These new data will be implemented in the thermodynamical databases that are used by the ASTEC code (accident source term evaluation code) to build models of ruthenium chemistry behavior in severe nuclear accident conditions. The paper also discusses the nature of the chemical bonds both from molecular orbital and topological view points.

  14. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    USGS Publications Warehouse

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  15. Thermodynamics of statistical inference by cells.

    PubMed

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  16. Microbial diversity arising from thermodynamic constraints

    PubMed Central

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  17. Humans as Sensors: Assessing the Information Value of Qualitative Farmer's Crop Condition Surveys for Crop Yield Monitoring and Forecasting

    NASA Astrophysics Data System (ADS)

    Beguería, S.

    2017-12-01

    While large efforts are devoted to developing crop status monitoring and yield forecasting systems trough the use of Earth observation data (mostly remotely sensed satellite imagery) and observational and modeled weather data, here we focus on the information value of qualitative data on crop status from direct observations made by humans. This kind of data has a high value as it reflects the expert opinion of individuals directly involved in the development of the crop. However, they have issues that prevent their direct use in crop monitoring and yield forecasting systems, such as their non-spatially explicit nature, or most importantly their qualitative nature. Indeed, while the human brain is good at categorizing the status of physical systems in terms of qualitative scales (`very good', `good', `fair', etcetera), it has difficulties in quantifying it in physical units. This has prevented the incorporation of this kind of data into systems that make extensive use of numerical information. Here we show an example of using qualitative crop condition data to estimate yields of the most important crops in the US early in the season. We use USDA weekly crop condition reports, which are based on a sample of thousands of reporters including mostly farmers and people in direct contact with them. These reporters provide subjective evaluations of crop conditions, in a scale including five levels ranging from `very poor' to `excellent'. The USDA report indicates, for each state, the proportion of reporters fort each condition level. We show how is it possible to model the underlying non-observed quantitative variable that reflects the crop status on each state, and how this model is consistent across states and years. Furthermore, we show how this information can be used to monitor the status of the crops and to produce yield forecasts early in the season. Finally, we discuss approaches for blending this information source with other, more classical earth data sources

  18. Thermodynamic framework for compact q-Gaussian distributions

    NASA Astrophysics Data System (ADS)

    Souza, Andre M. C.; Andrade, Roberto F. S.; Nobre, Fernando D.; Curado, Evaldo M. F.

    2018-02-01

    Recent works have associated systems of particles, characterized by short-range repulsive interactions and evolving under overdamped motion, to a nonlinear Fokker-Planck equation within the class of nonextensive statistical mechanics, with a nonlinear diffusion contribution whose exponent is given by ν = 2 - q. The particular case ν = 2 applies to interacting vortices in type-II superconductors, whereas ν > 2 covers systems of particles characterized by short-range power-law interactions, where correlations among particles are taken into account. In the former case, several studies presented a consistent thermodynamic framework based on the definition of an effective temperature θ (presenting experimental values much higher than typical room temperatures T, so that thermal noise could be neglected), conjugated to a generalized entropy sν (with ν = 2). Herein, the whole thermodynamic scheme is revisited and extended to systems of particles interacting repulsively, through short-ranged potentials, described by an entropy sν, with ν > 1, covering the ν = 2 (vortices in type-II superconductors) and ν > 2 (short-range power-law interactions) physical examples. One basic requirement concerns a cutoff in the equilibrium distribution Peq(x) , approached due to a confining external harmonic potential, ϕ(x) = αx2 / 2 (α > 0). The main results achieved are: (a) The definition of an effective temperature θ conjugated to the entropy sν; (b) The construction of a Carnot cycle, whose efficiency is shown to be η = 1 -(θ2 /θ1) , where θ1 and θ2 are the effective temperatures associated with two isothermal transformations, with θ1 >θ2; (c) Thermodynamic potentials, Maxwell relations, and response functions. The present thermodynamic framework, for a system of interacting particles under the above-mentioned conditions, and associated to an entropy sν, with ν > 1, certainly enlarges the possibility of experimental verifications.

  19. FLUID: A numerical interpolation procedure for obtaining thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1977-01-01

    A computer program subroutine, FLUID, was developed to calculate thermodynamic and transport properties of pure fluid substances. It provides for determining the thermodynamic state from assigned values for temperature-density, pressure-density, temperature-pressure, pressure-entropy, or pressure-enthalpy. Liquid or two-phase (liquid-gas) conditions are considered as well as the gas phase. A van der Waals model is used to obtain approximate state values; these values are then corrected for real gas effects by model-correction factors obtained from tables based on experimental data. Saturation conditions, specific heat, entropy, and enthalpy data are included in the tables for each gas. Since these tables are external to the FLUID subroutine itself, FLUID can implement any gas for which a set of tables has been generated. (A setup phase is used to establish pointers dynamically to the tables for a specific gas.) Data-table preparation is described. FLUID is available in both SFTRAN and FORTRAN

  20. Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory

    NASA Astrophysics Data System (ADS)

    Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara

    2018-05-01

    We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.

  1. Solvation Thermodynamics of Oligoglycine with Respect to Chain Length and Flexibility.

    PubMed

    Drake, Justin A; Harris, Robert C; Pettitt, B Montgomery

    2016-08-23

    Oligoglycine is a backbone mimic for all proteins and is prevalent in the sequences of intrinsically disordered proteins. We have computed the absolute chemical potential of glycine oligomers at infinite dilution by simulation with the CHARMM36 and Amber ff12SB force fields. We performed a thermodynamic decomposition of the solvation free energy (ΔG(sol)) of Gly2-5 into enthalpic (ΔH(sol)) and entropic (ΔS(sol)) components as well as their van der Waals and electrostatic contributions. Gly2-5 was either constrained to a rigid/extended conformation or allowed to be completely flexible during simulations to assess the effects of flexibility on these thermodynamic quantities. For both rigid and flexible oligoglycine models, the decrease in ΔG(sol) with chain length is enthalpically driven with only weak entropic compensation. However, the apparent rates of decrease of ΔG(sol), ΔH(sol), ΔS(sol), and their elec and vdw components differ for the rigid and flexible models. Thus, we find solvation entropy does not drive aggregation for this system and may not explain the collapse of long oligoglycines. Additionally, both force fields yield very similar thermodynamic scaling relationships with respect to chain length despite both force fields generating different conformational ensembles of various oligoglycine chains. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Thermodynamics--A Practical Subject.

    ERIC Educational Resources Information Center

    Jones, Hugh G.

    1984-01-01

    Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)

  3. Computational study of frontier orbitals, moments, chemical reactivity and thermodynamic parameters of sildenafil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachdeva, Ritika, E-mail: ritika.sachdeva21@gmail.com; Kaur, Prabhjot; Singh, V. P.

    2016-05-06

    Analysis of frontier orbitals of sildenafil has been carried using Density Functional Theory. On the basis of HOMO-LUMO energy, values of global chemical reactivity descriptors such as electronegativity, chemical hardness, softness, chemical potential, electrophilicity index have been calculated. Calculated values of dipole moment, polarizability, hyperpolarizability have also been reported for sildenafil along with its thermodynamic parameters.

  4. Thermodynamics of weight loss diets.

    PubMed

    Fine, Eugene J; Feinman, Richard D

    2004-12-08

    BACKGROUND: It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? RESULTS: Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. CONCLUSIONS: Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms.

  5. Thermodynamics of weight loss diets

    PubMed Central

    Fine, Eugene J; Feinman, Richard D

    2004-01-01

    Background It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? Results Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. Conclusions Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms. PMID:15588283

  6. A separation-integrated cascade reaction to overcome thermodynamic limitations in rare-sugar synthesis.

    PubMed

    Wagner, Nina; Bosshart, Andreas; Failmezger, Jurek; Bechtold, Matthias; Panke, Sven

    2015-03-27

    Enzyme cascades combining epimerization and isomerization steps offer an attractive route for the generic production of rare sugars starting from accessible bulk sugars but suffer from the unfavorable position of the thermodynamic equilibrium, thus reducing the yield and requiring complex work-up procedures to separate pure product from the reaction mixture. Presented herein is the integration of a multienzyme cascade reaction with continuous chromatography, realized as simulated moving bed chromatography, to overcome the intrinsic yield limitation. Efficient production of D-psicose from sucrose in a three-step cascade reaction using invertase, D-xylose isomerase, and D-tagatose epimerase, via the intermediates D-glucose and D-fructose, is described. This set-up allowed the production of pure psicose (99.9%) with very high yields (89%) and high enzyme efficiency (300 g of D-psicose per g of enzyme). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Incorporation of a cationic aminopropyl chain in DNA hairpins: thermodynamics and hydration

    PubMed Central

    Soto, Ana Maria; Kankia, Besik I.; Dande, Prasad; Gold, Barry; Marky, Luis A.

    2001-01-01

    We report on the physicochemical effects resulting from incorporating a 5-(3-aminopropyl) side chain onto a 2′-deoxyuridine (dU) residue in a short DNA hairpin. A combination of spectroscopy, calorimetry, density and ultrasound techniques were used to investigate both the helix–coil transition of a set of  hairpins with the following sequence: d(GCGACTTTTTGNCGC) [N = dU, deoxythymidine (dT) or 5-(3-aminopropyl)-2′-deoxyuridine (dU*)], and the interaction of each hairpin with Mg2+. All three molecules undergo two-state transitions with melting temperatures (TM) independent of strand concentration that indicates their intramolecular hairpin formation. The unfolding of each hairpin takes place with similar TM values of 64–66°C and similar thermodynamic profiles. The unfavorable unfolding free energies of 6.4–6.9 kcal/mol result from the typical compensation of unfavorable enthalpies, 36–39 kcal/mol, and favorable entropies of ∼110 cal/mol. Furthermore, the stability of each hairpin increases as the salt concentration increases, the TM-dependence on salt yielded slopes of 2.3–2.9°C, which correspond to counterion releases of 0.53 (dU and dT) and 0.44 (dU*) moles of Na+ per mole of hairpin. Absolute volumetric and compressibility measurements reveal that all three hairpins have similar hydration levels. The electrostatic interaction of Mg2+ with each hairpin yielded binding affinities in the order: dU > dT > dU*, and a similar release of 2–4 electrostricted water molecules. The main result is that the incorporation of the cationic 3-aminopropyl side chain in the major groove of the hairpin stem neutralizes some local negative charges yielding a hairpin molecule with lower charge density. PMID:11522834

  8. Simulation of Nonisothermal Consolidation of Saturated Soils Based on a Thermodynamic Model

    PubMed Central

    Cheng, Xiaohui

    2013-01-01

    Based on the nonequilibrium thermodynamics, a thermo-hydro-mechanical coupling model for saturated soils is established, including a constitutive model without such concepts as yield surface and flow rule. An elastic potential energy density function is defined to derive a hyperelastic relation among the effective stress, the elastic strain, and the dry density. The classical linear non-equilibrium thermodynamic theory is employed to quantitatively describe the unrecoverable energy processes like the nonelastic deformation development in materials by the concepts of dissipative force and dissipative flow. In particular the granular fluctuation, which represents the kinetic energy fluctuation and elastic potential energy fluctuation at particulate scale caused by the irregular mutual movement between particles, is introduced in the model and described by the concept of granular entropy. Using this model, the nonisothermal consolidation of saturated clays under cyclic thermal loadings is simulated in this paper to validate the model. The results show that the nonisothermal consolidation is heavily OCR dependent and unrecoverable. PMID:23983623

  9. Simulation of nonisothermal consolidation of saturated soils based on a thermodynamic model.

    PubMed

    Zhang, Zhichao; Cheng, Xiaohui

    2013-01-01

    Based on the nonequilibrium thermodynamics, a thermo-hydro-mechanical coupling model for saturated soils is established, including a constitutive model without such concepts as yield surface and flow rule. An elastic potential energy density function is defined to derive a hyperelastic relation among the effective stress, the elastic strain, and the dry density. The classical linear non-equilibrium thermodynamic theory is employed to quantitatively describe the unrecoverable energy processes like the nonelastic deformation development in materials by the concepts of dissipative force and dissipative flow. In particular the granular fluctuation, which represents the kinetic energy fluctuation and elastic potential energy fluctuation at particulate scale caused by the irregular mutual movement between particles, is introduced in the model and described by the concept of granular entropy. Using this model, the nonisothermal consolidation of saturated clays under cyclic thermal loadings is simulated in this paper to validate the model. The results show that the nonisothermal consolidation is heavily OCR dependent and unrecoverable.

  10. Thermodynamic Studies for Drug Design and Screening

    PubMed Central

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  11. Thermodynamics of reformulated automotive fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zudkevitch, D.; Murthy, A.K.S.; Gmehling, J.

    1995-06-01

    Two methods for predicting Reid vapor pressure (Rvp) and initial vapor emissions of reformulated gasoline blends that contain one or more oxygenated compounds show excellent agreement with experimental data. In the first method, method A, D-86 distillation data for gasoline blends are used for predicting Rvp from a simulation of the mini dry vapor pressure equivalent (Dvpe) experiment. The other method, method B, relies on analytical information (PIANO analyses) of the base gasoline and uses classical thermodynamics for simulating the same Rvp equivalent (Rvpe) mini experiment. Method B also predicts composition and other properties for the fuel`s initial vapor emission.more » Method B, although complex, is more useful in that is can predict properties of blends without a D-86 distillation. An important aspect of method B is its capability to predict composition of initial vapor emissions from gasoline blends. Thus, it offers a powerful tool to planners of gasoline blending. Method B uses theoretically sound formulas, rigorous thermodynamic routines and uses data and correlations of physical properties that are in the public domain. Results indicate that predictions made with both methods agree very well with experimental values of Dvpe. Computer simulation methods were programmed and tested.« less

  12. Thermodynamic Properties of Polyphenylquinoxaline in the Temperature Range of T → 0 to 570 K

    NASA Astrophysics Data System (ADS)

    Smirnova, N. N.; Markin, A. V.; Samosudova, Ya. S.; Bykova, T. A.; Shifrina, Z. B.; Serkova, E. S.; Kuchkina, N. V.

    2018-02-01

    The thermodynamic properties of amorphous polyphenylquinoxaline in the temperature range of 6 to 570 K are studied via precision adiabatic vacuum calorimetry and differential scanning calorimetry. The thermodynamic characteristics of glass transition are determined. Standard thermodynamic functions C ° p, H°( T) - H°(0), S°( T) - S°(0), and G°( T) - H°(0) in the range of T → 0 to 570 K and the standard entropy of formation at T = 298.15 K are calculated. The low-temperature ( T ≤ 50 K) heat capacity is analyzed using a multifractal model for the processing of heat capacity, fractal dimension D values are determined, and conclusions on the topological structure of the compound are drawn.

  13. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    PubMed

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  14. Pyrolysis of Lantana camara and Mimosa pigra: Influences of temperature, other process parameters and incondensable gas evolution on char yield and higher heating value.

    PubMed

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2017-11-01

    Pyrolysis of invasive non-indigenous plants, Lantana camara (LC) and Mimosa pigra (MP) was conducted at milligram-scale for optimisation of temperature, heating rate and hold time on char yield and higher heating value (HHV). The impact of scaling-up to gram-scale was also studied, with chromatography used to correlate gas composition with HHV evolution. Statistically significant effects of temperature on char yield and HHV were obtained, while heating rate and hold time effects were insignificant. Milligram-scale maximised HHVs were 30.03MJkg -1 (525°C) and 31.01MJkg -1 (580°C) for LC and MP, respectively. Higher char yields and HHVs for MP were attributed to increased lignin content. Scaling-up promoted secondary char formation thereby increasing HHVs, 30.82MJkg -1 for LC and 31.61MJkg -1 for MP. Incondensable gas analysis showed that temperature increase beyond preferred values caused dehydrogenation that decreased HHV. Similarly, CO evolution profile explained differences in optimal HHV temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Available Energy via Nonequilibrium Thermodynamics.

    ERIC Educational Resources Information Center

    Woollett, E. L.

    1979-01-01

    Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)

  16. Thermodynamic origin of nonimaging optics

    NASA Astrophysics Data System (ADS)

    Jiang, Lun; Winston, Roland

    2016-10-01

    Nonimaging optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence, in this paper, a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems. This way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory, while "optics" in the conventional sense recedes into the background. Much of the paper is pedagogical and retrospective. Some of the development of flowline designs will be introduced at the end and the connection between the thermodynamics and flowline design will be graphically presented. We will conclude with some speculative directions of where the ideas might lead.

  17. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  18. Contribution to the thermodynamic description of the corium - The U-Zr-O system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Dupin, N.; Sundman, B.; Brackx, E.; Domenger, R.; Kurata, M.; Hodaj, F.

    2018-04-01

    In order to understand the stratification process that may occur in the late phase of the fuel degradation during a severe accident in a PWR, the thermodynamic knowledge of the U-Zr-O system is crucial. The presence of a miscibility gap in the U-Zr-O liquid phase may lead to a stratified configuration, which will impact the accidental scenario management. The aim of this work was to obtain new experimental data in the U-Zr-O liquid miscibility gap. New tie-line data were provided at 2567 ± 25 K. The related thermodynamic models were reassessed using present data and literature values. The reassessed model will be implemented in the TAF-ID international database. The composition and density of phases potentially formed during stratification will be predicted by coupling current thermodynamic model with thermal-hydraulics codes.

  19. Exact analytical thermodynamic expressions for a Brownian heat engine

    NASA Astrophysics Data System (ADS)

    Taye, Mesfin Asfaw

    2015-09-01

    The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t . Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.

  20. Exact analytical thermodynamic expressions for a Brownian heat engine.

    PubMed

    Taye, Mesfin Asfaw

    2015-09-01

    The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t. Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.

  1. Rx for low cash yields.

    PubMed

    Tobe, Chris

    2003-10-01

    Certain strategies can offer not-for-profit hospitals potentially greater investment yields while maintaining stability and principal safety. Treasury inflation-indexed securities can offer good returns, low volatility, and inflation protection. "Enhanced cash" strategies offer liquidity and help to preserve capital. Stable value "wrappers" allow hospitals to pursue higher-yielding fixed-income securities without an increase in volatility.

  2. Prognostic Value of Lymph Node Yield and Density in Head and Neck Malignancies.

    PubMed

    Cheraghlou, Shayan; Otremba, Michael; Kuo Yu, Phoebe; Agogo, George O; Hersey, Denise; Judson, Benjamin L

    2018-06-01

    Objective Studies have suggested that the lymph node yield and lymph node density from selective or elective neck dissections are predictive of patient outcomes and may be used for patient counseling, treatment planning, or quality measurement. Our objective was to systematically review the literature and conduct a meta-analysis of studies that investigated the prognostic significance of lymph node yield and/or lymph node density after neck dissection for patients with head and neck cancer. Data Sources The Ovid/Medline, Ovid/Embase, and NLM PubMed databases were systematically searched on January 23, 2017, for articles published between January 1, 1946, and January 23, 2017. Review Methods We reviewed English-language original research that included survival analysis of patients undergoing neck dissection for a head and neck malignancy stratified by lymph node yield and/or lymph node density. Study data were extracted by 2 independent researchers (S.C. and M.O.). We utilized the DerSimonian and Laird random effects model to account for heterogeneity of studies. Results Our search yielded 350 nonduplicate articles, with 23 studies included in the final synthesis. Pooled results demonstrated that increased lymph node yield was associated with a significant improvement in survival (hazard ratio, 0.833; 95% CI, 0.790-0.879). Additionally, we found that increased lymph node density was associated with poorer survival (hazard ratio, 1.916; 95% CI, 1.637-2.241). Conclusions Increased nodal yield portends improved outcomes and may be a valuable quality indicator for neck dissections, while increased lymph node density is associated with diminished survival and may be used for postsurgical counseling and planning for adjuvant therapy.

  3. The impact of mixed solvents on the complexation thermodynamics of Eu(III) by simple carboxylate and amino carboxylate ligands

    DOE PAGES

    Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.

    2017-05-12

    To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less

  4. The impact of mixed solvents on the complexation thermodynamics of Eu(III) by simple carboxylate and amino carboxylate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.

    To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less

  5. Novel Hydrogen Production Systems Operative at Thermodynamic Extremes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsalus, Robert

    2012-11-30

    We have employed a suite of molecular, bioinformatics, and biochemical tools to interrogate the thermodynamically limiting steps of H{sub 2} production from fatty acids in syntrophic communities. We also developed a new microbial model system that generates high H{sub 2} concentrations (over 17% of the gas phase) with high H{sub 2} yields of over 3 moles H{sub 2} per mole glucose. Lastly, a systems-based study of biohydrogen production in model anaerobic consortia was performed to begin identifying key regulated steps as a precursor to modeling co-metabolism. The results of these studies significantly expand our ability to predict and model systemsmore » for H{sub 2} production in novel anaerobes that are currently very poorly documented or understood.« less

  6. Integral equation and thermodynamic perturbation theory for a two-dimensional model of dimerising fluid

    PubMed Central

    Urbic, Tomaz

    2016-01-01

    In this paper we applied an analytical theory for the two dimensional dimerising fluid. We applied Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the dimerising model with arbitrary position of dimerising points from center of the particles. The theory was used to study thermodynamical and structural properties. To check the accuracy of the theories we compared theoretical results with corresponding results obtained by Monte Carlo computer simulations. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. IET correctly predicts the pair correlation function of the model. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, pressure, chemical potential, compressibility and ratios of free and bonded particles. PMID:28529396

  7. The Thermodynamic Properties of Cubanite

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Lauretta, D. S.; Keller, L. P.

    2012-01-01

    CuFe2S3 exists in two polymorphs, a low-temperature orthorhombic form (cubanite) and a high-temperature cubic form (isocubanite). Cubanite has been identified in the CI-chondrite and Stardust collections. However, the thermodynamic properties of cubanite have neither been measured nor estimated. Our derivation of a thermodynamic model for cubanite allows constraints to be placed on the formation conditions. This data, along with the temperature constraint afforded by the crystal structure, can be used to assess the environments in which cubanite formation is (or is not) thermodynamically favored.

  8. Thermodynamic metrics and optimal paths.

    PubMed

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  9. Kinetic studies and thermodynamics of oil extraction and transesterification of Chlorella sp. for biodiesel production.

    PubMed

    Ahmad, A L; Yasin, N H Mat; Derek, C J C; Lim, J K

    2014-01-01

    In this work, a mixture of chloroform and methanol (1:1, v/v) was applied to oil extraction from Chlorella sp. at 30, 40, 50 and 60 degrees C for 150 min extraction times. Kinetic studies revealed that the values of n and the rate constants were found to depend strongly on temperature. The activation energy was Ea = 38.893 kJ/mol, and the activation thermodynamic parameters at 60 degrees C were ΔS≠ = -180.190 J/mol , ΔH≠ = 36.124k J/mol and ΔG≠ = 96.128k J/mol. Both ΔH and ΔS yielded positive values, whereas ΔG was negative at 60 degrees C, indicating that this process is endothermic, irreversible and spontaneous. The acidic transesterification process was also investigated by gas chromatographic analysis of the microalgae fatty acid methyl esters (biodiesel) at different temperatures and reaction times. The fatty acid profile indicated that the main components were palmitic, linoleic and linolenic acids. The concentration of linolenic acid increased and oleic acid decreased as the temperature increased. Two-hour transesterification is the best reaction time for biodiesel production because it produces the highest percentage of unsaturated fatty acids (74%). These results indicate the potential of Chlorella sp. to produce biodiesel of good quality.

  10. Non-hermitian quantum thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  11. Non-hermitian quantum thermodynamics

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  12. Thermodynamics of the formaldehyde-water and formaldehyde-ice systems for atmospheric applications.

    PubMed

    Barret, Manuel; Houdier, Stephan; Domine, Florent

    2011-01-27

    Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems.

  13. eQuilibrator--the biochemical thermodynamics calculator.

    PubMed

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  14. eQuilibrator—the biochemical thermodynamics calculator

    PubMed Central

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  15. Quantitative Connection Between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryo-EM and smFRET Investigations of the Ribosome

    PubMed Central

    Frank, Joachim; Gonzalez, Ruben L.

    2015-01-01

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describes transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy and single-molecule fluorescence resonance energy transfer studies of the bacterial ribosomal pretranslocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pretranslocation complex, which are observed in a cryogenic electron microscopy study, may not be observed in several single-molecule fluorescence resonance energy transfer studies. PMID:25785884

  16. Geometry and symmetry in non-equilibrium thermodynamic systems

    NASA Astrophysics Data System (ADS)

    Sonnino, Giorgio

    2017-06-01

    The ultimate aim of this series of works is to establish the closure equations, valid for thermodynamic systems out from the Onsager region, and to describe the geometry and symmetry in thermodynamic systems far from equilibrium. Geometry of a non-equilibrium thermodynamic system is constructed by taking into account the second law of thermodynamics and by imposing the validity of the Glansdorff-Prigogine Universal Criterion of Evolution. These two constraints allow introducing the metrics and the affine connection of the Space of the Thermodynamic Forces, respectively. The Lie group associated to the nonlinear Thermodynamic Coordinate Transformations (TCT) leaving invariant both the entropy production σ and the Glansdorff-Prigogine dissipative quantity P, is also described. The invariance under TCT leads to the formulation of the Thermodynamic Covariance Principle (TCP): The nonlinear closure equations, i.e. the flux-force relations, must be covariant under TCT. In other terms, the fundamental laws of thermodynamics should be manifestly covariant under transformations between the admissible thermodynamic forces (i.e. under TCT). The symmetry properties of a physical system are intimately related to the conservation laws characterizing the thermodynamic system. Noether's theorem gives a precise description of this relation. The macroscopic theory for closure relations, based on this geometrical description and subject to the TCP, is referred to as the Thermodynamic Field Theory (TFT). This theory ensures the validity of the fundamental theorems for systems far from equilibrium.

  17. Thermodynamic analysis of tar reforming through auto-thermal reforming process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhadi, N., E-mail: nurhadi@tekmira.esdm.go.id; Diniyati, Dahlia; Efendi, M. Ade Andriansyah

    2015-12-29

    Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the mostmore » promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.« less

  18. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.

    2000-01-01

    The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.

  19. A thermodynamic approach to obtain materials properties for engineering applications

    NASA Technical Reports Server (NTRS)

    Chang, Y. Austin

    1993-01-01

    With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.

  20. Self-association of plant wax components: a thermodynamic analysis.

    PubMed

    Casado, C G; Heredia, A

    2001-01-01

    Excess specific heat, C(p)()(E), of binary mixtures of selected components of plant cuticular waxes has been determined. This thermodynamic parameter gives an explanation of the special molecular arrangement in crystalline and amorphous zones of plant waxes. C(p)()(E) values indicate that hydrogen bonding between chains results in the formation of amorphous zones. Conclusions on the self-asembly process of plant waxes have been also made.

  1. Black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Carlip, S.

    2014-10-01

    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this paper, will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.

  2. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    PubMed

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  3. Application of thermodynamics to silicate crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1972-01-01

    A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.

  4. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    PubMed

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  5. Single molecule thermodynamics in biological motors.

    PubMed

    Taniguchi, Yuichi; Karagiannis, Peter; Nishiyama, Masayoshi; Ishii, Yoshiharu; Yanagida, Toshio

    2007-04-01

    Biological molecular machines use thermal activation energy to carry out various functions. The process of thermal activation has the stochastic nature of output events that can be described according to the laws of thermodynamics. Recently developed single molecule detection techniques have allowed each distinct enzymatic event of single biological machines to be characterized providing clues to the underlying thermodynamics. In this study, the thermodynamic properties in the stepping movement of a biological molecular motor have been examined. A single molecule detection technique was used to measure the stepping movements at various loads and temperatures and a range of thermodynamic parameters associated with the production of each forward and backward step including free energy, enthalpy, entropy and characteristic distance were obtained. The results show that an asymmetry in entropy is a primary factor that controls the direction in which the motor will step. The investigation on single molecule thermodynamics has the potential to reveal dynamic properties underlying the mechanisms of how biological molecular machines work.

  6. M3FT-15OR0202212: SUBMIT SUMMARY REPORT ON THERMODYNAMIC EXPERIMENT AND MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, Jake W.; Brese, Robert G.; Silva, Chinthaka M.

    2015-09-01

    Modeling the behavior of nuclear fuel with a physics-based approach uses thermodynamics for key inputs such as chemical potentials and thermal properties for phase transformation, microstructure evolution, and continuum transport simulations. Many of the lanthanide (Ln) elements and Y are high-yield fission products. The U-Y-O and U-Ln-O ternaries are therefore key subsystems of multi-component high-burnup fuel. These elements dissolve in the dominant urania fluorite phase affecting many of its properties. This work reports on an effort to assess the thermodynamics of the U-Pr-O and U-Y-O systems using the CALPHAD (CALculation of PHase Diagrams) method. The models developed within this frameworkmore » are capable of being combined and extended to include additional actinides and fission products allowing calculation of the phase equilibria, thermochemical and material properties of multicomponent fuel with burnup.« less

  7. Glycolytic strategy as a tradeoff between energy yield and protein cost

    PubMed Central

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Liebermeister, Wolfram; Milo, Ron

    2013-01-01

    Contrary to the textbook portrayal of glycolysis as a single pathway conserved across all domains of life, not all sugar-consuming organisms use the canonical Embden–Meyerhoff–Parnass (EMP) glycolytic pathway. Prokaryotic glucose metabolism is particularly diverse, including several alternative glycolytic pathways, the most common of which is the Entner–Doudoroff (ED) pathway. The prevalence of the ED pathway is puzzling as it produces only one ATP per glucose—half as much as the EMP pathway. We argue that the diversity of prokaryotic glucose metabolism may reflect a tradeoff between a pathway’s energy (ATP) yield and the amount of enzymatic protein required to catalyze pathway flux. We introduce methods for analyzing pathways in terms of thermodynamics and kinetics and show that the ED pathway is expected to require several-fold less enzymatic protein to achieve the same glucose conversion rate as the EMP pathway. Through genomic analysis, we further show that prokaryotes use different glycolytic pathways depending on their energy supply. Specifically, energy-deprived anaerobes overwhelmingly rely upon the higher ATP yield of the EMP pathway, whereas the ED pathway is common among facultative anaerobes and even more common among aerobes. In addition to demonstrating how protein costs can explain the use of alternative metabolic strategies, this study illustrates a direct connection between an organism’s environment and the thermodynamic and biochemical properties of the metabolic pathways it employs. PMID:23630264

  8. Revised values for the thermodynamic properties of boehmite, AlO(OH) , and related species and phases in the system Al-H-O

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.; Apps, J.A.

    1991-01-01

    Heat capacity measurements are reported for a well-characterized boehmite that differ significantly from results reported earlier by Shomate and Cook (1946) for a monohydrate of alumina. It is suggested that the earlier measurements were made on a sample that was a mixture of phases and that use of that heat-capacity and derived thermodynamic data be discontinued. The entropy of boehmite derived in this study is 37.19 ?? 0.10 J/(mol.K) at 298.15 K. Based on our value for the entropy and accepting the recommended Gibbs free energy for Al(OH)-4, the Gibbs free energy and enthalpy of formation of boehmite are calculated to be -918.4 ?? 2.1 and -996.4 ?? 2.2 kJ/mol, respectively, from solubility data for boehmite. The Gibbs energy for boehmite is unchanged from that given by Hemingway et al. (1978). -from Authors

  9. Thermodynamic properties and diffusion of water + methane binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less

  10. Thermodynamic analysis of onset characteristics in a miniature thermoacoustic Stirling engine

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Zhou, Gang; Li, Qing

    2013-06-01

    This paper analyzes the onset characteristics of a miniature thermoacoustic Stirling heat engine using the thermodynamic analysis method. The governing equations of components are reduced from the basic thermodynamic relations and the linear thermoacoustic theory. By solving the governing equation group numerically, the oscillation frequencies and onset temperatures are obtained. The dependences of the kinds of working gas, the length of resonator tube, the diameter of resonator tube, on the oscillation frequency are calculated. Meanwhile, the influences of hydraulic radius and mean pressure on the onset temperature for different working gas are also presented. The calculation results indicate that there exists an optimal dimensionless hydraulic radius to obtain the lowest onset temperature, whose value lies in the range of 0.30-0.35 for different working gases. Furthermore, the amplitude and phase relationship of pressures and volume flows are analyzed in the time-domain. Some experiments have been performed to validate the calculations. The calculation results agree well with the experimental values. Finally, an error analysis is made, giving the reasons that cause the errors of theoretical calculations.

  11. Difference rule-a new thermodynamic principle: prediction of standard thermodynamic data for inorganic solvates.

    PubMed

    Jenkins, H Donald Brooke; Glasser, Leslie

    2004-12-08

    We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent

  12. The Thermodynamic Structure of Arctic Coastal Fog Occurring During the Melt Season over East Greenland

    NASA Astrophysics Data System (ADS)

    Gilson, Gaëlle F.; Jiskoot, Hester; Cassano, John J.; Gultepe, Ismail; James, Timothy D.

    2018-05-01

    An automated method to classify Arctic fog into distinct thermodynamic profiles using historic in-situ surface and upper-air observations is presented. This classification is applied to low-resolution Integrated Global Radiosonde Archive (IGRA) soundings and high-resolution Arctic Summer Cloud Ocean Study (ASCOS) soundings in low- and high-Arctic coastal and pack-ice environments. Results allow investigation of fog macrophysical properties and processes in coastal East Greenland during melt seasons 1980-2012. Integrated with fog observations from three synoptic weather stations, 422 IGRA soundings are classified into six fog thermodynamic types based on surface saturation ratio, type of temperature inversion, fog-top height relative to inversion-base height and stability using the virtual potential temperature gradient. Between 65-80% of fog observations occur with a low-level inversion, and statically neutral or unstable surface layers occur frequently. Thermodynamic classification is sensitive to the assigned dew-point depression threshold, but categorization is robust. Despite differences in the vertical resolution of radiosonde observations, IGRA and ASCOS soundings yield the same six fog classes, with fog-class distribution varying with latitude and environmental conditions. High-Arctic fog frequently resides within an elevated inversion layer, whereas low-Arctic fog is more often restricted to the mixed layer. Using supplementary time-lapse images, ASCOS microwave radiometer retrievals and airmass back-trajectories, we hypothesize that the thermodynamic classes represent different stages of advection fog formation, development, and dissipation, including stratus-base lowering and fog lifting. This automated extraction of thermodynamic boundary-layer and inversion structure can be applied to radiosonde observations worldwide to better evaluate fog conditions that affect transportation and lead to improvements in numerical models.

  13. [Thermodynamics of the origin of life, evolution and aging].

    PubMed

    Gladyshev, G P

    2014-01-01

    Briefly discusses the history of the search of thermodynamic approach to explain the origin of life, evolution and aging of living beings. The origin of life is the result of requirement by the quasi-equilibrium hierarchical thermodynamics, in particular, the supramolecular thermodynamics. The evolution and aging of living beings is accompanied with changes of chemical and supramolecular compositions of living bodies, as well as with changes in the composition and structure of all hierarchies of the living world. The thermodynamic principle of substance stability predicts the existence of a single genetic code in our universe. The thermodynamic theory optimizes physiology and medicine and recommends antiaging diets and medicines. Hierarchical thermodynamics forms the design diversity of culture and art. The thermodynamic theory of origin of life, evolution and aging is the development of Clausius-Gibbs thermodynamics. Hierarchical thermodynamics is the mirror of Darwin-Wallace's-theory.

  14. Technical Work Plan for: Thermodynamic Database for Chemical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.F. Jovecolon

    The objective of the work scope covered by this Technical Work Plan (TWP) is to correct and improve the Yucca Mountain Project (YMP) thermodynamic databases, to update their documentation, and to ensure reasonable consistency among them. In addition, the work scope will continue to generate database revisions, which are organized and named so as to be transparent to internal and external users and reviewers. Regarding consistency among databases, it is noted that aqueous speciation and mineral solubility data for a given system may differ according to how solubility was determined, and the method used for subsequent retrieval of thermodynamic parametermore » values from measured data. Of particular concern are the details of the determination of ''infinite dilution'' constants, which involve the use of specific methods for activity coefficient corrections. That is, equilibrium constants developed for a given system for one set of conditions may not be consistent with constants developed for other conditions, depending on the species considered in the chemical reactions and the methods used in the reported studies. Hence, there will be some differences (for example in log K values) between the Pitzer and ''B-dot'' database parameters for the same reactions or species.« less

  15. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield

    PubMed Central

    Ferris, Michael; Bruggeman, Frank J.

    2018-01-01

    Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM) and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts. PMID:29451895

  16. Thermodynamic efficiency of nonimaging concentrators

    NASA Astrophysics Data System (ADS)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  17. Thermodynamics of imidacloprid sorption in Croatian soils

    NASA Astrophysics Data System (ADS)

    Milin, Čedomila; Broznic, Dalibor

    2015-04-01

    Neonicotinoids are increasingly replacing the organophosphate and methylcarbamate acetylcholinesterase inhibitors which are losing their effectiveness because of selection for resistant pest populations. Imidacloprid is the most important neonicotinoid with low soil persistence, high insecticidal potency and relatively low mammalian toxicity. In Croatia, imidacloprid is most commonly used in olive growing areas, including Istria and Kvarner islands, as an effective means of olive fruit fly infestation control. Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equation, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were of non-linear and may be classified as L-type suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the KFsor values decreased for all the tested soils as the temperature increases, indicating that the temperature strongly influence the sorption. Values of ΔG° were negative (-4.65 to -2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous process. The negative and small ΔH° values (-19.79 to -8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and par¬titioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of -57.12 to -14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature

  18. Thermodynamic equilibrium-air correlations for flowfield applications

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.

    1981-01-01

    Equilibrium-air thermodynamic correlations have been developed for flowfield calculation procedures. A comparison between the postshock results computed by the correlation equations and detailed chemistry calculations is very good. The thermodynamic correlations are incorporated in an approximate inviscid flowfield code with a convective heating capability for the purpose of defining the thermodynamic environment through the shock layer. Comparisons of heating rates computed by the approximate code and a viscous-shock-layer method are good. In addition to presenting the thermodynamic correlations, the impact of several viscosity models on the convective heat transfer is demonstrated.

  19. Chemical thermodynamic data. 1. The concept of links to the chemical elements and the historical development of key thermodynamic data [plus Supplementary Electronic Annex 2

    DOE PAGES

    Wolery, Thomas J.; Jove Colon, Carlos F.

    2016-09-26

    Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data.more » Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO 2, water, and aqueous species such as Na + and Cl -. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of “links” to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare “key” or “reference” datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of

  20. Chemical thermodynamic data. 1. The concept of links to the chemical elements and the historical development of key thermodynamic data [plus Supplementary Electronic Annex 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolery, Thomas J.; Jove Colon, Carlos F.

    Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data.more » Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO 2, water, and aqueous species such as Na + and Cl -. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of “links” to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare “key” or “reference” datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of

  1. On Thermodynamic Constraints upon Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ning; Durst, Franz

    2000-11-01

    Turbulence is a continuum phenomenon which can be described within the framework of continuum mechanics. Such foundation has the potential for improving turbulence modeling, making it less heuristic and more rational. In the present research, we consider the compatibility of turbulence modeling with the second law of thermodynamics. We show that the Clausius-Planck inequality, as an expression of the principle of entropy growth, places a thermodynamic restriction upon the turbulence modeling of an incompressible Navier-Stokes fluid in an isothermal temperature field. This thermodynamic restriction is given in the form of an inequality, which ensures non-negativeness of the mean internal dissipation. As an illustration, we show the thermodynamic constraints on the modeling of a few typical homogeneous turbulent flows.

  2. Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution

    DTIC Science & Technology

    2012-05-01

    Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution Hyung-June Woo, Ravi Vijaya Satya, Jaques Reifman* DoD Biotechnology High...polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over...among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic

  3. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  4. Limits of predictions in thermodynamic systems: a review

    NASA Astrophysics Data System (ADS)

    Marsland, Robert, III; England, Jeremy

    2018-01-01

    The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.

  5. Solving traveling salesman problems with DNA molecules encoding numerical values.

    PubMed

    Lee, Ji Youn; Shin, Soo-Yong; Park, Tai Hyun; Zhang, Byoung-Tak

    2004-12-01

    We introduce a DNA encoding method to represent numerical values and a biased molecular algorithm based on the thermodynamic properties of DNA. DNA strands are designed to encode real values by variation of their melting temperatures. The thermodynamic properties of DNA are used for effective local search of optimal solutions using biochemical techniques, such as denaturation temperature gradient polymerase chain reaction and temperature gradient gel electrophoresis. The proposed method was successfully applied to the traveling salesman problem, an instance of optimization problems on weighted graphs. This work extends the capability of DNA computing to solving numerical optimization problems, which is contrasted with other DNA computing methods focusing on logical problem solving.

  6. Non-equilibrium thermodynamics in cells.

    PubMed

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  7. Grapevine canopy reflectance and yield

    NASA Technical Reports Server (NTRS)

    Minden, K. A.; Philipson, W. R.

    1982-01-01

    Field spectroradiometric and airborne multispectral scanner data were applied in a study of Concord grapevines. Spectroradiometric measurements of 18 experimental vines were collected on three dates during one growing season. Spectral reflectance, determined at 30 intervals from 0.4 to 1.1 microns, was correlated with vine yield, pruning weight, clusters/vine, and nitrogen input. One date of airborne multispectral scanner data (11 channels) was collected over commercial vineyards, and the average radiance values for eight vineyard sections were correlated with the corresponding average yields. Although some correlations were significant, they were inadequate for developing a reliable yield prediction model.

  8. Thermodynamics of Inozemtsev's elliptic spin chain

    NASA Astrophysics Data System (ADS)

    Klabbers, Rob

    2016-06-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  9. Thermodynamic properties of water solvating biomolecular surfaces

    NASA Astrophysics Data System (ADS)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  10. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    PubMed Central

    Liebermeister, Wolfram; Klipp, Edda

    2006-01-01

    Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases. PMID:17173669

  11. Yield performance and stability of CMS-based triticale hybrids.

    PubMed

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  12. Thermodynamics of phenanthrene partition into solid organic matter from water.

    PubMed

    Chen, Bao-liang; Zhu, Li-zhong; Tao, Shu

    2005-01-01

    The thermodynamic behavior of organic contaminants in soils is essential to develop remediation technologies and assess risk from alternative technologies. Thermodynamics of phenanthrene partition into four solids(three soils and a bentonite) from water were investigated. The thermodynamics parameters (deltaH, deltaG degrees, deltaS degrees) were calculated according to experimental data. The total sorption heats of phenanthrene to solids from water ranged from -7.93 to -17.1 kJ/mol, which were less exothermic than the condensation heat of phenanthrene-solid (i.e., -18.6 kJ/mol). The partition heats of phenanthrene dissolved into solid organic matter ranged from 23.1 to 32.2 kJ/mol, which were less endothermic than the aqueous dissolved heat of phenanthrene (i.e., 40.2 kJ/mol), and were more endothermic than the fusion heat of phenanthrene-solid (i.e., 18.6 kJ/mol). The standard free energy changes, deltaG degrees, are all negative which suggested that phenanthrene sorption into solid was a spontaneous process. The positive values of standard entropy changes, deltaS degrees, show a gain in entropy for the transfer of phenanthrene at the stated standard state. Due to solubility-enhancement of phenanthrene, the partition coefficients normalized by organic carbon contents decrease with increasing system temperature (i.e., ln Koc = -0.284 ln S + 9.82 (n = 4, r2 = 0.992)). The solubility of phenanthrene in solid organic matter increased with increasing temperatures. Transports of phenanthrene in different latitude locations and seasons would be predicted according to its sorption thermodynamics behavior.

  13. DD3MAT - a code for yield criteria anisotropy parameters identification.

    NASA Astrophysics Data System (ADS)

    Barros, P. D.; Carvalho, P. D.; Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2016-08-01

    This work presents the main strategies and algorithms adopted in the DD3MAT inhouse code, specifically developed for identifying the anisotropy parameters. The algorithm adopted is based on the minimization of an error function, using a downhill simplex method. The set of experimental values can consider yield stresses and r -values obtained from in-plane tension, for different angles with the rolling direction (RD), yield stress and r -value obtained for biaxial stress state, and yield stresses from shear tests performed also for different angles to RD. All these values can be defined for a specific value of plastic work. Moreover, it can also include the yield stresses obtained from in-plane compression tests. The anisotropy parameters are identified for an AA2090-T3 aluminium alloy, highlighting the importance of the user intervention to improve the numerical fit.

  14. New International Skeleton Tables for the Thermodynamic Properties of Ordinary Water Substance

    NASA Astrophysics Data System (ADS)

    Sato, H.; Uematsu, M.; Watanabe, K.; Saul, A.; Wagner, W.

    1988-10-01

    The current knowledge of thermodynamic properties of ordinary water substance is summarized in a condensed form of a set of skeleton steam tables, where the most probable values with the reliabilities on specific volume and enthalpy are provided in the range of temperatures from 273 to 1073 K and pressures from 101.325 kPa to 1 GPa and at the saturation state from the triple point to the critical point. These tables have been accepted as the IAPS Skeleton Tables 1985 for the Thermodynamic Properties of Ordinary Water Substance(IST-85) by the International Association for the Properties of Steam(IAPS). The former International Skeleton Steam Tables, October 1963(IST-63), have been withdrawn by IAPS. About 17 000 experimental thermodynamic data were assessed and classified previously by Working Group 1 of IAPS. About 10 000 experimental data were collected and evaluated in detail and especially about 7000 specific-volume data among them were critically analyzed with respect to their errors using the statistical method originally developed at Keio University by the first three authors. As a result, specific-volume and enthalpy values with associated reliabilities were determined at 1455 grid points of 24 isotherms and 61 isobars in the single-fluid phase state and at 54 temperatures along the saturation curve. The background, analytical procedure, and reliability of IST-85 as well as the assessment of the existing experimental data and equations of state are also discussed in this paper.

  15. Quantum thermodynamics of general quantum processes.

    PubMed

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.

  16. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  17. Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods

    DOE PAGES

    Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...

    2016-02-05

    Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less

  18. Thermodynamics from Car to Kitchen

    ERIC Educational Resources Information Center

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  19. Thermodynamics and instability of dielectric elastomer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Liwu; Liu, Yanju; Leng, Jinsong; Mu, Tong

    2017-04-01

    Dielectric elastomer is a kind of typical soft active material. It can deform obviously when subjected to an external voltage. When a dielectric elastomer with randomly oriented dipoles is subject to an electric field, the dipoles will rotate to and align with the electric field. The polarization of the dielectric elastomer may be saturated when the voltage is high enough. When subjected to a mechanical force, the end-to-end distance of each polymer chain, which has a finite contour length, will approach the finite value, reaching a limiting stretch. On approaching the limiting stretch, the elastomer stiffens steeply. Here, we develop a thermodynamic constitutive model of dielectric elastomers undergoing polarization saturation and strain-stiffening, and then investigate the stability (electromechanical stability, snap-through stability) and voltage induced deformation of dielectric elastomers. Analytical solution has been obtained and it reveals the marked influence of the extension limit and polarization saturation limit on its instability. The developed thermodynamic constitutive model and simulation results would be helpful in future to the research of dielectric elastomer based high-performance transducers.

  20. Phenol oxidation by mushroom waste extracts: a kinetic and thermodynamic study.

    PubMed

    Pigatto, Gisele; Lodi, Alessandra; Aliakbarian, Bahar; Converti, Attilio; da Silva, Regildo Marcio Gonçalves; Palma, Mauri Sérgio Alves

    2013-09-01

    Tyrosinase activity of mushroom extracts was checked for their ability to degrade phenol. Phenol oxidation kinetics was investigated varying temperature from 10 to 60 °C and the initial values of pH, enzyme activity and phenol concentration in the ranges 4.5-8.5, 1.43-9.54 U/mL and 50-600 mg/L, respectively. Thermodynamic parameters of phenol oxidation and tyrosinase reversible inactivation were estimated. Tyrosinase thermostability was also investigated through residual activity tests after extracts exposition at 20-50 °C, whose results allowed exploring the thermodynamics of enzyme irreversible thermoinactivation. This study is the first attempt to separate the effects of reversible unfolding and irreversible denaturation of tyrosinase on its activity. Extracts were finally tested on a real oil mill wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Thermodynamic Temperature Measurement to the Indium Point Based on Radiance Comparison

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Yamada, Y.

    2017-04-01

    A multi-national project (the EMRP InK project) was completed recently, which successfully determined the thermodynamic temperatures of several of the high-temperature fixed points above the copper point. The National Metrology Institute of Japan contributed to this project with its newly established absolute spectral radiance calibration capability. In the current study, we have extended the range of thermodynamic temperature measurement to below the copper point and measured the thermodynamic temperatures of the indium point (T_{90} = 429.748 5 K), tin point (505.078 K), zinc point (692.677 K), aluminum point (933.473 K) and the silver point (1 234.93 K) by radiance comparison against the copper point, with a set of radiation thermometers having center wavelengths ranging from 0.65 μm to 1.6 μm. The copper-point temperature was measured by the absolute radiation thermometer which was calibrated by radiance method traceable to the electrical substitution cryogenic radiometer. The radiance of the fixed-point blackbodies was measured by standard radiation thermometers whose spectral responsivity and nonlinearity are precisely evaluated, and then the thermodynamic temperatures were determined from radiance ratios to the copper point. The values of T-T_{90} for the silver-, aluminum-, zinc-, tin- and indium-point cells were determined as -4 mK (U = 104 mK, k=2), -99 mK (88 mK), -76 mK (76 mK), -68 mK (163 mK) and -42 mK (279 mK), respectively.

  2. Evaluating the Thermodynamics of Electrocatalytic N 2 Reduction in Acetonitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindley, Brian M.; Appel, Aaron M.; Krogh-Jespersen, Karsten

    The synthesis of ammonia by proton-coupled electroreduction of dinitrogen (N2) represents a sustainable alternative to currently practiced hydrogenation methods. Developments in this area require knowledge of the standard reduction potentials that describe the thermodynamics of N2 reduction. The first collection of N2 reduction standard potentials in organic solvent are reported here. The potentials for reduction of N2 to ammonia (NH3), hydrazine (N2H4), and diazene (N2H2) in acetonitrile (MeCN) solution are derived using thermochemical cycles. Ammonia is the thermodynamically favored product, with a 0.43 V difference between NH3 and N2H4 and a 1.26 V difference between NH3 and N2H2. The thermodynamicsmore » for reduction of N2 to the protonated products ammonium (NH4+) and hydrazinium (N2H5+) under strongly acidic conditions are also presented. Comparison with previously determined values for the H+/H2 potential in MeCN reveals a 63 mV thermodynamic preference for N2 reduction to NH3 over H2 production. Combined with knowledge of the kinetics of electrode-catalyzed H2 evolution, a wide working region is identified to guide future electrocatalytic studies.« less

  3. Thermodynamic laws apply to brain function.

    PubMed

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  4. Thermodynamic Volume in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Kiu; Ahn, Byoungjoon

    2018-01-01

    In this note, we study on extended thermodynamics of AdS black holes by varying cosmological constant. We found and discussed pressure and volume of both bulk and boundary physics through AdS/CFT correspondence. In particular, we derive the relation between thermodynamic volume and a chemical potential for M2 brane dual to four dimensional AdS space. In addition, we show that thermodynamic volume of hyperbolic black hole is related to `entanglement pressure' coming from a generalized first law of entanglement entropy.

  5. [Body condition and metabolic stability as the basis for high milk yield and undisturbed fertility in dairy cows--a contribution for deduction of reference values].

    PubMed

    Staufenbiel, R; Arndt, G; Schröder, U; Gelfert, C C

    2004-05-01

    The target of this study was to describe the interactions between body condition and various descriptors of yield and fertility. It was aimed to identify an optimal conditional range to be used in herd management which combines high milk yield with acceptable fertility traits and general health. For this purpose, backfat thickness was measured by ultrasound at 46111 dairy cows on 78 different farms and was subsequently related to production variables. Negative energy balance is getting more intense and prolonged with increasing milk yield. However a conditional nadir below 10 mm leads to decreased milk production. To reach a high production level without an increasing incidence of health disorders, conditional nadir should not decline below 13 mm backfat thickness on herd average. Lower value only lead to negligibly higher milk yield but cause a distinctively higher risk of fertility problems and culling. High herd yields do not have to be at expense of reproduction performance and can be achieved without extreme body condition losses. An efficient herd management can offset depression in fertility, which commonly is combined with increasing milk yield. A standard curve for backfat thickness throughout lactation is suggested to be used in dairy herd management.

  6. The Theory of Thermodynamic Systems with Internal Variables of State: Necessary and Sufficient Conditions for Compliance with the Second Law of Thermodynamics

    NASA Astrophysics Data System (ADS)

    Shnip, A. I.

    2018-01-01

    Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.

  7. Thermodynamics of urban population flows.

    PubMed

    Hernando, A; Plastino, A

    2012-12-01

    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.

  8. The Thermodynamics of Black Holes.

    PubMed

    Wald, Robert M

    2001-01-01

    We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  9. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  10. Thermodynamic DFT analysis of natural gas.

    PubMed

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  11. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Liu, Chongxuan

    2013-08-20

    Molecular simulation techniques are employed to gain insights into the structural, kinetic, and thermodynamic properties of the uranyl(VI) cation (UO22+) in aqueous solution. The simulations make use of an atomistic potential model (force field) derived in this work and based on the model of Guilbaud and Wipff (Guilbaud, P.; Wipff, G. J. Mol. Struct. (THEOCHEM) 1996, 366, 55-63). Reactive flux and thermodynamic integration calculations show that the derived potential model yields predictions for the water exchange rate and free energy of hydration, respectively, that are in agreement with experimental data. The water binding energies, hydration shell structure, and self-diffusion coefficientmore » are also calculated and discussed. Finally, a combination of metadynamics and transition path sampling simulations is employed to probe the mechanisms of water exchange reactions in the first hydration shell of the uranyl ion. These atomistic simulations indicate, based on two-dimensional free energy surfaces, that water exchanges follow an associative interchange mechanism. The nature and structure of the water exchange transition states are also determined. The improved potential model is expected to lead to more accurate predictions of uranyl adsorption energies at mineral surfaces using potential-based molecular dynamics simulations.« less

  12. Information thermodynamics of near-equilibrium computation

    NASA Astrophysics Data System (ADS)

    Prokopenko, Mikhail; Einav, Itai

    2015-06-01

    In studying fundamental physical limits and properties of computational processes, one is faced with the challenges of interpreting primitive information-processing functions through well-defined information-theoretic as well as thermodynamic quantities. In particular, transfer entropy, characterizing the function of computational transmission and its predictability, is known to peak near critical regimes. We focus on a thermodynamic interpretation of transfer entropy aiming to explain the underlying critical behavior by associating information flows intrinsic to computational transmission with particular physical fluxes. Specifically, in isothermal systems near thermodynamic equilibrium, the gradient of the average transfer entropy is shown to be dynamically related to Fisher information and the curvature of system's entropy. This relationship explicitly connects the predictability, sensitivity, and uncertainty of computational processes intrinsic to complex systems and allows us to consider thermodynamic interpretations of several important extreme cases and trade-offs.

  13. Universal thermodynamics of the one-dimensional attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Yu, Yi-Cong; Batchelor, M. T.; Guan, Xi-Wen

    2018-03-01

    The one-dimensional (1D) Hubbard model, describing electrons on a lattice with an on-site repulsive interaction, provides a paradigm for the physics of quantum many-body phenomena. Here, by solving the thermodynamic Bethe ansatz equations, we study the universal thermodynamics, quantum criticality, and magnetism of the 1D attractive Hubbard model. We show that the compressibility and the susceptibility of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like state obey simple additivity rules at low temperatures, indicating an existence of two free quantum fluids. The magnetic properties, such as magnetization and susceptibility, reveal three physical regions: quantum fluids at low temperatures, a non-Fermi liquid at high temperatures, and the quantum fluid to non-Fermi liquid crossover in between. The lattice interaction is seen to significantly influence the nature of the FFLO-like state in 1D. Furthermore, we show that the dimensionless Wilson ratio provides an ideal parameter to map out the various phase boundaries and to characterize the two free fluids of the FLLO-like state. The quantum scaling functions for the thermal and magnetic properties yield the same dynamic critical exponent z =2 and correlation critical exponent ν =1 /2 in the quantum critical region whenever a phase transition occurs. Our results provide a rigorous understanding of quantum criticality and free fluids of many-body systems on a 1D lattice.

  14. Thermodynamics of the interaction of sweeteners and lactisole with fullerenols as an artificial sweet taste receptor model.

    PubMed

    Chen, Zhong-Xiu; Wu, Wen; Zhang, Wei-Bin; Deng, Shao-Ping

    2011-09-01

    The thermodynamics of the mimetic interaction of lactisole and sweeteners with fullerenols as a synthetic sweet receptor model was elucidated by Isothermal Titration Calorimetry (ITC) technique. The presence of lactisole resulted in great differences in thermodynamics of the sweeteners binding with fullerenols in which lactisole led to much more entropy contribution to the free energy compared with the interaction of sweeteners with fullerenols. Two interaction equilibrium states were found in ITC titration profiles and competitive binding of lactisole and sweeteners with fullerenols was disclosed. Our results indicated that the larger value of the ratio of two equilibrium constant K1/K2, the more effectively lactisole inhibited the sweetness of the sweetener. The combined results of sensory evaluation and ITC thermodynamics revealed that introducing a synthetic receptor model to interact with the sweeteners and inhibitors helps to understand the inhibition mechanism and the thermodynamic basis for the initiation of sweetness inhibition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The discovery of thermodynamics

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  16. Thermodynamics of Biological Processes

    PubMed Central

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  17. The role of thermodynamics in biochemical engineering

    NASA Astrophysics Data System (ADS)

    von Stockar, Urs

    2013-09-01

    This article is an adapted version of the introductory chapter of a book whose publication is imminent. It bears the title "Biothermodynamics - The role of thermodynamics in biochemical engineering." The aim of the paper is to give a very short overview of the state of biothermodynamics in an engineering context as reflected in this book. Seen from this perspective, biothermodynamics may be subdivided according to the scale used to formalize the description of the biological system into three large areas: (i) biomolecular thermodynamics (most fundamental scale), (ii) thermodynamics of metabolism (intermediary scale), and (iii) whole-cell thermodynamics ("black-box" description of living entities). In each of these subareas, the main available theoretical approaches and the current and the potential applications are discussed. Biomolecular thermodynamics (i) is especially well developed and is obviously highly pertinent for the development of downstream processing. Its use ought to be encouraged as much as possible. The subarea of thermodynamics of live cells (iii), although scarcely applied in practice, is also expected to enhance bioprocess research and development, particularly in predicting culture performances, for understanding the driving forces for cellular growth, and in developing, monitoring, and controlling cellular cultures. Finally, there is no question that thermodynamic analysis of cellular metabolism (ii) is a promising tool for systems biology and for many other applications, but quite a large research effort is still needed before it may be put to practical use.

  18. Thermodynamic properties of a layered S = 7/2 Heisenberg magnet Gd(OH)CO3

    NASA Astrophysics Data System (ADS)

    Orendac, Martin; Ulicny, Martin; Cizmar, Erik; Orendacova, Alzbeta; Chen, Yan-Cong; Meng, Zhao-Sha; Tong, Ming-Liang

    2015-03-01

    Thermodynamic quantities and ESR spectra of Gd(OH)CO3 (I) are reported. The material may be considered to consist of weakly coupled layers with potentially triangular arrangement of exchange paths within each layer. Different bridging groups and distances among Gd3+ ions may be responsible for spatial anisotropy of magnetic coupling. Preliminary analysis of magnetic susceptibility using Curie-Weiss law yielded θ = -1.05 K indicating weak antiferromagnetic coupling and consequently, spin frustration in (I). More detailed simultaneous analysis of specific heat, susceptibility and magnetization studied down to nominally 0.45 K revealed non-negligible role of single-ion anisotropy. Using the model of weakly interacting S =7/2 trimers, the gross features of measured data may be explained while assuming single-ion anisotropy D /kB ~ 0.6 K and effective intratrimer magnetic coupling | J /kB | ~0.3 K. The obtained D value reasonably reproduces the position and shape of ESR line. The performed analysis suggests that magnetism in (I) is governed predominantly by crystal field effects and frustration plays a minor role. Supported by ITMS26220120005 and VEGA 1/0143/13.

  19. Statistical thermodynamics of clustered populations.

    PubMed

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  20. Development of Thermodynamic Conceptual Evaluation

    NASA Astrophysics Data System (ADS)

    Talaeb, P.; Wattanakasiwich, P.

    2010-07-01

    This research aims to develop a test for assessing student understanding of fundamental principles in thermodynamics. Misconceptions found from previous physics education research were used to develop the test. Its topics include heat and temperature, the zeroth and the first law of thermodynamics, and the thermodynamics processes. The content validity was analyzed by three physics experts. Then the test was administered to freshmen, sophomores and juniors majored in physics in order to determine item difficulties and item discrimination of the test. A few items were eliminated from the test. Finally, the test will be administered to students taking Physics I course in order to evaluate the effectiveness of Interactive Lecture Demonstrations that will be used for the first time at Chiang Mai University.

  1. Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.

    2018-05-01

    The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.

  2. Cantera and Cantera Electrolyte Thermodynamics Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Hewson, Harry Moffat

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia's contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Cantera that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction,more » and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a "Get the

  3. Mechanics, Waves and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  4. Thermodynamics of micellization from heat-capacity measurements.

    PubMed

    Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij

    2014-06-23

    Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bayes estimation: A novel approach to derivation of internally consistent thermodynamic data for minerals, their uncertainties, and correlations. Part II: Application

    NASA Astrophysics Data System (ADS)

    Chatterjee, Niranjan D.; Miller, Klaus; Olbricht, Walter

    1994-05-01

    Internally consistent thermodynamic data, including their uncertainties and correlations, are reported for 22 phases of the quaternary system CaO-Al2O3-SiO2-H2O. These data have been derived by simultaneous evaluation of the appropriate phase properties (PP) and reaction properties (RP) by the novel technique of Bayes estimation (BE). The thermodynamic model used and the theory of BE was expounded in Part I of this paper. Part II is the follow-up study illustrating an application of BE. The input for BE comprised, among others, the a priori values for standard enthalpy of formation of the i-th phase, Δf H {/i 0}, and its standard entropy, S {/i 0}, in addition to the reaction reversal constraints for 33 equilibria involving the relevant phases. A total of 269 RP restrictions have been processed, of which 107 turned out to be non-redundant. The refined values for Δf H {/i 0}and S {/i 0}obtained by BE, including their 2σ-uncertainties, appear in Table 4; the Appendix reproduces the corresponding correlation matrix. These data permit generation of computed phase diagrams with 2σ-uncertainty envelopes based on conventional error propagation; Fig. 3 depicts such a phase diagram for the system CaO-Al2O3-SiO2. It shows that the refined dataset is capable of yielding phase diagrams with uncertainty envelopes narrow enough to be geologically useful. The results in Table 4 demonstrate that the uncertainties of the prior values for Δf H {/i Emphasis>0}, given in Table 1, have decreased by up to an order of magnitude, while those for S {/i 0}improved by a factor of up to two. For comparison, Table 4 also lists the refined Δf H {/i 0}and S {/i 0}data obtained by mathematical programming (MAP), minimizing a quadratic objective function used earlier by Berman (1988). Examples of calculated phase diagrams are given to demonstrate the advantages of BE for deriving internally consistent thermodynamic data. Although P-T curves generated from both MAP and BE databases will pass

  6. Time-of-Flight Measurements of Neutron Yields from Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Caggaino, Joseph

    2014-10-01

    Three 20-m time-of-flight detectors measure neutron spectra from implosions of deuterium-tritium targets at the National Ignition Facility. Two prominent peaks appear in the spectra from the T(d, n) and D(d, n) reactions. The ratio of yields extracted from the peaks depend on the DT and DD reaction rates and attenuation from the compressed DT fuel, which makes the ratio a diagnostic of the hotspot thermodynamics and fuel areal density. The measured peak widths provide additional constraints on reactant temperature. Recent measurements from a high-yield campaign will be presented and compared to radiation-hydrodynamic simulations of similar implosions. This research is supported by the Department of Energy National Nuclear Security Administration under Contract DE-NA0001944.

  7. Irreversible thermodynamics of Poisson processes with reaction.

    PubMed

    Méndez, V; Fort, J

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  8. Simulating Metabolism with Statistical Thermodynamics

    PubMed Central

    Cannon, William R.

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed. PMID:25089525

  9. Simulating metabolism with statistical thermodynamics.

    PubMed

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  10. Modeling nanostructural surface modifications in metal cutting by an approach of thermodynamic irreversibility: Derivation and experimental validation

    NASA Astrophysics Data System (ADS)

    Buchkremer, S.; Klocke, F.

    2017-01-01

    Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.

  11. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    PubMed

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2017-04-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  13. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index.

    PubMed

    Lofton, Josh; Tubana, Brenda S; Kanke, Yumiko; Teboh, Jasper; Viator, Howard; Dalen, Marilyn

    2012-01-01

    Estimating crop yield using remote sensing techniques has proven to be successful. However, sugarcane possesses unique characteristics; such as, a multi-year cropping cycle and plant height-limiting for midseason fertilizer application timing. Our study objective was to determine if sugarcane yield potential could be estimated using an in-season estimation of normalized difference vegetative index (NDVI). Sensor readings were taken using the GreenSeeker® handheld sensor from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was between 601-750 GDD. In-season estimated yield values improved the yield potential (YP) model compared to using NDVI. Generally, INSEY value showed a positive exponential relationship with yield (r(2) values 0.48 and 0.42 for cane tonnage and sugar yield, respectively). When models were separated based on canopy structure there was an increase the strength of the relationship for the erectophile varieties (r(2) 0.53 and 0.47 for cane tonnage and sugar yield, respectively); however, the model for planophile varieties weakened slightly. Results of this study indicate using an INSEY value for predicting sugarcane yield shows potential of being a valuable management tool for sugarcane producers in Louisiana.

  14. Analysis of the trade-off between high crop yield and low yield instability at the global scale

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2016-10-01

    Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.

  15. Metal Al produced by H2 plasma reduction of AlCl3: a thermodynamic and kinetic study on the plasma chemistry.

    PubMed

    Zheng, Jie; Sun, Bo; Yang, Rong; Song, Xubo; Li, Xingguo; Pu, Yikang

    2008-10-09

    In this paper we reported that low temperature plasma may reverse the direction of a chemical reaction. The thermodynamically forbidden reaction between H 2 and AlCl 3 was able to take place with the assistance of low temperature plasma, yielding metal Al. The plasma chemistry of the reaction was investigated by optical emission spectroscopy, which suggested that the dissociation of H 2 and AlCl 3 molecules by plasma led the reaction to a thermodynamically favorable one by creating reaction channels with low Gibbs free energy change. The addition of Ar promoted the reaction kinetics dramatically, which was attributed to the enhanced dissociation of AlCl 3 molecules by excited Ar species.

  16. Form of prior for constrained thermodynamic processes with uncertainty

    NASA Astrophysics Data System (ADS)

    Aneja, Preety; Johal, Ramandeep S.

    2015-05-01

    We consider the quasi-static thermodynamic processes with constraints, but with additional uncertainty about the control parameters. Motivated by inductive reasoning, we assign prior distribution that provides a rational guess about likely values of the uncertain parameters. The priors are derived explicitly for both the entropy-conserving and the energy-conserving processes. The proposed form is useful when the constraint equation cannot be treated analytically. The inference is performed using spin-1/2 systems as models for heat reservoirs. Analytical results are derived in the high-temperatures limit. An agreement beyond linear response is found between the estimates of thermal quantities and their optimal values obtained from extremum principles. We also seek an intuitive interpretation for the prior and the estimated value of temperature obtained therefrom. We find that the prior over temperature becomes uniform over the quantity kept conserved in the process.

  17. New Horizons in Thermodynamics

    NASA Astrophysics Data System (ADS)

    Hayward, Geoffrey Gordon

    1991-02-01

    This thesis collects five papers which treat the theory of horizon thermodynamics and its applications to cosmology. In the first paper I consider general, spherically symmetric spacetimes with cosmological and black hole horizons. I find that a state of thermal equilibrium may exist in classical manifolds with two horizons so long as a matter distribution is present. I calculate the Euclidean action for non-classical manifolds with and without boundary and relate it to the grand canonical weighting factor. I find that the mean thermal energy of the cosmological horizon is negative. In the second paper I derive the first law of thermodynamics for bounded, static, spherically symmetric spacetimes which include a matter distribution and either a black hole or cosmological horizon. I calculate heat capacities associated with matter/horizon systems and find that they may be positive or negative depending on the matter configuration. I discuss the case in which the cosmological constant is allowed to vary and conclude that the Hawking/Coleman mechanisms for explaining the low value of the cosmological constant are not well formulated. In the third paper, co-authored by Jorma Louko, we analyze variational principles for non-smooth metrics. These principles give insight to the problem of constructing minisuperspace path integrals in horizon statistical mechanics and quantum cosmology. We demonstrate that smoothness conditions can be derived from the variational principle as equations of motion. We suggest a new prescription for minisuperspace path integrals on the manifold | D times S^2. In the fourth paper, I examine the contribution of the horizon energy density to black hole temperature. I show the existence of positive heat capacity solutions in the small mass regime. In the fifth paper, co-authored by Diego Pavon we investigate the role of primordial black holes in the very early universe under SU(3) times SU(2) times U (1), SU(5), and their supersymmetric

  18. Geometry and Thermodynamics: Exploring the Internal Energy Landscape

    ERIC Educational Resources Information Center

    Hantsaridou, A. P.; Polatoglou, H. M.

    2006-01-01

    If we look into the past we will discover that the teachers of thermodynamics were always trying to interpret an important part of their science by using geometry. The relation between geometry and thermodynamics is of great interest and importance in teaching thermodynamics. This article examines the way undergraduate students of thermodynamics…

  19. How reliable are thermodynamic feasibility statements of biochemical pathways?

    PubMed

    Maskow, Thomas; von Stockar, Urs

    2005-10-20

    The driving force for organo- or lithotrophic growth as well as for each step in the metabolic network is the Gibbs reaction energy. For each enzymatic step it must be negative. Thermodynamics contributes therefore to the in-silico description of living systems. It may be used for assessing the feasibility of a given pathway because it provides a further constraint for those pathways which are feasible from the point of view of mass balance calculations (metabolic flux analysis) and the genetic potential of an organism. However, when this constraint was applied to lactic acid fermentation according to a method proposed by Mavrovouniotis (1993a, ISMB 93:273-283) it turned out that an unrealistically wide metabolite concentration range had to be assumed to make this well-known glycolytic pathway thermodynamically feasible. During a search for the reasons of this surprising result the insufficient consideration of the activity coefficients was identified as main cause. However, it is shown in the present contribution that the influence of the activity coefficients on Gibbs reaction energy can be easily taken into account based on the intracellular ionic strength. The uncertainty of the tabulated equilibrium constants and of the apparent standard Gibbs energies derived from them was found to be the second most important reason for the erroneous result of the feasibility analysis. Deviations of intracellular pH from the standard value and bad estimations of currency metabolites, e.g., NAD(+) and NADH, were found to be of lesser importance but not negligible. The pH dependency of Gibbs reaction enthalpy was proved to be easily taken into account. Therefore, the application of thermodynamics for a better in-silico prediction of the behavior of living cell factories calls predominantly for better equilibrium data determined under well defined conditions and also for a more detailed knowledge about the intracellular ionic strength and pH value. Copyright 2005 Wiley

  20. Stories to Make Thermodynamics and Related Subjects More Palatable

    NASA Astrophysics Data System (ADS)

    Bartell, Lawrence S.

    2001-08-01

    A collection of vignettes either recounting the personalities of some of the architects of thermodynamics or noting steps and missteps in the development of thermodynamics and the kinetic theory is combined with a set of stories illustrating thermodynamic principles. These offerings turned out to be much more easily remembered by students and were more effective in conveying certain points than a direct, unadorned exposition of thermodynamic laws and applications. For one thing, the stories kept the students awake and receptive to ideas. Students had invariably entered the class having heard horror stories about how tedious and impossibly difficult thermodynamics courses are.

  1. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  2. Thermodynamic-ensemble independence of solvation free energy.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2015-02-10

    Solvation free energy is the fundamental thermodynamic quantity in solution chemistry. Recently, it has been suggested that the partial molar volume correction is necessary to convert the solvation free energy determined in different thermodynamic ensembles. Here, we demonstrate ensemble-independence of the solvation free energy on general thermodynamic grounds. Theoretical estimates of the solvation free energy based on the canonical or grand-canonical ensemble are pertinent to experiments carried out under constant pressure without any conversion.

  3. Generalized second law of thermodynamics in f(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Jawad, Abdul

    2015-11-01

    We discuss the equilibrium picture of thermodynamic at the apparent horizon of FRW universe in f(T,TG) gravity, where T represents the torsion invariant and TG is the teleparallel equivalent of the Gauss-Bonnet term. It is found that one can translate the Friedmann equations to the standard form of first law of thermodynamics. We discuss GSLT in the locality of assumption that temperature of matter inside the horizon is similar to that of apparent horizon. Furthermore, we consider particular models in this theory and generate constraints on the coupling parameters for the validity of GSLT. For this purpose we set the present day values of cosmic parameters and find the possible constraints on f(T,TG) models. We also choose the power law cosmology and found that GSLT can be met in accelerated cosmic expansion. We have also presented the cosmological reconstruction of some viable f(T,TG) models and discussed the cosmic evolution and validity of GSLT.

  4. Quantum thermodynamics of nanoscale steady states far from equilibrium

    NASA Astrophysics Data System (ADS)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  5. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    PubMed Central

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  6. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  7. On thermodynamical inconsistency of isotherm equations: Gibbs's thermodynamics.

    PubMed

    Tóth, József

    2003-06-01

    It has been proven that all isotherm equations which include the expression 1-Theta contradict the exact Gibbs thermodynamics. These contradictions have been discussed in detail in the case of the Langmuir (L) equation applied to gas/solid (G/S), solid/liquid (S/L), and gas/liquid (G/L) interfaces. In G/S adsorption the L equation can theoretically be applied only at low equilibrium pressures on condition that vg > vs . vg is the molar volume of the adsorbed amount in the gas phase and vs is the same in the Gibbs phase. In S/L and G/L adsorption the L equation is practically applicable only in the domain of very low concentrations. The cause of these contradictions (inconsistencies) is that Gibbs thermodynamics takes excess adsorbed amounts into account; however, the L and other isotherm equations calculate with the absolute adsorbed amount. The two amounts may be practically equal to each other when the limiting conditions mentioned above are fulfilled. It is also discussed how these inconsistent isotherm equations can be transformed into consistent ones.

  8. Introduction to the special issue: Thermodynamic aspects of cryobiology.

    PubMed

    Elliott, Janet A W

    2010-02-01

    This brief paper introduces the subject of thermodynamics and the papers of the special issue on thermodynamic aspects of cryobiology. Thermodynamic terminology is defined for the non-specialist. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Total individual ion activity coefficients of calcium and carbonate in seawater at 25°C and 35%. salinity, and implications to the agreement between apparent and thermodynamic constants of calcite and aragonite

    USGS Publications Warehouse

    Plummer, Niel; Sundquist, Eric T.

    1982-01-01

    We have calculated the total individual ion activity coefficients of carbonate and calcium,  and , in seawater. Using the ratios of stoichiometric and thermodynamic constants of carbonic acid dissociation and total mean activity coefficient data measured in seawater, we have obtained values which differ significantly from those widely accepted in the literature. In seawater at 25°C and 35%. salinity the (molal) values of  and  are 0.038 ± 0.002 and 0.173 ± 0.010, respectively. These values of  and  are independent of liquid junction errors and internally consistent with the value . By defining  and  on a common scale (), the product  is independent of the assigned value of  and may be determined directly from thermodynamic measurements in seawater. Using the value  and new thermodynamic equilibrium constants for calcite and aragonite, we show that the apparent constants of calcite and aragonite are consistent with the thermodynamic equilibrium constants at 25°C and 35%. salinity. The demonstrated consistency between thermodynamic and apparent constants of calcite and aragonite does not support a hypothesis of stable Mg-calcite coatings on calcite or aragonite surfaces in seawater, and suggests that the calcite critical carbonate ion curve of Broecker and Takahashi (1978,Deep-Sea Research25, 65–95) defines the calcite equilibrium boundary in the oceans, within the uncertainty of the data.

  10. Thermodynamic universality of quantum Carnot engines

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less

  11. A Vector Representation for Thermodynamic Relationships

    ERIC Educational Resources Information Center

    Pogliani, Lionello

    2006-01-01

    The existing vector formalism method for thermodynamic relationship maintains tractability and uses accessible mathematics, which can be seen as a diverting and entertaining step into the mathematical formalism of thermodynamics and as an elementary application of matrix algebra. The method is based on ideas and operations apt to improve the…

  12. Thermodynamic limit of random partitions and dispersionless Toda hierarchy

    NASA Astrophysics Data System (ADS)

    Takasaki, Kanehisa; Nakatsu, Toshio

    2012-01-01

    We study the thermodynamic limit of random partition models for the instanton sum of 4D and 5D supersymmetric U(1) gauge theories deformed by some physical observables. The physical observables correspond to external potentials in the statistical model. The partition function is reformulated in terms of the density function of Maya diagrams. The thermodynamic limit is governed by a limit shape of Young diagrams associated with dominant terms in the partition function. The limit shape is characterized by a variational problem, which is further converted to a scalar-valued Riemann-Hilbert problem. This Riemann-Hilbert problem is solved with the aid of a complex curve, which may be thought of as the Seiberg-Witten curve of the deformed U(1) gauge theory. This solution of the Riemann-Hilbert problem is identified with a special solution of the dispersionless Toda hierarchy that satisfies a pair of generalized string equations. The generalized string equations for the 5D gauge theory are shown to be related to hidden symmetries of the statistical model. The prepotential and the Seiberg-Witten differential are also considered.

  13. Quantum thermodynamics with local control

    NASA Astrophysics Data System (ADS)

    Lekscha, J.; Wilming, H.; Eisert, J.; Gallego, R.

    2018-02-01

    We investigate the limitations that emerge in thermodynamic tasks as a result of having local control only over the components of a thermal machine. These limitations are particularly relevant for devices composed of interacting many-body systems. Specifically, we study protocols of work extraction that employ a many-body system as a working medium whose evolution can be driven by tuning the on-site Hamiltonian terms. This provides a restricted set of thermodynamic operations, giving rise to alternative bounds for the performance of engines. Our findings show that those limitations in control render it, in general, impossible to reach Carnot efficiency; in its extreme ramification it can even forbid to reach a finite efficiency or finite work per particle. We focus on the one-dimensional Ising model in the thermodynamic limit as a case study. We show that in the limit of strong interactions the ferromagnetic case becomes useless for work extraction, while the antiferromagnetic case improves its performance with the strength of the couplings, reaching Carnot in the limit of arbitrary strong interactions. Our results provide a promising connection between the study of quantum control and thermodynamics and introduce a more realistic set of physical operations well suited to capture current experimental scenarios.

  14. Thermodynamics of quantum information scrambling

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Goold, John

    2017-06-01

    Scrambling of quantum information can conveniently be quantified by so-called out-of-time-order correlators (OTOCs), i.e., correlators of the type <[Wτ,V ] †[Wτ,V ] > , whose measurements present a formidable experimental challenge. Here we report on a method for the measurement of OTOCs based on the so-called two-point measurement scheme developed in the field of nonequilibrium quantum thermodynamics. The scheme is of broader applicability than methods employed in current experiments and provides a clear-cut interpretation of quantum information scrambling in terms of nonequilibrium fluctuations of thermodynamic quantities, such as work and heat. Furthermore, we provide a numerical example on a spin chain which highlights the utility of our thermodynamic approach when understanding the differences between integrable and ergodic behaviors. We also discuss how the method can be used to extend the reach of current experiments.

  15. Incorporation of rapid thermodynamic data in fragment-based drug discovery.

    PubMed

    Kobe, Akihiro; Caaveiro, Jose M M; Tashiro, Shinya; Kajihara, Daisuke; Kikkawa, Masato; Mitani, Tomoya; Tsumoto, Kouhei

    2013-03-14

    Fragment-based drug discovery (FBDD) has enjoyed increasing popularity in recent years. We introduce SITE (single-injection thermal extinction), a novel thermodynamic methodology that selects high-quality hits early in FBDD. SITE is a fast calorimetric competitive assay suitable for automation that captures the essence of isothermal titration calorimetry but using significantly fewer resources. We describe the principles of SITE and identify a novel family of fragment inhibitors of the enzyme ketosteroid isomerase displaying high values of enthalpic efficiency.

  16. Thermodynamics of charged Lovelock: AdS black holes

    NASA Astrophysics Data System (ADS)

    Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.

    2016-04-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  17. Thermodynamics of hairy black holes in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.

    2017-02-01

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.

  18. Thermodynamics of surface defects at the aspirin/water interface

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Zheng, Chen; Reuter, Karsten

    2014-09-01

    We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.

  19. Simulated yields for managed northern hardwood stands

    Treesearch

    Dale S. Solomon; William B. Leak; William B. Leak

    1986-01-01

    Board-foot and cubic-foot yields developed with the forest growth model SlMTlM are presented for northern hardwood stands grown with and without management. SIMTIM has been modified to include more accurate growth rates by species, a new stocking chart, and yields that reflect species values and quality classes. Treatments range from no thinning to intensive quality...

  20. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  1. Thermodynamics sheds light on black hole dynamics

    NASA Astrophysics Data System (ADS)

    Cárdenas, Marcela; Julié, Félix-Louis; Deruelle, Nathalie

    2018-06-01

    We propose to unify two a priori distinct aspects of black hole physics: their thermodynamics, and their description as point particles, which is an essential starting point in the post-Newtonian approach to their dynamics. We will find that, when reducing a black hole to a point particle endowed with its specific effective mass, one in fact describes a black hole satisfying the first law of thermodynamics, such that its global charges, and hence its entropy, remain constant. This gives a thermodynamical interpretation of its effective mass, thus opening a promising synergy between black hole thermodynamics and the analytical approaches to the two-body problems in gravity theories. To illustrate this relationship, the Einstein-Maxwell-dilaton theory, which contains simple examples of asympotically flat, hairy black hole solutions, will serve as a laboratory.

  2. Thermodynamic properties of calcium-bismuth alloys determined by emf measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Boysen, DA; Bradwell, DJ

    2012-01-15

    The thermodynamic properties of Ca-Bi alloys were determined by electromotive force (emf) measurements to assess the suitability of Ca-Bi electrodes for electrochemical energy storage applications. Emf was measured at ambient pressure as a function of temperature between 723 K and 1173 K using a Ca(s)vertical bar CaF2(s)vertical bar Ca(in Bi) cell for twenty different Ca-Bi alloys spanning the entire range of composition from chi(Ca) = 0 to 1. Reported are the temperature-independent partial molar entropy and enthalpy of calcium for each Ca-Bi alloy. Also given are the measured activities of calcium, the excess partial molar Gibbs energy of bismuth estimatedmore » from the Gibbs-Duhem equation, and the integral change in Gibbs energy for each Ca-Bi alloy at 873 K, 973 K, and 1073 K. Calcium activities at 973 K were found to be nearly constant at a value a(Ca) = 1 x 10(-8) over the composition range chi(Ca) = 0.32-0.56, yielding an emf of similar to 0.77 V. Above chi(Ca) = 0.62 and coincident with Ca5Bi3 formation, the calcium activity approached unity. The Ca-Bi system was also characterized by differential scanning calorimetry over the entire range of composition. Based upon these data along with the emf measurements, a revised Ca-Bi binary phase diagram is proposed. (C) 2011 Elsevier Ltd. All rights reserved.« less

  3. Thermodynamic properties by equation of state and from Ab initio molecular dynamics of liquid potassium under pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team

    In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.

  4. Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome.

    PubMed

    Thompson, Colin D Kinz; Sharma, Ajeet K; Frank, Joachim; Gonzalez, Ruben L; Chowdhury, Debashish

    2015-08-27

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.

  5. Effects of capillarity and microtopography on wetland specific yield

    USGS Publications Warehouse

    Sumner, D.M.

    2007-01-01

    Hydrologic models aid in describing water flows and levels in wetlands. Frequently, these models use a specific yield conceptualization to relate water flows to water level changes. Traditionally, a simple conceptualization of specific yield is used, composed of two constant values for above- and below-surface water levels and neglecting the effects of soil capillarity and land surface microtopography. The effects of capiltarity and microtopography on specific yield were evaluated at three wetland sites in the Florida Everglades. The effect of capillarity on specific yield was incorporated based on the fillable pore space within a soil moisture profile at hydrostatic equilibrium with the water table. The effect of microtopography was based on areal averaging of topographically varying values of specific yield. The results indicate that a more physically-based conceptualization of specific yield incorporating capillary and microtopographic considerations can be substantially different from the traditional two-part conceptualization, and from simpler conceptualizations incorporating only capillarity or only microtopography. For the sites considered, traditional estimates of specific yield could under- or overestimate the more physically based estimates by a factor of two or more. The results suggest that consideration of both capillarity and microtopography is important to the formulation of specific yield in physically based hydrologic models of wetlands. ?? 2007, The Society of Wetland Scientists.

  6. Understanding the Thermodynamics of Biological Order

    ERIC Educational Resources Information Center

    Peterson, Jacob

    2012-01-01

    By growth in size and complexity (i.e., changing from more probable to less probable states), plants and animals appear to defy the second law of thermodynamics. The usual explanation describes the input of nutrient and sunlight energy into open thermodynamic systems. However, energy input alone does not address the ability to organize and create…

  7. Thermodynamics of a periodically driven qubit

    NASA Astrophysics Data System (ADS)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  8. Universality of P - V criticality in horizon thermodynamics

    NASA Astrophysics Data System (ADS)

    Hansen, Devin; Kubizňák, David; Mann, Robert B.

    2017-01-01

    We study P - V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form δ E = T δ S - P δ V , where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Λ if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the `standard' first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals like behaviour, and the presence of a triple point. We also formulate the Smarr formula in horizon thermodynamics and discuss the interpretation of the quantity E appearing in the horizon first law.

  9. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  10. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  11. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  12. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  13. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  14. Assessing the likely value of gravity and drawdown measurements to constrain estimates of hydraulic conductivity and specific yield during unconfined aquifer testing

    USGS Publications Warehouse

    Blainey, Joan B.; Ferré, Ty P.A.; Cordova, Jeffrey T.

    2007-01-01

    Pumping of an unconfined aquifer can cause local desaturation detectable with high‐resolution gravimetry. A previous study showed that signal‐to‐noise ratios could be predicted for gravity measurements based on a hydrologic model. We show that although changes should be detectable with gravimeters, estimations of hydraulic conductivity and specific yield based on gravity data alone are likely to be unacceptably inaccurate and imprecise. In contrast, a transect of low‐quality drawdown data alone resulted in accurate estimates of hydraulic conductivity and inaccurate and imprecise estimates of specific yield. Combined use of drawdown and gravity data, or use of high‐quality drawdown data alone, resulted in unbiased and precise estimates of both parameters. This study is an example of the value of a staged assessment regarding the likely significance of a new measurement method or monitoring scenario before collecting field data.

  15. Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mirzoev, A. A.; Verkhovykh, A. V.; Okishev, K. Yu.; Mirzaev, D. A.

    2018-02-01

    The paper presents the results of ab initio modelling of the interaction of hydrogen atoms with ferrite/cementite interfaces in steels and thermodynamic assessment of the ability of interfaces to trap hydrogen atoms. Modelling was performed using the density functional theory with generalised gradient approximation (GGA'96), as implemented in WIEN2k package. An Isaichev-type orientation relationship between the two phases was accepted, with a habit plane (101)c ∥ (112)α. The supercell contained 64 atoms (56 Fe and 8 C). The calculated formation energies of ferrite/cementite interface were 0.594 J/m2. The calculated trapping energy at cementite interstitial was 0.18 eV, and at the ferrite/cementite interface - 0.30 eV. Considering calculated zero-point energy, the trapping energies at cementite interstitial and ferrite/cementite interface become 0.26 eV and 0.39 eV, respectively. The values are close to other researchers' data. These results were used to construct a thermodynamic description of ferrite/cementite interface-hydrogen interaction. Absorption calculations using the obtained trapping energy values showed that even thin lamellar ferrite/cementite mixture with an interlamellar spacing smaller than 0.1 μm has noticeable hydrogen trapping ability at a temperature below 400 K.

  16. H-Theorem and Thermodynamic Efficiency of the Radiation Work Inducing a Chemically Nonequilibrium State of Matter

    NASA Astrophysics Data System (ADS)

    Seleznev, V. D.; Buchina, O.

    2015-06-01

    The Sun's radiation is a source of origin and maintenance of life on Earth. The Sun-Earth system is a thermodynamic machine transforming radiation into useful work of living organisms. Despite the importance of efficiency for such a thermodynamic machine, the analysis of its efficiency coefficient (EC) available in the literature has considerable shortcomings: As is noted by the author of the classical study on this subject (Oxenius in J Quant Spectrosc Radiat Transf 6:65-91, 1996), the second law of thermodynamics is violated for the radiation beam (without direction integration). The typical thermodynamic analysis of the interaction between radiation and matter is performed assuming an equilibrium of the chemical composition thereof as opposed to the radiation work in the biosphere (photosynthesis), which usually occurs under the conditions of a significant deviation of the active substance's composition from its equilibrium values. The "black box" model (Aoki in J Phys Soc Jpn 52:1075-1078, 1983) is traditionally used to analyze the work efficiency of the Sun-Earth thermodynamic machine. It fails to explain the influence of many internal characteristics of the radiation-matter interaction on the process's EC. The present paper overcomes the above shortcomings using a relatively simple model of interaction between anisotropic radiation and two-level molecules of a rarefied component in a buffer substance.

  17. Black hole thermodynamics under the microscope

    NASA Astrophysics Data System (ADS)

    Falls, Kevin; Litim, Daniel F.

    2014-04-01

    A coarse-grained version of the effective action is used to study the thermodynamics of black holes, interpolating from largest to smallest masses. The physical parameters of the black hole are linked to the running couplings by thermodynamics, and the corresponding equation of state includes quantum corrections for temperature, specific heat, and entropy. If quantum gravity becomes asymptotically safe, the state function predicts conformal scaling in the limit of small horizon area and bounds on black hole mass and temperature. A metric-based derivation for the equation of state and quantum corrections to the thermodynamical, statistical, and phenomenological definition of entropy are also given. Further implications and limitations of our study are discussed.

  18. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.

    PubMed

    Lin, Shiang-Tai; Maiti, Prabal K; Goddard, William A

    2010-06-24

    Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.

  19. Thermodynamic characterization of networks using graph polynomials

    NASA Astrophysics Data System (ADS)

    Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.

    2015-09-01

    In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.

  20. Kinetic and Thermodynamics studies for Castor Oil Extraction Using Subcritical Water Technology.

    PubMed

    Abdelmoez, Wael; Ashour, Eman; Naguib, Shahenaz M; Hilal, Amr; Al Mahdy, Dalia A; Mahrous, Engy A; Abdel-Sattar, Essam

    2016-06-01

    In this work both kinetic and thermodynamics of castor oil extraction from its seeds using subcritical water technique were studied. It was found that the extraction process followed two consecutive steps. In these steps, the oil was firstly extracted from inside the powder by diffusion mechanism. Then the extracted oil, due to extending the extraction time under high temperature and pressure, was subjected to a decomposition reaction following first order mechanism. The experimental data correlated well with the irreversible consecutive unimolecular-type first order mechanism. The values of both oil extraction rate constants and decomposition rate constants were calculated through non-linear fitting using DataFit software. The extraction rate constants were found to be 0.0019, 0.024, 0.098, 0.1 and 0.117 min(-1), while the decomposition rate constants were 0.057, 0.059, 0.014, 0.019 and 0.17 min(-1) at extraction temperatures of 240, 250, 260, 270 and 280°C, respectively. The thermodynamic properties of the oil extraction process were investigated using Arrhenius equation. The values of the activation energy, Ea, and the frequency factor, A, were 73 kJ mol(-1) and 946, 002 min(-1), respectively. The physicochemical properties of the extracted castor oil including the specific gravity, viscosity, acid value, pH value and calorific value were found to be 0.947, 7.487, 1.094 mg KOH/g, 6.1, and 41.5 MJ/Kg, respectively. Gas chromatography analysis showed that ricinoleic acid (83.6%) appears as the predominant fatty acid in the extracted oil followed by oleic acid (5.5%) and linoleic acid (2.3%).

  1. Thermodynamic power of non-Markovianity

    PubMed Central

    Bylicka, Bogna; Tukiainen, Mikko; Chruściński, Dariusz; Piilo, Jyrki; Maniscalco, Sabrina

    2016-01-01

    The natural framework to discuss thermodynamics at the quantum level is the theory of open quantum systems. Memory effects arising from strong system-environment correlations may lead to information back-flow, that is non-Markovian behaviour. The relation between non-Markovianity and quantum thermodynamics has been until now largely unexplored. Here we show by means of Landauer’s principle that memory effects control the amount of work extraction by erasure in presence of realistic environments. PMID:27323947

  2. Dirac structures in nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-01-01

    Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In the absence of irreversible processes, these Dirac structures reduce to canonical Dirac structures associated with canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in the absence of irreversible processes. The Dirac structures are associated with the variational formulation of nonequilibrium thermodynamics developed in the work of Gay-Balmaz and Yoshimura, J. Geom. Phys. 111, 169-193 (2017a) and are induced from a nonlinear nonholonomic constraint given by the expression of the entropy production of the system.

  3. Friction Force: From Mechanics to Thermodynamics

    ERIC Educational Resources Information Center

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  4. Considerations on non equilibrium thermodynamics of interactions

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the ;first; engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  5. Examples for Non-Ideal Solution Thermodynamics Study

    ERIC Educational Resources Information Center

    David, Carl W.

    2004-01-01

    A mathematical model of a non-ideal solution is presented, where it is shown how and where the non-ideality manifests itself in the standard thermodynamics tableau. Examples related to the non-ideal solution thermodynamics study are also included.

  6. Protonation linked equilibria and apparent affinity constants: the thermodynamic profile of the alpha-chymotrypsin-proflavin interaction.

    PubMed

    Bruylants, Gilles; Wintjens, René; Looze, Yvan; Redfield, Christina; Bartik, Kristin

    2007-12-01

    Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.

  7. Thermodynamics of ferrofluids in applied magnetic fields.

    PubMed

    Elfimova, Ekaterina A; Ivanov, Alexey O; Camp, Philip J

    2013-10-01

    The thermodynamic properties of ferrofluids in applied magnetic fields are examined using theory and computer simulation. The dipolar hard sphere model is used. The second and third virial coefficients (B(2) and B(3)) are evaluated as functions of the dipolar coupling constant λ, and the Langevin parameter α. The formula for B(3) for a system in an applied field is different from that in the zero-field case, and a derivation is presented. The formulas are compared to results from Mayer-sampling calculations, and the trends with increasing λ and α are examined. Very good agreement between theory and computation is demonstrated for the realistic values λ≤2. The analytical formulas for the virial coefficients are incorporated in to various forms of virial expansion, designed to minimize the effects of truncation. The theoretical results for the equation of state are compared against results from Monte Carlo simulations. In all cases, the so-called logarithmic free energy theory is seen to be superior. In this theory, the virial expansion of the Helmholtz free energy is re-summed in to a logarithmic function. Its success is due to the approximate representation of high-order terms in the virial expansion, while retaining the exact low-concentration behavior. The theory also yields the magnetization, and a comparison with simulation results and a competing modified mean-field theory shows excellent agreement. Finally, the putative field-dependent critical parameters for the condensation transition are obtained and compared against existing simulation results for the Stockmayer fluid. Dipolar hard spheres do not undergo the transition, but the presence of isotropic attractions, as in the Stockmayer fluid, gives rise to condensation even in zero field. A comparison of the relative changes in critical parameters with increasing field strength shows excellent agreement between theory and simulation, showing that the theoretical treatment of the dipolar interactions

  8. Mechanical and thermodynamic properties of AlX (X = N, P, As) compounds

    NASA Astrophysics Data System (ADS)

    Xu, Lifang; Bu, Wei

    2017-09-01

    The Vickers hardness of various AlX (X = N, P, As) compound polymorphs were calculated with the bond resistance model. Thermodynamic properties, such as vibrational entropy, constant volume specific heat and Debye temperatures, were calculated using phonon dispersion relations and phonon density of states (DOS). The calculated values are in good agreement with the previous experimental and theoretical data. For the same structure of AlX (X = N, P, As) compounds, their hardness and Debye temperatures both decrease with the X atomic number. The wurtzite (wz) and zincblende (zb) structures of the same compounds AlX share an almost identical hardness, but have different Debye temperatures. The difference between wz and zb structures increases as the atomic number of X increases. The thermodynamic properties reveal that the constant volume specific heat approaches the Dulong-Petit rule at high temperatures.

  9. Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary

    USGS Publications Warehouse

    Hemingway, B.S.; Bohlen, S.R.; Hankins, W.B.; Westrum, E.F.; Kuskov, O.L.

    1998-01-01

    The heat capacities of synthetic coesite and jadeite were measured between about 15 and 850 K by adiabatic and differential scanning calorimetry. The experimental data were smoothed and estimates were made of heat capacities to 1800 K. The following equations represent our estimate of the heat capacities of coesite and jadeite between 298.15 and 1800 K: [see original article for formula]. Tables of thermodynamic values for coesite and jadeite to 1800 K are presented. The entropies of coesite and jadeite are 40.38 ?? 0.12 and 136.5 ?? 0.32 J/(mol.K), respectively, at 298.15 K. The entropy for coesite derived here confirms the value published earlier by Holm et al. (1967). We have derived an equation to describe the quartz-coesite boundary over the temperature range of 600 to 1500 K, P(GPa) = 1.76 + 0.001T(K). Our results are in agreement with the enthalpy of transition reported by Akaogi and Navrotsky (1984) and yield -907.6 ?? 1.4 kJ/mol for the enthalpy of formation of coesite from the elements at 298.15 K and 1 bar, in agreement with the value recommended by CODATA (Khodakovsky et al. 1995). Several sources of uncertainty remain unacceptably high, including: the heat capacities of coesite at temperatures above about 1000 K; the heat capacities and volumetric properties of ?? quartz at higher pressures and at temperatures above 844 K; the pressure corrections for the piston cylinder apparatus used to determine the quartz-coesite equilibrium boundary.

  10. Thermodynamics on Soluble Carbon Nanotubes: How Do DNA Molecules Replace Surfactants on Carbon Nanotubes?

    PubMed Central

    Kato, Yuichi; Inoue, Ayaka; Niidome, Yasuro; Nakashima, Naotoshi

    2012-01-01

    Here we represent thermodynamics on soluble carbon nanotubes that enables deep understanding the interactions between single-walled carbon nanotubes (SWNTs) and molecules. We selected sodium cholate and single-stranded cytosine oligo-DNAs (dCn (n = 4, 5, 6, 7, 8, 10, 15, and 20)), both of which are typical SWNT solubilizers, and successfully determined thermodynamic properties (ΔG, ΔH and ΔS values) for the exchange reactions of sodium cholate on four different chiralities of SWNTs ((n,m) = (6,5), (7,5), (10,2), and (8,6)) for the DNAs. Typical results contain i) the dC5 exhibited an exothermic exchange, whereas the dC6, 8, 10, 15, and 20 materials exhibited endothermic exchanges, and ii) the energetics of the dC4 and dC7 exchanges depended on the associated chiral indices and could be endothermic or exothermic. The presented method is general and is applicable to any molecule that interacts with nanotubes. The study opens a way for science of carbon nanotube thermodynamics. PMID:23066502

  11. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    NASA Astrophysics Data System (ADS)

    Collell, Julien; Galliero, Guillaume

    2014-05-01

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.

  12. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr

    2014-05-21

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less

  13. Yield and forage value of a dual-purpose bmr-12 sorghum hybrid

    USDA-ARS?s Scientific Manuscript database

    Grain sorghum [Sorghum bicolor (L.) Moench] is an important crop for rainfed production systems with 2.7 million ha grown in the USA in 2013. The brown-midrib (bmr) mutations, especially bmr-12, have resulted in low stover lignin and high fiber digestibility without reducing grain yield in some sor...

  14. Effect of harvest dates on yield and nutritive value of eastern gamgrass

    USDA-ARS?s Scientific Manuscript database

    Yield of 'Pete' eastern gamagrass [Tripsacum dactyloides (L.) L.] was evaluated for 3 yr. Forage samples were harvested at 7-d intervals beginning on May 15 and ending on July 17, during 2000, 2001, and 2002. Samples from 2000 and 2001 were analyzed to determine nutrient composition. Canopy height i...

  15. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron

  16. Thermodynamic Calculations for Molecules with Asymmetric Internal Rotors. II. Application to the 1,2-Dihaloethanes

    PubMed Central

    Wong, Bryan M.; Fadri, Maria M.; Raman, Sumathy

    2012-01-01

    The thermodynamic properties of three halocarbon molecules relevant in atmospheric and public health applications are presented from ab initio calculations. Our technique makes use of a reaction path-like Hamiltonian to couple all the vibrational modes to a large-amplitude torsion for 1,2-difluoroethane, 1,2-dichloroethane, and 1,2-dibromoethane, each of which possesses a heavy asymmetric rotor. Optimized ab initio energies and Hessians were calculated at the CCSD(T) and MP2 levels of theory, respectively. In addition, to investigate the contribution of electronically excited states to thermodynamic properties, several excited singlet and triplet states for each of the halocarbons were computed at the CASSCF/MRCI level. Using the resulting potentials and projected frequencies, the couplings of all the vibrational modes to the large-amplitude torsion are calculated using the new STAR-P 2.4.0 software platform that automatically parallelizes our codes with distributed memory via a familiar MATLAB interface. Utilizing the efficient parallelization scheme of STAR-P, we obtain thermodynamic properties for each of the halocarbons, with temperatures ranging from 298.15 to 1000 K. We propose that the free energies, entropies, and heat capacities obtained from our methods be used to supplement theoretical and experimental values found in current thermodynamic tables. PMID:17663439

  17. Thermodynamic calculations for molecules with asymmetric internal rotors. II. Application to the 1,2-dihaloethanes.

    PubMed

    Wong, Bryan M; Fadri, Maria M; Raman, Sumathy

    2008-02-01

    The thermodynamic properties of three halocarbon molecules relevant in atmospheric and public health applications are presented from ab initio calculations. Our technique makes use of a reaction path-like Hamiltonian to couple all the vibrational modes to a large-amplitude torsion for 1,2-difluoroethane, 1,2-dichloroethane, and 1,2-dibromoethane, each of which possesses a heavy asymmetric rotor. Optimized ab initio energies and Hessians were calculated at the CCSD(T) and MP2 levels of theory, respectively. In addition, to investigate the contribution of electronically excited states to thermodynamic properties, several excited singlet and triplet states for each of the halocarbons were computed at the CASSCF/MRCI level. Using the resulting potentials and projected frequencies, the couplings of all the vibrational modes to the large-amplitude torsion are calculated using the new STAR-P 2.4.0 software platform that automatically parallelizes our codes with distributed memory via a familiar MATLAB interface. Utilizing the efficient parallelization scheme of STAR-P, we obtain thermodynamic properties for each of the halocarbons, with temperatures ranging from 298.15 to 1000 K. We propose that the free energies, entropies, and heat capacities obtained from our methods be used to supplement theoretical and experimental values found in current thermodynamic tables. (c) 2007 Wiley Periodicals, Inc.

  18. A Hamiltonian approach for the Thermodynamics of AdS black holes

    NASA Astrophysics Data System (ADS)

    Baldiotti, M. C.; Fresneda, R.; Molina, C.

    2017-07-01

    In this work we study the Thermodynamics of D-dimensional Schwarzschild-anti de Sitter (SAdS) black holes. The minimal Thermodynamics of the SAdS spacetime is briefly discussed, highlighting some of its strong points and shortcomings. The minimal SAdS Thermodynamics is extended within a Hamiltonian approach, by means of the introduction of an additional degree of freedom. We demonstrate that the cosmological constant can be introduced in the thermodynamic description of the SAdS black hole with a canonical transformation of the Schwarzschild problem, closely related to the introduction of an anti-de Sitter thermodynamic volume. The treatment presented is consistent, in the sense that it is compatible with the introduction of new thermodynamic potentials, and respects the laws of black hole Thermodynamics. By demanding homogeneity of the thermodynamic variables, we are able to construct a new equation of state that completely characterizes the Thermodynamics of SAdS black holes. The treatment naturally generates phenomenological constants that can be associated with different boundary conditions in underlying microscopic theories. A whole new set of phenomena can be expected from the proposed generalization of SAdS Thermodynamics.

  19. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  20. Thermodynamic geometry for a non-extensive ideal gas

    NASA Astrophysics Data System (ADS)

    López, J. L.; Obregón, O.; Torres-Arenas, J.

    2018-05-01

    A generalized entropy arising in the context of superstatistics is applied to an ideal gas. The curvature scalar associated to the thermodynamic space generated by this modified entropy is calculated using two formalisms of the geometric approach to thermodynamics. By means of the curvature/interaction hypothesis of the geometric approach to thermodynamic geometry it is found that as a consequence of considering a generalized statistics, an effective interaction arises but the interaction is not enough to generate a phase transition. This generalized entropy seems to be relevant in confinement or in systems with not so many degrees of freedom, so it could be interesting to use such entropies to characterize the thermodynamics of small systems.

  1. Enthalpy-Driven RNA Folding: Single-Molecule Thermodynamics of Tetraloop–Receptor Tertiary Interaction†

    PubMed Central

    Fiore, Julie L.; Kraemer, Benedikt; Koberling, Felix; Edmann, Rainer; Nesbitt, David J.

    2010-01-01

    RNA folding thermodynamics are crucial for structure prediction, which requires characterization of both enthalpic and entropic contributions of tertiary motifs to conformational stability. We explore the temperature dependence of RNA folding due to the ubiquitous GAAA tetraloop–receptor docking interaction, exploiting immobilized and freely diffusing single-molecule fluorescence resonance energy transfer (smFRET) methods. The equilibrium constant for intramolecular docking is obtained as a function of temperature (T = 21–47 °C), from which a van’t Hoff analysis yields the enthalpy (ΔH°) and entropy (ΔS°) of docking. Tetraloop–receptor docking is significantly exothermic and entropically unfavorable in 1 mM MgCl2 and 100 mM NaCl, with excellent agreement between immobilized (ΔH° = −17.4 ± 1.6 kcal/mol, and ΔS° = −56.2 ± 5.4 cal mol−1 K−1) and freely diffusing (ΔH° = −17.2 ± 1.6 kcal/mol, and ΔS° = −55.9 ± 5.2 cal mol−1 K−1) species. Kinetic heterogeneity in the tetraloop–receptor construct is unaffected over the temperature range investigated, indicating a large energy barrier for interconversion between the actively docking and nondocking subpopulations. Formation of the tetraloop–receptor interaction can account for ~60% of the ΔH° and ΔS° of P4–P6 domain folding in the Tetrahymena ribozyme, suggesting that it may act as a thermodynamic clamp for the domain. Comparison of the isolated tetraloop–receptor and other tertiary folding thermodynamics supports a theme that enthalpy- versus entropy-driven folding is determined by the number of hydrogen bonding and base stacking interactions. PMID:19186984

  2. Thermodynamics of Computational Copying in Biochemical Systems

    NASA Astrophysics Data System (ADS)

    Ouldridge, Thomas E.; Govern, Christopher C.; ten Wolde, Pieter Rein

    2017-04-01

    Living cells use readout molecules to record the state of receptor proteins, similar to measurements or copies in typical computational devices. But is this analogy rigorous? Can cells be optimally efficient, and if not, why? We show that, as in computation, a canonical biochemical readout network generates correlations; extracting no work from these correlations sets a lower bound on dissipation. For general input, the biochemical network cannot reach this bound, even with arbitrarily slow reactions or weak thermodynamic driving. It faces an accuracy-dissipation trade-off that is qualitatively distinct from and worse than implied by the bound, and more complex steady-state copy processes cannot perform better. Nonetheless, the cost remains close to the thermodynamic bound unless accuracy is extremely high. Additionally, we show that biomolecular reactions could be used in thermodynamically optimal devices under exogenous manipulation of chemical fuels, suggesting an experimental system for testing computational thermodynamics.

  3. Predicting RNA pseudoknot folding thermodynamics

    PubMed Central

    Cao, Song; Chen, Shi-Jie

    2006-01-01

    Based on the experimentally determined atomic coordinates for RNA helices and the self-avoiding walks of the P (phosphate) and C4 (carbon) atoms in the diamond lattice for the polynucleotide loop conformations, we derive a set of conformational entropy parameters for RNA pseudoknots. Based on the entropy parameters, we develop a folding thermodynamics model that enables us to compute the sequence-specific RNA pseudoknot folding free energy landscape and thermodynamics. The model is validated through extensive experimental tests both for the native structures and for the folding thermodynamics. The model predicts strong sequence-dependent helix-loop competitions in the pseudoknot stability and the resultant conformational switches between different hairpin and pseudoknot structures. For instance, for the pseudoknot domain of human telomerase RNA, a native-like and a misfolded hairpin intermediates are found to coexist on the (equilibrium) folding pathways, and the interplay between the stabilities of these intermediates causes the conformational switch that may underlie a human telomerase disease. PMID:16709732

  4. Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.; Ewell, M.

    2010-01-01

    The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.

  5. Transformations between Extensive and Intensive Versions of Thermodynamic Relationships

    ERIC Educational Resources Information Center

    Eberhart, James G.

    2010-01-01

    Most thermodynamic properties are either extensive (e.g., volume, energy, entropy, amount, etc.) or intensive (e.g., temperature, pressure, chemical potential, mole fraction, etc.). By the same token most of the mathematical relationships in thermodynamics can be written in extensive or intensive form. The basic laws of thermodynamics are usually…

  6. JTHERGAS: Thermodynamic Estimation from 2D Graphical Representations of Molecules

    PubMed Central

    Blurock, Edward; Warth, V.; Grandmougin, X.; Bounaceur, R.; Glaude, P.A.; Battin-Leclerc, F.

    2013-01-01

    JTHERGAS is a versatile calculator (implemented in JAVA) to estimate thermodynamic information from two dimensional graphical representations of molecules and radicals involving covalent bonds based on the Benson additivity method. The versatility of JTHERGAS stems from its inherent philosophy that all the fundamental data used in the calculation should be visible, to see exactly where the final values came from, and modifiable, to account for new data that can appear in the literature. The main use of this method is within automatic combustion mechanism generation systems where fast estimation of a large number and variety of chemical species is needed. The implementation strategy is based on meta-atom definitions and substructure analysis allowing a highly extensible database without modification of the core algorithms. Several interfaces for the database and the calculations are provided from terminal line commands, to graphical interfaces to web-services. The first order estimation of thermodynamics is based summing up the contributions of each heavy atom bonding description. Second order corrections due to steric hindrance and ring strain are made. Automatic estimate of contributions due to internal, external and optical symmetries are also made. The thermodynamical data for radicals is calculated by taking the difference due to the lost of a hydrogen radical taking into account changes in symmetry, spin, rotations, vibrations and steric hindrances. The software is public domain and is based on standard libraries such as CDK and CML. PMID:23761949

  7. Photon orbits and thermodynamic phase transition of d -dimensional charged AdS black holes

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2018-05-01

    We study the relationship between the null geodesics and thermodynamic phase transition for the charged AdS black hole. In the reduced parameter space, we find that there exist nonmonotonic behaviors of the photon sphere radius and the minimum impact parameter for the pressure below its critical value. The study also shows that the changes of the photon sphere radius and the minimum impact parameter can serve as order parameters for the small-large black hole phase transition. In particular, these changes have an universal exponent of 1/2 near the critical point for any dimension d of spacetime. These results imply that there may exist universal critical behavior of gravity near the thermodynamic critical point of the black hole system.

  8. Vibrational and thermodynamic properties of β-HMX: a first-principles investigation.

    PubMed

    Wu, Zhongqing; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2011-05-28

    Thermodynamic properties of β-HMX crystal are investigated using the quasi-harmonic approximation and density functional theory within the local density approximation (LDA), generalized gradient approximation (GGA), and GGA + empirical van der Waals (vdW) correction. It is found that GGA well describes the thermal expansion coefficient and heat capacity but fails to produce correct bulk modulus and equilibrium volume. The vdW correction improves the bulk modulus and volume, but worsens the thermal expansion coefficient and heat capacity. In contrast, LDA describes all thermodynamic properties with reasonable accuracy, and overall is a good exchange-correlation functional for β-HMX molecular crystal. The results also demonstrate significant contributions of phonons to the equation of state. The static calculation of equilibrium volume for β-HMX differs from the room-temperature value incorporating lattice vibrations by over 5%. Therefore, for molecular crystals, it is essential to include phonon contributions when calculated equation of state is compared with experimental data at ambient condition. © 2011 American Institute of Physics

  9. Updated database for K-shell fluorescence yields

    NASA Astrophysics Data System (ADS)

    Akdemir, Fatma; Araz, Aslı; Akman, Ferdi; Kaçal, Mustafa Recep; Durak, Rıdvan

    2017-04-01

    This study presents a summary of experimental data of K-shell fluorescence yields (ωK) published in the period of time between 2010 to february-2017. The fluorescence yields (ωK) of elements in the range 23≤Z≤60 taken directly from different sources were reviewed and presented in a table form. Finally, the experimental and empirical values in the literature have been reported and commented.

  10. Thermodynamics, Life, the Universe and Everything

    NASA Astrophysics Data System (ADS)

    Neswald, Elizabeth

    2015-01-01

    The laws of thermodynamics were developed in the first half of the nineteenth century to describe processes governing the working of steam engines. The mechanical equivalent of heat, which quantified the relationship between heat and motion, enabled the quantification and comparison of all energy transformation processes. The energy laws and the mechanical equivalent of heat quickly moved out of the narrower field of physics to form the basis of a cosmic narrative that began with stellar evolution and continued to universal heat death. Newer physiological theories turned to the energy laws to explain life processes, energy and entropy were integrated into theories of biological evolution and degeneration, and economists and cultural theorists turned to thermodynamics to explore both the limits of natural resources and economic expansion and the contradictions of industrial modernity. This paper discusses the career of thermodynamics as an explanatory model and cultural commonplace in the late nineteenth and early twentieth centuries, and the different scientific, religious, and social perspectives that could be expressed through this model. Connected through the entropy law intimately to irreversible processes and time, thermodynamics provided an arena to debate which way the world was going.

  11. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    DOE PAGES

    Hudak, Nicholas S.

    2013-12-31

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (d E/d T), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, themore » thermodynamic quantities measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.« less

  12. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  13. Evaluation of Columbia, USMARC Composite, Suffolk, and Texel rams as terminal sires in an extensive rangeland production system: VII. Accuracy of ultrasound predictors and their association with carcass weight, yield, and value.

    PubMed

    Notter, D R; Mousel, M R; Leeds, T D; Zerby, H N; Moeller, S J; Lewis, G S; Taylor, J B

    2014-06-01

    Use of lamb BW or chilled carcass weights (CCW), live-animal ultrasound or direct carcass measurements of backfat thickness (BF; mm) and LM area (LMA; cm(2)), and carcass body wall thickness (BWall; mm) to predict carcass yield and value was evaluated using 512 crossbred lambs produced over 3 yr by mating Columbia, U.S. Meat Animal Research Center Composite, Suffolk, and Texel rams to adult Rambouillet ewes. Lambs were harvested at 3 BW endpoints within each year. The predictive value of 3 to 5 additional linear measurements of live-animal or carcass size and shape was also evaluated. Residual correlations (adjusted for effects of year, breed, and harvest group) between ultrasound and direct measurements were 0.69 for BF and 0.65 for LMA. Increasing ultrasound or carcass LMA had positive effects (P < 0.001) on yield of chilled carcass (i.e., on dressing percentage) and, at comparable CCW, on weight of high-value cuts (rack, loin, leg, and sirloin) before trimming (HVW), weight of trimmed high-value cuts (trimmed rack and loin and trimmed boneless leg and sirloin; TrHVW), and carcass value before (CVal) and after (TrCVal) trimming of high-value cuts. By contrast, ultrasound and direct measures of BF had positive effects on yields of CCW and on HVW and CVal but large negative effects on TrHVW and TrCVal. After adjusting for BW at scanning, increases of 1 mm in ultrasound BF or 1 cm(2) in ultrasound LMA were associated with changes of US$-0.32 (P < 0.10) and $1.62 (P < 0.001), respectively, in TrCVal. Carcass BWall was generally superior to carcass BF as a predictor of TrHVW and TrCVal. Carcass LMA was superior to ultrasound LMA but carcass BF was inferior to ultrasound BF for prediction of carcass yield and value. Increasing LMA thus would be expected to improve carcass yield and value. Addition of linear measurements of live-animal or carcass size and shape to the prediction model reduced residual SD (RSD) for TrHVW and TrCVal by 0.4 to 2.2%, but subsequent removal

  14. Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride

    NASA Astrophysics Data System (ADS)

    Jayaraman, Saivenkataraman; Maginn, Edward J.

    2007-12-01

    The melting point, enthalpy of fusion, and thermodynamic stability of two crystal polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride are calculated using a thermodynamic integration-based atomistic simulation method. The computed melting point of the orthorhombic phase ranges from 365 to 369 K, depending on the classical force field used. This compares reasonably well with the experimental values, which range from 337 to 339 K. The computed enthalpy of fusion ranges from 19 to 29 kJ/mol, compared to the experimental values of 18.5-21.5 kJ/mol. Only one of the two force fields evaluated in this work yielded a stable monoclinic phase, despite the fact that both give accurate liquid state densities. The computed melting point of the monoclinic polymorph was found to be 373 K, which is somewhat higher than the experimental range of 318-340 K. The computed enthalpy of fusion was 23 kJ/mol, which is also higher than the experimental value of 9.3-14.5 kJ/mol. The simulations predict that the monoclinic form is more stable than the orthorhombic form at low temperature, in agreement with one set of experiments but in conflict with another. The difference in free energy between the two polymorphs is very small, due to the fact that a single trans-gauche conformational difference in an alkyl sidechain distinguishes the two structures. As a result, it is very difficult to construct simple classical force fields that are accurate enough to definitively predict which polymorph is most stable. A liquid phase analysis of the probability distribution of the dihedral angles in the alkyl chain indicates that less than half of the dihedral angles are in the gauche-trans configuration that is adopted in the orthorhombic crystal. The low melting point and glass forming tendency of this ionic liquid is likely due to the energy barrier for conversion of the remaining dihedral angles into the gauche-trans state. The simulation procedure used to perform the melting point

  15. Investigation of oxygen self-diffusion in PuO 2 by combining molecular dynamics with thermodynamic calculations

    DOE PAGES

    Saltas, V.; Chroneos, A.; Cooper, Michael William D.; ...

    2016-01-01

    In the present work, the defect properties of oxygen self-diffusion in PuO 2 are investigated over a wide temperature (300–1900 K) and pressure (0–10 GPa) range, by combining molecular dynamics simulations and thermodynamic calculations. Based on the well-established cBΩ thermodynamic model which connects the activation Gibbs free energy of diffusion with the bulk elastic and expansion properties, various point defect parameters such as activation enthalpy, activation entropy, and activation volume were calculated as a function of T and P. Molecular dynamics calculations provided the necessary bulk properties for the proper implementation of the thermodynamic model, in the lack of anymore » relevant experimental data. The estimated compressibility and the thermal expansion coefficient of activation volume are found to be more than one order of magnitude greater than the corresponding values of the bulk plutonia. As a result, the diffusion mechanism is discussed in the context of the temperature and pressure dependence of the activation volume.« less

  16. The second laws of quantum thermodynamics.

    PubMed

    Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie

    2015-03-17

    The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies.

  17. The second laws of quantum thermodynamics

    PubMed Central

    Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie

    2015-01-01

    The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies. PMID:25675476

  18. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    PubMed

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  19. Quantitative Generalizations for Catchment Sediment Yield Following Plantation Logging

    NASA Astrophysics Data System (ADS)

    Bathurst, James; Iroume, Andres

    2014-05-01

    While there is a reasonably clear qualitative understanding of the impact of forest plantations on sediment yield, there is a lack of quantitative generalizations. Such generalizations would be helpful for estimating the impacts of proposed forestry operations and would aid the spread of knowledge amongst both relevant professionals and new students. This study therefore analyzed data from the literature to determine the extent to which quantitative statements can be established. The research was restricted to the impact of plantation logging on catchment sediment yield as a function of ground disturbance in the years immediately following logging, in temperate countries, and does not consider landslides consequent upon tree root decay. Twelve paired catchment studies incorporating pre- and post-logging measurements of sediment yield were identified, resulting in forty-three test catchments (including 14 control catchments). Analysis yielded the following principal conclusions: 1) Logging generally provokes maximum annual sediment yields of less than a few hundred t km-2 yr-1; best management practice can reduce this below 100 t km-2 yr-1. 2) At both the annual and event scales, the sediment yield excess of a logged catchment over a control catchment is within one order of magnitude, except with severe ground disturbance. 3) There is no apparent relationship between sediment yield impact and the proportion of catchment logged. The effect depends on which part of the catchment is altered and on its connectivity to the stream network. 4) The majority of catchments delivered their maximum sediment yield in the first two years after logging. The logging impacts were classified in terms of the absolute values of specific sediment yield, the values relative to those in the control catchments for the same period and the values relative both to the control catchment and the pre-logging period. Most studies have been for small catchments (< 10 km2) and temperate regions

  20. Thermodynamic efficiency of learning a rule in neural networks

    NASA Astrophysics Data System (ADS)

    Goldt, Sebastian; Seifert, Udo

    2017-11-01

    Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.

  1. Solubility enhancement of simvastatin by arginine: thermodynamics, solute-solvent interactions, and spectral analysis.

    PubMed

    Meor Mohd Affandi, M M R; Tripathy, Minaketan; Shah, Syed Adnan Ali; Majeed, A B A

    2016-01-01

    We examined the solubility of simvastatin in water in 0.01 mol·dm(-3), 0.02 mol·dm(-3), 0.04 mol·dm(-3), 0.09 mol·dm(-3), 0.18 mol·dm(-3), 0.36 mol·dm(-3), and 0.73 mol·dm(-3) arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute-solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG (0), ΔH (0), ΔS (0), and E s) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute-solvent and solute-cosolute interactions. Further, these systems were analyzed using ultraviolet-visible analysis, Fourier-transform infrared spectroscopy, and (13)C, (1)H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation.

  2. Solubility enhancement of simvastatin by arginine: thermodynamics, solute–solvent interactions, and spectral analysis

    PubMed Central

    Meor Mohd Affandi, MMR; Tripathy, Minaketan; Shah, Syed Adnan Ali; Majeed, ABA

    2016-01-01

    We examined the solubility of simvastatin in water in 0.01 mol·dm−3, 0.02 mol·dm−3, 0.04 mol·dm−3, 0.09 mol·dm−3, 0.18 mol·dm−3, 0.36 mol·dm−3, and 0.73 mol·dm−3 arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute–solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG0, ΔH0, ΔS0, and Es) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute–solvent and solute–cosolute interactions. Further, these systems were analyzed using ultraviolet–visible analysis, Fourier-transform infrared spectroscopy, and 13C, 1H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation. PMID:27041998

  3. Developing and assessing research-based tools for teaching quantum mechanics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin R.

    Research-based tools to educate college students in physics courses from introductory level to graduate level are essential for helping students with a diverse set of goals and backgrounds learn physics. This thesis explores issues related to student common difficulties with some topics in undergraduate quantum mechanics and thermodynamics courses. Student difficulties in learning quantum mechanics and thermodynamics are investigated by administering written tests and surveys to many classes and conducting individual interviews with a subset of students outside the class to unpack the cognitive mechanisms of the difficulties. The quantum mechanics research also focuses on using the research on student difficulties for the development and evaluation of a Quantum Interactive Learning Tutorial (QuILT) to help students learn about the time-dependence of expectation values using the context of Larmor precession of spin and evaluating the role of asking students to self-diagnose their mistakes on midterm examination on their performance on subsequent problem solving. The QuILT on Larmor precession of spin has both paper-pencil activities and a simulation component to help students learn these foundational issues in quantum mechanics. Preliminary evaluations suggest that the QuILT, which strives to help students build a robust knowledge structure of time-dependence of expectation values in quantum mechanics using a guided approach, is successful in helping students learn these topics in the junior-senior level quantum mechanics courses. The technique to help upper-level students in quantum mechanics courses effectively engage in the process of learning from their mistakes is also found to be effective. In particular, research shows that the self-diagnosis activity in upper-level quantum mechanics significantly helps students who are struggling and this activity can reduce the gap between the high and low achieving students on subsequent problem solving. Finally, a survey

  4. Thermodynamics of the clusterization process of cis isomers of unsaturated fatty acids at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Aksenenko, E V; Miller, R

    2009-04-02

    In the framework of the semiempirical PM3 method, the thermodynamic parameters of cis isomers of unsaturated carboxylic acids at the air/water interface are studied. The model systems used are unsaturated cis fatty acid of the composition Delta = 12-15 and omega = 6-11, where Delta and omega refer to the number of carbon atoms between the functional group and double bond, and that between the double bond and methyl group, respectively. For dimers, trimers, and tetramers of the four acid series, the thermodynamic parameters of clusterization are calculated. It is shown that the position of the double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids for equal chain lengths (n = Delta + omega). The calculated results show that for cis unsaturated fatty acid with odd Delta values the spontaneous clusterization threshold corresponds to n = 17-18 carbon atoms in the alkyl chain, while for monounsaturated acids with even Delta values this threshold corresponds to n = 18-19 carbon atoms in the alkyl chain. These differences in the clusterization threshold between the acids with even and odd Delta values are attributed to the formation of additional intermolecular hydrogen bonds between the ketonic oxygen atom of one monomer and the hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with odd Delta values or between the hydroxyl oxygen atom of one monomer and hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with even Delta values. The results obtained in the study agree satisfactorily with our experimental data for cis unsaturated nervonic (Delta15, omega9) and erucic acids (Delta13, omega9), and published data for some fatty acids, namely cis-16-heptadecenoic (Delta16, omega1), cis-9-hexadecenoic (Delta7, omega9), cis-11-eicosenoic (Delta11, omega9) and cis-9-octadecenoic acid (Delta9, omega9).

  5. Thermodynamic limit for coherence-limited solar power conversion

    NASA Astrophysics Data System (ADS)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-09-01

    The spatial coherence of solar beam radiation is a key constraint in solar rectenna conversion. Here, we present a derivation of the thermodynamic limit for coherence-limited solar power conversion - an expansion of Landsberg's elegant basic bound, originally limited to incoherent converters at maximum flux concentration. First, we generalize Landsberg's work to arbitrary concentration and angular confinement. Then we derive how the values are further lowered for coherence-limited converters. The results do not depend on a particular conversion strategy. As such, they pertain to systems that span geometric to physical optics, as well as classical to quantum physics. Our findings indicate promising potential for solar rectenna conversion.

  6. Theoretical Studies of Small-System Thermodynamics in Energetic Materials

    DTIC Science & Technology

    2016-01-06

    SECURITY CLASSIFICATION OF: This is a comprehensive theoretical research program to investigate the fundamental principles of small-system thermodynamics ...a.k.a. nanothermodynamics). The proposed work is motivated by our desire to better understand the fundamental dynamics and thermodynamics of...for Public Release; Distribution Unlimited Final Report: Theoretical Studies of Small-System Thermodynamics in Energetic Materials The views, opinions

  7. Nonequilibrium thermodynamics of dilute polymer solutions in flow.

    PubMed

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M

    2014-11-07

    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.

  8. Teaching Differentials in Thermodynamics Using Spatial Visualization

    ERIC Educational Resources Information Center

    Wang, Chih-Yueh; Hou, Ching-Han

    2012-01-01

    The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…

  9. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  10. Understanding Product Optimization: Kinetic versus Thermodynamic Control.

    ERIC Educational Resources Information Center

    Lin, King-Chuen

    1988-01-01

    Discusses the concept of kinetic versus thermodynamic control of reactions. Explains on the undergraduate level (1) the role of kinetic and thermodynamic control in kinetic equations, (2) the influence of concentration and temperature upon the reaction, and (3) the application of factors one and two to synthetic chemistry. (MVL)

  11. Study of the thermodynamic phase of hydrometeors in convective clouds in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ferreira, W. C.; Correia, A. L.; Martins, J.

    2012-12-01

    Aerosol-cloud interactions are responsible for large uncertainties in climatic models. One key fator when studying clouds perturbed by aerosols is determining the thermodynamic phase of hydrometeors as a function of temperature or height in the cloud. Conventional remote sensing can provide information on the thermodynamic phase of clouds over large areas, but it lacks the precision needed to understand how a single, real cloud evolves. Here we present mappings of the thermodynamic phase of droplets and ice particles in individual convective clouds in the Amazon Basin, by analyzing the emerging infrared radiance on cloud sides (Martins et al., 2011). In flights over the Amazon Basin with a research aircraft Martins et al. (2011) used imaging radiometers with spectral filters to record the emerging radiance on cloud sides at the wavelengths of 2.10 and 2.25 μm. Due to differential absorption and scattering of these wavelengths by hydrometeors in liquid or solid phases, the intensity ratio between images recorded at the two wavelengths can be used as proxy to the thermodynamic phase of these hydrometeors. In order to analyze the acquired dataset we used the MATLAB tools package, developing scripts to handle data files and derive the thermodynamic phase. In some cases parallax effects due to aircraft movement required additional data processing before calculating ratios. Only well illuminated scenes were considered, i.e. images acquired as close as possible to the backscatter vector from the incident solar radiation. It's important to notice that the intensity ratio values corresponding to a given thermodynamic phase can vary from cloud to cloud (Martins et al., 2011), however inside the same cloud the distinction between ice, water and mixed-phase is clear. Analyzing histograms of reflectance ratios 2.10/2.25 μm in selected cases, we found averages typically between 0.3 and 0.4 for ice phase hydrometeors, and between 0.5 and 0.7 for water phase droplets, consistent

  12. Dilational symmetry-breaking in thermodynamics

    NASA Astrophysics Data System (ADS)

    Lin, Chris L.; Ordóñez, Carlos R.

    2017-04-01

    Using thermodynamic relations and dimensional analysis we derive a general formula for the thermodynamical trace 2{ E}-DP for nonrelativistic systems and { E}-DP for relativistic systems, where D is the number of spatial dimensions, in terms of the microscopic scales of the system within the grand canonical ensemble. We demonstrate the formula for several cases, including anomalous systems which develop scales through dimensional transmutation. Using this relation, we make explicit the connection between dimensional analysis and the virial theorem. This paper is focused mainly on the non-relativistic aspects of this relation.

  13. Hydrostatic Stress Effect On the Yield Behavior of Inconel 100

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wilson, Christopher D.

    2002-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has no effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of notched geometries. New experiments and nonlinear finite element analyses (FEA) of Inconel 100 (IN 100) equal-arm bend and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions was performed. In all test cases, the von Mises constitutive model, which is independent of hydrostatic pressure, overestimated the load for a given displacement or strain. Considering the failure displacements or strains, the Drucker-Prager FEMs predicted loads that were 3% to 5% lower than the von Mises values. For the failure loads, the Drucker Prager FEMs predicted strains that were 20% to 35% greater than the von Mises values. The Drucker-Prager yield function seems to more accurately predict the overall specimen response of geometries with significant internal hydrostatic stress influence.

  14. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  15. Thermodynamics with pressure and volume under charged particle absorption

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-11-01

    We investigate the variation of the charged anti-de Sitter black hole under charged particle absorption by considering thermodynamic volume. When the energy of the particle is considered to contribute to the internal energy of the black hole, the variation exactly corresponds to the prediction of the first law of thermodynamics. Nevertheless, we find the decrease of the Bekenstein-Hawking entropy for extremal and near-extremal black holes under the absorption, which is an irreversible process. This violation of the second law of thermodynamics is only found when considering thermodynamic volume. We test the weak cosmic censorship conjecture affected by the violation. Fortunately, the conjecture is still valid, but extremal and near-extremal black holes do not change their configurations when any particle enters the black hole. This result is quite different from the case in which thermodynamic volume is not considered.

  16. Thermodynamics of rock forming crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1971-01-01

    Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

  17. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism

    PubMed Central

    Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron

    2014-01-01

    In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating

  18. Thermodynamics of mixing water with dimethyl sulfoxide, as seen from computer simulations.

    PubMed

    Idrissi, Abdenacer; Marekha, Bogdan; Barj, Mohamed; Jedlovszky, Pál

    2014-07-24

    The Helmholtz free energy, energy, and entropy of mixing of eight different models of dimethyl sulfoxide (DMSO) with four widely used water models are calculated at 298 K over the entire composition range by means of thermodynamic integration along a suitably chosen thermodynamic path, and compared with experimental data. All 32 model combinations considered are able to reproduce the experimental values rather well, within RT (free energy and energy) and R (entropy) at any composition, and quite often the deviation from the experimental data is even smaller, being in the order of the uncertainty of the calculated free energy or energy, and entropy values of 0.1 kJ/mol and 0.1 J/(mol K), respectively. On the other hand, none of the model combinations considered can accurately reproduce all three experimental functions simultaneously. Furthermore, the fact that the entropy of mixing changes sign with increasing DMSO mole fraction is only reproduced by a handful of model pairs. Model combinations that (i) give the best reproduction of the experimental free energy, while still reasonably well reproducing the experimental energy and entropy of mixing, and (ii) that give the best reproduction of the experimental energy and entropy, while still reasonably well reproducing the experimental free energy of mixing, are identified.

  19. Thermodynamics: A Stirling effort

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Parrondo, Juan M. R.

    2012-02-01

    The realization of a single-particle Stirling engine pushes thermodynamics into stochastic territory where fluctuations dominate, and points towards a better understanding of energy transduction at the microscale.

  20. Understanding First Law of Thermodynamics through Activities

    ERIC Educational Resources Information Center

    Pathare, Shirish; Huli, Saurabhee; Ladage, Savita; Pradhan, H. C.

    2018-01-01

    The first law of thermodynamics involves several types of energies and many studies have shown that students lack awareness of them. They have difficulties in applying the law to different thermodynamic processes. These observations were confirmed in our pilot studies, carried out with students from undergraduate colleges across the whole of…

  1. Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution

    PubMed Central

    Woo, Hyung-June; Vijaya Satya, Ravi; Reifman, Jaques

    2012-01-01

    The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions, but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension for Watson-Crick versus mismatched base pairs), replications without enzymes, with ribozymes, and with protein-based polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts in sequence space toward ‘crystallization.’ This region encloses the experimental nonenzymatic fidelity value, favoring evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic fidelity. PMID:22693440

  2. Measuring the Thermodynamics of the Alloy/Scale Interface

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    A method is proposed for the direct measurement of the thermodynamic properties of the alloy and oxide compound at the alloy/scale interface observed during steady-state oxidation. The thermodynamic properties of the alloy/scale interface define the driving force for solid-state transport in the alloy and oxide compound. Accurate knowledge of thermodynamic properties of the interface will advance our understanding of oxidation behavior. The method is based on the concept of local equilibrium and assumes that an alloy+scale equilibrium very closely approximates the alloy/scale interface observed during steady-state oxidation. The thermodynamics activities of this alloy+scale equilibrium are measured directly by Knudsen effusion-cell mass spectrometer (KEMS) using the vapor pressure technique. The theory and some practical considerations of this method are discussed in terms of beta-NiAl oxidation.

  3. The thermodynamic water retention capacity of solutions and gels.

    PubMed

    Borchard, W; Jablonski, P

    2003-01-01

    The thermodynamic water retention capacity (WRC) has been defined and applied to different heterogeneous phase equilibria. This definition includes others known from the literature for testing heterogeneous systems. For the type of a real solution it is shown that at constant values of temperature and pressure the WRC is related to the difference of the chemical potential of water between the original state and the state after having applied a constraint. The dependence of WRC on concentration of a solute is predicted to be described by an e-function which has been experimentally confirmed in the literature.

  4. Factors Affecting Firm Yield and the Estimation of Firm Yield for Selected Streamflow-Dominated Drinking-Water-Supply Reservoirs in Massachusetts

    USGS Publications Warehouse

    Waldron, Marcus C.; Archfield, Stacey A.

    2006-01-01

    Factors affecting reservoir firm yield, as determined by application of the Massachusetts Department of Environmental Protection's Firm Yield Estimator (FYE) model, were evaluated, modified, and tested on 46 streamflow-dominated reservoirs representing 15 Massachusetts drinking-water supplies. The model uses a mass-balance approach to determine the maximum average daily withdrawal rate that can be sustained during a period of record that includes the 1960s drought-of-record. The FYE methodology to estimate streamflow to the reservoir at an ungaged site was tested by simulating streamflow at two streamflow-gaging stations in Massachusetts and comparing the simulated streamflow to the observed streamflow. In general, the FYE-simulated flows agreed well with observed flows. There were substantial deviations from the measured values for extreme high and low flows. A sensitivity analysis determined that the model's streamflow estimates are most sensitive to input values for average annual precipitation, reservoir drainage area, and the soil-retention number-a term that describes the amount of precipitation retained by the soil in the basin. The FYE model currently provides the option of using a 1,000-year synthetic record constructed by randomly sampling 2-year blocks of concurrent streamflow and precipitation records 500 times; however, the synthetic record has the potential to generate records of precipitation and streamflow that do not reflect the worst historical drought in Massachusetts. For reservoirs that do not have periods of drawdown greater than 2 years, the bootstrap does not offer any additional information about the firm yield of a reservoir than the historical record does. For some reservoirs, the use of a synthetic record to determine firm yield resulted in as much as a 30-percent difference between firm-yield values from one simulation to the next. Furthermore, the assumption that the synthetic traces of streamflow are statistically equivalent to the

  5. Upper Limits for Power Yield in Thermal, Chemical, and Electrochemical Systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw

    2010-03-01

    We consider modeling and power optimization of energy converters, such as thermal, solar and chemical engines and fuel cells. Thermodynamic principles lead to expressions for converter's efficiency and generated power. Efficiency equations serve to solve the problems of upgrading or downgrading a resource. Power yield is a cumulative effect in a system consisting of a resource, engines, and an infinite bath. While optimization of steady state systems requires using the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. The primary result of static optimization is the upper limit of power, whereas that of dynamic optimization is a finite-rate counterpart of classical reversible work (exergy). The latter quantity depends on the end state coordinates and a dissipation index, h, which is the Hamiltonian of the problem of minimum entropy production. In reacting systems, an active part of chemical affinity constitutes a major component of the overall efficiency. The theory is also applied to fuel cells regarded as electrochemical flow engines. Enhanced bounds on power yield follow, which are stronger than those predicted by the reversible work potential.

  6. Thermodynamic forces in coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Noid, William

    Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.

  7. Repulsive particles under a general external potential: Thermodynamics by neglecting thermal noise.

    PubMed

    Ribeiro, Mauricio S; Nobre, Fernando D

    2016-08-01

    A recent proposal of an effective temperature θ, conjugated to a generalized entropy s_{q}, typical of nonextensive statistical mechanics, has led to a consistent thermodynamic framework in the case q=2. The proposal was explored for repulsively interacting vortices, currently used for modeling type-II superconductors. In these systems, the variable θ presents values much higher than those of typical room temperatures T, so that the thermal noise can be neglected (T/θ≃0). The whole procedure was developed for an equilibrium state obtained after a sufficiently long-time evolution, associated with a nonlinear Fokker-Planck equation and approached due to a confining external harmonic potential, ϕ(x)=αx^{2}/2 (α>0). Herein, the thermodynamic framework is extended to a quite general confining potential, namely ϕ(x)=α|x|^{z}/z (z>1). It is shown that the main results of the previous analyses hold for any z>1: (i) The definition of the effective temperature θ conjugated to the entropy s_{2}. (ii) The construction of a Carnot cycle, whose efficiency is shown to be η=1-(θ_{2}/θ_{1}), where θ_{1} and θ_{2} are the effective temperatures associated with two isothermal transformations, with θ_{1}>θ_{2}. The special character of the Carnot cycle is indicated by analyzing another cycle that presents an efficiency depending on z. (iii) Applying Legendre transformations for a distinct pair of variables, different thermodynamic potentials are obtained, and furthermore, Maxwell relations and response functions are derived. The present approach shows a consistent thermodynamic framework, suggesting that these results should hold for a general confining potential ϕ(x), increasing the possibility of experimental verifications.

  8. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavatskiy, K. S.

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such thatmore » there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.« less

  9. Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits

    USGS Publications Warehouse

    Hemingway, B.S.

    1982-01-01

    Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.

  10. Thermodynamics of pairing in mesoscopic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumaryada, Tony; Volya, Alexander

    Using numerical and analytical methods implemented for different models, we conduct a systematic study of the thermodynamic properties of pairing correlations in mesoscopic nuclear systems. Various quantities are calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical, and microcanonical ensembles is conducted. The nature of the pairing phase transition in a small system is of a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of the invariant correlational entropy ismore » also studied in the transitional region of interest. The change in the character of the phase transition due to the presence of a magnetic field is discussed along with studies of superconducting thermodynamics.« less

  11. Towards a thermodynamics of active matter.

    PubMed

    Takatori, S C; Brady, J F

    2015-03-01

    Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.

  12. A constitutive model for magnetostriction based on thermodynamic framework

    NASA Astrophysics Data System (ADS)

    Ho, Kwangsoo

    2016-08-01

    This work presents a general framework for the continuum-based formulation of dissipative materials with magneto-mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature.

  13. Simulating maize yield and bomass with spatial variability of soil field capacity

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Trout, Thomas; Nolan, Bernard T.; Malone, Robert W.

    2015-01-01

    Spatial variability in field soil properties is a challenge for system modelers who use single representative values, such as means, for model inputs, rather than their distributions. In this study, the root zone water quality model (RZWQM2) was first calibrated for 4 yr of maize (Zea mays L.) data at six irrigation levels in northern Colorado and then used to study spatial variability of soil field capacity (FC) estimated in 96 plots on maize yield and biomass. The best results were obtained when the crop parameters were fitted along with FCs, with a root mean squared error (RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. When running the model using each of the 96 sets of field-estimated FC values, instead of calibrating FCs, the average simulated yield and biomass from the 96 runs were close to measured values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 for biomass. When an average of the 96 FC values for each soil layer was used, simulated yield and biomass were also acceptable with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for biomass. Therefore, when there are large numbers of FC measurements, an average value might be sufficient for model inputs. However, when the ranges of FC measurements were known for each soil layer, a sampled distribution of FCs using the Latin hypercube sampling (LHS) might be used for model inputs.

  14. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Wright, D. G.; Kretzschmar, H.-J.; Hagen, E.; Herrmann, S.; Span, R.

    2010-02-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  15. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Kretzschmar, H.-J.; Span, R.; Hagen, E.; Wright, D. G.; Herrmann, S.

    2009-10-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as ''sea air'' here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  16. Quantum engine efficiency bound beyond the second law of thermodynamics.

    PubMed

    Niedenzu, Wolfgang; Mukherjee, Victor; Ghosh, Arnab; Kofman, Abraham G; Kurizki, Gershon

    2018-01-11

    According to the second law, the efficiency of cyclic heat engines is limited by the Carnot bound that is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. Quantum engines operating between a thermal and a squeezed-thermal bath have been shown to surpass this bound. Yet, their maximum efficiency cannot be determined by the reversibility condition, which may yield an unachievable efficiency bound above unity. Here we identify the fraction of the exchanged energy between a quantum system and a bath that necessarily causes an entropy change and derive an inequality for this change. This inequality reveals an efficiency bound for quantum engines energised by a non-thermal bath. This bound does not imply reversibility, unless the two baths are thermal. It cannot be solely deduced from the laws of thermodynamics.

  17. Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of substrates into the desired products. However, chemical production titer or yield remains difficult to predict based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S. cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen availability. Results Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical models with numerical and categorical variables to predict production yield. Statistically, the models showed that: 1. Chemical production from central metabolic precursors decreased exponentially with increasing number of enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0); 2. Categorical variables of gene overexpression and knockout improved product yield by 2~4 folds (P-value < 0.1); 3. Addition of notable amount of intermediate precursors or nutrients improved product yield by over five folds (P-value < 0.05); 4. Performing the cultivation in a well-controlled bioreactor enhanced the yield of product by three folds (P-value < 0.05); 5. Contribution of oxygen to product yield was not statistically significant. Yield calculations for various chemicals using the linear model were in fairly good agreement with the experimental values. The model generally underestimated the ethanol production as

  18. Thermodynamic Modeling and Analysis of Human Stress Response

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.

    1999-01-01

    A novel approach based on the second law of thermodynamics is developed to investigate the psychophysiology and quantify human stress level. Two types of stresses (thermal and mental) are examined. A Unified Stress Response Theory (USRT) is developed under the new proposed field of study called Engineering Psychophysiology. The USRT is used to investigate both thermal and mental stresses from a holistic (human body as a whole) and thermodynamic viewpoint. The original concepts and definitions are established as postulates which form the basis for thermodynamic approach to quantify human stress level. An Objective Thermal Stress Index (OTSI) is developed by applying the second law of thermodynamics to the human thermal system to quantify thermal stress or dis- comfort in the human body. The human thermal model based on finite element method is implemented. It is utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal stress responses under different environmental conditions. An innovative hybrid technique is developed to analyze human thermal behavior based on series of human-environment interaction simulations. Continuous monitoring of thermal stress is demonstrated with the help of OTSI. It is well established that the human thermal system obeys the second law of thermodynamics. Further, the OTSI is validated against the experimental data. Regarding mental stress, an Objective Mental Stress Index (OMSI) is developed by applying the Maxwell relations of thermodynamics to the combined thermal and cardiovascular system in the human body. The OMSI is utilized to demonstrate the technique of monitoring mental stress continuously and is validated with the help of series of experimental studies. Although the OMSI indicates the level of mental stress, it provides a strong thermodynamic and mathematical relationship between activities of thermal and cardiovascular systems of the human body.

  19. Molecular structures and thermodynamic properties of monohydrated gaseous iodine compounds: Modelling for severe accident simulation

    NASA Astrophysics Data System (ADS)

    Sudolská, Mária; Cantrel, Laurent; Budzák, Šimon; Černušák, Ivan

    2014-03-01

    Monohydrated complexes of iodine species (I, I2, HI, and HOI) have been studied by correlated ab initio calculations. The standard enthalpies of formation, Gibbs free energy and the temperature dependence of the heat capacities at constant pressure were calculated. The values obtained have been implemented in ASTEC nuclear accident simulation software to check the thermodynamic stability of hydrated iodine compounds in the reactor coolant system and in the nuclear containment building of a pressurised water reactor during a severe accident. It can be concluded that iodine complexes are thermodynamically unstable by means of positive Gibbs free energies and would be represented by trace level concentrations in severe accident conditions; thus it is well justified to only consider pure iodine species and not hydrated forms.

  20. HPLC retention thermodynamics of grape and wine tannins.

    PubMed

    Barak, Jennifer A; Kennedy, James A

    2013-05-08

    The effect of grape and wine tannin structure on retention thermodynamics under reversed-phase high-performance liquid chromatography conditions on a polystyrene divinylbenzene column was investigated. On the basis of retention response to temperature, an alternative retention factor was developed to approximate the combined temperature response of the complex, unresolvable tannin mixture. This alternative retention factor was based upon relative tannin peak areas separated by an abrupt change in solvent gradient. Using this alternative retention factor, retention thermodynamics were calculated. Van't Hoff relationships of the natural log of the alternative retention factor against temperature followed Kirchoff's relationship. An inverse quadratic equation was fit to the data, and from this the thermodynamic parameters for tannin retention were calculated. All tannin fractions exhibited exothermic, spontaneous interaction, with enthalpy-entropy compensation observed. Normalizing for tannin size, distinct tannin compositional effects on thermodynamic parameters were observed. The results of this study indicate that HPLC can be valuable for measuring the thermodynamics of tannin interaction with a hydrophobic surface and provides a potentially valuable alternative to calorimetry. Furthermore, the information gathered may provide insight into understanding red wine astringency quality.

  1. Thermodynamics of finite systems: a key issues review

    NASA Astrophysics Data System (ADS)

    Swendsen, Robert H.

    2018-07-01

    A little over ten years ago, Campisi, and Dunkel and Hilbert, published papers claiming that the Gibbs (volume) entropy of a classical system was correct, and that the Boltzmann (surface) entropy was not. They claimed further that the quantum version of the Gibbs entropy was also correct, and that the phenomenon of negative temperatures was thermodynamically inconsistent. Their work began a vigorous debate of exactly how the entropy, both classical and quantum, should be defined. The debate has called into question the basis of thermodynamics, along with fundamental ideas such as whether heat always flows from hot to cold. The purpose of this paper is to sum up the present status—admittedly from my point of view. I will show that standard thermodynamics, with some minor generalizations, is correct, and the alternative thermodynamics suggested by Hilbert, Hänggi, and Dunkel is not. Heat does not flow from cold to hot. Negative temperatures are thermodynamically consistent. The small ‘errors’ in the Boltzmann entropy that started the whole debate are shown to be a consequence of the micro-canonical assumption of an energy distribution of zero width. Improved expressions for the entropy are found when this assumption is abandoned.

  2. First-order irreversible thermodynamic approach to a simple energy converter

    NASA Astrophysics Data System (ADS)

    Arias-Hernandez, L. A.; Angulo-Brown, F.; Paez-Hernandez, R. T.

    2008-01-01

    Several authors have shown that dissipative thermal cycle models based on finite-time thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of first-order irreversible thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function versus efficiency. In a previous work Stucki [J. W. Stucki, Eur. J. Biochem. 109, 269 (1980)] used a FOIT approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in adenosine triphosphate (ATP) synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state at both minimum entropy production and maximum efficiency simultaneously, by means of a conductance matching condition between extreme states of zero and infinite conductances, respectively. In the present work we show that all Stucki’s results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting of the simultaneous maximization of both the so-called ecological function and the efficiency.

  3. Surface Tension: Mechanics, Thermodynamics, and Relaxation Times

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-06-01

    A microscopic analysis is presented of the existing definitions of equilibrium surface tension, which can be divided into two types: mechanical and thermodynamic. Each type of definition can be studied from the presentation below according to thermodynamic hypotheses or molecular calculations. An analysis of the planar interface is given and its generalization for curved (spherical) interfaces is considered. The distinction between approaches describing the surface tension of metastable and equilibrium droplets is discussed. Based on nonequilibrium thermodynamics, it is shown that the introduction of metastable droplets is due to a violation of the relationship between the times of impulse and chemical potential relaxation in condensed phases. Problems of calculating the surface tension in nonequilibrium situations are created.

  4. Cyanide and antimony thermodynamic database for the aqueous species and solids for the EPA-MINTEQ geochemical code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehmel, G.A.

    1989-05-01

    Thermodynamic data for aqueous species and solids that contain cyanide and antimony were tabulated from several commonly accepted, published sources of thermodynamic data and recent journal article. The review does not include gases or organic complexes of either antimony or cyanide, nor does the review include the sulfur compounds of cyanide. The basic thermodynamic data, ..delta..G/sub f,298//sup o/, ..delta..H/sub f,298//sup o/, and S/sub f//sup o/ values, were chosen to represent each solid phase and aqueous species for which data were available in the appropriate standard state. From these data the equilibrium constants (log K/sub r,298//sup o/) and enthalpies of reactionmore » (..delta..H/sub r,298//sup o/) at 298 K (25/degree/C) were calculated for reactions involving the formation of these aqueous species and solids from the basic components. 34 refs., 14 tabs.« less

  5. Hamiltonian thermodynamics of three-dimensional dilatonic black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-08-15

    The action for a class of three-dimensional dilaton-gravity theories with a negative cosmological constant can be recast in a Brans-Dicke type action, with its free {omega} parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3). The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcationmore » 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with one pair of canonical coordinates (M,P{sub M}), M being the mass parameter and P{sub M} its conjugate momenta The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the canonical ensemble is obtained. The black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less

  6. Research update: Yield and nutritive value of photoperiod-sensitive sorghum and sorghum-sudangrass

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the yield of photoperiod-sensitive forage sorghum and sorghum-sudangrass against non-photoperiod-sensitive sorghum, sorghum-sudangrass, or corn silage. Forages were planted on two dates at two locations (Marshfield and Hancock, WI). Results suggested some ...

  7. Thermodynamical stability of FRW models with quintessence

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ashraf, Sara

    2018-03-01

    In this paper, we study the thermodynamic stability of quintessence in the background of homogeneous and isotropic universe model. For the evolutionary picture, we consider two different forms of potentials and investigate the behavior of different physical parameters. We conclude that the quintessence model expands adiabatically and this expansion is thermodynamically stable for both potentials with suitable model parameters.

  8. A Comparison of Yield Studies of Slash Pine in Old-Field Plantations

    Treesearch

    F.A. Bennett; R. L. Barnes; J.L. Clutter; C.E. McGee

    1970-01-01

    This report compares three yield studies of slash pine in old-field plantation. Similarities and differences in yield are disccssed. Within the range of sample data common to all studies, yield estimates are similar; major difierences occur only in extrapolated values.

  9. On Teaching Thermodynamics

    ERIC Educational Resources Information Center

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  10. M[superscript 2+]•EDTA Binding Affinities: A Modern Experiment in Thermodynamics for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    O'Brien, Leah C.; Root, Hannah B.; Wei, Chin-Chuan; Jensen, Drake; Shabestary, Nahid; De Meo, Cristina; Eder, Douglas J.

    2015-01-01

    Isothermal titration calorimetry was used to experimentally determine thermodynamic values for the ethylenediaminetetraacetic acid (EDTA)(aq) + M[superscript 2+](aq) reactions (M[superscript 2+] = Ca[superscript 2+] and Mg[superscript 2+]). Students showed that for reactions in a N-(2-hydroxyethyl)piperazine-N"-ethanesulfonic acid (HEPES)…

  11. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.

    PubMed

    Desgranges, Caroline; Delhommelle, Jerome

    2015-11-10

    Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.

  12. Fission yield and criticality excursion code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    2000-06-30

    The ANSI/ANS 8.3 standard allows a maximum yield not to exceed 2 x 10 fissions to calculate requiring the alarm system to be effective. It is common practice to use this allowance or to develop some other yield based on past criticality accident history or excursion experiments. The literature on the subject of yields discusses maximum yields larger and somewhat smaller than the ANS 8.3 permissive value. The ability to model criticality excursions and vary the various parameters to determine a credible maximum yield for operational specific cases has been available for some time but is not in common usemore » by criticality safety specialists. The topic of yields for various solution, metal, oxide powders, etc. in various geometry's and containers has been published by laboratory specialists or university staff and students for many decades but have not been available to practitioners. The need for best-estimate calculations of fission yields with a well-validated criticality excursion code has long been recognized. But no coordinated effort has been made so far to develop a generalized and well-validated excursion code for different types of systems. In this paper, the current practices to estimate fission yields are summarized along with its shortcomings for the 12-Rad zone (at SRS) and Criticality Alarm System (CAS) calculations. Finally the need for a user-friendly excursion code is reemphasized.« less

  13. Thermodynamics of the variable modified Chaplygin gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panigrahi, D.; Chatterjee, S., E-mail: dibyendupanigrahi@yahoo.co.in, E-mail: chat_sujit1@yahoo.com

    A cosmological model with a new variant of Chaplygin gas obeying an equation of state (EoS), P = A ρ − B /ρ{sup α} where B = B {sub 0} a {sup n} is investigated in the context of its thermodynamical behaviour. Here B {sub 0} and n are constants and a is the scale factor. We show that the equation of state of this 'Variable Modified Chaplygin gas' (VMCG) can describe the current accelerated expansion of the universe. Following standard thermodynamical criteria we mainly discuss the classical thermodynamical stability of the model and find that the new parameter, nmore » introduced in VMCG plays a crucial role in determining the stability considerations and should always be negative. We further observe that although the earlier model of Lu explains many of the current observational findings of different probes it fails the desirable tests of thermodynamical stability. We also note that for 0 n < our model points to a phantom type of expansion which, however, is found to be compatible with current SNe Ia observations and CMB anisotropy measurements. Further the third law of thermodynamics is obeyed in our case. Our model is very general in the sense that many of earlier works in this field may be obtained as a special case of our solution. An interesting point to note is that the model also apparently suggests a smooth transition from the big bang to the big rip in its whole evaluation process.« less

  14. Thermodynamic properties of potassium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  15. Student Opinions and Perceptions of Undergraduate Thermodynamics Courses in Engineering

    ERIC Educational Resources Information Center

    Ugursal, V. Ismet; Cruickshank, Cynthia A.

    2015-01-01

    Thermodynamics is a fundamental foundation of all engineering disciplines. A vast majority of engineering undergraduate programmes contain one or more courses on thermodynamics, and many engineers use thermodynamics every day to analyse or design energy systems. However, there is extensive anecdotal evidence as well as a wide range of published…

  16. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  17. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.

    PubMed

    Ge, Hao; Qian, Hong

    2013-06-01

    Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic kinetics. We provide a solution to this problem using insights from studies of molecular motors in a chemical nonequilibrium steady state (NESS) with sustained external drive through a regenerating system or in a quasisteady state (QSS) with an excess amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). We introduce the key notion of minimal work that is needed, W(min), for the external regenerating system to sustain a NESS (e.g., maintaining constant concentrations of ATP, ADP and Pi for a molecular motor). Using a Markov (master-equation) description of a motor protein, we illustrate that the NESS and QSS have identical kinetics as well as the second law in terms of the same positive entropy production rate. The heat dissipation of a NESS without mechanical output is exactly the W(min). This provides a justification for introducing an ideal external regenerating system and yields a free-energy balance equation between the net free-energy input F(in) and total dissipation F(dis) in an NESS: F(in) consists of chemical input minus mechanical output; F(dis) consists of dissipative heat, i.e. the amount of useful energy becoming heat, which also equals the NESS entropy production. Furthermore, we show that for nonstationary systems, the F(dis) and F(in) correspond to the entropy production rate and housekeeping heat in stochastic thermodynamics and identify a relative entropy H as a generalized free energy. We reach a new formulation of Markovian nonequilibrium thermodynamics based on only the internal kinetic equation without further

  18. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the workmore » the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.« less

  19. Stochastic control and the second law of thermodynamics

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Willems, J. C.

    1979-01-01

    The second law of thermodynamics is studied from the point of view of stochastic control theory. We find that the feedback control laws which are of interest are those which depend only on average values, and not on sample path behavior. We are lead to a criterion which, when satisfied, permits one to assign a temperature to a stochastic system in such a way as to have Carnot cycles be the optimal trajectories of optimal control problems. Entropy is also defined and we are able to prove an equipartition of energy theorem using this definition of temperature. Our formulation allows one to treat irreversibility in a quite natural and completely precise way.

  20. Thermodynamic properties for arsenic minerals and aqueous species

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Majzlan, Juraj; Königsberger, Erich; Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, D. Kirk; Majzlan, Juraj

    2014-01-01

    Quantitative geochemical calculations are not possible without thermodynamic databases and considerable advances in the quantity and quality of these databases have been made since the early days of Lewis and Randall (1923), Latimer (1952), and Rossini et al. (1952). Oelkers et al. (2009) wrote, “The creation of thermodynamic databases may be one of the greatest advances in the field of geochemistry of the last century.” Thermodynamic data have been used for basic research needs and for a countless variety of applications in hazardous waste management and policy making (Zhu and Anderson 2002; Nordstrom and Archer 2003; Bethke 2008; Oelkers and Schott 2009). The challenge today is to evaluate thermodynamic data for internal consistency, to reach a better consensus of the most reliable properties, to determine the degree of certainty needed for geochemical modeling, and to agree on priorities for further measurements and evaluations.

  1. Thermodynamics and kinetics of cyanidin 3-glucoside and caffeine copigments.

    PubMed

    Limón, Piedad M; Gavara, Raquel; Pina, Fernando

    2013-06-05

    The multiequilibrium system of reactions of cyanidin 3-glucoside at acidic and mildly acidic pH values was studied in the presence of caffeine as a copigment. The thermodynamic and kinetic constants were determined using the so-called direct and reverse pH jump experiments that were followed by conventional UV-vis spectroscopy or stopped flow coupled to a UV-vis detector, depending on the rate of the monitored process. Compared with that of free anthocyanin, the copigmentation with caffeine extends the domain of the flavylium cation up to less acidic pH values, while in a moderately acidic medium, the quinoidal base becomes more stabilized. As a consequence, the hydration to give the colorless hemiketal is difficult over the entire range of pH values. At pH 1, two adducts were found for the flavylium cation-caffeine interaction, with stoichiometries of 1:1 and 1:2 and association constants of 161 M⁻¹ (K₁) and 21 M⁻¹ (K₂), respectively.

  2. Thermodynamic Functions of Yttrium Trifluoride and Its Dimer in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Osina, E. L.; Kovtun, D. M.

    2018-05-01

    New calculations of the functions for YF3 and Y2F6 in the gas phase using quantum-chemical calculations by MP2 and CCSD(T) methods are performed in connection with the ongoing work on obtaining reliable thermodynamic data of yttrium halides. The obtained values are entered in the database of the IVTANTERMO software complex. Equations approximating the temperature dependence of the reduced Gibbs energy in the T = 298.15-6000 K range of temperatures are presented.

  3. Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid n-hexadecane under shear.

    PubMed

    Tseng, Huan-Chang; Chang, Rong-Yeu; Wu, Jiann-Shing

    2011-01-28

    Extensive computer experiments have been conducted in order to shed light on the macroscopic shear flow behavior of liquid n-hexadecane fluid under isobaric-isothermal conditions through the nonequilibrium molecular dynamic methodology. With respect to shear rates, the accompanying variations in structural properties of the fluid span the microscopic range of understanding from the intrinsic to extrinsic characteristics. As drawn from the average value of bond length and bond angle, the distribution of dihedral angle, and the radius distribution function of intramolecular and intermolecular van der Waals distances, these intrinsic structures change with hardness, except in the situation of extreme shear rates. The shear-induced variation of thermodynamic state curve along with the shear rate studied is shown to consist of both the quasiequilibrium state plateau and the nonequilibrium-thermodynamic state slope. Significantly, the occurrence of nonequilibrium-thermodynamic state behavior is attributed to variations in molecular potential energies, which include bond stretching, bond bending, bond torsion, and intra- and intermolecular van der Waals interactions. To unfold the physical representation of extrinsic structural deformation, under the aggressive influence of a shear flow field, the molecular dimension and appearance can be directly described via the squared radius of gyration and the sphericity angle, R(g)(2) and ϕ, respectively. In addition, a specific orientational order S(x) defines the alignment of the molecules with the flow direction of the x-axis. As a result, at low shear rates, the overall molecules are slightly stretched and shaped in a manner that is increasingly ellipsoidal. Simultaneously, there is an obvious enhancement in the order. In contrast to high shear rates, the molecules spontaneously shrink themselves with a decreased value of R(g)(2), while their shape and order barely vary with an infinite value of ϕ and S(x). It is important to

  4. A Tractable Disequilbrium Framework for Integrating Computational Thermodynamics and Geodynamics

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; Tweed, L. E. L.; Evans, O.; Kelemen, P. B.; Wilson, C. R.

    2017-12-01

    The consistent integration of computational thermodynamics and geodynamics is essential for exploring and understanding a wide range of processes from high-PT magma dynamics in the convecting mantle to low-PT reactive alteration of the brittle crust. Nevertheless, considerable challenges remain for coupling thermodynamics and fluid-solid mechanics within computationally tractable and insightful models. Here we report on a new effort, part of the ENKI project, that provides a roadmap for developing flexible geodynamic models of varying complexity that are thermodynamically consistent with established thermodynamic models. The basic theory is derived from the disequilibrium thermodynamics of De Groot and Mazur (1984), similar to Rudge et. al (2011, GJI), but extends that theory to include more general rheologies, multiple solid (and liquid) phases and explicit chemical reactions to describe interphase exchange. Specifying stoichiometric reactions clearly defines the compositions of reactants and products and allows the affinity of each reaction (A = -Δ/Gr) to be used as a scalar measure of disequilibrium. This approach only requires thermodynamic models to return chemical potentials of all components and phases (as well as thermodynamic quantities for each phase e.g. densities, heat capacity, entropies), but is not constrained to be in thermodynamic equilibrium. Allowing meta-stable phases mitigates some of the computational issues involved with the introduction and exhaustion of phases. Nevertheless, for closed systems, these problems are guaranteed to evolve to the same equilibria predicted by equilibrium thermodynamics. Here we illustrate the behavior of this theory for a range of simple problems (constructed with our open-source model builder TerraFERMA) that model poro-viscous behavior in the well understood Fo-Fa binary phase loop. Other contributions in this session will explore a range of models with more petrologically interesting phase diagrams as well as

  5. Enthalpies of formation of Cd–Pr intermetallic compounds and thermodynamic assessment of the Cd–Pr system

    PubMed Central

    Reichmann, Thomas L.; Richter, Klaus W.; Delsante, Simona; Borzone, Gabriella; Ipser, Herbert

    2014-01-01

    In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of Cd2Pr, Cd3Pr, Cd58Pr13 and Cd6Pr. The corresponding values were determined to be −46.0, −38.8, −35.2 and −24.7 kJ/mol(at), respectively. These data together with thermodynamic data and phase diagram information from literature served as input data for a CALPHAD-type optimization of the Cd–Pr phase diagram. The complete composition range could be described precisely with the present models, both with respect to phase equilibria as well as to thermodynamic input data. The thermodynamic parameters of all intermetallic compounds were modelled following Neumann–Kopp rule. Temperature dependent contributions to the individual Gibbs energies were used for all compounds. Extended solid solubilities are well described for the low- and high-temperature modifications of Pr and also for the intermetallic compound CdPr. A quite good agreement with all viable data available from literature was found and is presented. PMID:25540475

  6. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  7. Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Lane, Terran

    2010-01-01

    An algorithm was developed to generate crop yield predictions from orbital remote sensing observations, by analyzing thousands of pixels per county and the associated historical crop yield data for those counties. The algorithm determines which pixels contain which crop. Since each known yield value is associated with thousands of individual pixels, this is a multiple instance learning problem. Because individual crop growth is related to the resulting yield, this relationship has been leveraged to identify pixels that are individually related to corn, wheat, cotton, and soybean yield. Those that have the strongest relationship to a given crop s yield values are most likely to contain fields with that crop. Remote sensing time series data (a new observation every 8 days) was examined for each pixel, which contains information for that pixel s growth curve, peak greenness, and other relevant features. An alternating-projection (AP) technique was used to first estimate the "salience" of each pixel, with respect to the given target (crop yield), and then those estimates were used to build a regression model that relates input data (remote sensing observations) to the target. This is achieved by constructing an exemplar for each crop in each county that is a weighted average of all the pixels within the county; the pixels are weighted according to the salience values. The new regression model estimate then informs the next estimate of the salience values. By iterating between these two steps, the algorithm converges to a stable estimate of both the salience of each pixel and the regression model. The salience values indicate which pixels are most relevant to each crop under consideration.

  8. Continuity and boundary conditions in thermodynamics: From Carnot's efficiency to efficiencies at maximum power

    NASA Astrophysics Data System (ADS)

    Ouerdane, H.; Apertet, Y.; Goupil, C.; Lecoeur, Ph.

    2015-07-01

    Classical equilibrium thermodynamics is a theory of principles, which was built from empirical knowledge and debates on the nature and the use of heat as a means to produce motive power. By the beginning of the 20th century, the principles of thermodynamics were summarized into the so-called four laws, which were, as it turns out, definitive negative answers to the doomed quests for perpetual motion machines. As a matter of fact, one result of Sadi Carnot's work was precisely that the heat-to-work conversion process is fundamentally limited; as such, it is considered as a first version of the second law of thermodynamics. Although it was derived from Carnot's unrealistic model, the upper bound on the thermodynamic conversion efficiency, known as the Carnot efficiency, became a paradigm as the next target after the failure of the perpetual motion ideal. In the 1950's, Jacques Yvon published a conference paper containing the necessary ingredients for a new class of models, and even a formula, not so different from that of Carnot's efficiency, which later would become the new efficiency reference. Yvon's first analysis of a model of engine producing power, connected to heat source and sink through heat exchangers, went fairly unnoticed for twenty years, until Frank Curzon and Boye Ahlborn published their pedagogical paper about the effect of finite heat transfer on output power limitation and their derivation of the efficiency at maximum power, now mostly known as the Curzon-Ahlborn (CA) efficiency. The notion of finite rate explicitly introduced time in thermodynamics, and its significance cannot be overlooked as shown by the wealth of works devoted to what is now known as finite-time thermodynamics since the end of the 1970's. The favorable comparison of the CA efficiency to actual values led many to consider it as a universal upper bound for real heat engines, but things are not so straightforward that a simple formula may account for a variety of situations. The

  9. Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects.

    PubMed

    Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet

    2010-10-24

    Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary

  10. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  11. Assessing potential sustainable wood yield

    Treesearch

    Robert F. Powers

    2001-01-01

    Society is making unprecedented demands on world forests to produce and sustain many values. Chief among them is wood supply, and concerns are rising globally about the ability of forests to meet increasing needs. Assessing this is not easy. It requires a basic understanding of the principles governing forest productivity: how wood yield varies with tree and stand...

  12. Thermodynamics of Sultana-Dyer black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@mail.huji.ac.il

    The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies themore » first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity.« less

  13. Thermodynamic Investigation of the Interaction between Polymer and Gases

    NASA Astrophysics Data System (ADS)

    Mahmood, Syed Hassan

    This thesis investigates the interaction between blowing agents and polymer matrix. Existing theoretical model was further developed to accommodate the polymer and blowing agent under study. The obtained results are not only useful for the optimization of the plastic foam fabrication process but also provides a different approach to usage of blowing agents. A magnetic suspension balance and an in-house visualizing dilatometer were used to obtain the sorption of blowing agents in polymer melts under elevated temperature and pressure. The proposed theoretical approach based on the thermodynamic model of SS-EOS is applied to understand the interaction of blowing agents with the polymer melt and one another (in the case of blend blowing agent). An in-depth study of the interaction of a blend of CO2 and DME with PS was conducted. Experimental volume swelling of the blend/PS mixture was measured and compared to the theoretical volume swelling obtained via ternary based SS-EOS, insuring the models validity. The effect of plasticization due to dissolution of DME on the solubility of CO2 in PS was then investigated by utilizing the aforementioned model. It was noted that the dissolution of DME increased the concentration of CO2 in PS and lowering the saturation pressure needed to dissolved a certain amount of CO2 in PS melt. The phenomenon of retrograde vitrification in PMMA induced due dissolution of CO2 was investigated in light of the thermodynamic properties resulting from the interaction of polymer and blowing agent. Solubility and volume swelling were measured in the pressure and temperature ranges promoting vitrification phenomenon, with relation being established between the thermodynamic properties and the vitrification process. Foaming of PMMA was conducted at various temperature values to investigate the application of this phenomenon.

  14. Resilience: the viewpoint of modern thermodynamics and information theory

    NASA Astrophysics Data System (ADS)

    Mazzorana, Bruno

    2015-04-01

    Understanding, qualifying and quantifying resilience as the system's effective performance and reserve capacity is an essential need for implementing effective and efficient risk mitigation strategies; in particular if possible synergies between different mitigation alternatives, such as active and passive measures, should be achieved. Relevant progress has recently been made in explaining the phenomenon of adaptation from the standpoint of physics, thereby delineating the difference is in terms of physical properties between something that is well-adapted to its surrounding environment, and something that is not (England, 2013). In this context the specific role of the second law of thermodynamics could be clarified (Schneider and Kay, 1994) and the added value of information theory could be illustrated (Ulanowicz, 2009). According to these findings Ecosystems resilience in response to a disturbance is a balancing act between system's effective performance and its reserve capacity. By extending this string of argumentation, the universe of discourse encompassing the concept of resilience of socio-ecologic systems impacted by natural hazard processes, is enriched by relevant implications derived from fundamental notions of modern thermodynamics and information theory. Metrics, meant to gauge ecosystems robustness in terms of the tradeoff allotment between systems effective performance and its beneficial reserve capacities developed by Ulanowicz (2009), are reviewed and their transferability to the natural hazard risk research domain is thoroughly discussed. The derived knowledge can be explored to identify priorities for action towards an increased institutional resilience. References: England, J. L. 2013. Statistical Physics of self-replication." J. Chem. Phys., 139, 121923. Schneider, E.D., Kay, J.J. 1994. Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling, Vol 19, No.6-8. Ulanowicz, R.E. 2009. Increasing entropy

  15. Non-local thermodynamic equilibrium 1.5D modeling of red giant stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Mitchell E.; Short, C. Ian, E-mail: myoung@ap.smu.ca

    Spectra for two-dimensional (2D) stars in the 1.5D approximation are created from synthetic spectra of one-dimensional (1D) non-local thermodynamic equilibrium (NLTE) spherical model atmospheres produced by the PHOENIX code. The 1.5D stars have the spatially averaged Rayleigh-Jeans flux of a K3-4 III star while varying the temperature difference between the two 1D component models (ΔT {sub 1.5D}) and the relative surface area covered. Synthetic observable quantities from the 1.5D stars are fitted with quantities from NLTE and local thermodynamic equilibrium (LTE) 1D models to assess the errors in inferred T {sub eff} values from assuming horizontal homogeneity and LTE. Fivemore » different quantities are fit to determine the T {sub eff} of the 1.5D stars: UBVRI photometric colors, absolute surface flux spectral energy distributions (SEDs), relative SEDs, continuum normalized spectra, and TiO band profiles. In all cases except the TiO band profiles, the inferred T {sub eff} value increases with increasing ΔT {sub 1.5D}. In all cases, the inferred T {sub eff} value from fitting 1D LTE quantities is higher than from fitting 1D NLTE quantities and is approximately constant as a function of ΔT {sub 1.5D} within each case. The difference between LTE and NLTE for the TiO bands is caused indirectly by the NLTE temperature structure of the upper atmosphere, as the bands are computed in LTE. We conclude that the difference between T {sub eff} values derived from NLTE and LTE modeling is relatively insensitive to the degree of the horizontal inhomogeneity of the star being modeled and largely depends on the observable quantity being fit.« less

  16. Consistent thermodynamic framework for interacting particles by neglecting thermal noise.

    PubMed

    Nobre, Fernando D; Curado, Evaldo M F; Souza, Andre M C; Andrade, Roberto F S

    2015-02-01

    An effective temperature θ, conjugated to a generalized entropy s(q), was introduced recently for a system of interacting particles. Since θ presents values much higher than those of typical room temperatures T≪θ, the thermal noise can be neglected (T/θ≃0) in these systems. Moreover, the consistency of this definition, as well as of a form analogous to the first law of thermodynamics, du=θds(q)+δW, were verified lately by means of a Carnot cycle, whose efficiency was shown to present the usual form, η=1-(θ(2)/θ(1)). Herein we explore further the heat contribution δQ=θds(q) by proposing a way for a heat exchange between two such systems, as well as its associated thermal equilibrium. As a consequence, the zeroth principle is also established. Moreover, we consolidate the first-law proposal by following the usual procedure for obtaining different potentials, i.e., applying Legendre transformations for distinct pairs of independent variables. From these potentials we derive the equation of state, Maxwell relations, and define response functions. All results presented are shown to be consistent with those of standard thermodynamics for T>0.

  17. Inferring thermodynamic stability relationship of polymorphs from melting data.

    PubMed

    Yu, L

    1995-08-01

    This study investigates the possibility of inferring the thermodynamic stability relationship of polymorphs from their melting data. Thermodynamic formulas are derived for calculating the Gibbs free energy difference (delta G) between two polymorphs and its temperature slope from mainly the temperatures and heats of melting. This information is then used to estimate delta G, thus relative stability, at other temperatures by extrapolation. Both linear and nonlinear extrapolations are considered. Extrapolating delta G to zero gives an estimation of the transition (or virtual transition) temperature, from which the presence of monotropy or enantiotropy is inferred. This procedure is analogous to the use of solubility data measured near the ambient temperature to estimate a transition point at higher temperature. For several systems examined, the two methods are in good agreement. The qualitative rule introduced this way for inferring the presence of monotropy or enantiotropy is approximately the same as The Heat of Fusion Rule introduced previously on a statistical mechanical basis. This method is applied to 96 pairs of polymorphs from the literature. In most cases, the result agrees with the previous determination. The deviation of the calculated transition temperatures from their previous values (n = 18) is 2% on average and 7% at maximum.

  18. Thermodynamic Characteristics of Reactions of the Formation of Complexes between Triglycine and Ni2+ Ions in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.; Bychkova, S. A.

    2018-05-01

    Thermal effects of reactions of the formation of complexes between Ni(II) and triglycine are determined via direct calorimetry in aqueous solutions at 298.15 K and ionic strengths of 0.2, 0.5, and 1.0 (KNO3). Standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°) of complexing processes in the investigated systems are calculated. The structures of triglycinate complexes NiL+, NiH-1L, NiL2, NiH-2L2- 2, NiL- 3, and NiH-3L4- 3 are introduced to compare the obtained values and data on the thermodynamics of triglycinate complexes of Ni(II).

  19. Thermodynamic behavior of glassy state of structurally related compounds.

    PubMed

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  20. The connection between logical and thermodynamic irreversibility

    NASA Astrophysics Data System (ADS)

    Ladyman, James; Presnell, Stuart; Short, Anthony J.; Groisman, Berry

    There has recently been a good deal of controversy about Landauer's Principle, which is often stated as follows: the erasure of one bit of information in a computational device is necessarily accompanied by a generation of kT ln 2 heat. This is often generalised to the claim that any logically irreversible operation cannot be implemented in a thermodynamically reversible way. Norton [2005. Eaters of the lotus: Landauer's principle and the return of Maxwell's demon. Studies in History and Philosophy of Modern Physics, 36, 375-411] and Maroney [2005. The (absence of a) relationship between thermodynamic and logical reversibility. Studies in History and Philosophy of Modern Physics, 36, 355-374] both argue that Landauer's Principle has not been shown to hold in general, and Maroney offers a method that he claims instantiates the operation Reset in a thermodynamically reversible way. In this paper we defend the qualitative form of Landauer's Principle, and clarify its quantitative consequences (assuming the second law of thermodynamics). We analyse in detail what it means for a physical system to implement a logical transformation L, and we make this precise by defining the notion of an L-machine. Then we show that logical irreversibility of L implies thermodynamic irreversibility of every corresponding L-machine. We do this in two ways. First, by assuming the phenomenological validity of the Kelvin statement of the second law, and second, by using information-theoretic reasoning. We illustrate our results with the example of the logical transformation 'Reset', and thereby recover the quantitative form of Landauer's Principle.