Sample records for yield yield components

  1. Impact of heterozygosity and heterogeneity on cotton lint yield stability: II. Lint yield components

    USDA-ARS?s Scientific Manuscript database

    In order to determine which yield components may contribute to yield stability, an 18-environment field study was undertaken to observe the mean, standard deviation (SD), and coefficient of variation (CV) for cotton lint yield components in population types that differed for lint yield stability. Th...

  2. Heterosis and correlation in interspecific and intraspecific hybrids of cotton.

    PubMed

    Munir, S; Hussain, S B; Manzoor, H; Quereshi, M K; Zubair, M; Nouman, W; Shehzad, A N; Rasul, S; Manzoor, S A

    2016-06-24

    Interspecific and intraspecific hybrids show varying degrees of heterosis for yield and yield components. Yield-component traits have complex genetic relationships with each other. To determine the relationship of yield-component traits and fiber traits with seed cotton yield, six lines (Bt. CIM-599, CIM-573, MNH-786, CIM-554, BH-167, and GIZA-7) and three test lines (MNH-886, V4, and CIM-557) were crossed in a line x tester mating design. Heterosis was observed for seed cotton yield, fiber traits, and for other yield-component traits. Heterosis in interspecific hybrids for seed cotton yield was more prominent than in intraspecific hybrids. The interspecific hybrid Giza-7 x MNH-886 had the highest heterosis (114.77), while among intraspecific hybrids, CIM-554 x CIM-557 had the highest heterosis (61.29) for seed cotton yield. A major trait contributing to seed cotton yield was bolls/plant followed by boll weight. Correlation studies revealed that bolls/plant, boll weight, lint weight/boll, lint index, seed index, lint/seed, staple length, and staple strength were significantly and positively associated with seed cotton yield. Selection based on boll weight, boll number, lint weight/boll, and lint index will be helpful for improving cotton seed yield.

  3. Using normalized difference vegetation index (NDVI) to estimate sugarcane yield and yield components

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) yield and yield components are important traits for growers and scientists to evaluate and select cultivars. Collection of these yield data would be labor intensive and time consuming in the early selection stages of sugarcane breeding cultivar development programs with a ...

  4. Characterising variation in wheat traits under hostile soil conditions in India

    PubMed Central

    Khokhar, Jaswant S.; Sareen, Sindhu; Tyagi, Bhudeva S.; Singh, Gyanendra; Chowdhury, Apurba K.; Dhar, Tapamay; Singh, Vinod; King, Ian P.; Young, Scott D.

    2017-01-01

    Intensive crop breeding has increased wheat yields and production in India. Wheat improvement in India typically involves selecting yield and component traits under non-hostile soil conditions at regional scales. The aim of this study is to quantify G*E interactions on yield and component traits to further explore site-specific trait selection for hostile soils. Field experiments were conducted at six sites (pH range 4.5–9.5) in 2013–14 and 2014–15, in three agro-climatic regions of India. At each site, yield and component traits were measured on 36 genotypes, representing elite varieties from a wide genetic background developed for different regions. Mean grain yields ranged from 1.0 to 5.5 t ha-1 at hostile and non-hostile sites, respectively. Site (E) had the largest effect on yield and component traits, however, interactions between genotype and site (G*E) affected most traits to a greater extent than genotype alone. Within each agro-climatic region, yield and component traits correlated positively between hostile and non-hostile sites. However, some genotypes performed better under hostile soils, with site-specific relationships between yield and component traits, which supports the value of ongoing site-specific selection activities. PMID:28604800

  5. Stand-level growth and yield component models for red oak-sweetgum forests on Mid-South minor stream bottoms

    Treesearch

    Emily B. Schultz; J. Clint Iles; Thomas G. Matney; Andrew W. Ezell; James S. Meadows; Theodor D. Leininger; al. et.

    2010-01-01

    Greater emphasis is being placed on Southern bottomland hardwood management, but relatively few growth and yield prediction systems exist that are based on sufficient measurements. We present the aggregate stand-level expected yield and structural component equations for a red oak (Quercus section Lobatae)-sweetgum (Liquidambar styraciflua L.) growth and yield model....

  6. Phosphorus, zinc, and boron influence yield components in Earliglow strawberry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, G.M.; Pritts, M.P.

    1993-01-01

    The main effects and interactions of soil-applied P, B, and Zn on yield and its components were examined in the field at two pH levels with Earliglow' strawberries (Fragaria ananassa Duch.). Applied nutrients had significant effects on several yield components, but responses depended on the levels of other nutrients or the soil pH. At a soil pH of 5.5, yield responded linearly to B and quadratically to P. At pH 6.5, P interacted with B and Zn. Fruit count per inflorescence was the yield component most strongly associated with yield, followed by individual fruit weight. However, these two yield componentsmore » responded differently to soil-applied nutrients. Foliar nutrient levels generally did not increase with the amount of applied nutrient, but often an applied nutrient had a strong effect on the level of another nutrient. Leaf nutrient levels were often correlated with fruit levels, but foliar and fruit levels at harvest were not related to reproductive performance. The study identifies some of the problems inherent in using foliar nutrient levels to predict a yield response and demonstrates how plant responses to single nutrients depend on soil chemistry and the presence of other nutrients.« less

  7. Invited review: A commentary on predictive cheese yield formulas.

    PubMed

    Emmons, D B; Modler, H W

    2010-12-01

    Predictive cheese yield formulas have evolved from one based only on casein and fat in 1895. Refinements have included moisture and salt in cheese and whey solids as separate factors, paracasein instead of casein, and exclusion of whey solids from moisture associated with cheese protein. The General, Barbano, and Van Slyke formulas were tested critically using yield and composition of milk, whey, and cheese from 22 vats of Cheddar cheese. The General formula is based on the sum of cheese components: fat, protein, moisture, salt, whey solids free of fat and protein, as well as milk salts associated with paracasein. The testing yielded unexpected revelations. It was startling that the sum of components in cheese was <100%; the mean was 99.51% (N × 6.31). The mean predicted yield was only 99.17% as a percentage of actual yields (PY%AY); PY%AY is a useful term for comparisons of yields among vats. The PY%AY correlated positively with the sum of components (SofC) in cheese. The apparent low estimation of SofC led to the idea of adjusting upwards, for each vat, the 5 measured components in the formula by the observed SofC, as a fraction. The mean of the adjusted predicted yields as percentages of actual yields was 99.99%. The adjusted forms of the General, Barbano, and Van Slyke formulas gave predicted yields equal to the actual yields. It was apparent that unadjusted yield formulas did not accurately predict yield; however, unadjusted PY%AY can be useful as a control tool for analyses of cheese and milk. It was unexpected that total milk protein in the adjusted General formula gave the same predicted yields as casein and paracasein, indicating that casein or paracasein may not always be necessary for successful yield prediction. The use of constants for recovery of fat and protein in the adjusted General formula gave adjusted predicted yields equal to actual yields, indicating that analyses of cheese for protein and fat may not always be necessary for yield prediction. Composition of cheese was estimated using a predictive formula; actual yield was needed for estimation of composition. Adjusted formulas are recommended for estimating target yields and cheese yield efficiency. Constants for solute exclusion, protein-associated milk salts, and whey solids could be used and reduced the complexity of the General formula. Normalization of fat recovery increased variability of predicted yields. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Statistical optimization of polysaccharide production by submerged cultivation of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.: Fr.) P. Karst. MTCC 1039 (Aphyllophoromycetideae).

    PubMed

    Baskar, Gurunathan; Sathya, Shree Rajesh K Lakshmi Jai; Jinnah, Riswana Begum; Sahadevan, Renganathan

    2011-01-01

    Response surface methodology was employed to optimize the concentration of four important cultivation media components such as cottonseed oil cake, glucose, NH4Cl, and MgSO4 for maximum medicinal polysaccharide yield by Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum MTCC 1039 in submerged culture. The second-order polynomial model describing the relationship between media components and polysaccharide yield was fitted in coded units of the variables. The higher value of the coefficient of determination (R2 = 0.953) justified an excellent correlation between media components and polysaccharide yield, and the model fitted well with high statistical reliability and significance. The predicted optimum concentration of the media components was 3.0% cottonseed oil cake, 3.0% glucose, 0.15% NH4Cl, and 0.045% MgSO4, with the maximum predicted polysaccharide yield of 819.76 mg/L. The experimental polysaccharide yield at the predicted optimum media components was 854.29 mg/L, which was 4.22% higher than the predicted yield.

  9. The limits of crop productivity: validating theoretical estimates and determining the factors that limit crop yields in optimal environments

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.

    1992-01-01

    Plant scientists have sought to maximize the yield of food crops since the beginning of agriculture. There are numerous reports of record food and biomass yields (per unit area) in all major crop plants, but many of the record yield reports are in error because they exceed the maximal theoretical rates of the component processes. In this article, we review the component processes that govern yield limits and describe how each process can be individually measured. This procedure has helped us validate theoretical estimates and determine what factors limit yields in optimal environments.

  10. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    NASA Astrophysics Data System (ADS)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  11. Variability of arginine content and yield components in Valencia peanut germplasm.

    PubMed

    Aninbon, Chorkaew; Jogloy, Sanun; Vorasoot, Nimitr; Nuchadomrong, Suporn; Holbrook, C Corley; Kvien, Craig; Puppala, Naveen; Patanothai, Aran

    2017-06-01

    Peanut seeds are rich in arginine, an amino acid that has several positive effects on human health. Establishing the genetic variability of arginine content in peanut will be useful for breeding programs that have high arginine as one of their goals. The objective of this study was to evaluate the variation of arginine content, pods/plant, seeds/pod, seed weight, and yield in Valencia peanut germplasm. One hundred and thirty peanut genotypes were grown under field condition for two years. A randomized complete block design with three replications was used for this study. Arginine content was analyzed in peanut seeds at harvest using spectrophotometry. Yield and yield components were recorded for each genotype. Significant differences in arginine content and yield components were found in the tested Valencia peanut germplasm. Arginine content ranged from 8.68-23.35 μg/g seed. Kremena was the best overall genotype of high arginine content, number of pods/plant, 100 seed weight and pod yield.

  12. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis

    NASA Astrophysics Data System (ADS)

    Feng, Zhaozhong; Kobayashi, Kazuhiko

    Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O 3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O 3] was expressed relative to the yield under base [O 3] (≤26 ppb). With potato, current [O 3] (31-50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O 3], future [O 3] (51-75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O 3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO 2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O 3]. These findings confirm the rising [O 3] as a threat to food security for the growing global population in this century.

  13. Nitrogen Source and Rate Management Improve Maize Productivity of Smallholders under Semiarid Climates.

    PubMed

    Amanullah; Iqbal, Asif; Ali, Ashraf; Fahad, Shah; Parmar, Brajendra

    2016-01-01

    Nitrogen is one of the most important factor affecting maize ( Zea mays L.) yield and income of smallholders under semiarid climates. Field experiments were conducted to investigate the impact of different N-fertilizer sources [urea, calcium ammonium nitrate (CAN), and ammonium sulfate (AS)] and rates (50, 100, 150, and 200 kg ha -1 ) on umber of rows ear -1 (NOR ear -1 ), number of seeds row -1 (NOS row -1 ), number of seeds ear -1 (NOS ear -1 ), number of ears per 100 plants (NOEP 100 plants -1 ), grain yield plant -1 , stover yield (kg ha -1 ), and shelling percentage (%) of maize genotypes "Local cultivars (Azam and Jalal) vs. hybrid (Pioneer-3025)." The experiment was conducted at the Agronomy Research Farm of the University of Agriculture Peshawar during summers of 2008 (year one) and 2010 (year two). The results revealed that the N treated (rest) plots (the average of all the experimental plots treated with N) had produced higher yield and yield components, and shelling percentage over N-control plots (plots where N was not applied). Application of nitrogen at the higher rate increased yield and yield components in maize (200 > 150 > 100 > 50 kg N ha -1 ). Application of AS and CAN had more beneficial impact on yield and yield components of maize as compared to urea (AS > CAN > urea). Hybrid maize (P-3025) produced significantly higher yield and yield components as well as higher shelling percentage than the two local cultivars (P-3025 > Jalal = Azam). Application of ammonium sulfate at the rate of 200 kg N ha -1 to hybrid maize was found most beneficial in terms of higher productivity and grower's income in the study area. For the two local cultivars, application of 150 kg N ha -1 was found more beneficial over 120 kg N ha -1 (recommended N rate) in terms of greater productivity and growers income.

  14. Nitrogen Source and Rate Management Improve Maize Productivity of Smallholders under Semiarid Climates

    PubMed Central

    Amanullah; Iqbal, Asif; Ali, Ashraf; Fahad, Shah; Parmar, Brajendra

    2016-01-01

    Nitrogen is one of the most important factor affecting maize (Zea mays L.) yield and income of smallholders under semiarid climates. Field experiments were conducted to investigate the impact of different N-fertilizer sources [urea, calcium ammonium nitrate (CAN), and ammonium sulfate (AS)] and rates (50, 100, 150, and 200 kg ha−1) on umber of rows ear−1 (NOR ear−1), number of seeds row−1 (NOS row−1), number of seeds ear−1 (NOS ear−1), number of ears per 100 plants (NOEP 100 plants−1), grain yield plant−1, stover yield (kg ha−1), and shelling percentage (%) of maize genotypes “Local cultivars (Azam and Jalal) vs. hybrid (Pioneer-3025).” The experiment was conducted at the Agronomy Research Farm of the University of Agriculture Peshawar during summers of 2008 (year one) and 2010 (year two). The results revealed that the N treated (rest) plots (the average of all the experimental plots treated with N) had produced higher yield and yield components, and shelling percentage over N-control plots (plots where N was not applied). Application of nitrogen at the higher rate increased yield and yield components in maize (200 > 150 > 100 > 50 kg N ha−1). Application of AS and CAN had more beneficial impact on yield and yield components of maize as compared to urea (AS > CAN > urea). Hybrid maize (P-3025) produced significantly higher yield and yield components as well as higher shelling percentage than the two local cultivars (P-3025 > Jalal = Azam). Application of ammonium sulfate at the rate of 200 kg N ha−1 to hybrid maize was found most beneficial in terms of higher productivity and grower's income in the study area. For the two local cultivars, application of 150 kg N ha−1 was found more beneficial over 120 kg N ha−1 (recommended N rate) in terms of greater productivity and growers income. PMID:27965685

  15. Role of the N*(1535) resonance and the {pi}{sup -}p{yields}KY amplitudes in the OZI forbidden {pi}N{yields}{phi}N reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doering, M.; Oset, E.; Zou, B. S.

    2008-08-15

    We study the {pi}N{yields}{phi}N reaction close to the {phi}N threshold within the chiral unitary approach, by combining the {pi}{sup -}p{yields}K{sup +}{sigma}{sup -},{pi}{sup -}p{yields}K{sup 0}{sigma}{sup 0}, and {pi}{sup -}p{yields}K{sup 0}{lambda} amplitudes with the coupling of {phi} to the K components of the final states of these reactions via quantum loops. We obtain good agreement with experiment when the dominant {pi}{sup -}p{yields}K{sup 0}{lambda} amplitude is constrained with its experimental cross section. We also evaluate the coupling of N*(1535) to {phi}N and find a moderate coupling as a consequence of partial cancellation of the large KY components of N*(1535). We also show thatmore » the N*(1535) pole approximation is too small to reproduce the measured cross section for the {pi}{sup -}N{yields}{phi}N reaction.« less

  16. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition

    PubMed Central

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-01-01

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964

  17. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition.

    PubMed

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-10-03

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha -1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.

  18. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  19. Lactation persistency as a component trait of the selection index and increase in reliability by using single nucleotide polymorphism in net merit defined as the first five lactation milk yields and herd life.

    PubMed

    Togashi, K; Hagiya, K; Osawa, T; Nakanishi, T; Yamazaki, T; Nagamine, Y; Lin, C Y; Matsumoto, S; Aihara, M; Hayasaka, K

    2012-08-01

    We first sought to clarify the effects of discounted rate, survival rate, and lactation persistency as a component trait of the selection index on net merit, defined as the first five lactation milks and herd life (HL) weighted by 1 and 0.389 (currently used in Japan), respectively, in units of genetic standard deviation. Survival rate increased the relative economic importance of later lactation traits and the first five lactation milk yields during the first 120 months from the start of the breeding scheme. In contrast, reliabilities of the estimated breeding value (EBV) in later lactation traits are lower than those of earlier lactation traits. We then sought to clarify the effects of applying single nucleotide polymorphism (SNP) on net merit to improve the reliability of EBV of later lactation traits to maximize their increased economic importance due to increase in survival rate. Net merit, selection accuracy, and HL increased by adding lactation persistency to the selection index whose component traits were only milk yields. Lactation persistency of the second and (especially) third parities contributed to increasing HL while maintaining the first five lactation milk yields compared with the selection index whose only component traits were milk yields. A selection index comprising the first three lactation milk yields and persistency accounted for 99.4% of net merit derived from a selection index whose components were identical to those for net merit. We consider that the selection index comprising the first three lactation milk yields and persistency is a practical method for increasing lifetime milk yield in the absence of data regarding HL. Applying SNP to the second- and third-lactation traits and HL increased net merit and HL by maximizing the increased economic importance of later lactation traits, reducing the effect of first-lactation milk yield on HL (genetic correlation (rG) = -0.006), and by augmenting the effects of the second- and third-lactation milk yields on HL (rG = 0.118 and 0.257, respectively).

  20. Hydrostatic Stress Effects in Metal Plasticity

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.

    1999-01-01

    Since the 1940s, the theory of plasticity has assumed that hydrostatic stress does not affect the yield or postyield behavior of metals. This assumption is based on the early work of Bridgman. Bridgman found that hydrostatic pressure (compressive stress) does not affect yield behavior until a substantial amount of pressure (greater than 100 ksi) is present. The objective of this study was to determine the effect of hydrostatic tension on yield behavior. Two different specimen geometries were examined: an equal-arm bend specimen and a double edge notch specimen. The presence of a notch is sufficient to develop high enough hydrostatic tensile stresses to affect yield. The von Mises yield function, which does not have a hydrostatic component, and the Drucker-Prager yield function, which includes a hydrostatic component, were used in finite element analyses of the two specimen geometries. The analyses were compared to test data from IN 100 specimens. For both geometries, the analyses using the Drucker-Prager yield function more closely simulated the test data. The von Mises yield function lead to 5-10% overprediction of the force-displacement or force-strain response of the test specimens.

  1. Assessment of cluster yield components by image analysis.

    PubMed

    Diago, Maria P; Tardaguila, Javier; Aleixos, Nuria; Millan, Borja; Prats-Montalban, Jose M; Cubero, Sergio; Blasco, Jose

    2015-04-01

    Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. In this work, a new methodology, based on image analysis was developed to determine cluster yield components in a fast and inexpensive way. Clusters of seven different red varieties of grapevine (Vitis vinifera L.) were photographed under laboratory conditions and their cluster yield components manually determined after image acquisition. Two algorithms based on the Canny and the logarithmic image processing approaches were tested to find the contours of the berries in the images prior to berry detection performed by means of the Hough Transform. Results were obtained in two ways: by analysing either a single image of the cluster or using four images per cluster from different orientations. The best results (R(2) between 69% and 95% in berry detection and between 65% and 97% in cluster weight estimation) were achieved using four images and the Canny algorithm. The model's capability based on image analysis to predict berry weight was 84%. The new and low-cost methodology presented here enabled the assessment of cluster yield components, saving time and providing inexpensive information in comparison with current manual methods. © 2014 Society of Chemical Industry.

  2. Past crops yield dynamics reconstruction from tree-ring chronologies in the forest-steppe zone based on low- and high-frequency components

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Shah, Santosh K.; Zhirnova, Dina F.

    2018-05-01

    Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees ( Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring width have more pronounced relationships between each other and with climatic variables than their chronologies per se. Corresponding low-frequency variability components are strongly correlated with maxima observed after 1- to 5-year time shift of tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics reconstruction on the base of high-frequency variability component of the growth of pine and low-frequency one of larch.

  3. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    PubMed

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  4. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize.

    PubMed

    Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.

  5. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize

    PubMed Central

    Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143

  6. Environmental Assessment for Aviation Foreign Internal Defense Beddown (AvFID) at Duke Field, Eglin Air Force Base, Florida

    DTIC Science & Technology

    2012-07-01

    yielded, or may be likely to yield, information important in prehistory or history” (36 CFR § 60:4). 3.8.2 Existing Conditions The ROI for...components may lack individual distinction; or d) that have yielded, or may be likely to yield, information important in prehistory or history (Advisory

  7. Modeling homeorhetic trajectories of milk component yields, body composition and dry-matter intake in dairy cows: Influence of parity, milk production potential and breed.

    PubMed

    Daniel, J B; Friggens, N C; van Laar, H; Ingvartsen, K L; Sauvant, D

    2018-06-01

    The control of nutrient partitioning is complex and affected by many factors, among them physiological state and production potential. Therefore, the current model aims to provide for dairy cows a dynamic framework to predict a consistent set of reference performance patterns (milk component yields, body composition change, dry-matter intake) sensitive to physiological status across a range of milk production potentials (within and between breeds). Flows and partition of net energy toward maintenance, growth, gestation, body reserves and milk components are described in the model. The structure of the model is characterized by two sub-models, a regulating sub-model of homeorhetic control which sets dynamic partitioning rules along the lactation, and an operating sub-model that translates this into animal performance. The regulating sub-model describes lactation as the result of three driving forces: (1) use of previously acquired resources through mobilization, (2) acquisition of new resources with a priority of partition towards milk and (3) subsequent use of resources towards body reserves gain. The dynamics of these three driving forces were adjusted separately for fat (milk and body), protein (milk and body) and lactose (milk). Milk yield is predicted from lactose and protein yields with an empirical equation developed from literature data. The model predicts desired dry-matter intake as an outcome of net energy requirements for a given dietary net energy content. The parameters controlling milk component yields and body composition changes were calibrated using two data sets in which the diet was the same for all animals. Weekly data from Holstein dairy cows was used to calibrate the model within-breed across milk production potentials. A second data set was used to evaluate the model and to calibrate it for breed differences (Holstein, Danish Red and Jersey) on the mobilization/reconstitution of body composition and on the yield of individual milk components. These calibrations showed that the model framework was able to adequately simulate milk yield, milk component yields, body composition changes and dry-matter intake throughout lactation for primiparous and multiparous cows differing in their production level.

  8. Dual-component video image analysis system (VIASCAN) as a predictor of beef carcass red meat yield percentage and for augmenting application of USDA yield grades.

    PubMed

    Cannell, R C; Tatum, J D; Belk, K E; Wise, J W; Clayton, R P; Smith, G C

    1999-11-01

    An improved ability to quantify differences in the fabrication yields of beef carcasses would facilitate the application of value-based marketing. This study was conducted to evaluate the ability of the Dual-Component Australian VIASCAN to 1) predict fabricated beef subprimal yields as a percentage of carcass weight at each of three fat-trim levels and 2) augment USDA yield grading, thereby improving accuracy of grade placement. Steer and heifer carcasses (n = 240) were evaluated using VIASCAN, as well as by USDA expert and online graders, before fabrication of carcasses to each of three fat-trim levels. Expert yield grade (YG), online YG, VIASCAN estimates, and VIASCAN estimated ribeye area used to augment actual and expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, and hot carcass weight), respectively, 1) accounted for 51, 37, 46, and 55% of the variation in fabricated yields of commodity-trimmed subprimals, 2) accounted for 74, 54, 66, and 75% of the variation in fabricated yields of closely trimmed subprimals, and 3) accounted for 74, 54, 71, and 75% of the variation in fabricated yields of very closely trimmed subprimals. The VIASCAN system predicted fabrication yields more accurately than current online yield grading and, when certain VIASCAN-measured traits were combined with some USDA yield grade factors in an augmentation system, the accuracy of cutability prediction was improved, at packing plant line speeds, to a level matching that of expert graders applying grades at a comfortable rate.

  9. Acid soil infertility effects on peanut yields and yield components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blamey, F.P.C.

    1983-01-01

    The interpretation of soil amelioration experiments with peanuts is made difficult by the unpredictibility of the crop and by the many factors altered when ameliorating acid soils. The present study was conducted to investigate the effects of lime and gypsum applications on peanut kernel yield via the three first order yield components, pods per ha, kernels per pod, and kernel mass. On an acid medium sandy loam soil (typic Plinthustult), liming resulted in a highly significant kernel yield increase of 117% whereas gypsum applications were of no significant benefit. As indicated by path coefficient analysis, an increase in the numbermore » of pods per ha was markedly more important in increasing yield than an increase in either the number of kernels per pod or kernel mass. Furthermore, exch. Al was found to be particularly detrimental to pod number. It was postulated that poor peanut yields resulting from acid soil infertility were mainly due to the depressive effect of exch. Al on pod number. Exch. Ca appeared to play a secondary role by ameliorating the adverse effects of exch. Al.« less

  10. Statistical optimization of medium components for avilamycin production by Streptomyces viridochromogenes Tü57-1 using response surface methodology.

    PubMed

    Zhu, Chuan-He; Lu, Fu-Ping; He, Ya-Nan; Zhang, Juan-Kun; Du, Lian-Xiang

    2007-04-01

    A fermentation medium for avilamycin production by Streptomyces viridochromogenes Tü57-1 has been optimized. Important components and their concentrations were investigated using fractional factorial design and Box-Behnken Design. The results showed that soybean flour, soluble starch, MgSO4.7H2O and CaCl2.2H2O are important for avilamycin production. A polynomial model related to medium components and avilamycin yield had been established. A high coefficient of determination (R2 = 0.92) was obtained that indicated good agreement between the experimental and predicted values of avilamycin yield. Student's T-test of each coefficient showed that all the linear and quadratic terms had significant effect (P > |T| < 0.05) on avilamycin yield. The significance of tested components was related to MgSO4.7H2O (0.37 g/L), CaCl2.2H2O (0.39 g/L), soybean flour (21.97 g/L) and soluble starch (37.22 g/L). The yield of avilamycin reached 88.33 +/- 0.94 mg/L (p < 0.05) that was 2.8-fold the initial yield.

  11. Optimization of processing parameters of UAV integral structural components based on yield response

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng

    2018-05-01

    In order to improve the overall strength of unmanned aerial vehicle (UAV), it is necessary to optimize the processing parameters of UAV structural components, which is affected by initial residual stress in the process of UAV structural components processing. Because machining errors are easy to occur, an optimization model for machining parameters of UAV integral structural components based on yield response is proposed. The finite element method is used to simulate the machining parameters of UAV integral structural components. The prediction model of workpiece surface machining error is established, and the influence of the path of walking knife on residual stress of UAV integral structure is studied, according to the stress of UAV integral component. The yield response of the time-varying stiffness is analyzed, and the yield response and the stress evolution mechanism of the UAV integral structure are analyzed. The simulation results show that this method is used to optimize the machining parameters of UAV integral structural components and improve the precision of UAV milling processing. The machining error is reduced, and the deformation prediction and error compensation of UAV integral structural parts are realized, thus improving the quality of machining.

  12. Identifying seedling root architectural traits associated with yield and yield components in wheat.

    PubMed

    Xie, Quan; Fernando, Kurukulasuriya M C; Mayes, Sean; Sparkes, Debbie L

    2017-05-01

    Plant roots growing underground are critical for soil resource acquisition, anchorage and plant-environment interactions. In wheat ( Triticum aestivum ), however, the target root traits to improve yield potential still remain largely unknown. This study aimed to identify traits of seedling root system architecture (RSA) associated with yield and yield components in 226 recombinant inbred lines (RILs) derived from a cross between the bread wheat Triticum aestivum 'Forno' (small, wide root system) and spelt Triticum spelta 'Oberkulmer' (large, narrow root system). A 'pouch and wick' high-throughput phenotyping pipeline was used to determine the RSA traits of 13-day-old RIL seedlings. Two field experiments and one glasshouse experiment were carried out to investigate the yield, yield components and phenology, followed by identification of quantitative trait loci (QTLs). There was substantial variation in RSA traits between genotypes. Seminal root number and total root length were both positively associated with grains m -2 , grains per spike, above-ground biomass m -2 and grain yield. More seminal roots and longer total root length were also associated with delayed maturity and extended grain filling, likely to be a consequence of more grains being defined before anthesis. Additionally, the maximum width of the root system displayed positive relationships with spikes m -2 , grains m -2 and grain yield. Ten RILs selected for the longest total roots exhibited the same effects on yield and phenology as described above, compared with the ten lines with the shortest total roots. Genetic analysis revealed 38 QTLs for the RSA, and QTL coincidence between the root and yield traits was frequently observed, indicating tightly linked genes or pleiotropy, which concurs with the results of phenotypic correlation analysis. Based on the results from the Forno × Oberkulmer population, it is proposed that vigorous early root growth, particularly more seminal roots and longer total root length, is important to improve yield potential, and should be incorporated into wheat ideotypes in breeding. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Large Area Crop Inventory Experiment (LACIE). Feasibility of assessing crop condition and yield from LANDSAT data

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. Yield modelling for crop production estimation derived a means of predicting the within-a-year yield and the year-to-year variability of yield over some fixed or randomly located unit of area. Preliminary studies indicated that the requirements for interpreting LANDSAT data for yield may be sufficiently similar to those of signature extension that it is feasible to investigate the automated estimation of production. The concept of an advanced yield model consisting of both spectral and meteorological components was endorsed. Rationale for using meteorological parameters originated from known between season and near harvest dynamics in crop environmental-condition-yield relationships.

  14. Deficit irrigation effects on yield and yield components of grain sorghum

    USDA-ARS?s Scientific Manuscript database

    Development of sustainable and efficient irrigation strategies is a priority for producers faced with water shortages. A promising management strategy for improving water use efficiency (WUE) is managed deficit irrigation (MDI), which attempts to optimize yield and WUE by synchronizing crop water u...

  15. Linear unmixing of multidate hyperspectral imagery for crop yield estimation

    USDA-ARS?s Scientific Manuscript database

    In this paper, we have evaluated an unsupervised unmixing approach, vertex component analysis (VCA), for the application of crop yield estimation. The results show that abundance maps of the vegetation extracted by the approach are strongly correlated to the yield data (the correlation coefficients ...

  16. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-03-03

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  17. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  18. Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm.

    PubMed

    Griffiths, Simon; Wingen, Luzie; Pietragalla, Julian; Garcia, Guillermo; Hasan, Ahmed; Miralles, Daniel; Calderini, Daniel F; Ankleshwaria, Jignaben Bipinchandra; Waite, Michelle Leverington; Simmonds, James; Snape, John; Reynolds, Matthew

    2015-01-01

    Grain weight (GW) and number per unit area of land (GN) are the primary components of grain yield in wheat. In segregating populations both yield components often show a negative correlation among themselves. Here we use a recombinant doubled haploid population of 105 individuals developed from the CIMMYT varieties Weebill and Bacanora to understand the relative contribution of these components to grain yield and their interaction with each other. Weebill was chosen for its high GW and Bacanora for high GN. The population was phenotyped in Mexico, Argentina, Chile and the UK. Two loci influencing grain yield were indicated on 1B and 7B after QTL analysis. Weebill contributed the increasing alleles. The 1B effect, which is probably caused by to the 1BL.1RS rye introgression in Bacanora, was a result of increased GN, whereas, the 7B QTL controls GW. We concluded that increased in GW from Weebill 7B allele is not accompanied by a significant reduction in grain number. The extent of the GW and GN trade-off is reduced. This makes this locus an attractive target for marker assisted selection to develop high yielding bold grain varieties like Weebill. AMMI analysis was used to show that the 7B Weebill allele appears to contribute to yield stability.

  19. Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria.

    PubMed

    Amanullah; Khan, Adil

    2015-01-01

    Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha(-1)) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha(-1)) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition.

  20. Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria

    PubMed Central

    Amanullah

    2015-01-01

    Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha-1) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition. PMID:26697038

  1. Genetic Dissection of Grain Size and Grain Number Trade-Offs in CIMMYT Wheat Germplasm

    PubMed Central

    Griffiths, Simon; Wingen, Luzie; Pietragalla, Julian; Garcia, Guillermo; Hasan, Ahmed; Miralles, Daniel; Calderini, Daniel F.; Ankleshwaria, Jignaben Bipinchandra; Waite, Michelle Leverington; Simmonds, James; Snape, John; Reynolds, Matthew

    2015-01-01

    Grain weight (GW) and number per unit area of land (GN) are the primary components of grain yield in wheat. In segregating populations both yield components often show a negative correlation among themselves. Here we use a recombinant doubled haploid population of 105 individuals developed from the CIMMYT varieties Weebill and Bacanora to understand the relative contribution of these components to grain yield and their interaction with each other. Weebill was chosen for its high GW and Bacanora for high GN. The population was phenotyped in Mexico, Argentina, Chile and the UK. Two loci influencing grain yield were indicated on 1B and 7B after QTL analysis. Weebill contributed the increasing alleles. The 1B effect, which is probably caused by to the 1BL.1RS rye introgression in Bacanora, was a result of increased GN, whereas, the 7B QTL controls GW. We concluded that increased in GW from Weebill 7B allele is not accompanied by a significant reduction in grain number. The extent of the GW and GN trade-off is reduced. This makes this locus an attractive target for marker assisted selection to develop high yielding bold grain varieties like Weebill. AMMI analysis was used to show that the 7B Weebill allele appears to contribute to yield stability. PMID:25775191

  2. The effect of high concentrations of glufosinate ammonium on the yield components of transgenic spring wheat (Triticum aestivum L.) constitutively expressing the bar gene.

    PubMed

    Áy, Zoltán; Mihály, Róbert; Cserháti, Mátyás; Kótai, Éva; Pauk, János

    2012-01-01

    We present an experiment done on a bar(+) wheat line treated with 14 different concentrations of glufosinate ammonium-an effective component of nonselective herbicides-during seed germination in a closed experimental system. Yield components as number of spikes per plant, number of grains per spike, thousand kernel weight, and yield per plant were thoroughly analysed and statistically evaluated after harvesting. We found that a concentration of glufosinate ammonium 5000 times the lethal dose was not enough to inhibit the germination of transgenic plants expressing the bar gene. Extremely high concentrations of glufosinate ammonium caused a bushy phenotype, significantly lower numbers of grains per spike, and thousand kernel weights. Concerning the productivity, we observed that concentrations of glufosinate ammonium 64 times the lethal dose did not lead to yield depression. Our results draw attention to the possibilities implied in the transgenic approaches.

  3. Yield grade and carcass weight effects on the cutability of lamb carcasses fabricated into innovative style subprimals.

    PubMed

    Garrett, R P; Savell, J W; Cross, H R; Johnson, H K

    1992-06-01

    Lamb carcass (n = 100) were selected from USDA yield grades (YG) 2, 3, and 4 and carcass weight (CW) groups 20.4 to 24.9, 25.0 to 29.5, and 29.6 to 34.0 kg. Lamb carcass were fabricated into semiboneless and boneless subprimals and trimmed to three s.c. fat trim levels: .64, .25, and .00 cm of fat remaining. Innovative subprimals were fabricated and yields were calculated for the subprimals and dissectible components (lean, bone, connective tissue, external fat, and seam fat) from each of the various subprimals. Carcass weight as a main effect in a two-way analysis of variance did not account for a significant amount of the variation in yield among trimmed subprimals or the percentage of the dissectible components, but USDA YG was a significant main effect in determining variation in yield for many of the subprimals or dissectible components. Muscle seaming of shoulders and legs and removal of excessive tails on the loin and rack resulted in a majority of the seam fat being removed from these cuts. Dissection data clearly showed that seam fat is a major component of rack and shoulder cuts and with increasing fatness or higher numerical yield grade there are clearly increased amounts of this depot. Increased trimming of external fat magnifies and draws more attention to the amount of seam fat remaining. Production of heavy, lean lambs would be more useful in an innovative type of program because of the larger-sized muscles. Heavy, fat lambs would not be as useful because of their decreased yields and excess seam fat located in cuts that cannot be muscled-seamed because of the loss of retail cut integrity. Seam fat was highly correlated to percentage of kidney and pelvic fat and to external fat thickness and with USDA yield grade but was not strongly correlated to carcass weight.

  4. Breeding progress, variation, and correlation of grain and quality traits in winter rye hybrid and population varieties and national on-farm progress in Germany over 26 years.

    PubMed

    Laidig, Friedrich; Piepho, Hans-Peter; Rentel, Dirk; Drobek, Thomas; Meyer, Uwe; Huesken, Alexandra

    2017-05-01

    Grain yield of hybrid varieties and population varieties in official German variety trials increased by 23.3 and 18.1%, respectively, over the last 26 years. On-farm gain in grain yield (18.9%) was comparable to that of population varieties in variety trials, yet at a level considerably lower than in variety trials. Rye quality is subject to large year-to-year fluctuation. Increase in grain yield and decline of protein concentration did not negatively influence quality traits. Performance progress of grain and quality traits of 78 winter rye varieties tested in official German trials to assess the value for cultivation and use (VCU) were evaluated during 1989 and 2014. We dissected progress into a genetic and a non-genetic component for hybrid and population varieties by applying mixed models, including regression components to model trends. VCU trial results were compared with grain yield and quality data from a national harvest survey (on-farm data). Yield gain for hybrid varieties was 23.3% (18.9 dt ha -1 ) and for population varieties 18.1% (13.0 dt ha -1 ) relative to 1989. On-farm yield progress of 18.9% (8.7 dt ha -1 ) was considerably lagging behind VCU trials, and mean yield levels were substantially lower than in field trials. Most of the yield progress was generated by genetic improvement. For hybrid varieties, ear density was the determining yield component, whereas for population varieties, it was thousand grain mass. Results for VCU trials showed no statistically significant gains or losses in rye quality traits. For on-farm data, we found a positive but non-significant gain in falling number and amylogram viscosity and temperature. Variation of grain and quality traits was strongly influenced by environments, whereas genotypic variation was less than 19% of total variation. Grain yield was strongly negatively associated with protein concentration, yet was weakly to moderately positively associated with quality traits. In general, our results from VCU trials and on-farm data indicated that increasing grain yield and decreasing protein concentration did not negatively affect rye quality traits.

  5. Definition of architectural ideotypes for good yield capacity in Coffea canephora.

    PubMed

    Cilas, Christian; Bar-Hen, Avner; Montagnon, Christophe; Godin, Christophe

    2006-03-01

    Yield capacity is a target trait for selection of agronomically desirable lines; it is preferred to simple yields recorded over different harvests. Yield capacity is derived using certain architectural parameters used to measure the components of yield capacity. Observation protocols for describing architecture and yield capacity were applied to six clones of coffee trees (Coffea canephora) in a comparative trial. The observations were used to establish architectural databases, which were explored using AMAPmod, a software dedicated to the analyses of plant architecture data. The traits extracted from the database were used to identify architectural parameters for predicting the yield of the plant material studied. Architectural traits are highly heritable and some display strong genetic correlations with cumulated yield. In particular, the proportion of fruiting nodes at plagiotropic level 15 counting from the top of the tree proved to be a good predictor of yield over two fruiting cycles.

  6. Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize

    PubMed Central

    Wang, Hongqiu; Zhang, Xiangge; Yang, Huili; Liu, Xiaoyang; Li, Huimin; Yuan, Liang; Li, Weihua; Fu, Zhiyuan; Tang, Jihua; Kang, Dingming

    2016-01-01

    Heterosis has widely been used to increase grain yield and quality. In this study, the genetic basis of heterosis on grain yield and its main components in maize were examined over 2 years in two locations in two test populations constructed from a set of 184 chromosome segment substitution lines (CSSLs) and two inbred lines (Zheng58 and Xun9058). Of the 169 heterotic loci (HL) associated with grain yield and its five components identified in CSSL × Zheng58 and CSSL × Xun9058 test populations, only 25 HL were detected in both populations. The comparison of quantitative trait loci (QTLs) detected in the CSSL population with HL detected in the two test populations revealed that only 15.46% and 17.35% of the HL in the given populations respectively, shared the same chromosomal regions as that of the corresponding QTLs and showed dominant effects as well as pleiotropism with additive and dominant effects. In addition, most of the HL (74.23% and 74.49%) had overdominant effects. These results suggest that overdominance is the main contributor to the effects of heterosis on grain yield and its components in maize, and different HL are associated with heterosis for different traits in different hybrids. PMID:27917917

  7. Antioxidant activity of colored rice bran obtained at different milling yields.

    PubMed

    Fujita, Akiko; Fujitake, Hironori; Kawakami, Koji; Nomura, Masato

    2010-01-01

    In this study, we investigated the antioxidant components of three types of colored rice bran--forbidden rice, red rice and green rice--obtained from rice in which the pigment layer had been removed at milling yields of 90%-100% and 80%-90%. An evaluation of the effects of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity revealed that rice bran obtained from forbidden rice at milling yields of 90%-100% and 80%-90% and rice bran obtained from red rice at milling yields of 90%-100% showed favorable antioxidant activity. The antioxidant components were confirmed to be 3,4-dihydroxy methyl benzoate and p-methoxyphenol and they influence the antioxidant activity of the three types of colored rice bran.

  8. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, H.W.; Kaita, R.

    1983-09-26

    Objects of the present invention are provided for a particle beam having a full energy component at least as great as 25 keV, which is directed onto a beamstop target, such that Rutherford backscattering, preferably near-surface backscattering occurs. The geometry, material composition and impurity concentration of the beam stop are predetermined, using any suitable conventional technique. The energy-yield characteristic response of backscattered particles is measured over a range of angles using a fast ion electrostatic analyzer having a microchannel plate array at its focal plane. The knee of the resulting yield curve, on a plot of yield versus energy, is analyzed to determine the energy species components of various beam particles having the same mass.

  9. Interrelationship and path coefficient analysis of yield components in F4 progenies of tef (Eragrostis tef).

    PubMed

    Debebe, Abel; Singh, Harijat; Tefera, Hailu

    2014-01-01

    This experiment was conducted at Debre Zeit and Akaki during 2004-2005 cropping season on F2-derived F4 bulk families of three crosses, viz, DZ-01-974 x DZ-01-2786, DZ-01-974 x DZ-Cr-37 and Alba x Kaye Murri. To estimate the correlations and path coefficients between yield and yield components, 63 F4 families were taken randomly from each of the three crosses. The 189 F4 families, five parents and two checks were space planted following in 14 x 14 simple lattice design. Study of associations among traits indicated that yield was positively associated with shoot biomass, harvest index, lodging index and panicle kernel weight at phenotypic level at Debre Zeit. At Akaki, yield had significant positive correlation with shoot biomass, harvest index, plant height, panicle length and panicle weight. At genotypic level, grain yield per plot exhibited positive association with harvest index, shoot biomass, lodging index and panicle kernel weight at Debre Zeit. By contrast, days to heading, days to maturity, plant height and panicle length showed negative association with yield. At Akaki, kernel yield per plot was positively correlated at genotypic level with all the traits considered where lodging index had the highest correlation followed by shoot biomass, panicle kernel weight and harvest index. Path coefficient analysis at both phenotypic and genotypic levels for both the locations suggested those shoot biomass and harvest indexes are the two important yield determining traits. These two traits might be useful in indirect selection for yield improvement in the material generated from the three crosses under consideration.

  10. Transgressive variation for yield components and dynamic traits in Jefferson (Oryza sativa) x O. rufipogon introgression lines

    USDA-ARS?s Scientific Manuscript database

    Alleles from wild progenitors of crops can be a source of transgressive variation in modern cultivars. Introgressions from the Oryza rufipogon donor (IRGC104591) in an O. sativa tropical japonica cultivar (Jefferson) were shown to confer a yield advantage in multi-location field trials. Yield loci...

  11. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply.

    PubMed

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C; Yang, Ru-Ping; Siddique, Kadambot H M; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [ Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg -1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought, root traits also contribute to high nutrient uptake efficiency and benefit yield under drought.

  12. Sputtering by the Solar Wind: Effects of Variable Composition

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.

  13. Examining the roles that changing harvested areas, closing yield-gaps, and increasing yield ceilings have had on crop production

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    With an increasing and increasingly affluent population, there has been tremendous effort to examine strategies for sustainably increasing agricultural production to meet this surging global demand. Before developing new solutions from scratch, though, we believe it is important to consult our recent agricultural history to see where and how agricultural production changes have already taken place. By utilizing the newly created temporal M3 cropland datasets, we can for the first time examine gridded agricultural yields and area, both spatially and temporally. This research explores the historical drivers of agricultural production changes, from 1965-2005. The results will be presented spatially at the global-level (5-min resolution), as well as at the individual country-level. The primary research components of this study are presented below, including the general methodology utilized in each phase and preliminary results for soybean where available. The complete assessment will cover maize, wheat, rice, soybean, and sugarcane, and will include country-specific analysis for over 200 countries, states, territories and protectorates. Phase 1: The first component of our research isolates changes in agricultural production due to variation in planting decisions (harvested area) from changes in production due to intensification efforts (yield). We examine area/yield changes at the pixel-level over 5-year time-steps to determine how much each component has contributed to overall changes in production. Our results include both spatial patterns of changes in production, as well as spatial maps illustrating to what degree the production change is attributed to area and/or yield. Together, these maps illustrate where, why, and by how much agricultural production has changed over time. Phase 2: In the second phase of our research we attempt to determine the impact that area and yield changes have had on agricultural production at the country-level. We calculate a production-weighted result of area and yield contributions for each country, at each time-step. As part of our research we will generate historic figures and tabular data for every country-crop combination. Phase 3: In the final phase of our research, we attempt to demonstrate how different yield performers (for example, those growing crops at the yield floor vs. the yield ceiling) have utilized different area/yield strategies to increase agricultural production. To group individual pixels into performance quintiles, we utilize binning strategies from previous spatial yield-gap assessments. The results from this step will illustrate how the yield ceiling has improved over time vis-à-vis improvements in the yield floor. As we look forward to a more sustainable and productive agricultural future, we hope the results of this global analysis of our agricultural past can be utilized to identify both optimal and adverse strategies for agricultural growth.

  14. Genetic parameters and path analysis in cowpea genotypes grown in the Cerrado/Pantanal ecotone.

    PubMed

    Lopes, K V; Teodoro, P E; Silva, F A; Silva, M T; Fernandes, R L; Rodrigues, T C; Faria, T C; Corrêa, A M

    2017-05-18

    Estimating genetic parameters in plant breeding allows us to know the population potential for selecting and designing strategies that can maximize the achievement of superior genotypes. The objective of this study was to evaluate the genetic potential of a population of 20 cowpea genotypes by estimating genetic parameters and path analysis among the traits to guide the selection strategies. The trial was conducted in randomized block design with four replications. Its morphophysiological components, components of green grain production and dry grain yield were estimated from genetic use and correlations between the traits. Phenotypic correlations were deployed through path analysis into direct and indirect effects of morphophysiological traits and yield components on dry grain yield. There were significant differences (P < 0.01) between the genotypes for most the traits, indicating the presence of genetic variability in the population and the possibility of practicing selection. The population presents the potential for future genetic breeding studies and is highly promising for the selection of traits dry grain yield, the number of grains per pod, and hundred grains mass. A number of grains per green pod is the main determinant trait of dry grain yield that is also influenced by the cultivar cycle and that the selection for the dry grain yield can be made indirectly by selecting the green pod mass and green pod length.

  15. Genotypic diversity in the responses of yield and yield components to elevated ozone of diverse inbred and hybrid maize

    USDA-ARS?s Scientific Manuscript database

    Current tropospheric ozone concentrations ([O3]), an important air pollutant, are phytotoxic and detrimental to crop yield causing significant losses of ~14-26 billion in 4 of the world’s major crops. Until recent years, it was believed that agricultural and economically important C4 plants, such as...

  16. A Study of Specialty Clones’ Yield Performance in Early and Late Harvests

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: A study was conducted on specialty potato breeding lines to examine yield components in an early and late harvest. Upon first examination it was apparent that the early water cutoff had a large effect on total yield. In the early trial only one clone achieved 600 cwt/A of total...

  17. Identification of Swallowing Tasks From a Modified Barium Swallow Study That Optimize the Detection of Physiological Impairment

    PubMed Central

    Armeson, Kent E.; Hill, Elizabeth G.; Bonilha, Heather Shaw; Martin-Harris, Bonnie

    2017-01-01

    Purpose The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. Method This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived Modified Barium Swallow Impairment Profile (MBSImP™©; Martin-Harris et al., 2008) Overall Impression (OI; worst) scores using generalized estimating equations. The range of probabilities across swallowing tasks was calculated to discern which swallowing task(s) yielded the worst performance. Results Large-volume, thin-liquid swallowing tasks had the highest probabilities of yielding the OI scores for oral containment and airway protection. The cookie swallowing task was most likely to yield OI scores for oral clearance. Several swallowing tasks had nearly equal probabilities (≤ .20) of yielding the OI score. Conclusions The MBSS must represent impairment while requiring boluses that challenge the swallowing system. No single swallowing task had a sufficiently high probability to yield the identification of the worst score for each physiological component. Omission of swallowing tasks will likely fail to capture the most severe impairment for physiological components critical for safe and efficient swallowing. Results provide further support for standardized, well-tested protocols during MBSS. PMID:28614846

  18. Identification of Swallowing Tasks From a Modified Barium Swallow Study That Optimize the Detection of Physiological Impairment.

    PubMed

    Hazelwood, R Jordan; Armeson, Kent E; Hill, Elizabeth G; Bonilha, Heather Shaw; Martin-Harris, Bonnie

    2017-07-12

    The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived Modified Barium Swallow Impairment Profile (MBSImP™©; Martin-Harris et al., 2008) Overall Impression (OI; worst) scores using generalized estimating equations. The range of probabilities across swallowing tasks was calculated to discern which swallowing task(s) yielded the worst performance. Large-volume, thin-liquid swallowing tasks had the highest probabilities of yielding the OI scores for oral containment and airway protection. The cookie swallowing task was most likely to yield OI scores for oral clearance. Several swallowing tasks had nearly equal probabilities (≤ .20) of yielding the OI score. The MBSS must represent impairment while requiring boluses that challenge the swallowing system. No single swallowing task had a sufficiently high probability to yield the identification of the worst score for each physiological component. Omission of swallowing tasks will likely fail to capture the most severe impairment for physiological components critical for safe and efficient swallowing. Results provide further support for standardized, well-tested protocols during MBSS.

  19. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.

    PubMed

    Qiao, Jianmin; Yu, Deyong; Liu, Yupeng

    2017-10-01

    Climate change plays a critical role in crop yield variations, which has attracted a great deal of concern worldwide. However, the mechanisms of how climatic trend and fluctuations affect crop yields are not well understood and need to be further investigated. Thus, using the GIS-based Environmental Policy Integrated Climate (EPIC) model, we simulated the yields of major crops (i.e., wheat, maize, and rice) and evaluated the impacts of climatic factors on crop yields in the Agro-Pastoral Transitional Zone (APTZ) of northern China between 1980 and 2010. The partial least squares regression model was used to assess the contribution rates of climatic factors (i.e., precipitation, photosynthetically active radiation (PAR), minimum temperature (T min ), maximum temperature (T max )) to the variation of crop yields. The Breaks for Additive Season and Trend (BFAST) model was adopted to decompose the climate factors into trend and fluctuation components, and the relative contributions of climate trend and fluctuation were then evaluated. The results indicated that the contributions of climatic factors to yield variations of wheat, maize, and rice were 31.7, 37.7, and 23.1%, respectively. That is, climate change had larger impacts on maize than wheat and rice. More cultivated areas were significantly and positively correlated with precipitation than with other climatic factors due to the limited precipitation in the APTZ. Also, climatic trend component had positive impacts on crop yields in the whole region, whereas the climate fluctuation was associated mainly with the areas where the crop yields decreased. This study helps improve our understanding of the mechanisms of climate change impacts on crop yields, and provides useful scientific information for designing regional-scale strategies of adaptation to climate change.

  20. End product yields from the extraruminal fermentation of various polysaccharide, protein and nucleic acid components of biofuels feedstocks.

    PubMed

    Weimer, Paul J

    2011-02-01

    "Extraruminal" fermentations employing in vitro incubation of mixed ruminal bacterial consortia, are capable of converting a complex array of biomass materials to mixtures of volatile fatty acids (VFA), methane, and carbon dioxide. Most of the potential energy in the biomass feedstock is retained in the VFA products, which are potential reactants for electrochemical conversion to hydrocarbon fuels. Quantitative data on VFA yields and proportions from biomass components are necessary for determining industrial feasibility, but such measurements have not been systematically reported. VFA yields and proportions were determined for a variety of carbohydrates, proteins and nucleic acids. Carbohydrates yielded primarily acetic and propionic acids, while proteins also yielded a more favorable product mix (longer average chain length and branched chain VFAs). Addition of certain co-substrates (e.g., glycerol) favorably improved the VFA product mix. The results have implications for hydrocarbon fuel generation from biomass materials by hybrid fermentation/chemical processes. Published by Elsevier Ltd.

  1. The effects of planting methods and head pruning on seed yield and yield components of medicinal pumpkin (Cucurbita pepo subsp. Pepo convar. Pepo var. styriaca) at low temperature areas.

    PubMed

    Bahrami, R Nikkhah; Khodadadi, M; Pirivatlo, S Piry; Hassanpanah, D

    2009-03-15

    This experiment carried out to evaluate the effects of planting methods (seed sowing and transplanting) and head pruning (no pruning, pruning after 12th node and pruning after 16th node) on yield and yield components such as number of branches (sub-branches) per plant, fruits per plant, growth, fruit size, weight of fresh fruit, weight of seeds per fruit, number of seeds per fruit and seed yield of medicinal pumpkin. The experiment was carried out based of factorial experiment with Randomized Completely Blocks Design (RCBD) by three replications in Ardabil Agricultural and Natural Resources Researches Station at 2007. Seedlings were grown in heated greenhouse. When the climatic condition became suitable and seedlings were at the four leaves stage, both seeds and seedlings were planted at the same time in the farm. Maintenance operations were done during the growth season. Head pruning treatments were done the forecast time. The results showed that the planting methods had significant effect on the number of ripen fruits per plant, fruits diameter, weight of seeds per fruit, weight of 1000 seeds and seed yield and had no significant effect on the other traits. Also the results indicated that head pruning treatments had significant effects on the number of branches per plant, growth and seed yield and no significant on the other traits. In this experiment the most seed yield (997.8 kg ha(-1)) obtained from transplanting method with head pruning after 12th node and the least seed yield obtained from control.

  2. Improving adaptation to drought stress in white pea bean (Phaseolus vulgaris L): genotypic effects on grain yield, yield components and pod harvest index

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris L.) is the most important food legume crop in Africa and Latin America where rainfall pattern is unpredictable. The objectives were to identify better yielding common bean lines with good canning quality under drought, and to identify traits that could be used as sele...

  3. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    PubMed

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  4. Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars.

    PubMed

    Sarvestani, Zinolabedin Tahmasebi; Pirdashti, Hemmatollah; Sanavy, Seyed Ali Mohammad Modarres; Balouchi, Hamidreza

    2008-05-15

    A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.

  5. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    PubMed Central

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought, root traits also contribute to high nutrient uptake efficiency and benefit yield under drought. PMID:28912792

  6. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis.

    PubMed

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2016-12-01

    This study was carried out to investigate the kinetics of coffee industrial residue (CIR) pyrolysis, the effect of pyrolysis factors on yield of bio-oil component and components separation of bio-oil. The kinetics of CIR pyrolysis was analyzed using distributed activation energy model (DAEM), based on the experiments in thermogravimetric analyzer (TGA), and it indicated that the average of activation energy (E) is 187.86kJ·mol -1 . The bio-oils were prepared from CIR pyrolysis in vacuum tube furnace, and its components were determined by gas chromatography/mass spectrometry (GC-MS). Among pyrolysis factors, pyrolysis temperature is the most influential factor on components yield of bio-oil, directly concerned with the volatilization and yield of components (palmitic acid, linoleic acid, oleic acid, octadecanoic acid and caffeine). Furthermore, a new method (sequencing temperature-raising pyrolysis) was put forward and applied to the components separation of bio-oil. Based on experiments, a solution of components separation of bio-oil was come out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Correlation studies on nitrogen for sunflower crop across the agroclimatic variability.

    PubMed

    Nasim, Wajid; Belhouchette, Hatem; Tariq, Muhammad; Fahad, Shah; Hammad, Hafiz Mohkum; Mubeen, Muhammad; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed; Khan, Imran; Mahmood, Faisal; Abbas, Tauqeer; Rasul, Fahd; Nadeem, Muhammad; Bajwa, Ali Ahsan; Ullah, Najeeb; Alghabari, Fahad; Saud, Shah; Mubarak, Hussani; Ahmad, Rafiq

    2016-02-01

    Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.

  8. Product yield-detected ESR on magnetic field-dependent photoreduction of quinones in SDS micellar solution

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; Sakata, S.; Konaka, R.; Shiga, T.

    1987-06-01

    Transient free radicals in the magnetic field-dependent photoreduction of quinones (menadione or anthraquinone) in a sodium dodecyl sulfate (SDS) micellar solution, were converted to stable nitroxide radicals by the ``spin trapping'' technique with or without the microwave irradiation. Upon irradiating the microwave at 160 mW, the product yield (``spin adduct'' of the alkyl radical generated from SDS molecule) decreased by up to 14% at certain magnetic fields in a resonant manner. Although only one component of the postulated radical pair was converted to the spin adduct, the decrease in the yield as a function of external magnetic field revealed the ESR spectra of both component radicals of the radical pair, i.e., the semiquinone radical and the alkyl radical from SDS. This experiment not only gives the direct evidence for the radical pair model, but also suggests the possibility for this method to be applied in controlling the chemical reactions by the microwave. A simple calculation was made to simulate the observed ``product yield-detected ESR.'' Agreements were achieved semiquantitatively between the observed reductions in the spin adduct yields and those calculated. The estimated exchange interaction between the component radicals in the radical pair of the present systems was lower than 0.3 mT.

  9. Minimum number of measurements for evaluating soursop (Annona muricata L.) yield.

    PubMed

    Sánchez, C F B; Teodoro, P E; Londoño, S; Silva, L A; Peixoto, L A; Bhering, L L

    2017-05-31

    Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of soursop (Annona muricata L.) genotypes based on fruit yield. Sixteen measurements of fruit yield from 71 soursop genotypes were carried out between 2000 and 2016. In order to estimate r with the best accuracy, four procedures were used: analysis of variance, principal component analysis based on the correlation matrix, principal component analysis based on the phenotypic variance and covariance matrix, and structural analysis based on the correlation matrix. The minimum number of measurements needed to predict the actual value of individuals was estimated. Principal component analysis using the phenotypic variance and covariance matrix provided the most accurate estimates of both r and the number of measurements required for accurate evaluation of fruit yield in soursop. Our results indicate that selection of soursop genotypes with high fruit yield can be performed based on the third and fourth measurements in the early years and/or based on the eighth and ninth measurements at more advanced stages.

  10. Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee

    PubMed Central

    Gary, Christian; Tixier, Philippe; Lechevallier, Esther

    2017-01-01

    The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013–2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses. PMID:28046054

  11. Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee.

    PubMed

    Cerda, Rolando; Avelino, Jacques; Gary, Christian; Tixier, Philippe; Lechevallier, Esther; Allinne, Clémentine

    2017-01-01

    The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013-2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses.

  12. Predicting Great Lakes fish yields: tools and constraints

    USGS Publications Warehouse

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, William Scott

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  14. Fertilizer nitrogen, soil chemical properties, and their determinacy on rice yield: Evidence from 92 paddy fields of a large-scale farm in the Kanto Region of Japan

    NASA Astrophysics Data System (ADS)

    Li, D.; Nanseki, T.; Chomei, Y.; Yokota, S.

    2017-07-01

    Rice, a staple crop in Japan, is at risk of decreasing production and its yield highly depends on soil fertility. This study aimed to investigate determinants of rice yield, from the perspectives of fertilizer nitrogen and soil chemical properties. The data were sampled in 2014 and 2015 from 92 peat soil paddy fields on a large-scale farm located in the Kanto Region of Japan. The rice variety used was the most widely planted Koshihikari in Japan. Regression analysis indicated that fertilizer nitrogen significantly affected the yield, with a significant sustained effect to the subsequent year. Twelve soil chemical properties, including pH, cation exchange capacity, content of pyridine base elements, phosphoric acid, and silicic acid, were estimated. In addition to silicic acid, magnesia, in forms of its exchangeable content, saturation, and ratios to potassium and lime, positively affected the yield, while phosphoric acid negatively affected the yield. We assessed the soil chemical properties by soil quality index and principal component analysis. Positive effects were identified for both approaches, with the former performing better in explaining the rice yield. For soil quality index, the individual standardized soil properties and margins for improvement were indicated for each paddy field. Finally, multivariate regression on the principal components identified the most significant properties.

  15. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase

    PubMed Central

    Li, Dayong; Huang, Zhiyuan; Song, Shuhui; Xin, Yeyun; Mao, Donghai; Lv, Qiming; Zhou, Ming; Tian, Dongmei; Tang, Mingfeng; Wu, Qi; Liu, Xue; Chen, Tingting; Song, Xianwei; Fu, Xiqin; Zhao, Bingran; Liang, Chengzhi; Li, Aihong; Liu, Guozhen; Li, Shigui; Hu, Songnian; Cao, Xiaofeng; Yu, Jun; Yuan, Longping; Chen, Caiyan; Zhu, Lihuang

    2016-01-01

    Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world’s food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed. PMID:27663737

  16. OAKSIM: An individual-tree growth and yield simulator for managed, even-aged, upland oak stands

    Treesearch

    Donald E. Hilt; Donald E. Hilt

    1985-01-01

    OAKSIM is an individual-tree growth and yield simulator for managed, even-aged, upland oak stands. Growth and yield projections for various thinning alternatives can be made with OAKSIM for a period of up to 50 years. Simulator components include an individual-tree diameter growth model, a mortality model, height prediction equations, bark ratio equations, a taper-...

  17. Traits Explaining Durum Wheat (Triticum turgidum L. spp. Durum) Yield in Dry Chilean Mediterranean Environments

    PubMed Central

    González-Ribot, Gerlitt; Opazo, Marcela; Silva, Paola; Acevedo, Edmundo

    2017-01-01

    Yield under water stress (YS) is used as the main criterion in the selection of wheat varieties for dry Mediterranean environments. It has been proposed that selection of genotypes using YS assisted by morphological and physiological traits associated with YS is more efficient in selecting high yielding genotypes for dry environments. A study was carried out at the Antumapu Experiment Station of the University of Chile, located in Santiago, Chile (33° 40′S and 70° 38′ W). The objective was to evaluate the extent to which morpho physiological traits could explain YS. For this purpose, grain yield and yield components of 185 durum wheat genotypes from ICARDA (International Center for Agricultural Research in the Dry Areas) and INIA (Chilean National Institute for Agricultural Research) were evaluated along with seed size and weight, days to heading (DH), glaucousness (GLAU), plant height (PH) and 13C discrimination (Δ). The design was an α-lattice with two replications, the genotypes were grown in two different water conditions (high and low irrigation) during two seasons (2011-2012/2012-2013). Grain weight (GW) was the only yield component with high H associated with YS, but it was not associated with yield under high irrigation (YI). The combination of YI with DH+GLAU+PH+Δ+GW obtained in LI environments explained a greater fraction of YS (38%) across years; these traits had lower genotype x environment interaction than YS, they also explained a higher proportion of yield under drought than YI. None of the traits studied could replace YS in selections for grain yield. It is concluded that these traits could aid in the selection of durum wheat subject to water stress, particularly in early generations. PMID:29104578

  18. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    PubMed

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p < 0.01). Therefore, the mixing ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.

  19. A meteorologically-driven yield reduction model for spring and winter wheat

    NASA Technical Reports Server (NTRS)

    Ravet, F. W.; Cremins, W. J.; Taylor, T. W.; Ashburn, P.; Smika, D.; Aaronson, A. (Principal Investigator)

    1983-01-01

    A yield reduction model for spring and winter wheat was developed for large-area crop condition assessment. Reductions are expressed in percentage from a base yield and are calculated on a daily basis. The algorithm contains two integral components: a two-layer soil water budget model and a crop calendar routine. Yield reductions associated with hot, dry winds (Sukhovey) and soil moisture stress are determined. Input variables include evapotranspiration, maximum temperature and precipitation; subsequently crop-stage, available water holding percentage and stress duration are evaluated. No specific base yield is required and may be selected by the user; however, it may be generally characterized as the maximum likely to be produced commercially at a location.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinosmore » at 5–7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0–7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Lastly, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.« less

  1. Effect of salt stress on morpho-physiology, vegetative growth and yield of rice.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Ali, E; Ismail, Mohd Razi; Selamat, Ahmed; Karim, S M Rezaul

    2014-03-01

    Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.

  2. [Effect of near infrared spectrum on the precision of PLS model for oil yield from oil shale].

    PubMed

    Wang, Zhi-Hong; Liu, Jie; Chen, Xiao-Chao; Sun, Yu-Yang; Yu, Yang; Lin, Jun

    2012-10-01

    It is impossible to use present measurement methods for the oil yield of oil shale to realize in-situ detection and these methods unable to meet the requirements of the oil shale resources exploration and exploitation. But in-situ oil yield analysis of oil shale can be achieved by the portable near infrared spectroscopy technique. There are different correlativities of NIR spectrum data formats and contents of sample components, and the different absorption specialities of sample components shows in different NIR spectral regions. So with the proportioning samples, the PLS modeling experiments were done by 3 formats (reflectance, absorbance and K-M function) and 4 regions of modeling spectrum, and the effect of NIR spectral format and region to the precision of PLS model for oil yield from oil shale was studied. The results show that the best data format is reflectance and the best modeling region is combination spectral range by PLS model method and proportioning samples. Therefore, the appropriate data format and the proper characteristic spectral region can increase the precision of PLS model for oil yield form oil shale.

  3. Effects of fission yield data in the calculation of antineutrino spectra for U 235 ( n , fission ) at thermal and fast neutron energies

    DOE PAGES

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; ...

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinosmore » at 5–7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0–7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Lastly, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.« less

  4. Chemometric investigation of light-shade effects on essential oil yield and morphology of Moroccan Myrtus communis L.

    PubMed

    Fadil, Mouhcine; Farah, Abdellah; Ihssane, Bouchaib; Haloui, Taoufik; Lebrazi, Sara; Zghari, Badreddine; Rachiq, Saâd

    2016-01-01

    To investigate the effect of environmental factors such as light and shade on essential oil yield and morphological traits of Moroccan Myrtus communis, a chemometric study was conducted on 20 individuals growing under two contrasting light environments. The study of individual's parameters by principal component analysis has shown that essential oil yield, altitude, and leaves thickness were positively correlated between them and negatively correlated with plants height, leaves length and leaves width. Principal component analysis and hierarchical cluster analysis have also shown that the individuals of each sampling site were grouped separately. The one-way ANOVA test has confirmed the effect of light and shade on essential oil yield and morphological parameters by showing a statistically significant difference between them from the shaded side to the sunny one. Finally, the multiple linear model containing main, interaction and quadratic terms was chosen for the modeling of essential oil yield in terms of morphological parameters. Sun plants have a small height, small leaves length and width, but they are thicker and richer in essential oil than shade plants which have shown almost the opposite. The highlighted multiple linear model can be used to predict essential oil yield in the studied area.

  5. Variations in Volatile Oil Yield and Composition of "Xin-yi" (Magnolia biondii Pamp. Flower Buds) at Different Growth Stages.

    PubMed

    Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong

    2018-06-01

    Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.

  6. Kinetics of the formation of chromosome aberrations in X-irradiated human lymphocytes: analysis by premature chromosome condensation with delayed fusion.

    PubMed

    Greinert, R; Detzler, E; Volkmer, B; Harder, D

    1995-11-01

    Human lymphocytes irradiated with graded doses of up to 5 Gy of 150 kV X rays were fused with mitotic CHO cells after delay times ranging from 0 to 14 h after irradiation. The yields of dicentrics seen under PCC conditions, using C-banding for centromere detection, and of excess acentric fragments observed in the PCC experiment were determined by image analysis. At 4 Gy the time course of the yield of dicentrics shows an early plateau for delay times up to 2 h, then an S-shaped rise and a final plateau which is reached after a delay time of about 8 to 10 h. Whereas the dose-yield curve measured at zero delay time is strictly linear, the shape of the curve obtained for 8 h delay time is linear-quadratic. The linear yield component, alpha D, is formed entirely in the fast process manifested in the early plateau, while component beta D2 is developed slowly in the subsequent hours. Analysis of the kinetics of the rise of the S-shaped curve for yield as a function of time leads to the postulate of an "intermediate product" of pairwise DNA lesion interaction, still fragile when subjected to the stress of PCC, but gradually processed into a stable dicentric chromosome. It is concluded that the observed difference in the kinetics of the alpha and beta components explains a number of earlier results, especially the disappearance of the beta component at high LET, and opens possibilities for chemical and physical modification of the beta component during the extended formation process after irradiation observed here.

  7. Excited-state properties of nucleic acid components

    NASA Astrophysics Data System (ADS)

    Salet, C.; Bensasson, R. V.; Becker, R. S.

    1981-12-01

    Measurements were made of the fluorescence and phosphorescence spectra and lifetimes, and also of the absorption spectra, lifetimes, extinction coefficients, and quantum yields of the T1 lower triplet states of thymine, uracil, their N, N'-dimethyl derivatives, thymidine, thymidine monophosphate, uridine, and uridine monophosphate in various solvents at 300 °K. The influence of the solvent on the quantum yield of the T1 state of nucleic acid components is discussed.

  8. Features of plastic strain localization at the yield plateau in Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Barannikova, S. A.; Zuev, L. B.

    2008-07-01

    Spatiotemporal distributions of local components of the plastic distortion tensor in Hadfield steel single crystals oriented for single twinning have been studied under active tensile straining conditions using the double-exposure speckle photography technique. Features of the macroscopically inhomogeneous strain localization at the yield plateau are considered. Relations between local components of the plastic distortion tensor in the zone of strain localization are analyzed.

  9. Use of vegetation health data for estimation of aus rice yield in bangladesh.

    PubMed

    Rahman, Atiqur; Roytman, Leonid; Krakauer, Nir Y; Nizamuddin, Mohammad; Goldberg, Mitch

    2009-01-01

    Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991-2005). A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March-April (weeks 8-13 of the year), several months in advance of the rice harvest. Stepwise principal component regression (PCR) was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost.

  10. Use of Vegetation Health Data for Estimation of Aus Rice Yield in Bangladesh

    PubMed Central

    Rahman, Atiqur; Roytman, Leonid; Krakauer, Nir Y.; Nizamuddin, Mohammad; Goldberg, Mitch

    2009-01-01

    Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991–2005). A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March–April (weeks 8–13 of the year), several months in advance of the rice harvest. Stepwise principal component regression (PCR) was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost. PMID:22574057

  11. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE PAGES

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  12. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    NASA Astrophysics Data System (ADS)

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  13. Role of the N*(1535) in {eta}{sup '} production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Xu; Graduate School, Chinese Academy of Sciences, Beijing 100049; Lee Xiguo

    2008-09-15

    We study the near-threshold {eta}{sup '} production mechanism in nucleon-nucleon and {pi}N collisions under the assumption that subthreshold resonance N*(1535) is predominant. In an effective Lagrangian approach that gives a reasonable description to the pN{yields}pN{eta} and {pi}{sup -}p{yields}n{eta} reactions, we find that the excitation of N*(1535) resonance from the t-channel {pi} exchange makes the dominate contribution to the pN{yields}pN{eta}{sup '} process, and a value of 6.5 for the ratio of {sigma}(pn{yields}pn{eta}{sup '}) to {sigma}(pp{yields}pp{eta}{sup '}) is predicted. A strongcoupling strength of N*(1535) to {eta}{sup '}N (g{sub {eta}{sup '}}{sub NN*}{sup 2}/4{pi}=1.1) is extracted from a combined analysis to pp{yields}pp{eta}{sup '} andmore » {pi}N{yields}N{eta}{sup '}, and the possible implication to the intrinsic component of N*(1535) is explored.« less

  14. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.

    PubMed

    Dias de Oliveira, Eduardo A; Siddique, Kadambot H M; Bramley, Helen; Stefanova, Katia; Palta, Jairo A

    2015-02-01

    The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components. © 2014 Commonwealth of Australia. Global Change Biology © 2014 John Wiley & Sons Ltd.

  15. Effects of stage of pregnancy on variance components, daily milk yields and 305-day milk yield in Holstein cows, as estimated by using a test-day model.

    PubMed

    Yamazaki, T; Hagiya, K; Takeda, H; Osawa, T; Yamaguchi, S; Nagamine, Y

    2016-08-01

    Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open to maximize lifetime productivity in dairy cows.

  16. Many light Higgs bosons in the next-to-minimal supersymmetric model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dermisek, Radovan; Gunion, John F.

    2009-03-01

    The next-to-minimal supersymmetric model with a light doubletlike CP-odd Higgs boson and small tan{beta} can satisfy all experimental limits on Higgs bosons even with light superpartners. In these scenarios, the two lightest CP-even Higgs bosons, h{sub 1} and h{sub 2}, and the charged Higgs boson, h{sup +}, can all be light enough to be produced at CERN LEP and yet have decays that have not been looked for or are poorly constrained by existing collider experiments. The channel h{sub 1}{yields}a{sub 1}a{sub 1} with a{sub 1}{yields}{tau}{sup +}{tau}{sup -} or 2j is still awaiting LEP constraints for m{sub h{sub 1}}>86 or 82more » GeV, respectively. LEP data may also contain e{sup +}e{sup -}{yields}h{sub 2}a{sub 1} events where h{sub 2}{yields}Za{sub 1} is the dominant decay, a channel that was never examined. Decays of the charged Higgs bosons are often dominated by H{sup {+-}}{yields}W{sup {+-}}{sup (}*{sup )}a{sub 1} with a{sub 1}{yields}gg, cc, and {tau}{sup +}{tau}{sup -}. This is a channel that has so far been ignored in the search for t{yields}h{sup +}b decays at the Tevatron. A specialized analysis might reveal a signal. The light a{sub 1} might be within the reach of B factories via {upsilon}{yields}{gamma}a{sub 1} decays. We study typical mass ranges and branching ratios of Higgs bosons in this scenario and compare these scenarios where the a{sub 1} has a large doublet component to the more general scenarios with arbitrary singlet component for the a{sub 1}.« less

  17. Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats.

    PubMed

    Zhang, Junli; Gizaw, Shiferaw Abate; Bossolini, Eligio; Hegarty, Joshua; Howell, Tyson; Carter, Arron H; Akhunov, Eduard; Dubcovsky, Jorge

    2018-05-16

    Chromosome regions affecting grain yield, grain yield components and plant water status were identified and validated in fall-sown spring wheats grown under full and limited irrigation. Increases in wheat production are required to feed a growing human population. To understand the genetic basis of grain yield in fall-sown spring wheats, we performed a genome-wide association study (GWAS) including 262 photoperiod-insensitive spring wheat accessions grown under full and limited irrigation treatments. Analysis of molecular variance showed that 4.1% of the total variation in the panel was partitioned among accessions originally developed under fall-sowing or spring-sowing conditions, 11.7% among breeding programs within sowing times and 84.2% among accessions within breeding programs. We first identified QTL for grain yield, yield components and plant water status that were significant in at least three environments in the GWAS, and then selected those that were also significant in at least two environments in a panel of eight biparental mapping populations. We identified and validated 14 QTL for grain yield, 15 for number of spikelets per spike, one for kernel number per spike, 11 for kernel weight and 9 for water status, which were not associated with differences in plant height or heading date. We detected significant correlations among traits and colocated QTL that were consistent with those correlations. Among those, grain yield and plant water status were negatively correlated in all environments, and six QTL for these traits were colocated or tightly linked (< 1 cM). QTL identified and validated in this study provide useful information for the improvement of fall-sown spring wheats under full and limited irrigation.

  18. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress

    PubMed Central

    Ambavaram, Madana M. R.; Basu, Supratim; Krishnan, Arjun; Ramegowda, Venkategowda; Batlang, Utlwang; Rahman, Lutfor; Baisakh, Niranjan; Pereira, Andy

    2014-01-01

    Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions. PMID:25358745

  19. Partitioning potential fish yields from the Great Lakes

    USGS Publications Warehouse

    Loftus, D.H.; Olver, C.H.; Brown, Edward H.; Colby, P.J.; Hartman, Wilbur L.; Schupp, D.H.

    1987-01-01

    We proposed and implemented procedures for partitioning future fish yields from the Great Lakes into taxonomic components. These projections are intended as guidelines for Great Lakes resource managers and scientists. Attainment of projected yields depends on restoration of stable fish communities containing some large piscivores that will use prey efficiently, continuation of control of the sea lamprey (Petromyzon marinus), and restoration of high-quality fish habitat. Because Great Lakes fish communities were harmonic before their collapse, we used their historic yield properties as part of the basis for projecting potential yields of rehabilitated communities. This use is qualified, however, because of possible inaccuracies in the wholly commercial yield data, the presence now of greatly expanded sport fisheries that affect yield composition and magnitude, and some possibly irreversible changes since the 1950s in the various fish communities themselves. We predict that total yields from Lakes Superior, Huron, and Ontario will be increased through rehabilitation, while those from Lakes Michigan and Erie will decline. Salmonines and coregonines will dominate future yields from the upper lakes. The Lake Erie fishery will continue to yield mostly rainbow smelt (Osmerus mordax), but the relative importance of percids, especially of walleye (Stizostedion vitreum vitreum) will increase. In Lake Ontario, yields of salmonines will be increased. Managers will have to apply the most rigorous management strictures to major predator species.

  20. Development and validation of equations utilizing lamb vision system output to predict lamb carcass fabrication yields.

    PubMed

    Cunha, B C N; Belk, K E; Scanga, J A; LeValley, S B; Tatum, J D; Smith, G C

    2004-07-01

    This study was performed to validate previous equations and to develop and evaluate new regression equations for predicting lamb carcass fabrication yields using outputs from a lamb vision system-hot carcass component (LVS-HCC) and the lamb vision system-chilled carcass LM imaging component (LVS-CCC). Lamb carcasses (n = 149) were selected after slaughter, imaged hot using the LVS-HCC, and chilled for 24 to 48 h at -3 to 1 degrees C. Chilled carcasses yield grades (YG) were assigned on-line by USDA graders and by expert USDA grading supervisors with unlimited time and access to the carcasses. Before fabrication, carcasses were ribbed between the 12th and 13th ribs and imaged using the LVS-CCC. Carcasses were fabricated into bone-in subprimal/primal cuts. Yields calculated included 1) saleable meat yield (SMY); 2) subprimal yield (SPY); and 3) fat yield (FY). On-line (whole-number) USDA YG accounted for 59, 58, and 64%; expert (whole-number) USDA YG explained 59, 59, and 65%; and expert (nearest-tenth) USDA YG accounted for 60, 60, and 67% of the observed variation in SMY, SPY, and FY, respectively. The best prediction equation developed in this trial using LVS-HCC output and hot carcass weight as independent variables explained 68, 62, and 74% of the variation in SMY, SPY, and FY, respectively. Addition of output from LVS-CCC improved predictive accuracy of the equations; the combined output equations explained 72 and 66% of the variability in SMY and SPY, respectively. Accuracy and repeatability of measurement of LM area made with the LVS-CCC also was assessed, and results suggested that use of LVS-CCC provided reasonably accurate (R2 = 0.59) and highly repeatable (repeatability = 0.98) measurements of LM area. Compared with USDA YG, use of the dual-component lamb vision system to predict cut yields of lamb carcasses improved accuracy and precision, suggesting that this system could have an application as an objective means for pricing carcasses in a value-based marketing system.

  1. Effect on the Lunar Exosphere of a CME Passage

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Hurley, Dana M.; Farrell, William M.; Sarantos, Menelaos

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that the sputter yield can be noticeably increased in the case of a good insulating surface. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. The heavy ion component, especially the He++ component, greatly enhances the total sputter yield during times when the heavy ion population is enhanced, most notably during a coronal mass ejection. To simulate the effect on the lunar exosphere of a CME passage past the Moon, we ran a Monte Carlo code for the species Na, K, Mg and Ca.

  2. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson.

    PubMed

    Thomson, M J; Tai, T H; McClung, A M; Lai, X-H; Hinga, M E; Lobos, K B; Xu, Y; Martinez, C P; McCouch, S R

    2003-08-01

    An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.

  3. Rock magnetic and paleomagnetic study of the Keurusselkä impact structure, central Finland

    NASA Astrophysics Data System (ADS)

    Raiskila, Selen; Salminen, Johanna; Elbra, Tiiu; Pesonen, Lauri J.

    2011-11-01

    There are 31 proven impact structures in Fennoscandia—one of the most densely crater-populated areas of the Earth. The recently discovered Keurusselkä impact structure (62°08' N, 24°37' E) is located within the Central Finland Granitoid Complex, which formed 1890-1860 Ma ago during the Svecofennian orogeny. It is a deeply eroded complex crater that yields in situ shatter cones with evidence of shock metamorphism, e.g., planar deformation features in quartz. New petrophysical and rock magnetic results of shocked and unshocked target rocks of various lithologies combined with paleomagnetic studies are presented. The suggested central uplift with shatter cones is characterized by increased magnetization and susceptibility. The presence of magnetite and pyrrhotite was observed as carriers for the remanent magnetization. Four different remanent magnetization directions were isolated: (1) a characteristic Svecofennian target rock component A with a mean direction of D = 334.8°, I = 45.6°, α95 = 14.9° yielding a pole (Plat = 51.1°, Plon = 241.9°, A95 = 15.1°), (2) component B, D = 42.4°, I = 64.1°, α95 = 8.4° yielding a pole (Plat = 61.0°, Plon = 129.1°, A95 = 10.6°), (3) component C (D = 159.5°, I = 65.4°, α95 = 10.7°) yielding a pole (Plat = 21.0°, Plon = 39.3°, A95 = 15.6°), and (4) component E (D = 275.5°, I = 62.0°, α95 = 14.4°) yielding a pole (Plat = 39.7°, Plon = 314.3°, A95 = 19.7°). Components C and E are considered much younger, possibly Neoproterozoic overprints, compared with the components A and B. The pole of component B corresponds with the 1120 Ma pole of Salla diabase dyke and is in agreement with the 40Ar/39Ar age of 1140 Ma from a pseudotachylitic breccia vein in a central part of the structure. Therefore, component B could be related to the impact, and thus represent the impact age.

  4. Fabrication of injection molded sintered alpha SiC turbine components

    NASA Technical Reports Server (NTRS)

    Storm, R. S.; Ohnsorg, R. W.; Frechette, F. J.

    1981-01-01

    Fabrication of a sintered alpha silicon carbide turbine blade by injection molding is described. An extensive process variation matrix was carried out to define the optimum fabrication conditions. Variation of molding parameters had a significant impact on yield. Turbine blades were produced in a reasonable yield which met a rigid quality and dimensional specification. Application of injection molding technology to more complex components such as integral rotors is also described.

  5. Nutrient database improvement project: the influence of U.S.D.A. Quality and Yield Grade on the separable components and proximate composition of raw and cooked retail cuts from the beef rib and plate.

    PubMed

    Martin, J N; Brooks, J C; Thompson, L D; Savell, J W; Harris, K B; May, L L; Haneklaus, A N; Schutz, J L; Belk, K E; Engle, T; Woerner, D R; Legako, J F; Luna, A M; Douglass, L W; Douglass, S E; Howe, J; Duvall, M; Patterson, K Y; Leheska, J L

    2013-11-01

    Beef nutrition is important to the worldwide beef industry. The objective of this study was to analyze proximate composition of eight beef rib and plate cuts to update the USDA National Nutrient Database for Standard Reference (SR). Furthermore, this study aimed to determine the influence of USDA Quality Grade on the separable components and proximate composition of the examined retail cuts. Carcasses (n=72) representing a composite of Yield Grade, Quality Grade, gender and genetic type were identified from six regions across the U.S. Beef plates and ribs (IMPS #109 and 121C and D) were collected from the selected carcasses and shipped to three university meat laboratories for storage, retail fabrication, cooking, and dissection and analysis of proximate composition. These data provide updated information regarding the nutrient content of beef and emphasize the influence of common classification systems (Yield Grade and Quality Grade) on the separable components, cooking yield, and proximate composition of retail beef cuts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Ecological adaptability evaluation of peanut cultivars based on biomass and nutrient accumulation].

    PubMed

    Wang, Xue; Cui, Shao-xiong; Sun, Zhi-mei; Mu, Guo-jun; Cui, Shun-li; Wang, Peng-chao; Liu, Li-feng

    2015-07-01

    To identify the good peanut cultivars with the properties of high yield, high nutrient use efficiency and wide adaptability, 19 selected peanut cultivars were planted in the low champaign area and piedmont plain area of Hebei Province. By using principal component analysis, the adaptability of these 19 cultivars was evaluated for different ecological regions through comparing their 16 main traits including biomass and nutrient parameters. According to the critical value of principal component (>1.0), the 16 biomass and nutrient characteristics were integrated into 4 principal components which accounted for 85% of the original information. The results indicated that there were obvious differences in yield and nutrient use efficiency for the peanut cultivars in different ecological regions. The 19 peanut cultivars were classified into 2 groups according to their ecological adaptability, and the cultivars from the group with wide adaptability could further be divided into 3 categories according to their yield and nutrient use efficiency. Among these cultivars, Yuhua 9719, Jihua 0212-4, Weihua 10, Yuhua 15, Puhua 28 and Jihua 10 were selected as the better peanut cultivars with the properties of high yield, high nutrient use efficiency and wide adaptability.

  7. United States Air Force Summer Research Program 1991. Volume 1. Program Management Report

    DTIC Science & Technology

    1992-01-09

    rates to initial vibrational excitation. Rates for the relaxation of the nth-vibrational state were shown to be proportional to n.exp(on), where 0 is a...reduce speckle. This yields a signal proportional to the square root of the target intensity distribution. In theory this signal should yield the line of...eight velocity component. The averaged autocorrelation of the heterodyne signal yields a quantity proportional to the target intensity distribution

  8. Changes in crop yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  9. Factors that determine the level of the yield strength and the return of the yield-point elongation in low-alloy ferrite-martensite steels

    NASA Astrophysics Data System (ADS)

    Fonstein, N.; Kapustin, M.; Pottore, N.; Gupta, I.; Yakubovsky, O.

    2007-09-01

    The results of laboratory investigations of dual-phase steels with different contents of carbon and alloying elements after the controlled cooling from the two-phase field and the final low-temperature tempering are presented. It is shown that the ratio of the yield strength to the tensile strength of dual-phase steels, just as the return of the yield-point elongation, depends on the volume fraction of martensite, temperature of the martensite transformation of the austenite component, quenching stresses, concentration of carbon in ferrite, and the temperature of the final tempering.

  10. BIODEGRADATIVE ANALYSIS OF MUNICIPAL SOLID WASTE IN LABORATORY-SCALE LANDFILLS

    EPA Science Inventory

    The report gives results of research to characterize the anaerobic biodegradability of the major biodegradable components of municipal solid waste (MSW). Tests were conducted in quadruplicate in 2-L reactors operated to obtain maximum yields. Measured methane (CH4) yields for gra...

  11. Anomalous yield reduction in direct-drive DT implosions due to 3He addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Hans W; Langenbrunner, James R; Mack, Joseph M

    2008-01-01

    Glass capsules were imploded in direct drive on the OMEGA laser [T. R. Boehly et aI., Opt. Commun. 133, 495, 1997] to look for anomalous degradation in deuterium/tritium (DT) yield (i.e., beyond what is predicted) and changes in reaction history with {sup 3}He addition. Such anomalies have previously been reported for D/{sup 3}He plasmas, but had not yet been investigated for DT/{sup 3}He. Anomalies such as these provide fertile ground for furthering our physics understanding of ICF implosions and capsule performance. A relatively short laser pulse (600 ps) was used to provide some degree of temporal separation between shock andmore » compression yield components for analysis. Anomalous degradation in the compression component of yield was observed, consistent with the 'factor of two' degradation previously reported by MIT at a 50% {sup 3}He atom fraction in D{sub 2} using plastic capsules [Rygg et aI., Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT, but consistent with LANL results in D{sub 2}/{sup 3}He [Wilson, et aI., lml Phys: Conf Series 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression ofcapsules containing {sup 3}He. Leading candidate explanations are poorly understood Equation-of-State (EOS) for gas mixtures, and unanticipated particle pressure variation with increasing {sup 3}He addition.« less

  12. Contamination-Free Manufacturing: Tool Component Qualification, Verification and Correlation with Wafers

    NASA Astrophysics Data System (ADS)

    Tan, Samantha H.; Chen, Ning; Liu, Shi; Wang, Kefei

    2003-09-01

    As part of the semiconductor industry "contamination-free manufacturing" effort, significant emphasis has been placed on reducing potential sources of contamination from process equipment and process equipment components. Process tools contain process chambers and components that are exposed to the process environment or process chemistry and in some cases are in direct contact with production wafers. Any contamination from these sources must be controlled or eliminated in order to maintain high process yields, device performance, and device reliability. This paper discusses new nondestructive analytical methods for quantitative measurement of the cleanliness of metal, quartz, polysilicon and ceramic components that are used in process equipment tools. The goal of these new procedures is to measure the effectiveness of cleaning procedures and to verify whether a tool component part is sufficiently clean for installation and subsequent routine use in the manufacturing line. These procedures provide a reliable "qualification method" for tool component certification and also provide a routine quality control method for reliable operation of cleaning facilities. Cost advantages to wafer manufacturing include higher yields due to improved process cleanliness and elimination of yield loss and downtime resulting from the installation of "bad" components in process tools. We also discuss a representative example of wafer contamination having been linked to a specific process tool component.

  13. Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.

    2013-12-01

    The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.

  14. Genetic parameters for milk, fat and protein yields in Murrah buffaloes (Bubalus bubalis Artiodactyla, Bovidae)

    PubMed Central

    2010-01-01

    The objective of the present study was to estimate genetic parameters for test-day milk, fat and protein yields and 305-day-yields in Murrah buffaloes. 4,757 complete lactations of Murrah buffaloes were analyzed. Co-variance components were estimated by the restricted maximum likelihood method. The models included additive direct genetic and permanent environmental effects as random effects, and the fixed effects of contemporary group, milking number and age of the cow at calving as linear and quadratic covariables. Contemporary groups were defined by herd-year-month of test for test-day yields and by herd-year-season of calving for 305-day yields. The heritability estimates obtained by two-trait analysis ranged from 0.15 to 0.24 for milk, 0.16 to 0.23 for protein and 0.13 to 0.22 for fat, yields. Genetic and phenotypic correlations were all positive. The observed population additive genetic variation indicated that selection might be an effective tool in changing population means in milk, fat and protein yields. PMID:21637608

  15. Yields of Bacterial Cells from Hydrocarbons

    PubMed Central

    Wodzinski, Richard S.; Johnson, Marvin J.

    1968-01-01

    A strain of Nocardia and one of Pseudomonas, both isolated on pristane (2,6,10,14-tetramethylpentadecane), gave cell yields of approximately 100% on n-octadecane and pristane. Both organisms grew more rapidly on the n-octadecane than on the pristane. A mixed culture, isolated on 3-methylheptane, whose two components were identified as species of Pseudomonas and of Nocardia, gave approximately 100% cell yields and grew with generation times of about 5 hr on n-heptane, n-octane, and 2-methylheptane. The generation time on 3-methylheptane was 8.6 hr and the cell yield was only 79%. A strain of Pseudomonas isolated from naphthalene enrichments and one from phenanthrene enrichments both gave a cell yield of 50% on naphthalene. The phenanthrene isolate gave a cell yield of 40% on phenanthrene. A Nocardia species isolated on benzene gave a 79% cell yield on benzene. The generation times of the bacteria isolated on aromatic hydrocarbons were related to the solubility of the aromatic hydrocarbons on which they were grown; the more insoluble hydrocarbons gave slower growth. PMID:5726161

  16. Developmental changes in growth, yield and volatile oil of some chinese garlic lines in comparison with the local cultivar "Balady".

    PubMed

    Abouziena, H F; El-Saeid, Hamed M

    2013-10-15

    Balady cultivar and six Chinese lines were planted to study their developmental growth, yield and essential oil variations. Bulb of Balady cultivar had more two folds of cloves number per bulb than the Chinese lines. On the contrary Balady cv had the lowest clove weight compared to all Chinese lines. Chinese lines significantly surppassed the Balady cultivar in the bulb yield ha(-1). The bulb yield ha(-1) could be arrangement in descending order as follow Line B > Line F > Line D > Line C > Line A > Line E > Balady cv. Line B significantly surpassed the other tested lines in oil yield and had 7 folds oil yield plant(-1) than the local cultivar. The main compound in the bulb was found to be methylallay disulfide in both Chinese lines and Balady cultivar. Some components which found in the garlic bulbs at the age 150 days disappeared at the maturity time. Chinese Line B recorded the highest bulb yield and volatile oil content comparing with other lines.

  17. Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects.

    PubMed

    Tian, Dayong; Lin, Zhifen; Yu, Jianqiao; Yin, Daqiang

    2012-08-01

    Organic chemicals usually coexist as a mixture in the environment, and the mixture toxicity of organic chemicals has received increased attention. However, research regarding the joint effects of reactive chemicals is lacking. In this study, we examined two kinds of reactive chemicals, cyanogenic toxicants and aldehydes and determined their joint effects on Photobacterium phosphoreum. Three factors were found to influence the joint effects of multicomponent mixtures containing reactive chemicals, including the number of components, the dominating components and the toxic ratios. With an increased number of components, the synergistic or antagonistic effects (interactions) will weaken to the additive effects (non-interactions) if the added component cannot yield a much stronger joint effect with an existing component. Contrarily, the joint effect of the mixture may become stronger instead of weaker if the added components can yield a much stronger joint effect than the existing joint effect of the multicomponent mixture. The components that yield the strongest interactions in their binary mixture can be considered the dominating components. These components contribute more to the interactions of multicomponent mixtures than other components. Moreover, the toxic ratios also influence the joint effects of the mixtures. This study provides an insight into what are the main factors and how they influence the joint effects of multicomponent mixtures containing reactive chemicals, and thus, the findings are beneficial to the study of mixture toxicology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evaluating the synchronicity in yield variations of staple crops at global scale

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.

    2014-12-01

    Reflecting the recent globalization trend in world commodity market, several major production countries are producing large amount of staple crops, especially, maize and soybean. Thus, simultaneous crop failure (abrupt reduction in crop yield, lean year) due to extreme weather and/or climate change could lead to unstable food supply. This study try to examine the synchronicity in yield variations of staple crops at global scale. We use a gridded crop yields database, which includes the historical year-to-year changes in staple crop yields with a spatial resolution of 1.125 degree in latitude/longitude during a period of 1982-2006 (Iizumi et al. 2013). It has been constructed based on the agriculture statistics issued by local administrative bureaus in each country. For the regions being lack of data, an interpolation was conducted to obtain the values referring to the NPP estimates from satellite data as well as FAO country yield. For each time series of the target crop yield, we firstly applied a local kernel regression to represent the long-term trend component. Next, the deviations of yearly yield from the long-term trend component were defined as ΔY(i, y) in year y at grid i. Then, the correlation of deviation between grids i and j in year y is defined as Cij(y) = ΔY(i, y) ΔY(j, y). In addition, Pij = <ΔY(i, y) ΔY(j, y)> represents the time-averaged correlation of deviation between grids i and j. Bracket <...> means the time average operation over 25 years (1982-2006). As the results, figures show the time changes in the number of grid pairs, in which both the deviation are negative. It represent the time changes in ratio of the grid pairs where both crop yields synchronically decreased to the total grid pairs. The years denoted by arrows in the figures indicate the case that all the ratios of three country pairs (i.e. China-USA, USA-Brazil and Brazil-China) are relatively larger (>0.6 for soybean and >0.5 for maize). This suggests that the reductions in crop yield occurred synchronically in three countries in these years, which are the simultaneous lean years (as of lower yield compared to that of long-term trend).

  19. Row and forage crop rotation effects on maize mineral nutrition and yield

    USDA-ARS?s Scientific Manuscript database

    Extended crop rotations provide many attributes in support of sustainable agriculture. Objectives were to investigate rotations that included row crops and forages in terms of their effects on soil characteristics as well as on maize (Zea mays L.) stover biomass, grain yield, and mineral components...

  20. Preference for internucleotide linkages as a function of the number of constituents in a mixture

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.

    1998-01-01

    Phosphoimidazolide-activated ribomononucleotides (*pN; see Scheme I) are useful substrates for the nonenzymatic synthesis of oligonucleotides. In the presence of metal ions dilute neutral aqueous solutions of *pN (0.01 M) typically yield only small amounts of dimers and traces of oligomers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate (5'NMP). An earlier investigation of *pN reactions in highly concentrated aqueous solutions (up to 1.4 M) showed, as expected, that the percentage yield of the condensation products increases and the yield of the hydrolysis product correspondingly decreases with *pN concentration (Kanavarioti 1997). Here we report product distributions in reactions with one, two, or three reactive components at the same total nucleotide concentration. *pN used as substrates were the nucleoside 5'-phosphate 2-methylimidazolides, 2-MeImpN, with N = cytidine (C), uridine (U), or guanosine (G). Reactions were conducted as self-condensations, i. e., one nucleotide only, with two components in the three binary U,C, U,G, and C,G mixtures, and with three components in the ternary U,C, G mixture. The products are 5'NMP, 5',5'-pyrophosphate-, 2',5'-, 3', 5'-linked dimers, cyclic dimers, and a small percentage of longer oligomers. The surprising finding was that, under identical conditions, including the same total monomer concentration, the product distribution differs substantially from one reaction to another, most likely due to changing intermolecular interactions depending on the constituents. Even more unexpected was the observed trend according to which reactions of the U,C,G mixture produce the highest yield of internucleotide-linked dimers, whereas the self-condensations produce the least and the reactions with the binary mixtures produce yields that fall in between. What is remarkable is that the approximately two-fold increase in the percentage yield of internucleotide-linked dimers is not due to a concentration effect or a catalyst, but to the increased complexity of the system from a single to two and three components. These observations, perhaps, provide an example of how increased complexity in relatively simple chemical systems leads to organization of the material and consequently to chemical evolution. A possible link between prebiotic chemistry and the postulated RNA world is discussed.

  1. Investment risk in bioenergy crops

    DOE PAGES

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; ...

    2015-11-18

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  2. Investment risk in bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  3. Associated strangeness production in the pp{yields}pK{sup +}K{sup -}p and pp{yields}pK{sup +{pi}0{Sigma}0} reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Jujun; Department of Physics, Zhengzhou University, Zhengzhou, Henan 450001; Wilkin, Colin

    2010-08-15

    The total and differential cross sections for associated strangeness production in the pp{yields}pK{sup +}K{sup -}p and pp{yields}pK{sup +{pi}0{Sigma}0} reactions have been studied in a unified approach using an effective Lagrangian model. It is assumed that both the K{sup -}p and {pi}{sup 0{Sigma}0} final states originate from the decay of the {Lambda}(1405) that was formed in the production chain pp{yields}p(N*(1535){yields}K{sup +{Lambda}}(1405)). The available experimental data are well reproduced, especially the ratio of the two total cross sections, which is much less sensitive to the particular model of the entrance channel. The significant coupling of the N*(1535) to {Lambda}(1405)K is further evidencemore » for large ss-bar components in the quark wave function of the N*(1535).« less

  4. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.

    2016-01-01

    Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.

  5. Scintillation properties of the silver doped lithium iodide single crystals at room and low temperature

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Kim, H. J.; Lee, M. H.

    2016-06-01

    This study presents luminescence and scintillation properties of Silver doped LiI crystals. Single crystals of LiI: x% Ag (x=0.02, 0.05, 0.1 and 0.5) were grown by using the Bridgman technique. X-ray induced luminescence spectra show emission bands spanning from 275 nm to 675 nm, dominated by Ag+ band having a peak at 300 nm. Under UV-luminescence, a similar emission band was observed with the peak excitation wavelength of 265 nm. Energy resolution, light yield and decay time profiles of the samples were measured under a 137Cs γ-ray irradiation. The LiI(0.1%Ag) showed the highest light yield and the best energy resolution among the samples. The light yield of LiI(0.1%Ag) is higher than commercially available LiI(Eu) crystal (15,000±1500 ph/MeV). The LiI(Ag) samples exhibit three exponential decay time components except the LiI(0.02%Ag), where the fitting found two decay time components. Temperature dependences of emission spectra, light yield and decay time were studied from 300 K to 10 K. The LiI(0.1%Ag) crystal showed an increase in the light yield and a shortening of decay time with a decrease in temperature..

  6. High yield cell-free production of integral membrane proteins without refolding or detergents.

    PubMed

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  7. [Effects of nitrogen application levels on yield and active composition content of Desmodium styracifolium].

    PubMed

    Zhou, Jiamin; Yin, Xiaohong; Chen, Chaojun; Huang, Min; Peng, Fuyuan; Zhu, Xiaoqi

    2010-06-01

    To find out the optimal nitrogen application level of Desmodium styracifolium. A field experiment using randomized block design was carried out to study the effects of 5 nitrogen application levels (150, 187.5, 225.0, 262.5 and 300.0 kg x hm(-2)) on yield and active component content of D. styracifolium. Nitrogen application could increase the yield and contents of polysaccharide, total flavonoides and total saponins of D. styracifolium. However, the enhancing extent of the active component content and the yield were not always significant with the increase of nitrogen level. In which, the yield were not significantly different among the nitrogen application levels of 225.0, 262.5, 300.0 kg x hm(-2) the polysaccharide content was no significantly difference among the nitrogen application levels of 225.0, 262. 5 and 300.0 kg x hm(-2), the total flavonoides content under the nitrogen level of 300.0 kg x hm(-2) was significantly lower than that of 150.0 kg hm(-2) (P < 0.01), and the total saponins content under the nitrogen level of 300.0 kg x hm(-2) was no significant difference compared with that of 262.5 kg x hm(-2). The optimal nitrogen application level of D. styracifolium was 225.0-262.5 kg x hm(-2).

  8. Variability and performance evaluation of introgressed Nigerian dura x Deli dura oil palm progenies.

    PubMed

    Noh, A; Rafii, M Y; Mohd Din, A; Kushairi, A; Norziha, A; Rajanaidu, N; Latif, M A; Malek, M A

    2014-04-03

    Twelve introgressed oil palm (Elaeis guineensis) progenies of Nigerian dura x Deli dura were evaluated for bunch yield, yield attributes, bunch quality components and vegetative characters at the Malaysian Palm Oil Board Research Station, in Keratong, Pahang, Malaysia. Analysis of variance revealed significant to highly significant genotypic differences, indicating sufficient genetic variability among the progenies for bunch yield and its attributes, vegetative characters and bunch quality components, except fruit to bunch ratio. Fresh fruit bunch yield ranged from 167 kg·palm(-1)·year(-1) in PK1330 to 212 kg·palm(-1)·year(-1) in PK1351, with a mean yield of 192 kg·palm(-1)·year(-1). Among the progeny, PK1313 had the highest oil to bunch ratio (19.36%), due to its high mesocarp to fruit ratio, fruit to bunch ratio and low shell to fruit ratio. Among the progenies, PK1313 produced the highest oil yield of 31.4 kg·palm(-1)·year(-1), due to a high mesocarp to fruit ratio (61.2%) and a low shell to fruit ratio (30.7%), coupled with high fruit to bunch ratio (65.6%). PK1330 was found promising for selection, as it had desirable vegetative characters, including smaller petiole cross section (27.15 cm2), short rachis length (4.83 m), short palm height (1.85 m), and the lowest leaf number (164.6), as these vegetative characters are prerequisites for selecting palms for high density planting and high yield per hectare. The genetic variability among the progenies was found to be high, indicating ample scope for further breeding, followed by selection.

  9. Impact of low concentration factor microfiltration on milk component recovery and Cheddar cheese yield.

    PubMed

    Neocleous, M; Barbano, D M; Rudan, M A

    2002-10-01

    The effect of microfiltration (MF) on the composition of Cheddar cheese, fat, crude protein (CP), calcium, total solids recovery, and Cheddar cheese yield efficiency (i.e., composition adjusted yield divided by theoretical yield) was determined. Raw skim milk was microfiltered twofold using a 0.1-microm ceramic membrane at 50 degrees C. Four vats of cheese were made in one day using milk at lx, 1.26x, 1.51x, and 1.82x concentration factor (CF). An appropriate amount of cream was added to achieve a constant casein (CN)-to-fat ratio across treatments. Cheese manufacture was repeated on four different days using a randomized complete block design. The composition of the cheese was affected by MF. Moisture content of the cheese decreased with increasing MF CF. Standardization of milk to a constant CN-to-fat ratio did not eliminate the effect of MF on cheese moisture content. Fat recovery in cheese was not changed by MF. Separation of cream prior to MF, followed by the recombination of skim or MF retentate with cream resulted in lower fat recovery in cheese for control and all treatments and higher fat loss in whey when compared to previous yield experiments, when control Cheddar cheese was made from unseparated milk. Crude protein, calcium, and total solids recovery in cheese increased with increasing MF CF, due to partial removal of these components prior to cheese making. Calcium and calcium as a percentage of protein increased in the cheese, suggesting an increase in calcium retention in the cheese with increasing CF. While the actual and composition adjusted cheese yields increased with increasing MF CF, as expected, there was no effect of MF CF on cheese yield efficiency.

  10. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai

    2017-01-01

    Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging. PMID:29117250

  11. Waterlogging effects on growth and yield components in late-planted soybean.

    PubMed

    Linkemer, G; Board, J E; Musgrave, M E

    1998-01-01

    A major agronomic problem in the southeastern USA is low yield of late-planted soybean [Glycine max (L.) Merr.]. This problem is aggravated by the adverse effect of waterlogging on crop growth. Our objectives were to identify soybean growth stages sensitive to waterlogging; identify yield components and physiological parameters explaining yield losses induced by waterlogging; and determine the extent of yield losses induced by waterlogging under natural field conditions. Greenhouse and field studies were conducted during 1993 and 1994 near Baton Rouge, LA, (30 degrees N Lat) on a Commerce silt loam. Waterlogging tolerance was assessed in cultivar Centennial (Maturity Group VI) at three vegetative and five reproductive growth stages by maintaining the water level at the soil surface in a greenhouse study. Using the same cultivar, we evaluated the effect of drainage in the field for late-planted soybean. Rain episodes determined the timing of waterlogging; redox potential and oxygen concentration of the soil were used to quantify the intensity of waterlogging stress. Results of the greenhouse study indicated that the early vegetative period (V2) and the early reproductive stages (R1, R3, and R5) were most sensitive to waterlogging. Three to 5 cm of rain per day falling on poorly drained soil was sufficient to reduce crop growth rate, resulting in a yield decline from 2453 to 1550 kg ha-1. Yield loss in both field and greenhouse studies was induced primarily by decreased pod production resulting from fewer pods per reproductive node. In conclusion, waterlogging was determined to be an important stress for late-planted soybean in high rainfall areas such as the Gulf Coast Region.

  12. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.).

    PubMed

    Zhang, Mingwei; Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai

    2017-01-01

    Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging.

  13. The loss of essential oil components induced by the Purge Time in the Pressurized Liquid Extraction (PLE) procedure of Cupressus sempervirens.

    PubMed

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B; Wianowska, Dorota

    2012-05-30

    The influence of different Purge Times on the effectiveness of Pressurized Liquid Extraction (PLE) of volatile oil components from cypress plant matrix (Cupressus sempervirens) was investigated, applying solvents of diverse extraction efficiencies. The obtained results show the decrease of the mass yields of essential oil components as a result of increased Purge Time. The loss of extracted components depends on the extrahent type - the greatest mass yield loss occurred in the case of non-polar solvents, whereas the smallest was found in polar extracts. Comparisons of the PLE method with Sea Sand Disruption Method (SSDM), Matrix Solid-Phase Dispersion Method (MSPD) and Steam Distillation (SD) were performed to assess the method's accuracy. Independent of the solvent and Purge Time applied in the PLE process, the total mass yield was lower than the one obtained for simple, short and relatively cheap low-temperature matrix disruption procedures - MSPD and SSDM. Thus, in the case of volatile oils analysis, the application of these methods is advisable. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Online evaluation of a commercial video image analysis system (Computer Vision System) to predict beef carcass red meat yield and for augmenting the assignment of USDA yield grades. United States Department of Agriculture.

    PubMed

    Cannell, R C; Belk, K E; Tatum, J D; Wise, J W; Chapman, P L; Scanga, J A; Smith, G C

    2002-05-01

    Objective quantification of differences in wholesale cut yields of beef carcasses at plant chain speeds is important for the application of value-based marketing. This study was conducted to evaluate the ability of a commercial video image analysis system, the Computer Vision System (CVS) to 1) predict commercially fabricated beef subprimal yield and 2) augment USDA yield grading, in order to improve accuracy of grade assessment. The CVS was evaluated as a fully installed production system, operating on a full-time basis at chain speeds. Steer and heifer carcasses (n = 296) were evaluated using CVS, as well as by USDA expert and online graders, before the fabrication of carcasses into industry-standard subprimal cuts. Expert yield grade (YG), online YG, CVS estimated carcass yield, and CVS measured ribeye area in conjunction with expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, hot carcass weight) accounted for 67, 39, 64, and 65% of the observed variation in fabricated yields of closely trimmed subprimals. The dual component CVS predicted wholesale cut yields more accurately than current online yield grading, and, in an augmentation system, CVS ribeye measurement replaced estimated ribeye area in determination of USDA yield grade, and the accuracy of cutability prediction was improved, under packing plant conditions and speeds, to a level close to that of expert graders applying grades at a comfortable rate of speed offline.

  15. Statistical evaluation of nutritional components impacting phycocyanin production Synechocystis SP.

    PubMed Central

    Deshmukh, Devendra V.; Puranik, Pravin R.

    2012-01-01

    Alkaliphilic cyanobacterial cultures were isolated from Lonar lake (MS, India). Among the set of cultures, Synechocystis sp, was studied for phycocyanin production. A maximum yield was obtained in BG-11 medium at optimized conditions (pH 10 and 16 h light). In order to increase the phycocyanin yield media optimization based on the eight media components a Plackett-Burman design of the 12 experimental trials was used. As per the analysis CaCl2, 2H2O and Na2CO3 have been found to be the most influencing media components at 95% significance. Further the optimum concentrations of these components were estimated following a Box Wilson Central Composite Design (CCD) with four star points and five replicates at the center points for each of two factors was adopted for optimization of these two media components. The results indicated that there was an interlinked influence of CaCl2, 2H2O and Na2CO3 on 98% significance. The maximum yield of phycocyanin (12% of dry wt) could be obtained at 0.058 g/l and 0.115 g/l of CaCl2, 2H2O and Na2CO3, respectively. PMID:24031838

  16. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.).

    PubMed

    Li, Z K; Jiang, X L; Peng, T; Shi, C L; Han, S X; Tian, B; Zhu, Z L; Tian, J C

    2014-02-28

    Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cultivars, 'Huapei 3' (HP3) and 'Yumai 57' (YM57), was investigated. Quantitative trait loci (QTL) for total biomass yield, grain yield, and straw yield were determined for additive effects and additive x additive epistatic interactions using the QTLNetwork 2.0 software based on the mixed-linear model. Thirteen QTL were determined to have significant additive effects for the three yield traits, of which six also exhibited epistatic effects. Eleven significant additive x additive interactions were detected, of which seven occurred between QTL showing epistatic effects only, two occurred between QTL showing epistatic effects and additive effects, and two occurred between QTL with additive effects. These QTL explained 1.20 to 10.87% of the total phenotypic variation. The QTL with an allele originating from YM57 on chromosome 4B and another QTL contributed by HP3 alleles on chromosome 4D were simultaneously detected on the same or adjacent chromosome intervals for the three traits in two environments. Most of the repeatedly detected QTL across environments were not significant (P > 0.05). These results have implications for selection strategies in wheat biomass yield and for increasing the yield of the aerial part of wheat.

  17. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population.

    PubMed

    Yu, Jiwen; Zhang, Ke; Li, Shuaiyang; Yu, Shuxun; Zhai, Honghong; Wu, Man; Li, Xingli; Fan, Shuli; Song, Meizhen; Yang, Daigang; Li, Yunhai; Zhang, Jinfa

    2013-01-01

    Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65-25.27% of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12%) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.

  18. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenousmore » nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.« less

  19. Components of a Rice-Oilseed Rape Production System Augmented with Trichoderma sp. Tri-1 Control Sclerotinia sclerotiorum on Oilseed Rape.

    PubMed

    Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Yinbo; Qin, Lu; Liao, Xing

    2015-10-01

    Sclerotinia sclerotiorum causes serious yield losses on many crops throughout the world. A multicomponent treatment that consisted of the residual rice straw remaining after rice harvest and Trichoderma sp. Tri-1 (Tri-1) formulated with the oilseed rape seedcake fertilizer was used in field soil infested with S. sclerotiorum. This treatment resulted in oilseed rape seed yield that was significantly greater than the nontreated control or when the fungicide carbendizem was used in the presence of this pathogen in field trials. Yield data suggested that the rice straw, oilseed rape seedcake, and Tri-1 components of this treatment all contributed incrementally. Similar treatment results were obtained regarding reduction in disease incidence. Slight improvements in yield and disease incidence were detected when this multicomponent treatment was combined with a fungicide spray. Inhibition of sclerotial germination by this multicomponent treatment trended greater than the nontreated control at 90, 120, and 150 days in field studies but was not significantly different from this control. This multicomponent treatment resulted in increased yield relative to the nontreated control in the absence of pathogen in a greenhouse pot study, while the straw alone and the straw plus oilseed rape seedcake treatments did not; suggesting that Tri-1 was capable of promoting growth. Experiments reported here indicate that a treatment containing components of a rice-oilseed rape production system augmented with Tri-1 can control S. sclerotiorum on oilseed rape, be used in integrated strategies containing fungicide sprays for control of this pathogen, and promote plant growth.

  20. Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite.

    PubMed

    Leng, Shuai; Wang, Xinde; Cai, Qiuxia; Ma, Fengyun; Liu, Yue'e; Wang, Jianguo

    2013-12-01

    Direct biomass conversion into chemicals remains a great challenge because of the complexity of the compounds; hence, this process has attracted less attention than conversion into fuel. In this study, we propose a simple one-step method for converting bagasse into furfural (FF) and acetic acid (AC). In this method, bagasse pyrolysis over ZnCl2/HZSM-5 achieved a high FF and AC yield (58.10%) and a 1.01 FF/AC ratio, but a very low yield of medium-boiling point components. However, bagasse pyrolysis using HZSM-5 alone or ZnCl2 alone still remained large amounts of medium-boiling point components or high-boiling point components. The synergistic effect of HZSM-5 and ZnCl2, which combines pyrolysis, zeolite cracking, and Lewis acid-selective catalysis results in highly efficient bagasse conversion into FF and AC. Therefore, our study provides a novel, simple method for directly converting biomass into high-yield useful chemical. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of inorganic species on torrefaction process and product properties of rice husk.

    PubMed

    Zhang, Shuping; Su, Yinhai; Ding, Kuan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi; Xiong, Yuanquan

    2018-06-20

    The objective of this study was to evaluate the effect of inorganic species on torrefaction process and product properties. Torrefaction process of raw and leached rice husk was performed at different temperatures between 210 and 270 °C. Inorganic species have significant effect on the torrefaction process and properties of torrefaction products. The results indicated that solid yield increased, gas yield decreased and liquid yield remained unchanged for leached rice husk when compared to raw rice husk. Gas products from torrefaction process mainly contained CO 2 and CO, and leaching process slightly reduced the volume concentration of CO 2 . Removal of inorganic species slightly decreased water content and increased organic component content in liquid products. Acetic acid, furfural, 2,3-dihydrobenzofuran and levoglucosan were the dominant components in liquid product. Inorganic species enhanced the effect of deoxygenation and dehydrogenation during torrefaction process, resulting in the enrichment of C component in solid products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Spectral reflectance indices as a selection criterion for yield improvement in wheat

    NASA Astrophysics Data System (ADS)

    Babar, Md. Ali

    2005-11-01

    Scope and methods of study. Yield in wheat ( Triticum aestivum L.) is a complex trait and influenced by many environmental factors, and yield improvement is a daunting task for wheat breeders. Spectral reflectance indices (SRIs) have been used to study different physiological traits in wheat. SRIs have the potential to differentiate genotypes for grain yield. SRIs strongly associated with grain yield can be used to achieve effective genetic gain in wheat under different environments. Three experiments (15 adapted genotypes, 25 and 36 random sister lines derived from two different crosses) under irrigated conditions, and three experiments (each with 30 advanced genotypes) under water-limited conditions were conducted in three successive years in Northwest Mexico at the CIMMYT (International Maize and wheat Improvement Center) experimental station. SRIs and different agronomic data were collected for three years, and biomass was harvested for two years. Phenotypic and genetic correlations between SRIs and grain yield, between SRIs and biomass, realized and broad sense heritability, direct and correlated selection responses for grain yield, and SRIs were calculated. Findings and conclusion. Seven SRIs were calculated, and three near infrared based indices (WI, NWI-1 and NWI-2) showed higher level of genetic and phenotypic correlations with grain yield, yield components and biomass than other SRIs (PRI, RNDVI, GNDVI, and SR) under both irrigated and water limiting environments. Moderate to high realized and broad sense heritability, and selection response were demonstrated by the three NIR based indices. High efficiency of correlated response for yield estimation was demonstrated by the three NIR based indices. The ratio between the correlated response to grain yield based on the three NIR based indices and direct selection response for grain yield was very close to one. The NIR based indices showed very high accuracy in selecting superior genotypes for grain yield under both well-watered and water-limited conditions. These results demonstrated that effective genetic gain in grain yield improvement can be achieved by making selections with the three NIR based indices.

  3. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    PubMed Central

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; Lovell, John T.; Moyers, Brook T.; Baraoidan, Marietta; Naredo, Maria Elizabeth B.; McNally, Kenneth L.; Poland, Jesse; Bush, Daniel R.; Leung, Hei; Leach, Jan E.; McKay, John K.

    2017-01-01

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution. PMID:28220807

  4. Estimates of genetic and environmental (co)variances for first lactation on milk yield, survival, and calving interval.

    PubMed

    Dong, M C; van Vleck, L D

    1989-03-01

    Variance and covariance components for milk yield, survival to second freshening, calving interval in first lactation were estimated by REML with the expectation and maximization algorithm for an animal model which included herd-year-season effects. Cows without calving interval but with milk yield were included. Each of the four data sets of 15 herds included about 3000 Holstein cows. Relationships across herds were ignored to enable inversion of the coefficient matrix of mixed model equations. Quadratics and their expectations were accumulated herd by herd. Heritability of milk yield (.32) agrees with reports by same methods. Heritabilities of survival (.11) and calving interval(.15) are slightly larger and genetic correlations smaller than results from different methods of estimation. Genetic correlation between milk yield and calving interval (.09) indicates genetic ability to produce more milk is lightly associated with decreased fertility.

  5. Differentiation of essential oils in Atractylodes lancea and Atractylodes koreana by gas chromatography with mass spectrometry.

    PubMed

    Liu, Qiutao; Zhang, Shanshan; Yang, Xihui; Wang, Ruilin; Guo, Weiying; Kong, Weijun; Yang, Meihua

    2016-12-01

    Atractylodes rhizome is a valuable traditional Chinese medicinal herb that comprises complex several species whose essential oils are the primary pharmacologically active component. Essential oils of Atractylodes lancea and Atractylodes koreana were extracted by hydrodistillation, and the yield was determined. The average yield of essential oil obtained from A. lancea (2.91%) was higher than that from A. koreana (2.42%). The volatile components of the essential oils were then identified by a gas chromatography with mass spectrometry method that demonstrated good precision. The method showed clear differences in the numbers and contents of volatile components between the two species. 41 and 45 volatile components were identified in A. lancea and A. koreana, respectively. Atractylon (48.68%) was the primary volatile component in A. lancea, while eudesma-4(14)-en-11-ol (11.81%) was major in A. koreana. However, the most significant difference between A. lancea and A. koreana was the major component of atractylon and atractydin. Principal component analysis was utilized to reveal the correlation between volatile components and species, and the analysis was used to successfully discriminate between A. lancea and A. koreana samples. These results suggest that different species of Atractylodes rhizome may yield essential oils that differ significantly in content and composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dry bean genotype evaluation for growth, yield components and phosphorus use efficiency

    USDA-ARS?s Scientific Manuscript database

    Dry beans along with rice are staple food for populations of South America. In this tropical region beans are grown on Oxisols and phosphorus is one of the most yield limiting factors for dry bean production. A greenhouse experiment was conducted to evaluate P use efficiency in 20 promising dry bean...

  7. High char yield epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Delvigs, P.; Serafini, T. T.; Vanucci, R. D.

    1981-01-01

    Class of imide-amine curing agents preserves structural integrity, prevents fiber release, and is fully compatible with conventional epoxy resins; agents do not detract from composite properties while greatly reducing char yield. Materials utilizing curing are used in aerospace, automotive, and other structural components where deterioration must be minimized and fiber release avoided in event of fire.

  8. A tree biomass and carbon estimation system

    Treesearch

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  9. Nutrient database improvement project: the influence of USDA quality and yield grade on the separable components and proximate composition of raw and cooked retail cuts from the beef chuck.

    PubMed

    West, S E; Harris, K B; Haneklaus, A N; Savell, J W; Thompson, L D; Brooks, J C; Pool, J K; Luna, A M; Engle, T E; Schutz, J S; Woerner, D R; Arcibeque, S L; Belk, K E; Douglass, L; Leheska, J M; McNeill, S; Howe, J C; Holden, J M; Duvall, M; Patterson, K

    2014-08-01

    This study was designed to provide updated information on the separable components, cooking yields, and proximate composition of retail cuts from the beef chuck. Additionally, the impact the United States Department of Agriculture (USDA) Quality and Yield Grade may have on such factors was investigated. Ultimately, these data will be used in the USDA - Nutrient Data Laboratory's (NDL) National Nutrient Database for Standard Reference (SR). To represent the current United States beef supply, seventy-two carcasses were selected from six regions of the country based on USDA Yield Grade, USDA Quality Grade, gender, and genetic type. Whole beef chuck primals from selected carcasses were shipped to three university laboratories for subsequent retail cut fabrication, raw and cooked cut dissection, and proximate analyses. The incorporation of these data into the SR will improve dietary education, product labeling, and other applications both domestically and abroad, thus emphasizing the importance of accurate and relevant beef nutrient data. Copyright © 2014. Published by Elsevier Ltd.

  10. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil.

    PubMed

    Yin, Sudong; Dolan, Ryan; Harris, Matt; Tan, Zhongchao

    2010-05-01

    In this study, cattle manure was converted to bio-oil by subcritical hydrothermal liquefaction in the presence of NaOH. The effects of conversion temperature, process gas, initial conversion pressure, residence time and mass ratio of cattle manure to water on the bio-oil yield were studied. The bio-oil was characterized in terms of elemental composition, higher heating value, ultraviolet-visible (UV/Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results showed that the bio-oil yield depended on the conversion temperature and the process gas. Higher initial conversion pressure, longer residence time and larger mass ratio of cattle manure to water, however, had negative impacts on the bio-oil yield. The higher heating value of bio-oil was 35.53MJ/kg on average. The major non-polar components of bio-oil were toluene, ethyl benzene and xylene, which are components of crude oil, gasoline and diesel. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. How Does Alkali Aid Protein Extraction in Green Tea Leaf Residue: A Basis for Integrated Biorefinery of Leaves.

    PubMed

    Zhang, Chen; Sanders, Johan P M; Xiao, Ting T; Bruins, Marieke E

    2015-01-01

    Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured) protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results.

  12. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  13. Estimates of spatial and temporal variation of energy crops biomass yields in the US

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.

    2013-12-01

    Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus) have been identified for potential use as biomass feedstocks in the US. Current research on perennial grass biomass production has been evaluated on small-scale plots. However, the extent to which this potential can be realized at a landscape-scale will depend on the biophysical potential to grow these grasses with minimum possible amount of land that needs to be diverted from food to fuel production. To assess this potential three questions about the biomass yield for these grasses need to be answered: (1) how the yields for different grasses are varied spatially and temporally across the US; (2) whether the yields are temporally stable or not; and (3) how the spatial and temporal trends in yields of these perennial grasses are controlled by limiting factors, including soil type, water availability, climate, and crop varieties. To answer these questions, the growth processes of the perennial grasses are implemented into a coupled biophysical, physiological and biogeochemical model (ISAM). The model has been applied to quantitatively investigate the spatial and temporal trends in biomass yields for over the period 1980 -2010 in the US. The bioenergy grasses considered in this study include Miscanthus, Cave-in-Rock switchgrass and Alamo switchgrass. The effects of climate, soil and topography on the spatial and temporal trends of biomass yields are quantitatively analyzed using principal component analysis and GIS based geographically weighted regression. The spatial temporal trend results are evaluated further to classify each part of the US into four homogeneous potential yield zones: high and stable yield zone (HS), high but unstable yield zone (HU), low and stable yield zone (LS) and low but unstable yield zone (LU). Our preliminary results indicate that the yields for perennial grasses among different zones are strongly related to the different controlling factors. For example, the yield in HS zone is depended on soil and topography factors. However, the yields in HU zone are more controlled by climate factors, leading to a large uncertainty in yield potential of bioenergy grasses under future climate change.

  14. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon.

    PubMed

    Septiningsih, E M; Prasetiyono, J; Lubis, E; Tai, T H; Tjubaryat, T; Moeljopawiro, S; McCouch, S R

    2003-11-01

    A BC(2)F(2) population developed from an interspecific cross between Oryza sativa (cv IR64) and O. rufipogon (IRGC 105491) was used in an advanced backcross QTL analysis to identify and introduce agronomically useful genes from this wild relative into the cultivated gene pool. The objectives of this study were: (1) to identify putative yield and yield component QTLs that can be useful to improve the elite cultivar IR64; (2) to compare the QTLs within this study with previously reported QTLs in rice as the basis for identifying QTLs that are stable across different environments and genetic backgrounds; and (3) to compare the identified QTLs with previously reported QTLs from maize to examine the degree of QTL conservation across the grass family. Two hundred eighty-five families were evaluated in two field environments in Indonesia, with two replications each, for 12 agronomic traits. A total of 165 markers consisting of 131 SSRs and 34 RFLPs were used to construct the genetic linkage map. By employing interval mapping and composite interval mapping, 42 QTLs were identified. Despite its inferior performance, 33% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield and yield components in the IR64 background. Twenty-two QTLs (53.4%) were located in similar regions as previously reported rice QTLs, suggesting the existence of stable QTLs across genetic backgrounds and environments. Twenty QTLs (47.6%) were exclusively detected in this study, uncovering potentially novel alleles from the wild, some of which might improve the performance of the tropical indica variety IR64. Additionally, several QTLs for plant height, grain weight, and flowering time detected in this study corresponded to homeologous regions in maize containing previously detected maize QTLs for these traits.

  15. Short communication: immediate and deferred milk production responses to concentrate supplements in cows grazing fresh pasture.

    PubMed

    Roche, J R; Kay, J K; Rius, A G; Grala, T M; Sheahan, A J; White, H M; Phyn, C V C

    2013-04-01

    The objective of this study was to determine the increase in milk production from supplementation that occurred after supplementation ceased. This portion of the total response (i.e., the deferred response), although accepted, is generally not accounted for in short-term component research projects, but it is important in determining the economic impact of supplementary feeding. Fifty-nine multiparous Holstein-Friesian dairy cows were offered a generous allowance of spring pasture [>45 kg of dry matter (DM)/cow per day) and were supplemented with 0, 3, or 6 kg (DM)/d of pelleted concentrate (half of the allowance at each milking event) in a complete randomized design. Treatments were imposed for the first 12 wk of lactation. Treatments were balanced for cow age (5.4 ± 1.68 yr), calving date (July 27 ± 26.0 d), and genetic merit for milk component yield. During the period of supplementation, milk yield and the yield of milk components increased (1.19 kg of milk, 0.032 kg of fat, 0.048 kg of protein, and 0.058 kg of lactose/kg of concentrate DM consumed), but neither body condition score nor body weight was affected. After concentrate supplementation ceased and cows returned to a common diet of fresh pasture, milk and milk component yields remained greater for 3 wk in the cows previously supplemented. During this 3-wk period, cows that previously received 3 and 6 kg of concentrate DM per day produced an additional 2.3 and 4.5 kg of milk/d, 0.10 and 0.14 kg of fat/d, 0.10 and 0.14 kg of protein/d, and 0.10 and 0.19 kg of lactose/d, respectively, relative to unsupplemented cows. This is equivalent to an additional 0.19 kg of milk, 0.006 kg of fat, 0.006 kg of protein, and 0.008 kg of lactose per 1 kg of concentrate DM previously consumed, which would not be accounted for in the immediate response. As a result of this deferred response to supplements, the total milk production benefit to concentrate supplements is between 7% (lactose yield) and 32% (fat yield) greater than the marginal response measured during the component experiment. Recommendations to dairy producers based on component feeding studies must be revised to include this deferred response. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Genotype × Environment Interactions of Yield Traits in Backcross Introgression Lines Derived from Oryza sativa cv. Swarna/Oryza nivara

    PubMed Central

    Balakrishnan, Divya; Subrahmanyam, Desiraju; Badri, Jyothi; Raju, Addanki Krishnam; Rao, Yadavalli Venkateswara; Beerelli, Kavitha; Mesapogu, Sukumar; Surapaneni, Malathi; Ponnuswamy, Revathi; Padmavathi, G.; Babu, V. Ravindra; Neelamraju, Sarla

    2016-01-01

    Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions. PMID:27807437

  17. Genetic architecture, inter-relationship and selection criteria for yield improvement in rice (Oryza sativa L.).

    PubMed

    Yadav, S K; Pandey, P; Kumar, B; Suresh, B G

    2011-05-01

    This study has been conducted to determine the extent of genetic association between yield of Rice (Oryza sativa L.) and its components. The present experiment was carried out with 40 Rice (Oryza sativa L.) genotypes which were evaluated in a randomized block design with 3 replications during wet season of 2007 and 2008. Results showed that sufficient amount of variability was found in the entire gene pool for all traits studied. Higher magnitude of genotypic and phenotypic coefficients of variation was recorded for seed yield, harvest index, biological yield, number of spikelets per panicle, flag leaf length, plant height and number of tillers indicates that these characters are least influence by environment. High heritability coupled with high genetic advance as percent of mean was registered for seed yield, harvest index, number of spikelets per panicle, biological yield and flag leaf length, suggesting preponderance of additive gene action in the expression of these characters. Grain yield was significantly and positively associated with harvest index, number of tillers per hill, number of panicle per plant, panicle length, number of spikelet's per panicle and test weight at both genotypic and phenotypic levels. Path coefficient analysis revealed that harvest index, biological yield, number of tillers per hill, panicle length, number of spikelets per panicle, plant height and test weight had direct positive effect on seed yield, indicating these are the main contributors to yield. From this study it may be concluded that harvest index, number of tillers per hill, panicle length and number of spikelet per panicle and test weight are the most important characters that contributed directly to yield. Thus, these characters may serve selection criteria for improving genetic potential of rice.

  18. Hydrogeological characterisation and prospect of basement Aquifers of Ibarapa region, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Akanbi, Olanrewaju Akinfemiwa

    2018-06-01

    The present study involved the use of 82 geo-electric soundings, and the measurement of well inventory and conduct of yield tests in 19 wells across the various bedrock terrains of Ibarapa region of southwestern Nigeria. The aim is to proffer solution to the unsustainable yield of the available boreholes in order to effectively exploit the existing groundwater resource in the area. From the geological reports, the area is underlain by four principal crystalline rocks that include porphyritic granite, gneisses, amphibolite and migmatite. The geo-electric studies revealed that the degree and extent of development of the weathered-fractured component varied, leading to diversity in groundwater yield and in aquifer vulnerability to contamination. The thickness of the weathered layer is greater than 18 m in areas underlain by amphibolite and gneisses and less than 13 m within migmatite and porphyritic granite terrains. High groundwater yield greater than 70 m3/day was recorded in wells within the zones of rock contacts and in areas with large concentration of bedrock fractures and elevated locations across the various bedrock terrains. Aquifer vulnerability is low in amphibolite, high in granitic terrains, low to moderate in gneisses and high to moderate in migmatite. Also, wells' depths and terrain elevation have a moderate to strong indirect relationship with groundwater yield in most bedrock terrains, except in high topographic areas underlain by porphyritic granite. Therefore, there is need for modification of well depth in accordance with the terrain elevation and hydrogeological complexity of the weathered-fractured components of the variuos bedrock terrains, so as to ensure a sustainable groundwater yield.

  19. A novel approach to identify genes that determine grain protein deviation in cereals.

    PubMed

    Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J

    2015-06-01

    Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Components of a rice-oilseed rape production system augmented with trichoderma sp. Tri-1 control sclerotinia sclerotiorum on oilseed rape

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia sclerotiorum causes serious yield losses on many crops throughout the world. In two field trials conducted at the same location in consecutive years, a treatment containing formulated Trichoderma harzianum-1 (Tri-1) resulted in oilseed rape seed yield that was significantly greater than...

  1. Stacked -gene hybrids were not found to be superior to glyphosate resistant or Non-GMO corn hybrids

    USDA-ARS?s Scientific Manuscript database

    Seed costs of modern corn hybrids genetically modified with multiple traits for insect and herbicide resistance “stacked-gene” are in excess of $100.00 US per acre. Yields and net returns per acre along with yield component data were determined for ten hybrids, four stacked-gene, four glyphosate re...

  2. Effects of varying forage particle size and fermentable carbohydrates on feed sorting, ruminal fermentation, and milk and component yields of dairy cows.

    PubMed

    Maulfair, D D; Heinrichs, A J

    2013-05-01

    Ration sorting is thought to affect ruminal fermentation in such a manner that milk yield milk and components are often decreased. However, the influence of ruminally degradable starch on ration sorting has not been studied. Therefore, the objective of this experiment was to evaluate the interactions between forage particle size (FPS) and ruminally fermentable carbohydrates (RFC) for dry matter intake (DMI), ration sorting, ruminal fermentation, chewing activity, and milk yield and components. In this study, 12 (8 ruminally cannulated) multiparous, lactating Holstein cows were fed a total mixed ration that varied in FPS and RFC. Two lengths of corn silage were used to alter FPS and 2 grind sizes of corn grain were used to alter RFC. It was determined that increasing RFC increased ruminating time and did not affect eating time, whereas increasing FPS increased eating time and did not affect ruminating time. Ruminal fermentation did not differ by altering either FPS or RFC. However, increasing FPS tended to increase mean and maximum ruminal pH and increasing RFC tended to decrease minimum ruminal pH. Particle size distribution became more diverse and neutral detergent fiber content of refusals increased over time, whereas starch content decreased, indicating that cows were sorting against physically effective neutral detergent fiber and for RFC. Selection indices determined that virtually no interactions occurred between FPS and RFC and that despite significant sorting throughout the day, by 24h after feeding cows had consumed a ration very similar to what was offered. This theory was reinforced by particle fraction intakes that very closely resembled the proportions of particle fractions in the offered total mixed ration. An interaction between FPS and RFC was observed for DMI, as DMI decreased with increasing FPS when the diet included low RFC and did not change when the diet included high RFC. Dry matter intake increased with RFC for long diets and did not change with RFC on short diets. Increasing RFC was found to increase milk yield, milk protein content and yield, and lactose content and yield but decrease milk fat content. Increasing FPS did not have as great an effect on milk production as RFC. This study found no significant interaction between FPS and RFC for ration sorting, although an interaction between FPS and RFC for DMI was observed. Neither FPS nor RFC affected ruminal fermentation, whereas RFC had a greater influence on milk yield and components than FPS. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming

    NASA Astrophysics Data System (ADS)

    Grilo, Tiago J.; Vladimirov, Ivaylo N.; Valente, Robertt A. F.; Reese, Stefanie

    2016-06-01

    In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.

  4. Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches.

    PubMed

    Sporck, Daniele; Reinoso, Felipe A M; Rencoret, Jorge; Gutiérrez, Ana; Del Rio, José C; Ferraz, André; Milagres, Adriane M F

    2017-01-01

    New biorefinery concepts are necessary to drive industrial use of lignocellulose biomass components. Xylan recovery before enzymatic hydrolysis of the glucan component is a way to add value to the hemicellulose fraction, which can be used in papermaking, pharmaceutical, and food industries. Hemicellulose removal can also facilitate subsequent cellulolytic glucan hydrolysis. Sugarcane bagasse was pretreated with an alkaline-sulfite chemithermomechanical process to facilitate subsequent extraction of xylan by enzymatic or alkaline procedures. Alkaline extraction methods yielded 53% (w/w) xylan recovery. The enzymatic approach provided a limited yield of 22% (w/w) but produced the xylan with the lowest contamination with lignin and glucan components. All extracted xylans presented arabinosyl side groups and absence of acetylation. 2D-NMR data suggested the presence of O -methyl-glucuronic acid and p -coumarates only in enzymatically extracted xylan. Xylans isolated using the enzymatic approach resulted in products with molecular weights (Mw) lower than 6 kDa. Higher Mw values were detected in the alkali-isolated xylans. Alkaline extraction of xylan provided a glucan-enriched solid readily hydrolysable with low cellulase loads, generating hydrolysates with a high glucose/xylose ratio. Hemicellulose removal before enzymatic hydrolysis of the cellulosic fraction proved to be an efficient manner to add value to sugarcane bagasse biorefining. Xylans with varied yield, purity, and structure can be obtained according to the extraction method. Enzymatic extraction procedures produce high-purity xylans at low yield, whereas alkaline extraction methods provided higher xylan yields with more lignin and glucan contamination. When xylan extraction is performed with alkaline methods, the residual glucan-enriched solid seems suitable for glucose production employing low cellulase loadings.

  5. Relationships between Soil and Levels of Meloidogyne incognita and Tobacco Yield and Quality.

    PubMed

    Barker, K R; Weeks, W W

    1991-01-01

    A 2-year study with six soils and four levels of Meloidogyne incognita in microplots was designed to determine the effects of these parameters on nematode activity and tobacco yield and quality. Key components under study were affected by soil, nematode level, and season (year-cultivar). In 1980, low initial nematode numbers (1,250) enhanced tobacco yield in Cecil clay loam, but caused slight to moderate yield losses in the other soils. Yield losses to M. incognita were generally greatest in sandy and muck soils. In 1980, regression analyses of the independent parameters Pi - clay-sand vs. yield gave an R(2) of 0.40. Examples of other coefficients of determination for yield vs. selected factors were root-necrosis index, 0.40; root-gall index, 0.18; root-gall index-cation exchange capacity (CEC), 0.34; root-necrosis index-CEC, 0.56; and root-necrosis index-sand-soil acidity-calcium, 0.62. In contrast, the R(2) for Pi alone versus yield in 1981 was 0.84. Soil also affected nematode reproduction with the greatest increases occurring in the sandy soils. In both years, low nematode numbers enhanced the synthesis of sugar in tobacco, whereas leaves from all other nematode treatments had low sugar levels. A low nicotine content was associated with nematode infection. Tobacco from sandy soils had a higher nicotine content than tobacco from clay soils.

  6. Improvements in Cz silicon PV module manufacturing

    NASA Astrophysics Data System (ADS)

    King, Richard R.; Mitchell, Kim W.; Jester, Theresa L.

    1997-02-01

    Work focused on reducing the cost per watt of Cz Si photovoltaic modules under Phase I of Siemens Solar Industries' DOE/NREL PVMaT 4A subcontract is described. Module cost components are analyzed and solutions to high-cost items are discussed in terms of specific module designs. The approaches of using larger cells and modules to reduce per-part processing cost, and of minimizing yield loss are particularly leveraging. Yield components for various parts of the fabrication process and various types of defects are shown, and measurements of the force required to break wafers throughout the cell fabrication sequence are given. The most significant type of yield loss is mechanical breakage. The implementation of statistical process control on key manufacturing processes at Siemens Solar Industries is described. Module configurations prototyped during Phase I of this project and scheduled to begin production in Phase II have a projected cost per watt reduction of 19%.

  7. Comparison of two apheresis systems for the collection of CD14+ cells intended to be used in dendritic cell culture.

    PubMed

    Strasser, Erwin F; Berger, Thomas G; Weisbach, Volker; Zimmermann, Robert; Ringwald, Jürgen; Schuler-Thurner, Beatrice; Zingsem, Jürgen; Eckstein, Reinhold

    2003-09-01

    Monocytes collected by leukapheresis are increasingly used for dendritic cell (DC) culture in cell factories suitable for DC vaccination in cancer. Using modified MNC programs on two apheresis systems (Cobe Spectra and Fresenius AS.TEC204), leukapheresis components collected from 84 patients with metastatic malignant melanoma and from 31 healthy male donors were investigated. MNCs, monocytes, RBCs, and platelets (PLTs) in donors and components were analyzed by cell counters, WBC differential counts, and flow cytometry. In 5-L collections, Astec showed better results regarding monocyte collection rates (11.0 vs. 7.4 x 10(6)/min, p = 0.04) and efficiencies (collection efficiency, 51.9 vs. 31.9%; p < 0.001). Both devices resulted in monocyte yields at an average of 1 x 10(9) (donors) and 2.5 x 10(9) (patients), whereas Astec components contained high residual RBCs. Compared to components with low residual PLTs, high PLT concentration resulted in higher monocyte loss (48 vs. 20%, p < 0.0001) before DC culture. The Astec is more efficient in 5-L MNC collections compared to the Spectra. Components with high residual PLTs result in high MNC loss by purification procedures. Thus, optimizing MNC programs is essential to obtain components with high MNC yields and low residual cells as prerequisite for high DC yields.

  8. The limits of crop productivity

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce; Monje, Oscar

    1992-01-01

    The component processes that govern yield limits in food crops are reviewed and how each process can be individually measured is described. The processes considered include absorption of photosynthetic radiation by green tissue, carbon-fixation efficiency in photosynthesis, carbon use efficiency in respiration, biomass allocation to edible products, and efficiency of photosynthesis and respiration. The factors limiting yields in optimal environments are considered.

  9. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE PAGES

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; ...

    2017-02-21

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  10. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  11. A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.).

    PubMed

    Zong, Guo; Wang, Ahong; Wang, Lu; Liang, Guohua; Gu, Minghong; Sang, Tao; Han, Bin

    2012-07-20

    1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding. Copyright © 2012. Published by Elsevier Ltd.

  12. High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae.

    PubMed

    Keymer, Philip; Ruffell, Ian; Pratt, Steven; Lant, Paul

    2013-03-01

    Anaerobic digestion of algal biomass will be an essential component of algal biofuel production systems, yet the methane yield from digestion of algae is typically much lower than the theoretical potential. In this work, high pressure thermal hydrolysis (HPTH) is shown to enhance methane yield during algae digestion. HPTH pre-treatment was applied to both raw algae and algal residue resulting from lipid extraction. HPTH and even the lipid extraction process itself increased methane yield, by 81% and 33% respectively; in combination they increased yield by 110% over that of the raw algae (18L CH4 gVS(-1) substrate). HPTH had little effect on the rate of anaerobic digestion, however lipid extraction enhanced it by 33% over that for raw algae (0.21day(-1)). Digestion resulted in solubilisation of nitrogen (and phosphorous to a lesser degree) in all cases, showing that there is potential for nutrient recycling for algal growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Parameters influencing the yield and composition of the essential oil from Cretan Vitex agnus-castus fruits.

    PubMed

    Sørensen, J M; Katsiotis, S T

    2000-04-01

    Mature and immature fruits of a Cretan Vitex agnus-castus L. population were chosen to investigate different parameters such as comminution, maturity, distillation period and extraction method influencing the essential oil yield and composition. The effect of the comminution and the maturity of the plant material showed highly significant differences in yield and composition of the essential oils obtained, as well as the distillation duration from one to five hours and the method applied (hydrodistillation and simultaneous distillation extraction). The variation of 36 essential oil components due to the parameters applied was studied. The results showed that many different essential oil qualities can be obtained from the same plant material according to the parameters employed in its extraction. Entire fruits hydrodistilled for one hour yielded an oil much richer in monoterpene hydrocarbons and oxygenated compounds whereas the best combination to obtain an oil rich in less volatile compounds is by SDE of comminuted fruits for five hours. For mature fruits the main components varied as follows due to the parameters studied: sabinene 16.4-44.1%, 1,8-cineole 8.4-15.2%, beta-caryophyllene 2.1-5.0%, and trans-beta-farnesene 5.0-11.7%.

  14. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    PubMed

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants.

  15. The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain.

    PubMed

    Dolatabadian, Aria; Sanavy, Seyed Ali Mohammad Modarres; Gholamhoseini, Majid; Joghan, Aydin Khodaei; Majdi, Mohammad; Kashkooli, Arman Beyraghdar

    2013-04-01

    The response of photosynthesis parameters, catalase, superoxide dismutase and peroxidase activity, malondialdehyde, proline, chlorophyll, yield and yield components to foliar application of calcium and simulated acid rain in wheat were investigated. Foliar treatment of calcium led to significant increases in the photosynthesis rate, transpiration rate, stomatal conductance, proline, chlorophyll, yield and yield components in plants subjected to acid rain. Antioxidant enzyme activity and lipid peroxidation in the wheat leaves decreased because of calcium foliar application. Calcium hindered degradation of the rubisco subunits under acid rain treatment compared with water-treated plants. Results suggest that acid rain induces the production of free radicals resulting in lipid peroxidation of the cell membrane so that significant increase in antioxidant enzyme activity was observed. In addition, photosynthetic parameters i.e. photosynthesis rate, transpiration rate and stomatal conductance were drastically suppressed by acid rain. The cellular damage caused by free radicals might be reduced or prevented by a protective metabolism including antioxidative enzymes and calcium. We report that foliar application of calcium before acid rain may ameliorate the adverse effects of acid rain in wheat plants.

  16. Evaluation of Performance of Introduced Yam Bean (Pachyrhizus spp.) in Three Agro-Ecological Zones of Rwanda.

    PubMed

    Jean, Ndirigwe; Patrick, Rubaihayo; Phenihas, Tukamuhabwa; Rolland, Agaba; Placide, Rukundo; Robert, Mwanga O M; Silver, Tumwegamire; Vestine, Kamarirwa; Evrard, Kayinamura; Grüneberg, Wolfgang J

    2017-01-01

    The yam bean ( Pachyrizhus spp ) was recently introduced as a root crop with high-yield potential, considerable protein and micro-nutrient concentration to investigate its potential for food production in Rwanda. Except for Chuin types ( Pachyrizhus tuberosus ) which have high storage root dry matter (RDM) (26 to 36%), most accessions are consumed raw and are reported to have low RDM. The present study aimed to evaluate and identify adapted high yielding yam bean accessions in major agro-ecological zones of Rwanda. Field experiments with 22 accessions were conducted in 2012 at three research sites representing the major agro-ecologies of Rwanda. Strict reproductive pruning was followed to enhance fresh storage root yields. Across locations, ANOVA indicated highly significant differences ( p  < 0.01) for genotypes (G), locations (L), seasons (S) and G x L effects for storage root yield, vine yield and harvest index and accounted for 21.88%, 43.41%, 1.43% and 13.25% of the treatment sum of squares, respectively. The GGE bi-plot revealed that EC209018 is high yielding but unstable. However, genotypes, AC209034, AC209035 and EC209046, were outstanding in terms of adaptation and relative stability across the 3 locations, suggesting consistent root yields irrespective of location and environmental conditions. The GGE scatter plot showed that all genotypes formed one mega-environment for storage root yield (Karama, Musanze and Rubona) and two mega-environments for biomass yield (Karama and Rubona as one mega-environment and Musanze the second one). This study revealed that Karama is the most suitable environment for evaluation and selection of yam bean for yield components in Rwanda.

  17. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural environments can be explained by white-rot fungal degradation.

  18. The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars.

    PubMed

    Jiang, Liqun; Wu, Nannan; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2016-01-01

    Fermentable sugars are important intermediates in the biological conversion of biomass. Hemicellulose and amorphous cellulose are easily hydrolyzed to fermentable sugars in dilute acid, whereas crystalline cellulose is more difficult to be hydrolyzed. Cellulose fast pyrolysis is an alternative method to liberate valuable fermentable sugars from biomass. The amount of levoglucosan generated from lignocellulose by fast pyrolysis is usually lower than the theoretical yield based on the cellulose fraction. Pretreatment is a promising route to improve the yield of levoglucosan from lignocellulose. The integration of dilute sulfuric acid hydrolysis and fast pyrolysis to obtain fermentable sugars was evaluated in this study. Dilute sulfuric acid hydrolysis could remove more than 95.1 and 93.4 % of xylan (the main component of hemicellulose) from sugarcane bagasse and corncob with high yield of xylose. On the other hand, dilute sulfuric acid hydrolysis was also an effective pretreatment to enhance levoglucosan yield from lignocellulose. Dilute acid hydrolysis could accumulate glucan (the component of cellulose) and remove most of the alkali and alkaline earth metals which were powerful catalysts during fast pyrolysis. Further increase in dilute acid concentration (from 0 to 2 %) in pretreatment could promote the yield of levoglucosan in fast pyrolysis. The acid pretreated sugarcane bagasse and corncob gave levoglucosan yields of 43.8 and 35.2 % which were obvious higher than those of raw sugarcane bagasse (12.0 %) and corncob (7.0 %). Obtaining fermentable sugars by combination dilute acid hydrolysis of xylan and fast pyrolysis of glucan could make full utilization of biomass, and get fermentable sugars economically from biomass for bio-refinery.

  19. Short communication: Effect of antioxidant supplementation on milk production, milk fat synthesis, and milk fatty acids in dairy cows when fed a diet designed to cause milk fat depression.

    PubMed

    Boerman, J P; Preseault, C L; Kraft, J; Dann, H M; Lock, A L

    2014-02-01

    This study evaluated the effect of a blend of synthetic antioxidants on the yield of milk and milk components and milk fatty acid composition in dairy cows fed a diet designed to cause milk fat depression (MFD). We hypothesized that supplementing a synthetic antioxidant to diets with a high rumen unsaturated fatty acid load (RUFAL) would decrease the severity of MFD. Sixteen lactating Holstein cows (163 ± 47 d in milk), in a crossover design with two 21-d periods, were fed a corn silage and grass silage-based diet containing 15% distillers grains. The diet contained 34% neutral detergent fiber, 18% crude protein, 26% starch, and 4.3% total fatty acids (dry matter basis). Cows were fed the diet without supplementation (control; CON) or supplemented with 0.02% (dry matter basis) of a synthetic antioxidant (AOX; Agrado Plus, Novus International Inc., St. Charles, MO). Dry matter intake and milk yields were recorded daily. Milk samples were collected at the start of the study for baseline values and the end of each period (d 20-21) and analyzed for milk components and fatty acid composition. Dry matter intake and milk yield were unaffected by treatment and averaged 25.9 and 50.2 kg/d, respectively. Similarly, we observed no effect of treatment on yields of fat, protein, lactose, 3.5% fat-corrected milk, energy-corrected milk, feed efficiency, body weight, or body condition score. Milk fat concentration and yield were both reduced by the high RUFAL diets. We observed a tendency for AOX to increase the concentration of milk fat and decrease the concentration of milk protein. Yields of de novo and preformed fatty acids were not affected by treatment, although we detected a trend for a slight increase in the yield of 16-carbon fatty acid for AOX compared with CON. Treatment had only minor effects on individual milk fatty acids, except for the concentration and yield of linoleic acid, which were over 90% higher for AOX compared with CON. In conclusion, milk fat concentration and yield were reduced by a high RUFAL diet containing 15% distillers grains; however, supplementation with AOX did not overcome the MFD induced by this diet. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress

    PubMed Central

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association (r2 = 0.3–0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association (P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H9 will help us to identify significant loci and alleles that made H9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions. PMID:28878785

  1. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress.

    PubMed

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H 9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association ( r 2 = 0.3-0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association ( P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H 9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H 9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H 9 will help us to identify significant loci and alleles that made H 9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions.

  2. Xenon Sputter Yield Measurements for Ion Thruster Materials

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.

    2003-01-01

    In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.

  3. Geochemistry of Israeli oil shales: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzburg, D.

    1983-01-01

    The oil shales of Israel are widely distributed throughout the country and have current reserves of about 3500 million tons located in the following deposits: Zin, Oron, Ef'e, Hartuv, and Nabi-Musa. The geochemistry and chemical analysis of these shales are discussed, along with the calorific value, oil yield, and trace elements. The main components influencing the quality of the oil shales are organic matter, carbonate, clay minerals, and apatite. Compositional variations within the organic matter are responsible for changes in the relative calorific value and retorted oil yield while fluidized bed combustion is affected by the inorganic components. (JMT)

  4. Water yield issues in the jarrah forest of south-western Australia

    NASA Astrophysics Data System (ADS)

    Ruprecht, J. K.; Stoneman, G. L.

    1993-10-01

    The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge this complexity and evaluate forest management strategies both at the large catchment scale and at long time-scales. The extensive network of small catchment experiments, regional studies, process studies and catchment modelling at both the small and large scale, which are carried out in the jarrah forest, are all considered as integral components of the research to develop these management strategies to optimise water yield from the jarrah forest, without forfeiting other forest values.

  5. Yields of Soviet underground nuclear explosions from seismic surface waves: Compliance with the Threshold Test Ban Treaty

    PubMed Central

    Sykes, Lynn R.; Cifuentes, Inés L.

    1984-01-01

    Magnitudes of the larger Soviet underground nuclear weapons tests from the start of the Threshold Test Ban Treaty in 1976 through 1982 are determined for short- and long-period seismic waves. Yields are calculated from the surface wave magnitude for those explosions at the eastern Kazakh test site that triggered a small-to-negligible component of tectonic stress and are used to calibrate body wave magnitude-yield relationship that can be used to determine the sizes of other explosions at that test site. The results confirm that a large bias, related to differential attenuation of P waves, exists between Nevada and Central Asia. The yields of the seven largest Soviet explosions are nearly identical and are close to 150 kilotons, the limit set by the Threshold Treaty. PMID:16593440

  6. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  7. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice

    PubMed Central

    Wu, Chao; Cui, Kehui; Wang, Wencheng; Li, Qian; Fahad, Shah; Hu, Qiuqian; Huang, Jianliang; Nie, Lixiao; Peng, Shaobing

    2016-01-01

    Heat stress causes morphological and physiological changes and reduces crop yield in rice (Oryza sativa). To investigate changes in phytohormones and their relationships with yield and other attributes under heat stress, four rice varieties (Nagina22, Huanghuazhan, Liangyoupeijiu, and Shanyou 63) were grown in pots and subjected to three high temperature treatments plus control in temperature-controlled greenhouses for 15 d during the early reproductive phase. Yield reductions in Nagina22, Huanghuazhan, and Liangyoupeijiu were attributed to reductions in spikelet fertility, spikelets per panicle, and grain weight. The adverse effects of high temperature were alleviated by application of exogenous 6-benzylaminopurine (6-BA) in the heat-susceptible Liangyoupeijiu. High temperature stress reduced active cytokinins, gibberellin A1 (GA1), and indole-3-acetic acid (IAA), but increased abscisic acid (ABA) and bound cytokinins in young panicles. Correlation analyses and application of exogenous 6-BA revealed that high temperature-induced cytokinin changes may regulate yield components by modulating the differentiation and degradation of branches and spikelets, panicle exsertion, pollen vigor, anther dehiscence, and grain size. Heat-tolerant Shanyou 63 displayed minor changes in phytohormones, panicle formation, and grain yield under high temperature compared with those of the other three varieties. These results suggest that phytohormone changes are closely associated with yield formation, and a small reduction or stability in phytohormone content is required to avoid large yield losses under heat stress. PMID:27713528

  8. Long-Term Monitoring of Rainfed Wheat Yield and Soil Water at the Loess Plateau Reveals Low Water Use Efficiency

    PubMed Central

    Qin, Wei; Chi, Baoliang; Oenema, Oene

    2013-01-01

    Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was grown for 30 consecutive years and soil water content (0–200 cm) was measured every 10 days. The monitoring data were used to calibrate the AquaCrop model and then to analyse the components of the water balance. There was a strong positive relationship between total available water and mean cereal yield. However, only one-third of the available water was actually used by the winter wheat for crop transpiration. The remaining two-thirds were lost by soil evaporation, of which 40 and 60% was lost during the growing and fallow seasons, respectively. Wheat yields ranged from 0.6 to 3.9 ton/ha and WUE from 0.3 to 0.9 kg/m3. Results of model experiments suggest that minimizing soil evaporation via straw mulch or plastic film covers could potentially double wheat yields and WUE. We conclude that the relatively low wheat yields and low WUE were mainly related to (i) limited rainfall, (ii) low soil water storage during fallow season due to large soil evaporation, and (iii) poor synchronisation of the wheat growing season to the rain season. The model experiments suggest significant potential for increased yields and WUE. PMID:24302987

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Daniel; Westover, Tyler; Howe, Daniel

    Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less

  10. Genetic parameters for lactose and its correlation with other milk production traits and fitness traits in pasture-based production systems.

    PubMed

    Haile-Mariam, M; Pryce, J E

    2017-05-01

    Lactose is a major component of milk (typically around 5% of composition) that is not usually directly considered in national genetic improvement programs of dairy cattle. Daily test-day lactose yields and percentage data from pasture-based seasonal calving herds in Australia were analyzed to assess if lactose content can be used for predicting fitness traits and if an additional benefit is achieved by including lactose yield in selecting for milk yield traits. Data on lactose percentage collected from 2007 to 2014, from about 600 herds, were used to estimated genetic parameters for lactose percentage and lactose yield and correlations with other milk yield traits, somatic cell count (SCC), calving interval (CIV), and survival. Daily test-day data were analyzed using bivariate random regression models. In addition, multi-trait models were also performed mainly to assess the value of lactose to predict fitness traits. The heritability of lactose percentage (0.25 to 0.37) was higher than lactose yield (0.11 to 0.20) in the first parity. Genetically, the correlation of lactose percentage with protein percentage varied from 0.3 at the beginning of lactation to -0.24 at the end of the lactation in the first parity. Similar patterns in genetic correlations were also observed in the second and third parity. At all levels (i.e., genetic, permanent environmental, and residual), the correlation between milk yield and lactose yield was close to 1. The genetic and permanent environmental correlations between lactose percentage and SCC were stronger in the second and third parity and toward the end of the lactation (-0.35 to -0.50) when SCC levels are at their maximum. The genetic correlation between lactose percentage in the first 120 d and CIV (-0.23) was similar to correlation of CIV with protein percentage (-0.28), another component trait with the potential to predict fertility. Furthermore, the correlations of estimated breeding values of lactose percentage and estimated breeding values of traits such as survival, fertility, SCC, and angularity suggest that the value of lactose percentage as a predictor of fitness traits is weak. The results also suggest that including lactose yield as a trait into the breeding objective is of limited value due to the high positive genetic correlation between lactose yield and protein yield, the trait highly emphasized in Australia. However, recording lactose percentage as part of the routine milk recording system will enable the Australian dairy industry to respond quickly to any future changes and market signals. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Estimates of genetics and phenotypics parameters for the yield and quality of soybean seeds.

    PubMed

    Zambiazzi, E V; Bruzi, A T; Guilherme, S R; Pereira, D R; Lima, J G; Zuffo, A M; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M

    2017-09-27

    Estimating genotype x environment (GxE) parameters for quality and yield in soybean seed grown in different environments in Minas Gerais State was the goal of this study, as well as to evaluate interaction effects of GxE for soybean seeds yield and quality. Seeds were produced in three locations in Minas Gerais State (Lavras, Inconfidentes, and Patos de Minas) in 2013/14 and 2014/15 seasons. Field experiments were conducted in randomized blocks in a factorial 17 x 6 (GxE), and three replications. Seed yield and quality were evaluated for germination in substrates paper and sand, seedling emergence, speed emergency index, mechanical damage by sodium hypochlorite, electrical conductivity, speed aging, vigor and viability of seeds by tetrazolium test in laboratory using completely randomized design. Quadratic component genotypic, GXE variance component, genotype determination coefficient, genetic variation coefficient and environmental variation coefficient were estimated using the Genes software. Percentage analysis of genotypes contribution, environments and genotype x environment interaction were conducted by sites combination two by two and three sites combination, using the R software. Considering genotypes selection of broad adaptation, TMG 1179 RR, CD 2737 RR, and CD 237 RR associated better yield performance at high physical and physiological potential of seed. Environmental effect was more expressive for most of the characters related to soybean seed quality. GxE interaction effects were expressive though genotypes did not present coincidental behavior in different environments.

  12. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

    PubMed

    Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2017-06-21

    The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.

  13. Genomic selection across multiple breeding cycles in applied bread wheat breeding.

    PubMed

    Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann

    2016-06-01

    We evaluated genomic selection across five breeding cycles of bread wheat breeding. Bias of within-cycle cross-validation and methods for improving the prediction accuracy were assessed. The prospect of genomic selection has been frequently shown by cross-validation studies using the same genetic material across multiple environments, but studies investigating genomic selection across multiple breeding cycles in applied bread wheat breeding are lacking. We estimated the prediction accuracy of grain yield, protein content and protein yield of 659 inbred lines across five independent breeding cycles and assessed the bias of within-cycle cross-validation. We investigated the influence of outliers on the prediction accuracy and predicted protein yield by its components traits. A high average heritability was estimated for protein content, followed by grain yield and protein yield. The bias of the prediction accuracy using populations from individual cycles using fivefold cross-validation was accordingly substantial for protein yield (17-712 %) and less pronounced for protein content (8-86 %). Cross-validation using the cycles as folds aimed to avoid this bias and reached a maximum prediction accuracy of [Formula: see text] = 0.51 for protein content, [Formula: see text] = 0.38 for grain yield and [Formula: see text] = 0.16 for protein yield. Dropping outlier cycles increased the prediction accuracy of grain yield to [Formula: see text] = 0.41 as estimated by cross-validation, while dropping outlier environments did not have a significant effect on the prediction accuracy. Independent validation suggests, on the other hand, that careful consideration is necessary before an outlier correction is undertaken, which removes lines from the training population. Predicting protein yield by multiplying genomic estimated breeding values of grain yield and protein content raised the prediction accuracy to [Formula: see text] = 0.19 for this derived trait.

  14. A guide to the TWIGS program for the North Central United States.

    Treesearch

    Cynthia L. Miner; Nancy R. Walters; Monique L. Belli

    1988-01-01

    This is a complete reference to TWIGS, a forest growth-and-yield program with management and economic components developed for Lake and Central States tree species. The guide describes how TWIGS models growth and yield and how the model can be applied to obtain the best results. Step-by-step operating instructions are provided for TWIGS and its companion program,...

  15. Naval Weapons Station Earle Reassessment

    DTIC Science & Technology

    2013-12-01

    property, or site is understood and its meaning (and ultimately its significance) within prehistory or history is made clear” (NPS 1991). A historic...components may lack individual distinction; or D. Information Potential—yielded, or is likely to yield, information important in prehistory or history...period in history or prehistory . Feeling Feeling is a property’s expression of the aesthetic or historic sense of a particular time period. Association

  16. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leow, Shijie; Witter, John R.; Vardon, Derek R.

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and othermore » conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model), providing for the first time an integrated modeling framework to overcome a critical barrier to microalgae-derived HTL biofuels and enable predictive analysis of the overall microalgal-to-biofuel process.« less

  17. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    DOE PAGES

    Leow, Shijie; Witter, John R.; Vardon, Derek R.; ...

    2015-05-11

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and othermore » conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model), providing for the first time an integrated modeling framework to overcome a critical barrier to microalgae-derived HTL biofuels and enable predictive analysis of the overall microalgal-to-biofuel process.« less

  18. Quantifying Wheat Sensitivities to Environmental Constraints to Dissect Genotype × Environment Interactions in the Field1[OPEN

    PubMed Central

    Maphosa, Lance; Kovalchuk, Alex

    2017-01-01

    Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat (Triticum aestivum) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. PMID:28546436

  19. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images.

    PubMed

    Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P

    2017-01-01

    Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  20. Yield and quality attributes of faba bean inbred lines grown under marginal environmental conditions of Sudan.

    PubMed

    Gasim, Seif; Hamad, Solafa A A; Abdelmula, Awadalla; Mohamed Ahmed, Isam A

    2015-11-01

    Faba beans (Vicia faba L.) represent an essential source of food protein for many people in Sudan, especially those who cannot afford to buy animal meat. The demand for faba bean seeds is greatly increased in recent years, and consequently its production area was extended southward where the climate is marginally suitable. Therefore, this study was aimed to evaluate seed yield and nutritional quality of five faba bean inbred lines grown under marginal environmental conditions of Sudan. The inbred lines have considerable (P ≤ 0.05) variability in yield and yield components, and seed chemical composition. The mean carbohydrate content was very high (501.1 g kg(-1)) and negatively correlated with seed yield, whereas the average protein content was relatively high (253.1 g kg(-1)) and positively correlated with seed yield. Globulin was the significant fraction (613.5 g kg(-1)protein) followed by albumin (200.2 g kg(-1)protein). Biplot analysis indicates that inbred lines Hudeiba/93-S5 and Ed-damar-S5 outscore other lines in terms of seed yield and nutritional quality. This study demonstrates that Hudeiba/93-S5 and Ed-damar-S5 are useful candidates in faba bean breeding program to terminate the protein deficiency malnutrition and provide healthy and nutritious meal for people living in subtropical areas.

  1. Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments.

    PubMed

    Rafii, M Y; Jalani, B S; Rajanaidu, N; Kushairi, A; Puteh, A; Latif, M A

    2012-10-04

    We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.

  2. An Efficient Extraction Method for Fragrant Volatiles from Jasminum sambac (L.) Ait.

    PubMed

    Ye, Qiuping; Jin, Xinyi; Zhu, Xinliang; Lin, Tongxiang; Hao, Zhilong; Yang, Qian

    2015-01-01

    The sweet smell of aroma of Jasminum sambac (L.) Ait. is releasing while the flowers are blooming. Although components of volatile oil have been extensively studied, there are problematic issues, such as low efficiency of yield, flavour distortion. Here, the subcritical fluid extraction (SFE) was performed to extract fragrant volatiles from activated carbon that had absorbed the aroma of jasmine flowers. This novel method could effectively obtain main aromatic compounds with quality significantly better than solvent extraction (SE). Based on the analysis data with response surface methodology (RSM), we optimized the extraction conditions which consisted of a temperature of 44°C, a solvent-to-material ratio of 3.5:1, and an extraction time of 53 min. Under these conditions, the extraction yield was 4.91%. Furthermore, the key jasmine essence oil components, benzyl acetate and linalool, increase 7 fold and 2 fold respectively which lead to strong typical smell of the jasmine oil. The new method can reduce spicy components which lead to the essential oils smelling sweeter. Thus, the quality of the jasmine essence oil was dramatically improved and yields based on the key component increased dramatically. Our results provide a new effective technique for extracting fragrant volatiles from jasmine flowers.

  3. High-resolution mapping of yield curve shape and evolution for high porosity sandstones

    NASA Astrophysics Data System (ADS)

    Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.

    2017-12-01

    The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.

  4. Optical network scaling: roles of spectral and spatial aggregation.

    PubMed

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M

    2014-12-01

    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  5. Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis.

    PubMed

    Chen, Jiao; Liang, Jiajin; Wu, Shubin

    2016-10-01

    Pyrolysis was demonstrated to investigate the thermal decomposition characteristics and potential of lignin-rich cotton by-products cotton exocarp (CE) and spent mushroom substrate consisted of cotton by-products (MSC) for biorefineries. The chemical component and structure alteration of CE and MSC was found to affect their thermochemical behaviors. The bio-oil yield from CE was 58.13wt% while the maximum yield from MSC was 45.01% at 600°C. The phenolic compounds obtained from CE and MSC were 33.9% and 39.2%, respectively. The yield of acetic acid from MSC between 400 and 600°C was about 30-38% lower than that from CE, which suggests the high quality of bio-oil was obtained. Biochar from MSC via slow pyrolysis had a high mass yield (44.38wt%) with well-developed pore structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Influence of pressure on pyrolysis of black liquor: 2. Char yields and component release.

    PubMed

    Whitty, Kevin; Kullberg, Mika; Sorvari, Vesa; Backman, Rainer; Hupa, Mikko

    2008-02-01

    This is the second in a series of papers concerning the behavior of black liquor during pyrolysis at elevated pressures. Two industrial black liquors were pyrolyzed under pressurized conditions in two laboratory-scale devices, a pressurized single-particle reactor and a pressurized grid heater. Temperatures ranging between 650 and 1100 degrees C and pressures in the range 1-20 bar were studied. Char yields were calculated and based on analysis of some of the chars the fate of carbon, sodium, potassium and sulfur was determined as a function of pyrolysis pressure. At temperatures below 800 degrees C little variation in char yield was observed at different pressures. At higher temperatures char yield increased with pressure due to slower decomposition of sodium carbonate. For the same reason, sodium release decreased with pressure. Sulfur release, however, increased with pressure primarily because there was less opportunity for its capture in the less-swollen chars.

  7. Anomalous yield reduction in direct-drive deuterium/tritium implosions due to 3He addition

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.; Cooley, J. H.; Wilson, D. C.; Evans, S. C.; Sedillo, T. J.; Kyrala, G. A.; Caldwell, S. E.; Young, C. S.; Nobile, A.; Wermer, J.; Paglieri, S.; McEvoy, A. M.; Kim, Y.; Batha, S. H.; Horsfield, C. J.; Drew, D.; Garbett, W.; Rubery, M.; Glebov, V. Yu.; Roberts, S.; Frenje, J. A.

    2009-05-01

    Glass capsules were imploded in direct drive on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with H3e addition. Such anomalies have previously been reported for D/H3e plasmas but had not yet been investigated for DT/H3e. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the "factor of 2" degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% H3e atom fraction in D2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D2/H3e [Wilson et al., J. Phys.: Conf. Ser. 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression of capsules containing H3e. Leading candidate explanations are poorly understood equation of state for gas mixtures and unanticipated particle pressure variation with increasing H3e addition.

  8. Radiation Chemistry in Ammonia-Water Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-01-01

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.

  9. Sources of salmonellae in an uninfected commercially-processed broiler flock.

    PubMed

    Rigby, C E; Pettit, J R; Baker, M F; Bentley, A H; Salomons, M O; Lior, H

    1980-07-01

    Cultural monitoring was used to study the incidence and sources of salmonellae in a 4160 bird broiler flock during the growing period, transport and processing in a commercial plant. No salmonellae were isolated from any of 132 litter samples of 189 chickens cultured during the seven-week growing period, even though nest litter samples from four of the eight parent flocks yielded salmonellae and Salmonella worthington was isolated from the meat meal component of the grower ration. On arrival at the plant, 2/23 birds sampled carried S. infantis on their feathers, although intestinal cultures failed to yield salmonellae. Three of 18 processed carcasses samples yielded salmonellae (S. infantis, S. heidelberg, S. typhimurium var copenhagen). The most likely source of these salmonellae was the plastic transport crates, since 15/107 sampled before the birds were loaded yielded salmonellae (S. infantis, S. typhimurium). The crate washer at the plant did not reduce the incidence of Salmonella-contaminated crates, since 16/116 sampled after washing yielded salmonellae (S. infantis, S. typhimurium, S. heidelberg, S. schwarzengrund, S. albany).

  10. The effect of heating temperature on cytotoxicity and α-mangostin yield: Mangosteen pericarp juice and mangosteen extract

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Hasanah, Fitria; Krisanti, Elsa A.

    2018-03-01

    The pericarp of mangosteen (Garcinia mangostana L.) contains bioactive xanthones, with α-mangostin being the major component, has been known to possess antitumor, antiviral, and other pharmacological activities. In this study, the effect of elevated temperature during the preparation step of fresh mangosteen pericarp juice and mangosteen extract, on their α-mangostin yield and cytotoxicities was investigated. The cytotoxicity activity of fresh juice and mangosteen extract was investigated using the brine shrimp test. Heating the fresh pericarp mangosteen in water at 65°C for 30 minutes prior to blending produced a juice with higher α-mangostin yield and cytotoxicity compared to the traditional way of blending the juice at room temperature. Increasing α-mangostin yield of 9%-w/w due to heating was also observed when mangosteen extract was heated at 65°C, consistent with the increased cytotoxicity in terms of LC50 value. It is concluded that the effect of temperature on α-mangostin yield was in line with the temperature effect on cytotoxicity activity in all samples of pericarp juice and mangosteen extract in ethyl acetate fraction.

  11. [Effects of simulated acid rain on oilseed rape (Brassica napus) physiological characteristics at flowering stage and yield].

    PubMed

    Cao, Chun-Xin; Zhou, Qin; Han, Liang-Liang; Zhang, Pei; Jiang, Hai-Dong

    2010-08-01

    A pot experiment was conducted to study the effects of different acidity simulated acid rain on the physiological characteristics at flowering stage and yield of oilseed rape (B. napus cv. Qinyou 9). Comparing with the control (pH 6.0), weak acidity (pH = 4.0-5.0) simulated acid rain stimulated the rape growth to some extent, but had less effects on the plant biomass, leaf chlorophyll content, photosynthetic characteristics, and yield. With the further increase of acid rain acidity, the plant biomass, leaf chlorophyll content, photosynthetic rate, antioxidative enzyme activities, and non-enzyme antioxidant contents all decreased gradually, while the leaf malonyldialdehyde (MDA) content and relative conductivity increased significantly. As the results, the pod number per plant, seed number per pod, seed weight, and actual yield decreased. However, different yield components showed different sensitivity to simulated acid rain. With the increasing acidity of simulated acid rain, the pod number per plant and the seed number per pod decreased significantly, while the seed weight was less affected.

  12. Co-pyrolysis characteristics of microalgae Isochrysis and Chlorella: Kinetics, biocrude yield and interaction.

    PubMed

    Zhao, Bingwei; Wang, Xin; Yang, Xiaoyi

    2015-12-01

    Co-pyrolysis characteristics of Isochrysis (high lipid) and Chlorella (high protein) were investigated qualitatively and quantitatively based on DTG curves, biocrude yield and composition by individual pyrolysis and co-pyrolysis. DTG curves in co-pyrolysis have been compared accurately with those in individual pyrolysis. An interaction has been detected at 475-500°C in co-pyrolysis based on biocrude yields, and co-pyrolysis reaction mechanism appear three-dimensional diffusion in comparison with random nucleation followed by growth in individual pyrolysis based on kinetic analysis. There is no obvious difference in the maximum biocrude yields for individual pyrolysis and co-pyrolysis, but carboxylic acids (IC21) decreased and N-heterocyclic compounds (IC12) increased in co-pyrolysis. Simulation results of biocrude yield by Components Biofuel Model and Kinetics Biofuel Model indicate that the processes of co-pyrolysis comply with those of individual pyrolysis in solid phase by and large. Variation of percentage content in co-pyrolysis and individual pyrolysis biocrude indicated interaction in gas phase. Copyright © 2015. Published by Elsevier Ltd.

  13. Role of the N*(1535) in pp{yields}pp{phi} and {pi}{sup -}p{yields}n{phi} reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Jujun; Graduate University of Chinese Academy of Sciences, Beijing 100049; Zou Bingsong

    2008-01-15

    The near-threshold {phi}-meson production in proton-proton and {pi}{sup -}p collisions is studied with the assumption that the production mechanism is due to the sub-N{phi}-threshold N*(1535) resonance. The {pi}{sup 0}-,{eta}-, and {rho}{sup 0}-meson exchanges for proton-proton collisions are considered. It is shown that the contribution to the pp{yields}pp{phi} reaction from the t-channel {pi}{sup 0}-meson exchange is dominant. With a significant N*(1535)N{phi} coupling [g{sub N*(1535)N{phi}}{sup 2}/4{pi}=0.13], both pp{yields}pp{phi} and {pi}{sup -}p{yields}n{phi} data are very well reproduced. The significant coupling of the N*(1535) resonance to N{phi} is compatible with previous indications of a large ss component in the quark wave function of themore » N*(1535) resonance and may be the real origin of the significant enhancement of the {phi} production over the naive OZI-rule predictions.« less

  14. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology.

    PubMed

    Kwon, Joong-Ho; Bélanger, Jacqueline M R; Paré, J R Jocelyn

    2003-03-26

    Response surface methodology (RSM) was applied to predict optimum conditions for microwave-assisted extraction-a MAP technology-of saponin components from ginseng roots. A central composite design was used to monitor the effect of ethanol concentration (30-90%, X(1)) and extraction time (30-270 s, X(2)) on dependent variables, such as total extract yield (Y(1)), crude saponin content (Y(2)), and saponin ratio (Y(3)), under atmospheric pressure conditions when focused microwaves were applied at an emission frequency of 2450 MHz. In MAP under pre-established conditions, correlation coefficients (R (2)) of the models for total extract yield and crude saponin were 0.9841 (p < 0.001) and 0.9704 (p < 0.01). Optimum extraction conditions were predicted for each variable as 52.6% ethanol and 224.7 s in extract yield and as 77.3% ethanol and 295.1 s in crude saponins, respectively. Estimated maximum values at predicted optimum conditions were in good agreement with experimental values.

  15. [Comparison on extraction of volatile oils from Lithospermum erythrorhizon by different methods].

    PubMed

    Yang, Ri-fu; Huang, Ping-ping; Qiu, Tai-qiu; Fan, Xiao-dan

    2011-02-01

    To extract the volatile oils from Lithospermum erythrorhizon via ultrasound-enhanced sub-critical water extraction (USWE) and compare with ultrasound-enhanced solvent extraction (USE) and steam distillation extraction (SD). The extraction yield of the volatile oils, the containing components of extract, the effect of scanvenging activities on free radical DPPH and reducing activities as well as the inhibitory on escherichia coli and staphylococcus aureus were investigated. The extraction yield of volatile oils by USWE, USE and SD were 2.39%, 1.93% and 0.62%, respectively, the extracts by three methods all contained six major components, but the extracts by SD and USE contained more impurities. The inhibitory effect on escherichia coli and staphylococcus aureus of the extract by SD and its reducing action were the best,but those by USWE were the worst. the extraction yield of volatile oils by USWE is the highest, and it contains less impurities based on the worst in reducing power and inhibitory effects.

  16. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production.

    PubMed

    Andrade, Thalles A; Errico, Massimiliano; Christensen, Knud V

    2017-11-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35°C, 6.0 methanol-to-oil molar ratio, 5wt% of enzyme and 5wt% of water contents, 94% of FAME yield and 6.1% of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8h are necessary to reach a satisfactory FAME yield together with a minor FFA content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.

    PubMed

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2014-03-01

    Co-pyrolysis behaviors of rice straw and Shenfu bituminous coal were studied in a fixed bed reactor under nitrogen atmosphere. The pyrolysis temperatures were 700°C, 800°C and 900°C, respectively. Six different biomass ratios were used. Gas, tar components were analyzed by a gas chromatograph and a gas chromatography-mass spectrometry respectively. Under co-pyrolysis conditions, the gas volume yields are higher than the calculated values. Co-pyrolysis tar contains more phenolics, less oxygenate compounds than calculated values. The addition of biomass changes the atmosphere during the pyrolysis process and promotes tar decomposition. The SEM results show that the differences between the blended char and their parents char are not significant. The results of char yields and ultimate analysis also show that no significant interactions exist between the two kinds of particles. The changes of gas yield and components are caused by the secondary reactions and tar decomposition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. [Effects of salt and waterlogging stress at post-anthesis stage on wheat grain yield and quality].

    PubMed

    Zheng, Chun-Fang; Jiang, Dong; Dai, Ting-Bo; Jing, Qi; Cao, Wei-Xing

    2009-10-01

    A pot experiment was conducted to study the effects of salt (ST), waterlogging (WL), and their combination (SW) at post-anthesis on the grain yield and its starch and protein components of wheat cultivars Yangmai 12 and Huaimai 17. Comparing with the control, treatments ST, WL, and SW, especially ST and SW, decreased the allocation of nitrogen and carbon assimilates at pre- and post-anthesis to the grains significantly, resulting in an obvious decrease of grain yield and its protein and starch contents. Both ST and SW had significant negative effects on the glutenin/gliadin and amylase/amylopectin ratios in the grains, compared to CK and WL. Yangmai 12 was more sensitive to ST than SW, while Huaimai 17 was in adverse. WL decreased the accumulation of protein and starch in the grains of the two cultivars. Except that the glutenin and albumin in Huaimai 17 had some increase, the globulin and gliadin in Huaimai 17 and all protein components in Yangmai 12 were decreased under WL.

  19. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell.

    PubMed

    Gao, Yun; Yang, Yi; Qin, Zhanbin; Sun, Yi

    2016-01-01

    Coconut is a high-quality agricultural product of the Asia-Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds.

  20. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    PubMed

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  1. Catalytic hydroprocessing of fast pyrolysis oils: Impact of biomass feedstock on process efficiency

    DOE PAGES

    Carpenter, Daniel; Westover, Tyler; Howe, Daniel; ...

    2016-12-01

    Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The five iron catalysts reported were all promoted with potassium. The most promising results were obtained with the catalyst containing UCC-111 (Appendix B, Run 10225-3). In earlier studies UCC-111 alone had been found to be a poor Task 1 catalyst for oligomerizing propylene. Physically combined with potassium-promoted iron, however, it proved surprisingly effective as a syngas catalyst in Task 2. It produced straight-chain olefinic hydrocarbons, as a normal Fischer-Tropsch catalyst does, but unlike the normal Fischer-Tropsch catalyst, it may also have isomerized the carbon-carbon double bond. Transfer of the double bond from the usual Position 1, typical for Fischer-Tropsch products,more » to an interior position, should not only lower the pour point of the liquid product, but it should raise its octane number as well. Four of the six cobalt catalysts reported this quarter were promoted with either thorium or thorium and potassium. All six were synthesized by the precipitate-slurry method, with either LZ-105-6, LZ-Y-82, UCC-101 or UCC-107 as the Molecular Sieve component. The test results for most of these catalysts indicate that cobalt is more effective than iron in producing a high yield of motor fuels. This increase in motor fuel yield was due primarily to a higher yield of diesel oil, with the gasoline yield remaining approximately the same as for the iron catalysts. This increased diesel oil yield, as well as an increased methane yield, was balanced against a decreased C/sub 2/-C/sub 4/ yield. The yields of the heavy fractions for both metal catalysts remained relatively low.« less

  3. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp.

    PubMed

    Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang

    2014-02-01

    A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.

  4. [Solidification of volatile oil with graphene oxide].

    PubMed

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao

    2015-02-01

    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.

  5. Three-Component Reactions of Diazoesters, Aldehydes, and Imines Using a Dual Catalytic System Consisting of a Rhodium(II) Complex and a Lewis Acid.

    PubMed

    Toda, Yasunori; Kaku, Wakatake; Tsuruoka, Makoto; Shinogaki, Sho; Abe, Tomoka; Kamiya, Hideaki; Kikuchi, Ayaka; Itoh, Kennosuke; Suga, Hiroyuki

    2018-05-04

    A dual catalytic system, dirhodium tetrapivalate/ytterbium(III) triflate, enables the three-component reactions of α-alkyl-α-diazoesters, aromatic aldehydes, and N-benzylidenebenzylamine derivatives to afford the corresponding β-amino alcohols in good yields after hydrolysis of the oxazolidine cycloadducts, whereas no β-amino alcohols are obtained in the absence of ytterbium(III) triflate. A similar dual catalytic system, dirhodium tetraacetate/ytterbium(III) triflate, is found to be effective in accelerating the reactions of α-aryl-α-diazoesters in high yields. Furthermore, the reactions using dimethyl diazomalonate are described.

  6. Rg to Lg Scattering Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Baker, G. E.; Stevens, J. L.; Xu, H.

    2005-12-01

    Lg is important to explosion yield estimation and earthquake/explosion discrimination, but the source of explosion generated Lg is still an area of active investigation. We investigate the contribution of Rg scattering to Lg. Common spectral nulls in vertical component Rg and Lg have been interpreted as evidence that scattered Rg is the dominant source of Lg in some areas. The nulls are assumed to result from non-spherical components of the explosion source, modeled as a CLVD located above the explosion. We compare Rg with 3-component Sg and Lg spectra in different source areas. Wavenumber synthetics and nonlinear source calculations constrain the predicted source spectra of Rg and directly generated Lg. Modal scattering calculations place bounds on the contribution of Rg to Lg relative to pS, S*, and directly generated S-waves. Rg recorded east and west of the Quartz 3 Deep Seismic Sounding explosion have persistent spectral nulls, but at different frequencies. The azimuthal dependence of the source spectra suggests that it may not be simply related to a CLVD source. The spectral nulls of Sg, Lg, and Lg coda do not correspond to the Rg spectral nulls, so for this overburied source, the spectral observations do not indicate that Rg scattering is a dominant contributor to Lg. Preliminary comparisons of Rg with Lg spectra for events from the Semipalatinsk Test Site yield a similar result. We compare Rg at 20-100 km with Lg at 650 km for Balapan and Degelen explosions with known yield and source depth. The events range from 130 to 50 percent of theoretical containment depth, so relative contributions from a CLVD are expected to vary significantly. For studied previously NTS and Kazakh depth of burial data, the use of 3-components provides further insight into scattering between components. In a complementary analysis, to assess whether S-wave generation is affected by source depth or scaled depth, we have examined regional phase amplitudes of 13 Degelen explosions with known yields and source depths. Initial Pn, the entire P wavetrain, Sn, Lg, and Lg coda have similar log amplitude vs. log yield curves. The slope of those curves varies with frequency, from approximately 0.84 at 0.6 Hz to 0.65 at 6 Hz. We will complement these results with similar observations of Balapan explosion records.

  7. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment.

    PubMed

    Petridis, Antonios; van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan; Graham, Julie; Hancock, Robert D

    2018-05-25

    Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments.

  8. Phosphorus component in AnnAGNPS

    USGS Publications Warehouse

    Yuan, Y.; Bingner, R.L.; Theurer, F.D.; Rebich, R.A.; Moore, P.A.

    2005-01-01

    The USDA Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) has been developed to aid in evaluation of watershed response to agricultural management practices. Previous studies have demonstrated the capability of the model to simulate runoff and sediment, but not phosphorus (P). The main purpose of this article is to evaluate the performance of AnnAGNPS on P simulation using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. A sensitivity analysis was performed to identify input parameters whose impact is the greatest on P yields. Sensitivity analysis results indicate that the most sensitive variables of those selected are initial soil P contents, P application rate, and plant P uptake. AnnAGNPS simulations of dissolved P yield do not agree well with observed dissolved P yield (Nash-Sutcliffe coefficient of efficiency of 0.34, R2 of 0.51, and slope of 0.24); however, AnnAGNPS simulations of total P yield agree well with observed total P yield (Nash-Sutcliffe coefficient of efficiency of 0.85, R2 of 0.88, and slope of 0.83). The difference in dissolved P yield may be attributed to limitations in model simulation of P processes. Uncertainties in input parameter selections also affect the model's performance.

  9. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.

    PubMed

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-01

    Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 - montmorillonite K10, KSF - montmorillonite KSF, B - Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500°C with heating rate of 100°C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3-79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500°C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Water-quality and fluvial-sediment characteristics of selected streams in northeast Kansas

    USGS Publications Warehouse

    Bevans, H.E.

    1982-01-01

    In cooperation with the U.S. Soil Conservation Service, an investigation was made of the water-quality and fluvial-sediment characteristics of selected streams in northeast Kansas for which the construction of floodwater-retarding and grade-stabilization structures to control soil erosion is being considered. The predominent chemical type of water in streams draining the study area is calcium bicarbonate. In-stream concentrations of chemical constituents generally decrease with increasing streamflow. Exceptions to this are nitrate and phosphorus, which enter the streams as components of surface runoff. Computed mean annual discharges of dissolved solids ranged from 512 tons for Pony CratkSabetha, Kansas, to 23,900 tons for the Wolf River near Sparks, Kansas. Sediment yields in the study area, predominently silt and clay, are among the largest in the State. Drainage basins in the northern part of the study area yielded the most suspended sediment, with Pony Creek at Sabetha and near Reserve, Kansas, yielding 5,100 tons per square mile per year. Drainage basins in the southern part of the study area yielded less suspended sediment, with Little Grasshopper Creek near Effingham, Kansas, yielding 493 tons per square mile per year and Little Delaware River near Horton, Kansas, yielding 557 tons per square mile per year. (USGS)

  11. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment

    PubMed Central

    van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan

    2018-01-01

    Abstract Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments. PMID:29590429

  12. Variations in the milk yield and milk composition of dairy cows during lactation.

    PubMed

    Bedö, S; Nikodémusz, E; Percsich, K; Bárdos, L

    1995-01-01

    Variations in the milk yield and milk composition of a dairy cow colony (n = 23) were analyzed during 11 months of lactation. Milk yield followed a characteristic decreasing pattern in negative correlations with solid components (milk protein, lactose, total solids, milk fat). Titrable acidity (degree SH) was significantly (p < 0.1) higher in the milk of fresh-milking cows and it correlated negatively with lactose and positively with milk protein, milk fat and total solids. The concentrations of Zn, Fe and Cu tended to decrease, while Mn showed insignificant variation during lactation. Milk vitamin A showed a significant positive whilst milk vitamin E had a negative correlation with milk fat.

  13. Direct and correlated responses to selection for milk yield: results and conclusions of regional project NC-2, "improvement of dairy cattle through breeding, with emphasis on selection". NC-2 Technical Committee.

    PubMed

    Kelm, S C; Freeman, A E

    2000-12-01

    Measurement of direct and correlated responses to single-trait selection for milk yield was the major objective of regional project NC-2. The NC-2 Technical Committee included representatives from Alaska, Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Nebraska, South Dakota, Wisconsin, and the USDA. All representatives, except Illinois, Kansas and Nebraska, maintained a selection line formed by using AI sires selected for high estimated transmitting abilities for milk and a second line that served as some type of a control. Stations varied in criteria for selection of bulls for control lines. Farms were managed similarly, including feeding and management of selection and control lines as one herd, random mating within line, and restricted culling policies. Selection for milk yield effectively increased milk production. All selection lines increased milk and net income per lactation more than control lines. Realized gains matched or exceeded gains expected from estimates of breeding values. Yields of milk components increased, but component percentages decreased appreciably for selection lines. Reproduction of nulliparous animals was not affected, but days open for lactating selection cows increased in some of the individual projects. Selected cows tended to have larger health costs, specifically for mammary treatment. Udder and conformation traits did not deteriorate for selection lines, although control lines with selection of sires on genetic evaluations for type received higher type scores. There should be few reservations about undesirable responses correlated with selection for milk yield.

  14. Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture

    PubMed Central

    Zhang, Chaochun; Postma, Johannes A.; York, Larry M.; Lynch, Jonathan P.

    2014-01-01

    Background and Aims Since ancient times in the Americas, maize, bean and squash have been grown together in a polyculture known as the ‘three sisters’. This polyculture and its maize/bean variant have greater yield than component monocultures on a land-equivalent basis. This study shows that below-ground niche complementarity may contribute to this yield advantage. Methods Monocultures and polycultures of maize, bean and squash were grown in two seasons in field plots differing in nitrogen (N) and phosphorus (P) availability. Root growth patterns of individual crops and entire polycultures were determined using a modified DNA-based technique to discriminate roots of different species. Key Results The maize/bean/squash and maize/bean polycultures had greater yield and biomass production on a land-equivalent basis than the monocultures. Increased biomass production was largely caused by a complementarity effect rather than a selection effect. The differences in root crown architecture and vertical root distribution among the components of the ‘three sisters’ suggest that these species have different, possibly complementary, nutrient foraging strategies. Maize foraged relatively shallower, common bean explored the vertical soil profile more equally, while the root placement of squash depended on P availability. The density of lateral root branching was significantly greater for all species in the polycultures than in the monocultures. Conclusions It is concluded that species differences in root foraging strategies increase total soil exploration, with consequent positive effects on the growth and yield of these ancient polycultures. PMID:25274551

  15. An evaluation of eco-friendly naturally coloured cottons regarding seed cotton yield, yield components and major lint quality traits under conditions of East Mediterranean region of Turkey.

    PubMed

    Efe, Lale; Killi, Fatih; Mustafayev, Sefer A

    2009-10-15

    In the study carried out in 2002-2003 in the East Mediterranean region of Turkey (in Kahramanmaras Province), four different naturally coloured cotton (Gossypium hirsutum L.) (dark brown, light brown, cream and green) lines from Azerbaijan and two white linted cotton varieties (Maras-92 and Sayar-314 (G. hirsutum L.)) of the region were used as material. The aim of this study was to determine seed cotton yield and yield components and major lint quality traits of investigated coloured cotton lines comprising white linted local standard cotton varieties. Field trials were established in randomized block design with four blocks. According to two year's results, it was determined that naturally coloured cottons were found similar to both white linted standard cotton varieties for sympodia number and seed cotton yield. For boll number per plant, except green cotton line all coloured cotton lines were similar to standard varieties or even some of them were better than standards. For ginning outturn, dark brown, cream and green cotton lines were found statistically similar to standard Maras-92. But all naturally coloured cotton lines had lower seed cotton weight per boll and generally lower fiber quality than white linted standard varieties. For fiber length and fiber strength cream cotton line was the best coloured cotton. And for fiber fineness only green cotton line was better than both standards. It can be said that naturally coloured cotton lines need to be improved especially for fiber quality characters in the East Mediterranean region of Turkey.

  16. Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants.

    PubMed

    Kataria, Sunita; Guruprasad, K N; Ahuja, Sumedha; Singh, Bupinder

    2013-10-05

    A field experiment was conducted under tropical climate for assessing the effect of ambient UV-B and UV-A by exclusion of UV components on the growth, photosynthetic performance and yield of C3 (cotton, wheat) and C4 (amaranthus, sorghum) plants. The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315nm), UV-A+B (<400nm), transmitted all the UV (280-400nm) or without filters. All the four plant species responded to UV exclusion by a significant increase in plant height, leaf area, leaf biomass, total biomass accumulation and yield. Measurements of the chlorophyll, chlorophyll fluorescence parameters, gas exchange parameters and the activity of Ribulose-1,5-bisphosphate carboxylase (Rubisco) by fixation of (14)CO2 indicated a direct relationship between enhanced rate of photosynthesis and yield of the plants. Quantum yield of electron transport was enhanced by the exclusion of UV indicating better utilization of PAR assimilation and enhancement in reducing power in all the four plant species. Exclusion of UV-B in particular significantly enhanced the net photosynthetic rate, stomatal conductance and activity of Rubisco. Additional fixation of carbon due to exclusion of ambient UV-B was channeled towards yield as there was a decrease in the level of UV-B absorbing substances and an increase in soluble proteins in all the four plant species. The magnitude of the promotion in all the parameters studied was higher in dicots (cotton, amaranthus) compared to monocots (wheat, sorghum) after UV exclusion. The results indicated a suppressive action of ambient UV-B on growth and photosynthesis; dicots were more sensitive than monocots in this suppression while no great difference in sensitivity was found between C3 and C4 plants. Experiments indicated the suppressive action of ambient UV on carbon fixation and yield of C3 and C4 plants. Exclusion of solar UV-B will have agricultural benefits in both C3 and C4 plants under tropical climate. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Robust LOD scores for variance component-based linkage analysis.

    PubMed

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  18. Quantifying Wheat Sensitivities to Environmental Constraints to Dissect Genotype × Environment Interactions in the Field.

    PubMed

    Parent, Boris; Bonneau, Julien; Maphosa, Lance; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2017-07-01

    Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat ( Triticum aestivum ) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Incubation of Aquilaria subintegra with Microbial Culture Supernatants Enhances Production of Volatile Compounds and Improves Quality of Agarwood Oil.

    PubMed

    Monggoot, Sakon; Kulsing, Chadin; Wong, Yong Foo; Pripdeevech, Patcharee

    2018-06-01

    Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus , L. acidophilus , Streptococcus thermophilus , Lactococcus lactis , Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae -incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.

  20. Effect of Sowing Quantity on Soil Temperature and Yield of Winter Wheat under Straw Strip Mulching in Arid Region of Northwest China

    NASA Astrophysics Data System (ADS)

    Lan, Xuemei; Chai, Yuwei; Li, Rui; Li, Bowen; Cheng, Hongbo; Chang, Lei; Chai, Shouxi

    2018-01-01

    In order to explore the characteristics and relationship between soil temperature and yield of winter wheat, under different sowing quantities conditions of straw mulching conventional drilling in Northwest China, this study took Lantian 26 as material, under the whole corn mulching conventional drilling in Changhe town and Pingxiang town, setting up 3 different seeding quantities of 270 kg/ha (SSMC1), 324 kg/ha (SSMC2) and 405 kg/ha (SSMC3), to study the difference of soil temperature during the growth period of winter wheat and its correlation with yield components. Results showed: the average soil temperature of 0∼25cm in two ecological zones in the whole growth period have a significant change with the increase of sowing quantities; too much seeding had a sharp drop in soil temperature; the highest temperature of SSMC in Changhe town was the middle quantity of SSMC 2; the highest temperature of SSMC in Pingxiang town was the lowest sowing quantity of SSMC1. Diurnal variation of soil temperature at all growth stages showed: with the increase of SSMC, in the morning it increased with the increase of soil depth, noon and evening reducing with the depth of the soil. The average soil temperature of SSMC2 was higher than that of in all the two ecological zones in the whole growth period of SSMC.The maximum day temperature difference of each treatment was at noon. With the increase of SSMC, the yield increase varied with two ecological zones. SSMC of the local conventional sowing quantity of 270kg/ha SSMC1 yield was the highest in Changhe Town. SSMC of the middle sowing quantity SSMC2 of 324kg/ha yield was the highest in Pingxiang town. The difference of grain number per spike was the main cause of yield difference among these 3 treatments. Correlation analysis showed: the correlation among the yield and yield components, growth index and soil temperature varied with different ecological zones; thousand kernel weight and grain number per ear (.964** and.891**) had a very significant positive correlation with the yields in Changhe Town, but thousand kernel weight and grain number per ear (.708* and.718*) had a significant positive correlation with yield in Pingxiang Town. There was a significant positive correlation between harvest index and 10cm soil temperature (.763*). But in Pingxiang Town grain number per ear and 15cm soil temperature showed a significant positive correlation (.671*); 15cm soil temperature and the average temperature of 0∼25cm soil layer in the whole growth period (-.687* and -.698*) had a significant negative correlation with the number of panicles per unit area; there was a very significant negative correlation between plant height and average temperature of 0∼25cm in the whole growth period (-.906**). Thus, the changes of soil temperature under SSMC different sowing quantity have indirect effect on the yield of winter wheat.

  1. Photochemical Degradation of Composition B and Its Components

    DTIC Science & Technology

    2007-09-01

    recorded on the toluene (5.7 mg yield ), ether I (35 mg), and aceto- nitrile (17.8 mg) fractions. Irradiation of solution explosives in soils A...the soil was Soxhlet extracted with acetonitrile for 93 hours. The acetonitrile was removed with a rotary evaporator and the residue redissolved in...ionization to yield an anion of m/z 226. The traces show differences observed in samples with different initial preparation protocols at 15 days. Distance

  2. Shaft Seal Compensates for Cold Flow

    NASA Technical Reports Server (NTRS)

    Myers, W. N.; Hein, L. A.

    1985-01-01

    Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.

  3. Judgmental Standard Setting Using a Cognitive Components Model.

    ERIC Educational Resources Information Center

    McGinty, Dixie; Neel, John H.

    A new standard setting approach is introduced, called the cognitive components approach. Like the Angoff method, the cognitive components method generates minimum pass levels (MPLs) for each item. In both approaches, the item MPLs are summed for each judge, then averaged across judges to yield the standard. In the cognitive components approach,…

  4. [Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties].

    PubMed

    Cong, Xi Han; Shi, Fu Zhi; Ruan, Xin Min; Luo, Yu Xiang; Ma, Ting Chen; Luo, Zhi Xiang

    2017-04-18

    To provide scientific basis for reasonable application of nitrogen and create varieties with high N use-efficiency, an experiment was carried out to study the effects of nitrogen fertilizer application rate on grain yield, N use rate and quality of different rice varieties. Four different genotypic rice varieties, Nipponbare, N70, N178 and OM052 were used as tested material and three levels of nitrogen application rate (0, 120, 270 kg·hm -2 ) were conducted. Urea as nitrogen source was applied as basal (70%) and panicle (30%) fertilizer. The results showed that nitrogen fertilizer could raise yield mainly because of the increased effective panicles and filled grains per panicle. When the N application rate was 120 and 270 kg·hm -2 , OM052 had the largest grain yield among four varieties, being 41.1% and 76.8% higher, respectively compared with control. Difference in grain yield among four varieties was due to the difference of nitrogen use efficiency. Under 120 and 270 kg·hm -2 nitrogen levels, Nipponbare had the lowest grain yield and N agronomic efficiency (NAE, 40.90 g·g -1 and 18.56 g·g -1 ), which was a variety with low N use-efficiency. On the contrary, OM052 had the highest grain yield and NAE (145.9 g·g -1 and 81.24 g·g -1 ), was a variety with high N use-efficiency. N fertilizer application increased the amylose content and protein content, lengthened gel consistency, reduced chalky kernel, chalkiness, and alkali digestion value. With the increase of N fertilizer application, hot paste viscosity, peak viscosity, consistence viscosity and breakdown viscosity were decreased gradually, and setback viscosity was increased. Correlation analysis showed that the yield and yield components had more significant correlations with appearance quality, cooking and eating quality under low N level. This study confirmed that OM052 was a double high variety with extremely high N agronomic efficiency and yield. Reasonable application of nitrogen fertilizer could significantly increase effective panicles and filled grains per panicle, improve rice quality, and ensure high yield and superior quality simultaneously.

  5. Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on-farm during 1983-2014.

    PubMed

    Laidig, Friedrich; Piepho, Hans-Peter; Rentel, Dirk; Drobek, Thomas; Meyer, Uwe; Huesken, Alexandra

    2017-01-01

    Over the last 32 years, a large gain in grain yield (24 %) was achieved in official German variety trials, and despite considerable loss in protein concentration (-7.9 %), winter wheat baking quality was partially improved over the last 32 years. On-farm gain in grain yield (32 %) exceeded gain in trials, but at yield level about 25 dt ha -1 lower. Breeding progress was very successfully transferred into both progress in grain yield and on-farm baking quality. Long-term gains in grain yield and baking quality of 316 winter wheat varieties from German official trials were evaluated. We dissected progress into a genetic and a non-genetic part to quantify the contribution of genetic improvement. We further investigated the influence of genotype and environment on total variation by estimating variance components. We also estimated genetic and phenotypic correlation between quality traits. For trial data, we found a large gain in grain yield (24%), but a strong decline in protein concentration (-8.0%) and loaf volume (-8.5%) relative to 1983. Improvement of baking quality could be achieved for falling number (5.8%), sedimentation value (7.9%), hardness (13.4%), water absorption (1.2%) and milling yield (2.4%). Grain yield, falling number and protein concentration were highly influenced by environment, whereas for sedimentation value, hardness, water absorption and loaf volume genotypes accounted for more than 60% of total variation. Strong to very strong relations exist among protein concentration, sedimentation value, and loaf volume. On-farm yields were obtained from national statistics, and grain quality data from samples collected by national harvest survey. These on-farm data were compared with trial results. On-farm gain in grain yield was 31.6%, but at a mean level about 25 dt ha -1  lower. Improvement of on-farm quality exceeded trial results considerably. A shift to varieties with improved baking quality can be considered as the main reason for this remarkable improvement of on-farm baking quality.

  6. Ultrasound-Guided Percutaneous Thyroid Nodule Core Biopsy: Clinical Utility in Patients with Prior Nondiagnostic Fine-Needle Aspirate

    PubMed Central

    Vij, Abhinav; Seale, Melanie K.; Desai, Gaurav; Halpern, Elkan; Faquin, William C.; Parangi, Sareh; Hahn, Peter F.; Daniels, Gilbert H.

    2012-01-01

    Background Five percent to 20% of thyroid nodule fine-needle aspiration (FNA) samples are nondiagnostic. The objective of this study was to determine whether a combination of FNA and core biopsy (CFNACB) would yield a higher proportion of diagnostic readings compared with FNA alone in patients with a history of one or more prior nondiagnostic FNA readings. Methods We conducted a retrospective study of 90 core biopsies (CBs) performed in 82 subjects (55 women and 27 men) between 2006 and 2008 in an outpatient clinic. Results CFNACB yielded a diagnostic reading in 87%. The diagnostic reading yield of the CB component of CFNACB was significantly superior to the concurrent FNA component, with CB yielding a diagnosis in 77% of cases and FNA yielding a diagnosis in 47% (p<0.0001). The combination of CB and FNA had a higher diagnostic reading yield than either alone. In 69 nodules that had only one prior nondiagnostic FNA, CB was diagnostic in 74%, FNA was diagnostic in 52%, CFNACB was diagnostic in 87%, and CB performed significantly better than FNA (p=0.0135). In 21 nodules with two or more prior nondiagnostic FNAs, CFNACB and CB were diagnostic in 86%, FNA was diagnostic in 29%, and CB was significantly better than FNA (p=0.0005). Clinical, ultrasound, or histopathologic follow-up was available for 81% (73/90) of the CFNACB procedures. No subject with a benign CFNACB reading was diagnosed with thyroid malignancy in the follow-up period (range 4–37 months, mean 18 months), although one subject had minimal increase in nodule size and was awaiting repeat sonography at study conclusion. Conclusion Thyroid nodule CFNACB is safe and clinically useful in selected patients when a prior FNA reading is nondiagnostic. CFNACB is superior to either CB or FNA alone. CFNACB should be strongly considered as an alternative to surgery in individuals with two prior nondiagnostic FNAs. PMID:22304390

  7. Real-Time Imaging of Ground Cover: Relationships with Radiation Capture, Canopy Photosynthesis, and Daily Growth Rate

    NASA Technical Reports Server (NTRS)

    Klassen, S. P.; Ritchie, G.; Frantz, J. M.; Pinnock, D.; Bugbee, B.

    2003-01-01

    Cumulative absorbed radiation is highly correlated with crop biomass and yield. In this chapter we describe the use of a digital camera and commercial imaging software for estimating daily radiation capture, canopy photosynthesis, and relative growth rate. Digital images were used to determine percentage of ground cover of lettuce (Lactuca sativa L.) communities grown at five temperatures. Plants were grown in a steady-state, 10-chamber CO2 gas exchange system, which was used to measure canopy photosynthesis and daily carbon gain. Daily measurements of percentage of ground cover were highly correlated with daily measurements of both absorbed radiation (r(sup 2) = 0.99) and daily carbon gain (r(sup 2) = 0.99). Differences among temperature treatments indicated that these relationships were influenced by leaf angle, leaf area index, and chlorophyll content. An analysis of the daily images also provided good estimates of relative growth rates, which were verified by gas exchange measurements of daily carbon gain. In a separate study we found that images taken at hourly intervals were effective for monitoring real-time growth. Our data suggests that hourly images can be used for early detection of plant stress. Applications, limitations, and potential errors are discussed. We have long known that crop yield is determined by the efficiency of four component processes: (i) radiation capture, (ii) quantum yield, (iii) carbon use efficiency, and (iv) carbon partitioning efficiency (Charles-Edwards, 1982; Penning de Vries & van Laar, 1982; Thornley, 1976). More than one-half century ago, Watson (1947, 1952) showed that variation in radiation capture accounted for almost all of the variation in yield between sites in temperate regions, because the three other components are relatively constant when the crop is not severely stressed. More recently, Monteith (1977) reviewed the literature on the close correlation between radiation capture and yield. Bugbee and Monje (1992) demonstrated the close relationship between absorbed radiation and yield in an optimal environment.

  8. Effect of structural carbohydrates and lignin content on the anaerobic digestion of paper and paper board materials by anaerobic granular sludge.

    PubMed

    Gonzalez-Estrella, Jorge; Asato, Caitlin M; Jerke, Amber C; Stone, James J; Gilcrease, Patrick C

    2017-05-01

    Anaerobic digestion (AD) of lignocellulosic materials is commonly limited by the hydrolysis step. Unlike unprocessed lignocellulosic materials, paper and paper board (PPB) are processed for their fabrication. Such modifications may affect their methane yields and methane production rates. Previous studies have investigated the correlation between lignin and biomethane yields of unprocessed lignocellulosic materials; nevertheless, there is limited knowledge regarding the relationship between the AD kinetic parameters and composition of PPB. This study evaluated correlations of methane yields and Monod and Gompertz kinetic parameters with structural carbohydrates, lignin, and ash concentration of five types of PPBs. All components were used as single and combined independent variables in linear regressions to predict methane yield, maximum specific methanogenic activity (SMA max ), saturation constant (K s ), and lag phase (λ). Additionally, microbial community profiles were obtained for each PPB assay. Results showed methane yields ranging from 69.2 ± 8.61 to 97.2 ± 2.29% of PPB substrates provided. The highest correlation coefficients were obtained for SMA max as function of hemicellulose/(lignin + ash) (R 2  = 0.86) and for λ as a function of lignin + cellulose (R 2  = 0.85). All other parameters exhibited weaker correlations (R 2  ≤ 0.77). Relative abundance analyses revealed no major changes in the community profile for each of the substrates evaluated. The overall findings of this study are: (i) combinations of structural carbohydrates, lignin, and ash used as ratios of degradable to either non-degradable or slowly degradable fractions predict AD kinetic parameters of PPB materials better than single independent variables; and (ii) other components added during their fabrication may also influence both methane yield and kinetic parameters. Biotechnol. Bioeng. 2017;114: 951-960. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Early lactation production, health, and welfare characteristics of cows selected for extended lactation.

    PubMed

    Lehmann, J O; Mogensen, L; Kristensen, T

    2017-02-01

    Some cows are able to achieve relatively high milk yields during extended lactations beyond 305 d in milk, and farmers may be able to use this potential by selecting the most suitable cows for an extended lactation. However, the decision to postpone insemination has to rely on information available in early lactation. The main objectives of this study were, therefore, to assess the association between the information available in early lactation and the relative milk production of cows on extended lactation, and to investigate if this information can be used to differentiate time of first insemination between cows. Data came from 4 Danish private herds practicing extended lactation in which some cows are selected to have a delayed time of planned first insemination. Average herd size varied from 93 to 157 cows, and milk yield varied from 7,842 to 12,315 kg of energy-corrected milk (ECM) per cow per year across herds. The analysis was based on 422 completed extended lactations (427 ± 87 d), and each lactation was assigned to 1 of 3 (low, medium, and high) milk performance groups (MPG) within parity group within herd based on a standardized lactation yield. For cows in the high MPG, peak ECM yield, and ECM yield at dry off were significantly greater, the relative reduction in milk yield between 60 and 305 d in milk was significantly smaller, and a smaller proportion had a body condition score (scale: 1-5) at dry off of 3.5 or greater compared with cows in low MPG. Previous lactation days in milk at peak ECM yield and ECM yield at dry off were higher, the relative reduction in milk yield between 60 and 305 d in milk was smaller, and the number of inseminations per conception was higher for multiparous cows in high MPG compared with low. Current lactation ECM yield at second and third milk recording were greater for cows in high MPG compared with low. A principal component analysis indicated that variables related to fertility, diseases, and milk yield explained most of the total variation between primiparous cows, whereas variables related to milk yield, fertility, and days in milk at peak yield were the most dominating for multiparous cows. Our study indicated that milk yields in previous lactation and at second and third milk recording correlate well with milk production potential, and therefore, may be promising indicators when selecting the most suitable cows for extended lactation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Electric analog of three-dimensional flow to wells and its application to unconfined aquifers

    USGS Publications Warehouse

    Stallman, Robert W.

    1963-01-01

    Electric-analog design criteria are established from the differential equations of ground-water flow for analyzing pumping-test data. A convenient analog design was obtained by transforming the cylindrical equation of flow to a rectilinear form. The design criteria were applied in the construction of an electric analog, which was used for studying pumping-test data collected near Grand Island, Nebr. Data analysis indicated (1) vertical flow components near pumping wells in unconfined aquifers may be much more significant in the control of water-table decline than radial flow components for as much as a day of pumping; (2) the specific yield during the first few minutes of pumping appears to be a very small fraction of that observed after pumping for more than 1 day; and (3) estimates of specific yield made from model studies seem much more sensitive to variations in assumed flow conditions than are estimates of permeability. Analysis of pumping-test data where vertical flow components are important requires that the degree of anisotropy be known. A procedure for computing anisotropy directly from drawdowns observed at five points was developed. Results obtained in the analog study emphasize the futility of calculating unconfined aquifer properties from pumping tests of short duration by means of equations based on the assumptions that vertical flow components are negligible and specific yield is constant.

  11. A study of Lusitano mare lactation curve with Wood's model.

    PubMed

    Santos, A S; Silvestre, A M

    2008-02-01

    Milk yield and composition data from 7 nursing Lusitano mares (450 to 580 kg of body weight and 2 to 9 parities) were used in this study (5 measurements per mare for milk yield and 8 measurements for composition). Wood's lactation model was used to describe milk fat, protein, and lactose lactation curves. Mean values for the concentration of major milk components across the lactation period (180 d) were 5.9 g/kg of fat, 18.4 g/kg of protein, and 60.8 g/kg of lactose. Milk fat and protein (g/kg) decreased and lactose (g/kg) increased during the 180 d of lactation. Curves for milk protein and lactose yields (g) were similar in shape to the milk yield curve; protein yield peaked at 307 g on d 10 and lactose peaked at 816 g on d 45. The fat (g) curve was different in shape compared with milk, protein, and lactose yields. Total production of the major milk constituents throughout the 180 d of lactation was estimated to be 12.0, 36.1, and 124 kg for fat, protein, and lactose, respectively. The algebraic model fitted by a nonlinear regression procedure to the data resulted in reasonable prediction curves for milk yield (R(a)(2) of 0.89) and the major constituents (R(a)(2) ranged from 0.89 to 0.95). The lactation curves of major milk constituents in Lusitano mares were similar, both in shape and values, to those found in other horse breeds. The established curves facilitate the estimation of milk yield and variation of milk constituents at different stages of lactation for both nursing and dairy mares, providing important information relative to weaning time and foal supplementation.

  12. Stay-green traits to improve wheat adaptation in well-watered and water-limited environments

    PubMed Central

    Christopher, John.T.; Christopher, Mandy J.; Borrell, Andrew K.; Fletcher, Susan; Chenu, Karine

    2016-01-01

    A stay-green phenotype enables crops to retain green leaves longer after anthesis compared with senescent types, potentially improving yield. Measuring the normalized difference vegetative index (NDVI) during the whole senescence period allows quantification of component stay-green traits contributing to a stay-green phenotype. These objective and standardized traits can be compared across genotypes and environments. Traits examined include maximum NDVI near anthesis (Nmax), senescence rate (SR), a trait integrating senescence (SGint), plus time from anthesis to onset (OnS), mid-point (MidS), and near completion (EndS) of senescence. The correlation between stay-green traits and yield was studied in eight contrasting environments ranging from well watered to severely water limited. Environments were each classified into one of the four major drought environment types (ETs) previously identified for the Australian wheat cropping system. SGint, OnS, and MidS tended to have higher values in higher yielding environments for a given genotype, as well as for higher yielding genotypes within a given environment. Correlation between specific stay-green traits and yield varied with ET. In the studied population, SGint, OnS, and MidS strongly correlated with yield in three of the four ETs which included well-watered environments (0.43–0.86), but less so in environments with only moderate water-stress after anthesis (−0.03 to 0.31). In contrast, Nmax was most highly correlated with yield under moderate post-anthesis water stress (0.31–0.43). Selection for particular stay-green traits, combinations of traits, and/or molecular markers associated with the traits could enhance genetic progress toward stay-green wheats with higher, more stable yield in both well-watered and water-limited conditions. PMID:27443279

  13. Relationships between early-life growth, intake, and birth season with first-lactation performance of Holstein dairy cows.

    PubMed

    Chester-Jones, H; Heins, B J; Ziegler, D; Schimek, D; Schuling, S; Ziegler, B; de Ondarza, M B; Sniffen, C J; Broadwater, N

    2017-05-01

    The objective was to determine the relationships between early-life parameters [including average daily gain (ADG), body weight (BW), milk replacer intake, starter intake, and birth season] and the first-lactation performance of Holstein cows. We collected data from birth years 2004 to 2012 for 2,880 Holstein animals. Calves were received from 3 commercial dairy farms and enrolled in 37 different calf research trials at the University of Minnesota Southern Research and Outreach Center from 3 to 195 d. Upon trial completion, calves were returned to their respective farms. Milk replacer options included varying protein levels and amounts fed, but in the majority of studies, calves were fed a milk replacer containing 20% crude protein and 20% fat at 0.57 kg/calf daily. Most calves (93%) were weaned at 6 wk. Milk replacer dry matter intake, starter intake, ADG, and BW at 6 wk were 21.5 ± 2.2 kg, 17.3 ± 7.3 kg, 0.53 ± 0.13 kg/d, and 62.4 ± 6.8 kg, respectively. Average age at first calving and first-lactation 305-d milk yield were 715 ± 46.5 d and 10,959 ± 1,527 kg, respectively. We conducted separate mixed-model analyses using the REML model-fitting protocol of JMP (SAS Institute Inc., Cary, NC) to determine the effect of early-life BW or ADG, milk replacer and starter intake, and birth season on first-lactation 305-d milk, fat, and true protein yield. Greater BW and ADG at 6 wk resulted in increased first-lactation milk and milk component yields. Intake of calf starter at 8 wk had a significant positive relationship with first-lactation 305-d yield of milk and milk components. Milk replacer intake, which varied very little in this data set, had no effect on first-lactation 305-d yield of milk and milk components. Calves born in the fall and winter had greater starter intake, BW, and ADG at 8 wk. However, calves born in the summer had a higher 305-d milk yield during their first lactation than those born in the fall and winter. Improvements were modest, and variation was high, suggesting that additional factors not accounted for in these analyses affected first-lactation performance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Exploitation of the IMS and Other Data for a Comprehensive Advanced Analysis of the North Korean Nuclear Tests

    DTIC Science & Technology

    2010-02-01

    vertical component records in a six-second window starting near the Lg detection time. Because our signal measurements are taken from the broadband...from the 2009 test. That is, comparable Love waves may have been generated by the 2006 test, but not at detectable levels. Secondary tectonic...kt., respectively.  Relative yield estimates based on Lg observations from the two tests are generally consistent with the yield estimates obtained

  15. Electric-Field Instrument With Ac-Biased Corona Point

    NASA Technical Reports Server (NTRS)

    Markson, R.; Anderson, B.; Govaert, J.

    1993-01-01

    Measurements indicative of incipient lightning yield additional information. New instrument gives reliable readings. High-voltage ac bias applied to needle point through high-resistance capacitance network provides corona discharge at all times, enabling more-slowly-varying component of electrostatic potential of needle to come to equilibrium with surrounding air. High resistance of high-voltage coupling makes instrument insensitive to wind. Improved corona-point instrument expected to yield additional information assisting in safety-oriented forecasting of lighting.

  16. A Study of Program Management Procedures in the Campus-Based and Basic Grant Programs. Technical Report No. 1: Sample Design, Student Survey Yield and Bias.

    ERIC Educational Resources Information Center

    Puma, Michael J.; Ellis, Richard

    Part of a study of program management procedures in the campus-based and Basic Educational Opportunity Grant programs reports on the design of the site visit component of the study and the results of the student survey, both in terms of the yield obtained and the quality of the data. Chapter 2 describes the design of sampling methodology employed…

  17. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle.

    PubMed

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-12-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.

  18. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle

    PubMed Central

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-01-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran. PMID:26954192

  19. Estimation of genetic parameters for heat stress, including dominance gene effects, on milk yield in Thai Holstein dairy cattle.

    PubMed

    Boonkum, Wuttigrai; Duangjinda, Monchai

    2015-03-01

    Heat stress in tropical regions is a major cause that strongly negatively affects to milk production in dairy cattle. Genetic selection for dairy heat tolerance is powerful technique to improve genetic performance. Therefore, the current study aimed to estimate genetic parameters and investigate the threshold point of heat stress for milk yield. Data included 52 701 test-day milk yield records for the first parity from 6247 Thai Holstein dairy cattle, covering the period 1990 to 2007. The random regression test day model with EM-REML was used to estimate variance components, genetic parameters and milk production loss. A decline in milk production was found when temperature and humidity index (THI) exceeded a threshold of 74, also it was associated with the high percentage of Holstein genetics. All variance component estimates increased with THI. The estimate of heritability of test-day milk yield was 0.231. Dominance variance as a proportion to additive variance (0.035) indicated that non-additive effects might not be of concern for milk genetics studies in Thai Holstein cattle. Correlations between genetic and permanent environmental effects, for regular conditions and due to heat stress, were - 0.223 and - 0.521, respectively. The heritability and genetic correlations from this study show that simultaneous selection for milk production and heat tolerance is possible. © 2014 Japanese Society of Animal Science.

  20. Multivariate classification of the infrared spectra of cell and tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haaland, D.M.; Jones, H.D.; Thomas, E.V.

    1997-03-01

    Infrared microspectroscopy of biopsied canine lymph cells and tissue was performed to investigate the possibility of using IR spectra coupled with multivariate classification methods to classify the samples as normal, hyperplastic, or neoplastic (malignant). IR spectra were obtained in transmission mode through BaF{sub 2} windows and in reflection mode from samples prepared on gold-coated microscope slides. Cytology and histopathology samples were prepared by a variety of methods to identify the optimal methods of sample preparation. Cytospinning procedures that yielded a monolayer of cells on the BaF{sub 2} windows produced a limited set of IR transmission spectra. These transmission spectra weremore » converted to absorbance and formed the basis for a classification rule that yielded 100{percent} correct classification in a cross-validated context. Classifications of normal, hyperplastic, and neoplastic cell sample spectra were achieved by using both partial least-squares (PLS) and principal component regression (PCR) classification methods. Linear discriminant analysis applied to principal components obtained from the spectral data yielded a small number of misclassifications. PLS weight loading vectors yield valuable qualitative insight into the molecular changes that are responsible for the success of the infrared classification. These successful classification results show promise for assisting pathologists in the diagnosis of cell types and offer future potential for {ital in vivo} IR detection of some types of cancer. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}« less

  1. Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance.

    PubMed

    Grieder, Christoph; Dhillon, Baldev S; Schipprack, Wolfgang; Melchinger, Albrecht E

    2012-04-01

    Biofuels have gained importance recently and the use of maize biomass as substrate in biogas plants for production of methane has increased tremendously in Germany. The objectives of our research were to (1) estimate variance components and heritability for different traits relevant to biogas production in testcrosses (TCs) of maize, (2) study correlations among traits, and (3) discuss strategies to breed maize as a substrate for biogas fermenters. We evaluated 570 TCs of 285 diverse dent maize lines crossed with two flint single-cross testers in six environments. Data were recorded on agronomic and quality traits, including dry matter yield (DMY), methane fermentation yield (MFY), and methane yield (MY), the product of DMY and MFY, as the main target trait. Estimates of variance components showed general combining ability (GCA) to be the major source of variation. Estimates of heritability exceeded 0.67 for all traits and were even much greater in most instances. Methane yield was perfectly correlated with DMY but not with MFY, indicating that variation in MY is primarily determined by DMY. Further, DMY had a larger heritability and coefficient of genetic variation than MFY. Hence, for improving MY, selection should primarily focus on DMY rather than MFY. Further, maize breeding for biogas production may diverge from that for forage production because in the former case, quality traits seem to be of much lower importance.

  2. Physical and chemical characterization of Devonian gas shale. Quarterly status report, October 1-December 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zielinski, R.E.; Nance, S.W.

    On shale samples from the WV-6 (Monongalia County, West Virginia) well, mean total gas yield was 80.4 ft/sup 3//ton. Mean hydrocarbon gas yield was 5.7 ft/sup 3//ton, 7% of total yield. Methane was the major hydrocarbon component and carbon dioxide the major nonhydrocarbon component. Oil yield was negligible. Clay minerals and organic matter were the dominant phases of the shale. Illite averages 76% of the total clay mineral content. This is detrital illite. Permeation of methane, parallel to the bedding direction for select samples from WV-5 (Mason County, West Virginia) well ranges from 10/sup -4/ to 10/sup -12/ darcys. Themore » permeability of these shales is affected by orgaic carbon content, density, particle orientation, depositional facies, etc. Preliminary studies of Devonian shale methane sorption rates suggest that these rates may be affected by shale porosity, as well as absorption and adsorption processes. An experimental system was designed to effectively simulate sorption of methane at natural reservoir conditions. The bulk density and color of select shales from Illinois, Appalachian and Michigan Basins suggest a general trend of decreasing density with increasing organic content. Black and grayish black shales have organic contents which normally exceed 1.0 wt %. Medium dark gray and gray shales generally have organic contents less than 1.0 wt %.« less

  3. Critical period of weed control in aerobic rice.

    PubMed

    Anwar, M P; Juraimi, A S; Samedani, B; Puteh, A; Man, A

    2012-01-01

    Critical period of weed control is the foundation of integrated weed management and, hence, can be considered the first step to design weed control strategy. To determine critical period of weed control of aerobic rice, field trials were conducted during 2010/2011 at Universiti Putra Malaysia. A quantitative series of treatments comprising two components, (a) increasing duration of weed interference and (b) increasing length of weed-free period, were imposed. Critical period was determined through Logistic and Gompertz equations. Critical period varied between seasons; in main season, it started earlier and lasted longer, as compared to off-season. The onset of the critical period was found relatively stable between seasons, while the end was more variable. Critical period was determined as 7-49 days after seeding in off-season and 7-53 days in main season to achieve 95% of weed-free yield, and 23-40 days in off-season and 21-43 days in main season to achieve 90% of weed-free yield. Since 5% yield loss level is not practical from economic view point, a 10% yield loss may be considered excellent from economic view point. Therefore, aerobic rice should be kept weed-free during 21-43 days for better yield and higher economic return.

  4. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize.

    PubMed

    Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia

    2013-12-01

    Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyn, Rodney K.; Department of Chemistry, University of Ottawa, Ottawa; Kennedy, David C.

    Research highlights: {yields} Hepatitis C virus uses lipid droplets (LD) onto which HCV core proteins bind. {yields} HCV core proteins on LDs facilitate viral particle assembly. {yields} We used a novel combination of CARS, two-photon fluorescence, and DIC microscopies. {yields} Particle tracking experiments show that core slowly affects LD localization. {yields} Particle tracking measured the change in speed and directionality of LD movement. -- Abstract: The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV coremore » proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.« less

  6. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  7. Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the effect of nano silver and silver nitrate on yield of seed in basil plant. The study was carried out in a randomized block design with three replications. Results Four levels of either silver nitrate (0, 100, 200 and 300 ppm) or nano silver (0, 20, 40, and 60 ppm) were sprayed on basil plant at seed growth stage. The results showed that there was no significant difference between 100 ppm of silver nitrate and 60 ppm concentration of nano silver on the shoot silver concentration. However, increasing the concentration of silver nitrate from 100 to 300 ppm caused a decrease in seed yield. In contrast, a raise in the concentration of nano silver from 20 to 60 ppm has led to an improvement in the seed yield. Additionally, the lowest amount of seed yield was found with control plants. Conclusions Finally, with increasing level of silver nitrate, the polyphenol compound content was raised but the enhancing level of nano silver resulting in the reduction of these components. In conclusion, nano silver can be used instead of other compounds of silver. PMID:25383311

  8. Technical note: the United States Department of Agriculture beef yield grade equation requires modification to reflect the current longissimus muscle area to hot carcass weight relationship.

    PubMed

    Lawrence, T E; Farrow, R L; Zollinger, B L; Spivey, K S

    2008-06-01

    With the adoption of visual instrument grading, the calculated yield grade can be used for payment to cattle producers selling on grid pricing systems. The USDA beef carcass grading standards include a relationship between required LM area (LMA) and HCW that is an important component of the final yield grade. As noted on a USDA yield grade LMA grid, a 272-kg (600-lb) carcass requires a 71-cm(2) (11.0-in.(2)) LMA and a 454-kg (1,000-lb) carcass requires a 102-cm(2) (15.8-in.(2)) LMA. This is a linear relationship, where required LMA = 0.171(HCW) + 24.526. If a beef carcass has a larger LMA than required, the calculated yield grade is lowered, whereas a smaller LMA than required increases the calculated yield grade. The objective of this investigation was to evaluate the LMA to HCW relationship against data on 434,381 beef carcasses in the West Texas A&M University (WTAMU) Beef Carcass Research Center database. In contrast to the USDA relationship, our data indicate a quadratic relationship [WTAMU LMA = 33.585 + 0.17729(HCW) -0.0000863(HCW(2))] between LMA and HCW whereby, on average, a 272-kg carcass has a 75-cm(2) (11.6-in.(2)) LMA and a 454-kg carcass has a 96-cm(2) (14.9-in.(2)) LMA, indicating a different slope and different intercept than those in the USDA grading standards. These data indicate that the USDA calculated yield grade equation favors carcasses lighter than 363 kg (800 lb) for having above average muscling and penalizes carcasses heavier than 363 kg (800 lb) for having below average muscling. If carcass weights continue to increase, we are likely to observe greater proportions of yield grade 4 and 5 carcasses because of the measurement bias that currently exists in the USDA yield grade equation.

  9. Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Tran, Buu N.; Joseph, Jeffrey C.; Force, Michael; Briggs, Robert G.; Vuitton, Veronique; Ferris, James P.

    2005-09-01

    Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.

  10. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    NASA Astrophysics Data System (ADS)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  11. A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.).

    PubMed

    Topdar, N; Kundu, A; Sinha, M K; Sarkar, D; Das, M; Banerjee, S; Kar, C S; Satya, P; Balyan, H S; Mahapatra, B S; Gupta, P K

    2013-01-01

    We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2x = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as colocalized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest colocalized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those of fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.

  12. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    NASA Astrophysics Data System (ADS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]-[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  13. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedges, J.I.; Weliky, K.; Devol, A.H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Althoughmore » two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural environments can be explained by white-rot fungal degradation.« less

  14. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracksmore » in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.« less

  15. Isolation and characterisation of EfeM, a periplasmic component of the putative EfeUOBM iron transporter of Pseudomonas syringae pv. syringae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajasekaran, Mohan B; Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS; Mitchell, Sue A

    2010-07-30

    Research highlights: {yields} Bioinformatic analysis reveals EfeM is a metallopeptidase with conserved HXXE motif. {yields} Mass spectrometry confirms EfeM consists of 251 residues, molecular weight 27,772Da. {yields} SRCD spectroscopy shows an {alpha}-helical secondary structure. {yields} Single crystals of EfeM are orthorhombic and diffract to 1.6A resolution. {yields} Space group is P22{sub 1}2{sub 1} with cell dimensions a = 46.74, b = 95.17 and c = 152.61 A. -- Abstract: The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signalmore » peptide of 34 amino acid residues and a C-terminal 'Peptidase{sub M}75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr{sub 3}370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M{sub W} 27,772 Da). Circular dichroism spectroscopy of EfeM indicated a mainly {alpha}-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6 A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.« less

  16. Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic.

    PubMed

    Tang, Yijing; Huang, Qunxing; Sun, Kai; Chi, Yong; Yan, Jianhua

    2018-02-01

    In this work, typical organic food waste (soybean protein (SP)) and typical chlorine enriched plastic waste (polyvinyl chloride (PVC)) were chosen as principal MSW components and their interaction during co-pyrolysis was investigated. Results indicate that the interaction accelerated the reaction during co-pyrolysis. The activation energies needed were 2-13% lower for the decomposition of mixture compared with linear calculation while the maximum reaction rates were 12-16% higher than calculation. In the fixed-bed experiments, interaction was observed to reduce the yield of tar by 2-69% and promote the yield of char by 13-39% compared with linear calculation. In addition, 2-6 times more heavy components and 61-93% less nitrogen-containing components were formed for tar derived from mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Analysis of the impacts of well yield and groundwater depth on irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozović, N.; Butler, A. P.

    2015-04-01

    Previous research has found that irrigation water demand is relatively insensitive to water price, suggesting that increased pumping costs due to declining groundwater levels will have limited effects on agricultural water management practices. However, non-linear changes in well yields as aquifer saturated thickness is reduced may have large impacts on irrigated production that are currently neglected in projections of the long-term sustainability of groundwater-fed irrigation. We conduct empirical analysis of observation data and numerical simulations for case studies in Nebraska, USA, to compare the impacts of changes in well yield and groundwater depth on agricultural production. Our findings suggest that declining well pumping capacities reduce irrigated production areas and profits significantly, whereas increased pumping costs reduce profits but have minimal impacts on the intensity of groundwater-fed irrigation. We suggest, therefore, that management of the dynamic relationship between well yield and saturated thickness should be a core component of policies designed to enhance long-term food security and support adaptation to climate change.

  18. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield

    NASA Astrophysics Data System (ADS)

    Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.

    2018-04-01

    This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.

  19. Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization.

    PubMed

    Chee Loong, Teo; Idris, Ani

    2014-12-01

    Biodiesel with improved yield was produced from microalgae biomass under simultaneous cooling and microwave heating (SCMH). Nannochloropsis sp. and Tetraselmis sp. which were known to contain higher lipid species were used. The yield obtained using this novel technique was compared with the conventional heating (CH) and microwave heating (MWH) as the control method. The results revealed that the yields obtained using the novel SCMH were higher; Nannochloropsis sp. (83.33%) and Tetraselmis sp. (77.14%) than the control methods. Maximum yields were obtained using SCMH when the microwave was set at 50°C, 800W, 16h of reaction with simultaneous cooling at 15°C; and water content and lipid to methanol ratio in reaction mixture was kept to 0 and 1:12 respectively. GC analysis depicted that the biodiesel produced from this technique has lower carbon components (<19 C) and has both reasonable CN and IV reflecting good ignition and lubricating properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.

    PubMed

    Wang, Huihui; Wang, Xin; Cui, Yanshan; Xue, Zhongcai; Ba, Yuxin

    2018-05-11

    Slow pyrolysis of bamboo was conducted at 400-600 °C and pyrolysis products were characterized with FTIR, BET, XRD, SEM, EDS and GC to establish a pyrolysis product yield prediction model and biochar formation mechanism. Pyrolysis biochar yield was predicted based on content of cellulose, hemicellulose and lignin in biomass with their carbonization index of 0.20, 0.35 and 0.45. The formation mechanism of porous structure in pyrolysis biochar was established based on its physicochemical property evolution and emission characteristics of pyrolysis gas. The main components (cellulose, hemicellulose and lignin) had different pyrolysis or chemical reaction pathways to biochar. Lignin had higher aromatic structure, which resulted higher biochar yield. It was the main biochar precursor during biomass pyrolysis. Cellulose was likely to improve porous structure of pyrolysis biochar due to its high mass loss percentage. Higher pyrolysis temperatures (600 °C) promoted inter- and intra-molecular condensation reactions and aromaticity in biochar. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process

    NASA Astrophysics Data System (ADS)

    He, Li; Song, Xuan

    2018-03-01

    In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.

  2. Measurements of aquifer-storage change and specific yield using gravity surveys

    USGS Publications Warehouse

    Pool, D.R.; Eychaner, J.H.

    1995-01-01

    Pinal Creek is an intermittent stream that drains a 200-square-mile alluvial basin in central Arizona. Large changes in water levels and aquifer storage occur in an alluvial aquifer near the stream in response to periodic recharge and ground-water withdrawals. Outflow components of the ground-water budget and hydraulic properties of the alluvium are well-defined by field measurements; however, data are insufficient to adequately describe recharge, aquifer-storage change, and specific-yield values. An investigation was begun to assess the utility of temporal-gravity surveys to directly measure aquifer-storage change and estimate values of specific yield.The temporal-gravity surveys measured changes in the differences in gravity between two reference stations on bedrock and six stations at wells; changes are caused by variations in aquifer storage. Specific yield was estimated by dividing storage change by water-level change. Four surveys were done between February 21, 1991, and March 31, 1993. Gravity increased as much as 158 microGal ± 1 to 6 microGal, and water levels rose as much as 58 feet. Average specific yield at wells ranged from 0.16 to 0.21, and variations in specific yield with depth correlate with lithologic variations. Results indicate that temporal-gravity surveys can be used to estimate aquifer-storage change and specific yield of water-table aquifers where significant variations in water levels occur. Direct measurement of aquifer-storage change can eliminate a major unknown from the ground-water budget of arid basins and improve residual estimates of recharge.

  3. Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni.

    PubMed

    Pal, Probir Kumar; Kumar, Rajender; Guleria, Vipan; Mahajan, Mitali; Prasad, Ramdeen; Pathania, Vijaylata; Gill, Baljinder Singh; Singh, Devinder; Chand, Gopi; Singh, Bikram; Singh, Rakesh Deosharan; Ahuja, Paramvir Singh

    2015-02-27

    Plant nutrition and climatic conditions play important roles on the growth and secondary metabolites of stevia (Stevia rebaudiana Bertoni); however, the nutritional dose is strongly governed by the soil properties and climatic conditions of the growing region. In northern India, the interactive effects of crop ecology and plant nutrition on yield and secondary metabolites of stevia are not yet properly understood. Thus, a field experiment comprising three levels of nitrogen, two levels of phosphorus and three levels of potassium was conducted at three locations to ascertain whether the spatial and nutritional variability would dominate the leaf yield and secondary metabolites profile of stevia. Principal component analysis (PCA) indicates that the applications of 90 kg N, 40 kg P2O5 and 40 kg K2O ha-1 are the best nutritional conditions in terms of dry leaf yield for CSIR-IHBT (Council of Scientific and Industrial Research- Institute Himalayan Bioresource Technology) and RHRS (Regional Horticultural Research Station) conditions. The spatial variability also exerted considerable effect on the leaf yield and stevioside content in leaves. Among the three locations, CSIR-IHBT was found most suitable in case of dry leaf yield and secondary metabolites accumulation in leaves. The results suggest that dry leaf yield and accumulation of stevioside are controlled by the environmental factors and agronomic management; however, the accumulation of rebaudioside-A (Reb-A) is not much influenced by these two factors. Thus, leaf yield and secondary metabolite profiles of stevia can be improved through the selection of appropriate growing locations and proper nutrient management.

  4. Genome-Wide Association of Rice Blast Disease Resistance and Yield-Related Components of Rice.

    PubMed

    Wang, Xueyan; Jia, Melissa H; Ghai, Pooja; Lee, Fleet N; Jia, Yulin

    2015-12-01

    Robust disease resistance may require an expenditure of energy that may limit crop yield potential. In the present study, a subset of a United States Department of Agriculture rice core collection consisting of 151 accessions was selected using a major blast resistance (R) gene, Pi-ta, marker and was genotyped with 156 simple sequence repeat (SSR) markers. Disease reactions to Magnaporthe oryzae, the causal agent of rice blast disease, were evaluated under greenhouse and field conditions, and heading date, plant height, paddy and brown seed weight in two field environments were analyzed, using an association mapping approach. A total of 21 SSR markers distributed among rice chromosomes 2 to 12 were associated with blast resistance, and 16 SSR markers were associated with seed weight, heading date, and plant height. Most noticeably, shorter plants were significantly correlated with resistance to blast, rice genomes with Pi-ta were associated with lighter seed weights, and the susceptible alleles of RM171 and RM6544 were associated with heavier seed weight. These findings unraveled a complex relationship between disease resistance and yield-related components.

  5. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  6. Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Sujuan; Shi, Binbin; Yao, Guoxing

    2011-10-15

    Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide andmore » titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.« less

  7. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].

    PubMed

    Yang, Meng; Li, Xiu-zhen; Yang, Zhao-ping; Hu, Yuan-man; Wen, Qing-chun

    2007-11-01

    Based on GIS, the spatial distribution of soil loss and sediment yield in Heishui and Zhenjiangguan sub-watersheds at the upper reaches of Minjiang River was simulated by using sediment delivery-distribution (SEDD) model, and the effects of land use/cover types on soil erosion and sediment yield were discussed, based on the simulated results and related land use maps. A landscape index named location-weighted landscape contrast index (LCI) was calculated to evaluate the effects of landscape components' spatial distribution, weight, and structure of land use/cover on soil erosion. The results showed the soil erosion modulus varied with land use pattern, and decreased in the order of bare rock > urban/village > rangeland > farmland > shrub > forest. There were no significant differences in sediment yield modules among different land use/covers. In the two sub-watersheds, the spatial distribution of land use/covers on slope tended to decrease the final sediment load at watershed outlet, hut as related to relative elevation, relative distance, and flow length, the spatial distribution tended to increase sediment yield. The two sub-watersheds had different advantages as related to landscape components' spatial distribution, but, when the land use/cover weight was considered, the advantages of Zhenjiangguan sub-watershed increased. If the land use/cover structure was considered in addition, the landscape pattern of Zhenjiangguan subwatershed was better. Therefore, only the three elements, i.e., landscape components' spatial distribution, land use/cover weight, and land use/cover structure, were considered comprehensively, can we get an overall evaluation on the effects of landscape pattern on soil erosion. The calculation of LCI related to slope suggested that this index couldn' t accurately reflect the effects of land use/cover weight and structure on soil erosion, and thus, needed to be modified.

  8. Impact of aerosols on solar energy production - Scenarios from the Sahel Zone

    NASA Astrophysics Data System (ADS)

    Neher, Ina; Meilinger, Stefanie; Crewell, Susanne

    2017-04-01

    Solar energy is one option to serve the rising global energy demand with low environmental impact. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Aerosols reduce global solar radiation due to absorption and scattering and therewith solar energy yields. Depending on aerosol size distribution they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard atmospheric conditions without aerosols. The aerosol size distribution and composition in the atmosphere is highly variable due to meteorological and land surface conditions. A quantitative assessment of aerosol effects on solar power yields and its relation to land use change is of particular interest for developing countries countries when analyzing the potential of local power production. This study aims to identify the effect of atmospheric aerosols in three different land use regimes, namely desert, urban/polluted and maritime on the tilted plane of photovoltaic energy modules. Here we focus on the Sahel zone, i.e. Niamey, Niger (13.5 N;2.1 E), located at the edge of the Sahara where also detailed measurements of the atmospheric state are available over the year 2006. Guided by observations a model chain is used to determine power yields. The atmospheric aerosol composition will be defined by using the Optical Properties of Aerosols and Clouds (OPAC) library. Direct and diffuse radiation (up- and downward component) are then calculated by the radiative transfer model libRadtran which allows to calculate the diffuse component of the radiance from different azimuth and zenith angles. Then the diffuse radiance will be analytically transformed to an east, south and west facing module with different tilting angles (between 0° and 45°) from each direction and compared to the tilted diffuse radiation derived by the Perez-model (Loutzenhiser et al. 2007) which is widely used in the photovoltaic community. This will allow an assessment how well standard approaches work in tropical region under various aerosol conditions including strong dust outbreaks from the Sahara. This presentation will introduce the modeling chain to assess solar power yields for different photovoltaic modules in the Sahel zone and address their relative dependence on aerosol conditions.

  9. A source with a 10{sup 13} DT neutron yield on the basis of a spherical plasma focus chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavyalov, N. V.; Maslov, V. V.; Rumyantsev, V. G., E-mail: rumyantsev@expd.vniief.ru

    2013-03-15

    Results from preliminary experimental research of neutron emission generated by a spherical plasma focus chamber filled with an equal-component deuterium-tritium mixture are presented. At a maximum current amplitude in the discharge chamber of {approx}1.5 MA, neutron pulses with a full width at half-maximum of 75-80 ns and an integral yield of {approx}1.3 Multiplication-Sign 10{sup 13} DT neutrons have been recorded.

  10. Identification of the In Vivo Phosphorylation Sites of the Ras Suppressor Rsu-1

    DTIC Science & Technology

    2000-12-11

    to phosphatidic acid (PA). Ras activation of the Raf serine/threonine kinases and activation of the MAPKs remains an important component of Ras...of either phospholipase C isofonns to yield DAG, or phospholipase D to yield phosphatidic acid and then DAG. Diacylglycerol is the key "on" switch...Rsu-I is phosphorylated in vivo in response to growth factor and TPA , a known activator of PKC. Phosphoamino acid analysis of Rsu- I suggests that

  11. Synthesis of High Molecular Weight Fluoroalkylarylene-siloxanylene (FASIL) Polymer

    DTIC Science & Technology

    1979-01-01

    impurity component" is shown in Figure 4. 6 When methyl(3,3,3-trifluoropropyl)diethoxysilane was added to the Grignard reagent at reflux instead of at...only a 34% yield. Inverse addi- tion, where the Grignard reagent was added to the diethoxysilane,gave a 43% yield. An impurity, ethoxymethyl(3,3,3...CH 2 CH2CF 3 Treatment of methyl(3,3,3-trifluoropropyl)dichlorosilane with excess ethanol gave methyl(3,3,3-trifluoropropyl)diethoxysilane. A Grignard

  12. A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Wang; R Sha; J Birktoft

    2011-12-31

    We describe the self-assembly of a DNA crystal that contains two tensegrity triangle molecules per asymmetric unit. We have used X-ray crystallography to determine its crystal structure. In addition, we have demonstrated control over the colors of the crystals by attaching either Cy3 dye (pink) or Cy5 dye (blue-green) to the components of the crystal, yielding crystals of corresponding colors. Attaching the pair of dyes to the pair of molecules yields a purple crystal.

  13. Process for preparing perfluorotriazine elastomers and precursors thereof

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Chen, T. S.; Cheng, C. H. (Inventor)

    1984-01-01

    Perfluoroether triazine elastomers having improved properties and utility in seals, gaskets, sealing components and the like are prepared from oligomeric imidoylamidines that have, in turn, been prepared by the process of (1) reacting a perfluorodinitrile with liquid ammonia to yield a perfluorodiamidine, (2) isolating the perfluorodiamidine, (3) reacting the isolated diamidine with a perfluorodinitrile to yield a perfluoror(imidoylamidine) dinitrile, and then repeating step (1), (2), and (3) to sequentially grow an oligomer of desired molecular size. The isolated amidine and nitrile intermediates are also described.

  14. Perfluoro (Imidoylamidine) diamidines

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Chen, T. S.; Cheng, C. H. (Inventor)

    1986-01-01

    Perfluoroether triazine elastomers having improved properties are prepared from oligomeric imidoylamidines that were in turn, prepared by the process of: (1) reacting a perfluorodinitrile with liquid ammonia to yield a perfluorodiamidine, (2) isolating the perfluorodiamidine, (3) reacting the isolated diamidine with a perfluorodinitrile to yield a perfluoro(imidoylamidine) dinitrile, and then repeating the steps to sequentially grow an oligomer of desired molecular size. The isolated amidine and nitrile intermediates are also disclosed. The elastomers can be fashioned into seals, gaskets, and sealing components and the like.

  15. Effects of Nuclear Weapons.

    ERIC Educational Resources Information Center

    Sartori, Leo

    1983-01-01

    Fundamental principles governing nuclear explosions and their effects are discussed, including three components of a nuclear explosion (thermal radiation, shock wave, nuclear radiation). Describes how effects of these components depend on the weapon's yield, its height of burst, and distance of detonation point. Includes effects of three…

  16. Predictions of Daily Milk and Fat Yields, Major Groups of Fatty Acids, and C18:1 cis-9 from Single Milking Data without a Milking Interval

    PubMed Central

    Arnould, Valérie M. R.; Reding, Romain; Bormann, Jeanne; Gengler, Nicolas; Soyeurt, Hélène

    2015-01-01

    Simple Summary Reducing the frequency of milk recording decreases the costs of official milk recording. However, this approach can negatively affect the accuracy of predicting daily yields. Equations to predict daily yield from morning or evening data were developed in this study for fatty milk components from traits recorded easily by milk recording organizations. The correlation values ranged from 96.4% to 97.6% (96.9% to 98.3%) when the daily yields were estimated from the morning (evening) milkings. The simplicity of the proposed models which do not include the milking interval should facilitate their use by breeding and milk recording organizations. Abstract Reducing the frequency of milk recording would help reduce the costs of official milk recording. However, this approach could also negatively affect the accuracy of predicting daily yields. This problem has been investigated in numerous studies. In addition, published equations take into account milking intervals (MI), and these are often not available and/or are unreliable in practice. The first objective of this study was to propose models in which the MI was replaced by a combination of data easily recorded by dairy farmers. The second objective was to further investigate the fatty acids (FA) present in milk. Equations to predict daily yield from AM or PM data were based on a calibration database containing 79,971 records related to 51 traits [milk yield (expected AM, expected PM, and expected daily); fat content (expected AM, expected PM, and expected daily); fat yield (expected AM, expected PM, and expected daily; g/day); levels of seven different FAs or FA groups (expected AM, expected PM, and expected daily; g/dL milk), and the corresponding FA yields for these seven FA types/groups (expected AM, expected PM, and expected daily; g/day)]. These equations were validated using two distinct external datasets. The results obtained from the proposed models were compared to previously published results for models which included a MI effect. The corresponding correlation values ranged from 96.4% to 97.6% when the daily yields were estimated from the AM milkings and ranged from 96.9% to 98.3% when the daily yields were estimated from the PM milkings. The simplicity of these proposed models should facilitate their use by breeding and milk recording organizations. PMID:26479379

  17. Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: a case study in Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei

    2017-09-01

    Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.

  18. The level of deterrence provided by data from the SPITS seismometer array to possible violations of the Comprehensive Test Ban in the Novaya Zemlya region

    NASA Astrophysics Data System (ADS)

    Bowers, David; Marshall, Peter D.; Douglas, Alan

    2001-08-01

    The yield threshold at which a fully decoupled explosion can be identified has been a recurring issue in the debate on whether the Comprehensive Nuclear Test Ban (CTB) can be adequately verified. Here, we assess this yield threshold for the Novaya Zemlya (NZ) and Kola Peninsula regions by analysing seismograms from six small body wave magnitude (mb<=3.5) seismic disturbances recorded at regional distances (1050<Δ<1300km) by the seismometer array at Spitsbergen (SPITS). Multiple filter analysis of the seismograms shows clear high-frequency Pn (f>=14Hz), except from a calibration explosion on the Kola Peninsula. From four of the disturbances studied we observe clear high-frequency Sn; the explosion showed no clear high-frequency Sn and the data from the remaining disturbance was potentially contaminated by a data glitch. Frequency-domain analysis indicates that the Pn and Sn attenuation across the Barents Sea is similar to that observed across stable tectonic regions (shields). We define a spectral magnitude for the 2.5-3.5 Hz passband that is tied to teleseismic mb from NZ explosions; the six disturbances considered have 2.3<=mb<=3.5. Three-component data are available from SPITS for four of the disturbances considered (including the explosion). From the explosion the S/P ratios on the vertical (Z), radial (R) and tangential (T) components (in the 3.0-6.0Hz passband) are all less than unity. The S/P ratios for the same passband on the Z component from the remaining three disturbances are less than unity, but the ratios on the R and T components are significantly greater than unity. We argue that S/P ratios (3.0-6.0Hz passband) of less than unity on all of the Z, R and T components at SPITS may indicate a potential treaty violation in the Kola Peninsula and NZ regions. The temporal variation of seismic noise, in the 3.0-6.0Hz passband, at SPITS suggests that our three-component S/P criterion will be effective 95 per cent of the time for disturbances with mb>=2.8. We suggest that mb=4.25+b log10W, where W is the explosive yield in kilotons (kt), with b=0.75 for W>=1, and b=1.0 for W<1, is suitable for conservatively estimating the yield threshold of a potential violation of the CTB in the NZ region. From this we infer that a 35 ton fully coupled explosion in the NZ region is likely to be identified as suspicious under the CTB using the three-component S/P criterion. Simulations show that the low-frequency decoupling factor (DF) for a fully decoupled nuclear explosion in hard rock is about 40, suggesting that such an explosion with a yield of 1.6 kt in the NZ region is likely to be identified using data from SPITS. The conservatism likely to be employed by a potential violator and uncertainties in the DFs for nuclear explosions in hard rock cavities, together with data from stations other than SPITS within 2000km of the NZ region, suggest that the yield at which a potential violator of the CTB could confidently escape detection (using decoupling) in the NZ region is in reality probably less than 0.5 kt.

  19. Association of total mixed ration particle fractions retained on the Penn State Particle Separator with milk, fat, and protein yield lactation curves at the cow level.

    PubMed

    Caccamo, M; Ferguson, J D; Veerkamp, R F; Schadt, I; Petriglieri, R; Azzaro, G; Pozzebon, A; Licitra, G

    2014-01-01

    As part of a larger project aiming to develop management evaluation tools based on results from test-day (TD) models, the objective of this study was to examine the effect of physical composition of total mixed rations (TMR) tested quarterly from March 2006 through December 2008 on milk, fat, and protein yield curves for 25 herds in Ragusa, Sicily. A random regression sire-maternal grandsire model was used to estimate variance components for milk, fat, and protein yields fitted on a full data set, including 241,153 TD records from 9,809 animals in 42 herds recorded from 1995 through 2008. The model included parity, age at calving, year at calving, and stage of pregnancy as fixed effects. Random effects were herd × test date, sire and maternal grandsire additive genetic effect, and permanent environmental effect modeled using third-order Legendre polynomials. Model fitting was carried out using ASREML. Afterward, for the 25 herds involved in the study, 9 particle size classes were defined based on the proportions of TMR particles on the top (19-mm) and middle (8-mm) screen of the Penn State Particle Separator. Subsequently, the model with estimated variance components was used to examine the influence of TMR particle size class on milk, fat, and protein yield curves. An interaction was included with the particle size class and days in milk. The effect of the TMR particle size class was modeled using a ninth-order Legendre polynomial. Lactation curves were predicted from the model while controlling for TMR chemical composition (crude protein content of 15.5%, neutral detergent fiber of 40.7%, and starch of 19.7% for all classes), to have pure estimates of particle distribution not confounded by nutrient content of TMR. We found little effect of class of particle proportions on milk yield and fat yield curves. Protein yield was greater for sieve classes with 10.4 to 17.4% of TMR particles retained on the top (19-mm) sieve. Optimal distributions different from those recommended may reflect regional differences based on climate and types and quality of forages fed. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Performance of dairy cows fed silage and grain produced from second-generation insect-protected (Bacillus thuringiensis) corn (MON 89034), compared with parental line corn or reference corn.

    PubMed

    Castillo-Lopez, E; Clark, K J; Paz, H A; Ramirez Ramirez, H A; Klusmeyer, T H; Hartnell, G F; Kononoff, P J

    2014-01-01

    Corn grain and corn silage are major feed components in lactating dairy cow rations. Bacillus thuringiensis (B.t.) is a naturally occurring soil bacterium that produces a protein that is toxic to lepidopteran insects that may damage plant tissues and reduce corn quality and yields. During each of the four 28-d periods, cows were offered 1 of 4 rations in which the corn grain and silage originated from different corn hybrids: a nontransgenic corn control (from hybrid DKC63-78; Monsanto Co., St. Louis, MO), a B.t. test substance corn (MON 89034 in hybrid DKC63-78; Monsanto Co.), and 2 commercial nontransgenic reference (Ref) hybrids: DKC61-42 (Ref 1) and DKC62-30 (Ref 2; Monsanto Co.). Sixteen multiparous Holstein cows averaging 110 ± 21 d in milk and weighing 684 ± 62.3 kg were blocked by days in milk and milk yield and randomly assigned to one of four 4 × 4 Latin squares. Diets were formulated to contain 36.4% corn silage and 16.3% corn grain. Dry matter intake was greater for cows consuming B.t. corn (26.6 ± 0.59 kg/d) compared with the control, Ref 1, and Ref 2 corn diets (25.4, 25.0, and 25.6 ± 0.59 kg/d, respectively). Milk yield, fat yield, and percentage of fat (36.8 ± 0.98 kg/d, 1.22 ± 0.05 kg/d, and 3.3 ± 0.10%), milk protein yield and percentage of protein (1.11 ± 0.03 kg/d and 3.01 ± 0.05%), milk urea nitrogen concentration (14.01 ± 0.49 mg/dL), and 3.5% fat-corrected milk yield (35.7 ± 1.07 kg/d) were not different across treatments. The results from this study show that lactating dairy cows that consume B.t. corn (MON 89034) do not differ from lactating dairy cows that consume nontransgenic corn in milk yield, 3.5% fat-corrected milk per unit of dry matter intake, or milk components. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Probing a four flavor vis-a-vis three flavor neutrino mixing for ultrahigh energy neutrino signals at a 1 km2 detector

    NASA Astrophysics Data System (ADS)

    Pandey, Madhurima; Majumdar, Debasish; Dutta Banik, Amit

    2018-05-01

    We consider a four-flavor scenario for the neutrinos where an extra sterile neutrino is introduced to the three families of active neutrinos and study the deviation from the three-flavor scenario in the ultrahigh-energy (UHE) regime. We calculate the possible muon and shower yields at a 1 km2 detector such as IceCube for these neutrinos from distant UHE sources, e.g., gamma-ray bursts, etc. Similar estimations for muon and shower yields are also obtained for the three-flavor case. Comparing the two results, we find considerable differences between the yields for these two cases. This can be useful for probing the existence of a fourth sterile component using UHE neutrino flux.

  2. Theoretical analysis of HVAC duct hanger systems

    NASA Technical Reports Server (NTRS)

    Miller, R. D.

    1987-01-01

    Several methods are presented which, together, may be used in the analysis of duct hanger systems over a wide range of frequencies. The finite element method (FEM) and component mode synthesis (CMS) method are used for low- to mid-frequency range computations and have been shown to yield reasonably close results. The statistical energy analysis (SEA) method yields predictions which agree with the CMS results for the 800 to 1000 Hz range provided that a sufficient number of modes participate. The CMS approach has been shown to yield valuable insight into the mid-frequency range of the analysis. It has been demonstrated that it is possible to conduct an analysis of a duct/hanger system in a cost-effective way for a wide frequency range, using several methods which overlap for several frequency bands.

  3. Sputtering of rough surfaces: a 3D simulation study

    NASA Astrophysics Data System (ADS)

    von Toussaint, U.; Mutzke, A.; Manhard, A.

    2017-12-01

    The lifetime of plasma-facing components is critical for future magnetic confinement fusion power plants. A key process limiting the lifetime of the first-wall is sputtering by energetic ions. To provide a consistent modeling of the sputtering process of realistic geometries, the SDTrimSP-code has been extended to enable the processing of analytic as well as measured arbitrary 3D surface morphologies. The code has been applied to study the effect of varying the impact angle of ions on rough surfaces on the sputter yield as well as the influence of the aspect ratio of surface structures on the 2D distribution of the local sputtering yields. Depending on the surface morphologies reductions of the effective sputter yields to less than 25% have been observed in the simulation results.

  4. [Study on absorbing volatile oil with mesoporous carbon].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  5. Efficient extraction strategies of tea (Camellia sinensis) biomolecules.

    PubMed

    Banerjee, Satarupa; Chatterjee, Jyotirmoy

    2015-06-01

    Tea is a popular daily beverage worldwide. Modulation and modifications of its basic components like catechins, alkaloids, proteins and carbohydrate during fermentation or extraction process changes organoleptic, gustatory and medicinal properties of tea. Through these processes increase or decrease in yield of desired components are evident. Considering the varied impacts of parameters in tea production, storage and processes that affect the yield, extraction of tea biomolecules at optimized condition is thought to be challenging. Implementation of technological advancements in green chemistry approaches can minimize the deviation retaining maximum qualitative properties in environment friendly way. Existed extraction processes with optimization parameters of tea have been discussed in this paper including its prospects and limitations. This exhaustive review of various extraction parameters, decaffeination process of tea and large scale cost effective isolation of tea components with aid of modern technology can assist people to choose extraction condition of tea according to necessity.

  6. Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.).

    PubMed

    Fu, Qiang; Zhang, Peijiang; Tan, Lubin; Zhu, Zuofeng; Ma, Dan; Fu, Yongcai; Zhan, Xinchun; Cai, Hongwei; Sun, Chuanqing

    2010-02-01

    Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two generations (BC(4)F(2) and BC(4)F(4)), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both generations. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  7. Some short-term effects of changing to lower yield cigarettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minty, B.D.; Royston, D.; Jones, J.G.

    The rate of clearance from the lung of the hydrophilic tracer molecule /sup 99m/Tc DTPA was used to investigate the short-term effects on lung epithelial function when smokers switched to cigarettes with lower yields of tobacco smoke constituents. Two separate studies were performed. In the first study, subjects smoked conventional mid- and low-tar cigarettes. The second study used two specially manufactured cigarettes with similar tar and nicotine yields, but differing carbon monoxide yields. Neither study demonstrated any significant improvement in /sup 99m/Tc DTPA clearance. The yields of carbon monoxide determined under standard machine smoking conditions implied that there would bemore » a 44 percent reduction in exposure to carbon monoxide when subjects switched from smoking conventional mid-tar to low-tar cigarettes. However, measurements of carboxyhemoglobin showed that the smokers compensated for the lower yields and their exposure was reduced by only 11 percent. Similarly, in the second study, the subjects reduced their exposure by 7 percent instead of the expected 44 percent. Urine nicotine/cotinine excretion measurements in this study indicated that there was no complimentary increase in nicotine absorption suggesting the possibility that subjects may be able to regulate their intake of individual components of the cigarette smoke. Thus, the unexpected result from this study was the finding that cigarette smokers could, in some way, regulate their intake of smoke from cigarettes of different composition so as to maintain a constant exposure of smoke constituents.« less

  8. Application of different fertilizers on morphological traits of dill (Anethum graveolens L.).

    PubMed

    Nejatzadeh-Barandozi, Fatemeh; Gholami-Borujeni, Fathollah

    2014-12-01

    The aim of this study was to evaluate the effects of nitroxin biofertilizer and chemical fertilizer on the growth, yield, and essential oil composition of dill. The experiment was conducted under field condition in randomized complete block design with three replications and two factors. The first factor was the concentrations of nitroxin biofertilizer (0%, 50%, and 100%) of the recommended amount (1 l of biological fertilizer for 30 kg of seed). The second factor was the following chemical fertilizer treatments: no fertilizer (control) and 50 and 100 kg ha(-1) urea along with 300 kg ha(-1) ammonium phosphate. Different characteristics such as plant height, number of umbel per plant, number of umbellet per umbel, number of grain per umbellet, 1,000 seed weight, grain yield, biological yield, and oil percentage were recorded. According to the results, the highest height, biological yield, and grain yield components (except harvest index) were obtained on biological fertilizer. The results showed the highest essential oil content detected in biological fertilizer and chemical fertilizer. Identification of essential oil composition showed that the content of carvone increased with the application of biofertilizers and chemical fertilizers. The results indicated that the application of biofertilizers enhanced yield and other plant criteria in this plant. Generally, it seems that the use of biofertilizers or combinations of biofertilizer and chemical fertilizer could improve dill performance in addition to reduction of environmental pollution.

  9. Environment effects for earliness and grain yield traits in F1 diallel populations of maize (Zea mays L.).

    PubMed

    Ali, Sardar; Khan, Naqib Ullah; Khalil, Iftikhar Hussain; Iqbal, Muhammad; Gul, Samrin; Ahmed, Sheraz; Ali, Naushad; Sajjad, Mohammad; Afridi, Khilwat; Ali, Imtiaz; Khan, Shah Masaud

    2017-10-01

    Five maize inbred lines, 20 F 1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F 1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F 1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F 1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for amore » new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.« less

  11. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields.

    PubMed

    Pan, Xuejun; Gilkes, Neil; Kadla, John; Pye, Kendall; Saka, Shiro; Gregg, David; Ehara, Katsunobu; Xie, Dan; Lam, Dexter; Saddler, Jack

    2006-08-05

    An organosolv process involving extraction with hot aqueous ethanol has been evaluated for bioconversion of hybrid poplar to ethanol. The process resulted in fractionation of poplar chips into a cellulose-rich solids fraction, an ethanol organosolv lignin (EOL) fraction, and a water-soluble fraction containing hemicellulosic sugars, sugar breakdown products, degraded lignin, and other components. The influence of four independent process variables (temperature, time, catalyst dose, and ethanol concentration) on product yields was analyzed over a broad range using a small composite design and response surface methodology. Center point conditions for the composite design (180 degrees C, 60 min, 1.25% H(2)SO(4), and 60% ethanol), yielded a solids fraction containing approximately 88% of the cellulose present in the untreated poplar. Approximately 82% of the total cellulose in the untreated poplar was recovered as monomeric glucose after hydrolysis of the solids fraction for 24 h using a low enzyme loading (20 filter paper units of cellulase/g cellulose); approximately 85% was recovered after 48 h hydrolysis. Total recovery of xylose (soluble and insoluble) was equivalent to approximately 72% of the xylose present in untreated wood. Approximately 74% of the lignin in untreated wood was recovered as EOL. Other cooking conditions resulted in either similar or inferior product yields although the distribution of components between the various fractions differed markedly. Data analysis generated regression models that describe process responses for any combination of the four variables. (c) 2006 Wiley Periodicals, Inc.

  12. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  13. Dihydroavenanthramide D inhibits human breast cancer cell invasion through suppression of MMP-9 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young-Rae; Noh, Eun-Mi; Oh, Hyun Ju

    2011-02-25

    Research highlights: {yields} MMP-9 plays a pivotal role in the invasion of MCF-7 breast cancer cells. {yields} TPA stimulates MMP-9 expression through activation of MAPK/NF-{kappa}B and MAPK/AP-1 pathways. {yields} Dihydroavenanthramide D suppresses MMP-9 expression via inhibition of TPA-induced MAPK/NF-{kappa}B and MAPK/AP-1 activations. {yields} Dihydroavenanthramide D blocks cell invasion of MCF-7 breast cancer cells. -- Abstract: Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component of oat. Previous study demonstrates that DHAvD strongly inhibits activation of nuclear factor-kappa B (NF-{kappa}B), which is a major component in cancer cell invasion. The present study investigated whethermore » DHAvD can modulate MMP-9 expression and cell invasion in MCF-7 human breast cancer cells. MMP-9 expression and cell invasion in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased, whereas these inductions were muted by DHAvD. DHAvD also suppressed activation of mitogen-activated protein kinase (MAPK), and MAPK-mediated nuclear factor-kappa B (NF-{kappa}B) and activator protein-1 (AP-1) activations in TPA-treated MCF-7 cells. The results indicate that DHAvD-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the MAPK/NF-{kappa}B and MAPK/AP-1 pathways in MCF-7 cells. DHAvD may have potential value in breast cancer metastasis.« less

  14. Kinetics and Thermodynamics of Watson-Crick Base Pairing Driven DNA Origami Dimerization.

    PubMed

    Zenk, John; Tuntivate, Chanon; Schulman, Rebecca

    2016-03-16

    We investigate the kinetics and thermodynamics of DNA origami dimerization using flat rectangle origami components and different architectures of Watson-Crick complementary single-stranded DNA ("sticky end") linking strategies. We systematically vary the number of linkers, the length of the sticky ends on the linker, and linker architecture and measure the corresponding yields as well as forward and reverse reaction rate constants through fluorescence quenching assays. Yields were further verified using atomic force microscopy. We calculate values of H° and ΔS° for various interface designs and find nonlinear van't Hoff behavior, best described by two linear equations, suggesting distinct regimes of dimerization between those with and those without well-formed interfaces. We find that self-assembly reactions can be tuned by manipulating the interface architecture without suffering a loss in yield, even when yield is high, ∼75-80%. We show that the second-order forward reaction rate constant (k(on)) depends on both linker architecture and number of linkers used, with typical values on the order of 10(5)-10(6) (M·s)(-1), values that are similar to those of bimolecular association of small, complementary DNA strands. The k(on) values are generally non-Arrhenius, tending to increase with decreasing temperature. Finally, we use kinetic and thermodynamic information about the optimal linking architecture to extend the system to an infinite, two-component repeating lattice system and show that we can form micron-sized lattices, with well-formed structures up to 8 μm(2).

  15. (18)F-FDG uptake predicts diagnostic yield of transbronchial biopsy in peripheral lung cancer.

    PubMed

    Umeda, Yukihiro; Demura, Yoshiki; Anzai, Masaki; Matsuoka, Hiroki; Araya, Tomoyuki; Nishitsuji, Masaru; Nishi, Koichi; Tsuchida, Tatsuro; Sumida, Yasuyuki; Morikawa, Miwa; Ameshima, Shingo; Ishizaki, Takeshi; Kasahara, Kazuo; Ishizuka, Tamotsu

    2014-07-01

    Recent advances in endobronchial ultrasonography with a guide sheath (EBUS-GS) have enabled better visualization of distal airways, while virtual bronchoscopic navigation (VBN) has been shown useful as a guide to navigate the bronchoscope. However, indications for utilizing VBN and EBUS-GS are not always clear. To clarify indications for a bronchoscopic examination using VBN and EBUS-GS, we evaluated factors that predict the diagnostic yield of a transbronchial biopsy (TBB) procedure for peripheral lung cancer (PLC) lesions. We retrospectively reviewed the charts of 194 patients with 201 PLC lesions (≤3cm mean diameter), and analyzed the association of diagnostic yield of TBB with [(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG) positron emission tomography and chest computed tomography (CT) findings. The diagnostic yield of TBB using VBN and EBUS-GS was 66.7%. High maximum standardized uptake value (SUVmax), positive bronchus sign, and ground-glass opacity component shown on CT were all significant predictors of diagnostic yield, while multivariate analysis showed only high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign as significant predictors. Diagnostic yield was higher for PLC lesions with high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign (84.6%) than for those with SUVmax <2.8 and negative bronchus sign (33.3%). High (18)F-FDG uptake was also correlated with tumor invasiveness. High (18)F-FDG uptake predicted the diagnostic yield of TBB using VBN and EBUS-GS for PLC lesions. (18)F-FDG uptake and bronchus sign may indicate for the accurate application of bronchoscopy with those modalities for diagnosing PLC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of Planting Date and Maturity Group on Soybean Yield Response to Injury by Megacopta cribraria (Hemiptera: Plataspidae).

    PubMed

    Blount, J L; Buntin, G D; Roberts, P M

    2016-02-01

    The kudzu bug, Megacopta cribraria (F.), is an invasive member of the family Plataspidae originating from Asia. Since its discovery in Georgia in 2009, its distribution has increased to 13 southern and eastern states. In the United States, M. cribraria is bivoltine and has two primary developmental hosts, kudzu and soybean. Here, we evaluated the yield response of soybean to M. cribraria feeding injury in relation to planting date and soybean maturity group. The study contained four replicated trials in Griffin, Tifton, and Midville, GA, in 2012 and 2013. Four planting dates from April to July, served as the whole plot of a split-plot design with maturity group five and seven soybean and insecticide (lambda-cyhalothrin) randomized within planting date. Egg masses, nymphs, and adults were enumerated weekly to biweekly until soybean reached maturity. Two generations were observed in April and May plantings, but only one generation was evident in June and July soybean plantings. Insecticide-protected plots had consistently higher yields than unprotected plots. Grain yield was greatest in the May planting and lowest in the July planting. Season-long feeding by M. cribraria reduced grain yield in April, May, and June plantings but not in the July planting. Maturity group and planting date had significant effects on yield components in most comparisons. This study indicated that early-planted soybean are at greater risk of yield loss from M. cribraria injury compared with later-planted soybean. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solak, Agnieszka; Rutkowski, Piotr, E-mail: piotr.rutkowski@pwr.wroc.pl

    2014-02-15

    Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with highmore » yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenkel, Philip; Holcomb, Rodney B.

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally availablemore » feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.« less

  19. High energy resolution with transparent ceramic garnet scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) < 4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  20. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated‐unsaturated flow assessment

    USGS Publications Warehouse

    Loheide, Steven P.; Butler, James J.; Gorelick, Steven M.

    2005-01-01

    Groundwater consumption by phreatophytes is a difficult‐to‐measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated‐unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified.

  1. Critical Period of Weed Control in Aerobic Rice

    PubMed Central

    Anwar, M. P.; Juraimi, A. S.; Samedani, B.; Puteh, A.; Man, A.

    2012-01-01

    Critical period of weed control is the foundation of integrated weed management and, hence, can be considered the first step to design weed control strategy. To determine critical period of weed control of aerobic rice, field trials were conducted during 2010/2011 at Universiti Putra Malaysia. A quantitative series of treatments comprising two components, (a) increasing duration of weed interference and (b) increasing length of weed-free period, were imposed. Critical period was determined through Logistic and Gompertz equations. Critical period varied between seasons; in main season, it started earlier and lasted longer, as compared to off-season. The onset of the critical period was found relatively stable between seasons, while the end was more variable. Critical period was determined as 7–49 days after seeding in off-season and 7–53 days in main season to achieve 95% of weed-free yield, and 23–40 days in off-season and 21–43 days in main season to achieve 90% of weed-free yield. Since 5% yield loss level is not practical from economic view point, a 10% yield loss may be considered excellent from economic view point. Therefore, aerobic rice should be kept weed-free during 21–43 days for better yield and higher economic return. PMID:22778701

  2. Impact of erosion and tillage on the productivity and quality of selected semiarid soils of Iran

    NASA Astrophysics Data System (ADS)

    Mehdizade, B.; Asadi, H.; Shabanpour, M.; Ghadiri, H.

    2013-09-01

    This greenhouse research was carried out to study the effects of water and tillage erosion on agricultural productivity and soil quality in soil samples from a semiarid region of Iran. A factorial experiment of complete randomized block design was used to compare the effects of soil erosion (eroded and non-eroded soils), slope position, water stress and fertilizer (N-P-K) on yield and yield components of wheat as soil productivity index. The results showed that erosion ie water and tillage erosion has a significant effect (p<0.01) in decreasing soil productivity due to its negative impact on soil organic matter, nutrients (N and K) and hydraulic conductivity. Complete N-P-K fertilization and water stress had significant effects on increasing and decreasing of wheat yield, respectively. The effect of water stress in particular was so high that it could eclipse the erosion impact on yield reduction. Wheat dry matter and grain mass on foot and mid slopes were significantly higher than that on upslope positions where total N and available K were the lowest and equivalent calcium carbonate the highest. Saturated hydraulic conductivity and total nitrogen were found to be the most important soil properties as far as their correlations to wheat yield are concerned.

  3. Differential stemflow yield from European beech saplings: the role and respective importance of individual canopy structure metrics

    NASA Astrophysics Data System (ADS)

    Levia, Delphis; Michalzik, Beate

    2013-04-01

    Stemflow yield from individual trees varies as a function of both meteorological conditions and canopy structure. The importance and differential effects of various metrics of canopy structure in relation to stemflow yield is inadequately understood and the subject of debate among forest hydrologists. It is possible to evaluate the role and respective importance of individual canopy structure metrics by holding meteorological conditions constant. Twelve isolated experimental European beech (Fagus sylvatica L.) saplings in Jena, Germany were exposed to identical meteorological conditions to examine the effects of canopy structure on stemflow production during the 2012 growing season. The canopy structure metrics being evaluated include: trunk diameter, trunk lean, tree height, projected crown area, branch inclination angle, branch count, and biomass (foliar and woody). Principal components analysis and multiple regression are utilized to determine the relative importance of different canopy structure metrics on stemflow yield. Experimental results will provide insight as to which metrics of canopy structure most strongly govern stemflow production. Ultimately, with a more thorough understanding of the unique contributions of various canopy structural metrics to stemflow yield, a useful conceptual guide of stemflow generation can be formulated on the basis of canopy structure for management purposes. Sponsor note: This research was funded by the Alexander von Humboldt Foundation.

  4. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    PubMed

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  5. Using NOAA/AVHRR based remote sensing data and PCR method for estimation of Aus rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Mohammad; Akhand, Kawsar; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-06-01

    Rice is a dominant food crop of Bangladesh accounting about 75 percent of agricultural land use for rice cultivation and currently Bangladesh is the world's fourth largest rice producing country. Rice provides about two-third of total calorie supply and about one-half of the agricultural GDP and one-sixth of the national income in Bangladesh. Aus is one of the main rice varieties in Bangladesh. Crop production, especially rice, the main food staple, is the most susceptible to climate change and variability. Any change in climate will, thus, increase uncertainty regarding rice production as climate is major cause year-to-year variability in rice productivity. This paper shows the application of remote sensing data for estimating Aus rice yield in Bangladesh using official statistics of rice yield with real time acquired satellite data from Advanced Very High Resolution Radiometer (AVHRR) sensor and Principal Component Regression (PCR) method was used to construct a model. The simulated result was compared with official agricultural statistics showing that the error of estimation of Aus rice yield was less than 10%. Remote sensing, therefore, is a valuable tool for estimating crop yields well in advance of harvest, and at a low cost.

  6. The Elusive Third Component

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    2004-01-01

    The historical development of techniques for measuring three velocity components using laser velocimetry is presented. The techniques are described and their relative merits presented. Many of the approaches currently in use based on the fringe laser velocimeter have yielded inaccurate measurements of turbulence intensity in the on-axis component. A possible explanation for these inaccuracies is presented along with simulation results.

  7. Development of a comprehensive watershed model applied to study stream yield under drought conditions

    USGS Publications Warehouse

    Perkins, S.P.; Sophocleous, M.

    1999-01-01

    We developed a model code to simulate a watershed's hydrology and the hydraulic response of an interconnected stream-aquifer system, and applied the model code to the Lower Republican River Basin in Kansas. The model code links two well-known computer programs: MODFLOW (modular 3-D flow model), which simulates ground water flow and stream-aquifer interaction; and SWAT (soil water assessment tool), a soil water budget simulator for an agricultural watershed. SWAT represents a basin as a collection of subbasins in terms of soil, land use, and weather data, and simulates each subbasin on a daily basis to determine runoff, percolation, evaporation, irrigation, pond seepages and crop growth. Because SWAT applies a lumped hydrologic model to each subbasin, spatial heterogeneities with respect to factors such as soil type and land use are not resolved geographically, but can instead be represented statistically. For the Republican River Basin model, each combination of six soil types and three land uses, referred to as a hydrologic response unit (HRU), was simulated with a separate execution of SWAT. A spatially weighted average was then taken over these results for each hydrologic flux and time step by a separate program, SWBAVG. We wrote a package for MOD-FLOW to associate each subbasin with a subset of aquifer grid cells and stream reaches, and to distribute the hydrologic fluxes given for each subbasin by SWAT and SWBAVG over MODFLOW's stream-aquifer grid to represent tributary flow, surface and ground water diversions, ground water recharge, and evapotranspiration from ground water. The Lower Republican River Basin model was calibrated with respect to measured ground water levels, streamflow, and reported irrigation water use. The model was used to examine the relative contributions of stream yield components and the impact on stream yield and base flow of administrative measures to restrict irrigation water use during droughts. Model results indicate that tributary flow is the dominant component of stream yield and that reduction of irrigation water use produces a corresponding increase in base flow and stream yield. However, the increase in stream yield resulting from reduced water use does not appear to be of sufficient magnitude to restore minimum desirable streamflows.

  8. Experimental Techniques Verified for Determining Yield and Flow Surfaces

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Ellis, Rod; Lissenden, Cliff J.

    1998-01-01

    Structural components in aircraft engines are subjected to multiaxial loads when in service. For such components, life prediction methodologies are dependent on the accuracy of the constitutive models that determine the elastic and inelastic portions of a loading cycle. A threshold surface (such as a yield surface) is customarily used to differentiate between reversible and irreversible flow. For elastoplastic materials, a yield surface can be used to delimit the elastic region in a given stress space. The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory, but at elevated temperatures, material response can be highly time dependent. Thus, viscoplastic theories have been developed to account for this time dependency. Since the key to many of these theories is experimental validation, the objective of this work (refs. 1 and 2) at the NASA Lewis Research Center was to verify that current laboratory techniques and equipment are sufficient to determine flow surfaces at elevated temperatures. By probing many times in the axial-torsional stress space, we could define the yield and flow surfaces. A small offset definition of yield (10 me) was used to delineate the boundary between reversible and irreversible behavior so that the material state remained essentially unchanged and multiple probes could be done on the same specimen. The strain was measured with an off-the-shelf multiaxial extensometer that could measure the axial and torsional strains over a wide range of temperatures. The accuracy and resolution of this extensometer was verified by comparing its data with strain gauge data at room temperature. The extensometer was found to have sufficient resolution for these experiments. In addition, the amount of crosstalk (i.e., the accumulation of apparent strain in one direction when strain in the other direction is applied) was found to be negligible. Tubular specimens were induction heated to determine the flow surfaces at elevated temperatures. The heating system induced a large amount of noise in the data. By reducing thermal fluctuations and using appropriate data averaging schemes, we could render the noise inconsequential. Thus, accurate and reproducible flow surfaces (see the figure) could be obtained.

  9. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of 'b' fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater 'a' fraction, 'b' fraction, 'c' values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater forage production potential, and could be applied as forage supply source for ruminants. The improved effective degradability of harvest mixture material could be attributed to greater degradable components involving the rapidly degradable fractions (a), potentially degradable (b) fractions, and degradable rate constant (c), than that of corn and rye hay.

  10. Estimating daily fat yield from a single milking on test day for herds with a robotic milking system.

    PubMed

    Peeters, R; Galesloot, P J B

    2002-03-01

    The objective of this study was to estimate the daily fat yield and fat percentage from one sampled milking per cow per test day in an automatic milking system herd, when the milking times and milk yields of all individual milkings are recorded by the automatic milking system. Multiple regression models were used to estimate the 24-h fat percentage when only one milking is sampled for components and milk yields and milking times are known for all milkings in the 24-h period before the sampled milking. In total, 10,697 cow test day records, from 595 herd tests at 91 Dutch herds milked with an automatic milking system, were used. The best model to predict 24-h fat percentage included fat percentage, protein percentage, milk yield and milking interval of the sampled milking, milk yield, and milking interval of the preceding milking, and the interaction between milking interval and the ratio of fat and protein percentage of the sampled milking. This model gave a standard deviation of the prediction error (SE) for 24-h fat percentage of 0.321 and a correlation between the predicted and actual 24-h fat percentage of 0.910. For the 24-h fat yield, we found SE = 90 g and correlation = 0.967. This precision is slightly better than that of present a.m.-p.m. testing schemes. Extra attention must be paid to correctly matching the sample jars and the milkings. Furthermore, milkings with an interval of less than 4 h must be excluded from sampling as well as milkings that are interrupted or that follow an interrupted milking. Under these restrictions (correct matching, interval of at least 4 h, and no interrupted milking), one sampled milking suffices to get a satisfactory estimate for the test-day fat yield.

  11. Changes in yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Childers, Katelin

    2015-04-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the political discussion about mitigation targets as well as for the inclusion of climate change impacts in Integrated Assessment Models (IAMs) that generally only provide global mean temperature change as an indicator of climate change. While there is a well-established framework for the scalability of regional temperature and precipitation changes with global mean temperature change we provide an assessment of the extent to which impacts such as crop yield changes can also be described in terms of global mean temperature changes without accounting for the specific underlying emissions scenario. Based on multi-crop-model simulations of the four major cereal crops (maize, rice, soy, and wheat) on a 0.5 x 0.5 degree global grid generated within ISI-MIP, we show the average spatial patterns of projected crop yield changes at one half degree warming steps. We find that emissions scenario dependence is a minor component of the overall variance of projected yield changes at different levels of global warming. Furthermore, scenario dependence can be reduced by accounting for the direct effects of CO2 fertilization in each global climate model (GCM)/impact model combination through an inclusion of the global atmospheric CO2 concentration as a second predictor. The choice of GCM output used to force the crop model simulations accounts for a slightly larger portion of the total yield variance, but the greatest contributor to variance in both global and regional crop yields and at all levels of warming, is the inter-crop-model spread. The unique multi impact model ensemble available with ISI-MIP data also indicates that the overall variability of crop yields is projected to increase in conjunction with increasing global mean temperature. This result is consistent throughout the ensemble of impact models and across many world regions. Such a hike in yield volatility could have significant policy implications by affecting food prices and supplies.

  12. Foodservice yield and fabrication times for beef as influenced by purchasing options and merchandising styles.

    PubMed

    Weatherly, B H; Griffin, D B; Johnson, H K; Walter, J P; De La Zerda, M J; Tipton, N C; Savell, J W

    2001-12-01

    Selected beef subprimals were obtained from fabrication lines of three foodservice purveyors to assist in the development of a software support program for the beef foodservice industry. Subprimals were fabricated into bone-in or boneless foodservice ready-to-cook portion-sized cuts and associated components by professional meat cutters. Each subprimal was cut to generate mean foodservice cutting yields and labor requirements, which were calculated from observed weights (kilograms) and processing times (seconds). Once fabrication was completed, data were analyzed to determine means and standard errors of percentage yields and processing times for each subprimal. Subprimals cut to only one end point were evaluated for mean foodservice yields and processing times, but no comparisons were made within subprimal. However, those traditionally cut into various end points were additionally compared by cutting style. Subprimals cut by a single cutting style included rib, roast-ready; ribeye roll, lip-on, bone-in; brisket, deckle-off, boneless; top (inside) round; and bottom sirloin butt, flap, boneless. Subprimals cut into multiple end points or styles included ribeye, lip-on; top sirloin, cap; tenderloin butt, defatted; shortloin, short-cut; strip loin, boneless; top sirloin butt, boneless; and tenderloin, full, side muscle on, defatted. Mean yields of portion cuts, and mean fabrication times required to manufacture these cuts differed (P < 0.05) by cutting specification of the final product. In general, as the target portion size of fabricated steaks decreased, the mean number of steaks derived from any given subprimal cut increased, causing total foodservice yield to decrease and total processing time to increase. Therefore, an inverse relationship tended to exist between processing times and foodservice yields. With a method of accurately evaluating various beef purchase options, such as traditional commodity subprimals, closely trimmed subprimals, and pre-cut portion steaks in terms of yield and labor cost, foodservice operators will be better equipped to decide what option is more viable for their operation.

  13. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    PubMed Central

    Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations. PMID:24749007

  14. Study of the K{sup +}{pi}{sup +}{pi}{sup -} final state in B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} and B{sup +}{yields}{psi}'K{sup +}{pi}{sup +}{pi}{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guler, H.; McGill University, Montreal; Universite de Montreal, Montreal

    Using 535x10{sup 6} B-meson pairs collected by the Belle detector at the KEKB e{sup +}e{sup -} collider, we measure branching fractions of (7.16{+-}0.10(stat){+-}0.60(syst)x10{sup -4} for B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} and (4.31{+-}0.20(stat){+-}0.50(syst))x10{sup -4} for B{sup +}{yields}{psi}'K{sup +}{pi}{sup +}{pi}{sup -}. We perform amplitude analyses to determine the resonant structure of the K{sup +}{pi}{sup +}{pi}{sup -} final state in B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} and B{sup +}{yields}{psi}'K{sup +}{pi}{sup +}{pi}{sup -} and find that the K{sub 1}(1270) is a prominent component of both decay modes. There is significant interference among the different intermediate states, which leads, in particular, to a striking distortion ofmore » the {rho} line shape due to the {omega}. Based on the results of the fit to the B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} data, the relative decay fractions of the K{sub 1}(1270) to K{rho}, K{omega}, and K*(892){pi} are consistent with previous measurements, but the decay fraction to K{sub 0}*(1430) is significantly smaller. Finally, by floating the mass and width of the K{sub 1}(1270) in an additional fit of the B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} data, we measure a mass of (1248.1{+-}3.3(stat){+-}1.4(syst)) MeV/c{sup 2} and a width of (119.5{+-}5.2(stat){+-}6.7(syst)) MeV/c{sup 2} for the K{sub 1}(1270).« less

  15. Improvement of Prediction Ability for Genomic Selection of Dairy Cattle by Including Dominance Effects

    PubMed Central

    Sun, Chuanyu; VanRaden, Paul M.; Cole, John B.; O'Connell, Jeffrey R.

    2014-01-01

    Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat yield (both breeds) as well as for Holstein milk yield. PMID:25084281

  16. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia).

    PubMed

    Kole, Chittaranjan; Kole, Phullara; Randunu, K Manoj; Choudhary, Poonam; Podila, Ramakrishna; Ke, Pu Chun; Rao, Apparao M; Marcus, Richard K

    2013-04-26

    Recent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits. We confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake. While our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues.

  17. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia)

    PubMed Central

    2013-01-01

    Background Recent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits. Results We confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake. Conclusions While our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues. PMID:23622112

  18. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    PubMed

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.

  19. Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species

    PubMed Central

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-01-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793

  20. Yield responses of wild C3 and C4 crop progenitors to subambient CO2 : a test for the role of CO2 limitation in the origin of agriculture.

    PubMed

    Cunniff, Jennifer; Jones, Glynis; Charles, Michael; Osborne, Colin P

    2017-01-01

    Limitation of plant productivity by the low partial pressure of atmospheric CO 2 (C a ) experienced during the last glacial period is hypothesized to have been an important constraint on the origins of agriculture. In support of this hypothesis, previous work has shown that glacial C a limits vegetative growth in the wild progenitors of both C 3 and C 4 founder crops. Here, we present data showing that glacial C a also reduces grain yield in both crop types. We grew four wild progenitors of C 3 (einkorn wheat and barley) and C 4 crops (foxtail and broomcorn millets) at glacial and postglacial C a , measuring grain yield and the morphological and physiological components contributing to these yield changes. The C 3 species showed a significant increase in unthreshed grain yield of ~50% with the glacial to postglacial increase in C a , which matched the stimulation of photosynthesis, suggesting that increases in photosynthesis are directly translated into yield at subambient levels of C a . Increased yield was controlled by a higher rate of tillering, leading to a larger number of tillers bearing fertile spikes, and increases in seed number and size. The C 4 species showed smaller, but significant, increases in grain yield of 10-15%, arising from larger seed numbers and sizes. Photosynthesis was enhanced by C a in only one C 4 species and the effect diminished during development, suggesting that an indirect mechanism mediated by plant water relations could also be playing a role in the yield increase. Interestingly, the C 4 species at glacial C a showed some evidence that photosynthetic capacity was upregulated to enhance carbon capture. Development under glacial C a also impacted negatively on the subsequent germination and viability of seeds. These results suggest that the grain production of both C 3 and C 4 crop progenitors was limited by the atmospheric conditions of the last glacial period, with important implications for the origins of agriculture. © 2016 John Wiley & Sons Ltd.

  1. Estimating national crop yield potential and the relevance of weather data sources

    NASA Astrophysics Data System (ADS)

    Van Wart, Justin

    2011-12-01

    To determine where, when, and how to increase yields, researchers often analyze the yield gap (Yg), the difference between actual current farm yields and crop yield potential. Crop yield potential (Yp) is the yield of a crop cultivar grown under specific management limited only by temperature and solar radiation and also by precipitation for water limited yield potential (Yw). Yp and Yw are critical components of Yg estimations, but are very difficult to quantify, especially at larger scales because management data and especially daily weather data are scarce. A protocol was developed to estimate Yp and Yw at national scales using site-specific weather, soils and management data. Protocol procedures and inputs were evaluated to determine how to improve accuracy of Yp, Yw and Yg estimates. The protocol was also used to evaluate raw, site-specific and gridded weather database sources for use in simulations of Yp or Yw. The protocol was applied to estimate crop Yp in US irrigated maize and Chinese irrigated rice and Yw in US rainfed maize and German rainfed wheat. These crops and countries account for >20% of global cereal production. The results have significant implications for past and future studies of Yp, Yw and Yg. Accuracy of national long-term average Yp and Yw estimates was significantly improved if (i) > 7 years of simulations were performed for irrigated and > 15 years for rainfed sites, (ii) > 40% of nationally harvested area was within 100 km of all simulation sites, (iii) observed weather data coupled with satellite derived solar radiation data were used in simulations, and (iv) planting and harvesting dates were specified within +/- 7 days of farmers actual practices. These are much higher standards than have been applied in national estimates of Yp and Yw and this protocol is a substantial step in making such estimates more transparent, robust, and straightforward. Finally, this protocol may be a useful tool for understanding yield trends and directing research and development efforts aimed at providing for a secure and stable future food supply.

  2. Transparent ceramic garnet scintillator optimization via composition and co-doping for high-energy resolution gamma spectrometers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Beck, Patrick R.; Swanberg, Erik L.; Hunter, Steven L.

    2016-09-01

    Breakthrough energy resolution, R(662keV) <4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce), by optimizing fabrication conditions. Here we describe the dependence of scintillation light yield and energy resolution on several variables: (1) Stoichiometry, in particular Gd/Y and Ga/Al ratios which modify the bandgap energy, (2) Processing methods, including vacuum vs. oxygen sintering, and (3) Trace co-dopants that influence the formation of Ce4+ and modify the intra-bandgap trap distribution. To learn about how chemical composition influences the scintillation properties of transparent ceramic garnet scintillators, we have measured: scintillation decay component amplitudes; intensity and duration of afterglow; thermoluminescence glow curve peak positions and amplitudes; integrated light yield; light yield non-proportionality, as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI); and energy resolution for gamma spectroscopy. Optimized GYGAG(Ce) provides R(662 keV) =3.0%, for 0.05 cm3 size ceramics with Silicon photodiode readout, and R(662 keV) =4.6%, at 2 in3 size with PMT readout.

  3. Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons

    DOE PAGES

    Fry, Juliane L.; Draper, Danielle C.; Barsanti, Kelley C.; ...

    2014-09-17

    Here, the secondary organic aerosol (SOA) mass yields from NO 3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m 3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at massmore » loading of 10 μg m –3, suggesting that model mechanisms that treat all NO 3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.« less

  4. Optimization of focused ultrasonic extraction of propellant components determined by gas chromatography/mass spectrometry.

    PubMed

    Fryš, Ondřej; Česla, Petr; Bajerová, Petra; Adam, Martin; Ventura, Karel

    2012-09-15

    A method for focused ultrasonic extraction of nitroglycerin, triphenyl amine and acetyl tributyl citrate presented in double-base propellant samples following by the gas chromatography/mass spectrometry analysis was developed. A face-centered central composite design of the experiments and response surface modeling was used for optimization of the time, amplitude and sample amount. The dichloromethane was used as the extractant solvent. The optimal extraction conditions with respect to the maximum yield of the lowest abundant compound triphenyl amine were found at the 20 min extraction time, 35% amplitude of ultrasonic waves and 2.5 g of the propellant sample. The results obtained under optimal conditions were compared with the results achieved with validated Soxhlet extraction method, which is typically used for isolation and pre-concentration of compounds from the samples of explosives. The extraction yields for acetyl tributyl citrate using both extraction methods were comparable; however, the yield of ultrasonic extraction of nitroglycerin and triphenyl amine was lower than using Soxhlet extraction. The possible sources of different extraction yields are estimated and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Heavy ion mutagenesis combined with triclosan screening provides a new strategy for improving the arachidonic acid yield in Mortierella alpina.

    PubMed

    Zhang, Huidan; Lu, Dong; Li, Xin; Feng, Yingang; Cui, Qiu; Song, Xiaojin

    2018-05-02

    Arachidonic acid (ARA), which is a ω-6 polyunsaturated fatty acid, has a wide range of biological activities and is an essential component of cellular membranes in some human tissues. Mortierella alpina is the best strain for industrial production of ARA. To increase its yield of arachidonic acid, heavy ion beam irradiation mutagenesis of Mortierella alpina was carried out in combination with triclosan and octyl gallate treatment. The obtained mutant strain F-23 ultimately achieved an ARA yield of 5.26 g L - 1 , which is 3.24 times higher than that of the wild-type strain. In addition, quantitative real-time PCR confirmed that the expression levels of fatty acid synthase (FAS), Δ5-desaturase, Δ6-desaturase, and Δ9-desaturase were all significantly up-regulated in the mutant F-23 strain, especially Δ6- and Δ9-desaturase, which were up-regulated 3- and 2-fold, respectively. This study confirmed a feasible mutagenesis breeding strategy for improving ARA production and provided a mutant of Mortierella alpina with high ARA yield.

  6. HVM die yield improvement as a function of DRSEM ADC

    NASA Astrophysics Data System (ADS)

    Maheshwary, Sonu; Haas, Terry; McGarvey, Steve

    2010-03-01

    Given the current manufacturing technology roadmap and the competitiveness of the global semiconductor manufacturing environment in conjunction with the semiconductor manufacturing market dynamics, the market place continues to demand a reduced die manufacturing cost. This continuous pressure on lowering die cost in turn drives an aggressive yield learning curve, a key component of which is defect reduction of manufacturing induced anomalies. In order to meet and even exceed line and die yield targets there is a need to revamp defect classification strategies and place a greater emphasize on increasing the accuracy and purity of the Defect Review Scanning Electron Microscope (DRSEM) Automated Defect Classification (ADC) results while placing less emphasis on the ADC results of patterned/un-patterned wafer inspection systems. The increased emphasis on DRSEM ADC results allows for a high degree of automation and consistency in the classification data and eliminates variance induced by the manufacturing staff. This paper examines the use of SEM based Auto Defect Classification in a high volume manufacturing environment as a key driver in the reduction of defect limited yields.

  7. Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic Hydrocarbons

    PubMed Central

    2014-01-01

    The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed. PMID:25229208

  8. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network.

    PubMed

    Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi

    2017-03-01

    Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency.

    PubMed

    Kandel, Tanka P; Sutaryo, Sutaryo; Møller, Henrik B; Jørgensen, Uffe; Lærke, Poul E

    2013-02-01

    This study examined the influence of harvest time on biomass yield, dry matter partitioning, biochemical composition and biological methane potential of reed canary grass harvested twice a month in one-cut (OC) management. The regrowth of biomass harvested in summer was also harvested in autumn as a two-cut management with (TC-F) or without (TC-U) fertilization after summer harvest. The specific methane yields decreased significantly with crop maturity that ranged from 384 to 315 and from 412 to 283 NL (normal litre) (kgVS)(-1) for leaf and stem, respectively. Approximately 45% more methane was produced by the TC-F management (5430Nm(3)ha(-1)) as by the OC management (3735Nm(3)ha(-1)). Specific methane yield was moderately correlated with the concentrations of fibre components in the biomass. Larger quantity of biogas produced at the beginning of the biogas assay from early harvested biomass was to some extent off-set by lower concentration of methane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Alfalfa (Medicago sativa L.) seed yield in relation to phosphorus fertilization and honeybee pollination.

    PubMed

    Al-Kahtani, Saad Naser; Taha, El-Kazafy Abdou; Al-Abdulsalam, Mohammed

    2017-07-01

    This investigation was conducted at the Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa, Saudi Arabia, during the alfalfa growing season in 2014. The study aimed to evaluate the impact of phosphorus fertilization and honeybee pollination on alfalfa seed production. The experiment was divided into 9 treatments of open pollination, honeybee pollination, and non-pollination with three different levels (0, 300 or 600 kg P 2 O 5 /ha/year) of triple super phosphate. All vegetative growth attributes of Hassawi alfalfa were significantly higher in the non-insect pollination plots, while the yield and yield component traits were significantly higher with either open pollination or honeybee pollination in parallel with the increasing level of phosphorus fertilizer up to 600 kg P 2 O 5 /ha/year in light salt-affected loamy sand soils. There was no seed yield in Hassawi alfalfa without insect pollination. Therefore, placing honeybee colonies near the fields of Hassawi alfalfa and adding 600 kg P 2 O 5 /ha/year can increase seed production.

  11. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating.

    PubMed

    Duan, Dengle; Wang, Yunpu; Dai, Leilei; Ruan, Roger; Zhao, Yunfeng; Fan, Liangliang; Tayier, Maimaitiaili; Liu, Yuhuan

    2017-10-01

    Microwave-assisted fast co-pyrolysis of lignin and polypropylene for bio-oil production was conducted using the ex-situ catalysis technology. Effects of catalytic temperature, feedstock/catalyst ratio, and lignin/polypropylene ratio on product distribution and chemical components of bio-oil were investigated. The catalytic temperature of 250°C was the most conducive to bio-oil production in terms of the yield. The bio-oil yield decreased with the addition of catalyst during ex-situ catalytic co-pyrolysis. When the feedstock/catalyst ratio was 2:1, the minimum char and coke values were 21.22% and 1.54%, respectively. The proportion of cycloalkanes decreased and the aromatics increased with the increasing catalyst loading. A positive synergistic effect was observed between lignin and polypropylene. The char yield dramatically deceased and the bio-oil yield improved during co-pyrolysis compared with those during lignin pyrolysis alone. The proportion of oxygenates dramatically and the minimum value of 6.74% was obtained when the lignin/polypropylene ratio was 1:1. Copyright © 2017. Published by Elsevier Ltd.

  12. Supercritical fluid extraction of ginger (Zingiber Officinale Var. Amarum) : Global yield and composition study

    NASA Astrophysics Data System (ADS)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-11-01

    An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,

  13. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates.

    PubMed

    Gairola, Krishan; Smirnova, Irina

    2012-11-01

    This work explores hydrothermal d-xylose and hemicellulose to furfural conversion coupled with simultaneous furfural extraction by SC-CO(2) and the underlying reaction pathway. A maximum furfural yield of 68% was attained from d-xylose at 230°C and 12MPa. Additionally missing kinetic data for l-arabinose to furfural conversion was provided, showing close similarity to d-xylose. Furfural yields from straw and brewery waste hydrolysates were significantly lower than those obtained from model compounds, indicating side reactions with other hydrolysate components. Simultaneous furfural extraction by SC-CO(2) significantly increased extraction yield in all cases. The results indicate that furfural reacts with intermediates of pentose dehydration. The proposed processing route can be well integrated into existing lignocellulose biorefinery concepts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Influence of different extraction methods on the yield and linalool content of the extracts of Eugenia uniflora L.

    PubMed

    Galhiane, Mário S; Rissato, Sandra R; Chierice, Gilberto O; Almeida, Marcos V; Silva, Letícia C

    2006-09-15

    This work has been developed using a sylvestral fruit tree, native to the Brazilian forest, the Eugenia uniflora L., one of the Mirtaceae family. The main goal of the analytical study was focused on extraction methods themselves. The method development pointed to the Clevenger extraction as the best yield in relation to SFE and Soxhlet. The SFE method presented a good yield but showed a big amount of components in the final extract, demonstrating low selectivity. The essential oil extracted was analyzed by GC/FID showing a large range of polarity and boiling point compounds, where linalool, a widely used compound, was identified. Furthermore, an analytical solid phase extraction method was used to clean it up and obtain separated classes of compounds that were fractionated and studied by GC/FID and GC/MS.

  15. Acid--chlorite pretreatment and liquefaction of cornstalk in hot-compressed water for bio-oil production.

    PubMed

    Liu, Hua-Min; Feng, Bing; Sun, Run-Cang

    2011-10-12

    In this study, cornstalk was pretreated by an acid-chlorite delignification procedure to enhance the conversion of cornstalk to bio-oil in hot-compressed water liquefaction. The effects of the pretreatment conditions on the compositional and structural changes of the cornstalk and bio-oil yield were investigated. It was found that acid-chlorite pretreatment changed the main components and physical structures of cornstalk and effectively enhanced the bio-oil yield. Shorter residence time favored production of the total bio-oil products, whereas longer time led to cracking of the products. A high water loading was found to be favorable for high yields of total bio-oil and water-soluble oil. GC-MS analysis showed that the water-soluble oil and heavy oil were the complicated products of C(5-10) and C(8-11) organic compounds.

  16. Integration of statistical and physiological analyses of adaptation of near-isogenic barley lines.

    PubMed

    Romagosa, I; Fox, P N; García Del Moral, L F; Ramos, J M; García Del Moral, B; Roca de Togores, F; Molina-Cano, J L

    1993-08-01

    Seven near-isogenic barley lines, differing for three independent mutant genes, were grown in 15 environments in Spain. Genotype x environment interaction (G x E) for grain yield was examined with the Additive Main Effects and Multiplicative interaction (AMMI) model. The results of this statistical analysis of multilocation yield-data were compared with a morpho-physiological characterization of the lines at two sites (Molina-Cano et al. 1990). The first two principal component axes from the AMMI analysis were strongly associated with the morpho-physiological characters. The independent but parallel discrimination among genotypes reflects genetic differences and highlights the power of the AMMI analysis as a tool to investigate G x E. Characters which appear to be positively associated with yield in the germplasm under study could be identified for some environments.

  17. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones

    PubMed Central

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S.; Jha, Shailendra K.; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S.; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg–1; zinc: 5.41 to 30.85 mg kg–1; manganese: 3.30 to17.73 mg kg–1; copper: 0.53 to 5.48 mg kg–1) and grain yield (826.6 to 5413 kg ha–1). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield. PMID:26406470

  18. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus.

    PubMed

    Schiessl, Sarah; Iniguez-Luy, Federico; Qian, Wei; Snowdon, Rod J

    2015-09-29

    Flowering time, plant height and seed yield are strongly influenced by climatic and day-length adaptation in crop plants. To investigate these traits under highly diverse field conditions in the important oilseed crop Brassica napus, we performed a genome-wide association study using data from diverse agroecological environments spanning three continents. A total of 158 European winter-type B.napus inbred lines were genotyped with 21,623 unique, single-locus single-nucleotide polymorphism (SNP) markers using the Brassica 60 K-SNP Illumina® Infinium consortium array. Phenotypic associations were calculated in the panel over the years 2010-2012 for flowering time, plant height and seed yield in 5 highly diverse locations in Germany, China and Chile, adding up to 11 diverse environments in total. We identified 101 genome regions associating with the onset of flowering, 69 with plant height, 36 with seed yield and 68 cross-trait regions with potential adaptive value. Within these regions, B.napus orthologs for a number of candidate adaptation genes were detected, including central circadian clock components like CIRCADIAN CLOCK- ASSOCIATED 1 (Bna.CCA1) and the important flowering-time regulators FLOWERING LOCUS T (Bna.FT) and FRUITFUL (Bna.FUL). Gene ontology (GO) enrichment analysis of candidate regions suggested that selection of genes involved in post-transcriptional and epigenetic regulation of flowering time may play a potential role in adaptation of B. napus to highly divergent environments. The classical flowering time regulators Bna.FLC and Bna.CO were not found among the candidate regions, although both show functional variation. Allelic effects were additive for plant height and yield, but not for flowering time. The scarcity of positive minor alleles for yield in this breeding pool points to a lack of diversity for adaptation that could restrict yield gain in the face of environmental change. Our study provides a valuable framework to further improve the adaptability and yield stability of this recent allopolyploid crop under changing environments. The results suggest that flowering time regulation within an adapted B. napus breeding pool is driven by a high number of small modulating processes rather than major transcription factors like Bna.CO. In contrast, yield regulation appears highly parallel, therefore yield could be increased by pyramiding positively associated haplotypes.

  19. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    PubMed

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield.

  20. Variation in the volatile terpenoids of two industrially important basil (Ocimum basilicum L.) cultivars during plant ontogeny in two different cropping seasons from India.

    PubMed

    Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit

    2012-02-01

    Two Ocimum basilicum cultivars, 'Vikarsudha' and 'CIM-Saumya', grown in the Kumaon region of western Himalaya were evaluated for their essential oil yield and composition at different stages of plant growth during two distinct cropping seasons (spring-summer and rain-autumn). The highest yield of essential oil was obtained at full bloom stage in both cultivars in both cropping seasons. The essential oils obtained from different stages in two cropping seasons were analysed by capillary gas chromatography with flame ionisation detection, and gas chromatography-mass spectrometry. The major component of cultivar 'Vikarsudha' was methyl chavicol (84.3-94.3%), while for cultivar 'CIM-Saumya' the main components were methyl chavicol (62.5-77.6%) and linalool (14.4-34.1%). This study clearly indicated that cultivar, cropping season, plant ontogeny and plant part had significant effects on the yield and quality of the essential oil of O. basilicum. Further, the amount of methyl chavicol in the cultivars grown in this region was higher than in cultivars from other parts of India. Copyright © 2011 Society of Chemical Industry.

  1. Recent intensification of the Walker Circulation and the role of natural sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Allen, R.

    2017-12-01

    In a warming world, the tropical atmospheric overturning circulation-including the Walker Circulation-is expected to weaken due to thermodynamic constraints. Tropical precipitation increases at a slower rate than water vapor-which increases according to Clausius Clapeyron scaling, assuming constant relative humidity-so the tropical overturning circulation slows down. This is supported by both observations and model simulations, which show a slowdown of the Walker Circulation over the 20th century. Model projections suggest a further weakening of the Walker Circulation in the 21st century. However, over the last several decades (1979-2014), multiple observations reveal a robust strengthening of the Walker Circulation. Although coupled CMIP5 simulations are unable to reproduce this strengthening, AMIP simulations-which feature the observed evolution of SSTs-are generally able to reproduce it. Assuming the ensemble mean sea surface temperatures (SSTs) from historical CMIP5 simulations accurately represent the externally forced SST response, the observed SSTs can be decomposed into a forced and an unforced component. CAM5 AMIP-type simulations driven by the unforced component of observed SSTs reproduce the observed strengthening of the Walker Circulation. Corresponding simulations driven by the forced component of observed SSTs yield a weaker Walker Circulation. These results are consistent with the zonal tropical SST gradient and the Bjerknes feedback. The unforced component of SSTs yield an increased SST gradient over tropical Pacific (a La Nina like pattern) and strengthening of the tropical trade winds, which constitute the lower branch of the Walker Circulation. The forced component of SSTs yields a zonally uniform tropical Pacific SST warming and a marginal weakening of the Walker Circulation. Our results suggest significant modulation of the tropical Walker Circulation by natural SST variability over the last several decades.

  2. Highly efficient one-pot three-component synthesis of naphthopyran derivatives in water catalyzed by hydroxyapatite

    EPA Science Inventory

    An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...

  3. Using pheromones in the management of bark beetle outbreaks

    Treesearch

    Alf Bakke

    1991-01-01

    Identification of aggregation pheromones and field experiments using synthetic components have given scientists a better understanding of the behavior of many bark beetles. They have also yielded more effective weapons with which to control outbreaks of aggressive pest species. Synthetic pheromone components are commercially available for control of many species (...

  4. Comparing Benign and Malignant Neoplasia and DSB Induction for Low-and High-LET Radiation

    NASA Astrophysics Data System (ADS)

    Burns, Fredric; Tang, Moon-Shong Eric; Wu, Feng

    One-and 2-stage models based on DNA double strand breaks (DSBs) have been developed to describe the dose and LET dependence of cancer induction in rat skin exposed to the Bragg plateau of several ion beams or electron radiation. Data are presented showing that carcinomas (malignant) and fibromas (benign) are induced differently by low and high LET radiation. DSBs are subject to complex repair processes, including homologous and non-homologous end joining, that slowly eliminate broken chromosome ends but at the expense of elevating genomic instability that increases the risk of neoplasia. In this formulation the initial molecular lesion in radiation carcinogenesis is assumed to be a DNA double strand break (DSB). The 2-event model assumes that pairs of DSBs join to create cellular genomic instability that eventually progresses to malignancy. The 1-event model assumes that joining is insignificant but that unrepaired DSBs remain and are sufficiently destabilizing to produce low-grade neoplasias. The respective expected relationships between neoplasia yield (Y), radiation dose (D) and LET (L) are: Y(D) = CLD + BD2 (A) for 2-events and Y(D) = CLD (B) for 1-event. Respective B and C values have been evaluated empirically for carcinomas, fibromas and DSBs, the latter via the -H2Ax technique in surrogate keratinocytes, for several types of radiations, including, 40Ar ions, 56Fe ions, 20Ne ions, protons, electrons and x-rays. Fibromas outnumber carcinomas by about 6:1 but are more sensitive than carcinomas to the cytolethal effect of the radiations. The 2-event model agrees well with carcinoma yields in rat skin but fails to model fibromas correctly. Instead the fibroma yields best fitted with the 1-event model for the high LET ion radiations, but at very low LET (electron radiation), an empirical D3 component becomes apparent which is not currently incorporated into the theoretical model. At higher LET values, the D3 component was not detected. The overall results are summarized as follows: 1) DSBs predict carcinoma yields in regard to dose and LET in conformity to Equation A, 2) fibroma yields for 40Ar and 20Ne ions conform to Equation B, i.e. yield proportionality to D and L and 3) the positive slope of the fibroma yield to electron radiation is a third order discrepancy suggesting a more complicated response that has yet to be incorporated into the model. The results provide encouragement that once calibrated for humans, a short-term test of DSB yield might be capable of predicting cancer risks for a variety of space radiation exposure scenarios.

  5. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    NASA Astrophysics Data System (ADS)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of vulnerability analysis. They also contribute to considerations of adaptation, focusing attention on adapting to increased variability in yield rather than just reductions in yield. For example, in the face of increased variability or reduced reliability, hedging and risk spreading strategies may be more important than technological innovations such as drought-resistant crops or other optimization strategies. Our findings also have implications for the choice and application of climate extreme indices, demands on models used to project climate change and the development of next generation integrated assessment models (IAM) that incorporate the agricultural sector, and especially adaption within that sector, in energy and broader more general markets.

  6. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield

    PubMed Central

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-01-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1–T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20–30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. PMID:26220082

  7. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield.

    PubMed

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-11-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1-T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20-30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit.more » Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.« less

  9. Domestication and Crop Physiology: Roots of Green-Revolution Wheat

    PubMed Central

    Waines, J. Giles; Ehdaie, Bahman

    2007-01-01

    Background and Aims Most plant scientists, in contrast to animal scientists, study only half the organism, namely above-ground stems, leaves, flowers and fruits, and neglect below-ground roots. Yet all acknowledge roots are important for anchorage, water and nutrient uptake, and presumably components of yield. This paper investigates the relationship between domestication, and the root systems of landraces, and the parents of early, mid- and late green-revolution bread wheat cultivars. It compares the root system of bread wheat and ‘Veery’-type wheat containing the 1RS translocation from rye. Methods Wheat germplasm was grown in large pots in sand culture in replicated experiments. This allowed roots to be washed free to study root characters. Key Results The three bread wheat parents of early green-revolution wheats have root biomass less than two-thirds the mean of some landrace wheats. Crossing early green-revolution wheat to an F2 of ‘Norin 10’ and ‘Brevor’, further reduced root biomass in mid-generation semi-dwarf and dwarf wheats. Later-generation semi-dwarf wheats show genetic variation for root biomass, but some exhibit further reduction in root size. This is so for some California and UK wheats. The wheat–rye translocation in ‘Kavkaz’ for the short arm of chromosome 1 (1RS) increased root biomass and branching in cultivars that contained it. Conclusions Root size of modern cultivars is small compared with that of landraces. Their root system may be too small for optimum uptake of water and nutrients and maximum grain yield. Optimum root size for grain yield has not been investigated in wheat or most crop plants. Use of 1RS and similar alien translocations may increase root biomass and grain yield significantly in irrigated and rain-fed conditions. Root characters may be integrated into components of yield analysis in wheat. Plant breeders may need to select directly for root characters. PMID:17940075

  10. Design and development of a 3D printed UAV

    NASA Astrophysics Data System (ADS)

    Banfield, Christopher P.

    The purpose of this project was to investigate the viability and practicality of using a desktop 3D printer to fabricate small UAV airframes. To that end, ASTM based bending and tensile tests were conducted to assess the effects of print orientation, infill density, infill pattern, and infill orientation on the structural properties of 3D printed components. A Vernier Structures & Materials Tester was used to record force and displacement data from which stress-strain diagrams, yielding strength, maximum strength, and the moduli of elasticity were found. Results indicated that print orientation and infill density had the greatest impact on strength. In bending, vertically printed test pieces showed the greatest strength, with yield strengths 1.6 - 10.4% higher than conventionally extruded ABS's 64.0MPa average flexural strength. In contrast, the horizontally printed specimens showed yield strengths reduced anywhere from 17.0 - 34.9%. The tensile test specimens also exhibited reduced strength relative to ABS's average tensile yield strength of 40.7MPa. Test pieces with 20% infill density saw strength reductions anywhere from 47.8 - 55.6%, and those with 50% saw strength reductions from 33.6 - 47.8%. Only a single test piece with 100%, 45° crisscross infill achieved tensile performance on par with that of conventionally fabricated ABS. Its yield strength was 43MPa, a positive strength difference of 5.5%. As a supplement to the tensile and bending tests, a prototype printable airplane, the Phoebe, was designed. Its development process in turn provided the opportunity to develop techniques for printing various aircraft components such as fuselage sections, airfoils, and live-in hinges. Initial results seem promising, with the prototype's first production run requiring 19 hours of print time and an additional 4 - 5 hours of assembly time. The maiden flight test demonstrated that the design was stable and controllable in sustained flight.

  11. The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use

    NASA Astrophysics Data System (ADS)

    Souty, F.; Brunelle, T.; Dumas, P.; Dorin, B.; Ciais, P.; Crassous, R.; Müller, C.; Bondeau, A.

    2012-02-01

    Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. The land-use modelling approach described in this paper entails several advantages. Firstly, it makes it possible to explore interactions among different types of biomass demand for food and animal feed, in a consistent approach, including indirect effects on land-use change resulting from international trade. Secondly, yield variations induced by the possible expansion of croplands on less suitable marginal lands are modelled by using regional land area distributions of potential yields, and a calculated boundary between intensive and extensive production. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.

  12. EnviroAtlas - Cultivated biological nitrogen fixation in agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains data on the mean cultivated biological nitrogen fixation (C-BNF) in cultivated crop and hay/pasture lands per 12-digit Hydrologic Unit (HUC) in 2006. Nitrogen (N) inputs from the cultivation of legumes, which possess a symbiotic relationship with N-fixing bacteria, were calculated with a recently developed model relating county-level yields of various leguminous crops with BNF rates. We accessed county-level data on annual crop yields for soybeans (Glycine max L.), alfalfa (Medicago sativa L.), peanuts (Arachis hypogaea L.), various dry beans (Phaseolus, Cicer, and Lens spp.), and dry peas (Pisum spp.) for 2006 from the USDA Census of Agriculture (http://www.agcensus.usda.gov/index.php). We estimated the yield of the non-alfalfa leguminous component of hay as 32% of the yield of total non-alfalfa hay (http://www.agcensus.usda.gov/index.php). Annual rates of C-BNF by crop type were calculated using a model that relates yield to C-BNF. We assume yield data reflect differences in soil properties, water availability, temperature, and other local and regional factors that can influence root nodulation and rate of N fixation. We distributed county-specific, C-BNF rates to cultivated crop and hay/pasture lands delineated in the 2006 National Land Cover Database (30 x 30 m pixels) within the corresponding county. C-BNF data described here represent an average input to a typical agricultural land type within a county, i.e., they are not

  13. Short-term complete submergence of rice at the tillering stage increases yield.

    PubMed

    Zhang, Yajie; Wang, Zhensheng; Li, Lei; Zhou, Qun; Xiao, Yao; Wei, Xing; Zhou, Mingyao

    2015-01-01

    Flooding is a major threat to agricultural production. Most studies have focused on the lower water storage limit in rice fields, whereas few studies have examined the upper water storage limit. This study aimed to explore the effect of waterlogging at the rice tillering stage on rice growth and yield. The early-ripening late japonica variety Yangjing 4227 was selected for this study. The treatments included different submergence depths (submergence depth/plant height: 1/2 (waist submergence), 2/3 (neck submergence), and 1/1 (complete submergence)) and durations (1, 3, and 5 d). The control group was treated with the conventional alternation of drying and wetting. The effects of waterlogging at the tillering stage on root characteristics, dry matter production, nitrogen and phosphorus accumulation, yield, yield components, and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene expression were explored. Compared with the control group, the 1/1 group showed significant increases in yield, seed-setting rate, photosynthetically efficient leaf area, and OS-ACS3 gene expression after 1 d of submergence. The grain number per panicle, dry weight of the aboveground and belowground parts, and number of adventitious roots also increased. Correlation analysis revealed a significant positive correlation between the panicle number and nitrogen content; however, no significant correlation was found for phosphorus content. If a decrease in rice yield of less than 10% is acceptable, half, 2/3, and complete submergence of the plants can be performed at the tillering stage for 1-3 d; this treatment will increase the space available for rice field water management/control and will improve rainfall resource utilization.

  14. Retail yield and fabrication times for veal as influenced by purchasing options and merchandising styles.

    PubMed

    McNeill, M S; Griffin, D B; Dockerty, T R; Walter, J P; Johnson, H K; Savell, J W

    1998-06-01

    Twenty-nine selected styles of subprimals or sections of veal were obtained from a commercial facility to assist in the development of a support program for retailers. They were fabricated into bone-in or boneless retail cuts and associated components by trained meat cutters. Each style selected (n = 6) was used to generate mean retail yields and labor requirements, which were calculated from wholesale and retail weights and processing times. Means and standard errors for veal ribs consisting of five different styles (n = 30) concluded that style #2, 7-rib 4 (10 cm) x 4 (10 cm), had the lowest percentage of total retail yield (P < .05) owing to the greatest percentage of bone. Furthermore, rib style #2 required the longest total processing time (P < .05). Rib styles #3, 7-rib chop-ready, and #5, 6-rib chop ready, yielded the greatest percentage of total retail yield and also had the shortest total processing time (P < .05). Within veal loins, style #2, 4 (10 cm) x 4 (10 cm) loin kidney fat in, had the greatest percentage fat (P < .05). Loin styles #2 and #3, 4 (10 cm) x 4 (10 cm) loin special trimmed, generated more lean and fat trimmings and bone, resulting in lower percentage of total retail yields than loin style #1, 0 (0 cm) x 1 (2.5 cm) loin special trimmed (P < .05). Results indicated that bone-in subprimals and sections required more processing time if fabricated into a boneless end point. In addition, as the number of different retail cuts increased, processing times also increased.

  15. Supplementation with Ca salts of soybean oil interacts with concentrate level in grazing dairy cows: milk production and milk composition.

    PubMed

    Macedo, Fernanda Lopes; de Souza, Jonas; Batistel, Fernanda; Chagas, Lucas Jado; Santos, Flávio Augusto Portela

    2016-12-01

    In this study, we investigated the associative effects of concentrate levels and Ca salts of soybean oil (CSSO) supplementation on milk production, milk composition, and milk fatty acids of mid-lactation dairy cows grazing on tropical pasture. Twenty-four Jersey × Holstein cows were used in a randomized block design and assigned to four treatments arranged in a 2 × 2 factorial design. Factors evaluated were concentrate levels (low, 3 kg/day vs. high, 7 kg/day of concentrate) and CSSO supplementation (without CSSO vs. with 250 g CSSO cow/day). All cows grazed on elephant grass (Pennisetum purpureum cv. Cameroon) and received the supplemental treatments for a 90-day period. Interactions between concentrate level and CSSO were detected for milk yield, milk yield components, energy-corrected milk (ECM) and 3.5 % fat-corrected milk (FCM). Milk yield increased when CSSO was fed in a low concentrate level, while it decreased milk production in a high concentrate level. Yields of fat, protein, lactose, 3.5 % FCM, and ECM were not affected with CSSO in the low concentrate, but reduced in the high concentrate level. CSSO increased proportions of monounsaturated milk FA, C18:2 trans-10 cis-12, and polyunsaturated FA, and reduced proportions of saturated milk FA in milk. In conclusion, feeding the high level of concentrate was an effective strategy to improve milk yield and solid production. CSSO supplementation increased milk production when fed at low concentrate level but did not affect yield of solids.

  16. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.

    PubMed

    Gunaseelan, Victor Nallathambi

    2016-03-01

    In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work. © The Author(s) 2016.

  17. Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.).

    PubMed

    Zhou, Yong; Tao, Yajun; Yuan, Yuan; Zhang, Yanzhou; Miao, Jun; Zhang, Ron; Yi, Chuandeng; Gong, Zhiyun; Yang, Zefeng; Liang, Guohua

    2018-03-01

    A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.

  18. Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology.

    PubMed

    Xie, Quan; Li, Na; Yang, Yang; Lv, Yulong; Yao, Hongni; Wei, Rong; Sparkes, Debbie L; Ma, Zhengqiang

    2018-05-01

    Transformation from q to Q during wheat domestication functioned outside the boundary of threshability to increase yield, grains m -2 , grain weight and roundness, but to reduce grains per spike/spikelet. Mutation of the Q gene, well-known affecting wheat spike structure, represents a key domestication step in the formation of today's free-threshing, economically important wheats. In a previous study, multiple yield components and spike characteristics were associated with the Q gene interval in the bread wheat 'Forno' × European spelt 'Oberkulmer' recombinant inbred line population. Here, we reported that this interval was also associated with grain yield, grains m -2 , grain morphology, and spike dry weight at anthesis. To clarify the roles of Q in agronomic trait performance, a functional marker for the Q gene was developed. Analysis of allelic effects showed that the bread wheat Q allele conferred free-threshing habit, soft glumes, and short and compact spikes compared with q. In addition, the Q allele contributed to higher grain yield, more grains m -2 , and higher thousand grain weight, whereas q contributed to more grains per spike/spikelet likely resulting from increased preanthesis spike growth. For grain morphology, the Q allele was associated with reduced ratio of grain length to height, indicating a rounder grain. These results are supported by analysis of four Q mutant lines in the Chinese Spring background. Therefore, the transition from q to Q during wheat domestication had profound effects on grain yield and grain shape evolution as well, being a consequence of pleiotropy.

  19. Projecting climate change impacts on the stability of productivities of maize and soybean in terms of probability of concurrent failure

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Sakurai, G.; Iizumi, T.

    2012-12-01

    The globalization of the trade of food commodities has arranged agricultural production areas in the world. Current main production areas of maize and soybean, which are major cereal crops for human food and animal diet, are localized in the United States, China and Brazil. The amounts of production of maize and soybean from these three countries reached 70% and 74% of total production in the world in 2009, respectively. These three countries are hubs for the world food supply network. Simultaneous external disturbances to the localized hubs can make the network system unstable. Here, we projected the changes in stability of the productivities of maize and soybean under climate change. We used a process-based model for evaluating crop yield at a large scale for maize and soybean. The parameters are determined based on the historical agricultural statistics issued by administrative agencies during a period of 1981 to 2006 and a reanalysis data JRA25 provided by Japan Meteorological Agency. We used the climate change scenarios from outputs of MIROC5.0 simulations. We projected the time changes in maize and soybean yields of three countries under four climate change scenarios: RCP 2.6, 4.5, 6.0 and 8.5 for a period of 2010 to 2070. The significant declining trend of maize yield with time was projected in RCP 8.5 for all countries, while the yield appeared to decrease after 2050 in other RCP scenarios. The extents to which maize yield decrease in 2060s compared to the average over 1980 to 2006 were projected to be about 20% for the United States, 10% for Brazil and China in RCP 2.6, 4.5 and 6.0; 30% for the United States and Brazil, 40% for China in RCP 8.5. On the other hand, the projected changes in soybean yield were complicated. The projected extent to which soybean yield decrease in 2060s compared to the average over 1980 to 2006 was about 30% for the United States and Brazil and 20% for China in RCP 2.6. In RCP 4.5 and 6.0, the yield was projected to be constant or slightly increase compared to the average over 1980 to 2006 in Brazil and China, while the yield decrease by 20% in the United States. Yields of all the countries were projected to decrease up to 50% in RCP 8.5. We estimated the probability of concurrent failure, which is defined as function of the extent to which yields of three countries at a year decreased compared to the average yield over the past three years. We applied copula to measure the probability, which describe the relationship among multivariate probability distribution functions. For maize, the probability was projected to significantly increase in RCP 2.6 and 8.5, while that was projected to significantly increase only in RCP8.5 for soybean. The change in the probability was attributed to the increase of yearly yield variation and decreasing trend of yield over time. We extracted the trend component due to the improvements on agricultural technologies, therefore, the yearly variation and time trend in yield examined here can be attributed to climate change. From the sensitivity analyses, we found that the time trends in yields for maize and soybean were brought about mainly by the increase trend of mean temperature during the growing season.

  20. A Model of Equilibrium Conditions of Roof Rock Mass Giving Consideration to the Yielding Capacity of Powered Supports

    NASA Astrophysics Data System (ADS)

    Jaszczuk, Marek; Pawlikowski, Arkadiusz

    2017-12-01

    The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support units giving consideration to the load of the caving shield, a model of support unit was used that allows for unequivocal determination of the yielding capacity of the support with consideration given to the height of the unit in use and the change in the inclination of the canopy resulting from the displacement of the roof of the longwall. The yielding capacity of the support unit and its point of application on the canopy was determined using the method of units which allows for the internal forces to be manifested. The weight of the rock mass depends on the geological and mining conditions, for which the shape and dimensions of the rock mass affecting the support unit are determined. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. This required the specification of the volume of the fallen rocks that affect the unit of powered roof supports (Fig. 2). To determine the support of the roof rock mass by the coal seam, experience of the Australian mining industry was used. Experiments regarding the strength properties of coal have exhibited that vertical deformation, at which the highest seam reaction occurs while supporting the roof rock mass, amounts to 0.5% of the longwall's height. The measure of the width of the contact area between the rock mass and the seam is the width of the additional uncovering of the face roof due to spalling of seam topcorners da (Fig. 2). With the above parameters and the value of the modulus of elasticity of coal in mind, the value of the seam's reaction may be estimated using the dependence (2). The vertical component of the goafs' reaction may be determined based on the strength characteristics of the fallen roof, the contact area of the rock mass with the fallen roof and the mean strain of the fallen roof at the area of contact. In the work by Pawlikowski (2014), a research procedure was proposed which encompasses model tests and exploitation tests of the loads exerted on the support units, aimed at the determination of the vertical component of the goaf reaction (Fig. 5). Based on duty cycles of powered roof support units, a mean value of the indicator of contact stiffness between the roof rock mass and the rocks constituting the caving is determined, assuming the linear dependence between the horizontal reaction and the heading convergence. The parameter allows for the determination of the horizontal component of the goafs' reaction in the external loading model of support units and allows for the determination of the required yielding capacity of supports, required to ensure the equilibrium of the roof rock mass. The experimentally verified model of the external loading of the units was used to conduct simulations of interactions between the KOPEX-095/17-POz support unit and the rock mass in a face characterized by the height of 1.6 m. Based on the data obtained in experiment, the variability of the yielding capacity of the support units was analyzed. A yielding capacity inclination angle of the units was determined for the registered curves (Figs. 6 and 7). At the same time, the presentation of the lines corresponding to the required yielding capacity of units and characterizing the deformability of the support units, allows for the prediction of the yielding capacity of the powered supports and the convergence of the heading in the conditions of a given face (Fig. 9).

  1. Influence of corn silage hybrid type on lactation performance by Holstein dairy cows.

    PubMed

    Akins, M S; Shaver, R D

    2014-12-01

    The primary objective of this study was to determine lactation performance by dairy cows fed nutridense (ND), dual-purpose (DP), or brown midrib (BM) corn silage hybrids at the same concentration in the diets. A secondary objective was to determine lactation performance by dairy cows fed NutriDense corn silage at a higher concentration in the diet. One hundred twenty-eight Holstein and Holstein × Jersey cows (105 ± 38 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each. Pens were then randomly assigned to 1 of 4 treatments. Three treatment total mixed rations (TMR; DP40, BM40, and ND40) contained 40% of dry matter (DM) from the respective corn silage hybrid and 20% of DM from alfalfa silage. The fourth treatment TMR had ND corn silage as the sole forage at 65% of DM (ND65). A 2-wk covariate adjustment period preceded the treatment period, with all pens receiving a TMR with equal proportions of DP40, BM40, and ND40. Following the covariate period, cows were fed their assigned treatment diets for 11 wk. nutridense corn silage had greater starch and lower neutral detergent fiber (NDF) content than DP or BM, resulting in ND40 having greater energy content (73.2% of total digestible nutrients, TDN) than DP40 or BM40 (71.9 and 71.4% TDN, respectively). Cows fed BM40 had greater milk yield than DP40, whereas ND40 tended to have greater milk yield and had greater protein and lactose yields compared with DP40. No differences in intake, component-corrected milk yields, or feed efficiency were detected between DP40, BM40, and ND40. Milk yield differences may be due to increased starch intake for ND40 and increased digestible NDF intake for BM40 compared with DP40. Intake and milk yield and composition were similar for ND40 compared with BM40, possibly due to counteracting effects of higher starch intake for ND40 and higher digestible NDF intake for BM40. Feeding ND65 reduced intake, and thus milk and component yields, compared with ND40 due to either increased ruminal starch digestibility or increased rumen fill for ND65. Nutridense corn silage was a viable alternative to both DP and BM at 40% of diet DM; however, lactation performance was reduced when nutridense corn silage was fed at 65% of DM. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Extended Hall-Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

    NASA Astrophysics Data System (ADS)

    Heo, N. H.; Heo, Y.-U.; Kwon, S. K.; Kim, N. J.; Kim, S.-J.; Lee, H.-C.

    2018-03-01

    Extended Hall-Petch relationships for yield ( σy ), cleavage ( σ_{cl} ) and intergranular fracture ( σ_{ig} ) strengths of pure iron have been established through the direct calculation of the proportional constant (k) and the estimation of the friction stress (σ0 ) . The magnitude orders of k and σ0 are generally ky < k_{cl} < k_{ig} and σ_{y0} < σ_{cl0} < σ_{ig0} , respectively. Based on the Hall-Petch relationships, micro-yielding in a bcc steel occurs at the instance that the pile-up dislocations within a specific grain showing the Schmid factor of 0.5 propagate into the neighboring grain. The initial brittle crack is formed at the instance that the flow strength exceeds the brittle fracture strength. Once the brittle crack is formed, it grows catastrophically. Due to the smallest and ky and σ_{y0} , the cleavage and the intergranular fracture occur always after micro-yielding. The {100} cleavage fracture of the steel is due to the lowest theoretical {100} cleavage strength. Due to the thermal components included in cleavage and intergranular fracture strengths, they show also the temperature and strain rate dependence observed in yield strength. The increase in susceptibility to brittle fracture with decreasing temperature and increasing strain rate is due to the increase in dislocation density which causes the high work hardening rate.

  3. Can sub-Saharan Africa feed itself?

    PubMed Central

    van Ittersum, Martin K.; van Bussel, Lenny G. J.; Wolf, Joost; Grassini, Patricio; van Wart, Justin; Guilpart, Nicolas; Claessens, Lieven; de Groot, Hugo; Wiebe, Keith; Yang, Haishun; Boogaard, Hendrik; van Oort, Pepijn A. J.; van Loon, Marloes P.; Saito, Kazuki; Adimo, Ochieng; Adjei-Nsiah, Samuel; Agali, Alhassane; Bala, Abdullahi; Chikowo, Regis; Kaizzi, Kayuki; Kouressy, Mamoutou; Makoi, Joachim H. J. R.; Ouattara, Korodjouma; Tesfaye, Kindie; Cassman, Kenneth G.

    2016-01-01

    Although global food demand is expected to increase 60% by 2050 compared with 2005/2007, the rise will be much greater in sub-Saharan Africa (SSA). Indeed, SSA is the region at greatest food security risk because by 2050 its population will increase 2.5-fold and demand for cereals approximately triple, whereas current levels of cereal consumption already depend on substantial imports. At issue is whether SSA can meet this vast increase in cereal demand without greater reliance on cereal imports or major expansion of agricultural area and associated biodiversity loss and greenhouse gas emissions. Recent studies indicate that the global increase in food demand by 2050 can be met through closing the gap between current farm yield and yield potential on existing cropland. Here, however, we estimate it will not be feasible to meet future SSA cereal demand on existing production area by yield gap closure alone. Our agronomically robust yield gap analysis for 10 countries in SSA using location-specific data and a spatial upscaling approach reveals that, in addition to yield gap closure, other more complex and uncertain components of intensification are also needed, i.e., increasing cropping intensity (the number of crops grown per 12 mo on the same field) and sustainable expansion of irrigated production area. If intensification is not successful and massive cropland land expansion is to be avoided, SSA will depend much more on imports of cereals than it does today. PMID:27956604

  4. Can sub-Saharan Africa feed itself?

    PubMed

    van Ittersum, Martin K; van Bussel, Lenny G J; Wolf, Joost; Grassini, Patricio; van Wart, Justin; Guilpart, Nicolas; Claessens, Lieven; de Groot, Hugo; Wiebe, Keith; Mason-D'Croz, Daniel; Yang, Haishun; Boogaard, Hendrik; van Oort, Pepijn A J; van Loon, Marloes P; Saito, Kazuki; Adimo, Ochieng; Adjei-Nsiah, Samuel; Agali, Alhassane; Bala, Abdullahi; Chikowo, Regis; Kaizzi, Kayuki; Kouressy, Mamoutou; Makoi, Joachim H J R; Ouattara, Korodjouma; Tesfaye, Kindie; Cassman, Kenneth G

    2016-12-27

    Although global food demand is expected to increase 60% by 2050 compared with 2005/2007, the rise will be much greater in sub-Saharan Africa (SSA). Indeed, SSA is the region at greatest food security risk because by 2050 its population will increase 2.5-fold and demand for cereals approximately triple, whereas current levels of cereal consumption already depend on substantial imports. At issue is whether SSA can meet this vast increase in cereal demand without greater reliance on cereal imports or major expansion of agricultural area and associated biodiversity loss and greenhouse gas emissions. Recent studies indicate that the global increase in food demand by 2050 can be met through closing the gap between current farm yield and yield potential on existing cropland. Here, however, we estimate it will not be feasible to meet future SSA cereal demand on existing production area by yield gap closure alone. Our agronomically robust yield gap analysis for 10 countries in SSA using location-specific data and a spatial upscaling approach reveals that, in addition to yield gap closure, other more complex and uncertain components of intensification are also needed, i.e., increasing cropping intensity (the number of crops grown per 12 mo on the same field) and sustainable expansion of irrigated production area. If intensification is not successful and massive cropland land expansion is to be avoided, SSA will depend much more on imports of cereals than it does today.

  5. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    PubMed

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  6. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans.

    PubMed

    Falkowski, Paul G; Lin, Hanzhi; Gorbunov, Maxim Y

    2017-09-26

    Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  7. Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn.

    PubMed

    Li, Y L; Niu, S Z; Dong, Y B; Cui, D Q; Wang, Y Z; Liu, Y Y; Wei, M G

    2007-06-01

    Normal maize germplasm could be used to improve the grain yield of popcorn inbreds. Our first objective was to locate genetic factors associated with trait variation and make first assessment on the efficiency of advanced backcross quantitative trait locus (AB-QTL) analysis for the identification and transfer of favorable QTL alleles for grain yield components from the dent corn inbred. A second objective was to compare the detection of QTL in the BC2F2 population with results using F(2:3) lines of the same parents. Two hundred and twenty selected BC2F2 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for six grain yield components under two environments, and genotyped by means of 170 SSR markers. Using composite interval mapping (CIM), a total of 19 significant QTL were detected. Eighteen QTL had favorable alleles contributed by the dent corn parent Dan232. Sixteen of these favorable QTL alleles were not in the same or near marker intervals with QTL for popping characteristics. Six QTL were also detected in the F(2:3) population. Improved N04 could be developed from 210 and 208 families with higher grain weight per plant and/or 100-grain weight, respectively, and 35 families with the same or higher popping expansion volume than N04. In addition, near isogenic lines containing detected QTL (QTL-NILs) for grain weight per plant and/or 100-grain weight could be obtained from 12 families. Our study demonstrated that the AB-QTL method can be applied to identify and manipulate favorable QTL alleles from normal corn inbreds and combine QTL detection and popcorn breeding efficiently.

  8. Sewage sludge used as organic manure in Moroccan sunflower culture: Effects on certain soil properties, growth and yield components.

    PubMed

    Mohamed, Bourioug; Mounia, Krouna; Aziz, Abouabdillah; Ahmed, Harraq; Rachid, Bouabid; Lotfi, Aleya

    2018-06-15

    The wastewater treatment and sludge production sectors in Morocco are recent. Considered as waste, no management strategy for sewage sludge (SS) has been implemented. Thus, its disposal definitely represents a major environmental problem since sludge is either incinerated, used as landfill or simply deposited near wastewater treatment plants. The objective of this study was to determine the effects of dehydrated SS on certain soil properties (pH, electrical conductivity (EC), Mineral nitrogen, available phosphate P 2 O 5 , and soluble potassium K 2 O), and also on growth and yield components of the sunflower (Helianthus annuus L.). An experiment was conducted using six treatment rates (0; 0 + NPK; 15; 30; 60 and 120 t ha -1 ). The results showed that soil pH was significantly affected by SS, becoming less alkaline compared to the control, while electrical conductivity increased significantly when the applied doses were above 30 t ha -1 . Also, a significant enrichment in mineral N and available phosphorus was detected in amended soil. However, no differences were found between pots having received the mineral fertilization and the SS at 15 t ha -1 . Stem height growth of the sunflower seedlings receiving SS increased significantly compared to the two controls. For both the aerial and root parts, significant increases in dry biomass accumulation were observed compared to the unamended plants. Net CO 2 assimilation (A n ) increased, while stomatal conductance (g sw ) and transpiration rates (T r ) decreased with increasing SS rates. SS application at 15 t ha -1 presented similar values of the yield components compared to plants fertilized chemically. However, grain yield (in quintals ha -1 ) was noted to be 2.4, 5 and 8 times higher in treatments receiving SS respectively at the rate of 30, 60 and 120 t ha -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  9. One-Pot, Three-Component Arylalkynyl Sulfone Synthesis

    PubMed Central

    2015-01-01

    A one-pot three-component protocol for the preparation of arylsulfonyl alkynes through the reaction of ethynyl-benziodoxolone (EBX) reagents, DABSO (DABCO·SO2), and either organomagnesium reagents or aryl iodides with a palladium catalyst is reported. A broad range of aryl and heteroarylalkynyl sulfones were obtained in 46–85% overall yield. PMID:25633719

  10. Nutrient Database improvement project: Separable components and proximate composition of retail cuts from the beef chuck

    USDA-ARS?s Scientific Manuscript database

    This study was designed to provide updated information on the separable components, cooking yields, and nutrient values of retail cuts from the beef chuck. Ultimately, these data will be used in the United States Department of Agriculture (USDA) Nutrient Data Laboratory’s (NDL) National Nutrient Da...

  11. The magnetic polarity stratigraphy of the Mauch Chunk Formation, Pennsylvania

    PubMed Central

    Opdyke, Neil D.; DiVenere, Victor J.

    2004-01-01

    Three sections of Chesterian Mauch Chunk Formation in Pennsylvania have been studied paleomagnetically to determine a Late Mississippian magnetic polarity stratigraphy. The upper section at Lavelle includes a conglomerate with abundant red siltstone rip-up clasts that yielded a positive conglomerate test. All samples were subjected to progressive thermal demagnetization to temperatures as high as 700°C. Two components of magnetization were isolated: a synfolding “B” component and the prefolding “C” component. The conglomerate test is positive, indicating that the C component was acquired very early in the history of the sediment. A coherent pattern of magnetic polarity reversals was identified. Five magnetozones were identified in the upper Lavelle section, which yields a pattern that is an excellent match with the pattern of reversals obtained from the upper Mauch Chunk at the original type section of the Mississippian/Pennsylvanian boundary at Pottsville, PA. The frequency of reversals in the upper Mississippian, as identified in the Mauch Chunk Formation, is approximately one to two per million years, which is an average for field reversal through time. PMID:15353597

  12. The magnetic polarity stratigraphy of the Mauch Chunk Formation, Pennsylvania.

    PubMed

    Opdyke, Neil D; DiVenere, Victor J

    2004-09-14

    Three sections of Chesterian Mauch Chunk Formation in Pennsylvania have been studied paleomagnetically to determine a Late Mississippian magnetic polarity stratigraphy. The upper section at Lavelle includes a conglomerate with abundant red siltstone rip-up clasts that yielded a positive conglomerate test. All samples were subjected to progressive thermal demagnetization to temperatures as high as 700 degrees C. Two components of magnetization were isolated: a synfolding "B" component and the prefolding "C" component. The conglomerate test is positive, indicating that the C component was acquired very early in the history of the sediment. A coherent pattern of magnetic polarity reversals was identified. Five magnetozones were identified in the upper Lavelle section, which yields a pattern that is an excellent match with the pattern of reversals obtained from the upper Mauch Chunk at the original type section of the Mississippian/Pennsylvanian boundary at Pottsville, PA. The frequency of reversals in the upper Mississippian, as identified in the Mauch Chunk Formation, is approximately one to two per million years, which is an average for field reversal through time.

  13. A consistent transported PDF model for treating differential molecular diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Zhang, Pei

    2016-11-01

    Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.

  14. Use of natural diamonds to monitor 14C AMS instrument backgrounds

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Southon, John

    2007-06-01

    To examine one component of the instrument-based background in the University of California Keck Carbon Cycle AMS spectrometer, we have obtained measurements on a set of natural diamonds pressed into sample holders. Natural diamond samples (N = 14) from different sources within rock formations with geological ages greatly in excess of 100 Ma yielded a range of currents (∼110-250 μA 12C- where filamentous graphite typically yields ∼150 μA 12C-) and apparent 14C ages (64.9 ± 0.4 ka BP [0.00031 ± 0.00002 fm] to 80.0 ± 1.1 ka BP [0.00005 ± 0.00001 fm]). Six fragments cut from a single diamond exhibited essentially identical 14C values - 69.3 ± 0.5 ka-70.6 ± 0.5 ka BP. The oldest 14C age equivalents were measured on natural diamonds which exhibited the highest current yields.

  15. The International Heat Stress Genotype Experiment for Modeling Wheat Response to Heat: Field Experiments and AgMIP-Wheat Multi-Model Simulations

    NASA Technical Reports Server (NTRS)

    Martre, Pierre; Reynolds, Matthew P.; Asseng, Senthold; Ewert, Frank; Alderman, Phillip D.; Cammarano, Davide; Maiorano, Andrea; Ruane, Alexander C.; Aggarwal, Pramod K.; Anothai, Jakarat; hide

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.

  16. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arman, B.; An, Q.; Luo, S. N.

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  18. Chemical Constitution of the Host-Specific Toxin of Helminthosporium carbonum1

    PubMed Central

    Pringle, Ross B.

    1970-01-01

    The host-specific toxin of Helminthosporium carbonum Ullstrup has a molecular formula approximating C32H50N6O10. The compound has been crystallized and a crystalline hydrochloride derivative has been produced. The molecular weight, as determined by chromatography on Sephadex G-10, is slightly less than 700. The toxin appears to be a cyclic peptide, since, although it does not react with ninhydrin or dinitrofluorobenzene, it yields, on hydrolysis, compounds which react to these reagents. It is unstable in dilute acids, yielding ninhydrin-reacting products. Complete acid hydrolysis yields alanine, proline, and three other ninhydrin-reacting components. The infrared spectrum of the toxin reveals an ester band in addition to amide absorption. Its ultraviolet spectrum reveals the presence of unsaturation in the molecule. The toxin is relatively unstable and loses its specific toxicity. This loss of activity appears to be associated with loss of nitrogen and with decreased solubility in water. PMID:5481091

  19. Chemical constitution of the host-specific toxin of Helminthosporium carbonum.

    PubMed

    Pringle, R B

    1970-07-01

    The host-specific toxin of Helminthosporium carbonum Ullstrup has a molecular formula approximating C(32)H(50)N(6)O(10). The compound has been crystallized and a crystalline hydrochloride derivative has been produced. The molecular weight, as determined by chromatography on Sephadex G-10, is slightly less than 700. The toxin appears to be a cyclic peptide, since, although it does not react with ninhydrin or dinitrofluorobenzene, it yields, on hydrolysis, compounds which react to these reagents. It is unstable in dilute acids, yielding ninhydrin-reacting products. Complete acid hydrolysis yields alanine, proline, and three other ninhydrin-reacting components. The infrared spectrum of the toxin reveals an ester band in addition to amide absorption. Its ultraviolet spectrum reveals the presence of unsaturation in the molecule. The toxin is relatively unstable and loses its specific toxicity. This loss of activity appears to be associated with loss of nitrogen and with decreased solubility in water.

  20. [The differences of the effects of Vrd1 and Ppd-D1 gene alleles on winterhardiness, frost resistance, and yield in winter wheat].

    PubMed

    Mokanu, N V; Faĭt, V I

    2008-01-01

    The influence of allelic differences of Vrd1 and Ppd-D1 genes on winterhardiness, frost resistance, yield and its components was studied in recombinant-inbred F5 lines of Odesskaya 16/Bezostaya 1. From 9 to 15% differences in the resistance of recombinant-inbred lines were determined by alternative alleles of Vrd1 gene and 10-16% of Ppd-D1 gene. Interaction of vrd1 and Ppd-D1a alleles led to the higher winterhardiness and frost resistance of tillered plants during the winter. At the same time the significant increase of the period to heading, plant height and the tendency of yield reduction were revealed for vrd1 vrd1 Ppd-D1a Ppd-D1a lines when compared to the lines of Vrd1 Vrd1 Ppd-D1a Ppd-D1a genotype.

  1. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass

    NASA Astrophysics Data System (ADS)

    Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath

    2016-07-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use.

  2. High-speed engine/component performance assessment using exergy and thrust-based methods

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.

    1996-01-01

    This investigation summarizes a comparative study of two high-speed engine performance assessment techniques based on energy (available work) and thrust-potential (thrust availability). Simple flow-fields utilizing Rayleigh heat addition and one-dimensional flow with friction are used to demonstrate the fundamental inability of conventional energy techniques to predict engine component performance, aid in component design, or accurately assess flow losses. The use of the thrust-based method on these same examples demonstrates its ability to yield useful information in all these categories. Energy and thrust are related and discussed from the stand-point of their fundamental thermodynamic and fluid dynamic definitions in order to explain the differences in information obtained using the two methods. The conventional definition of energy is shown to include work which is inherently unavailable to an aerospace Brayton engine. An engine-based energy is then developed which accurately accounts for this inherently unavailable work; performance parameters based on this quantity are then shown to yield design and loss information equivalent to the thrust-based method.

  3. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    PubMed

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rule Space, the Product Space of Two Score Components in Signed-Number Subtraction: An Approach to Dealing with Inconsistent Use of Erroneous Rules.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi K.; Baillie, Robert

    A 40-item free response test on signed-number subtraction was administered to 172 eighth graders. Their responses are viewed as consisting of two different components, the sign and absolute value. Each component is scored zero for wrong or one for correct, yielding a score of one only when both components have scores of one. By taking the values…

  5. Radiation Chemistry and the Radiation Preservation of Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1981-01-01

    Describes common features in the radiation chemistry of food components, and illustrates how product yields are predicted. Presents data that pertain to the radiolysis of the nitrate ion, metmyoglobin, myosin, and tripalmitin. (CS)

  6. Perspective of Membrane Technology in Dairy Industry: A Review

    PubMed Central

    Kumar, Pavan; Sharma, Neelesh; Ranjan, Rajeev; Kumar, Sunil; Bhat, Z. F.; Jeong, Dong Kee

    2013-01-01

    Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent. PMID:25049918

  7. Perspective of membrane technology in dairy industry: a review.

    PubMed

    Kumar, Pavan; Sharma, Neelesh; Ranjan, Rajeev; Kumar, Sunil; Bhat, Z F; Jeong, Dong Kee

    2013-09-01

    Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent.

  8. Positron annihilation studies of Bi 2CaSr 2Cu 2O x and Bi 1.6Pb 0.4Ca 2Sr 2Cu 3O y in the region of the superconducting transition

    NASA Astrophysics Data System (ADS)

    Pujari, P. K.; Datta, T.; Manohar, S. B.; Prakash, Satya; Sastry, P. V. P. S. S.; Yakhmi, J. V.; Iyer, R. M.

    1990-03-01

    Doppler broadened annihilation radiation (DBAR) spectral parameters have been reported- for the first time- between 77 K and 300 K, for several Bi-based oxide superconductors, viz. A: single phase (2122) Bi 2CaSr 2Cu 2O x with Tc=85 K (R=0), B: a mixed phase lead doped sample containing both 2122 and 2223 with a nominal composition Bi 1.6Pb 0.4Ca 2Sr 2Cu 3O y, and, C: another 2122+2223 sample with same nominal composition as that of B but synthesised under a different heat-treatment schedule so as to yield a Tc=85 K (R=0). Analyses of these spectra using PAACFIT program yielded two components, of which the intensity of the narrow component, I N, and, the width of the broad component, T B, were seen to be the only temperature dependent parameters. At the onset of superconducting transition both T B and I N were seen to increase to a maximum value and decrease on further cooling. A double peak structure in T B vs temperature profile were observed in sample B and C, similar to one reported by us in Tl-Ca-Ba-Cu-O systems. In addition, presence of a magnetic field (1 KG) yielded no significant change in the DBAR spectral parameters. The results are discussed.

  9. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated withmore » reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.« less

  10. Managing NIF safety equipment in a high neutron and gamma radiation environment.

    PubMed

    Datte, Philip; Eckart, Mark; Jackson, Mark; Khater, Hesham; Manuel, Stacie; Newton, Mark

    2013-06-01

    The National Ignition Facility (NIF) is a 192 laser beam facility that supports the Inertial Confinement Fusion program. During the ignition experimental campaign, the NIF is expected to perform shots with varying fusion yield producing 14 MeV neutrons up to 20 MJ or 7.1 × 10(18) neutrons per shot and a maximum annual yield of 1,200 MJ. Several infrastructure support systems will be exposed to varying high yield shots over the facility's 30-y life span. In response to this potential exposure, analysis and testing of several facility safety systems have been conducted. A detailed MCNP (Monte Carlo N-Particle Transport Code) model has been developed for the NIF facility, and it includes most of the major structures inside the Target Bay. The model has been used in the simulation of expected neutron and gamma fluences throughout the Target Bay. Radiation susceptible components were identified and tested to fluences greater than 10(13) (n cm(-2)) for 14 MeV neutrons and γ-ray equivalent. The testing includes component irradiation using a 60Co gamma source and accelerator-based irradiation using 4- and 14- MeV neutron sources. The subsystem implementation in the facility is based on the fluence estimates after shielding and survivability guidelines derived from the dose maps and component tests results. This paper reports on the evaluation and implementation of mitigations for several infrastructure safety support systems, including video, oxygen monitoring, pressure monitors, water sensing systems, and access control interfaces found at the NIF.

  11. Detecting recurrence domains of dynamical systems by symbolic dynamics.

    PubMed

    beim Graben, Peter; Hutt, Axel

    2013-04-12

    We propose an algorithm for the detection of recurrence domains of complex dynamical systems from time series. Our approach exploits the characteristic checkerboard texture of recurrence domains exhibited in recurrence plots. In phase space, recurrence plots yield intersecting balls around sampling points that could be merged into cells of a phase space partition. We construct this partition by a rewriting grammar applied to the symbolic dynamics of time indices. A maximum entropy principle defines the optimal size of intersecting balls. The final application to high-dimensional brain signals yields an optimal symbolic recurrence plot revealing functional components of the signal.

  12. Relating B_S Mixing and B_S to mu+mu- with New Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golowich, Eugene; /Massachusetts U., Amherst; Hewett, JoAnne

    2012-06-11

    We perform a study of the standard model fit to the mixing quantities {Delta}M{sub B{sub s}}, and {Delta}{Lambda}{sub B{sub s}}/{Delta}M{sub B{sub s}} in order to bound contributions of new physics (NP) to B{sub s} mixing. We then use this to explore the branching fraction of B{sub s} {yields} {mu}{sup +}{mu}{sup -} in certain models of NP. In most cases, this constrains NP amplitudes for B{sub s} {yields} {mu}{sup +}{mu}{sup -} to lie below the standard model component.

  13. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  14. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  15. Polyazidoesters as Energetic Polymers and Copolymer Components with Fluoro Derivatives.

    DTIC Science & Technology

    1988-04-13

    i. 0, ’C b" U’. I’. ’- Unclasifie 4)1II FILE COP~Y 4 S’ 9 2 . 1E 0_ UMENTATION PAGE Unclassified _____________________ AD-A 194 236 ER’ESQRDtX. 8S - 0...TASK WORK jNir Bolling AFB, D.C. 2033 2 -6448 a LEMINT NO NO. No NO is riri E’ /,elun~de Sircu..I Clomllti~oI Pol azidon ters as 2303 B2 Emrgf Pol mr...which undergoes polymerization. Specifically 4,4’- diazidodiphenylkelene (1) was ozonized at -780 C to yield 2 , which spontaneously polymerized to yield

  16. The effects of heat stress in Italian Holstein dairy cattle.

    PubMed

    Bernabucci, U; Biffani, S; Buggiotti, L; Vitali, A; Lacetera, N; Nardone, A

    2014-01-01

    The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were calculated for each cow and bull (traditional EBV, traditional EBV estimated with the inclusion of THI covariate effect, and heat tolerance EBV) and the rankings of EBV for 283 bulls born after 1985 with at least 50 daughters were compared. When THI was included in the model, the ranking for 17 and 32 bulls changed for milk yield and protein percentage, respectively. The heat tolerance genetic component is not negligible, suggesting that heat tolerance selection should be included in the selection objectives. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; Zuo, Heping; Yang, Yonghui

    2014-02-01

    Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021-2040 compared to the baseline period of 1961-1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021-2040) over the baseline (1961-1990) varies from +3.4 to -14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.

  18. Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product.

    PubMed

    Aristides, L G A; Venancio, E J; Alfieri, A A; Otonel, R A A; Frank, W J; Oba, A

    2018-05-16

    Fermented products and components of Saccharomyces cerevisiae have been widely used in animal nutrition to promote the development and quality of broilers. This study aims to evaluate different levels of inclusion (0, 250, 750, 1,500 g/t) of S. cerevisiae fermentation product (SCFP) in broiler feed to gauge its effect on carcass characteristics and cuts beyond the quality of breast meat. For analyses of carcass yield, cuts, and meat quality, 16 broilers per treatment were slaughtered. The meat quality analyses were performed 24 h after slaughter and evaluated color, pH, water holding capacity, cooking loss, and shear force. Lipid oxidation was determined in frozen breast samples stored at -20°C for 45 d. The results indicate that different levels of inclusion of SCFP provided no changes in carcass yield, color, water holding capacity, cooking loss, and shear force; however, inclusion of 1,500 g/t of SCFP increased leg yield and reduced pH. The inclusion of 750 g/t of SCFP decreased the lipid oxidation of breast meat (P < 0.05). This study concluded that inclusion of SCFP may improve leg yield and the lipid oxidation of breast meat.

  19. Relationship between mozzarella yield and milk composition, processing factors, and recovery of whey constituents.

    PubMed

    Sales, D C; Rangel, A H N; Urbano, S A; Freitas, Alfredo R; Tonhati, Humberto; Novaes, L P; Pereira, M I B; Borba, L H F

    2017-06-01

    Our aim was to identify the relationship between mozzarella cheese yield and buffalo milk composition, processing factors, and recovery of whey constituents. A production of 30 batches of mozzarella cheese at a dairy industry in northeast Brazil (Rio Grande do Norte) was monitored between March and November 2015. Mozzarella yield and 32 other variables were observed for each batch, and divided into 3 groups: milk composition variables (12); variables involved in the cheesemaking process (14); and variables for recovery of whey constituents (6). Data were analyzed using descriptive statistics, Pearson correlation, and principal component analysis. Most of the correlations between milk composition variables and between the variables of the manufacturing processes were not significant. Significant correlations were mostly observed between variables for recovery of whey constituents. Yield only showed significant correlation with time elapsed between curd cuttings and age of the starter culture, and it showed greater association with age of the starter culture, time elapsed between curd cuttings, and during stretching, as well as with milk pH and density. Thus, processing factors and milk characteristics are closely related to dairy efficiency in mozzarella manufacturing. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: an efficient and sustainable approach.

    PubMed

    Hu, Jiajin; Guo, Zheng; Glasius, Marianne; Kristensen, Kasper; Xiao, Langtao; Xu, Xuebing

    2011-08-26

    To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction approaches, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most constituents of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500 psi and 100 °C for 20 min (static extraction time: 5 min) is recommended as optimized extraction conditions, achieving 106.8%, 109.3% and 108.0% yield of [6]-, [8]- and [10]-gingerol relative to the yield of corresponding constituent obtained by 8h Soxhlet extraction (absolute ethanol as extraction solvent). Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The ultrasound-assisted aqueous extraction of rice bran oil.

    PubMed

    Khoei, Maryam; Chekin, Fereshteh

    2016-03-01

    In this work, aqueous extraction of rice bran oil was done without and with ultrasound pretreatment. Key factors controlling the extraction and optimal operating conditions were identified. The highest extraction efficiency was found at pH=12, temperature of 45°C, agitation speed of 800rpm and agitation time of 15min, ultrasound treatment time of 70min and ultrasound treatment temperature of 25°C. Moreover, extraction yields were compared to ultrasound-assisted aqueous extraction and Soxhlet extraction. The results showed that the yield of rice bran oil at ultrasound-assisted aqueous extraction was close to the yield of oil extracted by hexane Soxhlet extraction. This result implied that the yield of rice bran oil was significantly influenced by ultrasound. With regard to quality, the oil extracted by ultrasound-assisted aqueous process had a lower content of free fatty acid and lower color imparting components than the hexane-extracted oil. Also, effect of parboiling of paddy on hexane and ultrasound-assisted aqueous extraction was studied. Both extraction methods gives higher percentage of oil from par boiled rice bran compared with raw rice bran. This may be due to the fact that parboiling releases the oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    DOE PAGES

    Foxe, M.; Hagmann, C.; Jovanovic, I.; ...

    2015-03-27

    Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recentlymore » reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.« less

  3. Anaerobic co-digestion of livestock and vegetable processing wastes: fibre degradation and digestate stability.

    PubMed

    Molinuevo-Salces, Beatriz; Gómez, Xiomar; Morán, Antonio; García-González, Mari Cruz

    2013-06-01

    Anaerobic digestion of livestock wastes (swine manure (SM) and poultry litter (PL)) and vegetable processing wastes (VPW) mixtures was evaluated in terms of methane yield, volatile solids removal and lignocellulosic material degradation. Batch experiments were performed with 2% VS (volatile solids) to ensure complete conversion of TVFAs (total volatile fatty acids) and to avoid ammonia inhibition. Experimental methane yields obtained for the mixtures resulted in higher values than those obtained from the sum of the methane yields from the individual components. VPW addition to livestock wastes before anaerobic digestion also resulted in improved VS elimination. In SM-VPW co-digestions, CH4 yield increased from 111 to 244 mL CH4 g VS added(-1), and the percentage of VS removed increased from 50% to 86%. For PL-VPW co-digestions, the corresponding values were increased from 158 to 223 mL CH4 g VS added(-1) and from 70% to 92% VS removed. Hemicelluloses and more than 50% of cellulose were degraded during anaerobic digestion. Thermal analyses indicated that the stabilization of the wastes during anaerobic digestion resulted in significantly less energy being released by digestate samples than fresh samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Impurity sputtering from the guard limiter of the lower hybrid wave antenna in a tokamak

    NASA Astrophysics Data System (ADS)

    Ou, Jing; Xiang, Nong; Men, Zongzheng

    2018-01-01

    The hot spots on the guard limiter of the lower hybrid wave (LHW) antenna in a tokamak were believed to be associated with the energetic electrons produced by the wave-plasma interaction, leading to a sudden increase of impurity influx and even ending with disruption. To investigate the carbon sputtering from the guard limiter of the LHW antenna, the impurity sputtering yield is calculated by coupling the module of Plasma Surface Interaction [Warrier et al., Comput. Phys. Commun. 46, 160 (2004)] with the models for the sheath of plasma containing energetic electron and for the material heat transport. It is found that the presence of a small population of energetic electrons can change significantly the impurity sputtering yield, as a result of the sheath potential modification. For the typical plasma parameters in the current tokamak, with an increase in the energetic electron component, the physical sputtering yield reaches its maximum and then decreases slowly, while the chemical sputtering yield demonstrates a very sharp increase and then decreases rapidly. In addition, effects of the ion temperature and background electron density on the impurity sputtering are also discussed.

  5. Chromium and titanium isotopes produced in photonuclear reactions of vanadium, revisited

    NASA Astrophysics Data System (ADS)

    Sakamoto, K.; Yoshida, M.; Kubota, Y.; Fukasawa, T.; Kunugise, A.; Hamajima, Y.; Shibata, S.; Fujiwara, I.

    1989-10-01

    Photonuclear production yields of 51Ti und 51,49,48Cr from 51V were redetermined for bremsstrahlung end-point energies ( E0) of 30 to 1000 or 1050 MeV with the aid of radiochemical separation of Cr. The yield curves for 51Ti, 51Cr, 49Cr and 48Cr show a clear evidence for two components in the production process; one tor secondary-proton reactions at E0 < Qπ and the other for photopion reactions, at E0 > Q, Qπ being Q-values for (γ, π +) and ( γ, π+xn) reactions. The contributions of the secondary reactions for production of the Ti and Cr isotopes at E0 > Qπ were then estimated by fitting calculated secondary yields to the observed ones at E0 < Qπ, and found to be about 40%, 20%, 4% and 4% for 51Ti, 51Cr, 49Cr and 48Cr, respectively, at E0 = 400 to 1000 MeV. The calculation of the secondary yields was based on the excitation functions for 51V(n, p) and (p, x'n) calculated with the ALICE code and the reported photoneutron and photoproton spectra from 12C and some other complex nuclei. The present results for 49Cr are close to the reported ones, while the present 48Cr yields differ by a factor of about 50. For the 51Ti and 51Cr yields, there are some discrepancies between the present and reported ones. The yield corrected for the secondaries, in units of μb/equivalent quantum, were unfolded into cross sections per photon, in units of μb, as a function ol monochromatic photon energy with the LOUHI-82 code. The results for the 51Ti and 49Cr are in disagreement in both the magnitude and shape with the theoretical predictions based on DWIA and PWIA. A Monte Carlo calculation based on the PICA code by Gabriel and Alsmiller does reproduce the gross feature of the present results.

  6. Response of rice cultivars to rates of nitrogen and potassium application in field and pot conditions.

    PubMed

    Bahmaniar, M A; Ranjbar, G A

    2007-05-01

    Nitrogen and potassium are the yield-limiting nutrients in rice production regions of Iran. Use of N and K efficient cultivars is an important complementary strategy in improving rice yield, increasing the quality properties of rice grains and reducing cost of production. In order to consider the effects of different amounts of N and K application on rice (Oryza sativa L.) yield and yield components in pot and field conditions these experiments were undertaken in 2004 at Sari Agricultural Station, Iran. Four levels of N (0, 50, 100 and 150 Kg N ha(-1) in field and 0, 0.6, 1.2 and 1.8 g N pot(-1) in pot) corresponding with four levels of K (0, 75, 150 and 225 kg K2O ha(-1) in field and 0, 0.5, 1 and 1.5 g K2O pot(-1) in pot) were applied in a split-factorial plot design with three replications in both pot and field experiments, variously. Grain yield, number of grain per panicle, number of tiller, plant height, length of flag leaf, total and shoot dry matter, 1000 grain weight and harvest index have been increased by N application in field conditions. However, in pot conditions grain yield, number of grain per panicle, number of tiller, plant height, width of flag leaf, total and shoot dry matter, leaf nitrogen contents and harvest index have significantly been increased (p < or = 0.05). Potassium application in field conditions has significantly affected on all characteristics but 1000 grain weight and leaf N and K contents. Simultaneous application of N and K have increasingly affected on grain yield, plant height, shoot dry matter and harvest index in field conditions and on plant height, length of flag leaf and shoot dry matter in pot conditions (p < or = 0.05).

  7. InfoDROUGHT: Technical reliability assessment using crop yield data at the Spanish-national level

    NASA Astrophysics Data System (ADS)

    Contreras, Sergio; Garcia-León, David; Hunink, Johannes E.

    2017-04-01

    Drought monitoring (DM) is a key component of risk-centered drought preparedness plans and drought policies. InfoDROUGHT (www.infosequia.es) is a a site- and user-tailored and fully-integrated DM system which combines functionalities for: a) the operational satellite-based weekly-1km tracking of severity and spatial extent of drought impacts, b) the interactive and faster query and delivery of drought information through a web-mapping service. InfoDROUGHT has a flexible and modular structure. The calibration (threshold definitions) and validation of the system is performed by combining expert knowledge and auxiliary impact assessments and datasets. Different technical solutions (basic or advanced versions) or deployment options (open-standard or restricted-authenticated) can be purchased by end-users and customers according to their needs. In this analysis, the technical reliability of InfoDROUGHT and its performance for detecting drought impacts on agriculture has been evaluated in the 2003-2014 period by exploring and quantifying the relationships among the drought severity indices reported by InfoDROUGHT and the annual yield anomalies observed for different rainfed crops (maize, wheat, barley) at Spain. We hypothesize a positive relationship between the crop anomalies and the drought severity level detected by InfoDROUGHT. Annual yield anomalies were computed at the province administrative level as the difference between the annual yield reported by the Spanish Annual Survey of Crop Acreages and Yields (ESYRCE database) and the mean annual yield estimated during the study period. Yield anomalies were finally compared against drought greenness-based and thermal-based drought indices (VCI and TCI, respectively) to check the coherence of the outputs and the hypothesis stated. InfoDROUGHT has been partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant, and by the H2020-EU project "Bridging the Gap for Innovations in Disaster Resilience" (www.brigaid.eu).

  8. Investigating the use of Active Crop Canopy Sensors for Soybean Management in Field Research and Production

    NASA Astrophysics Data System (ADS)

    Miller, Joshua Jay

    Approximately one-third of soybean yield gain is a result of improved agronomic practices, which includes disease and insect management. Treatments containing fungicide, insecticide, biological, and nutrient components were evaluated in Nebraska soybean fields during 2013 through 2015 to determine effects on soybean yield and profitability. The greatest yield (4.83 Mg ha -1, p=0.019) was achieved with a complete seed and pod set treatment, but resulted in the second lowest calculated net return (US151 ha -1, p=0.019) after accounting for fixed and variable costs at a soybean market price of US0.367 kg-1. The most profitable treatment was the fungicide seed treatment followed by no pod set treatment (US$241 ha-1, p=0.019). The use of pod set treatments in the absence of significant disease and insect pressure was not profitable in most instances. Crop canopy reflectance was measured several times throughout the season during 2014 and 2015 to evaluate normalized difference red edge (NDRE) index to predict soybean productivity. The NDRE values were used to calculate a cumulative reflectance value through the R6 growth stage, defined as area under the reflectance progress curve (AURPC). The AURPC values and seed yield were classified as top 25%, middle 50%, or bottom 25% by location. Multinomial regression determined that bottom AURPC values correctly predicted bottom yield 52.5% of the time (p=0.033), but ranged from 46.7 to 86.2% by location. Misclassifications by incorrectly identifying a bottom yield within the top AURPC ranged from 0.0% to 16.7% by location. The AURPC offers a novel method to delineate management zones in soybean production fields. Soybean canopy reflectance was also evaluated for the relationship between NDRE and soybean response to soybean cyst nematode (SCN; Heterodera glycines Ichinohe) infection. SCN-resistant and -susceptible varieties were planted in SCN-infested and non-infested sites during 2015 and 2016. Susceptible varieties yielded more than the resistant varieties at the non-infested sites by 245 kg ha-1 (p=0.004), and resistant varieties yielded more than the susceptible varieties at the SCN-infested sites by 340 kg ha -1 (p=0.0021). Measured NDRE values at R4 and R5 were different between resistant and susceptible varieties, but were not correlated with yield.

  9. A sub-canopy structure for simulating oil palm in the Community Land Model: phenology, allocation and yield

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.

    2015-06-01

    Land surface modelling has been widely used to characterize the two-way interactions between climate and human activities in terrestrial ecosystems such as deforestation, agricultural expansion, and urbanization. Towards an effort to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we introduce a new perennial crop plant functional type (PFT) for oil palm. Due to the modular and sequential nature of oil palm growth (around 40 stacked phytomers) and yield (fruit bunches axillated on each phytomer), we developed a specific sub-canopy structure for simulating palm's growth and yield within the framework of the Community Land Model (CLM4.5). In this structure each phytomer has its own prognostic leaf growth and fruit yield capacity like a PFT but with shared stem and root components among all phytomers. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, so that multiple fruit yields per annum are enabled in terms of carbon and nitrogen outputs. An important phenological phase is identified for the palm PFT - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization, and leaf pruning are represented. Parameters introduced for the new PFT were calibrated and validated with field measurements of leaf area index (LAI) and yield from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched perfectly between simulation and observation (mean percentage error = 4 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites but also indicates that seasonal dynamics and site-to-site variability of yield are driven by processes not yet implemented in the model. The new sub-canopy structure and phenology and allocation functions now allow exploring the effects of tropical land use change, from natural ecosystems to oil palm plantations, on carbon, water and energy cycles and regional climate.

  10. Video image analysis as a potential grading system for Uruguayan beef carcasses.

    PubMed

    Vote, D J; Bowling, M B; Cunha, B C N; Belk, K E; Tatum, J D; Montossi, F; Smith, G C

    2009-07-01

    A study was conducted in 2 phases to evaluate the effectiveness of 1) the VIAscan Beef Carcass System (BCSys; hot carcass system) and the CVS BeefCam (chilled carcass system), used independently or in combination, to predict Uruguayan beef carcass fabrication yields; and 2) the CVS BeefCam to segregate Uruguayan beef carcasses into groups that differ in the Warner-Bratzler shear force (WBSF) values of their LM steaks. The results from the meat yield phase of the present study indicated that the prediction of saleable meat yield percentages from Uruguayan beef carcasses by use of the BCSys or CVS BeefCam is similar to, or slightly better than, the use of USDA yield grade calculated to the nearest 0.1 and was much more effective than prediction based on Uruguay National Institute of Meat (INAC) grades. A further improvement in fabrication yield prediction could be obtained by use of a dual-component video image analysis (VIA) system. Whichever method of VIA prediction of fabrication yield is used, a single predicted value of fabrication yield for every carcass removes an impediment to the implementation of a value-based pricing system. Additionally, a VIA method of predicting carcass yield has the advantage over the current INAC classification system in that estimates would be produced by an instrument rather than by packing plant personnel, which would appeal to cattle producers. Results from the tenderness phase of the study indicated that the CVS BeefCam output variable for marbling was not (P > 0.05) able to segregate steer and heifer carcasses into groups that differed in WBSF values. In addition, the results of segregating steer and heifer carcasses according to muscle color output variables indicate that muscle maturity and skeletal maturity were useful for segregating carcasses according to differences in WBSF values of their steaks (P > 0.05). Use of VIA to predict beef carcass fabrication yields could improve accuracy and reduce subjectivity in comparison with use of current INAC grades. Use of VIA to sort carcasses according to muscle color would allow for the marketing of more consistent beef products with respect to tenderness. This would help facilitate the initiation of a value-based marketing system for the Uruguayan beef industry.

  11. Production response to corn silage produced from normal, brown midrib, or waxy corn hybrids.

    PubMed

    Barlow, J S; Bernard, J K; Mullis, N A

    2012-08-01

    The objective was to evaluate the nutrient intake and digestibility and milk production response of lactating dairy cows fed diets based on corn silage produced from 3 different types of corn hybrids. Experimental diets contained 36.4% of the dietary dry matter (DM) from corn silage produced from normal (Agratech 1021, AgraTech Seeds Inc., Atlanta, GA), brown midrib (BMR; Mycogen F2F797, Mycogen Seeds, Indianapolis, IN), or waxy (Master's Choice 590, Master's Choice Hybrids, Ullin, IL) hybrids. Thirty-six multiparous and primiparous Holstein cows (66 ± 22 d in milk, 41 ± 8 kg/d of milk) were used in an 11-wk completely randomized design trial during the fall of 2009. All cows were fed a diet containing normal corn silage during the first 2wk of the trial before being assigned to 1 of 3 treatments for the following 9 wk. Data collected during the first 2 wk were used as a covariate in the statistical analysis. No difference was observed in dry matter intake (DMI) among treatments, which averaged 22.6 kg/d. Milk yield was higher for cows fed BMR (37.6 kg/d) compared with waxy (35.2 kg/d) but was similar to that of cows fed control (36.2 kg/d). Milk fat percentage tended to be lower for cows fed control (3.28%) compared with those fed BMR (3.60%) or waxy (3.55%) corn silage. Milk protein percentage tended to be lower for cows fed control (2.79%) compared with waxy (2.89%) but similar to that of those fed BMR (2.85%). No differences were observed in yield of milk components. Energy-corrected milk (ECM) yield and dairy efficiency (ECM:DMI) did not differ among treatments. Cows fed BMR tended to gain more body weight compared with those fed control and waxy. Results of this trial are consistent with previous reports in which cows fed diets based on corn silage produced from BMR hybrids have higher milk yield compared with those fed other hybrids. Corn silage produced from the waxy hybrid supported a similar yield of ECM because of higher milk components, but milk yield was not improved compared with the control. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Genetic analysis of Holstein cattle populations in Brazil and the United States.

    PubMed

    Costa, C N; Blake, R W; Pollak, E J; Oltenacu, P A; Quaas, R L; Searle, S R

    2000-12-01

    Genetic relationships between Brazilian and US Holstein cattle populations were studied using first-lactation records of 305-d mature equivalent (ME) yields of milk and fat of daughters of 705 sires in Brazil and 701 sires in the United States, 358 of which had progeny in both countries. Components of(co)variance and genetic parameters were estimated from all data and from within herd-year standard deviation for milk (HYSD) data files using bivariate and multivariate sire models and DFREML procedures distinguishing the two countries. Sire (residual) variances from all data for milk yield were 51 to 59% (58 to 101%) as large in Brazil as those obtained from half-sisters in the average US herd. Corresponding proportions of the US variance in fat yield that were found in Brazil were 30 to 41% for the sire component of variance and 48 to 80% for the residual. Heritabilities for milk and fat yields from multivariate analysis of all the data were 0.25 and 0.22 in Brazil, and 0.34 and 0.35 in the United States. Genetic correlations between milk and fat were 0.79 in Brazil and 0.62 in the United States. Genetic correlations between countries were 0.85 for milk, 0.88 for fat, 0.55 for milk in Brazil and fat in the US, and 0.67 for fat in Brazil and milk in the United States. Correlated responses in Brazil from sire selection based on the US information increased with average HYSD in Brazil. Largest daughter yield response was predicted from information from half-sisters in low HYSD US herds (0.75 kg/kg for milk; 0.63 kg/kg for fat), which was 14% to 17% greater than estimates from all US herds because the scaling effects were less severe from heterogeneous variances. Unequal daughter response from unequal genetic (co)variances under restrictive Brazilian conditions is evidence for the interaction of genotype and environment. The smaller and variable yield expectations of daughters of US sires in Brazilian environments suggest the need for specific genetic improvement strategies in Brazilian Holstein herds. A US data file restricting daughter information to low HYSD US environments would be a wise choice for across-country evaluation. Procedures to incorporate such foreign evaluations should be explored to improve the accuracy of genetic evaluations for the Brazilian Holstein population.

  13. Genetic evaluation of lactation persistency for five breeds of dairy cattle.

    PubMed

    Cole, J B; Null, D J

    2009-05-01

    Cows with high lactation persistency tend to produce less milk than expected at the beginning of lactation and more than expected at the end. Best prediction of lactation persistency is calculated as a function of trait-specific standard lactation curves and linear regressions of test-day deviations on days in milk. Because regression coefficients are deviations from a tipping point selected to make yield and lactation persistency phenotypically uncorrelated it should be possible to use 305-d actual yield and lactation persistency to predict yield for lactations with later endpoints. The objectives of this study were to calculate (co)variance components and breeding values for best predictions of lactation persistency of milk (PM), fat (PF), protein (PP), and somatic cell score (PSCS) in breeds other than Holstein, and to demonstrate the calculation of prediction equations for 400-d actual milk yield. Data included lactations from Ayrshire, Brown Swiss, Guernsey (GU), Jersey (JE), and Milking Shorthorn (MS) cows calving since 1997. The number of sires evaluated ranged from 86 (MS) to 3,192 (JE), and mean sire estimated breeding value for PM ranged from 0.001 (Ayrshire) to 0.10 (Brown Swiss); mean estimated breeding value for PSCS ranged from -0.01 (MS) to -0.043 (JE). Heritabilities were generally highest for PM (0.09 to 0.15) and lowest for PSCS (0.03 to 0.06), with PF and PP having intermediate values (0.07 to 0.13). Repeatabilities varied considerably between breeds, ranging from 0.08 (PSCS in GU, JE, and MS) to 0.28 (PM in GU). Genetic correlations of PM, PF, and PP with PSCS were moderate and favorable (negative), indicating that increasing lactation persistency of yield traits is associated with decreases in lactation persistency of SCS, as expected. Genetic correlations among yield and lactation persistency were low to moderate and ranged from -0.55 (PP in GU) to 0.40 (PP in MS). Prediction equations for 400-d milk yield were calculated for each breed by regression of both 305-d yield and 305-d yield and lactation persistency on 400-d yield. Goodness-of-fit was very good for both models, but the addition of lactation persistency to the model significantly improved fit in all cases. Routine genetic evaluations for lactation persistency, as well as the development of prediction equations for several lactation end-points, may provide producers with tools to better manage their herds.

  14. Evaluation of fertilizer and water management effect on rice performance and greenhouse gas intensity in different seasonal weather of tropical climate.

    PubMed

    Ku, Hyun-Hwoi; Hayashi, Keiichi; Agbisit, Ruth; Villegas-Pangga, Gina

    2017-12-01

    Intensively double cropping rice increases greenhouse gas (GHG) emission in tropical countries, and hence, finding better management practices is imperative for reducing global warming potential (GWP), while sustaining rice yield. This study demonstrated an efficient fertilizer and water management practice targeting seasonal weather conditions effects on rice productivity, nitrogen use efficiency (NUE), GWP, and GHG intensity (GHGI). Two-season experiments were conducted with two pot-scale experiments using urea and urea+cattle manure (CM) under continuous flooding (CF) during the wet season (2013WS), and urea with/without CaSiO 3 application under alternate wetting and drying (AWD) during the dry season (2014DS). In 2013WS, 120kgNha -1 of urea fertilizer resulted in lower CH 4 emission and similar rice production compared to urea+CM. In 2014DS, CaSiO 3 application showed no difference in yields and led to significant reduction of N 2 O emission, but increased CH 4 emission and GWP. Due to significant increases in GHG emissions in urea+CM and CaSiO 3 application, we compared a seasonal difference in a local rice cultivation to test two water management practices. CF was adopted during 2013WS while AWD was adopted during 2014DS. Greater grain yields and yield components and NUE were obtained in 2014DS than in 2013WS. Furthermore, higher grain yields contributed to similar values of GHGI although GWP of cumulative GHG emissions was increased in 2014DS. Thus, utilizing urea only application under AWD is a preferred practice to minimize GWP without yield decline for double cropping rice in tropical countries. Copyright © 2017. Published by Elsevier B.V.

  15. Increasing reticle inspection efficiency and reducing wafer print-checks using automated defect classification and simulation

    NASA Astrophysics Data System (ADS)

    Ryu, Sung Jae; Lim, Sung Taek; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2013-09-01

    IC fabs inspect critical masks on a regular basis to ensure high wafer yields. These requalification inspections are costly for many reasons including the capital equipment, system maintenance, and labor costs. In addition, masks typically remain in the "requal" phase for extended, non-productive periods of time. The overall "requal" cycle time in which reticles remain non-productive is challenging to control. Shipping schedules can slip when wafer lots are put on hold until the master critical layer reticle is returned to production. Unfortunately, substituting backup critical layer reticles can significantly reduce an otherwise tightly controlled process window adversely affecting wafer yields. One major requal cycle time component is the disposition process of mask inspections containing hundreds of defects. Not only is precious non-productive time extended by reviewing hundreds of potentially yield-limiting detections, each additional classification increases the risk of manual review techniques accidentally passing real yield limiting defects. Even assuming all defects of interest are flagged by operators, how can any person's judgment be confident regarding lithographic impact of such defects? The time reticles spend away from scanners combined with potential yield loss due to lithographic uncertainty presents significant cycle time loss and increased production costs. Fortunately, a software program has been developed which automates defect classification with simulated printability measurement greatly reducing requal cycle time and improving overall disposition accuracy. This product, called ADAS (Auto Defect Analysis System), has been tested in both engineering and high-volume production environments with very successful results. In this paper, data is presented supporting significant reduction for costly wafer print checks, improved inspection area productivity, and minimized risk of misclassified yield limiting defects.

  16. [Effects of postponing nitrogen application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage].

    PubMed

    Yang, Ming-da; Ma, Shou-chen; Yang, Shen-jiao; Zhang, Su-yu; Guan, Xiao-kang; Li, Xue-mei; Wang, Tong-chao; Li, Chun-xi

    2015-11-01

    A pot culture experiment was conducted to study the effects of postponing nitrogen (N) application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Equal in the total N rate in winter wheat growth season, N application was split before sowing, and/or at jointing and /or at anthesis at the ratio of 10:0:0 (N1), 6:4:0 (N2) and 4:3:3 (N3), combined with unfavorable water condition (either waterlogged or drought) with the sufficient water condition as control. The results showed that, under each of the water condition, both N2 and N3 treatments significantly improved the leaf photosynthetic rate and the SPAD value of flag leaf compared with N1 treatment during grain filling stage, and also the crop ear number, grain number per spike and above-ground biomass were increased. Although postponing nitrogen application increased water consumption, both grain yield and water use efficiency were increased. Compared with sufficient water supply, drought stress and waterlogging stress significantly reduced the photosynthetic rate of flag leaves at anthesis and grain filling stages, ear number, 1000-grain mass and yield under all of the N application patterns. The decline of photosynthetic rate under either drought stress or waterlogging stress was much less in N2 and N3 than in N1 treatments, just the same as the grain yield. The results indicated that postponing nitrogen application could regulate winter wheat yield as well as its components to alleviate the damages, caused by unfavorable water stress by increasing flag leaf SPAD and maintaining flag leaf photosynthetic rate after anthesis, and promoting above-ground dry matter accumulation.

  17. Multi-level study of C3H2: The first interstellar hydrocarbon ring

    NASA Technical Reports Server (NTRS)

    Madden, S. C.; Irvine, W. M.; Matthews, H. E.; Avery, L. W.

    1986-01-01

    Cyclic species in the interstellar medium have been searched for almost since the first detection of interstellar polyatomic molecules. Eleven different C3H2 rotational transitions were detected; 9 of which were studied in TMC-1, a nearby dark dust cloud, are shown. The 1 sub 10 yields 1 sub 01 and 2 sub 20 yields 2 sub 11 transitions were observed with the 43 m NRAO telescope, while the remaining transitions were detected with the 14 m antenna of the Five College Radio Observatory (FCRAO). The lines detected in TMC-1 have energies above the ground state ranging from 0.9 to 17.1 K and consist of both ortho and para species. Limited maps were made along the ridge for several of the transitions. The HC3N J = 2 yields 1 transition were mapped simultaneously with the C3H2 1 sub 10 yields 1 sub 01 line and therefore can compare the distribution of this ring with a carbon chain in TMC-1. C3H2 is distributed along a narrow ridge with a SE - NW extension which is slightly more extended than the HC2N J = 2 yields 1. Gaussian fits gives a FWHP extension of 8'5 for C3H2 while HC3N has a FWHP of 7'. The data show variations of the two velocity components along the ridge as a function of transition. Most of the transitions show a peak at the position of strongest HC3N emission while the 2 sub 21 yields 2 sub 10 transition shows a peak at the NH3 position.

  18. Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Enhancing Cocrystal Yield.

    PubMed

    Li, Shu; Yu, Tao; Tian, Yiwei; Lagan, Colette; Jones, David S; Andrews, Gavin P

    2017-11-22

    Pharmaceutical cocrystals have attracted increasing attention over the past decade as an alternative way to modify the physicochemical properties and hence improve the bioavailability of a drug, without sacrificing thermodynamic stability. Our previous work has demonstrated the viability of in-situ formation of ibuprofen/isonicotinamide cocrystal suspensions within a matrix carrier via a single-step hot-melt extrusion (HME) process. The key aim of the current work is to establish optimised processing conditions to improve cocrystal yield within extruded matrices. The solubility of each individual cocrystal component in the matrix carrier was estimated using two different methods, calculation of Hansen solubility parameters, and Flory-Huggins solution theory using melting point depression measurement, respectively. The latter was found to be more relevant to extrusion cocrystallisation because of the ability to predict miscibility across a range of temperatures. The predictions obtained from the F-H phase diagrams were verified using ternary extrusion processing. Temperatures that promote solubilisation of the parent reagents during processing, and precipitation of the newly formed cocrystal were found to be the most suitable in generating high cocrystal yields. The incorporation of intensive mixing/kneading elements to the screw configuration was also shown to significantly improve the cocrystal yield when utilising a matrix platform. This work has shown that intensive mixing in combination with appropriate temperature selection, can significantly improve the cocrystal yield within a stable and low viscosity carrier during HME processing. Most importantly, this work reports, for the very first time in the literature, the use of the F-H phase diagrams to predict the most appropriate HME processing window to drive higher cocrystal yield.

  19. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    PubMed

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  20. Predicting cotton yield of small field plots in a cotton breeding program using UAV imagery data

    NASA Astrophysics Data System (ADS)

    Maja, Joe Mari J.; Campbell, Todd; Camargo Neto, Joao; Astillo, Philip

    2016-05-01

    One of the major criteria used for advancing experimental lines in a breeding program is yield performance. Obtaining yield performance data requires machine picking each plot with a cotton picker, modified to weigh individual plots. Harvesting thousands of small field plots requires a great deal of time and resources. The efficiency of cotton breeding could be increased significantly while the cost could be decreased with the availability of accurate methods to predict yield performance. This work is investigating the feasibility of using an image processing technique using a commercial off-the-shelf (COTS) camera mounted on a small Unmanned Aerial Vehicle (sUAV) to collect normal RGB images in predicting cotton yield on small plot. An orthonormal image was generated from multiple images and used to process multiple, segmented plots. A Gaussian blur was used to eliminate the high frequency component of the images, which corresponds to the cotton pixels, and used image subtraction technique to generate high frequency pixel images. The cotton pixels were then separated using k-means cluster with 5 classes. Based on the current work, the calculated percentage cotton area was computed using the generated high frequency image (cotton pixels) divided by the total area of the plot. Preliminary results showed (five flights, 3 altitudes) that cotton cover on multiple pre-selected 227 sq. m. plots produce an average of 8% which translate to approximately 22.3 kgs. of cotton. The yield prediction equation generated from the test site was then use on a separate validation site and produced a prediction error of less than 10%. In summary, the results indicate that a COTS camera with an appropriate image processing technique can produce results that are comparable to expensive sensors.

  1. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.

    PubMed

    Messina, Carlos D; Podlich, Dean; Dong, Zhanshan; Samples, Mitch; Cooper, Mark

    2011-01-01

    The effectiveness of breeding strategies to increase drought resistance in crops could be increased further if some of the complexities in gene-to-phenotype (G → P) relations associated with epistasis, pleiotropy, and genotype-by-environment interactions could be captured in realistic G → P models, and represented in a quantitative manner useful for selection. This paper outlines a promising methodology. First, the concept of landscapes was extended from the study of fitness landscapes used in evolutionary genetics to the characterization of yield-trait-performance landscapes for agricultural environments and applications in plant breeding. Second, the E(NK) model of trait genetic architecture was extended to incorporate biophysical, physiological, and statistical components. Third, a graphical representation is proposed to visualize the yield-trait performance landscape concept for use in selection decisions. The methodology was demonstrated at a particular stage of a maize breeding programme with the objective of improving the drought tolerance of maize hybrids for the US Western Corn-Belt. The application of the framework to the genetic improvement of drought tolerance in maize supported selection of Doubled Haploid (DH) lines with improved levels of drought tolerance based on physiological genetic knowledge, prediction of test-cross yield within the target population of environments, and their predicted potential to sustain further genetic progress with additional cycles of selection. The existence of rugged yield-performance landscapes with multiple peaks and intervening valleys of lower performance, as shown in this study, supports the proposition that phenotyping strategies, and the directions emphasized in genomic selection can be improved by creating knowledge of the topology of yield-trait performance landscapes.

  2. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil

    PubMed Central

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil. PMID:28263999

  3. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis.

    PubMed

    Li, Tiantao; Guo, Feiqiang; Li, Xiaolei; Liu, Yuan; Peng, Kuangye; Jiang, Xiaochen; Guo, Chenglong

    2018-04-10

    High ash-containing paper sludge which is rich in various metal oxides is employed in herb residue pyrolysis to enhance the yield of fuel gas and reduce tar yield in a drop tube fixed bed reactor. Effects of heat treatment temperature and blending ratio of paper sludge on the yields and composition of pyrolysis products (gas, tar and char) were investigated. Results indicate that paper sludge shows a significantly catalytic effect during the pyrolysis processes of herb residue, accelerating the pyrolysis reactions. The catalytic effect resulted in an increase in gas yield but a decrease in tar yield. The catalytic effect degree is affected by the paper sludge proportions, and the strongest catalytic effect of paper sludge is noted at its blending ratio of 50%. At temperature lower than 900 °C, the catalytic effect of paper sludge in the pyrolysis of herb residue promotes the formation of H 2 and CO 2 , inhibits the formation of CH 4 , but shows slight influence on the formations of CO, while the formation of the four gas components was all promoted at 900 °C. SEM results of residue char show that ash particles from paper sludge adhere to the surface of the herb residue char after pyrolysis, which may promote the pyrolysis process of herb residue for more gas releasing. FT-IR results indicate that most functional groups disappear after pyrolysis. The addition of paper sludge promotes deoxidisation and aromatization reactions of hetero atoms tars, forming heavier polycyclic aromatic hydrocarbons and leading to tar yield decrease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi.

    PubMed

    Ansari, M A; Butt, T M

    2011-06-01

    To determine the stability and conidial yield of two strains of the entomopathogenic fungus Metarhizium anisopliae and one strain of M. brunneum, being developed for the control of insect pests. The conidial yields and the shelf-life of the conidia of two commercially viable strains of M. anisopliae V275 (=F52) and ARSEF 4556 and one strain of M. brunneum (ARSEF 3297) were determined after harvesting conidia from in vitro subcultures on Sabouraud dextrose agar (SDA) and broken basmati rice. The strains were stable and showed no decline in virulence against Tenebrio molitor, even when subcultured successively 12 times on SDA. Conidia-bound Pr1 protease activity decreased in conidia harvested from SDA and mycosed cadavers after the 1st subculture, but increased in conidia produced on rice. The C:N ratio of conidia from mycosed cadavers was lower than that of conidia from rice or SDA. Irrespective of the number of subcultures, strain ARSEF 4556 produced significantly higher conidial yields than ARSEF 3297 and V275. The 12th subculture of V275 and ARSEF 3297 produced the lowest conidial yield. Shelf-life studies showed that conidia of strain ARSEF 4556 had a higher conidial viability than V275 and ARSEF 3297 after 4 months, stored at 4°C. The current study shows that determining strain stability and conidial yield through successive subculturing is an essential component for selecting the best strain for commercial purposes.   This is the first study to compare quality control parameters in the production of conidia on rice, and it shows that the level of Pr1 is comparatively high for inoculum produced on rice. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  5. Pyramiding genes and alleles for improving energy cane biomass yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Ray; Nagai, Chifumi; Yu, Qingyi

    The overall goal of this project is to identify genes and gene interaction networks contributed to the extreme segregants with 30 folds biomass yield difference in sugarcane F2 populations. Towards achieving this goal, yield trials of 108 F2 extreme segregants from S. officinarum LA Purple and S. robustum MOL5829 (LM population) were carried out in two locations in three years. A yield trial of the second F2 population from S. officinarum LA Purple and S. spontaneum US56-14-4 (LU population) was installed in the summer of 2014 and the first set of yield component data was collected. For genotyping, transcriptomes frommore » leaves and stalks of 70 extreme segregants of the LM F2 population and 119 individuals of the LU F2 populations were sequenced. The genomes of 91 F1 individuals from the LM populations are being sequenced to construct ultra-high density genetic maps for each of the two parents for both assisting the LA Purple genome assembling and for testing a hypothesis of female restitution. The genomes of 110 F2 individuals from single F1 in the LU population, a different set from the 119 F2 individuals used for transcriptome sequencing, are being sequenced for mapping genes and QTLs affecting biomass yield and for testing a hypothesis of female restitution. Gene expression analysis between extreme segregants of high and low biomass yield showed up-regulation of cellulose synthase, cellulose, and xylan synthase in high biomass yield segregants among 3,274 genes differentially expressed between the two extremes. Our transcriptome results revealed not only the increment of cell wall biosynthesis pathway is essential, but the rapid turnover of certain cell wall polymers as well as carbohydrate partitioning are also important for recycling and energy conservation during rapid cell growth in high biomass sugarcane. Seventeen differentially expressed genes in auxin, one in ethylene and one in gibberellin related signaling and biosynthesis pathways were identified, which could potentially regulate biomass yield. Differentially expressed genes, PIF3 and EIL5, involved in gibberellin and ethylene pathway could play an important role in biomass accumulation. Differential gene expression analysis was also carried out on the LU population. High-biomass yield was mainly determined by assimilation of carbon in source tissues. The high-level expression of fermentative genes in the low-biomass group was likely induced by their low-energy status. The haploid (tetraploid) genome of S. spontanium AP85-441 was sequenced with chromosome level assembly and allele defined annotation. This reference genome along with the upcoming S. officinarum genome will allow us to identify genes and alleles contributed to biomass yield.« less

  6. The Bolivian "Altiplano" and "Valle" sheep are two different peripatric breeds.

    PubMed

    Parés-Casanova, Pere M; Pérezgrovas Garza, Raúl

    2014-06-01

    Forty-nine sheep belonged to the Andean Altiplano region ("Altiplano") and 30 in the lowland regions of Bolivia ("Valle"), aged 1 to 4 years, were wool sampled to determine the extent of difference between these local breeds. Fibre length and the percentage of each type of fibre (long-thick, short-thin and kemp), yield and fibre diameter were measured. There was a highly significant difference between the two sheep populations that were not clearly separated in the first two principal component of a principal components analysis (PC); the first PC explained 67.1 % and the second PC explained 26.6 % of the total variation. The variables that contributed most to the separation of the sheep populations were the percentage of long-thick and short-thin fibres in the first PC and yield in the second PC. A discriminant analysis, which was used to classify individuals with respect to their breeding, achieved an accurate classification rate of 84.2 %. Thus, the Altiplano and Valle sheep must be viewed as two closely peripatric breeds rather than different "ecotypes", as more than 80 % could be correctly assigned to one of the breeds; however, the differences are based on composition of long-thick and short-thin fibres and yield after alcohol scouring.

  7. Pistil Smut Infection Increases Ovary Production, Seed Yield Components, and Pseudosexual Reproductive Allocation in Buffalograss

    PubMed Central

    Chandra, Ambika; Huff, David R.

    2014-01-01

    Sex expression of dioecious buffalograss [Bouteloua dactyloides Columbus (syn. Buchloë dactyloides (Nutt.) Engelm.)] is known to be environmentally stable with approximate 1:1, male to female, sex ratios. Here we show that infection by the pistil smut fungus [Salmacisia buchloëana Huff & Chandra (syn. Tilletia buchloëana Kellerman and Swingle)] shifts sex ratios of buffalograss to be nearly 100% phenotypically hermaphroditic. In addition, pistil smut infection decreased vegetative reproductive allocation, increased most seed yield components, and increased pseudosexual reproductive allocation in both sex forms compared to uninfected clones. In female sex forms, pistil smut infection resulted in a 26 fold increase in ovary production and a 35 fold increase in potential harvest index. In male sex forms, pistil smut infection resulted in 2.37 fold increase in floret number and over 95% of these florets contained a well-developed pistil. Although all ovaries of infected plants are filled with fungal teliospores and hence reproductively sterile, an average male-female pair of infected plants exhibited an 87 fold increase in potential harvest index compared to their uninfected clones. Acquiring an ability to mimic the effects of pistil smut infection would enhance our understanding of the flowering process in grasses and our efforts to increase seed yield of buffalograss and perhaps other grasses. PMID:27135522

  8. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: a mechanistic study using femtosecond fluorescence up-conversion technique.

    PubMed

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-28

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4(')-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and∕or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π∗ character may also decay via intersystem crossing to the n-π∗ triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents.

  9. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: A mechanistic study using femtosecond fluorescence up-conversion technique

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-01

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4'-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and/or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π* character may also decay via intersystem crossing to the n-π* triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents.

  10. Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics.

    PubMed

    Mojtahed Zadeh Asl, Rozita; Niakousari, Mehrdad; Hashemi Gahruie, Hadi; Saharkhiz, Mohammad Jamal; Mousavi Khaneghah, Amin

    2018-05-01

    The effect of two-stage ohmic-assisted hydrodistillation (TSOH) on the extraction and characteristics of essential oils (EOs) from the Artemisia aucheri Boiss. was studied, and the results were compared to conventional hydrodistillation (HD). According to the results, the yield of EOs obtained through TSOH was almost 30% higher than those extracted by HD in nearly one-quarter of a time used by the HD. Scanning electron micrographs of A. aucheri leaves showed almost complete eruption of EO glands and their surrounding area in TSOH extraction method, hence achieving higher yield. The components of the EOs obtained through TSOH were only slightly different from those of HD. GC/MS analysis indicated some differences in the quantity of the main components, too. The main components of EOs were identified as Thymol, Linalool, Geraniol, Camphor, and 1, 8-Cineole, Davana ether and Cis-Davanone. Thymol (~17%) and Cis-Davanone (~23%) were the highest quantity in the EOs extracted from TSOH and HD, respectively. The variation of antioxidant and antimicrobial activities of the EOs may be attributed to these differences in the percentage of the main components. The radical scavenging activity of the EOs obtained by TSOH was almost twice that of HD. Based on antimicrobial activity assays, the EOs were efficient against S. aureus (a Gram-positive), E. coli (a Gram-negative), and S. cerevisiae (yeast). However, the efficacy was higher in gram-positive than gram-negative bacteria and yeast. The results indicate TSOH has a potential to produce EOs from herbal plants at a faster rate, higher yield, being probably more efficient in terms of energy although having similar antimicrobial and antioxidant efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  12. Gold-catalyzed three-component annulation: efficient synthesis of highly functionalized dihydropyrazoles from alkynes, hydrazines, and aldehydes or ketones.

    PubMed

    Suzuki, Yamato; Naoe, Saori; Oishi, Shinya; Fujii, Nobutaka; Ohno, Hiroaki

    2012-01-06

    Polysubstituted dihydropyrazoles were directly obtained by a gold-catalyzed three-component annulation. This reaction consists of a Mannich-type coupling of alkynes with N,N'-disubstituted hydrazines and aldehydes/ketones followed by intramolecular hydroamination. Cascade cyclization using 1,2-dialkynylbenzene derivatives as the alkyne component was also performed producing fused tricyclic dihydropyrazoles in good yields. © 2011 American Chemical Society

  13. 75 FR 81320 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    .... For example, to calculate the daily total return today, the previous day's closing market price for the component would be subtracted from today's closing market price for the component to determine a... dividend if today were an ``ex-dividend'' date to yield the Price Plus Dividend Difference for the...

  14. Palladium-catalyzed three-component reaction of N-tosyl hydrazones, isonitriles and amines leading to amidines.

    PubMed

    Dai, Qiang; Jiang, Yan; Yu, Jin-Tao; Cheng, Jiang

    2015-12-04

    A palladium-catalyzed three-component reaction between N-tosyl hydrazones, aryl isonitriles and amines was developed, leading to amidines in moderate to good yields. This procedure features the rapid construction of amidine frameworks with high diversity and complexity. Ketenimines serve as intermediates, which encounter nucleophilic attack by amines to produce amidines.

  15. Unattended Exposure to Components of Speech Sounds Yields Same Benefits as Explicit Auditory Training

    ERIC Educational Resources Information Center

    Seitz, Aaron R.; Protopapas, Athanassios; Tsushima, Yoshiaki; Vlahou, Eleni L.; Gori, Simone; Grossberg, Stephen; Watanabe, Takeo

    2010-01-01

    Learning a second language as an adult is particularly effortful when new phonetic representations must be formed. Therefore the processes that allow learning of speech sounds are of great theoretical and practical interest. Here we examined whether perception of single formant transitions, that is, sound components critical in speech perception,…

  16. In Spite of Indeterminacy Many Common Factor Score Estimates Yield an Identical Reproduced Covariance Matrix

    ERIC Educational Resources Information Center

    Beauducel, Andre

    2007-01-01

    It was investigated whether commonly used factor score estimates lead to the same reproduced covariance matrix of observed variables. This was achieved by means of Schonemann and Steiger's (1976) regression component analysis, since it is possible to compute the reproduced covariance matrices of the regression components corresponding to different…

  17. The impact of large-scale circulation patterns on summer crop yields in IP

    NASA Astrophysics Data System (ADS)

    Capa Morocho, Mirian; Rodríguez Fonseca, Belén; Ruiz Ramos, Margarita

    2014-05-01

    Large-scale circulations patterns (ENSO, NAO) have been shown to have a significant impact on seasonal weather, and therefore on crop yield over many parts of the world(Garnett and Khandekar, 1992; Aasa et al., 2004; Rozas and Garcia-Gonzalez, 2012). In this study, we analyze the influence of large-scale circulation patterns and regional climate on the principal components of maize yield variability in Iberian Peninsula (IP) using reanalysis datasets. Additionally, we investigate the modulation of these relationships by multidecadal patterns. This study is performed analyzing long time series of maize yield, only climate dependent, computed with the crop model CERES-maize (Jones and Kiniry, 1986) included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5). To simulate yields, reanalysis daily data of radiation, maximum and minimum temperature and precipitation were used. The reanalysis climate data were obtained from National Center for Environmental Prediction (20th Century and NCEP) and European Centre for Medium-Range Weather Forecasts (ECMWF) data server (ERA 40 and ERA Interim). Simulations were run at five locations: Lugo (northwestern), Lerida (NE), Madrid (central), Albacete (southeastern) and Córdoba (S IP) (Gabaldón et al., 2013). From these time series standardized anomalies were calculated. Afterwards, time series were time filtered to focus on the interannual-to-multiannual variability, splitting up in two components: low frequency (LF) and high frequency (HF) time scales. The principal components of HF yield anomalies in IP were compared with a set of documented patterns. These relationships were compared with multidecadal patterns, as Atlanctic Multidecadal Oscillations (AMO) and Interdecadal Pacific Oscillations (IPO). The results of this study have important implications in crop forecasting. In this way, it may have a positive impact on both public (agricultural planning) and private (decision support to farmers, insurance companies) sectors, to take advantage of favorable conditions or reduce the effect of adverse conditions. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Aasa, A., Jaagus, J., Ahas, R. and Sepp, M. 2004. The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. International Journal of Climatology 24, 1551-1564. Gabaldón, C. et al. 2013. Evaluation of local strategies to climate change of maize crop in Andalusia for the first half of 21st century. European Geosciences Union - General Assembly2013 Vol. 15 (Vienna - Austria, 2013). Garnett, E. R. and Khandekar, M. L. 1992. The impact of large-scale atmospheric circulations and anomalies on Indian monsoon droughts and floods and on world grain yields-a statistical analysis. Agricultural and Forest Meteorology 61, 113-128. Jones, C. and Kiniry, J. 1986. CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, 194. Rozas, V. and Garcia-Gonzalez, I. 2012. Non-stationary influence of El Nino-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. Int J Biometeorol 56, 787-800.

  18. Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L.

    PubMed

    Gaikwad, Kiran B; Singh, Naveen; Bhatia, Dharminder; Kaur, Rupinder; Bains, Navtej S; Bharaj, Tajinder S; Singh, Kuldeep

    2014-01-01

    Utilization of "hidden genes" from wild species has emerged as a novel option for enrichment of genetic diversity for productivity traits. In rice we have generated more than 2000 lines having introgression from 'A' genome-donor wild species of rice in the genetic background of popular varieties PR114 and Pusa44 were developed. Out of these, based on agronomic acceptability, 318 lines were used for developing rice hybrids to assess the effect of introgressions in heterozygous state. These introgression lines and their recurrent parents, possessing fertility restoration ability for wild abortive (WA) cytoplasm, were crossed with cytoplasmic male sterile (CMS) line PMS17A to develop hybrids. Hybrids developed from recurrent parents were used as checks to compare the performance of 318 hybrids developed by hybridizing alien introgression lines with PMS17A. Seventeen hybrids expressed a significant increase in yield and its component traits over check hybrids. These 17 hybrids were re-evaluated in large-size replicated plots. Of these, four hybrids, viz., ILH299, ILH326, ILH867 and ILH901, having introgressions from O. rufipogon and two hybrids (ILH921 and ILH951) having introgressions from O. nivara showed significant heterosis over parental introgression line, recurrent parents and check hybrids for grain yield-related traits. Alien introgressions were detected in the lines taken as male parents for developing six superior hybrids, using a set of 100 polymorphic simple sequence repeat (SSR) markers. Percent introgression showed a range of 2.24 from in O. nivara to 7.66 from O. rufipogon. The introgressed regions and their putative association with yield components in hybrids is reported and discussed.

  19. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny

    PubMed Central

    Mendes-Moreira, Pedro; Alves, Mara L.; Satovic, Zlatko; dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E.; Hallauer, Arnel R.; Vaz Patto, Maria Carlota

    2015-01-01

    Maize ear fasciation Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Material and Methods Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Results and Discussion Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Conclusions Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning. PMID:25923975

  20. High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon

    PubMed Central

    Harsant, Jeffrey; Pavlovic, Lazar; Chiu, Greta; Sultmanis, Stefanie; Sage, Tammy L.

    2013-01-01

    The effect of high temperatures on harvest index (HI) and morphological components that contribute to HI was investigated in two lines (Bd21 and Bd21-3) of Brachypodium distachyon, a C3 grass recognized as a tractable plant, to address critical issues associated with enhancing cereal crop yields in the presence of global climate change. The results demonstrated that temperatures ≥32 °C eliminated HI. Reductions in yield at 32 °C were due primarily to declines in pollen viability, retention of pollen in anthers, and pollen germination, while abortion of microspores by the uninucleate stage that was correlated with abnormal tapetal development resulted in yield failure at 36 °C. Increasing temperatures from 24 to 32 °C resulted in reductions in tiller numbers but had no impact on axillary branch numbers per tiller. Grain developed at 24 and 28 °C primarily in tiller spikes, although spikes on axillary branches also formed grain. Grain quantity decreased in tiller spikes but increased in axillary branch spikes as temperatures rose from 24 to 28 °C. Differential patterns of axillary branching and floret development within spikelets between Bd21 and Bd21-3 resulted in higher grain yield in axillary branches of Bd21-3 at 28 °C. The response of male reproductive development and tiller branching patterns in B. distachyon to increasing temperatures mirrors that in other cereal crops, providing support for the use of this C3 grass in assessing the molecular control of HI in the presence of global warming. PMID:23771979

  1. Effect of acidic and enzymatic pretreatment on the analysis of mountain tea (Sideritis spp.) volatiles via distillation and ultrasound-assisted extraction.

    PubMed

    Dimaki, Virginia D; Iatrou, Gregoris; Lamari, Fotini N

    2017-11-17

    A number of beneficial medicinal properties are attributed to the extract and essential oil of the aerial parts of Sideritis species (Lamiaceae). Hydrodistillation of the aerial parts of wild Sideritis clandestina ssp. peloponnesiaca (an endemic taxon in northern Peloponnesus, Greece) gave a low essential oil yield (<0.12%); about 65 components, mainly α-pinene, β-caryophyllene, β-pinene, globulol, caryophyllene oxide, were identified via GC-MS. Internal and external standards were used for quantification. For miniaturization of the procedure, we studied side-by-side maceration (MAC) and ultrasound-assisted extraction (UAE) methods, as well as the effect of preincubation in acidic medium (pH 4.8) for 75min at 37°C with or without a mixture of cellulase, hemicellulase and pectinase. Maceration and UAE provide consistent chemoprofiling of the main volatile compounds (about 20); UAE has lower demands on time, solvent, plant material (3g) and results in higher yields. Pretreatment with enzymes can increase the respective yields of hydrodistillation and UAE, but this effect is definitely attributed to the concurrent acidic pretreatment. In conclusion, incubation of plant material prior to hydrodistillation or UAE in citrate buffer, pH 4.8, significantly enhances the overall yield and number of components obtained and is recommended for the analysis of Sideritis volatiles. The acidic pre-treatment method was also successfully applied to analysis of cultivated Sideritis raeseri Boiss. & Heldr. in Boiss. ssp. raeseri; α-pinene, α- and γ-terpinene and β-thujene were predominant albeit in different percentages in flowers and leaves. Copyright © 2017. Published by Elsevier B.V.

  2. Heterologous Expression of ATG8c from Soybean Confers Tolerance to Nitrogen Deficiency and Increases Yield in Arabidopsis

    PubMed Central

    Liu, Dong; Chai, Wenting; Gong, Qingqiu; Wang, Ning Ning

    2012-01-01

    Nitrogen is an essential element for plant growth and yield. Improving Nitrogen Use Efficiency (NUE) of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. To identify new NUE genes is therefore an important task in molecular breeding. Macroautophagy (autophagy) is an intracellular process in which damaged or obsolete cytoplasmic components are encapsulated in double membraned vesicles termed autophagosomes, then delivered to the vacuole for degradation and nutrient recycling. One of the core components of autophagosome formation, ATG8, has been shown to directly mediate autophagosome expansion, and the transcript of which is highly inducible upon starvation. Therefore, we postulated that certain homologs of Saccharomyces cerevisiae ATG8 (ScATG8) from crop species could have potential for NUE crop breeding. A soybean (Glycine max, cv. Zhonghuang-13) ATG8, GmATG8c, was selected from the 11 family members based on transcript analysis upon nitrogen deprivation. GmATG8c could partially complement the yeast atg8 mutant. Constitutive expression of GmATG8c in soybean callus cells not only enhanced nitrogen starvation tolerance of the cells but accelerated the growth of the calli. Transgenic Arabidopsis over-expressing GmATG8c performed better under extended nitrogen and carbon starvation conditions. Meanwhile, under optimum growth conditions, the transgenic plants grew faster, bolted earlier, produced larger primary and axillary inflorescences, eventually produced more seeds than the wild-type. In average, the yield was improved by 12.9%. We conclude that GmATG8c may serve as an excellent candidate for breeding crops with enhanced NUE and better yield. PMID:22629371

  3. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny.

    PubMed

    Mendes-Moreira, Pedro; Alves, Mara L; Satovic, Zlatko; Dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E; Hallauer, Arnel R; Vaz Patto, Maria Carlota

    2015-01-01

    Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.

  4. Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters

    NASA Astrophysics Data System (ADS)

    Panaseti, Pandelitsa; Damianou, Yiolanda; Georgiou, Georgios C.; Housiadas, Kostas D.

    2018-03-01

    The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. ["Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach," J. Non-Newtonian Fluid Mech. 221, 66-75 (2015)] for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only on x and the semi-width of the unyielded core is found to be given by σ(x) = -(1 + 1/n)h(x) + C, where n is the power-law exponent and the constant C depends on the Bingham number and the consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the pressure distribution is not affected by the yield-stress function. With the present model, the pressure is calculated numerically solving an integro-differential equation and then the position of the yield surface and the two velocity components are computed using analytical expressions. Some analytical solutions are also derived for channels of constant and linearly varying widths. The lubrication solutions for other geometries are calculated numerically. The implications of the pressure-dependence of the material parameters and the limitations of the method are discussed.

  5. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezghani, Najla; Mnif, Mouna; Kacem, Maha

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisianmore » girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.« less

  6. Triage of oxidation-prone proteins by Sqstm1/p62 within the mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Minjung; Shin, Jaekyoon, E-mail: jkshin@med.skku.ac.kr

    2011-09-16

    Highlights: {yields} The mitochondrion contains its own protein quality control system. {yields} p62 localizes within the mitochondria and forms mega-dalton sized complexes. {yields} p62 interacts with oxidation-prone proteins and the proteins of quality control. {yields} In vitro delivery of p62 improves mitochondrial functions. {yields} p62 is implicated as a participant in mitochondrial protein quality control. -- Abstract: As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described.more » In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.« less

  7. Dynamical coupled-channels study of {pi}N{yields}{pi}{pi}N reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamano, H.; Julia-Diaz, B.; Department d'Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona E-08028 Barcelona

    As a step toward performing a complete coupled-channels analysis of the world data of {pi}N,{gamma}*N{yields}{pi}N,{eta}N,{pi}{pi}N reactions, the {pi}N{yields}{pi}{pi}N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C 76, 065201 (2007). The channels included are {pi}N,{eta}N, and {pi}{pi}N which has {pi}{delta},{rho}N, and {sigma}N resonant components. The nonresonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N*) states that are dressed by the nonresonant interactions as constrained by the unitarity condition. The data of total cross sectionsmore » and {pi}N and {pi}{pi} invariant mass distributions of {pi}{sup +}p{yields}{pi}{sup +}{pi}{sup +}n,{pi}{sup +}{pi}{sup 0}p and {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n,{pi}{sup -}{pi}{sup 0}p,{pi}{sup 0}{pi}{sup 0}n reactions from threshold to the invariant mass W=2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference among the contributions from the {pi}{delta},{sigma}N, and {rho}N channels. The large interference between the resonant and nonresonant amplitudes is also demonstrated. Possible future developments are discussed.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goni, M.A.; Hedges, J.I.

    An extensive suite of C{sub 14}-C{sub 18} hydroxylated fatty acids of cutin origin was identified among the nonlignin CuO reaction products from tissues of 67 different plant species. These mid-chain and {omega}-hydroxylated cutin acids together accounted for 0.5 to 4% of the organic carbon (OC) in these nonwoody vascular plant tissues and were produced in characteristically different yields by the various plant types. Nonvascular plants, including bulk phytoplankton, kelps, mosses, and liverworts, did not yield measurable amounts of cutin acids, except for trace levels of {omega}-hydroxytetradecanoic acid detected in kelps. Most of the lower vascular plants, such as clubmosses andmore » ferns, produced simple cutin acid suites composed mainly of {omega}-hydroxy C{sub 14} and C{sub 16} acids. Gymnosperm needles yielded cutin acid suites dominated by C{sub 16} acids, in which 9,16- and 10,16-dihydroxyhexadecanoic acids were characteristically abundant. Relatively high yields of C{sub 18} acids were obtained from angiosperm tissues, among which dicotyledons exhibited a predominance of 9,10,18-trihydroxyoctadecanoic acid over all the other C{sub 18} acids. The chromatographic peak corresponding to dihydroxyhexadecanoic acid was a mixture of the positional isomers 8,16-, 9,16-, and 10,16-dihydroxyhexadecanoic acids, whose relative abundances uniquely characterized monocotyledon tissues and distinguished among different types of gymnosperm tissues. Based on the cutin acid yields obtained from the different plant types, several geochemical parameters were developed to distinguish up to six different cutin-bearing plant groups as possible components of sedimentary mixtures.« less

  9. Evaluation of wheat growth, morphological characteristics, biomass yield and quality in Lunar Palace-1, plant factory, green house and field systems

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Shao, Lingzhi; Fu, Yuming; Wang, Minjuan; Xie, Beizhen; Yu, Juan; Liu, Hong

    2015-06-01

    Wheat (Triticum aestivum L.) is one of the most important agricultural crops in both space such as Bioregenerative Life Support Systems (BLSS) and urban agriculture fields, and its cultivation is affected by several environmental factors. The objective of this study was to investigate the influences of different environmental conditions (BLSS, plant factory, green house and field) on the wheat growth, thousand kernel weight (TKW), harvest index (HI), biomass yield and quality during their life cycle. The results showed that plant height partially influenced by the interaction effects with environment, and this influence decreased gradually with the plant development. It was found that there was no significant difference between the BLSS and plant factory treatments on yields per square, but the yield of green house and field treatments were both lower. TKW and HI in BLSS and plant factory were larger than those in the green house and field. However, grain protein concentration can be inversely correlated with grain yield. Grain protein concentrations decreased under elevate CO2 condition and the magnitude of the reductions depended on the prevailing environmental condition. Conditional interaction effects with environment also influenced the components of straw during the mature stage. It indicated that CO2 enriched environment to some extent was better for inedible biomass degradation and had a significant effect on "source-sink flow" at grain filling stage, which was more beneficial to recycle substances in the processes of the environment regeneration.

  10. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle.

    PubMed

    Boerman, J P; Lock, A L

    2014-11-01

    Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1g/100g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk components between the FFA and TAG treatments. The UFA treatments increased feed efficiency (energy-corrected milk/DM intake), averaging 1.42, 1.53, and 1.48 for CON, FFA, and TAG treatments, respectively. Although milk fat yield was not affected, the UFA treatments decreased the yield of de novo (<16-carbon) synthesized FA (40 g/d) and increased the yield of preformed (>16-carbon) FA (134 g/d). Yield of FA from both sources (16-carbon FA) was reduced by the UFA treatments but to a different extent for FFA versus TAG (72 vs. 100g/d). An increase was detected in the concentration of trans-10 C18:1 and a trend for an increase in trans-10,cis-12 C18:2 and trans-9,cis-11 C18:2 for the UFA treatments compared with CON. Under the dietary conditions tested, UFA treatments supplemented at 2% diet DM as either soybean FA distillate or soybean oil increased milk yield but did not effectively cause a reduction in milk fat yield, with preformed FA replacing de novo synthesized FA in milk fat. Further research is required to determine if the response to changes in dietary free and esterified FA concentrations is different in diets that differ in their risk for milk fat depression. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Genetic parameters of cheese yield and curd nutrient recovery or whey loss traits predicted using Fourier-transform infrared spectroscopy of samples collected during milk recording on Holstein, Brown Swiss, and Simmental dairy cows.

    PubMed

    Cecchinato, A; Albera, A; Cipolat-Gotet, C; Ferragina, A; Bittante, G

    2015-07-01

    Cheese yield is the most important technological parameter in the dairy industry in many countries. The aim of this study was to infer (co)variance components for cheese yields (CY) and nutrient recoveries in curd (REC) predicted using Fourier-transform infrared (FTIR) spectroscopy of samples collected during milk recording on Holstein, Brown Swiss, and Simmental dairy cows. A total of 311,354 FTIR spectra representing the test-day records of 29,208 dairy cows (Holstein, Brown Swiss, and Simmental) from 654 herds, collected over a 3-yr period, were available for the study. The traits of interest for each cow consisted of 3 cheese yield traits (%CY: fresh curd, curd total solids, and curd water as a percent of the weight of the processed milk), 4 curd nutrient recovery traits (REC: fat, protein, total solids, and the energy of the curd as a percent of the same nutrient in the processed milk), and 3 daily cheese production traits (daily fresh curd, total solids, and the water of the curd per cow). Calibration equations (freely available upon request to the corresponding author) were used to predict individual test-day observations for these traits. The (co)variance components were estimated for the CY, REC, milk production, and milk composition traits via a set of 4-trait analyses within each breed. All analyses were performed using REML and linear animal models. The heritabilities of the %CY were always higher for Holstein and Brown Swiss cows (0.22 to 0.33) compared with Simmental cows (0.14 to 0.18). In general, the fresh cheese yield (%CYCURD) showed genetic variation and heritability estimates that were slightly higher than those of its components, %CYSOLIDS and %CYWATER. The parameter RECPROTEIN was the most heritable trait in all the 3 breeds, with values ranging from 0.32 to 0.41. Our estimation of the genetic relationships of the CY and REC with milk production and composition revealed that the current selection strategies used in dairy cattle are expected to exert only limited effects on the REC traits. Instead, breeders may be able to exploit genetic variations in the %CY, particularly RECFAT and RECPROTEIN. This last component is not explained by the milk protein content, suggesting that its direct selection could be beneficial for cheese production aptitude. Collectively, our findings indicate that breeding strategies aimed at enhancing CY and REC could be easily and rapidly implemented for dairy cattle populations in which FTIR spectra are routinely acquired from individual milk samples. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  13. An Assembly Funnel Makes Biomolecular Complex Assembly Efficient

    PubMed Central

    Zenk, John; Schulman, Rebecca

    2014-01-01

    Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yields that arise because of the many simultaneous interactions allowed between the components and intermediates of a complex. Efficient assembly occurs when nucleation is fast and growth pathways are few, i.e. when there is an assembly “funnel”. For typical complexes, an assembly funnel occurs in a narrow window of conditions whose location is highly complex specific. However, by redesigning the components this window can be drastically broadened, so that complexes can form quickly across many conditions. The generality of this approach suggests assembly funnel design as a foundational strategy for robust biomolecular complex synthesis. PMID:25360818

  14. Effect of second cooling on the chemical components of essential oils from orange peel (Citrus sinensis).

    PubMed

    Chen, Yulong; Wu, Jijun; Xu, Yujuan; Fu, Manqing; Xiao, Gengsheng

    2014-09-03

    A second cooling was added to the oil collectors of an improved Clevenger-type apparatus (ICT) to investigate the thermal reaction of essential oils from orange peel compared to a traditional Clevenger-type apparatus (CT). The results demonstrated the yield rate of essential oil from ICT was significantly higher (p < 0.05) than that from CT. The major components of the essential oils consisted of monoterpenes, such as d-limonene, β-myrcene, β-pinene, γ-terpinene, α-pinene. Interestingly, ICT prevented the thermal reaction-the transformation of β-myrcene to β-thujene-and reduced the oxidation on α-pinene and β-pinene of the essential oil in comparison to CT. In addition, the yield rate of γ-terpinene can also be improved via ICT compared to CT. Thus, ICT is an effective improvement to traditional CT.

  15. Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coleman, Rashadd L.

    Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.

  16. Online Vibration Monitoring of a Water Pump Machine to Detect Its Malfunction Components Based on Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Rahmawati, P.; Prajitno, P.

    2018-04-01

    Vibration monitoring is a measurement instrument used to identify, predict, and prevent failures in machine instruments[6]. This is very needed in the industrial applications, cause any problem with the equipment or plant translates into economical loss and they are mostly monitored component off-line[2]. In this research, a system has been developed to detect the malfunction of the components of Shimizu PS-128BT water pump machine, such as capacitor, bearing and impeller by online measurements. The malfunction components are detected by taking vibration data using a Micro-Electro-Mechanical System(MEMS)-based accelerometer that are acquired by using Raspberry Pi microcomputer and then the data are converted into the form of Relative Power Ratio(RPR). In this form the signal acquired from different components conditions have different patterns. The collected RPR used as the base of classification process for recognizing the damage components of the water pump that are conducted by Artificial Neural Network(ANN). Finally, the damage test result will be sent via text message using GSM module that are connected to Raspberry Pi microcomputer. The results, with several measurement readings, with each reading in 10 minutes duration for each different component conditions, all cases yield 100% of accuracies while in the case of defective capacitor yields 90% of accuracy.

  17. Reliability Estimating Procedures for Electric and Thermochemical Propulsion Systems. Volume 2

    DTIC Science & Technology

    1977-02-01

    final form. For some components, the parameters are calculated from design factors (e.g., design life) that must be input when requested. Each component...Components Components are regarded as statis- tically identical if they are drawn from the same production lot because the initial and sub- sequent...table yields b 0.0023 The - factors are obtained from Tables 2.2.4-1 through 2.2.4-5: Factor Value rE Space, flight 1 JANTXV quality 0.5 7A Small signal

  18. The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions

    NASA Astrophysics Data System (ADS)

    Ertel, John R.; Hedges, John I.

    1984-10-01

    Vanillyl, syringyl and cinnamyl phenols occur as CuO oxidation products of humic, fulvic and base-insoluble residual fractions from soils, peat and nearshore marine sediments. However, none of these lignin-derived phenols were released by CuO oxidation of deepsea sediment or its base-extractable organic fractions. Lignin analysis indicated that peat and coastal marine sediments contained significantly higher levels of recognizable vascular plant carbon (20-50%) than soils and offshore marine sediments (0-10%). Although accounting for less than 20% of the total sedimentary (bulk) lignin, lignin components of humic acid fractions compositionally and quantitatively resembled the corresponding bulk samples and baseinsoluble residues. Recognizable lignin, presumably present as intact phenylpropanoid units, accounted for up to 5% of the carbon in peat and coastal humic acids but less than 1% in soil humic acids. Fulvic acid fractions uniformly yielded less lignin-derived phenols in mixtures that were depleted in syringyl and cinnamyl phenols relative to the corresponding humic acid fractions. Within the vanillyl and syringyl families the relative distribution of acidic and aldehydic phenols is a sensitive measure of the degree of oxidative alteration of the lignin component The high acid/aldehyde ratios and the low phenol yields of soils and their humic fractions compared to peat and coastal sediments indicate extensive degradation of the lignin source material. Likewise, the progressively higher acid/aldehyde ratios and lower phenol yields along the sequence: plant tissues (plant debris)-humic acids-fulvic acids suggest that this pattern represents the diagenetic sequence for the aerobic degradation of lignin biopolymers.

  19. Genetic Analysis of Ca 2+ Priming in Arabidopsis Guard Cell Stomatal Closure in Response to the Drought Hormone Abscisic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Aaron B.

    2014-11-01

    A primary objective of modern agriculture and biofuel production is to utilize arable land to its fullest potential. However, sub-optimal growing conditions—arising from abiotic stresses such as drought, soil salinity, low humidity, cold, and heat—reduce crop yield and quality. Optimal yield under both stressed and non-stressed conditions requires the plant to activate coping mechanisms at a level commensurate with the severity of the drought stress. The osmotic sensors and associated regulatory mechanisms that initiate drought- and salt-tolerance responses in plants are largely unknown. This research aimed to identify and characterize these initial sensory components.

  20. Radiocarbon dating of extinct fauna in the Americas recovered from tar pits

    NASA Astrophysics Data System (ADS)

    Jull, A. J. T.; Iturralde-Vinent, M.; O'Malley, J. M.; MacPhee, R. D. E.; McDonald, H. G.; Martin, P. S.; Moody, J.; Rincón, A.

    2004-08-01

    We have obtained radiocarbon dates by accelerator mass spectrometry on bones of extinct large mammals from tar pits. Results on some samples of Glyptodon and Holmesina (extinct large mammals similar to armadillos) yielded ages of >25 and >21 ka, respectively. We also studied the radiocarbon ages of three different samples of bones from the extinct Cuban ground sloth, Parocnus bownii, which yielded dates ranging from 4960 ± 280 to 11 880 ± 420 yr BP. In order to remove the tar component pretreat the samples sufficiently to obtain reliable dates, we cleaned the samples by Soxhlet extraction in benzene. Resulting samples of collagenous material were often small.

  1. Revolutionary opportunities for materials and structures study

    NASA Technical Reports Server (NTRS)

    Schweiger, F. A.

    1987-01-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  2. First examples of organosilica-based ionogels: synthesis and electrochemical behavior

    PubMed Central

    Löbbicke, Ruben; Kirchner, Barbara; Leroux, Fabrice

    2017-01-01

    The article describes the synthesis and properties of new ionogels for ion transport. A new preparation process using an organic linker, bis(3-(trimethoxysilyl)propyl)amine (BTMSPA), yields stable organosilica matrix materials. The second ionogel component, the ionic liquid 1-methyl-3-(4-sulfobutyl)imidazolium 4-methylbenzenesulfonate, [BmimSO3H][PTS], can easily be prepared with near-quantitative yields. [BmimSO3H][PTS] is the proton conducting species in the ionogel. By combining the stable organosilica matrix with the sulfonated ionic liquid, mechanically stable, and highly conductive ionogels with application potential in sensors or fuel cells can be prepared. PMID:28487817

  3. Diversity pattern in Sesamum mutants selected for a semi-arid cropping system.

    PubMed

    Murty, B R; Oropeza, F

    1989-02-01

    Due to the complex requirements of moisture stress, substantial genetic diversity with a wide array of character combinations and effective simultaneous selection for several variables is necessary for improving the productivity and adaptation of a component crop in order for it to fit into a cropping system under semi-arid tropical conditions. Sesamum indicum L. is grown in Venezuela after rice/sorghum/or maize under such conditions. A mutation breeding program was undertaken using six locally adapted varieties to develop genotypes suitable for the above system. The diversity pattern for nine variables was assessed by multivariate analysis in 301 M4 progenies. Analysis of the characteristic roots and principal components in three methods of selection, i.e., M2 bulks (A), individual plant selection throughout (B), and selection in M3 for single variable (C), revealed differences in the pattern of variation between varieties, selection methods, and varieties x methods interactions. Method B was superior to the others and gave 17 of the 21 best M5 progenies. 'Piritu' and 'CF' varieties yielded the most productive progenies in M5 and M6. Diversity was large and selection was effective for such developmental traits as earliness and synchrony, combined with multiple disease resistance, which could be related to their importance by multivariate analyses. Considerable differences in the variety of character combinations among the high yielding. M5 progenies of 'CF' and 'Piritu' suggested possible further yield improvement. The superior response of 'Piritu' and 'CF' over other varieties in yield and adaptation was due to major changes in plant type and character associations. Multilocation testing of M5 generations revealed that the mutant progenies had a 40%-100% yield superiority over the parents; this was combined with earliness, synchrony, and multiple disease resistance, and was confirmed in the M6 generation grown on a commercial scale. This study showed that multivariate analysis is an effective tool for assessing diversity patterns, choice of appropriate variety, and selection methodology in order to make rapid progress in meeting the complex requirements of semi-arid cropping systems.

  4. Potential for yield improvement in combined rip-first and crosscut-first rough mill processing

    Treesearch

    Ed Thomas; Urs Buehlmann

    2016-01-01

    Traditionally, lumber cutting systems in rough mills have either first ripped lumber into wide strips and then crosscut the resulting strips into component lengths (rip-first), or first crosscut the lumber into component lengths, then ripped the segments to the required widths (crosscut-first). Each method has its advantages and disadvantages. Crosscut-first typically...

  5. Mutations in durum wheat SBEII genes conferring increased amylose and resistant starch affect grain yield components, semolina and pasta quality and fermentation responses in rats

    USDA-ARS?s Scientific Manuscript database

    Increased amylose in wheat (Triticum spp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that provide human health benefits. Since wheat foods are an important component of t...

  6. Calibration and modification for the Pacific Northwest of the New Zealand Douglas-fir silvicultural growth model.

    Treesearch

    James W. Flewelling; David D. Marshall

    2008-01-01

    This paper describes a growth model for young plantations of Douglas-fir(Pseudotsuga menziesii (Mirb.) Franco) growing in the Pacific Northwest. The overall model has three major components. The first is a yield model for diameter and height distributions describing stands prior to pruning or precommercial thinning. The second component is an...

  7. A Height–Diameter Curve for Longleaf Pine Plantations in the Gulf Coastal Plain

    Treesearch

    Daniel Leduc; Jeffery Goelz

    2009-01-01

    Tree height is a critical component of a complete growth-and-yield model because it is one of the primary components used in volume calculation. To develop an equation to predict total height from dbh for longleaf pine (Pinus palustris Mill.) plantations in the West Gulf region, many different sigmoidal curve forms, weighting functions, and ways of...

  8. Synthesis of Quinolines through Three-Component Cascade Annulation of Aryl Diazonium Salts, Nitriles, and Alkynes.

    PubMed

    Wang, Hao; Xu, Qian; Shen, Sheng; Yu, Shouyun

    2017-01-06

    An efficient and rapid synthesis of multiply substituted quinolines is described. This method is enabled by a three-component cascade annulation of readily available aryl diazonium salts, nitriles, and alkynes. This reaction is catalyst- and additive-free. Various aryl diazonium salts, nitriles, and alkynes can participate in this transformation, and the yields are up to 83%.

  9. Surface effect investigation on multipactor in microwave components using the EM-PIC method

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ye, Ming; He, Yong-Ning; Cui, Wan-Zhao; Wang, Dan

    2017-11-01

    Multipactor poses a great risk to microwave components in space and its accurate controllable suppression is still lacking. To evaluate the secondary electron emission (SEE) of arbitrary surface states on multipactor, metal samples fabricated with ideal smoothness, random roughness, and micro-structures on the surface are investigated through SEE experiments and multipactor simulations. An accurate quantitative relationship between the SEE parameters and the multipactor discharge threshold in practical components has been established through Electromagnetic Particle-In-Cell (EM-PIC) simulation. Simulation results of microwave components, including the impedance transformer and the coaxial filter, exhibit an intuitive correlation between the critical SEE parameters, varied due to different surface states, and multipactor thresholds. It is demonstrated that it is the surface micro-structures with certain depth and morphology that determine the average yield of secondaries, other than the random surface relieves. Both the random surface relieves and micro-structures have a scattering effect on SEE, and the yield is prone to be identical upon different elevation angles of incident electrons. It possesses a great potential in the optimization and improvement of suppression technology without the exhaustion of the technological parameter.

  10. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; ...

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  11. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk; Nikonenko, Elena, E-mail: vilatomsk@mail.ru

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a differentmore » effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.« less

  12. Bronchoalveolar lavage in malignancy.

    PubMed

    Poletti, Venerino; Poletti, Giovanni; Murer, Bruno; Saragoni, Luca; Chilosi, Marco

    2007-10-01

    Bronchoalveolar lavage is a useful diagnostic tool in diffuse or disseminated lung malignancies that do not involve the bronchial structures visible by endoscopy. The neoplastic histotype and the intraparenchymal neoplastic growth pattern are good predictors for diagnostic yield; adenocarcinoma, and tumors with lymphangitic or lepidic growth patterns are more easily diagnosed by bronchoalveolar lavage; in these cases the diagnostic yield reported is higher than 80%. In hematologic malignancies the diagnostic yield is quite good in secondary diffuse indolent B cell lymphomas and in primary B cell lymphomas of mucosa-associated lymphoid tissue (MALT) type but low in Hodgkin disease. Morphological analysis may be implemented by immunocytochemical or molecular tests to identify the cell lineage and the presence of monoclonality. Disorders in which bronchioloalveolar cell hyperplasia/dysplasia is a significant morphological component may have cytological features in bronchoalveolar lavage fluid that mimic lung neoplasms: acute respiratory distress syndrome (ARDS), acute interstitial pneumonitis (AIP), and acute exacerbation of idiopathic pulmonary fibrosis are the most important clinical entities in this group.

  13. A review of wheat diseases-a field perspective.

    PubMed

    Figueroa, Melania; Hammond-Kosack, Kim E; Solomon, Peter S

    2018-06-01

    Wheat is one of the primary staple foods throughout the planet. Significant yield gains in wheat production over the past 40 years have resulted in a steady balance of supply versus demand. However, predicted global population growth rates and dietary changes mean that substantial yield gains over the next several decades will be needed to meet this escalating demand. A key component to meeting this challenge is better management of fungal incited diseases, which can be responsible for 15%-20% yield losses per annum. Prominent diseases of wheat that currently contribute to these losses include the rusts, blotches and head blight/scab. Other recently emerged or relatively unnoticed diseases, such as wheat blast and spot blotch, respectively, also threaten grain production. This review seeks to provide an overview of the impact, distribution and management strategies of these diseases. In addition, the biology of the pathogens and the molecular basis of their interaction with wheat are discussed. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  14. Dewar Lesion Formation in Single- and Double-Stranded DNA is Quenched by Neighboring Bases.

    PubMed

    Bucher, Dominik B; Pilles, Bert M; Carell, Thomas; Zinth, Wolfgang

    2015-07-16

    UV-induced Dewar lesion formation is investigated in single- and double-stranded oligonucleotides with ultrafast vibrational spectroscopy. The quantum yield for the conversion of the (6-4) lesion to the Dewar isomer in DNA strands is reduced by a factor of 4 in comparison to model dinucleotides. Time resolved spectroscopy reveals a fast process in the excited state with spectral characteristics of bases which are adjacent to the excited (6-4) lesion. These kinetic components have large amplitudes and indicate that an additional quenching channel acts in the stranded DNA systems and reduces the Dewar formation yield. Presumably relaxation evolves via a charge transfer to the neighboring guanine and the paired cytosine participates in a double-stranded oligomer. Changes in the decay of the relaxed excited electronic state of the (6-4) chromophore point to modifications in the excited state energy landscape which may lead to an additional reduction of the Dewar formation yield.

  15. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell.

    PubMed

    Alagu, R M; Sundaram, E Ganapathy; Natarajan, E

    2015-10-01

    Pyrolysis of Calophyllum inophyllum shell was performed in a fixed bed pyrolyser to produce pyrolytic oil. Both thermal (without catalysts) and catalytic pyrolysis process were conducted to investigate the effect of catalysts on pyrolysis yield and pyrolysis oil characteristics. The yield of pyrolytic oil through thermal pyrolysis was maximum (41% wt) at 425 °C for particle size of 1.18 mm and heating rate of 40 °C/min. In catalytic pyrolysis the pyrolytic oil yield was maximum (45% wt) with both zeolite and kaolin catalysts followed by Al2O3 catalyst (44% wt). The functional groups and chemical components present in the pyrolytic oil are identified by Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques. This study found that C. inophyllum shell is a potential new green energy source and that the catalytic pyrolysis process using zeolite catalyst improves the calorific value and acidity of the pyrolytic oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. On kinetic modelling for solar redox thermochemical H2O and CO2 splitting over NiFe2O4 for H2, CO and syngas production.

    PubMed

    Dimitrakis, Dimitrios A; Syrigou, Maria; Lorentzou, Souzana; Kostoglou, Margaritis; Konstandopoulos, Athanasios G

    2017-10-11

    This study aims at developing a kinetic model that can adequately describe solar thermochemical water and carbon dioxide splitting with nickel ferrite powder as the active redox material. The kinetic parameters of water splitting of a previous study are revised to include transition times and new kinetic parameters for carbon dioxide splitting are developed. The computational results show a satisfactory agreement with experimental data and continuous multicycle operation under varying operating conditions is simulated. Different test cases are explored in order to improve the product yield. At first a parametric analysis is conducted, investigating the appropriate duration of the oxidation and the thermal reduction step that maximizes the hydrogen yield. Subsequently, a non-isothermal oxidation step is simulated and proven as an interesting option for increasing the hydrogen production. The kinetic model is adapted to simulate the production yields in structured solar reactor components, i.e. extruded monolithic structures, as well.

  17. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE PAGES

    Arman, B.; An, Q.; Luo, S. N.; ...

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  18. The light-yield response of a NE-213 liquid-scintillator detector measured using 2-6 MeV tagged neutrons

    NASA Astrophysics Data System (ADS)

    Scherzinger, J.; Al Jebali, R.; Annand, J. R. M.; Fissum, K. G.; Hall-Wilton, R.; Kanaki, K.; Lundin, M.; Nilsson, B.; Perrey, H.; Rosborg, A.; Svensson, H.

    2016-12-01

    The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2 to 6 MeV originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were compared to simulations. The overall normalizations of parametrizations which predict the fast or total light yield of the scintillation pulses were also tested. Our results agree with both existing data and existing parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse considered.

  19. AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marg, Andreas, E-mail: andreas.marg@mdc-berlin.de; Haase, Hannelore; Neumann, Tanja

    2010-10-08

    Research highlights: {yields} AHNAK1 and AHNAK2 are costameric proteins. {yields} Intact membrane repair in AHNAK1-deficient mice. {yields} AHNAK1{sup -/-} single fibers have a higher transverse stiffness. -- Abstract: The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubulemore » system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1{sup -/-} fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.« less

  20. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California.

    PubMed

    Ficklin, Darren L; Luo, Yuzhou; Luedeling, Eike; Gatzke, Sarah E; Zhang, Minghua

    2010-01-01

    The Soil and Water Assessment Tool (SWAT) was used to assess the impact of climate change on sediment, nitrate, phosphorus and pesticide (diazinon and chlorpyrifos) runoff in the San Joaquin watershed in California. This study used modeling techniques that include variations of CO(2), temperature, and precipitation to quantify these responses. Precipitation had a greater impact on agricultural runoff compared to changes in either CO(2) concentration or temperature. Increase of precipitation by +/-10% and +/-20% generally changed agricultural runoff proportionally. Solely increasing CO(2) concentration resulted in an increase in nitrate, phosphorus, and chlorpyrifos yield by 4.2, 7.8, and 6.4%, respectively, and a decrease in sediment and diazinon yield by 6.3 and 5.3%, respectively, in comparison to the present-day reference scenario. Only increasing temperature reduced yields of all agricultural runoff components. The results suggest that agricultural runoff in the San Joaquin watershed is sensitive to precipitation, temperature, and CO(2) concentration changes.

Top