Sample records for yielded higher estimates

  1. Infrasound Studies for Yield Estimation of HE Explosions

    DTIC Science & Technology

    2012-06-05

    AFRL-RV-PS- AFRL-RV-PS- TR-2012-0084 TR-2012-0084 INFRASOUND STUDIES FOR YIELD ESTIMATION OF HE EXPLOSIONS Paul Golden, et al...05 Mar 2010 to 05 Mar 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9453-10-C-0212 Infrasound Studies for Yield Estimation of HE...report we discuss the capability of estimating the yield of an explosion from infrasound signals generated by low yield chemical explosions. We used

  2. Estimating total suspended sediment yield with probability sampling

    Treesearch

    Robert B. Thomas

    1985-01-01

    The ""Selection At List Time"" (SALT) scheme controls sampling of concentration for estimating total suspended sediment yield. The probability of taking a sample is proportional to its estimated contribution to total suspended sediment discharge. This procedure gives unbiased estimates of total suspended sediment yield and the variance of the...

  3. Estimating national crop yield potential and the relevance of weather data sources

    NASA Astrophysics Data System (ADS)

    Van Wart, Justin

    2011-12-01

    To determine where, when, and how to increase yields, researchers often analyze the yield gap (Yg), the difference between actual current farm yields and crop yield potential. Crop yield potential (Yp) is the yield of a crop cultivar grown under specific management limited only by temperature and solar radiation and also by precipitation for water limited yield potential (Yw). Yp and Yw are critical components of Yg estimations, but are very difficult to quantify, especially at larger scales because management data and especially daily weather data are scarce. A protocol was developed to estimate Yp and Yw at national scales using site-specific weather, soils and management data. Protocol procedures and inputs were evaluated to determine how to improve accuracy of Yp, Yw and Yg estimates. The protocol was also used to evaluate raw, site-specific and gridded weather database sources for use in simulations of Yp or Yw. The protocol was applied to estimate crop Yp in US irrigated maize and Chinese irrigated rice and Yw in US rainfed maize and German rainfed wheat. These crops and countries account for >20% of global cereal production. The results have significant implications for past and future studies of Yp, Yw and Yg. Accuracy of national long-term average Yp and Yw estimates was significantly improved if (i) > 7 years of simulations were performed for irrigated and > 15 years for rainfed sites, (ii) > 40% of nationally harvested area was within 100 km of all simulation sites, (iii) observed weather data coupled with satellite derived solar radiation data were used in simulations, and (iv) planting and harvesting dates were specified within +/- 7 days of farmers actual practices. These are much higher standards than have been applied in national estimates of Yp and Yw and this protocol is a substantial step in making such estimates more transparent, robust, and straightforward. Finally, this protocol may be a useful tool for understanding yield trends and directing

  4. A spectral-spatial-dynamic hierarchical Bayesian (SSD-HB) model for estimating soybean yield

    NASA Astrophysics Data System (ADS)

    Kazama, Yoriko; Kujirai, Toshihiro

    2014-10-01

    A method called a "spectral-spatial-dynamic hierarchical-Bayesian (SSD-HB) model," which can deal with many parameters (such as spectral and weather information all together) by reducing the occurrence of multicollinearity, is proposed. Experiments conducted on soybean yields in Brazil fields with a RapidEye satellite image indicate that the proposed SSD-HB model can predict soybean yield with a higher degree of accuracy than other estimation methods commonly used in remote-sensing applications. In the case of the SSD-HB model, the mean absolute error between estimated yield of the target area and actual yield is 0.28 t/ha, compared to 0.34 t/ha when conventional PLS regression was applied, showing the potential effectiveness of the proposed model.

  5. Operation of the yield estimation subsystem

    NASA Technical Reports Server (NTRS)

    Mccrary, D. G.; Rogers, J. L.; Hill, J. D. (Principal Investigator)

    1979-01-01

    The organization and products of the yield estimation subsystem (YES) are described with particular emphasis on meteorological data acquisition, yield estimation, crop calendars, weekly weather summaries, and project reports. During the three phases of LACIE, YES demonstrated that it is possible to use the flow of global meteorological data and provide valuable information regarding global wheat production. It was able to establish a capability to collect, in a timely manner, detailed weather data from all regions of the world, and to evaluate and convert that data into information appropriate to the project's needs.

  6. Yield estimation of sugarcane based on agrometeorological-spectral models

    NASA Technical Reports Server (NTRS)

    Rudorff, Bernardo Friedrich Theodor; Batista, Getulio Teixeira

    1990-01-01

    This work has the objective to assess the performance of a yield estimation model for sugarcane (Succharum officinarum). The model uses orbital gathered spectral data along with yield estimated from an agrometeorological model. The test site includes the sugarcane plantations of the Barra Grande Plant located in Lencois Paulista municipality in Sao Paulo State. Production data of four crop years were analyzed. Yield data observed in the first crop year (1983/84) were regressed against spectral and agrometeorological data of that same year. This provided the model to predict the yield for the following crop year i.e., 1984/85. The model to predict the yield of subsequent years (up to 1987/88) were developed similarly, incorporating all previous years data. The yield estimations obtained from these models explained 69, 54, and 50 percent of the yield variation in the 1984/85, 1985/86, and 1986/87 crop years, respectively. The accuracy of yield estimations based on spectral data only (vegetation index model) and on agrometeorological data only (agrometeorological model) were also investigated.

  7. Infrasound Studies for Yield Estimation of HE Explosions

    DTIC Science & Technology

    2011-03-05

    AFRL-RV-HA-TR-2011-1022 Infrasound Studies for Yield Estimation of HE Explosions Paul Golden Petru Negraru Southern Methodist...DATES COVERED (From - To) 5 Mar 2010 to 5 Mar 2011 4. TITLE AND SUBTITLE Infrasound Studies for Yield Estimation of HE Explosions 5a. CONTRACT NUMBER...conducting investigations to determine the yield of HE explosions from infrasound signals. In particular SMU is investigating how the period and amplitude

  8. A Priori Estimation of Organic Reaction Yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emami, Fateme S.; Vahid, Amir; Wylie, Elizabeth K.

    2015-07-21

    A thermodynamically guided calculation of free energies of substrate and product molecules allows for the estimation of the yields of organic reactions. The non-ideality of the system and the solvent effects are taken into account through the activity coefficients calculated at the molecular level by perturbed-chain statistical associating fluid theory (PC-SAFT). The model is iteratively trained using a diverse set of reactions with yields that have been reported previously. This trained model can then estimate a priori the yields of reactions not included in the training set with an accuracy of ca. ±15 %. This ability has the potential tomore » translate into significant economic savings through the selection and then execution of only those reactions that can proceed in good yields.« less

  9. Piecewise SALT sampling for estimating suspended sediment yields

    Treesearch

    Robert B. Thomas

    1989-01-01

    A probability sampling method called SALT (Selection At List Time) has been developed for collecting and summarizing data on delivery of suspended sediment in rivers. It is based on sampling and estimating yield using a suspended-sediment rating curve for high discharges and simple random sampling for low flows. The method gives unbiased estimates of total yield and...

  10. Estimating yield gaps at the cropping system level.

    PubMed

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  11. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    NASA Astrophysics Data System (ADS)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  12. Explosion yield estimation from pressure wave template matching

    PubMed Central

    Arrowsmith, Stephen; Bowman, Daniel

    2017-01-01

    A method for estimating the yield of explosions from shock-wave and acoustic-wave measurements is presented. The method exploits full waveforms by comparing pressure measurements against an empirical stack of prior observations using scaling laws. The approach can be applied to measurements across a wide-range of source-to-receiver distances. The method is applied to data from two explosion experiments in different regions, leading to mean relative errors in yield estimates of 0.13 using prior data from the same region, and 0.2 when applied to a new region. PMID:28618805

  13. Real-time yield estimation based on deep learning

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Sheppard, Clay

    2017-05-01

    Crop yield estimation is an important task in product management and marketing. Accurate yield prediction helps farmers to make better decision on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on the manual counting of fruits is very time consuming and expensive process and it is not practical for big fields. Robotic systems including Unmanned Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV), provide an efficient, cost-effective, flexible, and scalable solution for product management and yield prediction. Recently huge data has been gathered from agricultural field, however efficient analysis of those data is still a challenging task. Computer vision approaches currently face diffident challenges in automatic counting of fruits or flowers including occlusion caused by leaves, branches or other fruits, variance in natural illumination, and scale. In this paper a novel deep convolutional network algorithm was developed to facilitate the accurate yield prediction and automatic counting of fruits and vegetables on the images. Our method is robust to occlusion, shadow, uneven illumination and scale. Experimental results in comparison to the state-of-the art show the effectiveness of our algorithm.

  14. Yield estimation of corn with multispectral data and the potential of using imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Bach, Heike

    1997-05-01

    In the frame of the special yield estimation, a regular procedure conducted for the European Union to more accurately estimate agricultural yield, a project was conducted for the state minister for Rural Environment, Food and Forestry of Baden-Wuerttemberg, Germany) to test remote sensing data with advanced yield formation models for accuracy and timelines of yield estimation of corn. The methodology employed uses field-based plant parameter estimation from atmospherically corrected multitemporal/multispectral LANDSAT-TM data. An agrometeorological plant-production-model is used for yield prediction. Based solely on 4 LANDSAT-derived estimates and daily meteorological data the grain yield of corn stands was determined for 1995. The modeled yield was compared with results independently gathered within the special yield estimation for 23 test fields in the Upper Rhine Valley. The agrement between LANDSAT-based estimates and Special Yield Estimation shows a relative error of 2.3 percent. The comparison of the results for single fields shows, that six weeks before harvest the grain yield of single corn fields was estimated with a mean relative accuracy of 13 percent using satellite information. The presented methodology can be transferred to other crops and geographical regions. For future applications hyperspectral sensors show great potential to further enhance the results or yield prediction with remote sensing.

  15. Growth and Yield Estimation for Loblolly Pine in the West Gulf

    Treesearch

    Paul A. Murphy; Herbert S. Sternitzke

    1979-01-01

    An equation system is developed to estimate current yield, projected basal area, and projected volume for merchantable natural stands on a per-acre basis. These estimates indicate yields that can be expected from woods-run conditions.

  16. How does spatial and temporal resolution of vegetation index impact crop yield estimation?

    USDA-ARS?s Scientific Manuscript database

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing data have long been used in crop yield estimation for decades. The process-based approach uses light use efficiency model to estimate crop yield. Vegetation index (VI) ...

  17. OCO-2 Solar-induced Fluorescence Data Portal and Applications to Crop Yield Estimation

    NASA Astrophysics Data System (ADS)

    Zhai, A. J.; Jiang, J. H.; Frankenberg, C.; Yung, Y. L.; Choi, Y. S.

    2016-12-01

    Solar-induced fluorescence (SIF) is a direct byproduct of photosynthesis and is an index that can represent overall plant productivity level of any region around the globe. Recently, in 2014, NASA launched the Orbiting Carbon Observatory 2 (OCO-2) satellite, which collects SIF measurements at a higher spatial resolution than any previous instrument has. We have first assembled a web-based data portal, which can be easily utilized by both farmers and researchers, to allow convenient access to the SIF data from OCO-2. One possible use of SIF is to estimate agricultural status of crop fields anywhere in the world. We are using OCO-2 level 2 measurements in conjunction with the USDA's Cropland Data Layer and reported crop yield data to study how effectively SIF can estimate agricultural yield on various types of landscape and various species of crops. Results, methods, and future implications will be presented.

  18. Estimating yellow-poplar growth and yield

    Treesearch

    Donald E. Beck

    1989-01-01

    Yellow-poplar grows in essentially pure, even-aged stands, so you can make growth and yield estimates from relatively few stand characteristics. The tables and models described here require only measures of stand age, stand basal area in trees 4.5 inches and larger, and site index. They were developed by remeasuring (at 5-year intervals over a 20-year period) many...

  19. Estimation of rice yield affected by drought and relation between rice yield and TVDI

    NASA Astrophysics Data System (ADS)

    Hongo, C.; Tamura, E.; Sigit, G.

    2016-12-01

    Impact of climate change is not only seen on food production but also on food security and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change. As the adaptation, the Government of Indonesia has launched agricultural insurance program for damage of rice by drought, flood and pest and disease. The Government started a pilot project in 2013 and this year the pilot project has been extended to 22 provinces. Having the above as background, we conducted research on development of new damage assessment method for rice using remote sensing data which could be used for evaluation of damage ratio caused by drought in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield affected by drought in dry season could be estimated at level of 1 % significance using SPOT 7 data taken in 2015, and the validation result was 0.8t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data of the estimated result and the average yield of the past 10 years. In addition, TVDI (Temperature Vegetation Dryness Index) which was calculated from Landsat8 data in heading season indicated the dryness in low yield area. The result suggests that rice yield was affected by irrigation water shortage around heading season as a result of the decreased precipitation by El Nino. Through our study, it becomes clear that the utilization of remote sensing data can be promising for assessment of the damage ratio of rice production precisely, quickly and quantitatively, and also it can be incorporated into the insurance procedures.

  20. Estimating the potential refolding yield of recombinant proteins expressed as inclusion bodies.

    PubMed

    Ho, Jason G S; Middelberg, Anton P J

    2004-09-05

    Recombinant protein production in bacteria is efficient except that insoluble inclusion bodies form when some gene sequences are expressed. Such proteins must undergo renaturation, which is an inefficient process due to protein aggregation on dilution from concentrated denaturant. In this study, the protein-protein interactions of eight distinct inclusion-body proteins are quantified, in different solution conditions, by measurement of protein second virial coefficients (SVCs). Protein solubility is shown to decrease as the SVC is reduced (i.e., as protein interactions become more attractive). Plots of SVC versus denaturant concentration demonstrate two clear groupings of proteins: a more aggregative group and a group having higher SVC and better solubility. A correlation of the measured SVC with protein molecular weight and hydropathicity, that is able to predict which group each of the eight proteins falls into, is presented. The inclusion of additives known to inhibit aggregation during renaturation improves solubility and increases the SVC of both protein groups. Furthermore, an estimate of maximum refolding yield (or solubility) using high-performance liquid chromatography was obtained for each protein tested, under different environmental conditions, enabling a relationship between "yield" and SVC to be demonstrated. Combined, the results enable an approximate estimation of the maximum refolding yield that is attainable for each of the eight proteins examined, under a selected chemical environment. Although the correlations must be tested with a far larger set of protein sequences, this work represents a significant move beyond empirical approaches for optimizing renaturation conditions. The approach moves toward the ideal of predicting maximum refolding yield using simple bioinformatic metrics that can be estimated from the gene sequence. Such a capability could potentially "screen," in silico, those sequences suitable for expression in bacteria from those

  1. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index.

    PubMed

    Lofton, Josh; Tubana, Brenda S; Kanke, Yumiko; Teboh, Jasper; Viator, Howard; Dalen, Marilyn

    2012-01-01

    Estimating crop yield using remote sensing techniques has proven to be successful. However, sugarcane possesses unique characteristics; such as, a multi-year cropping cycle and plant height-limiting for midseason fertilizer application timing. Our study objective was to determine if sugarcane yield potential could be estimated using an in-season estimation of normalized difference vegetative index (NDVI). Sensor readings were taken using the GreenSeeker® handheld sensor from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was between 601-750 GDD. In-season estimated yield values improved the yield potential (YP) model compared to using NDVI. Generally, INSEY value showed a positive exponential relationship with yield (r(2) values 0.48 and 0.42 for cane tonnage and sugar yield, respectively). When models were separated based on canopy structure there was an increase the strength of the relationship for the erectophile varieties (r(2) 0.53 and 0.47 for cane tonnage and sugar yield, respectively); however, the model for planophile varieties weakened slightly. Results of this study indicate using an INSEY value for predicting sugarcane yield shows potential of being a valuable management tool for sugarcane producers in Louisiana.

  2. A Comparison of Machine Learning Approaches for Corn Yield Estimation

    NASA Astrophysics Data System (ADS)

    Kim, N.; Lee, Y. W.

    2017-12-01

    Machine learning is an efficient empirical method for classification and prediction, and it is another approach to crop yield estimation. The objective of this study is to estimate corn yield in the Midwestern United States by employing the machine learning approaches such as the support vector machine (SVM), random forest (RF), and deep neural networks (DNN), and to perform the comprehensive comparison for their results. We constructed the database using satellite images from MODIS, the climate data of PRISM climate group, and GLDAS soil moisture data. In addition, to examine the seasonal sensitivities of corn yields, two period groups were set up: May to September (MJJAS) and July and August (JA). In overall, the DNN showed the highest accuracies in term of the correlation coefficient for the two period groups. The differences between our predictions and USDA yield statistics were about 10-11 %.

  3. Spatial variability effects on precision and power of forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...

  4. Linear unmixing of multidate hyperspectral imagery for crop yield estimation

    USDA-ARS?s Scientific Manuscript database

    In this paper, we have evaluated an unsupervised unmixing approach, vertex component analysis (VCA), for the application of crop yield estimation. The results show that abundance maps of the vegetation extracted by the approach are strongly correlated to the yield data (the correlation coefficients ...

  5. Comparison of specific-yield estimates for calculating evapotranspiration from diurnal groundwater-level fluctuations

    NASA Astrophysics Data System (ADS)

    Gribovszki, Zoltán

    2018-05-01

    Methods that use diurnal groundwater-level fluctuations are commonly used for shallow water-table environments to estimate evapotranspiration (ET) and recharge. The key element needed to obtain reliable estimates is the specific yield (Sy), a soil-water storage parameter that depends on unsaturated soil-moisture and water-table fluxes, among others. Soil-moisture profile measurement down to the water table, along with water-table-depth measurements, can provide a good opportunity to calculate Sy values even on a sub-daily scale. These values were compared with Sy estimates derived by traditional techniques, and it was found that slug-test-based Sy values gave the most similar results in a sandy soil environment. Therefore, slug-test methods, which are relatively cheap and require little time, were most suited to estimate Sy using diurnal fluctuations. The reason for this is that the timeframe of the slug-test measurement is very similar to the dynamic of the diurnal signal. The dynamic characteristic of Sy was also analyzed on a sub-daily scale (depending mostly on the speed of drainage from the soil profile) and a remarkable difference was found in Sy with respect to the rate of change of the water table. When comparing constant and sub-daily (dynamic) Sy values for ET estimation, the sub-daily Sy application yielded higher correlation, but only a slightly smaller deviation from the control ET method, compared with the usage of constant Sy.

  6. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2

  7. Determination of the optimal level for combining area and yield estimates

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Hixson, M. M.; Jobusch, C. D.

    1981-01-01

    Several levels of obtaining both area and yield estimates of corn and soybeans in Iowa were considered: county, refined strata, refined/split strata, crop reporting district, and state. Using the CCEA model form and smoothed weather data, regression coefficients at each level were derived to compute yield and its variance. Variances were also computed with stratum level. The variance of the yield estimates was largest at the state and smallest at the county level for both crops. The refined strata had somewhat larger variances than those associated with the refined/split strata and CRD. For production estimates, the difference in standard deviations among levels was not large for corn, but for soybeans the standard deviation at the state level was more than 50% greater than for the other levels. The refined strata had the smallest standard deviations. The county level was not considered in evaluation of production estimates due to lack of county area variances.

  8. Classical and Bayesian Seismic Yield Estimation: The 1998 Indian and Pakistani Tests

    NASA Astrophysics Data System (ADS)

    Shumway, R. H.

    2001-10-01

    - The nuclear tests in May, 1998, in India and Pakistan have stimulated a renewed interest in yield estimation, based on limited data from uncalibrated test sites. We study here the problem of estimating yields using classical and Bayesian methods developed by Shumway (1992), utilizing calibration data from the Semipalatinsk test site and measured magnitudes for the 1998 Indian and Pakistani tests given by Murphy (1998). Calibration is done using multivariate classical or Bayesian linear regression, depending on the availability of measured magnitude-yield data and prior information. Confidence intervals for the classical approach are derived applying an extension of Fieller's method suggested by Brown (1982). In the case where prior information is available, the posterior predictive magnitude densities are inverted to give posterior intervals for yield. Intervals obtained using the joint distribution of magnitudes are comparable to the single-magnitude estimates produced by Murphy (1998) and reinforce the conclusion that the announced yields of the Indian and Pakistani tests were too high.

  9. Classical and Bayesian Seismic Yield Estimation: The 1998 Indian and Pakistani Tests

    NASA Astrophysics Data System (ADS)

    Shumway, R. H.

    The nuclear tests in May, 1998, in India and Pakistan have stimulated a renewed interest in yield estimation, based on limited data from uncalibrated test sites. We study here the problem of estimating yields using classical and Bayesian methods developed by Shumway (1992), utilizing calibration data from the Semipalatinsk test site and measured magnitudes for the 1998 Indian and Pakistani tests given by Murphy (1998). Calibration is done using multivariate classical or Bayesian linear regression, depending on the availability of measured magnitude-yield data and prior information. Confidence intervals for the classical approach are derived applying an extension of Fieller's method suggested by Brown (1982). In the case where prior information is available, the posterior predictive magnitude densities are inverted to give posterior intervals for yield. Intervals obtained using the joint distribution of magnitudes are comparable to the single-magnitude estimates produced by Murphy (1998) and reinforce the conclusion that the announced yields of the Indian and Pakistani tests were too high.

  10. Yield estimation of corn based on multitemporal LANDSAT-TM data as input for an agrometeorological model

    NASA Astrophysics Data System (ADS)

    Bach, Heike

    1998-07-01

    In order to test remote sensing data with advanced yield formation models for accuracy and timeliness of yield estimation of corn, a project was conducted for the State Ministry for Rural Environment, Food, and Forestry of Baden-Württemberg (Germany). This project was carried out during the course of the `Special Yield Estimation', a regular procedure conducted for the European Union, to more accurately estimate agricultural yield. The methodology employed uses field-based plant parameter estimation from atmospherically corrected multitemporal/multispectral LANDSAT-TM data. An agrometeorological plant-production-model is used for yield prediction. Based solely on four LANDSAT-derived estimates (between May and August) and daily meteorological data, the grain yield of corn fields was determined for 1995. The modelled yields were compared with results gathered independently within the Special Yield Estimation for 23 test fields in the upper Rhine valley. The agreement between LANDSAT-based estimates (six weeks before harvest) and Special Yield Estimation (at harvest) shows a relative error of 2.3%. The comparison of the results for single fields shows that six weeks before harvest, the grain yield of corn was estimated with a mean relative accuracy of 13% using satellite information. The presented methodology can be transferred to other crops and geographical regions. For future applications hyperspectral sensors show great potential to further enhance the results for yield prediction with remote sensing.

  11. Estimated loads and yields of suspended soils and water-quality constituents in Kentucky streams

    USGS Publications Warehouse

    Crain, Angela S.

    2001-01-01

    Loads and yields of suspended solids, nutrients, major ions, trace elements, organic carbon, fecal coliform, dissolved oxygen, and alkalinity were estimated for 22 streams in 11 major river basins in Kentucky. Mean daily discharge was estimated at ungaged stations or stations with incomplete discharge records using drainage-area ratio, regression analysis, or a combination of the two techniques. Streamflow was partitioned into total and base flow and used to estimate loads and yields for suspended solids and water-quality constituents by use of the ESTIMATOR and FLUX computer programs. The relative magnitude of constituent transport to streams from groundand surface-water sources was determined for the 22 stations. Nutrient and suspended solids yields for drainage basins with relatively homogenous land use were used to estimate the total-flow and base-flow yields of nutrient and suspended solids for forested, agricultural, and urban land. Yields of nutrients?nitrite plus nitrate, ammonia plus organic nitrogen, and total phosphorus?in forested drainage basins were generally less than 1 ton per square mile per year ((ton/mi2)/yr) and were generally less than 2 (ton/mi2)/yr in agricultural drainage basins. The smallest total-flow yields for nitrogen (nitrite plus nitrate) was estimated at Levisa Fork at Paintsville in which 95 percent of the land is forested. This site also had one of the smallest total-flow yields for ammonia plus organic nitrogen. In general, nutrient yields from forested lands were lower than those from urban and agricultural land. Some of the largest estimated total-flow yields of nutrients among agricultural basins were for streams in the Licking River Basin, the North Fork Licking River near Milford, and the South Fork Licking River at Cynthiana. Agricultural land constitutes greater than 75 percent of the drainage area in these two basins. Possible sources of nutrients discharging into the Licking River are farm and residential fertilizers

  12. Regional crop gross primary production and yield estimation using fused Landsat-MODIS data

    NASA Astrophysics Data System (ADS)

    He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.

    2017-12-01

    Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, p<0.05). The estimated crop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.

  13. Model-assisted forest yield estimation with light detection and ranging

    Treesearch

    Jacob L. Strunk; Stephen E. Reutebuch; Hans-Erik Andersen; Peter J. Gould; Robert J. McGaughey

    2012-01-01

    Previous studies have demonstrated that light detection and ranging (LiDAR)-derived variables can be used to model forest yield variables, such as biomass, volume, and number of stems. However, the next step is underrepresented in the literature: estimation of forest yield with appropriate confidence intervals. It is of great importance that the procedures required for...

  14. Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS

    NASA Astrophysics Data System (ADS)

    Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel

    2016-01-01

    The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.

  15. Field design factors affecting the precision of ryegrass forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Field-based agronomic and genetic research relies heavily on the data generated from field evaluations. Therefore, it is imperative to optimize the precision and accuracy of yield estimates in cultivar evaluation trials to make reliable selections. Experimental error in yield trials is sensitive to ...

  16. Cancer Risk Estimates from Space Flight Estimated Using Yields of Chromosome Damage in Astronaut's Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Rhone, J.; Chappell, L. J.; Cucinotta, F. A.

    2011-01-01

    To date, cytogenetic damage has been assessed in blood lymphocytes from more than 30 astronauts before and after they participated in long-duration space missions of three months or more on board the International Space Station. Chromosome damage was assessed using fluorescence in situ hybridization whole chromosome analysis techniques. For all individuals, the frequency of chromosome damage measured within a month of return from space was higher than their preflight yield, and biodosimetry estimates were within the range expected from physical dosimetry. Follow up analyses have been performed on most of the astronauts at intervals ranging from around 6 months to many years after flight, and the cytogenetic effects of repeat long-duration missions have so far been assessed in four individuals. Chromosomal aberrations in peripheral blood lymphocytes have been validated as biomarkers of cancer risk and cytogenetic damage can therefore be used to characterize excess health risk incurred by individual crewmembers after their respective missions. Traditional risk assessment models are based on epidemiological data obtained on Earth in cohorts exposed predominantly to acute doses of gamma-rays, and the extrapolation to the space environment is highly problematic, involving very large uncertainties. Cytogenetic damage could play a key role in reducing uncertainty in risk estimation because it is incurred directly in the space environment, using specimens from the astronauts themselves. Relative cancer risks were estimated from the biodosimetry data using the quantitative approach derived from the European Study Group on Cytogenetic Biomarkers and Health database. Astronauts were categorized into low, medium, or high tertiles according to their yield of chromosome damage. Age adjusted tertile rankings were used to estimate cancer risk and results were compared with values obtained using traditional modeling approaches. Individual tertile rankings increased after space

  17. Breeding cassava for higher yield

    USDA-ARS?s Scientific Manuscript database

    Cassava is a root crop grown for food and for starch production. Breeding progress is slowed by asexual production and high levels of heterozygosity. Germplasm resources are rich and accessible to breeders through genebanks worldwide. Breeding objectives include high root yield, yield stability, dis...

  18. Graphical user interface for yield and dose estimations for cyclotron-produced technetium

    NASA Astrophysics Data System (ADS)

    Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.

    2014-07-01

    The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  19. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    PubMed

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  20. Refinement and evaluation of the Massachusetts firm-yield estimator model version 2.0

    USGS Publications Warehouse

    Levin, Sara B.; Archfield, Stacey A.; Massey, Andrew J.

    2011-01-01

    to assess the sensitivity of firm-yield estimates to errors in daily-streamflow input data. Results of the Monte Carlo simulations indicate that underestimation in the lowest stream inflows can cause firm yields to be underestimated by an average of 1 to 10 percent. Errors in the stage-storage relation can arise when the point density of bathymetric survey measurements is too low. Existing bathymetric surfaces were resampled using hypothetical transects of varying patterns and point densities in order to quantify the uncertainty in stage-storage relations. Reservoir-volume calculations and resulting firm yields were accurate to within 5 percent when point densities were greater than 20 points per acre of reservoir surface. Methods for incorporating summer water-demand-reduction scenarios into the firm-yield model were developed as well as the ability to relax the no-fail reliability criterion. Although the original firm-yield model allowed monthly reservoir releases to be specified, there have been no previous studies examining the feasibility of controlled releases for downstream flows from Massachusetts reservoirs. Two controlled-release scenarios were tested—with and without a summer water-demand-reduction scenario—for a scenario with a no-fail criterion and a scenario that allows for a 1-percent failure rate over the entire simulation period. Based on these scenarios, about one-third of the reservoir systems were able to support the flow-release scenarios at their 2000–2004 usage rates. Reservoirs with higher storage ratios (reservoir storage capacity to mean annual streamflow) and lower demand ratios (mean annual water demand to annual firm yield) were capable of higher downstream release rates. For the purposes of this research, all reservoir systems were assumed to have structures which enable controlled releases, although this assumption may not be true for many of the reservoirs studied.

  1. Factors Affecting Firm Yield and the Estimation of Firm Yield for Selected Streamflow-Dominated Drinking-Water-Supply Reservoirs in Massachusetts

    USGS Publications Warehouse

    Waldron, Marcus C.; Archfield, Stacey A.

    2006-01-01

    Factors affecting reservoir firm yield, as determined by application of the Massachusetts Department of Environmental Protection's Firm Yield Estimator (FYE) model, were evaluated, modified, and tested on 46 streamflow-dominated reservoirs representing 15 Massachusetts drinking-water supplies. The model uses a mass-balance approach to determine the maximum average daily withdrawal rate that can be sustained during a period of record that includes the 1960s drought-of-record. The FYE methodology to estimate streamflow to the reservoir at an ungaged site was tested by simulating streamflow at two streamflow-gaging stations in Massachusetts and comparing the simulated streamflow to the observed streamflow. In general, the FYE-simulated flows agreed well with observed flows. There were substantial deviations from the measured values for extreme high and low flows. A sensitivity analysis determined that the model's streamflow estimates are most sensitive to input values for average annual precipitation, reservoir drainage area, and the soil-retention number-a term that describes the amount of precipitation retained by the soil in the basin. The FYE model currently provides the option of using a 1,000-year synthetic record constructed by randomly sampling 2-year blocks of concurrent streamflow and precipitation records 500 times; however, the synthetic record has the potential to generate records of precipitation and streamflow that do not reflect the worst historical drought in Massachusetts. For reservoirs that do not have periods of drawdown greater than 2 years, the bootstrap does not offer any additional information about the firm yield of a reservoir than the historical record does. For some reservoirs, the use of a synthetic record to determine firm yield resulted in as much as a 30-percent difference between firm-yield values from one simulation to the next. Furthermore, the assumption that the synthetic traces of streamflow are statistically equivalent to the

  2. Study on paddy rice yield estimation based on multisource data and the Grey system theory

    NASA Astrophysics Data System (ADS)

    Deng, Wensheng; Wang, Wei; Liu, Hai; Li, Chen; Ge, Yimin; Zheng, Xianghua

    2009-10-01

    The paddy rice is our important crops. In study of the paddy rice yield estimation, compared with the scholars who usually only take the remote sensing data or meteorology as the influence factors, we combine the remote sensing and the meteorological data to make the monitoring result closer reality. Although the gray system theory has used in many aspects, it is applied very little in paddy rice yield estimation. This study introduces it to the paddy rice yield estimation, and makes the yield estimation model. This can resolve small data sets problem that can not be solved by deterministic model. It selects some regions in Jianghan plain for the study area. The data includes multi-temporal remote sensing image, meteorological and statistic data. The remote sensing data is the 16-day composite images (250-m spatial resolution) of MODIS. The meteorological data includes monthly average temperature, sunshine duration and rain fall amount. The statistical data is the long-term paddy rice yield of the study area. Firstly, it extracts the paddy rice planting area from the multi-temporal MODIS images with the help of GIS and RS. Then taking the paddy rice yield as the reference sequence, MODIS data and meteorological data as the comparative sequence, computing the gray correlative coefficient, it selects the yield estimation factor based on the grey system theory. Finally, using the factors, it establishes the yield estimation model and does the result test. The result indicated that the method is feasible and the conclusion is credible. It can provide the scientific method and reference value to carry on the region paddy rice remote sensing estimation.

  3. Estimating rice yield from MODIS-Landsat fusion data in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.

    2017-12-01

    Rice production monitoring with remote sensing is an important activity in Taiwan due to official initiatives. Yield estimation is a challenge in Taiwan because rice fields are small and fragmental. High spatiotemporal satellite data providing phenological information of rice crops is thus required for this monitoring purpose. This research aims to develop data fusion approaches to integrate daily Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat data for rice yield estimation in Taiwan. In this study, the low-resolution MODIS LST and emissivity data are used as reference data sources to obtain the high-resolution LST from Landsat data using the mixed-pixel analysis technique, and the time-series EVI data were derived the fusion of MODIS and Landsat spectral band data using STARFM method. The LST and EVI simulated results showed the close agreement between the LST and EVI obtained by the proposed methods with the reference data. The rice-yield model was established using EVI and LST data based on information of rice crop phenology collected from 371 ground survey sites across the country in 2014. The results achieved from the fusion datasets compared with the reference data indicated the close relationship between the two datasets with the correlation coefficient (R2) of 0.75 and root mean square error (RMSE) of 338.7 kgs, which were more accurate than those using the coarse-resolution MODIS LST data (R2 = 0.71 and RMSE = 623.82 kgs). For the comparison of total production, 64 towns located in the west part of Taiwan were used. The results also confirmed that the model using fusion datasets produced more accurate results (R2 = 0.95 and RMSE = 1,243 tons) than that using the course-resolution MODIS data (R2 = 0.91 and RMSE = 1,749 tons). This study demonstrates the application of MODIS-Landsat fusion data for rice yield estimation at the township level in Taiwan. The results obtained from the methods used in this study could be useful to policymakers

  4. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate

  5. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  6. Waveform inversion of acoustic waves for explosion yield estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Rodgers, A. J.

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  7. Estimating milk yield and value losses from increased somatic cell count on US dairy farms.

    PubMed

    Hadrich, J C; Wolf, C A; Lombard, J; Dolak, T M

    2018-04-01

    Milk loss due to increased somatic cell counts (SCC) results in economic losses for dairy producers. This research uses 10 mo of consecutive dairy herd improvement data from 2013 and 2014 to estimate milk yield loss using SCC as a proxy for clinical and subclinical mastitis. A fixed effects regression was used to examine factors that affected milk yield while controlling for herd-level management. Breed, milking frequency, days in milk, seasonality, SCC, cumulative months with SCC greater than 100,000 cells/mL, lactation, and herd size were variables included in the regression analysis. The cumulative months with SCC above a threshold was included as a proxy for chronic mastitis. Milk yield loss increased as the number of test days with SCC ≥100,000 cells/mL increased. Results from the regression were used to estimate a monetary value of milk loss related to SCC as a function of cow and operation related explanatory variables for a representative dairy cow. The largest losses occurred from increased cumulative test days with a SCC ≥100,000 cells/mL, with daily losses of $1.20/cow per day in the first month to $2.06/cow per day in mo 10. Results demonstrate the importance of including the duration of months above a threshold SCC when estimating milk yield losses. Cows with chronic mastitis, measured by increased consecutive test days with SCC ≥100,000 cells/mL, resulted in higher milk losses than cows with a new infection. This provides farm managers with a method to evaluate the trade-off between treatment and culling decisions as it relates to mastitis control and early detection. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Effect of Anisotropic Yield Function Evolution on Estimation of Forming Limit Diagram

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, K.; Basak, S.; Choi, H. J.; Panda, S. K.; Lee, M. G.

    2017-09-01

    In case of theoretical prediction of the FLD, the variations in yield stress and R-values along different material directions, were long been implemented to enhance the accuracy. Although influences of different yield models and hardening laws on formability were well addressed, anisotropic evolution of yield loci under monotonic loading with different deformation modes is yet to be explored. In the present study, Marciniak-Kuckzinsky (M-K) model was modified to incorporate the change in the shape of the initial yield function with evolution due to anisotropic hardening. Swift’s hardening law along with two different anisotropic yield criteria, namely Hill48 and Yld2000-2d were implemented in the model. The Hill48 yield model was applied with non-associated flow rule to comprehend the effect of variations in both yield stress and R-values. The numerically estimated FLDs were validated after comparing with FLD evaluated through experiments. A low carbon steel was selected, and hemispherical punch stretching test was performed for FLD evaluation. Additionally, the numerically estimated FLDs were incorporated in FE simulations to predict limiting dome heights for validation purpose. Other formability performances like strain distributions over the deformed cup surface were validated with experimental results.

  9. Frost trends and their estimated impact on yield in the Australian wheatbelt

    PubMed Central

    Zheng, Bangyou; Chapman, Scott C.; Christopher, Jack T.; Frederiks, Troy M.; Chenu, Karine

    2015-01-01

    Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957–2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates. PMID:25922479

  10. Frost trends and their estimated impact on yield in the Australian wheatbelt.

    PubMed

    Zheng, Bangyou; Chapman, Scott C; Christopher, Jack T; Frederiks, Troy M; Chenu, Karine

    2015-06-01

    Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957-2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Genetic parameters for body condition score, body weight, milk yield, and fertility estimated using random regression models.

    PubMed

    Berry, D P; Buckley, F; Dillon, P; Evans, R D; Rath, M; Veerkamp, R F

    2003-11-01

    Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields from 8725 multiparous Holstein-Friesian cows. A cubic random regression was sufficient to model the changing genetic variances for BCS, BW, and milk across different days in milk. The genetic correlations between BCS and fertility changed little over the lactation; genetic correlations between BCS and interval to first service and between BCS and pregnancy rate to first service varied from -0.47 to -0.31, and from 0.15 to 0.38, respectively. This suggests that maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in midlactation when the genetic variance for BCS is largest. Selection for increased BW resulted in shorter intervals to first service, but more services and poorer pregnancy rates; genetic correlations between BW and pregnancy rate to first service varied from -0.52 to -0.45. Genetic selection for higher lactation milk yield alone through selection on increased milk yield in early lactation is likely to have a more deleterious effect on genetic merit for fertility than selection on higher milk yield in late lactation.

  12. Yield gap analyses to estimate attainable bovine milk yields and evaluate options to increase production in Ethiopia and India.

    PubMed

    Mayberry, Dianne; Ash, Andrew; Prestwidge, Di; Godde, Cécile M; Henderson, Ben; Duncan, Alan; Blummel, Michael; Ramana Reddy, Y; Herrero, Mario

    2017-07-01

    Livestock provides an important source of income and nourishment for around one billion rural households worldwide. Demand for livestock food products is increasing, especially in developing countries, and there are opportunities to increase production to meet local demand and increase farm incomes. Estimating the scale of livestock yield gaps and better understanding factors limiting current production will help to define the technological and investment needs in each livestock sector. The aim of this paper is to quantify livestock yield gaps and evaluate opportunities to increase dairy production in Sub-Saharan Africa and South Asia, using case studies from Ethiopia and India. We combined three different methods in our approach. Benchmarking and a frontier analysis were used to estimate attainable milk yields based on survey data. Household modelling was then used to simulate the effects of various interventions on dairy production and income. We tested interventions based on improved livestock nutrition and genetics in the extensive lowland grazing zone and highland mixed crop-livestock zones of Ethiopia, and the intensive irrigated and rainfed zones of India. Our analyses indicate that there are considerable yield gaps for dairy production in both countries, and opportunities to increase production using the interventions tested. In some cases, combined interventions could increase production past currently attainable livestock yields.

  13. Estimating variability in grain legume yields across Europe and the Americas

    NASA Astrophysics Data System (ADS)

    Cernay, Charles; Ben-Ari, Tamara; Pelzer, Elise; Meynard, Jean-Marc; Makowski, David

    2015-06-01

    Grain legume production in Europe has recently come under scrutiny. Although legume crops are often promoted to provide environmental services, European farmers tend to turn to non-legume crops. It is assumed that high variability in legume yields explains this aversion, but so far this hypothesis has not been tested. Here, we estimate the variability of major grain legume and non-legume yields in Europe and the Americas from yield time series over 1961-2013. Results show that grain legume yields are significantly more variable than non-legume yields in Europe. These differences are smaller in the Americas. Our results are robust at the level of the statistical methods. In all regions, crops with high yield variability are allocated to less than 1% of cultivated areas. Although the expansion of grain legumes in Europe may be hindered by high yield variability, some species display risk levels compatible with the development of specialized supply chains.

  14. Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes.

    PubMed

    Borquis, Rusbel Raul Aspilcueta; Neto, Francisco Ribeiro de Araujo; Baldi, Fernando; Hurtado-Lugo, Naudin; de Camargo, Gregório M F; Muñoz-Berrocal, Milthon; Tonhati, Humberto

    2013-09-01

    In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Effects of Source RDP Models and Near-source Propagation: Implication for Seismic Yield Estimation

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Helmberger, D. V.; Stead, R. J.; Woods, B. B.

    , estimates of B and K are based on the initial P-wave pulse, which various numerical analyses show to be least affected by variations in near-source path effects. The corner-frequency parameter K is 20% lower at NTS (Pahute) than at other sites, implying larger effective source radii. The overshoot parameter B appears to be low at NTS (although variable) relative to other sites and is probably due to variations in source conditions. For a low B, the near-field data require a higher value of ψ ∞ to match the long-period MS and short-period mb observations. This flexibility in modeling proves useful in comparing released FSU yields against predictions based on mb and MS.

  16. Sustainable-yield estimation for the Sparta Aquifer in Union County, Arkansas

    USGS Publications Warehouse

    Hays, Phillip D.

    2000-01-01

    Options for utilizing alternative sources of water to alleviate overdraft from the Sparta aquifer and ensure that the aquifer can continue to provide abundant water of excellent quality for the future are being evaluated by water managers in Union County. Sustainable yield is a critical element in identifying and designing viable water supply alternatives. With sustainable yield defined and a knowledge of total water demand in an area, any unmet demand can be calculated. The ground-water flow model of the Sparta aquifer was used to estimate sustainable yield using an iterative approach. The Sparta aquifer is a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. Currently, the rate of withdrawal in some areas greatly exceeds the rate of recharge to the aquifer and considerable water-level declines have occurred. Ground-water flow model results indicate that the aquifer cannot continue to meet growing water-use demands indefinitely and that water levels will drop below the top of the primary producing sand unit in Union County (locally termed the El Dorado sand) by 2008 if current water-use trends continue. Declines of that magnitude will initiate dewatering of the El Dorado sand. The sustainable yield of the aquifer was calculated by targeting a specified minimum acceptable water level within Union County and varying Union County pumpage within the model to achieve the target water level. Selection of the minimum target water level for sustainable-yield estimation was an important criterion for the modeling effort. In keeping with the State Critical Ground-Water Area designation criteria and the desire of water managers in Union County to improve aquifer conditions and bring the area out of the Critical Ground-Water Area designation, the approximate altitude of the top of the Sparta Sand in central Union County was used as the minimum water level target for estimation of

  17. Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts.

    PubMed

    Meyer, Andreas L S; Wiens, John J

    2018-01-01

    Estimates of diversification rates are invaluable for many macroevolutionary studies. Recently, an approach called BAMM (Bayesian Analysis of Macro-evolutionary Mixtures) has become widely used for estimating diversification rates and rate shifts. At the same time, several articles have concluded that estimates of net diversification rates from the method-of-moments (MS) estimators are inaccurate. Yet, no studies have compared the ability of these two methods to accurately estimate clade diversification rates. Here, we use simulations to compare their performance. We found that BAMM yielded relatively weak relationships between true and estimated diversification rates. This occurred because BAMM underestimated the number of rates shifts across each tree, and assigned high rates to small clades with low rates. Errors in both speciation and extinction rates contributed to these errors, showing that using BAMM to estimate only speciation rates is also problematic. In contrast, the MS estimators (particularly using stem group ages), yielded stronger relationships between true and estimated diversification rates, by roughly twofold. Furthermore, the MS approach remained relatively accurate when diversification rates were heterogeneous within clades, despite the widespread assumption that it requires constant rates within clades. Overall, we caution that BAMM may be problematic for estimating diversification rates and rate shifts. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  18. Genetic correlations among body condition score, yield, and fertility in first-parity cows estimated by random regression models.

    PubMed

    Veerkamp, R F; Koenen, E P; De Jong, G

    2001-10-01

    Twenty type classifiers scored body condition (BCS) of 91,738 first-parity cows from 601 sires and 5518 maternal grandsires. Fertility data during first lactation were extracted for 177,220 cows, of which 67,278 also had a BCS observation, and first-lactation 305-d milk, fat, and protein yields were added for 180,631 cows. Heritabilities and genetic correlations were estimated using a sire-maternal grandsire model. Heritability of BCS was 0.38. Heritabilities for fertility traits were low (0.01 to 0.07), but genetic standard deviations were substantial, 9 d for days to first service and calving interval, 0.25 for number of services, and 5% for first-service conception. Phenotypic correlations between fertility and yield or BCS were small (-0.15 to 0.20). Genetic correlations between yield and all fertility traits were unfavorable (0.37 to 0.74). Genetic correlations with BCS were between -0.4 and -0.6 for calving interval and days to first service. Random regression analysis (RR) showed that correlations changed with days in milk for BCS. Little agreement was found between variances and correlations from RR, and analysis including a single month (mo 1 to 10) of data for BCS, especially during early and late lactation. However, this was due to excluding data from the conventional analysis, rather than due to the polynomials used. RR and a conventional five-traits model where BCS in mo 1, 4, 7, and 10 was treated as a separate traits (plus yield or fertility) gave similar results. Thus a parsimonious random regression model gave more realistic estimates for the (co)variances than a series of bivariate analysis on subsets of the data for BCS. A higher genetic merit for yield has unfavorable effects on fertility, but the genetic correlation suggests that BCS (at some stages of lactation) might help to alleviate the unfavorable effect of selection for higher yield on fertility.

  19. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran

    NASA Astrophysics Data System (ADS)

    Bannayan, M.; Mansoori, H.; Rezaei, E. Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm-1) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  20. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.

    PubMed

    Bannayan, M; Mansoori, H; Rezaei, E Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm(-1)) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  1. Evaluating accuracy of DSSAT model for soybean yield estimation using satellite weather data

    NASA Astrophysics Data System (ADS)

    Ovando, Gustavo; Sayago, Silvina; Bocco, Mónica

    2018-04-01

    Crop models allow simulating the development and yield of the crops, to represent and to evaluate the influence of multiple factors. The DSSAT cropping system model is one of the most widely used and contains CROPGRO module for soybean. This crop has a great importance for many southern countries of Latin America and for Argentina. Solar radiation and rainfall are necessary variables as inputs for crop models; however these data are not as readily available. The satellital products from Clouds and Earth's Radiant Energy System (CERES) and Tropic Rainfall Measurement Mission (TRMM) provide continuous spatial and temporal information of solar radiation and precipitation, respectively. This study evaluates and quantifies the uncertainty in estimating soybean yield using a DSSAT model, when recorded weather data are replaced with CERES and TRMM ones. Different percentages of data replacements, soybean maturity groups and planting dates are considered, for 2006-2016 period in Oliveros (Argentina). Results show that CERES and TRMM products can be used for soybean yield estimation with DSSAT considering that: percentage of data replacement, campaign, planting date and maturity group, determine the amounts and trends of yield errors. Replacements with CERES data up to 30% result in %RMSE lower than 10% in 87% of the cases; while the replacement with TRMM data presents the best statisticals in campaigns with high yields. Simulations based entirely on CERES solar radiation give better results than those with TRMM. In general, similar percentages of replacement show better performance in the estimation of soybean yield for solar radiation than the replacement of precipitation values.

  2. Calibrating SALT: a sampling scheme to improve estimates of suspended sediment yield

    Treesearch

    Robert B. Thomas

    1986-01-01

    Abstract - SALT (Selection At List Time) is a variable probability sampling scheme that provides unbiased estimates of suspended sediment yield and its variance. SALT performs better than standard schemes which are estimate variance. Sampling probabilities are based on a sediment rating function which promotes greater sampling intensity during periods of high...

  3. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

    NASA Technical Reports Server (NTRS)

    Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; hide

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  4. Similar estimates of temperature impacts on global wheat yield by three independent methods

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Aggarwal, Pramod K.; Alderman, Phillip D.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andy; Deryng, Delphine; Sanctis, Giacomo De; Doltra, Jordi; Fereres, Elias; Folberth, Christian; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Kimball, Bruce A.; Koehler, Ann-Kristin; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry J.; Olesen, Jørgen E.; Ottman, Michael J.; Palosuo, Taru; Prasad, P. V. Vara; Priesack, Eckart; Pugh, Thomas A. M.; Reynolds, Matthew; Rezaei, Ehsan E.; Rötter, Reimund P.; Schmid, Erwin; Semenov, Mikhail A.; Shcherbak, Iurii; Stehfest, Elke; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wall, Gerard W.; Wang, Enli; White, Jeffrey W.; Wolf, Joost; Zhao, Zhigan; Zhu, Yan

    2016-12-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify `method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  5. Higher biomolecules yield in phytoplankton under copper exposure.

    PubMed

    Silva, Jaqueline Carmo; Echeveste, Pedro; Lombardi, Ana Teresa

    2018-05-30

    Copper is an important metal for industry, and its toxic threshold in natural ecosystems has increased since the industrial revolution. As an essential nutrient, it is required in minute amounts, being toxic in slightly increased concentrations, causing great biochemical transformation in microalgae. This study aimed at investigating the physiology of Scenedesmus quadricauda, a cosmopolitan species, exposed to copper concentrations including those that trigger intracellular biochemical modifications. The Cu exposure concentrations tested ranged from 0.1 to 25 µM, thus including environmentally important levels. Microalgae cultures were kept under controlled environmental conditions and monitored daily for cell density, in vivo chlorophyll a, and photosynthetic quantum yield (Φ M ). After 24 h growth, free Cu 2+ ions were determined, and after 96 h, cellular Cu concentration, total carbohydrates, proteins, lipids, and cell volume were determined. The results showed that both free Cu 2+ ions and cellular Cu increased with Cu increase in culture medium. Microalgae cell abundance and in vivo chlorophyll a were mostly affected at 2.5 µM Cu exposure (3.8 pg Cu cell -1 ) and above. Approximately 31% decrease of photosynthetic quantum yield was obtained at the highest Cu exposure concentration (25 µM; 25 pg Cu cell -1 ) in comparison with the control. However, at environmentally relevant copper concentrations (0.5 µM Cu; 0.4 pg Cu cell -1 ) cell volume increased in comparison with the control. Considering biomolecules accumulation per unit cell volume, the highest carbohydrates and proteins yield was obtained at 1.0 µM Cu (1.1 pg Cu cell -1 ), while for lipids higher Cu was necessary (2.5 µM Cu; 3.8 pg Cu cell -1 ). This study is a contribution to the understanding of the effects of environmentally significant copper concentrations in the physiology of S. quadricauda, as well as to biotechnological approach to increase biomolecule yield in

  6. Statistical Cost Estimation in Higher Education: Some Alternatives.

    ERIC Educational Resources Information Center

    Brinkman, Paul T.; Niwa, Shelley

    Recent developments in econometrics that are relevant to the task of estimating costs in higher education are reviewed. The relative effectiveness of alternative statistical procedures for estimating costs are also tested. Statistical cost estimation involves three basic parts: a model, a data set, and an estimation procedure. Actual data are used…

  7. Estimation of 305 Day Milk Yield from Cumulative Monthly and Bimonthly Test Day Records in Indonesian Holstein Cattle

    NASA Astrophysics Data System (ADS)

    Rahayu, A. P.; Hartatik, T.; Purnomoadi, A.; Kurnianto, E.

    2018-02-01

    The aims of this study were to estimate 305 day first lactation milk yield of Indonesian Holstein cattle from cumulative monthly and bimonthly test day records and to analyze its accuracy.The first lactation records of 258 dairy cows from 2006 to 2014 consisted of 2571 monthly (MTDY) and 1281 bimonthly test day yield (BTDY) records were used. Milk yields were estimated by regression method. Correlation coefficients between actual and estimated milk yield by cumulative MTDY were 0.70, 0.78, 0.83, 0.86, 0.89, 0.92, 0.94 and 0.96 for 2-9 months, respectively, meanwhile by cumulative BTDY were 0.69, 0.81, 0.87 and 0.92 for 2, 4, 6 and 8 months, respectively. The accuracy of fitting regression models (R2) increased with the increasing in the number of cumulative test day used. The used of 5 cumulative MTDY was considered sufficient for estimating 305 day first lactation milk yield with 80.6% accuracy and 7% error percentage of estimation. The estimated milk yield from MTDY was more accurate than BTDY by 1.1 to 2% less error percentage in the same time.

  8. Soil Moisture as an Estimator for Crop Yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Meyer, Volker; Samaniego, Luis; Thober, Stephan

    2015-04-01

    Annual crop yield depends on various factors such as soil properties, management decisions, and meteorological conditions. Unfavorable weather conditions, e.g. droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany. Predicting crop yields allows to mitigate negative effects of weather extremes which are assumed to occur more often in the future due to climate change. A standard approach in economics is to predict the impact of climate change on agriculture as a function of temperature and precipitation. This approach has been developed further using concepts like growing degree days. Other econometric models use nonlinear functions of heat or vapor pressure deficit. However, none of these approaches uses soil moisture to predict crop yield. We hypothesize that soil moisture is a better indicator to explain stress on plant growth than estimations based on precipitation and temperature. This is the case because the latter variables do not explicitly account for the available water content in the root zone, which is the primary source of water supply for plant growth. In this study, a reduced form panel approach is applied to estimate a multivariate econometric production function for the years 1999 to 2010. Annual crop yield data of various crops on the administrative district level serve as depending variables. The explanatory variable of major interest is the Soil Moisture Index (SMI), which quantifies anomalies in root zone soil moisture. The SMI is computed by the mesoscale Hydrological Model (mHM, www.ufz.de/mhm). The index represents the monthly soil water quantile at a 4 km2 grid resolution covering entire Germany. A reduced model approach is suitable because the SMI is the result of a stochastic weather process and therefore can be considered exogenous. For the ease of interpretation a linear functionality is preferred. Meteorological

  9. Does Targeting Higher Health Risk Employees or Increasing Intervention Intensity Yield Savings in a Workplace Wellness Program?

    PubMed

    Kapinos, Kandice A; Caloyeras, John P; Liu, Hangsheng; Mattke, Soeren

    2015-12-01

    This article aims to test whether a workplace wellness program reduces health care cost for higher risk employees or employees with greater participation. The program effect on costs was estimated using a generalized linear model with a log-link function using a difference-in-difference framework with a propensity score matched sample of employees using claims and program data from a large US firm from 2003 to 2011. The program targeting higher risk employees did not yield cost savings. Employees participating in five or more sessions aimed at encouraging more healthful living had about $20 lower per member per month costs relative to matched comparisons (P = 0.002). Our results add to the growing evidence base that workplace wellness programs aimed at primary prevention do not reduce health care cost, with the exception of those employees who choose to participate more actively.

  10. Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Fang, S.; Liu, K.; Gong, Y.

    2017-12-01

    This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.

  11. Annual Corn Yield Estimation through Multi-temporal MODIS Data

    NASA Astrophysics Data System (ADS)

    Shao, Y.; Zheng, B.; Campbell, J. B.

    2013-12-01

    This research employed 13 years of the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate annual corn yield for the Midwest of the United States. The overall objective of this study was to examine if annual corn yield could be accurately predicted using MODIS time-series NDVI (Normalized Difference Vegetation Index) and ancillary data such monthly precipitation and temperature. MODIS-NDVI 16-Day composite images were acquired from the USGS EROS Data Center for calendar years 2000 to 2012. For the same time-period, county level corn yield statistics were obtained from the National Agricultural Statistics Service (NASS). The monthly precipitation and temperature measures were derived from Precipitation-Elevation Regressions on Independent Slopes Model (PRISM) climate data. A cropland mask was derived using 2006 National Land Cover Database. For each county and within the cropland mask, the MODIS-NDVI time-series data and PRISM climate data were spatially averaged, at their respective time steps. We developed a random forest predictive model with the MODIS-NDVI and climate data as predictors and corn yield as response. To assess the model accuracy, we used twelve years of data as training and the remaining year as hold-out testing set. The training and testing procedures were repeated 13 times. The R2 ranged from 0.72 to 0.83 for testing years. It was also found that the inclusion of climate data did not improve the model predictive performance. MODIS-NDVI time-series data alone might provide sufficient information for county level corn yield prediction.

  12. Estimating oak growth and yield

    Treesearch

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    Yields from upland oak stands vary widely from stand to stand due to differences in age, site quality, species composition, and stand structure. Cutting history and other past disturbances such as grazing or fire also affect yields.

  13. Seismic Yield Estimates of UTTR Surface Explosions

    NASA Astrophysics Data System (ADS)

    Hayward, C.; Park, J.; Stump, B. W.

    2016-12-01

    Since 2007 the Utah Test and Training Range (UTTR) has used explosive demolition as a method to destroy excess solid rocket motors ranging in size from 19 tons to less than 2 tons. From 2007 to 2014, 20 high quality seismic stations within 180 km recorded most of the more than 200 demolitions. This provides an interesting dataset to examine seismic source scaling for surface explosions. Based upon observer records, shots were of 4 sizes, corresponding to the size of the rocket motors. Instrument corrections for the stations were quality controlled by examining the P-wave amplitudes of all magnitude 6.5-8 earthquakes from 30 to 90 degrees away. For each station recording, the instrument corrected RMS seismic amplitude in the first 10 seconds after the P-onset was calculated. Waveforms at any given station for all the observed explosions are nearly identical. The observed RMS amplitudes were fit to a model including a term for combined distance and station correction, a term for observed RMS amplitude, and an error term for the actual demolition size. The observed seismic yield relationship is RMS=k*Weight2/3 . Estimated yields for the largest shots vary by about 50% from the stated weights, with a nearly normal distribution.

  14. Estimating tar and nicotine exposure: human smoking versus machine generated smoke yields.

    PubMed

    St Charles, F K; Kabbani, A A; Borgerding, M F

    2010-02-01

    Determine human smoked (HS) cigarette yields of tar and nicotine for smokers using their own brand in their everyday environment. A robust, filter analysis method was used to estimate the tar and nicotine yields for 784 subjects. Seventeen brands were chosen to represent a wide range of styles: 85 and 100 mm lengths; menthol and non-menthol; 17, 23, and 25 mm circumference; with tar yields [Federal Trade Commission (FTC) method] ranging from 1 to 18 mg. Tar bands chosen corresponded to yields of 1-3 mg, 4-6 mg, 7-12 mg, and 13+ mg. A significant difference (p<0.0001) in HS yields of tar and nicotine between tar bands was found. Machine-smoked yields were reasonable predictors of the HS yields for groups of subjects, but the relationship was neither exact nor linear. Neither the FTC, the Massachusetts (MA) nor the Canadian Intensive (CI) machine-smoking methods accurately reflect the HS yields across all brands. The FTC method was closest for the 7-12 mg and 13+ mg products and the MA method was closest for the 1-3mg products. The HS yields for the 4-6 mg products were approximately midway between the FTC and the MA yields. HS nicotine yields corresponded well with published urinary and plasma nicotine biomarker studies. 2009 Elsevier Inc. All rights reserved.

  15. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle.

    PubMed

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-12-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.

  16. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle

    PubMed Central

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-01-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran. PMID:26954192

  17. Comparison Between the Use of SAR and Optical Data for Wheat Yield Estimations Using Crop Model Assimilation

    NASA Astrophysics Data System (ADS)

    Silvestro, Paolo Cosmo; Yang, Hao; Jin, X. L.; Yang, Guijun; Casa, Raffaele; Pignatti, Stefano

    2016-08-01

    The ultimate aim of this work is to develop methods for the assimilation of the biophysical variables estimated by remote sensing in a suitable crop growth model. Two strategies were followed, one based on the use of Leaf Area Index (LAI) estimated by optical data, and the other based on the use of biomass estimated by SAR. The first one estimates LAI from the reflectance measured by the optical sensors on board of HJ1A, HJ1B and Landsat, using a method based on the training of artificial neural networks (ANN) with PROSAIL model simulations. The retrieved LAI is used to improve wheat yield estimation, using assimilation methods based on the Ensemble Kalman Filter, which assimilate the biophysical variables into growth crop model. The second strategy estimates biomass from SAR imagery. Polarimetric decomposition methods were used based on multi-temporal fully polarimetric Radarsat-2 data during the entire growing season. The estimated biomass was assimilating to FAO Aqua crop model for improving the winter wheat yield estimation, with the Particle Swarm Optimization (PSO) method. These procedures were used in a spatial application with data collected in the rural area of Yangling (Shaanxi Province) in 2014 and were validated for a number of wheat fields for which ground yield data had been recorded and according to statistical yield data for the area.

  18. GT0 Explosion Sources for IMS Infrasound Calibration: Charge Design and Yield Estimation from Near-source Observations

    NASA Astrophysics Data System (ADS)

    Gitterman, Y.; Hofstetter, R.

    2014-03-01

    yield estimator. The delay data of the 2009 shot with IMI explosives, characterized by much higher detonation velocity, are clearly separated from ANFO data, thus indicating a dependence on explosive type. This unique dual Sayarim explosion experiment (August 2009/January 2011), with the strongest GT0 sources since the establishment of the IMS network, clearly demonstrated the most favorable westward/eastward infrasound propagation up to 3,400/6,250 km according to appropriate summer/winter weather pattern and stratospheric wind directions, respectively, and thus verified empirically common models of infrasound propagation in the atmosphere.

  19. Wheat yield estimation at the farm level using TM Landsat and agrometeorological data

    NASA Technical Reports Server (NTRS)

    Rudorff, B. F. T.; Batista, G. T.

    1991-01-01

    A model for estimating wheat yields on the farm level was developed, that integrates the Landsat TM data and agrometeorological information. Results obtained for a test site in southern Brasil for years of 1986 and 1987 show that the vegetation index derived from Landsat TM could account for the 60 to 40 percent wheat-yield variability observed between the two crop years. Compared to results using either the Landsat TM vegetation index or the agrometeorological data alone, the joint use of both types of data in a single model yielded a significant improvement.

  20. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  1. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Fieuzal, R.; Marais Sicre, C.; Baup, F.

    2017-05-01

    The yield forecasting of corn constitutes a key issue in agricultural management, particularly in the context of demographic pressure and climate change. This study presents two methods to estimate yields using artificial neural networks: a diagnostic approach based on all the satellite data acquired throughout the agricultural season, and a real-time approach, where estimates are updated after each image was acquired in the microwave and optical domains (Formosat-2, Spot-4/5, TerraSAR-X, and Radarsat-2) throughout the crop cycle. The results are based on the Multispectral Crop Monitoring experimental campaign conducted by the CESBIO (Centre d'Études de la BIOsphère) laboratory in 2010 over an agricultural region in southwestern France. Among the tested sensor configurations (multi-frequency, multi-polarization or multi-source data), the best yield estimation performance (using the diagnostic approach) is obtained with reflectance acquired in the red wavelength region, with a coefficient of determination of 0.77 and an RMSE of 6.6 q ha-1. In the real-time approach the combination of red reflectance and CHH backscattering coefficients provides the best compromise between the accuracy and earliness of the yield estimate (more than 3 months before the harvest), with an R2 of 0.69 and an RMSE of 7.0 q ha-1 during the development of the central stem. The two best yield estimates are similar in most cases (for more than 80% of the monitored fields), and the differences are related to discrepancies in the crop growth cycle and/or the consequences of pests.

  2. Soil Water Availability Modulation Over Estimated Relative Yield Losses in Wheat (Triticum aestivum L.) Due to Ozone Exposure

    PubMed Central

    De la Torre, Daniel; Sierra, Maria Jose

    2007-01-01

    The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects of tropospheric ozone on wheat, and to develop the algorithms required for the estimation of relative yield losses, adapted to the Mediterranean environmental conditions. The results show that this is an easy way to estimate relative yield losses just using meteorological data, without using ozone fluxes, which are much more difficult to calculate. Soil water availability is very important as a modulating factor of the effects of ozone on wheat; when soil water availability decreases, almost twice the amount of accumulated exposure to ozone is required to induce the same percentage of yield loss as in years when soil water availability is high. PMID:17619747

  3. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ < 150 km) from these explosions. This methodology is then applied to data recorded from a large sample of the Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  4. Use of vegetation health data for estimation of aus rice yield in bangladesh.

    PubMed

    Rahman, Atiqur; Roytman, Leonid; Krakauer, Nir Y; Nizamuddin, Mohammad; Goldberg, Mitch

    2009-01-01

    Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991-2005). A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March-April (weeks 8-13 of the year), several months in advance of the rice harvest. Stepwise principal component regression (PCR) was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost.

  5. Use of Vegetation Health Data for Estimation of Aus Rice Yield in Bangladesh

    PubMed Central

    Rahman, Atiqur; Roytman, Leonid; Krakauer, Nir Y.; Nizamuddin, Mohammad; Goldberg, Mitch

    2009-01-01

    Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991–2005). A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March–April (weeks 8–13 of the year), several months in advance of the rice harvest. Stepwise principal component regression (PCR) was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost. PMID:22574057

  6. Concentrations, and Estimated Loads and Yields of Total Nitrogen and Total Phosphorus at Selected Stations in Kentucky, 1979-2004

    USGS Publications Warehouse

    Crain, Angela S.; Martin, Gary R.

    2009-01-01

    To evaluate the State's water quality, the Kentucky Division of Water collects data from a statewide network of primary ambient stream water-quality monitoring stations and flexible, rotating watershed-monitoring stations. This ambient stream water-quality monitoring network program is directed to assess the conditions of surface waters throughout Kentucky. Water samples were collected monthly for the majority of the stations from 1979 to 1998, which represented agricultural, undeveloped (mainly forested), and areas of mixed land use/land cover. In 1998, the number of water samples collected was reduced to a collection frequency of six times per year (every 2 months) every 4 of 5 years, because a new monitoring network was implemented involving a 5-year rotating Basin Management Unit scheme of monitoring. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to summarize concentrations of total nitrogen and total phosphorus and provide estimates of total nitrogen and total phosphorus loads and yields in 55 selected streams in Kentucky's ambient stream water-quality monitoring network, which was operated from 1979 through 2004. Streams in predominately agricultural basins had higher concentrations of total nitrogen (TN) and concentrations of total phosphorus (TP) than streams in predominately undeveloped (forested) basins. Streams in basins in intensely developed karst areas characterized by caves, springs, sinkholes, and sinking streams had a higher median concentration of TN (1.5 milligrams per liter [mg/L]) than streams in basins with limited or no karst areas (0.63 mg/L). As with TN, median concentrations of TP also were higher in areas of intense karst (0.05 mg/L) than in areas with limited or no karst (0.02 mg/L). The U.S. Environmental Protection Agency (USEPA) has recommended ecoregional nutrient water-quality criteria as a starting

  7. Estimating soybean genetic gain for yield in the northern United States – Influence of cropping history

    USDA-ARS?s Scientific Manuscript database

    Mean on-farm USA soybean yield increased at a rate of 21.3 kg per ha per year between 1924 and 2010, due to adoption of yield-enhancing genetic and agronomic technologies. To estimate annual rates of genetic yield gain in three northern USA soybean maturity groups (MG) and determine if these estimat...

  8. Seismic Methods of Identifying Explosions and Estimating Their Yield

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Myers, S. C.; Mellors, R. J.; Pitarka, A.; Rodgers, A. J.; Hauk, T. F.

    2014-12-01

    Seismology plays a key national security role in detecting, locating, identifying and determining the yield of explosions from a variety of causes, including accidents, terrorist attacks and nuclear testing treaty violations (e.g. Koper et al., 2003, 1999; Walter et al. 1995). A collection of mainly empirical forensic techniques has been successfully developed over many years to obtain source information on explosions from their seismic signatures (e.g. Bowers and Selby, 2009). However a lesson from the three DPRK declared nuclear explosions since 2006, is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, and accurately estimate their yield, we need to put our empirical methods on a firmer physical footing. Goals of current research are to improve our physical understanding of the mechanisms of explosion generation of S- and surface-waves, and to advance our ability to numerically model and predict them. As part of that process we are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative location and amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Finally we are also exploring the value of combining seismic information with other technologies including acoustic and InSAR techniques to better understand the source characteristics. Our goal is to improve our explosion models

  9. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds

    NASA Astrophysics Data System (ADS)

    Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.

    2015-06-01

    Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.

  10. Water Quality in the Upper Anacostia River, Maryland: Continuous and Discrete Monitoring with Simulations to Estimate Concentrations and Yields, 2003-05

    USGS Publications Warehouse

    Miller, Cherie V.; Gutierrez-Magness, Angelica L.; Feit Majedi, Brenda L.; Foster, Gregory D.

    2007-01-01

    concentrations of total phosphorus and total nitrogen had lower values of multiple R2 than suspended sediment, but the estimated bias for all the models was similar. The models for total nitrogen and total phosphorus tended to under-predict high concentrations and to over-predict low concentrations as compared to measured values. Annual yields (loads per square area in kilograms per year per square kilometer) were estimated for suspended sediment, total nitrogen, and total phosphorus using the U.S. Geological Survey models ESTIMATOR and LOADEST. The model LOADEST used hourly time steps and allowed the use of turbidity, which is strongly correlated to concentrations of suspended sediment, as a predictor variable. Annual yields for total nitrogen and total phosphorus were slightly higher but similar to previous estimates for other watersheds of the Chesapeake Bay, but annual yields for suspended sediment were higher by an order of magnitude for the two Anacostia River stations. Annual yields of suspended sediment at the two Anacostia River stations ranged from 131,000 to 248,000 kilograms per year per square kilometer for 2004 and 2005. LOADEST estimates were similar to those determined with ESTIMATOR, but had reduced errors associated with the estimates.

  11. Integrating remote sensing, geographic information system and modeling for estimating crop yield

    NASA Astrophysics Data System (ADS)

    Salazar, Luis Alonso

    This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.

  12. A photometric method for the estimation of the oil yield of oil shale

    USGS Publications Warehouse

    Cuttitta, Frank

    1951-01-01

    A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.

  13. Cotton yield estimation using very high-resolution digital images acquired on a low-cost small unmanned aerial vehicle

    USDA-ARS?s Scientific Manuscript database

    Yield estimation is a critical task in crop management. A number of traditional methods are available for crop yield estimation but they are costly, time-consuming and difficult to expand to a relatively large field. Remote sensing provides techniques to develop quick coverage over a field at any sc...

  14. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    NASA Astrophysics Data System (ADS)

    Swarnkar, Somil; Malini, Anshu; Tripathi, Shivam; Sinha, Rajiv

    2018-04-01

    High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha-1 yr-1) with higher values in the upper mountainous region (92 ± 15.2 t ha-1 yr-1) compared to the lower alluvial plains (19.3 ± 4 t ha-1 yr-1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin - Nanak Sagar Dam (NSD) for the period 1962-2008 and Husepur gauging station (HGS) for 1987-2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr-1 and 6.7 ± 1.4 × 106 t yr-1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr-1 and 7.2 × 106 t yr-1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.

  15. Estimated winter wheat yield from crop growth predicted by LANDSAT

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.

    1977-01-01

    An evapotranspiration and growth model for winter wheat is reported. The inputs are daily solar radiation, maximum temperature, minimum temperature, precipitation/irrigation and leaf area index. The meteorological data were obtained from National Weather Service while LAI was obtained from LANDSAT multispectral scanner. The output provides daily estimates of potential evapotranspiration, transpiration, evaporation, soil moisture (50 cm depth), percentage depletion, net photosynthesis and dry matter production. Winter wheat yields are correlated with transpiration and dry matter accumulation.

  16. Exoplanet Classification and Yield Estimates for Direct Imaging Missions

    NASA Astrophysics Data System (ADS)

    Kopparapu, Ravi Kumar; Hébrard, Eric; Belikov, Rus; Batalha, Natalie M.; Mulders, Gijs D.; Stark, Chris; Teal, Dillon; Domagal-Goldman, Shawn; Mandell, Avi

    2018-04-01

    Future NASA concept missions that are currently under study, like the Habitable Exoplanet Imaging Mission (HabEx) and the Large Ultra-violet Optical Infra Red Surveyor, could discover a large diversity of exoplanets. We propose here a classification scheme that distinguishes exoplanets into different categories based on their size and incident stellar flux, for the purpose of providing the expected number of exoplanets observed (yield) with direct imaging missions. The boundaries of this classification can be computed using the known chemical behavior of gases and condensates at different pressures and temperatures in a planetary atmosphere. In this study, we initially focus on condensation curves for sphalerite ZnS, {{{H}}}2{{O}}, {CO}}2, and {CH}}4. The order in which these species condense in a planetary atmosphere define the boundaries between different classes of planets. Broadly, the planets are divided into rocky planets (0.5–1.0 R ⊕), super-Earths (1.0–1.75 R ⊕), sub-Neptunes (1.75–3.5 R ⊕), sub-Jovians (3.5–6.0 R ⊕), and Jovians (6–14.3 R ⊕) based on their planet sizes, and “hot,” “warm,” and “cold” based on the incident stellar flux. We then calculate planet occurrence rates within these boundaries for different kinds of exoplanets, η planet, using the community coordinated results of NASA’s Exoplanet Program Analysis Group’s Science Analysis Group-13 (SAG-13). These occurrence rate estimates are in turn used to estimate the expected exoplanet yields for direct imaging missions of different telescope diameters.

  17. Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference.

    PubMed

    Breda, F C; Albuquerque, L G; Euclydes, R F; Bignardi, A B; Baldi, F; Torres, R A; Barbosa, L; Tonhati, H

    2010-02-01

    Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Sediment yield estimation in mountain catchments of the Camastra reservoir, southern Italy: a comparison among different empirical methods

    NASA Astrophysics Data System (ADS)

    Lazzari, Maurizio; Danese, Maria; Gioia, Dario; Piccarreta, Marco

    2013-04-01

    Sedimentary budget estimation is an important topic for both scientific and social community, because it is crucial to understand both dynamics of orogenic belts and many practical problems, such as soil conservation and sediment accumulation in reservoir. Estimations of sediment yield or denudation rates in southern-central Italy are generally obtained by simple empirical relationships based on statistical regression between geomorphic parameters of the drainage network and the measured suspended sediment yield at the outlet of several drainage basins or through the use of models based on sediment delivery ratio or on soil loss equations. In this work, we perform a study of catchment dynamics and an estimation of sedimentary yield for several mountain catchments of the central-western sector of the Basilicata region, southern Italy. Sediment yield estimation has been obtained through both an indirect estimation of suspended sediment yield based on the Tu index (mean annual suspension sediment yield, Ciccacci et al., 1980) and the application of the Rusle (Renard et al., 1997) and the USPED (Mitasova et al., 1996) empirical methods. The preliminary results indicate a reliable difference between the RUSLE and USPED methods and the estimation based on the Tu index; a critical data analysis of results has been carried out considering also the present-day spatial distribution of erosion, transport and depositional processes in relation to the maps obtained from the application of those different empirical methods. The studied catchments drain an artificial reservoir (i.e. the Camastra dam), where a detailed evaluation of the amount of historical sediment storage has been collected. Sediment yield estimation obtained by means of the empirical methods have been compared and checked with historical data of sediment accumulation measured in the artificial reservoir of the Camastra dam. The validation of such estimations of sediment yield at the scale of large catchments

  19. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    NASA Astrophysics Data System (ADS)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  20. Simple agrometeorological models for estimating Guineagrass yield in Southeast Brazil.

    PubMed

    Pezzopane, José Ricardo Macedo; da Cruz, Pedro Gomes; Santos, Patricia Menezes; Bosi, Cristiam; de Araujo, Leandro Coelho

    2014-09-01

    The objective of this work was to develop and evaluate agrometeorological models to simulate the production of Guineagrass. For this purpose, we used forage yield from 54 growing periods between December 2004-January 2007 and April 2010-March 2012 in irrigated and non-irrigated pastures in São Carlos, São Paulo state, Brazil (latitude 21°57'42″ S, longitude 47°50'28″ W and altitude 860 m). Initially we performed linear regressions between the agrometeorological variables and the average dry matter accumulation rate for irrigated conditions. Then we determined the effect of soil water availability on the relative forage yield considering irrigated and non-irrigated pastures, by means of segmented linear regression among water balance and relative production variables (dry matter accumulation rates with and without irrigation). The models generated were evaluated with independent data related to 21 growing periods without irrigation in the same location, from eight growing periods in 2000 and 13 growing periods between December 2004-January 2007 and April 2010-March 2012. The results obtained show the satisfactory predictive capacity of the agrometeorological models under irrigated conditions based on univariate regression (mean temperature, minimum temperature and potential evapotranspiration or degreedays) or multivariate regression. The response of irrigation on production was well correlated with the climatological water balance variables (ratio between actual and potential evapotranspiration or between actual and maximum soil water storage). The models that performed best for estimating Guineagrass yield without irrigation were based on minimum temperature corrected by relative soil water storage, determined by the ratio between the actual soil water storage and the soil water holding capacity.irrigation in the same location, in 2000, 2010 and 2011. The results obtained show the satisfactory predictive capacity of the agrometeorological models under

  1. Remote sensing and modelling of vegetation dynamics for early estimation and spatial analysis of grain yields in semiarid context in central Tunisia

    NASA Astrophysics Data System (ADS)

    Chahbi, Aicha; Zribi, Mehrez; Lili-Chabaane, Zohra

    2016-04-01

    In arid and semi-arid areas, population growth, urbanization, food security and climate change have an impact on agriculture in general and particular on the cereal production. Therefore to improve food security in arid countries, crop canopy monitoring and yield forecasting cereals are needed. Many models, based on the use of remote sensing or agro-meteorological models, have been developed to estimate the biomass and grain yield of cereals. Through the use of a rich database, acquired over a period of two years for more than 80 test fields, and from optical satellite SPOT/HRV images, the aim of the present study is to evaluate the feasibility of two yield prediction approaches. The first approach is based on the application of the semi-empirical growth model SAFY, developed to simulate the dynamics of the LAI and the grain yield, at the field scale. The model is able to reproduce the time evolution of the leaf area index of all fields with acceptable error. However, an inter-comparison between ground yield measurements and SAFY model simulations reveals that the yields are under-estimated by this model. We can explain the limits of the semi-empirical model SAFY by its simplicity and also by various factors that were not considered (fertilization, irrigation,...). To improve the yield estimation, a new approach is proposed: the grain yield is estimated in function of the LAI in the growth period between 25 March and 5 April. The LAI of this period is estimated by SAFY model. A linear relationship is developed between the measured grain yield and the LAI area of the maximum growth period.This approach is robust, the measured and estimated grain yields are well correlated. Following the validation of this approach, yield estimations are proposed for the entire studied site using the SPOT/HRV images.

  2. Evaluation of Rgb-Based Vegetation Indices from Uav Imagery to Estimate Forage Yield in Grassland

    NASA Astrophysics Data System (ADS)

    Lussem, U.; Bolten, A.; Gnyp, M. L.; Jasper, J.; Bareth, G.

    2018-04-01

    Monitoring forage yield throughout the growing season is of key importance to support management decisions on grasslands/pastures. Especially on intensely managed grasslands, where nitrogen fertilizer and/or manure are applied regularly, precision agriculture applications are beneficial to support sustainable, site-specific management decisions on fertilizer treatment, grazing management and yield forecasting to mitigate potential negative impacts. To support these management decisions, timely and accurate information is needed on plant parameters (e.g. forage yield) with a high spatial and temporal resolution. However, in highly heterogeneous plant communities such as grasslands, assessing their in-field variability non-destructively to determine e.g. adequate fertilizer application still remains challenging. Especially biomass/yield estimation, as an important parameter in assessing grassland quality and quantity, is rather laborious. Forage yield (dry or fresh matter) is mostly measured manually with rising plate meters (RPM) or ultrasonic sensors (handheld or mounted on vehicles). Thus the in-field variability cannot be assessed for the entire field or only with potential disturbances. Using unmanned aerial vehicles (UAV) equipped with consumer grade RGB cameras in-field variability can be assessed by computing RGB-based vegetation indices. In this contribution we want to test and evaluate the robustness of RGB-based vegetation indices to estimate dry matter forage yield on a recently established experimental grassland site in Germany. Furthermore, the RGB-based VIs are compared to indices computed from the Yara N-Sensor. The results show a good correlation of forage yield with RGB-based VIs such as the NGRDI with R2 values of 0.62.

  3. Estimates of genetic and environmental (co)variances for first lactation on milk yield, survival, and calving interval.

    PubMed

    Dong, M C; van Vleck, L D

    1989-03-01

    Variance and covariance components for milk yield, survival to second freshening, calving interval in first lactation were estimated by REML with the expectation and maximization algorithm for an animal model which included herd-year-season effects. Cows without calving interval but with milk yield were included. Each of the four data sets of 15 herds included about 3000 Holstein cows. Relationships across herds were ignored to enable inversion of the coefficient matrix of mixed model equations. Quadratics and their expectations were accumulated herd by herd. Heritability of milk yield (.32) agrees with reports by same methods. Heritabilities of survival (.11) and calving interval(.15) are slightly larger and genetic correlations smaller than results from different methods of estimation. Genetic correlation between milk yield and calving interval (.09) indicates genetic ability to produce more milk is lightly associated with decreased fertility.

  4. Effects of stage of pregnancy on variance components, daily milk yields and 305-day milk yield in Holstein cows, as estimated by using a test-day model.

    PubMed

    Yamazaki, T; Hagiya, K; Takeda, H; Osawa, T; Yamaguchi, S; Nagamine, Y

    2016-08-01

    Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open

  5. Analytic model to estimate thermonuclear neutron yield in z-pinches using the magnetic Noh problem

    NASA Astrophysics Data System (ADS)

    Allen, Robert C.

    The objective was to build a model which could be used to estimate neutron yield in pulsed z-pinch experiments, benchmark future z-pinch simulation tools and to assist scaling for breakeven systems. To accomplish this, a recent solution to the magnetic Noh problem was utilized which incorporates a self-similar solution with cylindrical symmetry and azimuthal magnetic field (Velikovich, 2012). The self-similar solution provides the conditions needed to calculate the time dependent implosion dynamics from which batch burn is assumed and used to calculate neutron yield. The solution to the model is presented. The ion densities and time scales fix the initial mass and implosion velocity, providing estimates of the experimental results given specific initial conditions. Agreement is shown with experimental data (Coverdale, 2007). A parameter sweep was done to find the neutron yield, implosion velocity and gain for a range of densities and time scales for DD reactions and a curve fit was done to predict the scaling as a function of preshock conditions.

  6. Machine-smoking studies of cigarette filter color to estimate tar yield by visual assessment and through the use of a colorimeter.

    PubMed

    Morton, Michael J; Williams, David L; Hjorth, Heather B; Smith, Jennifer H

    2010-04-01

    This paper explores using the intensity of the stain on the end of the filter ("filter color") as a vehicle for estimating cigarette tar yield, both by instrument reading of the filter color and by visual comparison to a template. The correlation of machine-measured tar yield to filter color measured with a colorimeter was reasonably strong and was relatively unaffected by different puff volumes or different tobacco moistures. However, the correlation of filter color to machine-measured nicotine yield was affected by the moisture content of the cigarette. Filter color, as measured by a colorimeter, was generally comparable to filter extraction of either nicotine or solanesol in its correlation to machine-smoked tar yields. It was found that the color of the tar stain changes over time. Panelists could generally correctly order the filters from machine-smoked cigarettes by tar yield using the intensity of the tar stain. However, there was considerable variation in the panelist-to-panelist tar yield estimates. The wide person-to-person variation in tar yield estimates, and other factors discussed in the text could severely limit the usefulness and practicality of this approach for visually estimating the tar yield of machine-smoked cigarettes. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates

    NASA Technical Reports Server (NTRS)

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; hide

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  8. Temperature increase reduces global yields of major crops in four independent estimates

    PubMed Central

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Peng, Shushi; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population. PMID:28811375

  9. Temperature increase reduces global yields of major crops in four independent estimates.

    PubMed

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold

    2017-08-29

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO 2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  10. Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model.

    PubMed

    Muslim, Mohammad; Romshoo, Shakil Ahmad; Rather, A Q

    2015-06-01

    The Kashmir Himalayan region of India is expected to be highly prone to the change in agricultural land use because of its geo-ecological fragility, strategic location vis-à-vis the Himalayan landscape, its trans-boundary river basins, and inherent socio-economic instabilities. Food security and sustainability of the region are thus greatly challenged by these impacts. The effect of future climate change, increased competition for land and water, labor from non-agricultural sectors, and increasing population adds to this complex problem. In current study, paddy rice yield at regional level was estimated using GIS-based environment policy integrated climate (GEPIC) model. The general approach of current study involved combining regional level crop database, regional soil data base, farm management data, and climatic data outputs with GEPIC model. The simulated yield showed that estimated production to be 4305.55 kg/ha (43.05 q h(-1)). The crop varieties like Jhelum, K-39, Chenab, China 1039, China-1007, and Shalimar rice-1 grown in plains recorded average yield of 4783.3 kg/ha (47.83 q ha(-1)). Meanwhile, high altitude areas with varieties like Kohsaar, K-78 (Barkat), and K-332 recorded yield of 4102.2 kg/ha (41.02 q ha(-1)). The observed and simulated yield showed a good match with R (2) = 0.95, RMSE = 132.24 kg/ha, respectively.

  11. Number of pins in two-stage stratified sampling for estimating herbage yield

    Treesearch

    William G. O' Regan; C. Eugene Conrad

    1975-01-01

    In a two-stage stratified procedure for sampling herbage yield, plots are stratified by a pin frame in stage one, and clipped. In stage two, clippings from selected plots are sorted, dried, and weighed. Sample size and distribution of plots between the two stages are determined by equations. A way to compute the effect of number of pins on the variance of estimated...

  12. Repeatability estimates for oleoresin yield measurements in three species of the southern pines

    Treesearch

    James H. Roberds; Brain L. Strom

    2006-01-01

    Repeatability was estimated for constitutive oleoresin yield measurements in 10 stands of three species of pines native to southeastern United States. Trees of these species that discharge large quantities of oleoresin upon wounding are considered to be most resistant to attack by southern pine beetle (Dendroctonus frontalis Zimmermann). Oleoresin...

  13. Tensile Yielding of Multi-Wall Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, Kyeongjae; Srivastava, Deepak; Parks, John W. (Technical Monitor)

    2002-01-01

    The tensile yielding of multiwall carbon nanotubes (MWCNTs) has been studied using Molecular Dynamics simulations and a Transition State Theory based model. We find a strong dependence of the yielding on the strain rate. A critical strain rate has been predicted above/below which yielding strain of a MWCNT is larger/smaller than that of the corresponding single-wall carbon nanotubes. At experimentally feasible strain rate of 1% /hour and T = 300K, the yield strain of a MWCNT is estimated to be about 3-4 % higher than that of an equivalent SWCNT (Single Wall Carbon Nanotube), in good agreement with recent experimental observations.

  14. Using normalized difference vegetation index (NDVI) to estimate sugarcane yield and yield components

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) yield and yield components are important traits for growers and scientists to evaluate and select cultivars. Collection of these yield data would be labor intensive and time consuming in the early selection stages of sugarcane breeding cultivar development programs with a ...

  15. Estimates of genetics and phenotypics parameters for the yield and quality of soybean seeds.

    PubMed

    Zambiazzi, E V; Bruzi, A T; Guilherme, S R; Pereira, D R; Lima, J G; Zuffo, A M; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M

    2017-09-27

    Estimating genotype x environment (GxE) parameters for quality and yield in soybean seed grown in different environments in Minas Gerais State was the goal of this study, as well as to evaluate interaction effects of GxE for soybean seeds yield and quality. Seeds were produced in three locations in Minas Gerais State (Lavras, Inconfidentes, and Patos de Minas) in 2013/14 and 2014/15 seasons. Field experiments were conducted in randomized blocks in a factorial 17 x 6 (GxE), and three replications. Seed yield and quality were evaluated for germination in substrates paper and sand, seedling emergence, speed emergency index, mechanical damage by sodium hypochlorite, electrical conductivity, speed aging, vigor and viability of seeds by tetrazolium test in laboratory using completely randomized design. Quadratic component genotypic, GXE variance component, genotype determination coefficient, genetic variation coefficient and environmental variation coefficient were estimated using the Genes software. Percentage analysis of genotypes contribution, environments and genotype x environment interaction were conducted by sites combination two by two and three sites combination, using the R software. Considering genotypes selection of broad adaptation, TMG 1179 RR, CD 2737 RR, and CD 237 RR associated better yield performance at high physical and physiological potential of seed. Environmental effect was more expressive for most of the characters related to soybean seed quality. GxE interaction effects were expressive though genotypes did not present coincidental behavior in different environments.

  16. Impacts of Different Assimilation Methodologies on Crop Yield Estimates Using Active and Passive Microwave Dataset at L-Band

    NASA Astrophysics Data System (ADS)

    Liu, P.; Bongiovanni, T. E.; Monsivais-Huertero, A.; Bindlish, R.; Judge, J.

    2013-12-01

    Accurate estimates of crop yield are important for managing agricultural production and food security. Although the crop growth models, such as the Decision Support System Agrotechnology Transfer (DSSAT), have been used to simulate crop growth and development, the crop yield estimates still diverge from the reality due to different sources of errors in the models and computation. Auxiliary observations may be incorporated into such dynamic models to improve predictions using data assimilation. Active and passive (AP) microwave observations at L-band (1-2 GHz) are sensitive to dielectric and geometric properties of soil and vegetation, including soil moisture (SM), vegetation water content (VWC), surface roughness, and vegetation structure. Because SM and VWC are one of the governing factors in estimating crop yield, microwave observations may be used to improve crop yield estimates. Current studies have shown that active observations are more sensitive to the surface roughness of soil and vegetation structure during the growing season, while the passive observations are more sensitive to the SM. Backscatter and emission models linked with the DSSAT model (DSSAT-A-P) allow assimilation of microwave observations of backscattering coefficient (σ0) and brightness temperature (TB) may provide biophysically realistic estimates of model states and parameters. The present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, and the NASA/CNDAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. In 2014, the planned NASA Soil Moisture Active Passive mission will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days. The goal of this study is to understand the impacts of assimilation of asynchronous and synchronous AP observations on crop yield

  17. Specific Yields Estimated from Gravity Change during Pumping Test

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Hwang, C.; Chang, L. C.

    2017-12-01

    Specific yield (Sy) is the most important parameter to describe available groundwater capacity in an unconfined aquifer. When estimating Sy by a field pumping test, aquifer heterogeneity and well performers will cause a large uncertainty. In this study, we use a gravity-based method to estimate Sy. At the time of pumping test, amounts of mass (groundwater) are forced to be taken out. If drawdown corn is big and close enough to high precision gravimeter, the gravity change can be detected. The gravity-based method use gravity observations that are independent from traditional flow computation. Only the drawdown corn should be modeled with observed head and hydrogeology data. The gravity method can be used in most groundwater field tests, such as locally pumping/injection tests initiated by active man-made or annual variations due to natural sources. We apply our gravity method at few sites in Taiwan situated over different unconfined aquifer. Here pumping tests for Sy determinations were also carried out. We will discuss why the gravity method produces different results from traditional pumping test, field designs and limitations of the gravity method.

  18. Canopy Chlorophyll Density Based Index for Estimating Nitrogen Status and Predicting Grain Yield in Rice

    PubMed Central

    Liu, Xiaojun; Zhang, Ke; Zhang, Zeyu; Cao, Qiang; Lv, Zunfu; Yuan, Zhaofeng; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-01-01

    Canopy chlorophyll density (Chl) has a pivotal role in diagnosing crop growth and nutrition status. The purpose of this study was to develop Chl based models for estimating N status and predicting grain yield of rice (Oryza sativa L.) with Leaf area index (LAI) and Chlorophyll concentration of the upper leaves. Six field experiments were conducted in Jiangsu Province of East China during 2007, 2008, 2009, 2013, and 2014. Different N rates were applied to generate contrasting conditions of N availability in six Japonica cultivars (9915, 27123, Wuxiangjing 14, Wuyunjing 19, Yongyou 8, and Wuyunjing 24) and two Indica cultivars (Liangyoupei 9, YLiangyou 1). The SPAD values of the four uppermost leaves and LAI were measured from tillering to flowering growth stages. Two N indicators, leaf N accumulation (LNA) and plant N accumulation (PNA) were measured. The LAI estimated by LAI-2000 and LI-3050C were compared and calibrated with a conversion equation. A linear regression analysis showed significant relationships between Chl value and N indicators, the equations were as follows: PNA = (0.092 × Chl) − 1.179 (R2 = 0.94, P < 0.001, relative root mean square error (RRMSE) = 0.196), LNA = (0.052 × Chl) − 0.269 (R2 = 0.93, P < 0.001, RRMSE = 0.185). Standardized method was used to quantity the correlation between Chl value and grain yield, normalized yield = (0.601 × normalized Chl) + 0.400 (R2 = 0.81, P < 0.001, RRMSE = 0.078). Independent experimental data also validated the use of Chl value to accurately estimate rice N status and predict grain yield. PMID:29163568

  19. A Remote Sensing-Derived Corn Yield Assessment Model

    NASA Astrophysics Data System (ADS)

    Shrestha, Ranjay Man

    Agricultural studies and food security have become critical research topics due to continuous growth in human population and simultaneous shrinkage in agricultural land. In spite of modern technological advancements to improve agricultural productivity, more studies on crop yield assessments and food productivities are still necessary to fulfill the constantly increasing food demands. Besides human activities, natural disasters such as flood and drought, along with rapid climate changes, also inflect an adverse effect on food productivities. Understanding the impact of these disasters on crop yield and making early impact estimations could help planning for any national or international food crisis. Similarly, the United States Department of Agriculture (USDA) Risk Management Agency (RMA) insurance management utilizes appropriately estimated crop yield and damage assessment information to sustain farmers' practice through timely and proper compensations. Through County Agricultural Production Survey (CAPS), the USDA National Agricultural Statistical Service (NASS) uses traditional methods of field interviews and farmer-reported survey data to perform annual crop condition monitoring and production estimations at the regional and state levels. As these manual approaches of yield estimations are highly inefficient and produce very limited samples to represent the entire area, NASS requires supplemental spatial data that provides continuous and timely information on crop production and annual yield. Compared to traditional methods, remote sensing data and products offer wider spatial extent, more accurate location information, higher temporal resolution and data distribution, and lower data cost--thus providing a complementary option for estimation of crop yield information. Remote sensing derived vegetation indices such as Normalized Difference Vegetation Index (NDVI) provide measurable statistics of potential crop growth based on the spectral reflectance and could

  20. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups

    PubMed Central

    Dar, Manzoor H.; de Janvry, Alain; Emerick, Kyle; Raitzer, David; Sadoulet, Elisabeth

    2013-01-01

    Approximately 30% of the cultivated rice area in India is prone to crop damage from prolonged flooding. We use a randomized field experiment in 128 villages of Orissa India to show that Swarna-Sub1, a recently released submergence-tolerant rice variety, has significant positive impacts on rice yield when fields are submerged for 7 to 14 days with no yield penalty without flooding. We estimate that Swarna-Sub1 offers an approximate 45% increase in yields over the current popular variety when fields are submerged for 10 days. We show additionally that low-lying areas prone to flooding tend to be more heavily occupied by people belonging to lower caste social groups. Thus, a policy relevant implication of our findings is that flood-tolerant rice can deliver both efficiency gains, through reduced yield variability and higher expected yield, and equity gains in disproportionately benefiting the most marginal group of farmers. PMID:24263095

  1. Crop suitability monitoring for improved yield estimations with 100m PROBA-V data

    NASA Astrophysics Data System (ADS)

    Özüm Durgun, Yetkin; Gilliams, Sven; Gobin, Anne; Duveiller, Grégory; Djaby, Bakary; Tychon, Bernard

    2015-04-01

    This study has been realised within the framework of a PhD targeting to advance agricultural monitoring with improved yield estimations using SPOT VEGETATION remotely sensed data. For the first research question, the aim was to improve dry matter productivity (DMP) for C3 and C4 plants by adding a water stress factor. Additionally, the relation between the actual crop yield and DMP was studied. One of the limitations was the lack of crop specific maps which leads to the second research question on 'crop suitability monitoring'. The objective of this work is to create a methodological approach based on the spectral and temporal characteristics of PROBA-V images and ancillary data such as meteorology, soil and topographic data to improve the estimation of annual crop yields. The PROBA-V satellite was launched on 6th May 2013, and was designed to bridge the gap in space-borne vegetation measurements between SPOT-VGT (March 1998 - May 2014) and the upcoming Sentinel-3 satellites scheduled for launch in 2015/2016. PROBA -V has products in four spectral bands: BLUE (centred at 0.463 µm), RED (0.655 µm), NIR (0.845 µm), and SWIR (1.600 µm) with a spatial resolution ranging from 1km to 300m. Due to the construction of the sensor, the central camera can provide a 100m data product with a 5 to 8 days revisiting time. Although the 100m data product is still in test phase a methodology for crop suitability monitoring was developed. The multi-spectral composites, NDVI (Normalised Difference Vegetation Index) (NIR_RED/NIR+RED) and NDII (Normalised Difference Infrared Index) (NIR-SWIR/NIR+SWIR) profiles are used in addition to secondary data such as digital elevation data, precipitation, temperature, soil types and administrative boundaries to improve the accuracy of crop yield estimations. The methodology is evaluated on several FP7 SIGMA test sites for the 2014 - 2015 period. Reference data in the form of vector GIS with boundaries and cover type of agricultural fields are

  2. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    Crop productivity is associated with the food security and hence, several models have been developed to estimate crop yield by combining remote sensing data with carbon cycle processes. In present study, we attempted to estimate crop GPP and NPP using algorithm based on the LUE model and a simplified respiration model. The state of Iowa and Illinois was chosen as the study site for estimating the crop yield for a period covering the 5 years (2006-2010), as it is the main Corn-Belt area in US. Present study focuses on developing crop-specific parameters for corn and soybean to estimate crop productivity and yield mapping using satellite remote sensing data. We utilized a 10 km spatial resolution daily meteorological data from WRF to provide cloudy-day meteorological variables but in clear-say days, MODIS-based meteorological data were utilized to estimate daily GPP, NPP, and biomass. County-level statistics on yield, area harvested, and productions were used to test model predicted crop yield. The estimated input meteorological variables from MODIS and WRF showed with good agreements with the ground observations from 6 Ameriflux tower sites in 2006. For examples, correlation coefficients ranged from 0.93 to 0.98 for Tmin and Tavg ; from 0.68 to 0.85 for daytime mean VPD; from 0.85 to 0.96 for daily shortwave radiation, respectively. We developed county-specific crop conversion coefficient, i.e. ratio of yield to biomass on 260 DOY and then, validated the estimated county-level crop yield with the statistical yield data. The estimated corn and soybean yields at the county level ranged from 671 gm-2 y-1 to 1393 gm-2 y-1 and from 213 gm-2 y-1 to 421 gm-2 y-1, respectively. The county-specific yield estimation mostly showed errors less than 10%. Furthermore, we estimated crop yields at the state level which were validated against the statistics data and showed errors less than 1%. Further analysis for crop conversion coefficient was conducted for 200 DOY and 280 DOY

  3. Using NOAA/AVHRR based remote sensing data and PCR method for estimation of Aus rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Mohammad; Akhand, Kawsar; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-06-01

    Rice is a dominant food crop of Bangladesh accounting about 75 percent of agricultural land use for rice cultivation and currently Bangladesh is the world's fourth largest rice producing country. Rice provides about two-third of total calorie supply and about one-half of the agricultural GDP and one-sixth of the national income in Bangladesh. Aus is one of the main rice varieties in Bangladesh. Crop production, especially rice, the main food staple, is the most susceptible to climate change and variability. Any change in climate will, thus, increase uncertainty regarding rice production as climate is major cause year-to-year variability in rice productivity. This paper shows the application of remote sensing data for estimating Aus rice yield in Bangladesh using official statistics of rice yield with real time acquired satellite data from Advanced Very High Resolution Radiometer (AVHRR) sensor and Principal Component Regression (PCR) method was used to construct a model. The simulated result was compared with official agricultural statistics showing that the error of estimation of Aus rice yield was less than 10%. Remote sensing, therefore, is a valuable tool for estimating crop yields well in advance of harvest, and at a low cost.

  4. Estimation of genomic breeding values for milk yield in UK dairy goats.

    PubMed

    Mucha, S; Mrode, R; MacLaren-Lee, I; Coffey, M; Conington, J

    2015-11-01

    The objective of this study was to estimate genomic breeding values for milk yield in crossbred dairy goats. The research was based on data provided by 2 commercial goat farms in the UK comprising 590,409 milk yield records on 14,453 dairy goats kidding between 1987 and 2013. The population was created by crossing 3 breeds: Alpine, Saanen, and Toggenburg. In each generation the best performing animals were selected for breeding, and as a result, a synthetic breed was created. The pedigree file contained 30,139 individuals, of which 2,799 were founders. The data set contained test-day records of milk yield, lactation number, farm, age at kidding, and year and season of kidding. Data on milk composition was unavailable. In total 1,960 animals were genotyped with the Illumina 50K caprine chip. Two methods for estimation of genomic breeding value were compared-BLUP at the single nucleotide polymorphism level (BLUP-SNP) and single-step BLUP. The highest accuracy of 0.61 was obtained with single-step BLUP, and the lowest (0.36) with BLUP-SNP. Linkage disequilibrium (r(2), the squared correlation of the alleles at 2 loci) at 50 kb (distance between 2 SNP) was 0.18. This is the first attempt to implement genomic selection in UK dairy goats. Results indicate that the single-step method provides the highest accuracy for populations with a small number of genotyped individuals, where the number of genotyped males is low and females are predominant in the reference population. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Infrasound Propagation Modeling for Explosive Yield Estimation

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Golden, P.; Negraru, P.

    2013-12-01

    This study focuses on developing methods of estimating the size or yield of HE surface explosions from local and regional infrasound measurements in the southwestern United States. A munitions disposal facility near Mina, Nevada provides a repeating ground-truth source for this study, with charge weights ranging from 870 - 3800 lbs. Detonation logs and GPS synchronized videos were obtained for a sample of shots representing the full range of weights. These are used to calibrate a relationship between charge weight and spectral level from seismic waveforms recorded at the Nevada Seismic Array (NVAR) at a distance of 36 km. Origin times and yields for the remaining shots are inferred from the seismic recordings at NVAR. Infrasound arrivals from the detonations have been continuously recorded on three four-element, small aperture infrasound arrays since late 2009. NVIAR is collocated with NVAR at a range of approximately 36 km to the northeast. FALN and DNIAR are located at ranges of 154 km to the north, and 293 km to the southeast respectively. Travel times and amplitudes for stratospheric arrivals at DNIAR show strong seasonal variability with the largest amplitudes and celerities occurring during the winter months when the stratospheric winds are favorable. Stratospheric celerities for FNIAR to the north are more consistent as they are not strongly affected by the predominantly meridional stratospheric winds. Tropospheric arrivals at all three arrays show considerable variability that does not appear to be a seasonal effect. Naval Research Laboratory Ground to Space (NRL-G2S) Mesoscale models are used to specify the atmosphere along the propagation path for each detonation. Ray-tracing is performed for each source/receiver pair to identify events for which the models closely match the travel-time observations. This subset of events is used to establish preliminary wind correction formulas using wind values from the G2S profile for the entire propagation path. These

  6. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology

    USGS Publications Warehouse

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.

    2018-03-07

    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  7. Estimating daily fat yield from a single milking on test day for herds with a robotic milking system.

    PubMed

    Peeters, R; Galesloot, P J B

    2002-03-01

    The objective of this study was to estimate the daily fat yield and fat percentage from one sampled milking per cow per test day in an automatic milking system herd, when the milking times and milk yields of all individual milkings are recorded by the automatic milking system. Multiple regression models were used to estimate the 24-h fat percentage when only one milking is sampled for components and milk yields and milking times are known for all milkings in the 24-h period before the sampled milking. In total, 10,697 cow test day records, from 595 herd tests at 91 Dutch herds milked with an automatic milking system, were used. The best model to predict 24-h fat percentage included fat percentage, protein percentage, milk yield and milking interval of the sampled milking, milk yield, and milking interval of the preceding milking, and the interaction between milking interval and the ratio of fat and protein percentage of the sampled milking. This model gave a standard deviation of the prediction error (SE) for 24-h fat percentage of 0.321 and a correlation between the predicted and actual 24-h fat percentage of 0.910. For the 24-h fat yield, we found SE = 90 g and correlation = 0.967. This precision is slightly better than that of present a.m.-p.m. testing schemes. Extra attention must be paid to correctly matching the sample jars and the milkings. Furthermore, milkings with an interval of less than 4 h must be excluded from sampling as well as milkings that are interrupted or that follow an interrupted milking. Under these restrictions (correct matching, interval of at least 4 h, and no interrupted milking), one sampled milking suffices to get a satisfactory estimate for the test-day fat yield.

  8. Algorithms for Brownian first-passage-time estimation

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2009-09-01

    A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either outperform or rival Langevin-based (discrete time and continuous space) estimates.

  9. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of

  10. Eco-efficient agriculture for producing higher yields with lower greenhouse gas emissions: a case study of intensive irrigation wheat production in China

    NASA Astrophysics Data System (ADS)

    Cui, Z. L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.

    2013-10-01

    Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the tradeoff between crop productivity and GHG emissions in intensive agricultural production is not well understood. In this study, we investigated 33 sites of on-farm experiments to evaluate the tradeoff between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive irrigation wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. However, in both the HY and CP systems, wheat grain yield response to GHG emissions fit a linear-plateau model, whereas the curve for grain yield from the HY system was always higher than that from the CP system. Compared to the CP system, grain yield was 44% (2.6 Mg ha-1) higher in the HY system, while GHG emissions increased by only 2.5%, and GHG emission intensity was reduced by 29%. The current intensive irrigation wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6.05 Mg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 40% (5.96 Mg ha-1, and 2890 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 41% with a simultaneous reduction in GHG emissions by 38% (8.55 Mg ha-1, and 2961 kg CO2 eq ha-1, respectively). In the future, we suggest moving the tradeoff relationships and calculations from grain yield and GHG emissions, to new measures of productivity and environmental protection using innovative management technologies. This shift in focus is critical to achieve food and environmental security.

  11. Estimation of dew yield from radiative condensers by means of an energy balance model

    NASA Astrophysics Data System (ADS)

    Maestre-Valero, J. F.; Ragab, R.; Martínez-Alvarez, V.; Baille, A.

    2012-08-01

    SummaryThis paper presents an energy balance modelling approach to predict the nightly water yield and the surface temperature (Tf) of two passive radiative dew condensers (RDCs) tilted 30° from horizontal. One was fitted with a white hydrophilic polyethylene foil recommended for dew harvest and the other with a black polyethylene foil widely used in horticulture. The model was validated in south-eastern Spain by comparing the simulation outputs with field measurements of Tf and dew yield. The results indicate that the model is robust and accurate in reproducing the behaviour of the two RDCs, especially in what refers to Tf, whose estimates were very close to the observations. The results were somewhat less precise for dew yield, with a larger scatter around the 1:1 relationship. A sensitivity analysis showed that the simulated dew yield was highly sensitive to changes in relative humidity and downward longwave radiation. The proposed approach provides a useful tool to water managers for quantifying the amount of dew that could be harvested as a valuable water resource in arid, semiarid and water stressed regions.

  12. Estimated suspended-sediment loads and yields in the French and Brandywine Creek Basins, Chester County, Pennsylvania, water years 2008-09

    USGS Publications Warehouse

    Sloto, Ronald A.; Olson, Leif E.

    2011-01-01

    Turbidity and suspended-sediment concentration data were collected by the U.S. Geological Survey (USGS) at four stream stations--French Creek near Phoenixville, West Branch Brandywine Creek near Honey Brook, West Branch Brandywine Creek at Modena, and East Branch Brandywine Creek below Downingtown--in Chester County, Pa. Sedimentation and siltation is the leading cause of stream impairment in Chester County, and these data are critical for quantifying sediment transport. This study was conducted by the USGS in cooperation with the Chester County Water Resources Authority and the Chester County Health Department. Data from optical turbidity sensors deployed at the four stations were recorded at 15- or 30-minute intervals by a data logger and uploaded every 1 to 4 hours to the USGS database. Most of the suspended-sediment samples were collected using automated samplers. The use of optical sensors to continuously monitor turbidity provided an accurate estimate of sediment fluctuations without the collection and analysis costs associated with intensive sampling during storms. Turbidity was used as a surrogate for suspended-sediment concentration (SSC), which is a measure of sedimentation and siltation. Regression models were developed between SSC and turbidity for each of the monitoring stations using SSC data collected from the automated samplers and turbidity data collected at each station. Instantaneous suspended-sediment loads (SSL) were computed from time-series turbidity and discharge data for the 2008 and 2009 water years using the regression equations. The instantaneous computations of SSL were summed to provide daily, storm, and water year annual loads. The annual SSL contributed from each basin was divided by the upstream drainage area to estimate the annual sediment yield. For all four basins, storms provided more than 96 percent of the annual SSL. In each basin, four storms generally provided over half the annual SSL each water year. Stormflows with the

  13. The limits of crop productivity: validating theoretical estimates and determining the factors that limit crop yields in optimal environments

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.

    1992-01-01

    Plant scientists have sought to maximize the yield of food crops since the beginning of agriculture. There are numerous reports of record food and biomass yields (per unit area) in all major crop plants, but many of the record yield reports are in error because they exceed the maximal theoretical rates of the component processes. In this article, we review the component processes that govern yield limits and describe how each process can be individually measured. This procedure has helped us validate theoretical estimates and determine what factors limit yields in optimal environments.

  14. Estimation methods and parameter assessment for ethanol yields from total soluble solids of sweet sorghum

    USDA-ARS?s Scientific Manuscript database

    Estimation methods and evaluation of ethanol yield from sweet sorghum (Sorghum bicolor (L.) Moench.) based on agronomic production traits and juice characteristics is important for developing parents and inbred lines of sweet sorghum that can be used by the bio-ethanol industry. The objectives of th...

  15. Proper orthogonal decomposition-based spectral higher-order stochastic estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, Woutijn J., E-mail: wbaars@unimelb.edu.au; Tinney, Charles E.

    A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimationmore » (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.« less

  16. MODIS Data Assimilation in the CROPGRO model for improving soybean yield estimations

    NASA Astrophysics Data System (ADS)

    Richetti, J.; Monsivais-Huertero, A.; Ahmad, I.; Judge, J.

    2017-12-01

    Soybean is one of the main agricultural commodities in the world. Thus, having better estimates of its agricultural production is important. Improving the soybean crop models in Brazil is crucial for better understanding of the soybean market and enhancing decision making, because Brazil is the second largest soybean producer in the world, Parana state is responsible for almost 20% of it, and by itself would be the fourth greatest soybean producer in the world. Data assimilation techniques provide a method to improve spatio-temporal continuity of crops through integration of remotely sensed observations and crop growth models. This study aims to use MODIS EVI to improve DSSAT-CROPGRO soybean yield estimations in the Parana state, southern Brazil. The method uses the Ensemble Kalman filter which assimilates MODIS Terra and Aqua combined products (MOD13Q1 and MYD13Q1) into the CROPGRO model to improve the agricultural production estimates through update of light interception data over time. Expected results will be validated with monitored commercial farms during the period of 2013-2014.

  17. Image Based Mango Fruit Detection, Localisation and Yield Estimation Using Multiple View Geometry

    PubMed Central

    Stein, Madeleine; Bargoti, Suchet; Underwood, James

    2016-01-01

    This paper presents a novel multi-sensor framework to efficiently identify, track, localise and map every piece of fruit in a commercial mango orchard. A multiple viewpoint approach is used to solve the problem of occlusion, thus avoiding the need for labour-intensive field calibration to estimate actual yield. Fruit are detected in images using a state-of-the-art faster R-CNN detector, and pair-wise correspondences are established between images using trajectory data provided by a navigation system. A novel LiDAR component automatically generates image masks for each canopy, allowing each fruit to be associated with the corresponding tree. The tracked fruit are triangulated to locate them in 3D, enabling a number of spatial statistics per tree, row or orchard block. A total of 522 trees and 71,609 mangoes were scanned on a Calypso mango orchard near Bundaberg, Queensland, Australia, with 16 trees counted by hand for validation, both on the tree and after harvest. The results show that single, dual and multi-view methods can all provide precise yield estimates, but only the proposed multi-view approach can do so without calibration, with an error rate of only 1.36% for individual trees. PMID:27854271

  18. Spatial and Temporal Uncertainty of Crop Yield Aggregations

    NASA Technical Reports Server (NTRS)

    Porwollik, Vera; Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Iizumi, Toshichika; Ray, Deepak K.; Ruane, Alex C.; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; hide

    2016-01-01

    The aggregation of simulated gridded crop yields to national or regional scale requires information on temporal and spatial patterns of crop-specific harvested areas. This analysis estimates the uncertainty of simulated gridded yield time series related to the aggregation with four different harvested area data sets. We compare aggregated yield time series from the Global Gridded Crop Model Inter-comparison project for four crop types from 14 models at global, national, and regional scale to determine aggregation-driven differences in mean yields and temporal patterns as measures of uncertainty. The quantity and spatial patterns of harvested areas differ for individual crops among the four datasets applied for the aggregation. Also simulated spatial yield patterns differ among the 14 models. These differences in harvested areas and simulated yield patterns lead to differences in aggregated productivity estimates, both in mean yield and in the temporal dynamics. Among the four investigated crops, wheat yield (17% relative difference) is most affected by the uncertainty introduced by the aggregation at the global scale. The correlation of temporal patterns of global aggregated yield time series can be as low as for soybean (r = 0.28).For the majority of countries, mean relative differences of nationally aggregated yields account for10% or less. The spatial and temporal difference can be substantial higher for individual countries. Of the top-10 crop producers, aggregated national multi-annual mean relative difference of yields can be up to 67% (maize, South Africa), 43% (wheat, Pakistan), 51% (rice, Japan), and 427% (soybean, Bolivia).Correlations of differently aggregated yield time series can be as low as r = 0.56 (maize, India), r = 0.05*Corresponding (wheat, Russia), r = 0.13 (rice, Vietnam), and r = -0.01 (soybean, Uruguay). The aggregation to sub-national scale in comparison to country scale shows that spatial uncertainties can cancel out in countries with

  19. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  20. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    PubMed Central

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-01-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254

  1. Estimating crop yields and crop evapotranspiration distributions from remote sensing and geospatial agricultural data

    NASA Astrophysics Data System (ADS)

    Smith, T.; McLaughlin, D.

    2017-12-01

    Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.

  2. Estimating yields of salt- and water-stressed forages with remote sensing in the visible and near infrared.

    PubMed

    Poss, J A; Russell, W B; Grieve, C M

    2006-01-01

    In arid irrigated regions, the proportion of crop production under deficit irrigation with poorer quality water is increasing as demand for fresh water soars and efforts to prevent saline water table development occur. Remote sensing technology to quantify salinity and water stress effects on forage yield can be an important tool to address yield loss potential when deficit irrigating with poor water quality. Two important forages, alfalfa (Medicago sativa L.) and tall wheatgrass (Agropyron elongatum L.), were grown in a volumetric lysimeter facility where rootzone salinity and water content were varied and monitored. Ground-based hyperspectral canopy reflectance in the visible and near infrared (NIR) were related to forage yields from a broad range of salinity and water stress conditions. Canopy reflectance spectra were obtained in the 350- to 1000-nm region from two viewing angles (nadir view, 45 degrees from nadir). Nadir view vegetation indices (VI) were not as strongly correlated with leaf area index changes attributed to water and salinity stress treatments for both alfalfa and wheatgrass. From a list of 71 VIs, two were selected for a multiple linear-regression model that estimated yield under varying salinity and water stress conditions. With data obtained during the second harvest of a three-harvest 100-d growing period, regression coefficients for each crop were developed and then used with the model to estimate fresh weights for preceding and succeeding harvests during the same 100-d interval. The model accounted for 72% of the variation in yields in wheatgrass and 94% in yields of alfalfa within the same salinity and water stress treatment period. The model successfully predicted yield in three out of four cases when applied to the first and third harvest yields. Correlations between indices and yield increased as canopy development progressed. Growth reductions attributed to simultaneous salinity and water stress were well characterized, but the

  3. Endowment Assets, Yield, and Income in Institutions of Higher Education: Fiscal Years 1982-85. OERI Bulletin, September 1987.

    ERIC Educational Resources Information Center

    Center for Education Statistics (ED/OERI), Washington, DC.

    Findings concerning college endowment assets, yield, and income for fiscal years (FY) 1982-1985 are presented, based on "Financial Statistics of Institutions of Higher Education" surveys, which are conducted each fall as part of the annual Higher Education General Information Survey. In the private sector, endowment income accounted for…

  4. Correlation, path analysis and heritability estimation for agronomic traits contribute to yield on soybean

    NASA Astrophysics Data System (ADS)

    Sulistyo, A.; Purwantoro; Sari, K. P.

    2018-01-01

    Selection is a routine activity in plant breeding programs that must be done by plant breeders in obtaining superior plant genotypes. The use of appropriate selection criteria will determine the effectiveness of selection activities. The purpose of this study was to analysis the inheritable agronomic traits that contribute to soybean yield. A total of 91 soybean lines were planted in Muneng Experimental Station, Probolinggo District, East Java Province, Indonesia in 2016. All soybean lines were arranged in randomized complete block design with two replicates. Correlation analysis, path analysis and heritability estimation were performed on days to flowering, days to maturing, plant height, number of branches, number of fertile nodes, number of filled pods, weight of 100 seeds, and yield to determine selection criteria on soybean breeding program. The results showed that the heritability value of almost all agronomic traits observed is high except for the number of fertile nodes with low heritability. The result of correlation analysis shows that days to flowering, plant height and number of fertile nodes have positive correlation with seed yield per plot (0.056, 0.444, and 0.100, respectively). In addition, path analysis showed that plant height and number of fertile nodes have highest positive direct effect on soybean yield. Based on this result, plant height can be selected as one of selection criteria in soybean breeding program to obtain high yielding soybean variety.

  5. Estimating the potential intensification of global grazing systems based on climate adjusted yield gap analysis

    NASA Astrophysics Data System (ADS)

    Sheehan, J. J.

    2016-12-01

    We report here a first-of-its-kind analysis of the potential for intensification of global grazing systems. Intensification is calculated using the statistical yield gap methodology developed previously by others (Mueller et al 2012 and Licker et al 2010) for global crop systems. Yield gaps are estimated by binning global pasture land area into 100 equal area sized bins of similar climate (defined by ranges of rainfall and growing degree days). Within each bin, grid cells of pastureland are ranked from lowest to highest productivity. The global intensification potential is defined as the sum of global production across all bins at a given percentile ranking (e.g. performance at the 90th percentile) divided by the total current global production. The previous yield gap studies focused on crop systems because productivity data on these systems is readily available. Nevertheless, global crop land represents only one-third of total global agricultural land, while pasture systems account for the remaining two-thirds. Thus, it is critical to conduct the same kind of analysis on what is the largest human use of land on the planet—pasture systems. In 2013, Herrero et al announced the completion of a geospatial data set that augmented the animal census data with data and modeling about production systems and overall food productivity (Herrero et al, PNAS 2013). With this data set, it is now possible to apply yield gap analysis to global pasture systems. We used the Herrero et al data set to evaluate yield gaps for meat and milk production from pasture based systems for cattle, sheep and goats. The figure included with this abstract shows the intensification potential for kcal per hectare per year of meat and milk from global cattle, sheep and goats as a function of increasing levels of performance. Performance is measured as the productivity achieved at a given ranked percentile within each bin.We find that if all pasture land were raised to their 90th percentile of

  6. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.

    PubMed

    Sommerlot, Andrew R; Nejadhashemi, A Pouyan; Woznicki, Sean A; Giri, Subhasis; Prohaska, Michael D

    2013-09-30

    Many watershed model interfaces have been developed in recent years for predicting field-scale sediment loads. They share the goal of providing data for decisions aimed at improving watershed health and the effectiveness of water quality conservation efforts. The objectives of this study were to: 1) compare three watershed-scale models (Soil and Water Assessment Tool (SWAT), Field_SWAT, and the High Impact Targeting (HIT) model) against calibrated field-scale model (RUSLE2) in estimating sediment yield from 41 randomly selected agricultural fields within the River Raisin watershed; 2) evaluate the statistical significance among models; 3) assess the watershed models' capabilities in identifying areas of concern at the field level; 4) evaluate the reliability of the watershed-scale models for field-scale analysis. The SWAT model produced the most similar estimates to RUSLE2 by providing the closest median and the lowest absolute error in sediment yield predictions, while the HIT model estimates were the worst. Concerning statistically significant differences between models, SWAT was the only model found to be not significantly different from the calibrated RUSLE2 at α = 0.05. Meanwhile, all models were incapable of identifying priorities areas similar to the RUSLE2 model. Overall, SWAT provided the most correct estimates (51%) within the uncertainty bounds of RUSLE2 and is the most reliable among the studied models, while HIT is the least reliable. The results of this study suggest caution should be exercised when using watershed-scale models for field level decision-making, while field specific data is of paramount importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures

    EPA Pesticide Factsheets

    This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics

  8. The estimation of rice paddy yield with GRAMI crop model and Geostationary Ocean Color Imager (GOCI) image over South Korea

    NASA Astrophysics Data System (ADS)

    Yeom, J. M.; Kim, H. O.

    2014-12-01

    In this study, we estimated the rice paddy yield with moderate geostationary satellite based vegetation products and GRAMI model over South Korea. Rice is the most popular staple food for Asian people. In addition, the effects of climate change are getting stronger especially in Asian region, where the most of rice are cultivated. Therefore, accurate and timely prediction of rice yield is one of the most important to accomplish food security and to prepare natural disasters such as crop defoliation, drought, and pest infestation. In the present study, GOCI, which is world first Geostationary Ocean Color Image, was used for estimating temporal vegetation indices of the rice paddy by adopting atmospheric correction BRDF modeling. For the atmospheric correction with LUT method based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S), MODIS atmospheric products such as MOD04, MOD05, MOD07 from NASA's Earth Observing System Data and Information System (EOSDIS) were used. In order to correct the surface anisotropy effect, Ross-Thick Li-Sparse Reciprocal (RTLSR) BRDF model was performed at daily basis with 16day composite period. The estimated multi-temporal vegetation images was used for crop classification by using high resolution satellite images such as Rapideye, KOMPSAT-2 and KOMPSAT-3 to extract the proportional rice paddy area in corresponding a pixel of GOCI. In the case of GRAMI crop model, initial conditions are determined by performing every 2 weeks field works at Chonnam National University, Gwangju, Korea. The corrected GOCI vegetation products were incorporated with GRAMI model to predict rice yield estimation. The predicted rice yield was compared with field measurement of rice yield.

  9. Satellite telemetry reveals higher fishing mortality rates than previously estimated, suggesting overfishing of an apex marine predator.

    PubMed

    Byrne, Michael E; Cortés, Enric; Vaudo, Jeremy J; Harvey, Guy C McN; Sampson, Mark; Wetherbee, Bradley M; Shivji, Mahmood

    2017-08-16

    Overfishing is a primary cause of population declines for many shark species of conservation concern. However, means of obtaining information on fishery interactions and mortality, necessary for the development of successful conservation strategies, are often fisheries-dependent and of questionable quality for many species of commercially exploited pelagic sharks. We used satellite telemetry as a fisheries-independent tool to document fisheries interactions, and quantify fishing mortality of the highly migratory shortfin mako shark ( Isurus oxyrinchus ) in the western North Atlantic Ocean. Forty satellite-tagged shortfin mako sharks tracked over 3 years entered the Exclusive Economic Zones of 19 countries and were harvested in fisheries of five countries, with 30% of tagged sharks harvested. Our tagging-derived estimates of instantaneous fishing mortality rates ( F = 0.19-0.56) were 10-fold higher than previous estimates from fisheries-dependent data (approx. 0.015-0.024), suggesting data used in stock assessments may considerably underestimate fishing mortality. Additionally, our estimates of F were greater than those associated with maximum sustainable yield, suggesting a state of overfishing. This information has direct application to evaluations of stock status and for effective management of populations, and thus satellite tagging studies have potential to provide more accurate estimates of fishing mortality and survival than traditional fisheries-dependent methodology. © 2017 The Author(s).

  10. Winter wheat yield estimation of remote sensing research based on WOFOST crop model and leaf area index assimilation

    NASA Astrophysics Data System (ADS)

    Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei

    2017-04-01

    Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed

  11. Estimation of genetic parameters and selection of high-yielding, upright common bean lines with slow seed-coat darkening.

    PubMed

    Alvares, R C; Silva, F C; Melo, L C; Melo, P G S; Pereira, H S

    2016-11-21

    Slow seed coat darkening is desirable in common bean cultivars and genetic parameters are important to define breeding strategies. The aims of this study were to estimate genetic parameters for plant architecture, grain yield, grain size, and seed-coat darkening in common bean; identify any genetic association among these traits; and select lines that associate desirable phenotypes for these traits. Three experiments were set up in the winter 2012 growing season, in Santo Antônio de Goiás and Brasília, Brazil, including 220 lines obtained from four segregating populations and five parents. A triple lattice 15 x 15 experimental design was used. The traits evaluated were plant architecture, grain yield, grain size, and seed-coat darkening. Analyses of variance were carried out and genetic parameters such as heritability, gain expected from selection, and correlations, were estimated. For selection of superior lines, a "weight-free and parameter-free" index was used. The estimates of genetic variance, heritability, and gain expected from selection were high, indicating good possibility for success in selection of the four traits. The genotype x environment interaction was proportionally more important for yield than for the other traits. There was no strong genetic correlation observed among the four traits, which indicates the possibility of selection of superior lines with many traits. Considering simultaneous selection, it was not possible to join high genetic gains for the four traits. Forty-four lines that combined high yield, more upright plant architecture, slow darkening grains, and commercial grade size were selected.

  12. Soviet test yields

    NASA Astrophysics Data System (ADS)

    Vergino, Eileen S.

    Soviet seismologists have published descriptions of 96 nuclear explosions conducted from 1961 through 1972 at the Semipalatinsk test site, in Kazakhstan, central Asia [Bocharov et al., 1989]. With the exception of releasing news about some of their peaceful nuclear explosions (PNEs) the Soviets have never before published such a body of information.To estimate the seismic yield of a nuclear explosion it is necessary to obtain a calibrated magnitude-yield relationship based on events with known yields and with a consistent set of seismic magnitudes. U.S. estimation of Soviet test yields has been done through application of relationships to the Soviet sites based on the U.S. experience at the Nevada Test Site (NTS), making some correction for differences due to attenuation and near-source coupling of seismic waves.

  13. Ethiopian Wheat Yield and Yield Gap Estimation: A Spatial Small Area Integrated Data Approach

    NASA Astrophysics Data System (ADS)

    Mann, M.; Warner, J.

    2015-12-01

    Despite the collection of routine annual agricultural surveys and significant advances in GIS and remote sensing products, little econometric research has been undertaken in predicting developing nation's agricultural yields. In this paper, we explore the determinants of wheat output per hectare in Ethiopia during the 2011-2013 Meher crop seasons aggregated to the woreda administrative area. Using a panel data approach, combining national agricultural field surveys with relevant GIS and remote sensing products, the model explains nearly 40% of the total variation in wheat output per hectare across the country. The model also identifies specific contributors to wheat yields that include farm management techniques (eg. area planted, improved seed, fertilizer, irrigation), weather (eg. rainfall), water availability (vegetation and moisture deficit indexes) and policy intervention. Our findings suggest that woredas produce between 9.8 and 86.5% of their potential wheat output per hectare given their altitude, weather conditions, terrain, and plant health. At the median, Amhara, Oromiya, SNNP, and Tigray produce 48.6, 51.5, 49.7, and 61.3% of their local attainable yields, respectively. This research has a broad range of applications, especially from a public policy perspective: identifying causes of yield fluctuations, remotely evaluating larger agricultural intervention packages, and analyzing relative yield potential. Overall, the combination of field surveys with spatial data can be used to identify management priorities for improving production at a variety of administrative levels.

  14. Estimation of genetic parameters for heat stress, including dominance gene effects, on milk yield in Thai Holstein dairy cattle.

    PubMed

    Boonkum, Wuttigrai; Duangjinda, Monchai

    2015-03-01

    Heat stress in tropical regions is a major cause that strongly negatively affects to milk production in dairy cattle. Genetic selection for dairy heat tolerance is powerful technique to improve genetic performance. Therefore, the current study aimed to estimate genetic parameters and investigate the threshold point of heat stress for milk yield. Data included 52 701 test-day milk yield records for the first parity from 6247 Thai Holstein dairy cattle, covering the period 1990 to 2007. The random regression test day model with EM-REML was used to estimate variance components, genetic parameters and milk production loss. A decline in milk production was found when temperature and humidity index (THI) exceeded a threshold of 74, also it was associated with the high percentage of Holstein genetics. All variance component estimates increased with THI. The estimate of heritability of test-day milk yield was 0.231. Dominance variance as a proportion to additive variance (0.035) indicated that non-additive effects might not be of concern for milk genetics studies in Thai Holstein cattle. Correlations between genetic and permanent environmental effects, for regular conditions and due to heat stress, were - 0.223 and - 0.521, respectively. The heritability and genetic correlations from this study show that simultaneous selection for milk production and heat tolerance is possible. © 2014 Japanese Society of Animal Science.

  15. Growth and yield models for central hardwoods

    Treesearch

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    Over the last 20 years computers have become an efficient tool to estimate growth and yield. Computerized yield estimates vary from simple approximation or interpolation of traditional normal yield tables to highly sophisticated programs that simulate the growth and yield of each individual tree.

  16. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  17. The effect of flow data resolution on sediment yield estimation and channel design

    NASA Astrophysics Data System (ADS)

    Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.

    2016-07-01

    The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.

  18. Estimation of sediment yield from subsequent expanded landslides after heavy rainfalls : a case study in central Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Koshimizu, K.; Uchida, T.

    2015-12-01

    Initial large-scale sediment yield caused by heavy rainfall or major storms have made a strong impression on us. Previous studies focusing on landslide management investigated the initial sediment movement and its mechanism. However, integrated management of catchment-scale sediment movements requires estimating the sediment yield, which is produced by the subsequent expanded landslides due to rainfall, in addition to the initial landslide movement. This study presents a quantitative analysis of expanded landslides by surveying the Shukushubetsu River basin, at the foot of the Hidaka mountain range in central Hokkaido, Japan. This area recorded heavy rainfall in 2003, reaching a maximum daily precipitation of 388 mm. We extracted the expanded landslides from 2003 to 2008 using aerial photographs taken over the river area. In particular, we calculated the probability of expansion for each landslide, the ratio of the landslide area in 2008 as compared with that in 2003, and the amount of the expanded landslide area corresponding to the initial landslide area. As a result, it is estimated 24% about probability of expansion for each landslide. In addition, each expanded landslide area is smaller than the initial landslide area. Furthermore, the amount of each expanded landslide area in 2008 is approximately 7% of their landslide area in 2003. Therefore, the sediment yield from subsequent expanded landslides is equal to or slightly greater than the sediment yield in a typical base flow. Thus, we concluded that the amount of sediment yield from subsequent expanded landslides is lower than that of initial large-scale sediment yield caused by a heavy rainfall in terms of effect on management of catchment-scale sediment movement.

  19. Using operational data to estimate the reliable yields of water-supply wells

    NASA Astrophysics Data System (ADS)

    Misstear, Bruce D. R.; Beeson, Sarah

    The reliable yield of a water-supply well depends on many different factors, including the properties of the well and the aquifer; the capacities of the pumps, raw-water mains, and treatment works; the interference effects from other wells; and the constraints imposed by ion licences, water quality, and environmental issues. A relatively simple methodology for estimating reliable yields has been developed that takes into account all of these factors. The methodology is based mainly on an analysis of water-level and source-output data, where such data are available. Good operational data are especially important when dealing with wells in shallow, unconfined, fissure-flow aquifers, where actual well performance may vary considerably from that predicted using a more analytical approach. Key issues in the yield-assessment process are the identification of a deepest advisable pumping water level, and the collection of the appropriate well, aquifer, and operational data. Although developed for water-supply operators in the United Kingdom, this approach to estimating the reliable yields of water-supply wells using operational data should be applicable to a wide range of hydrogeological conditions elsewhere. Résumé La productivité d'un puits capté pour l'adduction d'eau potable dépend de différents facteurs, parmi lesquels les propriétés du puits et de l'aquifère, la puissance des pompes, le traitement des eaux brutes, les effets d'interférences avec d'autres puits et les contraintes imposées par les autorisations d'exploitation, par la qualité des eaux et par les conditions environnementales. Une méthodologie relativement simple d'estimation de la productivité qui prenne en compte tous ces facteurs a été mise au point. Cette méthodologie est basée surtout sur une analyse des données concernant le niveau piézométrique et le débit de prélèvement, quand ces données sont disponibles. De bonnes données opérationnelles sont particuli

  20. Genetic parameters for test-day yield of milk, fat and protein in buffaloes estimated by random regression models.

    PubMed

    Aspilcueta-Borquis, Rúsbel R; Araujo Neto, Francisco R; Baldi, Fernando; Santos, Daniel J A; Albuquerque, Lucia G; Tonhati, Humberto

    2012-08-01

    The test-day yields of milk, fat and protein were analysed from 1433 first lactations of buffaloes of the Murrah breed, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, born between 1985 and 2007. For the test-day yields, 10 monthly classes of lactation days were considered. The contemporary groups were defined as the herd-year-month of the test day. Random additive genetic, permanent environmental and residual effects were included in the model. The fixed effects considered were the contemporary group, number of milkings (1 or 2 milkings), linear and quadratic effects of the covariable cow age at calving and the mean lactation curve of the population (modelled by third-order Legendre orthogonal polynomials). The random additive genetic and permanent environmental effects were estimated by means of regression on third- to sixth-order Legendre orthogonal polynomials. The residual variances were modelled with a homogenous structure and various heterogeneous classes. According to the likelihood-ratio test, the best model for milk and fat production was that with four residual variance classes, while a third-order Legendre polynomial was best for the additive genetic effect for milk and fat yield, a fourth-order polynomial was best for the permanent environmental effect for milk production and a fifth-order polynomial was best for fat production. For protein yield, the best model was that with three residual variance classes and third- and fourth-order Legendre polynomials were best for the additive genetic and permanent environmental effects, respectively. The heritability estimates for the characteristics analysed were moderate, varying from 0·16±0·05 to 0·29±0·05 for milk yield, 0·20±0·05 to 0·30±0·08 for fat yield and 0·18±0·06 to 0·27±0·08 for protein yield. The estimates of the genetic correlations between the tests varied from 0·18±0·120 to 0·99±0·002; from 0·44±0·080 to 0·99±0·004; and from 0·41±0·080 to

  1. Estimation of monthly water yields and flows for 1951-2012 for the United States portion of the Great Lakes Basin with AFINCH

    USGS Publications Warehouse

    Luukkonen, Carol L.; Holtschlag, David J.; Reeves, Howard W.; Hoard, Christopher J.; Fuller, Lori M.

    2015-01-01

    Monthly water yields from 105,829 catchments and corresponding flows in 107,691 stream segments were estimated for water years 1951–2012 in the Great Lakes Basin in the United States. Both sets of estimates were computed by using the Analysis of Flows In Networks of CHannels (AFINCH) application within the NHDPlus geospatial data framework. AFINCH provides an environment to develop constrained regression models to integrate monthly streamflow and water-use data with monthly climatic data and fixed basin characteristics data available within NHDPlus or supplied by the user. For this study, the U.S. Great Lakes Basin was partitioned into seven study areas by grouping selected hydrologic subregions and adjoining cataloguing units. This report documents the regression models and data used to estimate monthly water yields and flows in each study area. Estimates of monthly water yields and flows are presented in a Web-based mapper application. Monthly flow time series for individual stream segments can be retrieved from the Web application and used to approximate monthly flow-duration characteristics and to identify possible trends.

  2. The effect of soil moisture anomalies on maize yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis

    2018-03-01

    Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.

  3. Estimating bottomland hardwood growth and yield

    Treesearch

    1989-01-01

    Most bottomland hardwoods grow on very productive sites-site index 70 or more. A fully stocked immature stand (table 1, fig. 1) requires tending throughout its life. The goal is to attain a stand of approximately 50 high quality trees of commercial species per acre at maturity. Releasing these crop trees can result in the cumulative yield of 2,000-4,000 board feet per...

  4. Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data

    NASA Astrophysics Data System (ADS)

    Kouadio, Louis; Duveiller, Grégory; Djaby, Bakary; El Jarroudi, Moussa; Defourny, Pierre; Tychon, Bernard

    2012-08-01

    Earth observation data, owing to their synoptic, timely and repetitive coverage, have been recognized as a valuable tool for crop monitoring at different levels. At the field level, the close correlation between green leaf area (GLA) during maturation and grain yield in wheat revealed that the onset and rate of senescence appeared to be important factors for determining wheat grain yield. Our study sought to explore a simple approach for wheat yield forecasting at the regional level, based on metrics derived from the senescence phase of the green area index (GAI) retrieved from remote sensing data. This study took advantage of recent methodological improvements in which imagery with high revisit frequency but coarse spatial resolution can be exploited to derive crop-specific GAI time series by selecting pixels whose ground-projected instantaneous field of view is dominated by the target crop: winter wheat. A logistic function was used to characterize the GAI senescence phase and derive the metrics of this phase. Four regression-based models involving these metrics (i.e., the maximum GAI value, the senescence rate and the thermal time taken to reach 50% of the green surface in the senescent phase) were related to official wheat yield data. The performances of such models at this regional scale showed that final yield could be estimated with an RMSE of 0.57 ton ha-1, representing about 7% as relative RMSE. Such an approach may be considered as a first yield estimate that could be performed in order to provide better integrated yield assessments in operational systems.

  5. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  6. Conjunctive-use optimization model and sustainable-yield estimation for the Sparta aquifer of southeastern Arkansas and north-central Louisiana

    USGS Publications Warehouse

    McKee, Paul W.; Clark, Brian R.; Czarnecki, John B.

    2004-01-01

    Conjunctive-use optimization modeling was done to assist water managers and planners by estimating the maximum amount of ground water that hypothetically could be withdrawn from wells within the Sparta aquifer indefinitely without violating hydraulic-head or stream-discharge constraints. The Sparta aquifer is largely a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. In 2000, more than 35.4 million cubic feet per day (Mft3/d) of water were withdrawn from the aquifer by more than 900 wells, primarily for industry, municipal supply, and crop irrigation in Arkansas. Continued, heavy withdrawals from the aquifer have caused several large cones of depression, lowering hydraulic heads below the top of the Sparta Sand in parts of Union and Columbia Counties and several areas in north-central Louisiana. Problems related to overdraft in the Sparta aquifer can result in increased drilling and pumping costs, reduced well yields, and degraded water quality in areas of large drawdown. A finite-difference ground-water flow model was developed for the Sparta aquifer using MODFLOW, primarily in eastern and southeastern Arkansas and north-central Louisiana. Observed aquifer conditions in 1997 supported by numerical simulations of ground-water flow show that continued pumping at withdrawal rates representative of 1990 - 1997 rates cannot be sustained indefinitely without causing hydraulic heads to drop substantially below the top of the Sparta Sand in southern Arkansas and north-central Louisiana. Areas of ground-water levels below the top of the Sparta Sand have been designated as Critical Ground-Water Areas by the State of Arkansas. A steady-state conjunctive-use optimization model was developed to simulate optimized surface-water and ground-water withdrawals while maintaining hydraulic-head and streamflow constraints, thus determining the 'sustainable yield' for the aquifer. Initial attempts

  7. Explosive Yield Estimation using Fourier Amplitude Spectra of Velocity Histories

    NASA Astrophysics Data System (ADS)

    Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The Source Physics Experiment (SPE) is a series of explosive shots of various size detonated at varying depths in a borehole in jointed granite. The testbed includes an extensive array of accelerometers for measuring the shock environment close-in to the explosive source. One goal of SPE is to develop greater understanding of the explosion phenomenology in all regimes: from near-source, non-linear response to the far-field linear elastic region, and connecting the analyses from the respective regimes. For example, near-field analysis typically involves review of kinematic response (i.e., acceleration, velocity and displacement) in the time domain and looks at various indicators (e.g., peaks, pulse duration) to facilitate comparison among events. Review of far-field data more often is based on study of response in the frequency domain to facilitate comparison of event magnitudes. To try to "bridge the gap" between approaches, we have developed a scaling law for Fourier amplitude spectra of near-field velocity histories that successfully collapses data from a wide range of yields (100 kg to 5000 kg) and range to sensors in jointed granite. Moreover, we show that we can apply this scaling law to data from a new event to accurately estimate the explosive yield of that event. This approach presents a new way of working with near-field data that will be more compatible with traditional methods of analysis of seismic data and should serve to facilitate end-to-end event analysis. The goal is that this new approach to data analysis will eventually result in improved methods for discrimination of event type (i.e., nuclear or chemical explosion, or earthquake) and magnitude.

  8. Blind channel estimation and deconvolution in colored noise using higher-order cumulants

    NASA Astrophysics Data System (ADS)

    Tugnait, Jitendra K.; Gummadavelli, Uma

    1994-10-01

    Existing approaches to blind channel estimation and deconvolution (equalization) focus exclusively on channel or inverse-channel impulse response estimation. It is well-known that the quality of the deconvolved output depends crucially upon the noise statistics also. Typically it is assumed that the noise is white and the signal-to-noise ratio is known. In this paper we remove these restrictions. Both the channel impulse response and the noise model are estimated from the higher-order (fourth, e.g.) cumulant function and the (second-order) correlation function of the received data via a least-squares cumulant/correlation matching criterion. It is assumed that the noise higher-order cumulant function vanishes (e.g., Gaussian noise, as is the case for digital communications). Consistency of the proposed approach is established under certain mild sufficient conditions. The approach is illustrated via simulation examples involving blind equalization of digital communications signals.

  9. Source spectral variation and yield estimation for small, near-source explosions

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Mayeda, K. M.

    2012-12-01

    Significant S-wave generation is always observed from explosion sources which can lead to difficulty in discriminating explosions from natural earthquakes. While there are numerous S-wave generation mechanisms that are currently the topic of significant research, the mechanisms all remain controversial and appear to be dependent upon the near-source emplacement conditions of that particular explosion. To better understand the generation and partitioning of the P and S waves from explosion sources and to enhance the identification and discrimination capability of explosions, we investigate near-source explosion data sets from the 2008 New England Damage Experiment (NEDE), the Humble-Redwood (HR) series of explosions, and a Massachusetts quarry explosion experiment. We estimate source spectra and characteristic source parameters using moment tensor inversions, direct P and S waves multi-taper analysis, and improved coda spectral analysis using high quality waveform records from explosions from a variety of emplacement conditions (e.g., slow/fast burning explosive, fully tamped, partially tamped, single/ripple-fired, and below/above ground explosions). The results from direct and coda waves are compared to theoretical explosion source model predictions. These well-instrumented experiments provide us with excellent data from which to document the characteristic spectral shape, relative partitioning between P and S-waves, and amplitude/yield dependence as a function of HOB/DOB. The final goal of this study is to populate a comprehensive seismic source reference database for small yield explosions based on the results and to improve nuclear explosion monitoring capability.

  10. Assessing the likely value of gravity and drawdown measurements to constrain estimates of hydraulic conductivity and specific yield during unconfined aquifer testing

    USGS Publications Warehouse

    Blainey, Joan B.; Ferré, Ty P.A.; Cordova, Jeffrey T.

    2007-01-01

    Pumping of an unconfined aquifer can cause local desaturation detectable with high‐resolution gravimetry. A previous study showed that signal‐to‐noise ratios could be predicted for gravity measurements based on a hydrologic model. We show that although changes should be detectable with gravimeters, estimations of hydraulic conductivity and specific yield based on gravity data alone are likely to be unacceptably inaccurate and imprecise. In contrast, a transect of low‐quality drawdown data alone resulted in accurate estimates of hydraulic conductivity and inaccurate and imprecise estimates of specific yield. Combined use of drawdown and gravity data, or use of high‐quality drawdown data alone, resulted in unbiased and precise estimates of both parameters. This study is an example of the value of a staged assessment regarding the likely significance of a new measurement method or monitoring scenario before collecting field data.

  11. Does gang ripping hold the potential for higher clear cutting yields

    Treesearch

    Hiram Hallock; Pamela Giese

    1980-01-01

    Cutting yields from gang ripping hardwood lumber graded by the National Hardwood Lumber Association standard grades are determined using the technique of mathematical modeling. The lumber used is the same as that in an earlier mathematically modeled determination of cutting yields from traditional rough mill procedures. Mechanical cutting factors such as kerf, cutting...

  12. Comparative growth characteristics and yield attributes of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes) on different substrates in India.

    PubMed

    Jandaik, Savita; Singh, Rajender; Sharma, Mamta

    2013-01-01

    The present study investigated the effects of four forestry byproducts (sawdust of oak, mango, khair, and tuni) and three agricultural residues (paddy straw, wheat straw, and soybean waste) along with four supplements (wheat bran, rice bran, corn flour, and gram powder) on growth characteristics (spawn run and primordial formation) and yield of Ganoderma lucidum. There were significant differences (P=0.05) in yield regardless of substrates and supplements used in experimentation. Among substrates, agriculture residues supported better yield and biological efficiency of G. lucidum compared to forestry byproducts irrespective of the supplements. The highest yield (82.5 g) and biological efficiency (27.5%) were recorded from paddy straw supplemented with wheat bran, which invariably resulted in significantly higher yield compared to the unsupplemented check(s) or other supplements used in this study.

  13. Impacts of aerosol pollutant mitigation on lowland rice yields in China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyi; Li, Tao; Yue, Xu; Yang, Xiaoguang

    2017-10-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis and yields. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ a process-based modelling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. As a net effect, rice yields were estimated to significantly increase by 0.8%-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  14. Supplementary effects of higher levels of various disaccharides on processing yield, quality properties and sensory attributes of Chinese - style pork jerky.

    PubMed

    Chen, Chih-Ming; Lin, Hsien-Tang

    2017-12-01

    This study evaluated the supplementary effect of higher concentrations of various disaccharides on processing yield, major physicochemical properties, and sensory attributes of Chinese-style pork jerky (CSPJ). CSPJ samples were prepared by marinating sliced ham (4 mm) with three dissaccharides, including sucrose, lactose, and maltose, at 0%, 15%, 18%, 21%, and 24%. Subsequently, the CSPJ samples were dried and roasted. The moisture content, water activity, crude protein, moisture-to-protein ratio, pH, processing yield, shear force, color, and sensory attributes of the CSPJ samples were evaluated. The quality characteristics of CSPJ samples prepared with sucrose were more acceptable. By contrast, CSPJ samples prepared with lactose showed the lowest scores. However, the processing yield and moisture content were the highest for CSPJ samples prepared with lactose, which may be associated with improved benefits for cost reduction. Furthermore, sucrose and lactose supplementation resulted in contrasting quality characteristics; for example, CSPJ samples with sucrose and maltose supplementation had higher sensory scores for color than samples with lactose supplementation. Additionally, most quality characteristics of CSPJ samples with sucrose supplementation contrasted with those of the samples with lactose supplementation; for example, the samples with sucrose supplementation had higher scores for sensory attributes than those with lactose supplementation. Sucrose supplementation up to 21% to 24% was associated with the highest overall acceptability scores (5.19 to 5.80), enhanced quality characteristics, increased processing yield, and reduced production cost.

  15. The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields

    USDA-ARS?s Scientific Manuscript database

    Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...

  16. Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee

    PubMed Central

    Gary, Christian; Tixier, Philippe; Lechevallier, Esther

    2017-01-01

    The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013–2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses. PMID:28046054

  17. Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee.

    PubMed

    Cerda, Rolando; Avelino, Jacques; Gary, Christian; Tixier, Philippe; Lechevallier, Esther; Allinne, Clémentine

    2017-01-01

    The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013-2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses.

  18. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S.

    NASA Technical Reports Server (NTRS)

    Mladenova, Iliana E.; Bolten, John D.; Crow, Wade T.; Anderson, Martha C.; Hain, C. R.; Johnson, David M.; Mueller, Rick

    2017-01-01

    This paper presents an intercomparative study of 12 operationally produced large-scale datasets describing soil moisture, evapotranspiration (ET), and or vegetation characteristics within agricultural regions of the contiguous United States (CONUS). These datasets have been developed using a variety of techniques, including, hydrologic modeling, satellite-based retrievals, data assimilation, and survey in-field data collection. The objectives are to assess the relative utility of each dataset for monitoring crop yield variability, to quantitatively assess their capacity for predicting end-of-season corn and soybean yields, and to examine the evolution of the yield-index correlations during the growing season. This analysis is unique both with regards to the number and variety of examined yield predictor datasets and the detailed assessment of the water availability timing on the end-of-season crop production during the growing season. Correlation results indicate that over CONUS, at state-level soil moisture and ET indices can provide better information for forecasting corn and soybean yields than vegetation-based indices such as normalized difference vegetation index. The strength of correlation with corn and soybean yields strongly depends on the interannual variability in yield measured at a given location. In this case study, some of the remotely derived datasets examined provide skill comparable to that of in situ field survey-based data further demonstrating the utility of these remote sensing-based approaches for estimating crop yield.

  19. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  20. Specific yield: compilation of specific yields for various materials

    USGS Publications Warehouse

    Johnson, A.I.

    1967-01-01

    Specific yield is defined as the ratio of (1) the volume of water that a saturated rock or soil will yield by gravity to (2) the total volume of the rock or soft. Specific yield is usually expressed as a percentage. The value is not definitive, because the quantity of water that will drain by gravity depends on variables such as duration of drainage, temperature, mineral composition of the water, and various physical characteristics of the rock or soil under consideration. Values of specific yields nevertheless offer a convenient means by which hydrologists can estimate the water-yielding capacities of earth materials and, as such, are very useful in hydrologic studies. The present report consists mostly of direct or modified quotations from many selected reports that present and evaluate methods for determining specific yield, limitations of those methods, and results of the determinations made on a wide variety of rock and soil materials. Although no particular values are recommended in this report, a table summarizes values of specific yield, and their averages, determined for 10 rock textures. The following is an abstract of the table. [Table

  1. Reduced tar, nicotine, and carbon monoxide exposure while smoking ultralow- but not low-yield cigarettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benowitz, N.L.; Jacob, P. III; Yu, L.

    An unresolved public health issue is whether some modern cigarettes are less hazardous than other and whether patients who cannot stop smoking should be advised to switch to lower-yield cigarettes. The authors studied tar (estimated by urine mutagenicity), nicotine, and carbon monoxide exposure in habitual smokers switched from their usual brand to high- (15 mg of tar), low- (5 mg of tar), or ultralow-yield (1 mg of tar) cigarettes. There were no differences in exposure comparing high- or low-yield cigarettes, but tar and nicotine exposures were reduced by 49% and 56%, respectively, and carbon monoxide exposure by 36% while smokingmore » ultralow-yield cigarettes. Similarly, in 248 subjects smoking their self-selected brand, nicotine intake, estimated by blood concentrations of its metabolite continine, was 40% lower in those who smoked ultralow but no different in those smoking higher yields of cigarettes. The data indicate that ultralow-yield cigarettes do deliver substantial doses of tar, nicotine, and carbon monoxide, but that exposure are considerably less than for other cigarettes.« less

  2. Airborne and ground-based remote sensing for the estimation of evapotranspiration and yield of bean, potato, and sugar beet crops

    NASA Astrophysics Data System (ADS)

    Jayanthi, Harikishan

    The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were

  3. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with

  4. A Value-Added Estimate of Higher Education Quality of US States

    ERIC Educational Resources Information Center

    Zhang, Lei

    2009-01-01

    States differ substantially in higher education policies. Little is known about the effects of state policies on the performance of public colleges and universities, largely because no clear measures of college quality exist. In this paper, I estimate the average quality of public colleges of US states based on the value-added to individuals'…

  5. Satellite-based assessment of grassland yields

    NASA Astrophysics Data System (ADS)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  6. Guidelines for Estimating Cone and Seed Yields of Southern Pines

    Treesearch

    James P. Barnett

    1999-01-01

    Our ability to predict cone and seed yields of southern pines (Pinus spp.) prior to collection is important when scheduling and allocating resources. Many managers have enough historical data to predict their orchards' yield; but such data are generally unavailable for some species and for collections outside of orchards. Guidelines are...

  7. Benefits of seasonal forecasts of crop yields

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  8. Full-Waveform Envelope Templates for Low Magnitude Discrimination and Yield Estimation at Local and Regional Distances with Application to the North Korean Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Yoo, S. H.

    2017-12-01

    Monitoring seismologists have successfully used seismic coda for event discrimination and yield estimation for over a decade. In practice seismologists typically analyze long-duration, S-coda signals with high signal-to-noise ratios (SNR) at regional and teleseismic distances, since the single back-scattering model reasonably predicts decay of the late coda. However, seismic monitoring requirements are shifting towards smaller, locally recorded events that exhibit low SNR and short signal lengths. To be successful at characterizing events recorded at local distances, we must utilize the direct-phase arrivals, as well as the earlier part of the coda, which is dominated by multiple forward scattering. To remedy this problem, we have developed a new hybrid method known as full-waveform envelope template matching to improve predicted envelope fits over the entire waveform and account for direct-wave and early coda complexity. We accomplish this by including a multiple forward-scattering approximation in the envelope modeling of the early coda. The new hybrid envelope templates are designed to fit local and regional full waveforms and produce low-variance amplitude estimates, which will improve yield estimation and discrimination between earthquakes and explosions. To demonstrate the new technique, we applied our full-waveform envelope template-matching method to the six known North Korean (DPRK) underground nuclear tests and four aftershock events following the September 2017 test. We successfully discriminated the event types and estimated the yield for all six nuclear tests. We also applied the same technique to the 2015 Tianjin explosions in China, and another suspected low-yield explosion at the DPRK test site on May 12, 2010. Our results show that the new full-waveform envelope template-matching method significantly improves upon longstanding single-scattering coda prediction techniques. More importantly, the new method allows monitoring seismologists to extend

  9. Yield of acid curd cheese produced from cow's milk from different lactation periods.

    PubMed

    Salamończyk, Ewa; Młynek, Krzysztof; Guliński, Piotr; Zawadzka, Wiesława

    2017-01-01

    Milk production intensification has led in many countries, including Poland, to increased milk yields per cow. A higher milk yield resulted in changes in cow productivity, including extended lactations. There is a paucity of information on the quality of milk harvested during the last months of lactations exceed- ing 10 months. Production capacity cheese (“cheese expenditure”) is an important parameter of providing   a recovery as much as the possible components of the milk processed are dry substances, which in turn af- fects the economics of production. The aim of the study was to determine the influence of the lactation period (from standard lactation; extended lactation phase) on the performance of the acid curd cheese. the relation- ship between total protein content and acidity of fresh milk collected in two separate periods of lactation on the yield of acid cheese was also evaluated. The study included 1384 samples of milk collected from Polish Holstein-Friesian cows, the Black-White variety. The basic chemical composition of fresh milk and acid-curd cheese produced in the laboratory were analyzed. The cheese milk yield was evaluated on the basis of the quantity of the re- sulting curd mass. According to our estimates, under laboratory conditions an average of 100 kg of milk per cow in population produced an estimated 20.1 kg of curd cheese. The basic chemical composition of raw milk, which was diverse in terms of the period of lactation, showed a higher dry matter, fat and protein content in milk acquired during the extension phase of lactation compared to the milk of standard lactation. It has been found that the lower titratable acidity of fresh milk appeared with a higher yield of cheese curd. This difference was between 1.76 kg (with milk from cows milked during the extended lactation phase) to 2.72 kg from 100 kg of cheese milk (milk with the standard lactation). Thus, the optimum level of titratable acidity of milk for cheese

  10. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment

    USDA-ARS?s Scientific Manuscript database

    We develop a robust understanding of the effects of assimilating remote sensing observations of leaf area index and soil moisture (in the top 5 cm) on DSSAT-CSM CropSim-Ceres wheat yield estimates. Synthetic observing system simulation experiments compare the abilities of the Ensemble Kalman Filter...

  11. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation

    USDA-ARS?s Scientific Manuscript database

    The scale mismatch between remotely sensed observations and crop growth models simulated state variables decreases the reliability of crop yield estimates. To overcome this problem, we used a two-step data assimilation phases: first we generated a complete leaf area index (LAI) time series by combin...

  12. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop

    USDA-ARS?s Scientific Manuscript database

    A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...

  13. Advances in regional crop yield estimation over the United States using satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Johnson, D. M.; Dorn, M. F.; Crawford, C.

    2015-12-01

    Since the dawn of earth observation imagery, particularly from systems like Landsat and the Advanced Very High Resolution Radiometer, there has been an overarching desire to regionally estimate crop production remotely. Research efforts integrating space-based imagery into yield models to achieve this need have indeed paralleled these systems through the years, yet development of a truly useful crop production monitoring system has been arguably mediocre in coming. As a result, relatively few organizations have yet to operationalize the concept, and this is most acute in regions of the globe where there are not even alternative sources of crop production data being collected. However, the National Agricultural Statistics Service (NASS) has continued to push for this type of data source as a means to complement its long-standing, traditional crop production survey efforts which are financially costly to the government and create undue respondent burden on farmers. Corn and soybeans, the two largest field crops in the United States, have been the focus of satellite-based production monitoring by NASS for the past decade. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been seen as the most pragmatic input source for modeling yields primarily based on its daily revisit capabilities and reasonable ground sample resolution. The research methods presented here will be broad but provides a summary of what is useful and adoptable with satellite imagery in terms of crop yield estimation. Corn and soybeans will be of particular focus but other major staple crops like wheat and rice will also be presented. NASS will demonstrate that while MODIS provides a slew of vegetation related products, the traditional normalized difference vegetation index (NDVI) is still ideal. Results using land surface temperature products, also generated from MODIS, will also be shown. Beyond the MODIS data itself, NASS research has also focused efforts on understanding a

  14. Predicting red meat yields in carcasses from beef-type and calf-fed Holstein steers using the United States Department of Agriculture calculated yield grade.

    PubMed

    Lawrence, T E; Elam, N A; Miller, M F; Brooks, J C; Hilton, G G; VanOverbeke, D L; McKeith, F K; Killefer, J; Montgomery, T H; Allen, D M; Griffin, D B; Delmore, R J; Nichols, W T; Streeter, M N; Yates, D A; Hutcheson, J P

    2010-06-01

    Analyses were conducted to evaluate the ability of the USDA yield grade equation to detect differences in subprimal yield of beef-type steers and calf-fed Holstein steers that had been fed zilpaterol hydrochloride (ZH; Intervet Inc., Millsboro, DE) as well as those that had not been fed ZH. Beef-type steer (n = 801) and calf-fed Holstein steer (n = 235) carcasses were fabricated into subprimal cuts and trim. Simple correlations between calculated yield grades and total red meat yields ranged from -0.56 to -0.62 for beef-type steers. Reliable correlations from calf-fed Holstein steers were unobtainable; the probability of a type I error met or exceeded 0.39. Linear models were developed for the beef-type steers to predict total red meat yield based on calculated USDA yield grade within each ZH duration. At an average calculated USDA yield grade of 2.9, beef-type steer carcasses that had not been fed ZH had an estimated 69.4% red meat yield, whereas those fed ZH had an estimated 70.7% red meat yield. These results indicate that feeding ZH increased red meat yield by 1.3% at a constant calculated yield grade. However, these data also suggest that the calculated USDA yield grade score is a poor and variable estimator (adjusted R(2) of 0.31 to 0.38) of total red meat yield of beef-type steer carcasses, regardless of ZH feeding. Moreover, no relationship existed (adjusted R(2) of 0.00 to 0.01) for calf-fed Holstein steer carcasses, suggesting the USDA yield grade is not a valid estimate of calf-fed Holstein red meat yield.

  15. Assessing Sediment Yield and the Effect of Best Management Practices on Sediment Yield Reduction for Tutuila Island, American Samoa

    NASA Astrophysics Data System (ADS)

    Leta, O. T.; Dulai, H.; El-Kadi, A. I.

    2017-12-01

    Upland soil erosion and sedimentation are the main threats for riparian and coastal reef ecosystems in Pacific islands. Here, due to small size of the watersheds and steep slope, the residence time of rainfall runoff and its suspended load is short. Fagaalu bay, located on the island of Tutuila (American Samoa) has been identified as a priority watershed, due to degraded coral reef condition and reduction of stream water quality from heavy anthropogenic activity yielding high nutrients and sediment loads to the receiving water bodies. This study aimed to estimate the sediment yield to the Fagaalu stream and assess the impact of Best Management Practices (BMP) on sediment yield reduction. For this, the Soil and Water Assessment Tool (SWAT) model was applied, calibrated, and validated for both daily streamflow and sediment load simulation. The model also estimated the sediment yield contributions from existing land use types of Fagaalu and identified soil erosion prone areas for introducing BMP scenarios in the watershed. Then, three BMP scenarios, such as stone bund, retention pond, and filter strip were treated on bare (quarry area), agricultural, and shrub land use types. It was found that the bare land with quarry activity yielded the highest annual average sediment yield of 133 ton per hectare (t ha-1) followed by agriculture (26.1 t ha-1) while the lowest sediment yield of 0.2 t ha-1 was estimated for the forested part of the watershed. Additionally, the bare land area (2 ha) contributed approximately 65% (207 ha) of the watershed's sediment yield, which is 4.0 t ha-1. The latter signifies the high impact as well as contribution of anthropogenic activity on sediment yield. The use of different BMP scenarios generally reduced the sediment yield to the coastal reef of Fagaalu watershed. However, treating the quarry activity area with stone bund showed the highest sediment yield reduction as compared to the other two BMP scenarios. This study provides an estimate

  16. Influence of transport energization on the growth yield of Escherichia coli.

    PubMed

    Muir, M; Williams, L; Ferenci, T

    1985-09-01

    The growth yields of Escherichia coli on glucose, lactose, galactose, maltose, maltotriose, and maltohexaose were estimated under anaerobic conditions in the absence of electron acceptors. The yields on these substrates exhibited significant differences when measured in carbon-limited chemostats at similar growth rates and compared in terms of grams (dry weight) of cells produced per mole of hexose utilized. Maltohexaose was the most efficiently utilized substrate, and galactose was the least efficiently utilized under these conditions. All these sugars were known to be metabolized to glucose 6-phosphate and produced the same pattern of fermentation products. The differences in growth yields were ascribed to differences in energy costs for transport and phosphorylation of these sugars. A formalized treatment of these factors in determining growth yields was established and used to obtain values for the cost of transport and hence the energy-coupling stoichiometries for the transport of substrates via proton symport and binding-protein-dependent mechanisms in vivo. By this approach, the proton-lactose stoichiometry was found to be 1.1 to 1.8 H+ per lactose, equivalent to approximately 0.5 ATP used per lactose transported. The cost of transporting maltose via a binding-protein-dependent mechanism was considerably higher, being over 1 to 1.2 ATP per maltose or maltodextrin transported. The formalized treatment also permitted estimation of the net ATP yield from the metabolism of these sugars; it was calculated that the growth yield data were consistent with the production of 2.8 to 3.2 ATP in the metabolism of glucose 6-phosphate to fermentation products.

  17. Influence of transport energization on the growth yield of Escherichia coli.

    PubMed Central

    Muir, M; Williams, L; Ferenci, T

    1985-01-01

    The growth yields of Escherichia coli on glucose, lactose, galactose, maltose, maltotriose, and maltohexaose were estimated under anaerobic conditions in the absence of electron acceptors. The yields on these substrates exhibited significant differences when measured in carbon-limited chemostats at similar growth rates and compared in terms of grams (dry weight) of cells produced per mole of hexose utilized. Maltohexaose was the most efficiently utilized substrate, and galactose was the least efficiently utilized under these conditions. All these sugars were known to be metabolized to glucose 6-phosphate and produced the same pattern of fermentation products. The differences in growth yields were ascribed to differences in energy costs for transport and phosphorylation of these sugars. A formalized treatment of these factors in determining growth yields was established and used to obtain values for the cost of transport and hence the energy-coupling stoichiometries for the transport of substrates via proton symport and binding-protein-dependent mechanisms in vivo. By this approach, the proton-lactose stoichiometry was found to be 1.1 to 1.8 H+ per lactose, equivalent to approximately 0.5 ATP used per lactose transported. The cost of transporting maltose via a binding-protein-dependent mechanism was considerably higher, being over 1 to 1.2 ATP per maltose or maltodextrin transported. The formalized treatment also permitted estimation of the net ATP yield from the metabolism of these sugars; it was calculated that the growth yield data were consistent with the production of 2.8 to 3.2 ATP in the metabolism of glucose 6-phosphate to fermentation products. PMID:3928598

  18. Geology, Ground-Water Occurrence, and Estimated Well Yields from the Mariana Limestone, Kagman Area, Saipan, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Hoffmann, John P.; Carruth, Rob; Meyer, William

    1998-01-01

    A study of the geology, ground-water occurrence, and estimated well yields from the Mariana Limestone was done to investigate ground-water availability in the Kagman area, Saipan. The Mariana and Tagpochau Limestone formations form the major aquifer in the Kagman drainage basin. The Mariana Limestone, which is the major water-bearing unit in the Kagman area, ranges in thickness from 300 to 500 feet and contains intermittent, thin clay stringers. The calcareous rocks of the Tagpochau Limestone range in thickness from 500 to 1,000 feet and are more sandy than those of the Mariana Limestone. Ground water is unconfined in the Mariana Limestone and ranges from unconfined to confined in the Tagpochau Limestone. The fresh ground-water lens (that part of the lens with less than 2-percent of the chloride-ion concentration in seawater) in the Mariana Limestone is relatively thin, ranging from about 15 to 21 feet. Altitude of the water table ranges from about 1.5 to 2.5 feet above mean sea level. Freshwater in the Mariana Limestone is underlain by seawater and is separated by a transition zone about 8 to 25 feet thick. Hydraulic conductivity and transmissivity of the Mariana Limestone were calculated from data collected at six test wells. Using the Newman method, estimated hydraulic conductivity and transmissivity range from 290 to 2,500 feet per day and 7,600 to 62,000 feet squared per day, respectively. The higher values probably are indicative of average conditions in the Mariana Limestone. The estimated storage coefficient of the Mariana Limestone is about 0.1. The availability of water from the Mariana Limestone is restricted by the thinness of the freshwater lens. Results of the study indicate that fresh ground water can be obtained from the Mariana Limestone when wells are designed for minimum drawdown, effectively skimming freshwater from the top of the lens. Wells that are shallow, widely spaced, and pumped at low uniform rates can prevent saltwater intrusion

  19. Using Data Envelopment Analysis to Improve Estimates of Higher Education Institution's Per-Student Education Costs

    ERIC Educational Resources Information Center

    Salerno, Carlo

    2006-01-01

    This paper puts forth a data envelopment analysis (DEA) approach to estimating higher education institutions' per-student education costs (PSCs) in an effort to redress a number of methodological problems endemic to such estimations, particularly the allocation of shared expenditures between education and other institutional activities. An example…

  20. Contribution of morphoagronomic traits to grain yield and earliness in grain sorghum.

    PubMed

    da Silva, K J; Teodoro, P E; de Menezes, C B; Júlio, M P M; de Souza, V F; da Silva, M J; Pimentel, L D; Borém, A

    2017-05-04

    Given the importance of selecting lines to obtain hybrids, we aimed to verify the relationship between morphological traits that can be used as the criteria for the selection of sorghum lines with high grain yield and earliness. A total of 18 traits were evaluated in 160 sorghum elite lines, in an incomplete block design with two replicates. A correlation network was used to graphically express the estimates of phenotypic and genotypic correlations between the traits. Two path analyses were processed, the first considering grain yield and the second considering flowering as the principle dependent variable. In general, most of the variation in the grain yield and flowering of sorghum lines was explained by the traits evaluated. Selecting sorghum lines with greater width of the third leaf blade from flag leaf, panicle weight, and panicle harvest index might lead to increased grain yield, and selecting sorghum genotypes with higher plant height might lead to reduced earliness and increased grain yield. Thus, the results suggest the establishment of selection indices aiming at simultaneously increasing the grain yield and earliness in sorghum genotypes.

  1. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  2. Reed canarygrass yield improvement

    USDA-ARS?s Scientific Manuscript database

    Reed canarygrass is well adapted to the northern USA. Eight cultivars and 72 accessions collected in rural landscapes from Iowa to New Hampshire were evaluated for yield. Accessions produced on average 7% higher biomass yield compared to existing cultivars. Naturalized populations of reed canarygras...

  3. Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.

  4. High-yield maize with large net energy yield and small global warming intensity

    PubMed Central

    Grassini, Patricio; Cassman, Kenneth G.

    2012-01-01

    Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684

  5. Effect of incomplete pedigrees on estimates of inbreeding and inbreeding depression for days to first service and summit milk yield in Holsteins and Jerseys.

    PubMed

    Cassell, B G; Adamec, V; Pearson, R E

    2003-09-01

    A method to measure completeness of pedigree information is applied to populations of Holstein (registered and grade) and Jersey (largely registered) cows. Inbreeding coefficients where missing ancestors make no contribution were compared to a method using average relationships for missing ancestors. Estimated inbreeding depression was from an animal model that simultaneously adjusted for breeding values. Inbreeding and its standard deviation increased with more information, from 0.04 +/- 0.84 to 1.65 +/- 2.05 and 2.06 +/- 2.22 for grade Holsteins with <31%, 31 to 70%, and 71 to 100% complete five-generation pedigrees. Inbreeding from the method of average relationships for missing ancestors was 2.75 +/- 1.06, 3.10 +/- 2.21, and 2.89 +/- 2.37 for the same groups. Pedigrees of registered Holsteins and Jerseys were over 97% and over 89% complete, respectively. Inbreeding depression in days to first service and summit milk yield was estimated from both methods. Inbreeding depression for days to first service was not consistently significant for grade Holsteins and ranged from -0.37 d/1% increase in inbreeding (grade Holstein pedigrees <31% complete) to 0.15 d for grade Holstein pedigrees >70% complete. Estimates were similar for both methods. Inbreeding depression for registered Holsteins and Jerseys were positive (undesirable) but not significant for days to first service. Inbreeding depressed summit milk yield significantly in all groups by both methods. Summit milk yield declined by -0.12 to -0.06 kg/d per 1% increase in inbreeding in Holsteins and by -0.08 kg/1% increase in inbreeding in Jerseys. Pedigrees of grade animals are frequently incomplete and can yield misleading estimates of inbreeding depression. This problem is not overcome by inserting average relationships for missing ancestors in calculation of inbreeding coefficients.

  6. Joint Bayesian inference for near-surface explosion yield

    NASA Astrophysics Data System (ADS)

    Bulaevskaya, V.; Ford, S. R.; Ramirez, A. L.; Rodgers, A. J.

    2016-12-01

    A near-surface explosion generates seismo-acoustic motion that is related to its yield. However, the recorded motion is affected by near-source effects such as depth-of-burial, and propagation-path effects such as variable geology. We incorporate these effects in a forward model relating yield to seismo-acoustic motion, and use Bayesian inference to estimate yield given recordings of the seismo-acoustic wavefield. The Bayesian approach to this inverse problem allows us to obtain the probability distribution of plausible yield values and thus quantify the uncertainty in the yield estimate. Moreover, the sensitivity of the acoustic signal falls as a function of the depth-of-burial, while the opposite relationship holds for the seismic signal. Therefore, using both the acoustic and seismic wavefield data allows us to avoid the trade-offs associated with using only one of these signals alone. In addition, our inference framework allows for correlated features of the same data type (seismic or acoustic) to be incorporated in the estimation of yield in order to make use of as much information from the same waveform as possible. We demonstrate our approach with a historical dataset and a contemporary field experiment.

  7. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    PubMed

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  8. PROMAB-GIS: A GIS based Tool for Estimating Runoff and Sediment Yield in running Waters

    NASA Astrophysics Data System (ADS)

    Jenewein, S.; Rinderer, M.; Ploner, A.; Sönser, T.

    2003-04-01

    In recent times settlements have expanded, traffic and tourist activities have increased in most alpine regions. As a consequence, on the one hand humans and goods are affected by natural hazard processes more often, while on the other hand the demand for protection by both technical constructions and planning measures carried out by public authorities is growing. This situation results in an ever stronger need of reproducibility, comparability, transparency of all methods applied in modern natural hazard management. As a contribution to a new way of coping this situation Promab-GIS Version 1.0 has been developed. Promab-Gis has been designed as a model for time- and space-dependent determination of both runoff and bedload transport in rivers of small alpine catchment areas. The estimation of the unit hydrograph relies upon the "rational formula" and the time-area curves of the watershed. The time area diagram is a graph of cumulative drainage area contributing to discharge at the watershed outlet within a specified time of travel. The sediment yield is estimated for each cell of the channel network by determining the actual process type (erosion, transport or accumulation). Two types of transport processes are considered, sediment transport and debris flows. All functions of Promab-GIS are integrated in the graphical user interface of ArcView as pull-up menus and tool buttons. Hence the application of Promab-GIS does not rely on a sophisticated knowledge of GIS in general, respectively the ArcView software. However, despite the use of computer assistance, Promab-GIS still is an expert support system. In order to obtain plausible results, the users must be familiar with all the relevant processes controlling runoff and sediment yield in torrent catchments.

  9. Assimilation of Remotely Sensed Soil Moisture Profiles into a Crop Modeling Framework for Reliable Yield Estimations

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2017-12-01

    Much effort has been expended recently on the assimilation of remotely sensed soil moisture into operational land surface models (LSM). These efforts have normally been focused on the use of data derived from the microwave bands and results have often shown that improvements to model simulations have been limited due to the fact that microwave signals only penetrate the top 2-5 cm of the soil surface. It is possible that model simulations could be further improved through the introduction of geostationary satellite thermal infrared (TIR) based root zone soil moisture in addition to the microwave deduced surface estimates. In this study, root zone soil moisture estimates from the TIR based Atmospheric Land Exchange Inverse (ALEXI) model were merged with NASA Soil Moisture Active Passive (SMAP) based surface estimates through the application of informational entropy. Entropy can be used to characterize the movement of moisture within the vadose zone and accounts for both advection and diffusion processes. The Principle of Maximum Entropy (POME) can be used to derive complete soil moisture profiles and, fortuitously, only requires a surface boundary condition as well as the overall mean moisture content of the soil column. A lower boundary can be considered a soil parameter or obtained from the LSM itself. In this study, SMAP provided the surface boundary while ALEXI supplied the mean and the entropy integral was used to tie the two together and produce the vertical profile. However, prior to the merging, the coarse resolution (9 km) SMAP data were downscaled to the finer resolution (4.7 km) ALEXI grid. The disaggregation scheme followed the Soil Evaporative Efficiency approach and again, all necessary inputs were available from the TIR model. The profiles were then assimilated into a standard agricultural crop model (Decision Support System for Agrotechnology, DSSAT) via the ensemble Kalman Filter. The study was conducted over the Southeastern United States for the

  10. Climate change impacts on crop yield: evidence from China.

    PubMed

    Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi

    2014-11-15

    When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The uncertainty of crop yield projections is reduced by improved temperature response functions.

    PubMed

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold

    2017-07-17

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  12. The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions

    NASA Technical Reports Server (NTRS)

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.; hide

    2017-01-01

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  13. OP-Yield Version 1.00 user's guide

    Treesearch

    Martin W. Ritchie; Jianwei Zhang

    2018-01-01

    OP-Yield is a Microsoft Excel™ spreadsheet with 14 specified user inputs to derive custom yield estimates using the original Oliver and Powers (1978) functions as the foundation. It presents yields for ponderosa pine (Pinus ponderosa Lawson & C. Lawson) plantations in northern California. The basic model forms for dominantand...

  14. Modelling drought-related yield losses in Iberia using remote sensing and multiscalar indices

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreia F. S.; Russo, Ana; Gouveia, Célia M.; Páscoa, Patrícia

    2018-04-01

    The response of two rainfed winter cereal yields (wheat and barley) to drought conditions in the Iberian Peninsula (IP) was investigated for a long period (1986-2012). Drought hazard was evaluated based on the multiscalar Standardized Precipitation Evapotranspiration Index (SPEI) and three remote sensing indices, namely the Vegetation Condition (VCI), the Temperature Condition (TCI), and the Vegetation Health (VHI) Indices. A correlation analysis between the yield and the drought indicators was conducted, and multiple linear regression (MLR) and artificial neural network (ANN) models were established to estimate yield at the regional level. The correlation values suggested that yield reduces with moisture depletion (low values of VCI) during early-spring and with too high temperatures (low values of TCI) close to the harvest time. Generally, all drought indicators displayed greatest influence during the plant stages in which the crop is photosynthetically more active (spring and summer), rather than the earlier moments of plants life cycle (autumn/winter). Our results suggested that SPEI is more relevant in the southern sector of the IP, while remote sensing indices are rather good in estimating cereal yield in the northern sector of the IP. The strength of the statistical relationships found by MLR and ANN methods is quite similar, with some improvements found by the ANN. A great number of true positives (hits) of occurrence of yield-losses exhibiting hit rate (HR) values higher than 69% was obtained.

  15. Do increases in cigarette prices lead to increases in sales of cigarettes with high tar and nicotine yields?

    PubMed

    Farrelly, Matthew C; Loomis, Brett R; Mann, Nathan H

    2007-10-01

    We used scanner data on cigarette prices and sales collected from supermarkets across the United States from 1994 to 2004 to test the hypothesis that cigarette prices are positively correlated with sales of cigarettes with higher tar and nicotine content. During this period the average inflation-adjusted price for menthol cigarettes increased 55.8%. Price elasticities from multivariate regression models suggest that this price increase led to an increase of 1.73% in sales-weighted average tar yields and a 1.28% increase in sales-weighted average nicotine yields for menthol cigarettes. The 50.5% price increase of nonmenthol varieties over the same period yielded an estimated increase of 1% in tar per cigarette but no statistically significant increase in nicotine yields. An ordered probit model of the impact of cigarette prices on cigarette strength (ultra-light, light, full flavor, unfiltered) offers an explanation: As cigarette prices increase, the probability that stronger cigarette types will be sold increases. This effect is larger for menthol than for nonmenthol cigarettes. Our results are consistent with earlier population-based cross-sectional and longitudinal studies showing that higher cigarette prices and taxes are associated with increasing consumption of higher-yield cigarettes by smokers.

  16. National Variation in Crop Yield Production Functions

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Rising, J. A.

    2017-12-01

    A new multilevel model for yield prediction at the county scale using regional climate covariates is presented in this paper. A new crop specific water deficit index, growing degree days, extreme degree days, and time-trend as an approximation of technology improvements are used as predictors to estimate annual crop yields for each county from 1949 to 2009. Every county in the United States is allowed to have unique parameters describing how these weather predictors are related to yield outcomes. County-specific parameters are further modeled as varying according to climatic characteristics, allowing the prediction of parameters in regions where crops are not currently grown and into the future. The structural relationships between crop yield and regional climate as well as trends are estimated simultaneously. All counties are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. The model captures up to 60% of the variability in crop yields after removing the effect of technology, does well in out of sample predictions and is useful in relating the climate responses to local bioclimatic factors. We apply the predicted growing models in a cost-benefit analysis to identify the most economically productive crop in each county.

  17. Yield and depth Estimation of Selected NTS Nuclear and SPE Chemical Explosions Using Source Equalization by modeling Local and Regional Seismograms (Invited)

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Roman-nieves, J. I.; Woods, M. T.

    2013-12-01

    Source parameters of nuclear and chemical explosions are often estimated by matching either the corner frequency and spectral level of a single event or the spectral ratio when spectra from two events are available with known source parameters for one. In this study, we propose an alternative method in which waveforms from two or more events can be simultaneously equalized by setting the differential of the processed seismograms at one station from any two individual events to zero. The method involves convolving the equivalent Mueller-Murphy displacement source time function (MMDSTF) of one event with the seismogram of the second event and vice-versa, and then computing their difference seismogram. MMDSTF is computed at the elastic radius including both near and far-field terms. For this method to yield accurate source parameters, an inherent assumption is that green's functions for the any paired events from the source to a receiver are same. In the frequency limit of the seismic data, this is a reasonable assumption and is concluded based on the comparison of green's functions computed for flat-earth models at various source depths ranging from 100m to 1Km. Frequency domain analysis of the initial P wave is, however, sensitive to the depth phase interaction, and if tracked meticulously can help estimating the event depth. We applied this method to the local waveforms recorded from the three SPE shots and precisely determined their yields. These high-frequency seismograms exhibit significant lateral path effects in spectrogram analysis and 3D numerical computations, but the source equalization technique is independent of any variation as long as their instrument characteristics are well preserved. We are currently estimating the uncertainty in the derived source parameters assuming the yields of the SPE shots as unknown. We also collected regional waveforms from 95 NTS explosions at regional stations ALQ, ANMO, CMB, COR, JAS LON, PAS, PFO and RSSD. We are

  18. Brazil soybean yield covariance model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the seven soybean-growing states of Brazil. The meteorological data of these seven states were pooled and the years 1975 to 1980 were used to model since there was no technological trend in the yields during these years. Predictor variables were derived from monthly total precipitation and monthly average temperature.

  19. Estimating agricultural yield gap in Africa using MODIS NDVI dataset

    NASA Astrophysics Data System (ADS)

    Luan, Y.; Zhu, W.; Luo, X.; Liu, J.; Cui, X.

    2013-12-01

    Global agriculture has undergone a period of rapid intensification characterized as 'Green Revolution', except for Africa, which is the region most affected by unreliable food access and undernourishment. Increasing crop production will be one of the most challenges and most effectual way to mitigate food insecurity there, as Africa's agricultural yield is on a much lower level comparing to global average. In this study we characterize cropland vegetation phenology in Africa based on MODIS NDVI time series between 2000 and 2012. Cumulated NDVI is a proxy for net primary productivity and used as an indicator for evaluating the potential yield gap in Africa. It is achieved via translating the gap between optimum attainable productivity level in each classification of cropping systems and actual productivity level by the relationship of cumulated NDVI and cereal-equivalent production. The results show most of cropland area in Africa have decreasing trend in cumulated NDVI, distributing in the Nile Delta, Eastern Africa and central of semi-arid to arid savanna area, except significant positive cumulated NDVI trends are mainly found between Senegal and Benin. Using cumulated NDVI and statistics of cereal equivalent production, we find remarkable potential yield gap at the Horn of East Africa (especially in Somalia), Northern Africa (Morocco, Algeria and Tunisia). Meanwhile, countries locating at the savanna area near Sahel desert and South Africa also show significant potential, though they already have a relatively high level of productivity. Our results can help provide policy recommendation for local government or NGO to tackle food security problems by identifying zones with high potential of yield improvement.

  20. Argentina soybean yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the soybean growing area. Predictor variables for the model were derived from monthly total precipitation and monthly average temperature. A trend variable was included for the years 1969 to 1978 since an increasing trend in yields due to technology was observed between these years.

  1. Fission yield and criticality excursion code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    2000-06-30

    The ANSI/ANS 8.3 standard allows a maximum yield not to exceed 2 x 10 fissions to calculate requiring the alarm system to be effective. It is common practice to use this allowance or to develop some other yield based on past criticality accident history or excursion experiments. The literature on the subject of yields discusses maximum yields larger and somewhat smaller than the ANS 8.3 permissive value. The ability to model criticality excursions and vary the various parameters to determine a credible maximum yield for operational specific cases has been available for some time but is not in common usemore » by criticality safety specialists. The topic of yields for various solution, metal, oxide powders, etc. in various geometry's and containers has been published by laboratory specialists or university staff and students for many decades but have not been available to practitioners. The need for best-estimate calculations of fission yields with a well-validated criticality excursion code has long been recognized. But no coordinated effort has been made so far to develop a generalized and well-validated excursion code for different types of systems. In this paper, the current practices to estimate fission yields are summarized along with its shortcomings for the 12-Rad zone (at SRS) and Criticality Alarm System (CAS) calculations. Finally the need for a user-friendly excursion code is reemphasized.« less

  2. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network.

    PubMed

    Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi

    2017-03-01

    Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Using flow cytometry to estimate pollen DNA content: improved methodology and applications

    PubMed Central

    Kron, Paul; Husband, Brian C.

    2012-01-01

    Background and Aims Flow cytometry has been used to measure nuclear DNA content in pollen, mostly to understand pollen development and detect unreduced gametes. Published data have not always met the high-quality standards required for some applications, in part due to difficulties inherent in the extraction of nuclei. Here we describe a simple and relatively novel method for extracting pollen nuclei, involving the bursting of pollen through a nylon mesh, compare it with other methods and demonstrate its broad applicability and utility. Methods The method was tested across 80 species, 64 genera and 33 families, and the data were evaluated using established criteria for estimating genome size and analysing cell cycle. Filter bursting was directly compared with chopping in five species, yields were compared with published values for sonicated samples, and the method was applied by comparing genome size estimates for leaf and pollen nuclei in six species. Key Results Data quality met generally applied standards for estimating genome size in 81 % of species and the higher best practice standards for cell cycle analysis in 51 %. In 41 % of species we met the most stringent criterion of screening 10 000 pollen grains per sample. In direct comparison with two chopping techniques, our method produced better quality histograms with consistently higher nuclei yields, and yields were higher than previously published results for sonication. In three binucleate and three trinucleate species we found that pollen-based genome size estimates differed from leaf tissue estimates by 1·5 % or less when 1C pollen nuclei were used, while estimates from 2C generative nuclei differed from leaf estimates by up to 2·5 %. Conclusions The high success rate, ease of use and wide applicability of the filter bursting method show that this method can facilitate the use of pollen for estimating genome size and dramatically improve unreduced pollen production estimation with flow cytometry. PMID

  4. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  5. [Regional scale remote sensing-based yield estimation of winter wheat by using MODIS-NDVI data: a case study of Jining City in Shandong Province].

    PubMed

    Ren, Jianqiang; Chen, Zhongxin; Tang, Huajun

    2006-12-01

    Taking Jining City of Shandong Province, one of the most important winter wheat production regions in Huanghuaihai Plain as an example, the winter wheat yield was estimated by using the 250 m MODIS-NDVI data smoothed by Savitzky-Golay filter. The NDVI values between 0. 20 and 0. 80 were selected, and the sum of NDVI value for each county was calculated to build its relation with winter wheat yield. By using stepwise regression method, the linear regression model between NDVI and winter wheat yield was established, with the precision validated by the ground survey data. The results showed that the relative error of predicted yield was between -3.6% and 3.9%, suggesting that the method was relatively accurate and feasible.

  6. Pyrolysis of Lantana camara and Mimosa pigra: Influences of temperature, other process parameters and incondensable gas evolution on char yield and higher heating value.

    PubMed

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2017-11-01

    Pyrolysis of invasive non-indigenous plants, Lantana camara (LC) and Mimosa pigra (MP) was conducted at milligram-scale for optimisation of temperature, heating rate and hold time on char yield and higher heating value (HHV). The impact of scaling-up to gram-scale was also studied, with chromatography used to correlate gas composition with HHV evolution. Statistically significant effects of temperature on char yield and HHV were obtained, while heating rate and hold time effects were insignificant. Milligram-scale maximised HHVs were 30.03MJkg -1 (525°C) and 31.01MJkg -1 (580°C) for LC and MP, respectively. Higher char yields and HHVs for MP were attributed to increased lignin content. Scaling-up promoted secondary char formation thereby increasing HHVs, 30.82MJkg -1 for LC and 31.61MJkg -1 for MP. Incondensable gas analysis showed that temperature increase beyond preferred values caused dehydrogenation that decreased HHV. Similarly, CO evolution profile explained differences in optimal HHV temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Increased feeding frequency increased milk fat yield and may reduce the severity of subacute ruminal acidosis in higher-risk cows.

    PubMed

    Macmillan, K; Gao, X; Oba, M

    2017-02-01

    The objectives of this study were to determine whether feeding behavior is different between cows at higher or lower risk for subacute ruminal acidosis (SARA) and whether increasing feeding frequency could be used to reduce the severity of SARA in higher-risk cows. In preliminary studies, 16 ruminally cannulated lactating cows were fed high-grain diets once per day to increase the risk of SARA. After a 17-d diet adaptation, ruminal pH was measured every 30 s over 24 h. Cows were classified as higher-risk (n = 7) or lower-risk (n = 9) for SARA based on an acidosis index (area of pH <5.8/dry matter intake). Feeding behavior was recorded every 5 min over the same 24 h. The 24-h observation period was analyzed in 3 periods of 8 h after feeding. Although there was no significant difference in overall dry matter intake, higher-risk cows spent more time eating in the first 8-h period after feeding than lower-risk cows (186 vs. 153 min) and less time eating in the third 8-h period (19 vs. 43 min). In the primary experiment, 8 ruminally cannulated lactating cows were fed a high-grain diet once per day (1×; 0800 h) or 3 times per day (3×; 0800, 1500, and 2000 h) in a crossover design with 21-d periods (16 d of treatment adaptation and 5 d of data collection). Rumen pH and feeding behavior were measured over 72 h. Behavior data were summarized separately for the 3 periods (0800 to 1500, 1500 to 2200, and 2200 to 0800 h). Four cows were categorized as higher-risk and 4 as lower-risk, based on their acidosis index. The 3× feeding reduced eating time between 0800 and 1500 h (99 vs. 145 min) and increased eating time between 2200 and 0800 h (76 vs. 43 min) for all cows, regardless of category, compared with 1× feeding. For higher-risk cows, 3× feeding reduced the area below pH 5.8 (51 vs. 98 pH × min/d), but it did not affect rumen pH for the lower-risk cows. Milk yield was not different between groups, but 3× feeding increased milk fat yield (1.22 vs. 1.08 kg/d) for all

  8. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves

    PubMed Central

    Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji

    2015-01-01

    This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530

  9. Yield of bedrock wells in the Nashoba terrane, central and eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Barbaro, Jeffrey R.

    2012-01-01

    hydrogeologic factors that were individually related to well yield, in ways that are consistent with conceptual understanding of their effects, but the models explained only 21 percent (regional model for the entire terrane) and 30 percent (quadrangle model) of the overall variance in yield. Moreover, most of the explained variance was due to well characteristics rather than hydrogeologic factors. Hydrogeologic factors such as topography and geology are likely important. However, the overall high variability in the well-yield data, which results from the high variability in aquifer hydraulic properties as well as from limitations of the dataset, would make it difficult to use hydrogeologic factors to predict well yield in the study area. Geostatistical analysis (variograms), on the other hand, indicated that, although highly variable, the well-yield data are spatially correlated. The spatial continuity appears greater in the northeast-southwest direction and less in the southeast-northwest direction, directions that are parallel and perpendicular, respectively, to the regional geologic structural trends. Geostatistical analysis (kriging), used to estimate yield values throughout the study area, identified regional-scale areas of higher and lower yield that may be related to regional structural features—in particular, to a northeast-southwest trending regional fault zone within the Nashoba terrane. It also would be difficult to use kriging to predict yield at specific locations, however, because of the spatial variability in yield, particularly at small scales. The regional-scale analyses in this study, both with hydrogeologic variables and geostatistics, provide a context for understanding the variability in well yield, rather a basis for precise predictions, and site-specific information would be needed to understand local conditions.

  10. Argentina wheat yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.

  11. Argentina corn yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.

  12. Wheat productivity estimates using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Colwell, J. E. (Principal Investigator); Rice, D. P.; Bresnahan, P. A.

    1977-01-01

    The author has identified the following significant results. Large area LANDSAT yield estimates were generated. These results were compared with estimates computed using a meteorological yield model (CCEA). Both of these estimates were compared with Kansas Crop and Livestock Reporting Service (KCLRS) estimates of yield, in an attempt to assess the relative and absolute accuracy of the LANDSAT and CCEA estimates. Results were inconclusive. A large area direct wheat prediction procedure was implemented. Initial results have produced a wheat production estimate comparable with the KCLRS estimate.

  13. Global Crop Yields, Climatic Trends and Technology Enhancement

    NASA Astrophysics Data System (ADS)

    Najafi, E.; Devineni, N.; Khanbilvardi, R.; Kogan, F.

    2016-12-01

    During the last decades the global agricultural production has soared up and technology enhancement is still making positive contribution to yield growth. However, continuing population, water crisis, deforestation and climate change threaten the global food security. Attempts to predict food availability in the future around the world can be partly understood from the impact of changes to date. A new multilevel model for yield prediction at the country scale using climate covariates and technology trend is presented in this paper. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling and/or clustering to automatically group and reduce estimation uncertainties. El Niño Southern Oscillation (ENSO), Palmer Drought Severity Index (PDSI), Geopotential height (GPH), historical CO2 level and time-trend as a relatively reliable approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2007. Results show that these indicators can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications.

  14. Invited review: A commentary on predictive cheese yield formulas.

    PubMed

    Emmons, D B; Modler, H W

    2010-12-01

    Predictive cheese yield formulas have evolved from one based only on casein and fat in 1895. Refinements have included moisture and salt in cheese and whey solids as separate factors, paracasein instead of casein, and exclusion of whey solids from moisture associated with cheese protein. The General, Barbano, and Van Slyke formulas were tested critically using yield and composition of milk, whey, and cheese from 22 vats of Cheddar cheese. The General formula is based on the sum of cheese components: fat, protein, moisture, salt, whey solids free of fat and protein, as well as milk salts associated with paracasein. The testing yielded unexpected revelations. It was startling that the sum of components in cheese was <100%; the mean was 99.51% (N × 6.31). The mean predicted yield was only 99.17% as a percentage of actual yields (PY%AY); PY%AY is a useful term for comparisons of yields among vats. The PY%AY correlated positively with the sum of components (SofC) in cheese. The apparent low estimation of SofC led to the idea of adjusting upwards, for each vat, the 5 measured components in the formula by the observed SofC, as a fraction. The mean of the adjusted predicted yields as percentages of actual yields was 99.99%. The adjusted forms of the General, Barbano, and Van Slyke formulas gave predicted yields equal to the actual yields. It was apparent that unadjusted yield formulas did not accurately predict yield; however, unadjusted PY%AY can be useful as a control tool for analyses of cheese and milk. It was unexpected that total milk protein in the adjusted General formula gave the same predicted yields as casein and paracasein, indicating that casein or paracasein may not always be necessary for successful yield prediction. The use of constants for recovery of fat and protein in the adjusted General formula gave adjusted predicted yields equal to actual yields, indicating that analyses of cheese for protein and fat may not always be necessary for yield prediction

  15. Estimation of quantum yields of weak fluorescence from eosin Y dimers formed in aqueous solutions.

    PubMed

    Enoki, Masami; Katoh, Ryuzi

    2018-05-17

    We studied the weak fluorescence from the dimer of eosin Y (EY) in aqueous solutions. We used a newly developed ultrathin optical cell with a thickness ranging from of the order of microns to several hundreds of microns to successfully measure the fluorescence spectra of highly concentrated aqueous solutions of EY without artifacts caused by the reabsorption of fluorescence. The spectra we obtained were similar to the fluorescence spectrum of the EY monomer; almost no fluorescence was observed from the EY dimer. By a careful comparison of the spectra of solutions at low and high concentrations of EY, we succeeded in extracting the fluorescence spectrum of the EY dimer. The fluorescence quantum yield of the EY dimer was estimated to be 0.005.

  16. Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras

    NASA Astrophysics Data System (ADS)

    Naito, Hiroki; Ogawa, Satoshi; Valencia, Milton Orlando; Mohri, Hiroki; Urano, Yutaka; Hosoi, Fumiki; Shimizu, Yo; Chavez, Alba Lucia; Ishitani, Manabu; Selvaraj, Michael Gomez; Omasa, Kenji

    2017-03-01

    Application of field based high-throughput phenotyping (FB-HTP) methods for monitoring plant performance in real field conditions has a high potential to accelerate the breeding process. In this paper, we discuss the use of a simple tower based remote sensing platform using modified single-lens reflex cameras for phenotyping yield traits in rice under different nitrogen (N) treatments over three years. This tower based phenotyping platform has the advantages of simplicity, ease and stability in terms of introduction, maintenance and continual operation under field conditions. Out of six phenological stages of rice analyzed, the flowering stage was the most useful in the estimation of yield performance under field conditions. We found a high correlation between several vegetation indices (simple ratio (SR), normalized difference vegetation index (NDVI), transformed vegetation index (TVI), corrected transformed vegetation index (CTVI), soil-adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI)) and multiple yield traits (panicle number, grain weight and shoot biomass) across a three trials. Among all of the indices studied, SR exhibited the best performance in regards to the estimation of grain weight (R2 = 0.80). Under our tower-based field phenotyping system (TBFPS), we identified quantitative trait loci (QTL) for yield related traits using a mapping population of chromosome segment substitution lines (CSSLs) and a single nucleotide polymorphism data set. Our findings suggest the TBFPS can be useful for the estimation of yield performance during early crop development. This can be a major opportunity for rice breeders whom desire high throughput phenotypic selection for yield performance traits.

  17. Apparent Yield Strength of Hot-Pressed SiCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daloz, William L; Wereszczak, Andrew A; Jadaan, Osama M.

    2008-01-01

    Apparent yield strengths (YApp) of four hot-pressed silicon carbides (SiC-B, SiC-N,SiC-HPN, and SiC-SC-1RN) were estimated using diamond spherical or Hertzian indentation. The von Mises and Tresca criteria were considered. The developed test method was robust, simple and quick to execute, and thusly enabled the acquisition of confident sampling statistics. The choice of indenter size, test method, and method of analysis are described. The compressive force necessary to initiate apparent yielding was identified postmortem using differential interference contrast (or Nomarski) imaging with an optical microscope. It was found that the YApp of SiC-HPN (14.0 GPa) was approximately 10% higher than themore » equivalently valued YApp of SiC-B, SiC-N, and SiC-SC-1RN. This discrimination in YApp shows that the use of this test method could be insightful because there were no differences among the average Knoop hardnesses of the four SiC grades.« less

  18. CMB internal delensing with general optimal estimator for higher-order correlations

    DOE PAGES

    Namikawa, Toshiya

    2017-05-24

    We present here a new method for delensing B modes of the cosmic microwave background (CMB) using a lensing potential reconstructed from the same realization of the CMB polarization (CMB internal delensing). The B -mode delensing is required to improve sensitivity to primary B modes generated by, e.g., the inflationary gravitational waves, axionlike particles, modified gravity, primordial magnetic fields, and topological defects such as cosmic strings. However, the CMB internal delensing suffers from substantial biases due to correlations between observed CMB maps to be delensed and that used for reconstructing a lensing potential. Since the bias depends on realizations, wemore » construct a realization-dependent (RD) estimator for correcting these biases by deriving a general optimal estimator for higher-order correlations. The RD method is less sensitive to simulation uncertainties. Compared to the previous ℓ -splitting method, we find that the RD method corrects the biases without substantial degradation of the delensing efficiency.« less

  19. The Massachusetts Sustainable-Yield Estimator: A decision-support tool to assess water availability at ungaged stream locations in Massachusetts

    USGS Publications Warehouse

    Archfield, Stacey A.; Vogel, Richard M.; Steeves, Peter A.; Brandt, Sara L.; Weiskel, Peter K.; Garabedian, Stephen P.

    2010-01-01

    Federal, State and local water-resource managers require a variety of data and modeling tools to better understand water resources. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a statewide, interactive decision-support tool to meet this need. The decision-support tool, referred to as the Massachusetts Sustainable-Yield Estimator (MA SYE) provides screening-level estimates of the sustainable yield of a basin, defined as the difference between the unregulated streamflow and some user-specified quantity of water that must remain in the stream to support such functions as recreational activities or aquatic habitat. The MA SYE tool was designed, in part, because the quantity of surface water available in a basin is a time-varying quantity subject to competing demands for water. To compute sustainable yield, the MA SYE tool estimates a daily time series of unregulated, daily mean streamflow for a 44-year period of record spanning October 1, 1960, through September 30, 2004. Selected streamflow quantiles from an unregulated, daily flow-duration curve are estimated by solving six regression equations that are a function of physical and climate basin characteristics at an ungaged site on a stream of interest. Streamflow is then interpolated between the estimated quantiles to obtain a continuous daily flow-duration curve. A time series of unregulated daily streamflow subsequently is created by transferring the timing of the daily streamflow at a reference streamgage to the ungaged site by equating exceedence probabilities of contemporaneous flow at the two locations. One of 66 reference streamgages is selected by kriging, a geostatistical method, which is used to map the spatial relation among correlations between the time series of the logarithm of daily streamflows at each reference streamgage and the ungaged site. Estimated unregulated, daily mean streamflows show good agreement with observed

  20. Light- and water-use efficiency model synergy: a revised look at crop yield estimation for agricultural decision-making

    NASA Astrophysics Data System (ADS)

    Marshall, M.; Tu, K. P.

    2015-12-01

    Large-area crop yield models (LACMs) are commonly employed to address climate-driven changes in crop yield and inform policy makers concerned with climate change adaptation. Production efficiency models (PEMs), a class of LACMs that rely on the conservative response of carbon assimilation to incoming solar radiation absorbed by a crop contingent on environmental conditions, have increasingly been used over large areas with remote sensing spectral information to improve the spatial resolution of crop yield estimates and address important data gaps. Here, we present a new PEM that combines model principles from the remote sensing-based crop yield and evapotranspiration (ET) model literature. One of the major limitations of PEMs is that they are evaluated using data restricted in both space and time. To overcome this obstacle, we first validated the model using 2009-2014 eddy covariance flux tower Gross Primary Production data in a rice field in the Central Valley of California- a critical agro-ecosystem of the United States. This evaluation yielded a Willmot's D and mean absolute error of 0.81 and 5.24 g CO2/d, respectively, using CO2, leaf area, temperature, and moisture constraints from the MOD16 ET model, Priestley-Taylor ET model, and the Global Production Efficiency Model (GLOPEM). A Monte Carlo simulation revealed that the model was most sensitive to the Enhanced Vegetation Index (EVI) input, followed by Photosynthetically Active Radiation, vapor pressure deficit, and air temperature. The model will now be evaluated using 30 x 30m (Landsat resolution) biomass transects developed in 2011 and 2012 from spectroradiometric and other non-destructive in situ metrics for several cotton, maize, and rice fields across the Central Valley. Finally, the model will be driven by Daymet and MODIS data over the entire State of California and compared with county-level crop yield statistics. It is anticipated that the new model will facilitate agro-climatic decision-making in

  1. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    PubMed

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  2. Ground-Water Contributions to Reservoir Storage and the Effect on Estimates of Firm Yield for Reservoirs in Massachusetts

    USGS Publications Warehouse

    Archfield, Stacey A.; Carlson, Carl S.

    2006-01-01

    Potential ground-water contributions to reservoir storage were determined for nine reservoirs in Massachusetts that had shorelines in contact with sand and gravel aquifers. The effect of ground water on firm yield was not only substantial, but furthermore, the firm yield of a reservoir in contact with a sand and gravel aquifer was always greater when the ground-water contribution was included in the water balance. Increases in firm yield ranged from 2 to 113 percent, with a median increase in firm yield of 10 percent. Additionally, the increase in firm yield in two reservoirs was greater than 85 percent. This study identified a set of equations that are based on an analytical solution to the ground-water-flow equation for the case of one-dimensional flow in a finite-width aquifer bounded by a linear surface-water feature such as a stream. These equations, which require only five input variables, were incorporated into an existing firm-yield-estimator (FYE) model, and the potential effect of ground water on firm yield was evaluated. To apply the FYE model to a reservoir in Massachusetts, the model requires that the drainage area to the reservoir be clearly defined and that some surface water flows into the reservoir. For surface-water-body shapes having a more realistic representation of a reservoir shoreline than a stream, a comparison of ground-water-flow rates simulated by the ground-water equations with flow rates simulated by a two-dimensional, finite-difference ground-water-flow model indicate that the agreement between the simulated flow rates is within ?10 percent when the ratio of the distance from the reservoir shoreline to the aquifer boundary to the length of shoreline in contact with the aquifer is between values of 0.5 and 3.5. Idealized reservoir-aquifer systems were assumed to verify that the ground-water-flow equations were implemented correctly into the existing FYE model; however, the modified FYE model has not been validated through a comparison

  3. Spectral considerations for modeling yield of canola

    USDA-ARS?s Scientific Manuscript database

    Conspicuous yellow flowers that are present in a Brassica oilseed crop such as canola require careful consideration when selecting a spectral index for yield estimation. This study evaluated spectral indices for multispectral sensors that correlate with the seed yield of Brassica oilseed crops. A ...

  4. Estimates of spatial and temporal variation of energy crops biomass yields in the US

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.

    2013-12-01

    Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus) have been identified for potential use as biomass feedstocks in the US. Current research on perennial grass biomass production has been evaluated on small-scale plots. However, the extent to which this potential can be realized at a landscape-scale will depend on the biophysical potential to grow these grasses with minimum possible amount of land that needs to be diverted from food to fuel production. To assess this potential three questions about the biomass yield for these grasses need to be answered: (1) how the yields for different grasses are varied spatially and temporally across the US; (2) whether the yields are temporally stable or not; and (3) how the spatial and temporal trends in yields of these perennial grasses are controlled by limiting factors, including soil type, water availability, climate, and crop varieties. To answer these questions, the growth processes of the perennial grasses are implemented into a coupled biophysical, physiological and biogeochemical model (ISAM). The model has been applied to quantitatively investigate the spatial and temporal trends in biomass yields for over the period 1980 -2010 in the US. The bioenergy grasses considered in this study include Miscanthus, Cave-in-Rock switchgrass and Alamo switchgrass. The effects of climate, soil and topography on the spatial and temporal trends of biomass yields are quantitatively analyzed using principal component analysis and GIS based geographically weighted regression. The spatial temporal trend results are evaluated further to classify each part of the US into four homogeneous potential yield zones: high and stable yield zone (HS), high but unstable yield zone (HU), low and stable yield zone (LS) and low but unstable yield zone (LU). Our preliminary results indicate that the yields for perennial grasses among different zones are strongly related to the different controlling factors

  5. Future possible crop yield scenarios under multiple SSP and RCP scenarios.

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Yokozawa, M.; Nishimori, M.; Okada, M.

    2016-12-01

    Understanding the effect of future climate change on global crop yields is one of the most important tasks for global food security. Future crop yields would be influenced by climatic factors such as the changes of temperature, precipitation and atmospheric carbon dioxide concentration. On the other hand, the effect of the changes of agricultural technologies such as crop varieties, pesticide and fertilizer input on crop yields have large uncertainty. However, not much is available on the contribution ratio of each factor under the future climate change scenario. We estimated the future global yields of four major crops (maize, soybean, rice and wheat) under three Shared Socio Economic Pathways (SSPs) and four Representative Concentration Pathways (RCPs). For this purpose, firstly, we estimated a parameter of a process based model (PRYSBI2) using a Bayesian method for each 1.125 degree spatial grid. The model parameter is relevant to the agricultural technology (we call "technological parameter" here after). Then, we analyzed the relationship between the values of technological parameter and GDP values. We found that the estimated values of the technological parameter were positively correlated with the GDP. Using the estimated relationship, we predicted future crop yield during 2020 and 2100 under SSP1, SSP2 and SSP3 scenarios and RCP 2.6, 4.5, 6.0 and 8.5. The estimated crop yields were different among SSP scenarios. However, we found that the yield difference attributable to SSPs were smaller than those attributable to CO2 fertilization effects and climate change. Particularly, the estimated effect of the change of atmospheric carbon dioxide concentration on global yields was more than four times larger than that of GDP for C3 crops.

  6. Combining satellite remote sensing and surveys to understand persistent yield variation--- a case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Lobell, D. B.; Chen, X.

    2015-12-01

    A large gap between maize yields on average farmers' fields and the highest yields achieved by either experiment or farmers is typical throughout the developing world, including in the North China Plain (NCP). This maize yield gap as identified by previous studies indicates large opportunities for raising yield by improving agronomy. Quzhou county is typical of the winter-wheat summer-maize system in NCP where the average plot size is as small as 0.25 hectares. To analyze this cropping system amidst the challenge of substantial heterogeneity, we identified fields that were either persistently higher or lower yielding according to the remote sensing yield estimates, and then conducted detailed field surveys. We found irrigation facility to be a major constraint to yield both in terms of irrigation water quality and farmers' access to wells. In total, improving the access to unsalty water would be associated with a 0.32t/ha (4.2%) increase in multi-year average yield. In addition, farmers' method of choosing cultivar, which likely relates to their overall knowledge level, significantly explained yield variation. In particular, those choosing cultivars according to technician advice, personal experiences and high yielding neighbors' advice had on average higher yield than farmers that either followed seed sellers' advice or collectively purchased seeds. Overall, the study presents a generalizable methodology of assessing yield gap as well as its persistent factors using a combination of satellite and survey data.

  7. Estimating the responses of winter wheat yields to moisture variations in the past 35 years in Jiangsu Province of China

    PubMed Central

    Ding, Jinfeng; Li, Chunyan

    2018-01-01

    Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen’s Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu. PMID:29329353

  8. Estimating the responses of winter wheat yields to moisture variations in the past 35 years in Jiangsu Province of China.

    PubMed

    Xu, Xiangying; Gao, Ping; Zhu, Xinkai; Guo, Wenshan; Ding, Jinfeng; Li, Chunyan

    2018-01-01

    Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.

  9. Absolute I(asterisk) quantum yields for the ICN A state by diode laser gain-vs-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.

  10. Development and Analysis of Global, High-Resolution Diagnostic Metrics for Vegetation Monitoring, Yield Estimation and Famine Mitigation

    NASA Astrophysics Data System (ADS)

    Anderson, B. T.; Zhang, P.; Myneni, R.

    2008-12-01

    Drought, through its impact on food scarcity and crop prices, can have significant economic, social, and environmental impacts - presently, up to 36 countries and 73 million people are facing food crises around the globe. Because of these adverse affects, there has been a drive to develop drought and vegetation- monitoring metrics that can quantify and predict human vulnerability/susceptibility to drought at high- resolution spatial scales over the entire globe. Here we introduce a new vegetation-monitoring index utilizing data derived from satellite-based instruments (the Moderate Resolution Imaging Spectroradiometer - MODIS) designed to identify the vulnerability of vegetation in a particular region to climate variability during the growing season. In addition, the index can quantify the percentage of annual grid-point vegetation production either gained or lost due to climatic variability in a given month. When integrated over the growing season, this index is shown to be better correlated with end-of-season crop yields than traditional remotely-sensed or meteorological indices. In addition, in-season estimates of the index, which are available in near real-time, provide yield forecasts comparable to concurrent in situ objective yield surveys, which are only available in limited regions of the world. Overall, the cost effectiveness and repetitive, near-global view of earth's surface provided by this satellite-based vegetation monitoring index can potentially improve our ability to mitigate human vulnerability/susceptibility to drought and its impacts upon vegetation and agriculture.

  11. Estimate of higher order ionospheric errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2008-10-01

    Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.

  12. Socioeconomic Disadvantage and Other Risk Factors for Using Higher-Nicotine/Tar-Yield (Regular Full-Flavor) Cigarettes.

    PubMed

    Higgins, Stephen T; Redner, Ryan; Priest, Jeff S; Bunn, Janice Y

    2017-11-07

    Use of machine-estimated higher nicotine/tar yield (regular full-flavor) cigarettes is associated with increased risk of nicotine dependence. The present study examined risk factors for using full-flavor versus other cigarette types, including socioeconomic disadvantage and other risk factors for tobacco use or tobacco-related adverse health impacts. Associations between use of full-flavor cigarettes and risk of nicotine dependence were also examined. Data were obtained from nationally representative samples of adult cigarette smokers from the US National Survey on Drug Use and Health. Logistic regression and classification and regression tree modeling were used to examine associations between use of full-flavor cigarettes and educational attainment, poverty, race/ethnicity, age, sex, mental illness, alcohol abuse/dependence, and illicit drug abuse/dependence. Logistic regression was used to examine risk for nicotine dependence. Each of these risk factors except alcohol abuse/dependence independently predicted increased odds of using full-flavor cigarettes (p < .001), with lower educational attainment the strongest predictor, followed by poverty, male sex, younger age, minority race/ethnicity, mental illness, and drug abuse/dependence, respectively. Use of full-flavor cigarettes was associated with increased odds of nicotine dependence within each of these risk factor groupings (p < .01). Cart modeling identified how prevalence of full-flavor cigarette use can vary from a low of 25% to a high of 66% corresponding to differing combinations of these independent risk factors. Use of full-flavor cigarettes is overrepresented in socioeconomically disadvantaged and other vulnerable populations, and associated with increased risk of nicotine dependence. Greater regulation of this cigarette type may be warranted. Greater regulation of commercially available Regular Full-Flavor Cigarettes may be warranted. Use of this type of cigarette is overrepresented in

  13. Genetic parameters of coagulation properties, milk yield, quality, and acidity estimated using coagulating and noncoagulating milk information in Brown Swiss and Holstein-Friesian cows.

    PubMed

    Cecchinato, A; Penasa, M; De Marchi, M; Gallo, L; Bittante, G; Carnier, P

    2011-08-01

    The aim of this study was to estimate heritabilities of rennet coagulation time (RCT) and curd firmness (a(30)) and their genetic correlations with test-day milk yield, composition (fat, protein, and casein content), somatic cell score, and acidity (pH and titratable acidity) using coagulating and noncoagulating (NC) milk information. Data were from 1,025 Holstein-Friesian (HF) and 1,234 Brown Swiss (BS) cows, which were progeny of 54 HF and 58 BS artificial insemination sires, respectively. Milk coagulation properties (MCP) of each cow were measured once using a computerized renneting meter and samples not exhibiting coagulation within 31 min after rennet addition were classified as NC milk. For NC samples, RCT was unobserved. Multivariate analyses, using Bayesian methodology, were performed to estimate the genetic relationships of RCT or a(30) with the other traits and statistical inference was based on the marginal posterior distributions of parameters of concern. For analyses involving RCT, a right-censored Gaussian linear model was used and records of NC milk samples, being censored records, were included as unknown parameters in the model implementing a data augmentation procedure. Rennet coagulation time was more heritable [heritability (h(2))=0.240 and h(2)=0.210 for HF and BS, respectively] than a(30) (h(2)=0.148 and h(2)=0.168 for HF and BS, respectively). Milk coagulation properties were more heritable than a single test-day milk yield (h(2)=0.103 and h(2)=0.097 for HF and BS, respectively) and less heritable than milk composition traits whose heritability ranged from 0.275 to 0.275, with the only exception of fat content of BS milk (h(2)=0.108). A negative genetic correlation, lower than -0.85, was estimated between RCT and a(30) for both breeds. Genetic relationships of MCP with yield and composition were low or moderate and favorable. The genetic correlation of somatic cell score with RCT in BS cows was large and positive and even more positive were

  14. How Big Was It? Getting at Yield

    NASA Astrophysics Data System (ADS)

    Pasyanos, M.; Walter, W. R.; Ford, S. R.

    2013-12-01

    One of the most coveted pieces of information in the wake of a nuclear test is the explosive yield. Determining the yield from remote observations, however, is not necessarily a trivial thing. For instance, recorded observations of seismic amplitudes, used to estimate the yield, are significantly modified by the intervening media, which varies widely, and needs to be properly accounted for. Even after correcting for propagation effects such as geometrical spreading, attenuation, and station site terms, getting from the resulting source term to a yield depends on the specifics of the explosion source model, including material properties, and depth. Some formulas are based on assumptions of the explosion having a standard depth-of-burial and observed amplitudes can vary if the actual test is either significantly overburied or underburied. We will consider the complications and challenges of making these determinations using a number of standard, more traditional methods and a more recent method that we have developed using regional waveform envelopes. We will do this comparison for recent declared nuclear tests from the DPRK. We will also compare the methods using older explosions at the Nevada Test Site with announced yields, material and depths, so that actual performance can be measured. In all cases, we also strive to quantify realistic uncertainties on the yield estimation.

  15. Improving the yield from fermentative hydrogen production.

    PubMed

    Kraemer, Jeremy T; Bagley, David M

    2007-05-01

    Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.

  16. Estimating the global prevalence of transthyretin familial amyloid polyneuropathy

    PubMed Central

    Waddington‐Cruz, Márcia; Botteman, Marc F.; Carter, John A.; Chopra, Avijeet S.; Hopps, Markay; Stewart, Michelle; Fallet, Shari; Amass, Leslie

    2018-01-01

    ABSTRACT Introduction: This study sought to estimate the global prevalence of transthyretin familial amyloid polyneuropathy (ATTR‐FAP). Methods: Prevalence estimates and information supporting prevalence calculations was extracted from records yielded by reference‐database searches (2005–2016), conference proceedings, and nonpeer reviewed sources. Prevalence was calculated as prevalence rate multiplied by general population size, then extrapolated to countries without prevalence estimates but with reported cases. Results: Searches returned 3,006 records; 1,001 were fully assessed and 10 retained, yielding prevalence for 10 “core” countries, then extrapolated to 32 additional countries. ATTR‐FAP prevalence in core countries, extrapolated countries, and globally was 3,762 (range 3639–3884), 6424 (range, 1,887–34,584), and 10,186 (range, 5,526–38,468) persons, respectively. Discussion: The mid global prevalence estimate (10,186) approximates the maximum commonly accepted estimate (5,000–10,000). The upper limit (38,468) implies potentially higher prevalence. These estimates should be interpreted carefully because contributing evidence was heterogeneous and carried an overall moderate risk of bias. This highlights the requirement for increasing rare‐disease epidemiological assessment and clinician awareness. Muscle Nerve 57: 829–837, 2018 PMID:29211930

  17. Maximum sustainable yield estimates of Ladypees, Sillago sihama (Forsskål), fishery in Pakistan using the ASPIC and CEDA packages

    NASA Astrophysics Data System (ADS)

    Panhwar, Sher Khan; Liu, Qun; Khan, Fozia; Siddiqui, Pirzada J. A.

    2012-03-01

    Using surplus production model packages of ASPIC (a stock-production model incorporating covariates) and CEDA (Catch effort data analysis), we analyzed the catch and effort data of Sillago sihama fishery in Pakistan. ASPIC estimates the parameters of MSY (maximum sustainable yield), F msy (fishing mortality), q (catchability coefficient), K (carrying capacity or unexploited biomass) and B1/K (maximum sustainable yield over initial biomass). The estimated non-bootstrapped value of MSY based on logistic was 598 t and that based on the Fox model was 415 t, which showed that the Fox model estimation was more conservative than that with the logistic model. The R 2 with the logistic model (0.702) is larger than that with the Fox model (0.541), which indicates a better fit. The coefficient of variation (cv) of the estimated MSY was about 0.3, except for a larger value 88.87 and a smaller value of 0.173. In contrast to the ASPIC results, the R 2 with the Fox model (0.651-0.692) was larger than that with the Schaefer model (0.435-0.567), indicating a better fit. The key parameters of CEDA are: MSY, K, q, and r (intrinsic growth), and the three error assumptions in using the models are normal, log normal and gamma. Parameter estimates from the Schaefer and Pella-Tomlinson models were similar. The MSY estimations from the above two models were 398 t, 549 t and 398 t for normal, log-normal and gamma error distributions, respectively. The MSY estimates from the Fox model were 381 t, 366 t and 366 t for the above three error assumptions, respectively. The Fox model estimates were smaller than those for the Schaefer and the Pella-Tomlinson models. In the light of the MSY estimations of 415 t from ASPIC for the Fox model and 381 t from CEDA for the Fox model, MSY for S. sihama is about 400 t. As the catch in 2003 was 401 t, we would suggest the fishery should be kept at the current level. Production models used here depend on the assumption that CPUE (catch per unit effort) data

  18. Comparison of statistical models for analyzing wheat yield time series.

    PubMed

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha⁻¹ year⁻¹ in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale.

  19. Comparison of Statistical Models for Analyzing Wheat Yield Time Series

    PubMed Central

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha−1 year−1 in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale. PMID:24205280

  20. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures

    PubMed Central

    Welch, Jarrod R.; Vincent, Jeffrey R.; Auffhammer, Maximilian; Moya, Piedad F.; Dobermann, Achim; Dawe, David

    2010-01-01

    Data from farmer-managed fields have not been used previously to disentangle the impacts of daily minimum and maximum temperatures and solar radiation on rice yields in tropical/subtropical Asia. We used a multiple regression model to analyze data from 227 intensively managed irrigated rice farms in six important rice-producing countries. The farm-level detail, observed over multiple growing seasons, enabled us to construct farm-specific weather variables, control for unobserved factors that either were unique to each farm but did not vary over time or were common to all farms at a given site but varied by season and year, and obtain more precise estimates by including farm- and site-specific economic variables. Temperature and radiation had statistically significant impacts during both the vegetative and ripening phases of the rice plant. Higher minimum temperature reduced yield, whereas higher maximum temperature raised it; radiation impact varied by growth phase. Combined, these effects imply that yield at most sites would have grown more rapidly during the high-yielding season but less rapidly during the low-yielding season if observed temperature and radiation trends at the end of the 20th century had not occurred, with temperature trends being more influential. Looking ahead, they imply a net negative impact on yield from moderate warming in coming decades. Beyond that, the impact would likely become more negative, because prior research indicates that the impact of maximum temperature becomes negative at higher levels. Diurnal temperature variation must be considered when investigating the impacts of climate change on irrigated rice in Asia. PMID:20696908

  1. Covariance Matrix Evaluations for Independent Mass Fission Yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, N., E-mail: nicholas.terranova@unibo.it; Serot, O.; Archier, P.

    2015-01-15

    Recent needs for more accurate fission product yields include covariance information to allow improved uncertainty estimations of the parameters used by design codes. The aim of this work is to investigate the possibility to generate more reliable and complete uncertainty information on independent mass fission yields. Mass yields covariances are estimated through a convolution between the multi-Gaussian empirical model based on Brosa's fission modes, which describe the pre-neutron mass yields, and the average prompt neutron multiplicity curve. The covariance generation task has been approached using the Bayesian generalized least squared method through the CONRAD code. Preliminary results on mass yieldsmore » variance-covariance matrix will be presented and discussed from physical grounds in the case of {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) reactions.« less

  2. Brazil wheat yield covariance model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate wheat yields for the wheat growing states of Rio Grande do Sul, Parana, and Santa Catarina in Brazil. The meteorological data of these three states were pooled and the years 1972 to 1979 were used to develop the model since there was no technological trend in the yields during these years. Predictor variables were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature.

  3. Satellite-based studies of maize yield spatial variations and their causes in China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2013-12-01

    Maize production in China has been expanding significantly in the past two decades, but yield has become relatively stagnant in the past few years, and needs to be improved to meet increasing demand. Multiple studies found that the gap between potential and actual yield of maize is as large as 40% to 60% of yield potential. Although a few major causes of yield gap have been qualitatively identified with surveys, there has not been spatial analysis aimed at quantifying relative importance of specific biophysical and socio-economic causes, information which would be useful for targeting interventions. This study analyzes the causes of yield variation at field and village level in Quzhou county of North China Plain (NCP). We combine remote sensing and crop modeling to estimate yields in 2009-2012, and identify fields that are consistently high or low yielding. To establish the relationship between yield and potential factors, we gather data on those factors through a household survey. We select targeted survey fields such that not only both extremes of yield distribution but also all soil texture categories in the county is covered. Our survey assesses management and biophysical factors as well as social factors such as farmers' access to agronomic knowledge, which is approximated by distance to the closest demonstration plot or 'Science and technology backyard'. Our survey covers 10 townships, 53 villages and 180 fields. Three to ten farmers are surveyed depending on the amount of variation present among sub pixels of each field. According to survey results, we extract the amount of variation within as well as between villages and or soil type. The higher within village or within field variation, the higher importance of management factors. Factors such as soil type and access to knowledge are more represented by between village variation. Through regression and analysis of variance, we gain more quantitative and thorough understanding of causes to yield variation at

  4. Estimating growth and yield of mixed stands

    Treesearch

    Stephen R. Shifley; Burnell C. Fischer

    1989-01-01

    A mixed stand is defined as one in which no single species comprises more than 80 percent of the stocking. The growth estimation methods described below can be used not only in mixed stands but in almost any stand, regardless of species composition, age structure, or size structure. The methods described are necessary to accommodate the complex species mixtures and...

  5. Erodibility of selected soils and estimates of sediment yields in the San Juan Basin, New Mexico

    USGS Publications Warehouse

    Summer, Rebecca M.

    1981-01-01

    Onsite rainfall-simulation experiments were conducted to derive field-erodibility indexes for rangeland soils and soils disturbed by mining in coal fields of northwestern New Mexico. Mean indexes on rangeland soils range from 0 grams (of detached soil) on dune soil to 121 grams on wash-transport zones. Mean field-erodibility-index values of soils disturbed by mining range from 16 to 32 grams; they can be extrapolted to nearby coal fields where future mining is expected. Because field-erodibility-index data allow differentiation of erodibilities across a variable landscape, these indexes were used to adjust values of K, the erodibility factor of the Universal Soil Loss Equation. Estimates of soil loss and sediment yield were then calculated for a small basin following mining. (USGS)

  6. Regional Detection of Decoupled Explosions, Yield Estimation from Surface Waves, Two-Dimensional Source Effects, Three-Dimensional Earthquake Modeling and Automated Magnitude Measures

    DTIC Science & Technology

    1980-07-01

    41 3.2 EXPERIMENTAL DETERMINATION OF THE DEPENDENCE OF RAYLEIGH WAVE AMPLITUDE ON PROPERTIES OF THE SOURCE MATERIAL ...Surface Wave Observations ...... ................ 48 3.3.3 Surface Wave Dependence on Source Material Properties ..... ................ .. 51 SYSTEMS...with various aspects of the problem of estimating yield from single station recordings of surface waves. The material in these four summaries has been

  7. Effect of cost-effective substrates on growth cycle and yield of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) from Northwestern Himalaya (India).

    PubMed

    Mehta, Sheetal; Jandaik, Savita; Gupta, Dharmesh

    2014-01-01

    To find a cost-effective alternative substrate, the medicinal mushroom Ganoderma lucidum was grown on sawdusts of sheesham, mango, and poplar. Optimum spawn level was determined by spawning in substrates at various levels (1, 2, 3, and 4%). To determine the effect of supplementation, substrates were supplemented with wheat bran, rice bran and corn flour at different concentrations (10, 20, and 30%). Duration of growth cycle, mushroom yield, and biological efficiency data were recorded. Among substrates, mango sawdust was superior, with 1.5-fold higher yields than poplar sawdust, which was the least suitable. However with respect to fructification, mango sawdust produced the first primordia earlier (21±1 days) compared with the other investigated substrates. 3% spawn level was found to be optimal irrespective of the substrate. Yield and biological efficiency (BE) were maximally enhanced by supplementation with wheat bran, whereas rice bran was the least suitable supplement among those tested. Growth cycle shortened and mushroom yield increased to a maximum at the 20% level of supplements. Mango sawdust in combination with 20% wheat bran, if spawned at the 3% level, resulted in a high yield (BE = 58.57%).

  8. Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows.

    PubMed

    Bignardi, A B; El Faro, L; Torres Júnior, R A A; Cardoso, V L; Machado, P F; Albuquerque, L G

    2011-10-31

    We analyzed 152,145 test-day records from 7317 first lactations of Holstein cows recorded from 1995 to 2003. Our objective was to model variations in test-day milk yield during the first lactation of Holstein cows by random regression model (RRM), using various functions in order to obtain adequate and parsimonious models for the estimation of genetic parameters. Test-day milk yields were grouped into weekly classes of days in milk, ranging from 1 to 44 weeks. The contemporary groups were defined as herd-test-day. The analyses were performed using a single-trait RRM, including the direct additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. The mean trend of milk yield was modeled with a fourth-order orthogonal Legendre polynomial. The additive genetic and permanent environmental covariance functions were estimated by random regression on two parametric functions, Ali and Schaeffer and Wilmink, and on B-spline functions of days in milk. The covariance components and the genetic parameters were estimated by the restricted maximum likelihood method. Results from RRM parametric and B-spline functions were compared to RRM on Legendre polynomials and with a multi-trait analysis, using the same data set. Heritability estimates presented similar trends during mid-lactation (13 to 31 weeks) and between week 37 and the end of lactation, for all RRM. Heritabilities obtained by multi-trait analysis were of a lower magnitude than those estimated by RRM. The RRMs with a higher number of parameters were more useful to describe the genetic variation of test-day milk yield throughout the lactation. RRM using B-spline and Legendre polynomials as base functions appears to be the most adequate to describe the covariance structure of the data.

  9. Dual-component video image analysis system (VIASCAN) as a predictor of beef carcass red meat yield percentage and for augmenting application of USDA yield grades.

    PubMed

    Cannell, R C; Tatum, J D; Belk, K E; Wise, J W; Clayton, R P; Smith, G C

    1999-11-01

    An improved ability to quantify differences in the fabrication yields of beef carcasses would facilitate the application of value-based marketing. This study was conducted to evaluate the ability of the Dual-Component Australian VIASCAN to 1) predict fabricated beef subprimal yields as a percentage of carcass weight at each of three fat-trim levels and 2) augment USDA yield grading, thereby improving accuracy of grade placement. Steer and heifer carcasses (n = 240) were evaluated using VIASCAN, as well as by USDA expert and online graders, before fabrication of carcasses to each of three fat-trim levels. Expert yield grade (YG), online YG, VIASCAN estimates, and VIASCAN estimated ribeye area used to augment actual and expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, and hot carcass weight), respectively, 1) accounted for 51, 37, 46, and 55% of the variation in fabricated yields of commodity-trimmed subprimals, 2) accounted for 74, 54, 66, and 75% of the variation in fabricated yields of closely trimmed subprimals, and 3) accounted for 74, 54, 71, and 75% of the variation in fabricated yields of very closely trimmed subprimals. The VIASCAN system predicted fabrication yields more accurately than current online yield grading and, when certain VIASCAN-measured traits were combined with some USDA yield grade factors in an augmentation system, the accuracy of cutability prediction was improved, at packing plant line speeds, to a level matching that of expert graders applying grades at a comfortable rate.

  10. Normalized Difference Vegetation Index as a Tool for Wheat Yield Estimation: A Case Study from Faisalabad, Pakistan

    PubMed Central

    Sultana, Syeda Refat; Ali, Amjed; Ahmad, Ashfaq; Mubeen, Muhammad; Zia-Ul-Haq, M.; Ahmad, Shakeel; Ercisli, Sezai; Jaafar, Hawa Z. E.

    2014-01-01

    For estimation of grain yield in wheat, Normalized Difference Vegetation Index (NDVI) is considered as a potential screening tool. Field experiments were conducted to scrutinize the response of NDVI to yield behavior of different wheat cultivars and nitrogen fertilization at agronomic research area, University of Agriculture Faisalabad (UAF) during the two years 2008-09 and 2009-10. For recording the value of NDVI, Green seeker (Handheld-505) was used. Split plot design was used as experimental model in, keeping four nitrogen rates (N1 = 0 kg ha−1, N2 = 55 kg ha−1, N3 = 110 kg ha−1, and N4 = 220 kg ha−1) in main plots and ten wheat cultivars (Bakkhar-2001, Chakwal-50, Chakwal-97, Faisalabad-2008, GA-2002, Inqlab-91, Lasani-2008, Miraj-2008, Sahar-2006, and Shafaq-2006) in subplots with four replications. Impact of nitrogen and difference between cultivars were forecasted through NDVI. The results suggested that nitrogen treatment N4 (220 kg ha−1) and cultivar Faisalabad-2008 gave maximum NDVI value (0.85) at grain filling stage among all treatments. The correlation among NDVI at booting, grain filling, and maturity stages with grain yield was positive (R 2 = 0.90; R 2 = 0.90; R 2 = 0.95), respectively. So, booting, grain filling, and maturity can be good depictive stages during mid and later growth stages of wheat crop under agroclimatic conditions of Faisalabad and under similar other wheat growing environments in the country. PMID:25045744

  11. Rx for low cash yields.

    PubMed

    Tobe, Chris

    2003-10-01

    Certain strategies can offer not-for-profit hospitals potentially greater investment yields while maintaining stability and principal safety. Treasury inflation-indexed securities can offer good returns, low volatility, and inflation protection. "Enhanced cash" strategies offer liquidity and help to preserve capital. Stable value "wrappers" allow hospitals to pursue higher-yielding fixed-income securities without an increase in volatility.

  12. The grain drain. Ozone effects on historical maize and soybean yields

    USDA-ARS?s Scientific Manuscript database

    Numerous controlled experiments find that elevated ground-level ozone concentrations ([O3]) damage crops and reduce yield. There have been no estimates of the actual field yield losses in the USA from [O3], even though such estimates would be valuable for projections of future food production and fo...

  13. Maximized exoEarth candidate yields for starshades

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.; Shaklan, Stuart; Lisman, Doug; Cady, Eric; Savransky, Dmitry; Roberge, Aki; Mandell, Avi M.

    2016-10-01

    The design and scale of a future mission to directly image and characterize potentially Earth-like planets will be impacted, to some degree, by the expected yield of such planets. Recent efforts to increase the estimated yields, by creating observation plans optimized for the detection and characterization of Earth-twins, have focused solely on coronagraphic instruments; starshade-based missions could benefit from a similar analysis. Here we explore how to prioritize observations for a starshade given the limiting resources of both fuel and time, present analytic expressions to estimate fuel use, and provide efficient numerical techniques for maximizing the yield of starshades. We implemented these techniques to create an approximate design reference mission code for starshades and used this code to investigate how exoEarth candidate yield responds to changes in mission, instrument, and astrophysical parameters for missions with a single starshade. We find that a starshade mission operates most efficiently somewhere between the fuel- and exposuretime-limited regimes and, as a result, is less sensitive to photometric noise sources as well as parameters controlling the photon collection rate in comparison to a coronagraph. We produced optimistic yield curves for starshades, assuming our optimized observation plans are schedulable and future starshades are not thrust-limited. Given these yield curves, detecting and characterizing several dozen exoEarth candidates requires either multiple starshades or an η≳0.3.

  14. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick ⁹Be target and estimation of neutron yields.

    PubMed

    Paul, Sabyasachi; Sahoo, G S; Tripathy, S P; Sharma, S C; Ramjilal; Ninawe, N G; Sunil, C; Gupta, A K; Bandyopadhyay, T

    2014-06-01

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK_n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  15. Application of wheat yield model to United States and India. [Great Plains

    NASA Technical Reports Server (NTRS)

    Feyerherm, A. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The wheat yield model was applied to the major wheat-growing areas of the US and India. In the US Great Plains, estimates from the winter and spring wheat models agreed closely with USDA-SRS values in years with the lowest yields, but underestimated in years with the highest yields. Application to the Eastern Plains and Northwest indicated the importance of cultural factors, as well as meteorological ones in the model. It also demonstrated that the model could be used, in conjunction with USDA-SRRS estimates, to estimate yield losses due to factors not included in the model, particularly diseases and freezes. A fixed crop calendar for India was built from a limited amount of available plot data from that country. Application of the yield model gave measurable evidence that yield variation from state to state was due to different mixes of levels of meteorological and cultural factors.

  16. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    PubMed

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  17. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species

    PubMed Central

    Gaba, Sabrina; Gabriel, Edith; Chadœuf, Joël; Bonneu, Florent; Bretagnolle, Vincent

    2016-01-01

    Weed control is generally considered to be essential for crop production and herbicides have become the main method used for weed control in developed countries. However, concerns about harmful environmental consequences have led to strong pressure on farmers to reduce the use of herbicides. As food demand is forecast to increase by 50% over the next century, an in-depth quantitative analysis of crop yields, weeds and herbicides is required to balance economic and environmental issues. This study analysed the relationship between weeds, herbicides and winter wheat yields using data from 150 winter wheat fields in western France. A Bayesian hierarchical model was built to take account of farmers’ behaviour, including implicitly their perception of weeds and weed control practices, on the effectiveness of treatment. No relationship was detected between crop yields and herbicide use. Herbicides were found to be more effective at controlling rare plant species than abundant weed species. These results suggest that reducing the use of herbicides by up to 50% could maintain crop production, a result confirmed by previous studies, while encouraging weed biodiversity. Food security and biodiversity conservation may, therefore, be achieved simultaneously in intensive agriculture simply by reducing the use of herbicides. PMID:27453451

  18. Identification of saline soils with multi-year remote sensing of crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Ortiz-Monasterio, I; Gurrola, F C

    2006-10-17

    Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions or its impact on regional crop productivity remains sparse. We evaluated the relationships between remotely sensed wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The goals of this study were to (1) document the relative importance of salinity as a constraint to regional wheat production and (2) develop techniques to accurately identify saline fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-based records on individual fields (R{sup 2} = 0.65).more » Salinity measurements on 122 randomly selected fields revealed that average 0-60 cm salinity levels > 4 dS m{sup -1} reduced wheat yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years. However, temporal analysis of yield images showed a significant fraction of fields exhibited consistently low yields over the six year period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These results suggest that high subsurface salinity is associated with consistently low yields in this region, and that multi-year yield maps derived from remote sensing therefore provide an opportunity to map salinity across agricultural regions.« less

  19. The energetic and nutritional yields from insectivory for Kasekela chimpanzees.

    PubMed

    O'Malley, Robert C; Power, Michael L

    2014-06-01

    Insectivory is hypothesized to be an important source of macronutrients, minerals, and vitamins for chimpanzees (Pan troglodytes), yet nutritional data based on actual intake are lacking. Drawing on observations from 2008 to 2010 and recently published nutritional assays, we determined the energy, macronutrient and mineral yields for termite-fishing (Macrotermes), ant-dipping (Dorylus), and ant-fishing (Camponotus) by the Kasekela chimpanzees of Gombe National Park, Tanzania. We also estimated the yields from consumption of weaver ants (Oecophylla) and termite alates (Macrotermes and Pseudacanthotermes). On days when chimpanzees were observed to prey on insects, the time spent in insectivorous behavior ranged from <1 min to over 4 h. After excluding partial bouts and those of <1 min duration, ant-dipping bouts were of significantly shorter duration than the other two forms of tool-assisted insectivory but provided the highest mass intake rate. Termite-fishing bouts were of significantly longer duration than ant-dipping and had a lower mass intake rate, but provided higher mean and maximum mass yields. Ant-fishing bouts were comparable to termite-fishing bouts in duration but had significantly lower mass intake rates. Mean and maximum all-day yields from termite-fishing and ant-dipping contributed to or met estimated recommended intake (ERI) values for a broad array of minerals. The mean and maximum all-day yields of other insects consistently contributed to the ERI only for manganese. All forms of insectivory provided small but probably non-trivial amounts of fat and protein. We conclude that different forms of insectivory have the potential to address different nutritional needs for Kasekela chimpanzees. Other than honeybees, insects have received little attention as potential foods for hominins. Our results suggest that ants and (on a seasonal basis) termites would have been viable sources of fat, high-quality protein and minerals for extinct hominins employing

  20. Effects of capillarity and microtopography on wetland specific yield

    USGS Publications Warehouse

    Sumner, D.M.

    2007-01-01

    Hydrologic models aid in describing water flows and levels in wetlands. Frequently, these models use a specific yield conceptualization to relate water flows to water level changes. Traditionally, a simple conceptualization of specific yield is used, composed of two constant values for above- and below-surface water levels and neglecting the effects of soil capillarity and land surface microtopography. The effects of capiltarity and microtopography on specific yield were evaluated at three wetland sites in the Florida Everglades. The effect of capillarity on specific yield was incorporated based on the fillable pore space within a soil moisture profile at hydrostatic equilibrium with the water table. The effect of microtopography was based on areal averaging of topographically varying values of specific yield. The results indicate that a more physically-based conceptualization of specific yield incorporating capillary and microtopographic considerations can be substantially different from the traditional two-part conceptualization, and from simpler conceptualizations incorporating only capillarity or only microtopography. For the sites considered, traditional estimates of specific yield could under- or overestimate the more physically based estimates by a factor of two or more. The results suggest that consideration of both capillarity and microtopography is important to the formulation of specific yield in physically based hydrologic models of wetlands. ?? 2007, The Society of Wetland Scientists.

  1. Modelling crop yield in Iberia under drought conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia

    2017-04-01

    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining

  2. Efficient SRAM yield optimization with mixture surrogate modeling

    NASA Astrophysics Data System (ADS)

    Zhongjian, Jiang; Zuochang, Ye; Yan, Wang

    2016-12-01

    Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a moderate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algorithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications.

  3. A Growth and Yield Model for Thinned Stands of Yellow-Poplar

    Treesearch

    Bruce R. Knoebel; Harold E. Burkhart; Donald E. Beck

    1986-01-01

    Simultaneous growth and yield equations were developed for predicting basal area growth and cubic-foot volume growth and yield in thinned stands of yellow-poplar. A joint loss function involving both volume and basal area was used to estimate the coefficients in the system of equations. The estimates obtained were analytically compatible, invariant for projection...

  4. Estimation of sediments in urban drainage areas and relation analysis between sediments and inundation risk using GIS.

    PubMed

    Moojong, Park; Hwandon, Jun; Minchul, Shin

    2008-01-01

    Sediments entering the sewer in urban areas reduce the conveyance in sewer pipes, which increases inundation risk. To estimate sediment yields, individual landuse areas in each sub-basin should be obtained. However, because of the complex nature of an urban area, this is almost impossible to obtain manually. Thus, a methodology to obtain individual landuse areas for each sub-basin has been suggested for estimating sediment yields. Using GIS, an urban area is divided into sub-basins with respect to the sewer layout, with the area of individual landuse estimated for each sub-basin. The sediment yield per unit area for each sub-basin is then calculated. The suggested method was applied to the GunJa basin in Seoul. For a relation analysis between sediments and inundation risk, sub-basins were ordered by the sediment yields per unit area and compared with historical inundation areas. From this analysis, sub-basins with higher order were found to match the historical inundation areas. Copyright IWA Publishing 2008.

  5. Measurement and Estimation of the 99Mo Production Yield by 100Mo(n,2n)99Mo

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Tsukada, Kazuaki; Sato, Nozomi; Watanabe, Satoshi; Saeki, Hideya; Kawabata, Masako; Hashimoto, Shintaro; Nagai, Yasuki

    2017-11-01

    We, for the first time, measured the yield of 99Mo, the mother nuclide of 99mTc used in nuclear medicine diagnostic procedures, produced by the 100Mo(n,2n)99Mo reaction with accelerator neutrons. The neutrons with a continuous energy spectrum from the thermal energy up to about 40 MeV were provided by the C(d,n) reaction with 40 MeV deuteron beams. It was proved that the 99Mo yield agrees with that estimated by using the latest data on neutrons from the C(d,n) reaction and the evaluated cross section of the 100Mo(n,2n)99Mo reaction given in the Japanese Evaluated Nuclear Data Library. On the basis of the agreement, a systematic calculation was carried out to search for an optimum condition that enables us to produce as much 99Mo as possible with a good 99Mo/100Mo value from an economical point of view. The calculated 99Mo yield from a 150 g 100MoO3 sample indicated that about 30% of the demand for 99Mo in Japan can be met with a single accelerator capable of 40 MeV, 2 mA deuteron beams. Here, by referring to an existing 18F-fluorodeoxyglucose (FDG) distribution system we assumed that 99mTc radiopharmaceuticals formed after separating 99mTc from 99Mo can be delivered to hospitals from a radiopharmaceutical company within 6 h. The elution of 99mTc from 99Mo twice a day would meet about 50% of the demand for 99Mo.

  6. Targhee Russet: A high yielding dual purpose, long russet potato cultivar having higher protein and vitamin C content and resistance to tuber soft rot

    USDA-ARS?s Scientific Manuscript database

    Targhee Russet is a dark-skinned russet potato variety with tubers slightly longer than Russet Burbank. It produces higher total and marketable yields than does Russet Burbank at most of the sites it was tested in the western United States. Tuber dormancy is about 58 days shorter than Russet Burba...

  7. Refined and Microlocal Kakeya-Nikodym Bounds of Eigenfunctions in Higher Dimensions

    NASA Astrophysics Data System (ADS)

    Blair, Matthew D.; Sogge, Christopher D.

    2017-12-01

    We prove a Kakeya-Nikodym bound on eigenfunctions and quasimodes, which sharpens a result of the authors (Blair and Sogge in Anal PDE 8:747-764, 2015) and extends it to higher dimensions. As in the prior work, the key intermediate step is to prove a microlocal version of these estimates, which involves a phase space decomposition of these modes that is essentially invariant under the bicharacteristic/geodesic flow. In a companion paper (Blair and Sogge in J Differ Geom, 2015), it will be seen that these sharpened estimates yield improved L q ( M) bounds on eigenfunctions in the presence of nonpositive curvature when {2 < q < 2(d+1)/d-1}.

  8. Atmospheric Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.

  9. Coppice Sycamore Yields Through 9 Years

    Treesearch

    Harvey E. Kennedy

    1980-01-01

    Cutting cycle and spacing did not significantly affect sycamore dry-weight yields from ages 5-9 years (1974-l 978). Longer cutting cycles usually did give higher yields. Dry-weight yields ranged from 2886 lb per acre (3233 kg/ha) per year in the 1 year, 4x5 ft (1.2 x 1.5 m) spacing to 4541 lb (5088 kg/ha) in the 4-year, 4x5 ft s,pacing. Survival averaged 67 percent...

  10. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel

    NASA Astrophysics Data System (ADS)

    Gil, Choong-Sup; Kim, Do Heon; Yoo, Jae Kwon; Lee, Jounghwa

    2017-09-01

    Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.

  11. Estimating sediment yield in the southern Appalachians using WCS-SED

    Treesearch

    Paul Bolstad; Andrew Jenks; Mark Riedel; James M. Vose

    2006-01-01

    We measured and modeled sediment yield over two months on five watersheds in the southern Appalachian Mountains of North Carolina. These watersheds contained first and second-order streams and are primarily forested, but span the development gradient common in this region, with up to 10 percent in suburban and transitional development and up to 27% low-intensity...

  12. Rapid measurement of the yield stress of anaerobically-digested solid waste using slump tests.

    PubMed

    Garcia-Bernet, D; Loisel, D; Guizard, G; Buffière, P; Steyer, J P; Escudié, R

    2011-04-01

    The anaerobic digestion of solid waste is usually performed using dry or semi-dry technology. Incoming waste and fermenting digestate are pasty media and thus, at the industrial scale, their suitability for pumping and mixing is a prerequisite at the industrial scale. However, their rheology has been poorly characterised in the literature because there is no suitable experimental system for analysing heterogeneous media composed of coarse particles. We have developed a practical rheometrical test, a "slump test", for the analysis of actual digested solid waste. It makes it possible to estimate yield stress from the final slump height. From the slump behavior, we conclude that digestates behave as visco-elastic materials. The yield stress of different digested waste was measured between 200 and 800Pa. We show that the media containing smaller particles or with higher moisture content are characterised by smaller yield stresses. This study thus demonstrates the impact of the origin of the digestate on the yield stress. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  14. Ecosystem approach to fisheries: Exploring environmental and trophic effects on Maximum Sustainable Yield (MSY) reference point estimates

    PubMed Central

    Kumar, Rajeev; Pitcher, Tony J.; Varkey, Divya A.

    2017-01-01

    We present a comprehensive analysis of estimation of fisheries Maximum Sustainable Yield (MSY) reference points using an ecosystem model built for Mille Lacs Lake, the second largest lake within Minnesota, USA. Data from single-species modelling output, extensive annual sampling for species abundances, annual catch-survey, stomach-content analysis for predatory-prey interactions, and expert opinions were brought together within the framework of an Ecopath with Ecosim (EwE) ecosystem model. An increase in the lake water temperature was observed in the last few decades; therefore, we also incorporated a temperature forcing function in the EwE model to capture the influences of changing temperature on the species composition and food web. The EwE model was fitted to abundance and catch time-series for the period 1985 to 2006. Using the ecosystem model, we estimated reference points for most of the fished species in the lake at single-species as well as ecosystem levels with and without considering the influence of temperature change; therefore, our analysis investigated the trophic and temperature effects on the reference points. The paper concludes that reference points such as MSY are not stationary, but change when (1) environmental conditions alter species productivity and (2) fishing on predators alters the compensatory response of their prey. Thus, it is necessary for the management to re-estimate or re-evaluate the reference points when changes in environmental conditions and/or major shifts in species abundance or community structure are observed. PMID:28957387

  15. Extraction mechanism of ultrasound assisted extraction and its effect on higher yielding and purity of artemisinin crystals from Artemisia annua L. leaves.

    PubMed

    Chemat, Smain; Aissa, Abdallah; Boumechhour, Abdenour; Arous, Omar; Ait-Amar, Hamid

    2017-01-01

    This study proposes an ultrasound-horn system for the extraction of a natural active compound "artemisinin" from Artemisia annua L. leaves as an alternative to hot maceration technique. Ultrasound leaching improves artemisinin recovery at all temperatures where only ten minutes is required to recover 70% (4.42mgg -1 ) compared to 60min of conventional hot leaching for the same yield. For instance, ultrasound treatment at 30°C produced a higher yield than the one obtained by conventional maceration at 40°C. Kinetic study suggests that the extraction pattern can be assimilated, during the first ten minutes, to a first order steady state, from which activation energy calculations revealed that each gram of artemisinin required 7.38kJ in ultrasound versus 10.3kJ in the conventional system. Modeling results indicate the presence of two extraction stages, a faster stage with a diffusion coefficient of 19×10 -5 cm 2 min -1 for ultrasound technique at 40°C, seven times higher than the conventional one; and a second deceleration stage similar for both techniques with diffusion coefficient ranging from 1.7 to 3.1×10 -5 cm 2 min -1 . It is noted that the efficient ultrasound extraction potential implies extraction of higher amount of co-metabolites so low artemisinin crystal purity is engendered but a combination with a purification step using activated charcoal and celite adsorbents produced crystals with comparable purity for conventional and ultrasound samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Improving precision of forage yield trials: A case study

    USDA-ARS?s Scientific Manuscript database

    Field-based agronomic and genetic research relies heavily on the data generated from field evaluations. Therefore, it is imperative to optimize the precision of yield estimates in cultivar evaluation trials to make reliable selections. Experimental error in yield trials is sensitive to several facto...

  17. Estimating the Impact and Spillover Effect of Climate Change on Crop Yield in Northern Ghana.

    NASA Astrophysics Data System (ADS)

    Botchway, E.

    2016-12-01

    In tropical regions of the world human-induced climate change is likely to impact negatively on crop yields. To investigate the impact of climate change and its spillover effect on mean and variance of crop yields in northern Ghana, the Just and Pope stochastic production function and the Spatial Durbin model were adopted. Surprisingly, the results suggest that both precipitation and average temperature have positive effects on mean crop yield during the wet season. Wet season average temperature has a significant spillover effect in the region, whereas precipitation during the wet season has only one significant spillover effect on maize yield. Wet season precipitation does not have a strong significant effect on crop yield despite the rainfed nature of agriculture in the region. Thus, even if there are losers and winners as a result of future climate change at the regional level, future crop yield would largely depend on future technological development in agriculture, which may improve yields over time despite the changing climate. We argue, therefore, that technical improvement in farm management such as improved seeds and fertilizers, conservation tillage and better pest control, may have a more significant role in increasing observed crop productivity levels over time. So investigating the relative importance of non-climatic factors on crop yield may shed more light on where appropriate interventions can help in improving crop yields. Climate change, also, needs to be urgently assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targeted in research and development activities whose object is poverty alleviation.

  18. Early Yields of Biomass Plantations in the North-Central U.S.

    Treesearch

    Edward Hansen

    1990-01-01

    A network of hybrid poplar short-rotation plantations was established across the north-central region of the U.S. during 1986-1988. This paper documents the greater than expected early yields from these plantations and dicusses potential yields and uncertainties surrounding potential yield estimates.

  19. The Safe Yield and Climatic Variability: Implications for Groundwater Management.

    PubMed

    Loáiciga, Hugo A

    2017-05-01

    Methods for calculating the safe yield are evaluated in this paper using a high-quality and long historical data set of groundwater recharge, discharge, extraction, and precipitation in a karst aquifer. Consideration is given to the role that climatic variability has on the determination of a climatically representative period with which to evaluate the safe yield. The methods employed to estimate the safe yield are consistent with its definition as a long-term average extraction rate that avoids adverse impacts on groundwater. The safe yield is a useful baseline for groundwater planning; yet, it is herein shown that it is not an operational rule that works well under all climatic conditions. This paper shows that due to the nature of dynamic groundwater processes it may be most appropriate to use an adaptive groundwater management strategy that links groundwater extraction rates to groundwater discharge rates, thus achieving a safe yield that represents an estimated long-term sustainable yield. An example of the calculation of the safe yield of the Edwards Aquifer (Texas) demonstrates that it is about one-half of the average annual recharge. © 2016, National Ground Water Association.

  20. Ternary particle yields in 249Cf(nth,f)

    NASA Astrophysics Data System (ADS)

    Tsekhanovich, I.; Büyükmumcu, Z.; Davi, M.; Denschlag, H. O.; Gönnenwein, F.; Boulyga, S. F.

    2003-03-01

    An experiment measuring ternary particle yields in 249Cf(nth,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37Si and 37S; their possible origin is discussed.

  1. The alfalfa yield gap: A review of the evidence

    USDA-ARS?s Scientific Manuscript database

    Knowledge of feasibly attainable crop yields is needed for many purposes, from field-scale management to national policy decisions. For alfalfa (Medicago sativa L.), the most widely used estimates of yield in the US are whole-farm reports from the National Agriculture Statistics Service, which are b...

  2. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.

    PubMed

    Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q

    2017-03-22

    Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.

  3. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow

    NASA Astrophysics Data System (ADS)

    Mook, W. M.; Niederberger, C.; Bechelany, M.; Philippe, L.; Michler, J.

    2010-02-01

    Characterizing the mechanical response of isolated nanostructures is vitally important to fields such as microelectromechanical systems (MEMS) where the behaviour of nanoscale contacts can in large part determine system reliability and lifetime. To address this challenge directly, single crystal gold nanodots are compressed inside a high resolution scanning electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. These structures load elastically, and then yield in a stochastic manner, at loads ranging from 16 to 110 µN, which is up to five times higher than the load necessary for flow after yield. Yielding is immediately followed by displacement bursts equivalent to 1-50% of the initial height, depending on the yield point. During the largest displacement bursts, strain energy within the structure is released while new surface area is created in the form of localized slip bands, which are evident in both the SEM movies and still-images. A first order estimate of the apparent energy release rate, in terms of fracture mechanics concepts, for bursts representing 5-50% of the structure's initial height is on the order of 10-100 J m-2, which is approximately two orders of magnitude lower than bulk values. Once this initial strain burst during yielding has occurred, the structures flow in a ductile way. The implications of this behaviour, which is analogous to a brittle to ductile transition, are discussed with respect to mechanical reliability at the micro- and nanoscales.

  4. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production

    PubMed Central

    Stevenson, James R.; Villoria, Nelson; Byerlee, Derek; Kelley, Timothy; Maredia, Mywish

    2013-01-01

    New estimates of the impacts of germplasm improvement in the major staple crops between 1965 and 2004 on global land-cover change are presented, based on simulations carried out using a global economic model (Global Trade Analysis Project Agro-Ecological Zone), a multicommodity, multiregional computable general equilibrium model linked to a global spatially explicit database on land use. We estimate the impact of removing the gains in cereal productivity attributed to the widespread adoption of improved varieties in developing countries. Here, several different effects—higher yields, lower prices, higher land rents, and trade effects—have been incorporated in a single model of the impact of Green Revolution research (and subsequent advances in yields from crop germplasm improvement) on land-cover change. Our results generally support the Borlaug hypothesis that increases in cereal yields as a result of widespread adoption of improved crop germplasm have saved natural ecosystems from being converted to agriculture. However, this relationship is complex, and the net effect is of a much smaller magnitude than Borlaug proposed. We estimate that the total crop area in 2004 would have been between 17.9 and 26.7 million hectares larger in a world that had not benefited from crop germplasm improvement since 1965. Of these hectares, 12.0–17.7 million would have been in developing countries, displacing pastures and resulting in an estimated 2 million hectares of additional deforestation. However, the negative impacts of higher food prices on poverty and hunger under this scenario would likely have dwarfed the welfare effects of agricultural expansion. PMID:23671086

  5. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production.

    PubMed

    Stevenson, James R; Villoria, Nelson; Byerlee, Derek; Kelley, Timothy; Maredia, Mywish

    2013-05-21

    New estimates of the impacts of germplasm improvement in the major staple crops between 1965 and 2004 on global land-cover change are presented, based on simulations carried out using a global economic model (Global Trade Analysis Project Agro-Ecological Zone), a multicommodity, multiregional computable general equilibrium model linked to a global spatially explicit database on land use. We estimate the impact of removing the gains in cereal productivity attributed to the widespread adoption of improved varieties in developing countries. Here, several different effects--higher yields, lower prices, higher land rents, and trade effects--have been incorporated in a single model of the impact of Green Revolution research (and subsequent advances in yields from crop germplasm improvement) on land-cover change. Our results generally support the Borlaug hypothesis that increases in cereal yields as a result of widespread adoption of improved crop germplasm have saved natural ecosystems from being converted to agriculture. However, this relationship is complex, and the net effect is of a much smaller magnitude than Borlaug proposed. We estimate that the total crop area in 2004 would have been between 17.9 and 26.7 million hectares larger in a world that had not benefited from crop germplasm improvement since 1965. Of these hectares, 12.0-17.7 million would have been in developing countries, displacing pastures and resulting in an estimated 2 million hectares of additional deforestation. However, the negative impacts of higher food prices on poverty and hunger under this scenario would likely have dwarfed the welfare effects of agricultural expansion.

  6. Assessment of cluster yield components by image analysis.

    PubMed

    Diago, Maria P; Tardaguila, Javier; Aleixos, Nuria; Millan, Borja; Prats-Montalban, Jose M; Cubero, Sergio; Blasco, Jose

    2015-04-01

    Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. In this work, a new methodology, based on image analysis was developed to determine cluster yield components in a fast and inexpensive way. Clusters of seven different red varieties of grapevine (Vitis vinifera L.) were photographed under laboratory conditions and their cluster yield components manually determined after image acquisition. Two algorithms based on the Canny and the logarithmic image processing approaches were tested to find the contours of the berries in the images prior to berry detection performed by means of the Hough Transform. Results were obtained in two ways: by analysing either a single image of the cluster or using four images per cluster from different orientations. The best results (R(2) between 69% and 95% in berry detection and between 65% and 97% in cluster weight estimation) were achieved using four images and the Canny algorithm. The model's capability based on image analysis to predict berry weight was 84%. The new and low-cost methodology presented here enabled the assessment of cluster yield components, saving time and providing inexpensive information in comparison with current manual methods. © 2014 Society of Chemical Industry.

  7. Measurements of {Gamma}(Z{sup O} {yields} b{bar b})/{Gamma}(Z{sup O} {yields} hadrons) using the SLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, H.A. Jr. II

    1995-07-01

    The quantity R{sub b} = {Gamma}(Z{sup o} {yields}b{bar b})/{Gamma}(Z{sup o} {yields} hadrons) is a sensitive measure of corrections to the Zbb vertex. The precision necessary to observe the top quark mass dependent corrections is close to being achieved. LEP is already observing a 1.8{sigma} deviation from the Standard Model prediction. Knowledge of the top quark mass combined with the observation of deviations from the Standard Model prediction would indicate new physics. Models which include charged Higgs or light SUSY particles yield predictions for R{sub b} appreciably different from the Standard Model. In this thesis two independent methods are used tomore » measure R{sub b}. One uses a general event tag which determines R{sub b} from the rate at which events are tagged as Z{sup o} {yields} b{bar b} in data and the estimated rates at which various flavors of events are tagged from the Monte Carlo. The second method reduces the reliance on the Monte Carlo by separately tagging each hemisphere as containing a b-decay. The rates of single hemisphere tagged events and both hemisphere tagged events are used to determine the tagging efficiency for b-quarks directly from the data thus eliminating the main sources of systematic error present in the event tag. Both measurements take advantage of the unique environment provided by the SLAC Linear Collider (SLC) and the SLAC Large Detector (SLD). From the event tag a result of R{sub b} = 0.230{plus_minus}0.004{sub statistical}{plus_minus}0.013{sub systematic} is obtained. The higher precision hemisphere tag result obtained is R{sub b} = 0.218{plus_minus}0.004{sub statistical}{plus_minus}0.004{sub systematic}{plus_minus}0.003{sub Rc}.« less

  8. Measurements of aquifer-storage change and specific yield using gravity surveys

    USGS Publications Warehouse

    Pool, D.R.; Eychaner, J.H.

    1995-01-01

    Pinal Creek is an intermittent stream that drains a 200-square-mile alluvial basin in central Arizona. Large changes in water levels and aquifer storage occur in an alluvial aquifer near the stream in response to periodic recharge and ground-water withdrawals. Outflow components of the ground-water budget and hydraulic properties of the alluvium are well-defined by field measurements; however, data are insufficient to adequately describe recharge, aquifer-storage change, and specific-yield values. An investigation was begun to assess the utility of temporal-gravity surveys to directly measure aquifer-storage change and estimate values of specific yield.The temporal-gravity surveys measured changes in the differences in gravity between two reference stations on bedrock and six stations at wells; changes are caused by variations in aquifer storage. Specific yield was estimated by dividing storage change by water-level change. Four surveys were done between February 21, 1991, and March 31, 1993. Gravity increased as much as 158 microGal ± 1 to 6 microGal, and water levels rose as much as 58 feet. Average specific yield at wells ranged from 0.16 to 0.21, and variations in specific yield with depth correlate with lithologic variations. Results indicate that temporal-gravity surveys can be used to estimate aquifer-storage change and specific yield of water-table aquifers where significant variations in water levels occur. Direct measurement of aquifer-storage change can eliminate a major unknown from the ground-water budget of arid basins and improve residual estimates of recharge.

  9. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  10. Estimating Elevation Angles From SAR Crosstalk

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  11. Quantifying Soiling Loss Directly From PV Yield

    DOE PAGES

    Deceglie, Michael G.; Micheli, Leonardo; Muller, Matthew

    2018-01-23

    Soiling of photovoltaic (PV) panels is typically quantified through the use of specialized sensors. Here, we describe and validate a method for estimating soiling loss experienced by PV systems directly from system yield without the need for precipitation data. The method, termed the stochastic rate and recovery (SRR) method, automatically detects soiling intervals in a dataset, then stochastically generates a sample of possible soiling profiles based on the observed characteristics of each interval. In this paper, we describe the method, validate it against soiling station measurements, and compare it with other PV-yield-based soiling estimation methods. The broader application of themore » SRR method will enable the fleet scale assessment of soiling loss to facilitate mitigation planning and risk assessment.« less

  12. Quantifying Soiling Loss Directly From PV Yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deceglie, Michael G.; Micheli, Leonardo; Muller, Matthew

    Soiling of photovoltaic (PV) panels is typically quantified through the use of specialized sensors. Here, we describe and validate a method for estimating soiling loss experienced by PV systems directly from system yield without the need for precipitation data. The method, termed the stochastic rate and recovery (SRR) method, automatically detects soiling intervals in a dataset, then stochastically generates a sample of possible soiling profiles based on the observed characteristics of each interval. In this paper, we describe the method, validate it against soiling station measurements, and compare it with other PV-yield-based soiling estimation methods. The broader application of themore » SRR method will enable the fleet scale assessment of soiling loss to facilitate mitigation planning and risk assessment.« less

  13. Groundwater subsidies and penalties to corn yield

    NASA Astrophysics Data System (ADS)

    Zipper, S. C.; Booth, E.; Loheide, S. P.

    2013-12-01

    Proper water management is critical to closing yield gaps (observed yield below potential yield) as global populations continue to expand. However, the impacts of shallow groundwater on crop production and surface processes are poorly understood. The presence of groundwater within or just below the root zone has the potential to cause (via oxygen stress in poorly drained soils) or eliminate (via water supply in dry regions) yield gaps. The additional water use by a plant in the presence of shallow groundwater, compared to free drainage conditions, is called the groundwater subsidy; the depth at which the groundwater subsidy is greatest is the optimal depth to groundwater (DTGW). In wet years or under very shallow water table conditions, the groundwater subsidy is likely to be negative due to increased oxygen stress, and can be thought of as a groundwater penalty. Understanding the spatial dynamics of groundwater subsidies/penalties and how they interact with weather is critical to making sustainable agricultural and land-use decisions under a range of potential climates. Here, we examine patterns of groundwater subsidies and penalties in two commercial cornfields in the Yahara River Watershed, an urbanizing agricultural watershed in south-central Wisconsin. Water table levels are generally rising in the region due to a long-term trend of increasing precipitation over the last several decades. Biophysical indicators tracked throughout both the 2012 and 2013 growing seasons show a strong response to variable groundwater levels on a field scale. Sections of the field with optimal DTGW exhibit consistently higher stomatal conductance rates, taller canopies and higher leaf area index, higher ET rates, and higher pollination success rates. Patterns in these biophysical lines of evidence allow us to pinpoint specific periods within the growing season that plants were experiencing either oxygen or water stress. Most importantly, groundwater subsidies and penalties are

  14. Biochar boosts tropical but not temperate crop yields

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Abalos, Diego; Prodana, Marija; Catarina Bastos, Ana; van Groenigen, Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-05-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services.

  15. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  16. A Comparison of Yield Studies of Slash Pine in Old-Field Plantations

    Treesearch

    F.A. Bennett; R. L. Barnes; J.L. Clutter; C.E. McGee

    1970-01-01

    This report compares three yield studies of slash pine in old-field plantation. Similarities and differences in yield are disccssed. Within the range of sample data common to all studies, yield estimates are similar; major difierences occur only in extrapolated values.

  17. Spectral reflectance indices as a selection criterion for yield improvement in wheat

    NASA Astrophysics Data System (ADS)

    Babar, Md. Ali

    2005-11-01

    Scope and methods of study. Yield in wheat ( Triticum aestivum L.) is a complex trait and influenced by many environmental factors, and yield improvement is a daunting task for wheat breeders. Spectral reflectance indices (SRIs) have been used to study different physiological traits in wheat. SRIs have the potential to differentiate genotypes for grain yield. SRIs strongly associated with grain yield can be used to achieve effective genetic gain in wheat under different environments. Three experiments (15 adapted genotypes, 25 and 36 random sister lines derived from two different crosses) under irrigated conditions, and three experiments (each with 30 advanced genotypes) under water-limited conditions were conducted in three successive years in Northwest Mexico at the CIMMYT (International Maize and wheat Improvement Center) experimental station. SRIs and different agronomic data were collected for three years, and biomass was harvested for two years. Phenotypic and genetic correlations between SRIs and grain yield, between SRIs and biomass, realized and broad sense heritability, direct and correlated selection responses for grain yield, and SRIs were calculated. Findings and conclusion. Seven SRIs were calculated, and three near infrared based indices (WI, NWI-1 and NWI-2) showed higher level of genetic and phenotypic correlations with grain yield, yield components and biomass than other SRIs (PRI, RNDVI, GNDVI, and SR) under both irrigated and water limiting environments. Moderate to high realized and broad sense heritability, and selection response were demonstrated by the three NIR based indices. High efficiency of correlated response for yield estimation was demonstrated by the three NIR based indices. The ratio between the correlated response to grain yield based on the three NIR based indices and direct selection response for grain yield was very close to one. The NIR based indices showed very high accuracy in selecting superior genotypes for grain yield

  18. Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Lane, Terran

    2010-01-01

    An algorithm was developed to generate crop yield predictions from orbital remote sensing observations, by analyzing thousands of pixels per county and the associated historical crop yield data for those counties. The algorithm determines which pixels contain which crop. Since each known yield value is associated with thousands of individual pixels, this is a multiple instance learning problem. Because individual crop growth is related to the resulting yield, this relationship has been leveraged to identify pixels that are individually related to corn, wheat, cotton, and soybean yield. Those that have the strongest relationship to a given crop s yield values are most likely to contain fields with that crop. Remote sensing time series data (a new observation every 8 days) was examined for each pixel, which contains information for that pixel s growth curve, peak greenness, and other relevant features. An alternating-projection (AP) technique was used to first estimate the "salience" of each pixel, with respect to the given target (crop yield), and then those estimates were used to build a regression model that relates input data (remote sensing observations) to the target. This is achieved by constructing an exemplar for each crop in each county that is a weighted average of all the pixels within the county; the pixels are weighted according to the salience values. The new regression model estimate then informs the next estimate of the salience values. By iterating between these two steps, the algorithm converges to a stable estimate of both the salience of each pixel and the regression model. The salience values indicate which pixels are most relevant to each crop under consideration.

  19. Calibration-induced uncertainty of the EPIC model to estimate climate change impact on global maize yield

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Skalský, Rastislav; Porter, Cheryl H.; Balkovič, Juraj; Jones, James W.; Yang, Di

    2016-09-01

    Understanding the interactions between agricultural production and climate is necessary for sound decision-making in climate policy. Gridded and high-resolution crop simulation has emerged as a useful tool for building this understanding. Large uncertainty exists in this utilization, obstructing its capacity as a tool to devise adaptation strategies. Increasing focus has been given to sources of uncertainties for climate scenarios, input-data, and model, but uncertainties due to model parameter or calibration are still unknown. Here, we use publicly available geographical data sets as input to the Environmental Policy Integrated Climate model (EPIC) for simulating global-gridded maize yield. Impacts of climate change are assessed up to the year 2099 under a climate scenario generated by HadEM2-ES under RCP 8.5. We apply five strategies by shifting one specific parameter in each simulation to calibrate the model and understand the effects of calibration. Regionalizing crop phenology or harvest index appears effective to calibrate the model for the globe, but using various values of phenology generates pronounced difference in estimated climate impact. However, projected impacts of climate change on global maize production are consistently negative regardless of the parameter being adjusted. Different values of model parameter result in a modest uncertainty at global level, with difference of the global yield change less than 30% by the 2080s. The uncertainty subjects to decrease if applying model calibration or input data quality control. Calibration has a larger effect at local scales, implying the possible types and locations for adaptation.

  20. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds

    NASA Astrophysics Data System (ADS)

    Khaleghi, Mohammad Reza; Varvani, Javad

    2018-02-01

    Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.

  1. Minimum number of measurements for evaluating soursop (Annona muricata L.) yield.

    PubMed

    Sánchez, C F B; Teodoro, P E; Londoño, S; Silva, L A; Peixoto, L A; Bhering, L L

    2017-05-31

    Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of soursop (Annona muricata L.) genotypes based on fruit yield. Sixteen measurements of fruit yield from 71 soursop genotypes were carried out between 2000 and 2016. In order to estimate r with the best accuracy, four procedures were used: analysis of variance, principal component analysis based on the correlation matrix, principal component analysis based on the phenotypic variance and covariance matrix, and structural analysis based on the correlation matrix. The minimum number of measurements needed to predict the actual value of individuals was estimated. Principal component analysis using the phenotypic variance and covariance matrix provided the most accurate estimates of both r and the number of measurements required for accurate evaluation of fruit yield in soursop. Our results indicate that selection of soursop genotypes with high fruit yield can be performed based on the third and fourth measurements in the early years and/or based on the eighth and ninth measurements at more advanced stages.

  2. The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems.

    PubMed

    Wilson, Erica L; Kim, Younggy

    2016-05-01

    In conventional wastewater treatment, waste sludge management and disposal contribute the major cost for wastewater treatment. Bioelectrochemical systems, as a potential alternative for future wastewater treatment and resources recovery, are expected to produce small amounts of waste sludge because exoelectrogenic bacteria grow on anaerobic respiration and form highly populated biofilms on bioanode surfaces. While waste sludge production is governed by the yield and decay coefficient, none of previous studies have quantified these kinetic constants for exoelectrogenic bacteria. For yield coefficient estimation, we modified McCarty's free energy-based model by using the bioanode potential for the free energy of the electron acceptor reaction. The estimated true yield coefficient ranged 0.1 to 0.3 g-VSS (volatile suspended solids) g-COD(-1) (chemical oxygen demand), which is similar to that of most anaerobic microorganisms. The yield coefficient was sensitively affected by the bioanode potential and pH while the substrate and bicarbonate concentrations had relatively minor effects on the yield coefficient. In lab-scale experiments using microbial electrolysis cells, the observed yield coefficient (including the effect of cell decay) was found to be 0.020 ± 0.008 g-VSS g-COD(-1), which is an order of magnitude smaller than the theoretical estimation. Based on the difference between the theoretical and experimental results, the decay coefficient was approximated to be 0.013 ± 0.002 d(-1). These findings indicate that bioelectrochemical systems have potential for future wastewater treatment with reduced waste sludge as well as for resources recovery. Also, the found kinetic information will allow accurate estimation of wastewater treatment performance in bioelectrochemical systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biogas and methane yield in response to co- and separate digestion of biomass wastes.

    PubMed

    Adelard, Laetitia; Poulsen, Tjalfe G; Rakotoniaina, Volana

    2015-01-01

    The impact of co-digestion as opposed to separate digestion, on biogas and methane yield (apparent synergetic effects) was investigated for three biomass materials (pig manure, cow manure and food waste) under mesophilic conditions over a 36 day period. In addition to the three biomass materials (digested separately), 13 biomass mixtures (co-digested) were used. Two approaches for modelling biogas and methane yield during co-digestion, based on volatile solids concentration and ultimate gas and methane potentials, were evaluated. The dependency of apparent synergetic effects on digestion time and biomass mixture composition was further assessed using measured cumulative biogas and methane yields and specific biogas and methane generation rates. Results indicated that it is possible, based on known volatile solids concentration and ultimate biogas or methane yields for a set of biomass materials digested separately, to accurately estimate gas yields for biomass mixtures made from these materials using calibrated models. For the biomass materials considered here, modelling indicated that the addition of pig manure is the main cause of synergetic effects. Co-digestion generally resulted in improved ultimate biogas and methane yields compared to separate digestion. Biogas and methane production was furthermore significantly higher early (0-7 days) and to some degree also late (above 20 days) in the digestion process during co-digestion. © The Author(s) 2014.

  4. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    ERIC Educational Resources Information Center

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  5. The impact of higher-order ionospheric effects on estimated tropospheric parameters in Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Zus, F.; Deng, Z.; Wickert, J.

    2017-08-01

    The impact of higher-order ionospheric effects on the estimated station coordinates and clocks in Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is well documented in literature. Simulation studies reveal that higher-order ionospheric effects have a significant impact on the estimated tropospheric parameters as well. In particular, the tropospheric north-gradient component is most affected for low-latitude and midlatitude stations around noon. In a practical example we select a few hundred stations randomly distributed over the globe, in March 2012 (medium solar activity), and apply/do not apply ionospheric corrections in PPP. We compare the two sets of tropospheric parameters (ionospheric corrections applied/not applied) and find an overall good agreement with the prediction from the simulation study. The comparison of the tropospheric parameters with the tropospheric parameters derived from the ERA-Interim global atmospheric reanalysis shows that ionospheric corrections must be consistently applied in PPP and the orbit and clock generation. The inconsistent application results in an artificial station displacement which is accompanied by an artificial "tilting" of the troposphere. This finding is relevant in particular for those who consider advanced GNSS tropospheric products for meteorological studies.

  6. Surprising yields with no-till cropping systems

    USDA-ARS?s Scientific Manuscript database

    Producers using no-till systems have found that crop yields often exceed their expectation based on nutrient and water supply. For example, corn yields 7% higher in a no-till system in central South Dakota than in a tilled system in eastern South Dakota. This is surprising because rainfall is 5 in...

  7. Yield variability prediction by remote sensing sensors with different spatial resolution

    NASA Astrophysics Data System (ADS)

    Kumhálová, Jitka; Matějková, Štěpánka

    2017-04-01

    Currently, remote sensing sensors are very popular for crop monitoring and yield prediction. This paper describes how satellite images with moderate (Landsat satellite data) and very high (QuickBird and WorldView-2 satellite data) spatial resolution, together with GreenSeeker hand held crop sensor, can be used to estimate yield and crop growth variability. Winter barley (2007 and 2015) and winter wheat (2009 and 2011) were chosen because of cloud-free data availability in the same time period for experimental field from Landsat satellite images and QuickBird or WorldView-2 images. Very high spatial resolution images were resampled to worse spatial resolution. Normalised difference vegetation index was derived from each satellite image data sets and it was also measured with GreenSeeker handheld crop sensor for the year 2015 only. Results showed that each satellite image data set can be used for yield and plant variability estimation. Nevertheless, better results, in comparison with crop yield, were obtained for images acquired in later phenological phases, e.g. in 2007 - BBCH 59 - average correlation coefficient 0.856, and in 2011 - BBCH 59-0.784. GreenSeeker handheld crop sensor was not suitable for yield estimation due to different measuring method.

  8. The Estimation of the Water Table and the Specific Yield with time-lapse 2D Electrical Resistivity Imaging in the Minzu Basin of Central Taiwan

    NASA Astrophysics Data System (ADS)

    Yao, H. J.; Chang, P. Y.

    2017-12-01

    The Minzu Basin is located at the central part of Taiwan, which is bounded by the Changhua fault in the west and the Chelungpu thrust fault in its east. The Chuoshui river flows through the basin and brings in thick unconsolidated gravel layers deposited over the Pleistocene rocks and gravels. Thus, the area has a great potential for groundwater developments. However, there are not enough observation wells in the study area for a further investigation of groundwater characteristics. Therefore, we tried to use the electrical resistivity imaging(ERI) method for estimating the depth of the groundwater table and the specific yield of the unconfined aquifer in dry and wet seasons. We have deployed 13 survey lines with the Wenner-Schlumberger array in the study area in March and June of 2017. Based on the data from the ERI measurements and the nearby Xinming observation well, we turned the resistivity into the relative saturation with respect to the saturated background based on the Archie's Law. With the depth distribution curve of the relative saturation, we found that the curve exhibits a similar shape to the Soil-Water Characteristic Curve. Hence we attempted to use the Van-Genuchten model for characterizing the depth of the water table. And we also tried to calculated the specific yield by taking the difference between the saturated and residual water contents. According to our preliminary results, we found that the depth of groundwater is ranging from 8-m to 10.7-m and the specific yield is about 0.095 0.146 in March. In addition, the depth of groundwater in June is ranging from about 7.6m to 9.8m and the estimated specific yield is about 0.1 0.157. The average level of groundwater in the wet season of June is raised about 0.6m than that in March. We are now working on collecting more time-lapse data, as well as making the direct comparisons with the data from new observation wells completed recently, in order to verify our estimations from the resistivity surveys.

  9. Improving the accuracy of livestock distribution estimates through spatial interpolation.

    PubMed

    Bryssinckx, Ward; Ducheyne, Els; Muhwezi, Bernard; Godfrey, Sunday; Mintiens, Koen; Leirs, Herwig; Hendrickx, Guy

    2012-11-01

    Animal distribution maps serve many purposes such as estimating transmission risk of zoonotic pathogens to both animals and humans. The reliability and usability of such maps is highly dependent on the quality of the input data. However, decisions on how to perform livestock surveys are often based on previous work without considering possible consequences. A better understanding of the impact of using different sample designs and processing steps on the accuracy of livestock distribution estimates was acquired through iterative experiments using detailed survey. The importance of sample size, sample design and aggregation is demonstrated and spatial interpolation is presented as a potential way to improve cattle number estimates. As expected, results show that an increasing sample size increased the precision of cattle number estimates but these improvements were mainly seen when the initial sample size was relatively low (e.g. a median relative error decrease of 0.04% per sampled parish for sample sizes below 500 parishes). For higher sample sizes, the added value of further increasing the number of samples declined rapidly (e.g. a median relative error decrease of 0.01% per sampled parish for sample sizes above 500 parishes. When a two-stage stratified sample design was applied to yield more evenly distributed samples, accuracy levels were higher for low sample densities and stabilised at lower sample sizes compared to one-stage stratified sampling. Aggregating the resulting cattle number estimates yielded significantly more accurate results because of averaging under- and over-estimates (e.g. when aggregating cattle number estimates from subcounty to district level, P <0.009 based on a sample of 2,077 parishes using one-stage stratified samples). During aggregation, area-weighted mean values were assigned to higher administrative unit levels. However, when this step is preceded by a spatial interpolation to fill in missing values in non-sampled areas, accuracy

  10. Detecting temporal change in watershed nutrient yields

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2008-01-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...

  11. Detecting Temporal Change in Watershed Nutrient Yields

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2008-01-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...

  12. Short communication: Estimation of yield stress/viscosity of molten octol

    DOE PAGES

    Davis, S. M.; Zerkle, D. K.

    2018-05-04

    Explosive HMX particles are similar in morphology and chemistry to RDX particles, the main constituent of Composition B-3 (Comp B-3). This suggests molten HMX-TNT formulations may show Bingham plasticity, much like recent studies have shown for Comp B-3. Here a Bingham plastic viscosity model, including yield stress and shear thinning, is presented for octol (70/30wt% HMX/TNT) as a function of HMX particle volume fraction. The effect of HMX dissolution into molten TNT is included in this analysis.

  13. Short communication: Estimation of yield stress/viscosity of molten octol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S. M.; Zerkle, D. K.

    Explosive HMX particles are similar in morphology and chemistry to RDX particles, the main constituent of Composition B-3 (Comp B-3). This suggests molten HMX-TNT formulations may show Bingham plasticity, much like recent studies have shown for Comp B-3. Here a Bingham plastic viscosity model, including yield stress and shear thinning, is presented for octol (70/30wt% HMX/TNT) as a function of HMX particle volume fraction. The effect of HMX dissolution into molten TNT is included in this analysis.

  14. Short communication: Estimation of yield stress/viscosity of molten octol

    NASA Astrophysics Data System (ADS)

    Davis, S. M.; Zerkle, D. K.

    2018-05-01

    Explosive HMX particles are similar in morphology and chemistry to RDX particles, the main constituent of Composition B-3 (Comp B-3). This suggests molten HMX-TNT formulations may show Bingham plasticity, much like recent studies have shown for Comp B-3. Here a Bingham plastic viscosity model, including yield stress and shear thinning, is presented for octol (70/30wt% HMX/TNT) as a function of HMX particle volume fraction. The effect of HMX dissolution into molten TNT is included in this analysis.

  15. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  16. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources.

    PubMed

    Monirul Islam, Md; Kanungoe, P

    2005-01-01

    This paper presents the results of water balance study and aquifer simulation modeling for preliminary estimation of the recharge rate and sustainable yield for the semi arid Barind Tract region of Bangladesh. The outcomes of the study are likely to be useful for planning purposes. It is found from detailed water balance study for the area that natural recharge rates in the Barind Tract vary widely year to year. It may have resulted from the method used for the calculation. If the considered time interval had been smaller than the monthly rainfall, the results could have been different. Aquifer Simulation Modeling (ASM) for the Barind aquifer is used to estimate long-term sustainable yield of the groundwater considering limiting drawdown from the standpoint of economic pumping cost. In managing a groundwater basin efficiently and effectively, evaluation of the maximum annual groundwater yield of the basin that can be withdrawn and used without producing any undesirable effect is one of the most important issues. In investigating such recharge rate, introduction of certain terms such as sustainable yield and safe yield has been accompanied. Development of this area involves proper utilization of this vast land, which is possible only through ensured irrigation for agriculture. The Government of Bangladesh has a plan to develop irrigation facilities by optimum utilization of available ground and surface water. It is believed that the groundwater table is lowering rapidly and the whole region is in an acute state of deforestation. Indiscriminate groundwater development may accelerate deforestation trend. In this context estimation of actual natural recharge rate to the aquifer and determination of sustainable yield will assist in proper management and planning of environmentally viable abstraction schemes. It is revealed from the study that the sustainable yield of ground water (204 mm/y) is somewhat higher than the long-term annual average recharge (152.7 mm) to the

  17. A direct comparison of exoEarth yields for starshades and coronagraphs

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.; Cady, Eric J.; Clampin, Mark; Domagal-Goldman, Shawn; Lisman, Doug; Mandell, Avi M.; McElwain, Michael W.; Roberge, Aki; Robinson, Tyler D.; Savransky, Dmitry; Shaklan, Stuart B.; Stapelfeldt, Karl R.

    2016-07-01

    The scale and design of a future mission capable of directly imaging extrasolar planets will be influenced by the detectable number (yield) of potentially Earth-like planets. Currently, coronagraphs and starshades are being considered as instruments for such a mission. We will use a novel code to estimate and compare the yields for starshade- and coronagraph-based missions. We will show yield scaling relationships for each instrument and discuss the impact of astrophysical and instrumental noise on yields. Although the absolute yields are dependent on several yet-unknown parameters, we will present several limiting cases allowing us to bound the yield comparison.

  18. Evaluating soil moisture and yield of winter wheat in the Great Plains using Landsat data

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Kanemasu, E. T.; Bagley, J. O.; Rasmussen, V. P.

    1977-01-01

    Locating areas where soil moisture is limiting to crop growth is important for estimating winter-wheat yields on a regional basis. In the 1975-76 growing season, we evaluated soil-moisture conditions and winter-wheat yields for a five-state region of the Great Plains using Landsat estimates of leaf area index (LAI) and an evapotranspiration (ET) model described by Kanemasu et al (1977). Because LAI was used as an input, the ET model responded to changes in crop growth. Estimated soil-water depletions were high for the Nebraska Panhandle, southwestern Kansas, southeastern Colorado, and the Texas Panhandle. Estimated yields in five-state region ranged from 1.0 to 2.9 metric ton/ha.

  19. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    USGS Publications Warehouse

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  20. Linkages among climate change, crop yields and Mexico-US cross-border migration.

    PubMed

    Feng, Shuaizhang; Krueger, Alan B; Oppenheimer, Michael

    2010-08-10

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately -0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15-65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming.

  1. Effect of the Yield Stress and r-value Distribution on the Earing Profile of Cup Drawing with Yld2000-2d Yield Function

    NASA Astrophysics Data System (ADS)

    Lou, Yanshan; Bae, Gihyun; Lee, Changsoo; Huh, Hoon

    2010-06-01

    This paper deals with the effect of the yield stress and r-value distribution on the earing in the cup drawing. The anisotropic yield function, Yld2000-2d yield function, is selected to describe the anisotropy of two metal sheets, 719B and AA5182-O. The tool dimension is referred from the Benchmark problem of NUMISHEET'2002. The Downhill Simplex method is applied to identify the anisotropic coefficients in Yld2000-2d yield function. Simulations of the drawing process are performed to investigate the earing profile of two materials. The earing profiles obtained from simulations are compared with the analytical model developed by Hosford and Caddell. Simulations are conducted with respect to the change of the yield stress and r-value distribution, respectively. The correlation between the anisotropy and the earing tendency is investigated based on simulation data. Finally, the earing mechanism is analyzed through the deformation process of the blank during the cup deep drawing. It can be concluded that ears locate at angular positions with lower yield stress and higher r-value while the valleys appear at the angular position with higher yield stress and lower r-value. The effect of the yield stress distribution is more important for the cup height distribution than that of the r-value distribution.

  2. Genetic parameters for body weight, carcass chemical composition and yield in a broiler-layer cross developed for QTL mapping

    PubMed Central

    Nunes, Beatriz do Nascimento; Ramos, Salvador Boccaletti; Savegnago, Rodrigo Pelicioni; Ledur, Mônica Corrêa; Nones, Kátia; Klein, Claudete Hara; Munari, Danísio Prado

    2011-01-01

    The objective of this study was to estimate genetic and phenotypic correlations of body weight at 6 weeks of age (BW6), as well as final carcass yield, and moisture, protein, fat and ash contents, using data from 3,422 F2 chickens originated from reciprocal cross between a broiler and a layer line. Variance components were estimated by the REML method, using animal models for evaluating random additive genetic and fixed contemporary group (sex, hatch and genetic group) effects. The heritability estimates (h2) for BW6, carcass yield and percentage of carcass moisture were 0.31 ± 0.07, 0.20 ± 0.05 and 0.33 ± 0.07, respectively. The h2 for the percentages of protein, fat and ash on a dry matter basis were 0.48 ± 0.09, 0.55 ± 0.10 and 0.36 ± 0.08, respectively. BW6 had a positive genetic correlation with fat percentage in the carcass, but a negative one with protein and ash contents. Carcass yield, thus, appears to have only low genetic association with carcass composition traits. The genetic correlations observed between traits, measured on a dry matter basis, indicated that selection for carcass protein content may favor higher ash content and a lower percentage of carcass fat. PMID:21931515

  3. Growth and yield predictions for upland oak stands. 10 years after initial thinning

    Treesearch

    Martin E. Dale; Martin E. Dale

    1972-01-01

    The purpose of this paper is to furnish part of the needed information, that is, quantitative estimates of growth and yield 10 years after initial thinning of upland oak stands. All estimates are computed from a system of equations. These predictions are presented here in tabular form for convenient visual inspection of growth and yield trends. The tables show growth...

  4. Linking Field and Satellite Observations to Reveal Differences in Single vs. Double-Cropped Soybean Yields in Central Brazil

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.

    2016-12-01

    Soy-corn double cropping (DC) has been widely adopted in Central Brazil alongside single cropped (SC) soybean production. DC involves different cropping calendars, soy varieties, and may be associated with different crop yield patterns and volatility than SC. Study of the performance of the region's agriculture in a changing climate depends on tracking differences in the productivity of SC vs. DC, but has been limited by crop yield data that conflate the two systems. We predicted SC and DC yields across Central Brazil, drawing on field observations and remotely sensed data. We first modeled field yield estimates as a function of remotely sensed DC status and vegetation index (VI) metrics, and other management and biophysical factors. We then used the statistical model estimated to predict SC and DC soybean yields at each 500 m2 grid cell of Central Brazil for harvest years 2001 - 2015. The yield estimation model was constructed using 1) a repeated cross-sectional survey of soybean yields and management factors for years 2007-2015, 2) a custom agricultural land cover classification dataset which assimilates earlier datasets for the region, and 3) 500m 8-day MODIS image composites used to calculate the wide dynamic range vegetation index (WDRVI) and derivative metrics such as area under the curve for WDRVI values in critical crop development periods. A statistical yield estimation model which primarily entails WDRVI metrics, DC status, and spatial fixed effects was developed on a subset of the yield dataset. Model validation was conducted by predicting previously withheld yield records, and then assessing error and goodness-of-fit for predicted values with metrics including root mean squared error (RMSE), mean squared error (MSE), and R2. We found a statistical yield estimation model which incorporates WDRVI and DC status to be way to estimate crop yields over the region. Statistical properties of the resulting gridded yield dataset may be valuable for understanding

  5. Estimates for Pu-239 loadings in burial ground culverts based on fast/slow neutron measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, W.G.; Hochel, R.C.; Hofstetter, K.J.

    1989-08-15

    This report provides guideline estimates for Pu-239 mass loadings in selected burial ground culverts. The relatively high recorded Pu-239 contents of these culverts have been appraised as suspect relative to criticality concerns, because they were assayed only with the solid waste monitor (SWM) per gamma-ray counting. After 1985, subsequent waste was also assayed with the neutron coincidence counter (NCC), and a comparison of the assay methods showed that the NCC generally yielded higher assays than the SWM. These higher NCC readings signaled a need to conduct non-destructive/non-intrusive nuclear interrogations of these culverts, and a technical team conducted scoping measurements tomore » illustrate potential assay methods based on neutron and/or gamma counting. A fast/slow neutron method has been developed to estimate the Pu-239 in the culverts. In addition, loading records include the SWM assays of all Pu-239 cuts of some of the culvert drums and these data are useful in estimating the corresponding NCC drum assays from NCC vs SWM data. Together, these methods yield predictions based on direct measurements and statistical inference.« less

  6. AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions

    PubMed Central

    Rothstein, Steven J.

    2014-01-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4 +). The NH4 + uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4 + transport in rice plants. However, little is known about its involvement in NH4 + uptake in rice roots and subsequent effects on NH4 + assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4 + permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4 + content in the shoots and roots than the WT. Direct NH4 + fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4 + contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4 + levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions. PMID:24420570

  7. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions.

    PubMed

    Ranathunge, Kosala; El-Kereamy, Ashraf; Gidda, Satinder; Bi, Yong-Mei; Rothstein, Steven J

    2014-03-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.

  8. Large Area Crop Inventory Experiment (LACIE). Feasibility of assessing crop condition and yield from LANDSAT data

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. Yield modelling for crop production estimation derived a means of predicting the within-a-year yield and the year-to-year variability of yield over some fixed or randomly located unit of area. Preliminary studies indicated that the requirements for interpreting LANDSAT data for yield may be sufficiently similar to those of signature extension that it is feasible to investigate the automated estimation of production. The concept of an advanced yield model consisting of both spectral and meteorological components was endorsed. Rationale for using meteorological parameters originated from known between season and near harvest dynamics in crop environmental-condition-yield relationships.

  9. Validation of the Unthinned Loblolly Pine Plantation Yield Model-USLYCOWG

    Treesearch

    V. Clark Baldwin; D.P. Feduccia

    1982-01-01

    Yield and stand structure predictions from an unthinned loblolly pine plantation yield prediction system (USLYCOWG computer program) were compared with observations from 80 unthinned loblolly pine plots. Overall, the predicted estimates were reasonable when compared to observed values, but predictions based on input data at or near the system's limits may be in...

  10. Comparison of estimated and measured sediment yield in the Gualala River

    Treesearch

    Matthew O’Connor; Jack Lewis; Robert Pennington

    2012-01-01

    This study compares quantitative erosion rate estimates developed at different spatial and temporal scales. It is motivated by the need to assess potential water quality impacts of a proposed vineyard development project in the Gualala River watershed. Previous erosion rate estimates were developed using sediment source assessment techniques by the North Coast Regional...

  11. Predicting Monsoonal-Driven Stream Discharge and Sediment Yield in Himalaya Mountain Basins with Changing Climate and Deforestation

    NASA Astrophysics Data System (ADS)

    Neupane, R. P.; White, J. D.

    2014-12-01

    Short and long term effects of site water availability impacts the spectrum of management outcomes including landslide risk, hydropower generation, and sustainable agriculture in mountain systems heavily influenced by climate and land use changes. Climate change and land use may predominantly affect the hydrologic cycle of mountain basins as soil precipitation interception is affected by land cover. Using the Soil and Water Assessment Tool, we estimated stream discharge and sediment yield associated with climate and land use changes for two Himalaya basins located at eastern and western margins of Nepal that included drainages of the Tamor and Seti Rivers. Future climate change was modeled using average output of temperature and precipitation changes derived from Special Report on Emission Scenarios (B1, A1B & A2) of 16 global circulation models for 2080 as meteorological inputs into SWAT. Land use change was modeled spatially and included 1) deforestation, 2) expansion of agricultural land, and 3) increased human settlement that were produced by considering current land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use types. We found higher annual stream discharge in all GCM-derived scenarios compared to the baseline with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. With 7% of original forest land removed, sediment yield for Tamor basin was estimated to be 65% higher, but increased to 124% for the SRES-B1 scenario. For the Seti basin, 4% deforestation yielded 33% more sediment for the SRES-A1B scenario. Our results indicated that combined effects of future, intensified monsoon rainfall with deforestation lead to dramatic potential for increased stream discharge and sediment yield as rainfall on steep slopes with thin exposed soils increases surface runoff and soil erosion in the Himalayas. This effect appears to

  12. Genetic parameters for milk, fat and protein yields in Murrah buffaloes (Bubalus bubalis Artiodactyla, Bovidae)

    PubMed Central

    2010-01-01

    The objective of the present study was to estimate genetic parameters for test-day milk, fat and protein yields and 305-day-yields in Murrah buffaloes. 4,757 complete lactations of Murrah buffaloes were analyzed. Co-variance components were estimated by the restricted maximum likelihood method. The models included additive direct genetic and permanent environmental effects as random effects, and the fixed effects of contemporary group, milking number and age of the cow at calving as linear and quadratic covariables. Contemporary groups were defined by herd-year-month of test for test-day yields and by herd-year-season of calving for 305-day yields. The heritability estimates obtained by two-trait analysis ranged from 0.15 to 0.24 for milk, 0.16 to 0.23 for protein and 0.13 to 0.22 for fat, yields. Genetic and phenotypic correlations were all positive. The observed population additive genetic variation indicated that selection might be an effective tool in changing population means in milk, fat and protein yields. PMID:21637608

  13. Selected yield tables for plantations and natural stands in Inland Northwest Forests

    Treesearch

    Albert R. Stage; David L. Renner; Roger C. Chapman

    1988-01-01

    Yields arrayed by site index and age have been tabulated for plantations of 500 trees per acre, with five thinning regimes, for Douglas-fir, grand fir, and western larch. Yields were also tabulated for naturally regenerated stands of the grand fir-cedar-hemlock ecosystem of the Inland Empire. All yields were estimated with the Prognosis Model for Stand Development,...

  14. Online evaluation of a commercial video image analysis system (Computer Vision System) to predict beef carcass red meat yield and for augmenting the assignment of USDA yield grades. United States Department of Agriculture.

    PubMed

    Cannell, R C; Belk, K E; Tatum, J D; Wise, J W; Chapman, P L; Scanga, J A; Smith, G C

    2002-05-01

    Objective quantification of differences in wholesale cut yields of beef carcasses at plant chain speeds is important for the application of value-based marketing. This study was conducted to evaluate the ability of a commercial video image analysis system, the Computer Vision System (CVS) to 1) predict commercially fabricated beef subprimal yield and 2) augment USDA yield grading, in order to improve accuracy of grade assessment. The CVS was evaluated as a fully installed production system, operating on a full-time basis at chain speeds. Steer and heifer carcasses (n = 296) were evaluated using CVS, as well as by USDA expert and online graders, before the fabrication of carcasses into industry-standard subprimal cuts. Expert yield grade (YG), online YG, CVS estimated carcass yield, and CVS measured ribeye area in conjunction with expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, hot carcass weight) accounted for 67, 39, 64, and 65% of the observed variation in fabricated yields of closely trimmed subprimals. The dual component CVS predicted wholesale cut yields more accurately than current online yield grading, and, in an augmentation system, CVS ribeye measurement replaced estimated ribeye area in determination of USDA yield grade, and the accuracy of cutability prediction was improved, under packing plant conditions and speeds, to a level close to that of expert graders applying grades at a comfortable rate of speed offline.

  15. Application of a rising plate meter to estimate forage yield on dairy farms in Pennsylvania

    USDA-ARS?s Scientific Manuscript database

    Accurately assessing pasture forage yield is necessary for producers who want to budget feed expenses and make informed pasture management decisions. Clipping and weighing forage from a known area is a direct method to measure pasture forage yield, however it is time consuming. The rising plate mete...

  16. Modeling precipitation-runoff relationships to determine water yield from a ponderosa pine forest watershed

    Treesearch

    Assefa S. Desta

    2006-01-01

    A stochastic precipitation-runoff modeling is used to estimate a cold and warm-seasons water yield from a ponderosa pine forested watershed in the north-central Arizona. The model consists of two parts namely, simulation of the temporal and spatial distribution of precipitation using a stochastic, event-based approach and estimation of water yield from the watershed...

  17. Linkages among climate change, crop yields and Mexico–US cross-border migration

    PubMed Central

    Feng, Shuaizhang; Krueger, Alan B.; Oppenheimer, Michael

    2010-01-01

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately −0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15–65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming. PMID:20660749

  18. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    NASA Astrophysics Data System (ADS)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  19. Assessment of different gridded weather data for soybean yield simulations in Brazil

    NASA Astrophysics Data System (ADS)

    Battisti, R.; Bender, F. D.; Sentelhas, P. C.

    2018-01-01

    A high-density, well-distributed, and consistent historical weather data series is of major importance for agricultural planning and climatic risk evaluation. A possible option for regions where weather station network is irregular is the use of gridded weather data (GWD), which can be downloaded online from different sources. Based on that, the aim of this study was to assess the suitability of two GWD, AgMERRA and XAVIER, by comparing them with measured weather data (MWD) for estimating soybean yield in Brazil. The GWD and MWD were obtained for 24 locations across Brazil, considering the period between 1980 and 2010. These data were used to estimate soybean yield with DSSAT-CROPGRO-Soybean model. The comparison of MWD with GWD resulted in a good agreement between climate variables, except for solar radiation. The crop simulations with GWD and MWD resulted in a good agreement for vegetative and reproductive phases. Soybean potential yield (Yp) simulated with AgMERRA and XAVIER had a high correlation (r > 0.88) when compared to the estimates with MWD, with the RMSE of about 400 kg ha-1. For attainable yield (Ya), estimates with XAVIER resulted in a RMSE of 700 kg ha-1 against 864 kg ha-1 from AgMERRA, both compared to the simulations using MWD. Even with these differences in Ya simulations, both GWD can be considered suitable for simulating soybean growth, development, and yield in Brazil; however, with XAVIER GWD presenting a better performance for weather and crop variables assessed.

  20. Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Sun, Yu; Zhang, Chuanyou; Wang, Qingfeng; Zhang, Fucheng

    2018-04-01

    Martensitic steels based on a composition of 25CrMo47NbVTi with different concentrations of Nb (0.003%–0.060%) were quenched (Q) at 900 °C and tempered (T) at 700 °C to obtain oil country tubular goods (OCTG) with higher yield strength. The precipitation and microstructures were characterized and quantified by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The results show that the increased Nb content led to an enhanced overall precipitation, the rising solution-precipitation temperature, the increased mass or volume fraction of the Nb-containing precipitates, and the decreased average diameter of Nb-containing particles. With the enhanced precipitation of small sized Nb-containing particles, the austenite grain and corresponding martensitic packet and block were evidently refined. In addition, the dislocation density increased slightly with increasing Nb addition. The yield strength was experimentally measured and quantitatively estimated. The findings based on theoretical calculations indicated that as a consequence of intensified strengthening from grain boundaries, precipitates and dislocations, the yield strength was enhanced significantly by Nb addition.

  1. Growth models for ponderosa pine: I. Yield of unthinned plantations in northern California.

    Treesearch

    William W. Oliver; Robert F. Powers

    1978-01-01

    Yields for high-survival, unthinned ponderosa pine (Pinus ponderosa Laws.) plantations in northern California are estimated. Stems of 367 trees in 12 plantations were analyzed to produce a growth model simulating stand yields. Diameter, basal area, and net cubic volume yields by Site Indices50 40 through 120 are tabulated for...

  2. Estimating Local Child Abuse.

    ERIC Educational Resources Information Center

    Ards, Sheila

    1989-01-01

    Three conceptual approaches to estimating local child abuse rates using the National Incidence Study of Child Abuse and Neglect data set are evaluated. All three approaches yield estimates of actual abuse cases that exceed the number of reported cases. (SLD)

  3. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    NASA Technical Reports Server (NTRS)

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10-30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  4. Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale.

    PubMed

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to enable temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat assessment at regional scale. For the former, we adapt a previously developed approach for Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m resolution that allows automatic mapping of winter crops taking into account knowledge on crop calendar and without ground truth data. For the latter, we use a generalized winter wheat yield model that is based on NDVI-peak estimation and MODIS data, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A has a positive impact both for winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times comparing to the single satellite usage.

  5. Process gg{yields}h{sub 0}{yields}{gamma}{gamma} in the Lee-Wick standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, F.; Underwood, T. E. J.; Zwicky, R.

    2008-01-01

    The process gg{yields}h{sub 0}{yields}{gamma}{gamma} is studied in the Lee-Wick extension of the standard model (LWSM) proposed by Grinstein, O'Connell, and Wise. In this model, negative norm partners for each SM field are introduced with the aim to cancel quadratic divergences in the Higgs mass. All sectors of the model relevant to gg{yields}h{sub 0}{yields}{gamma}{gamma} are diagonalized and results are commented on from the perspective of both the Lee-Wick and higher-derivative formalisms. Deviations from the SM rate for gg{yields}h{sub 0} are found to be of the order of 15%-5% for Lee-Wick masses in the range 500-1000 GeV. Effects on the rate formore » h{sub 0}{yields}{gamma}{gamma} are smaller, of the order of 5%-1% for Lee-Wick masses in the same range. These comparatively small changes may well provide a means of distinguishing the LWSM from other models such as universal extra dimensions where same-spin partners to standard model fields also appear. Corrections to determinations of Cabibbo-Kobayashi-Maskawa (CKM) elements |V{sub t(b,s,d)}| are also considered and are shown to be positive, allowing the possibility of measuring a CKM element larger than unity, a characteristic signature of the ghostlike nature of the Lee-Wick fields.« less

  6. Probabilistic estimates of drought impacts on agricultural production

    NASA Astrophysics Data System (ADS)

    Madadgar, Shahrbanou; AghaKouchak, Amir; Farahmand, Alireza; Davis, Steven J.

    2017-08-01

    Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.

  7. Environmental and genetic factors affecting milk yield and quality in three Italian sheep breeds.

    PubMed

    Selvaggi, Maria; D'Alessandro, Angela Gabriella; Dario, Cataldo

    2017-02-01

    The aims of the study described in the Research Communication were to determine the level of influence of some environmental factors on milk yield and quality traits, including lactose, and lactation length in ewes belonging to three different Italian breeds and to estimate the heritability for the same traits. A total of 2138 lactation records obtained from 535 ewes belonging to three different Italian breeds (Comisana, Leccese, and Sarda) were used. Breed significantly affected all of the considered traits. Moreover, year of lambing affected milk yield and lactation length without influence on milk quality traits. Parity affected significantly only the milk yield, whereas type of birth showed its effect on milk yield, fat, protein, and lactose yield. On the whole, the presently reported heritability estimates are within the range of those already obtained in other dairy breeds by other authors, with values for lactation length being very low in all the investigated populations. Considering the heritability estimates for lactose content and yield, to the best of our knowledge, there is a lack of information on these parameters in ovine species and this is the first report on heritability of lactose content and yield in dairy sheep breeds. Our results suggest that genetic variability for milk traits other than lactation length is adequate for selection indicating a good response to selection in these breeds.

  8. Epidemiology and impact of Fasciola hepatica exposure in high-yielding dairy herds

    PubMed Central

    Howell, Alison; Baylis, Matthew; Smith, Rob; Pinchbeck, Gina; Williams, Diana

    2015-01-01

    The liver fluke Fasciola hepatica is a trematode parasite with a worldwide distribution and is the cause of important production losses in the dairy industry. The aim of this observational study was to assess the prevalence of exposure to F. hepatica in a group of high yielding dairy herds, to determine the risk factors and investigate their associations with production and fertility parameters. Bulk milk tank samples from 606 herds that supply a single retailer with liquid milk were tested with an antibody ELISA for F. hepatica. Multivariable linear regression was used to investigate the effect of farm management and environmental risk factors on F. hepatica exposure. Higher rainfall, grazing boggy pasture, presence of beef cattle on farm, access to a stream or pond and smaller herd size were associated with an increased risk of exposure. Univariable regression was used to look for associations between fluke exposure and production-related variables including milk yield, composition, somatic cell count and calving index. Although causation cannot be assumed, a significant (p < 0.001) negative association was seen between F. hepatica exposure and estimated milk yield at the herd level, representing a 15% decrease in yield for an increase in F. hepatica exposure from the 25th to the 75th percentile. This remained significant when fertility, farm management and environmental factors were controlled for. No associations were found between F. hepatica exposure and any of the other production, disease or fertility variables. PMID:26093971

  9. Total suspended solids concentrations and yields for water-quality monitoring stations in Gwinnett County, Georgia, 1996-2009

    USGS Publications Warehouse

    Landers, Mark N.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Gwinnett County Department of Water Resources, established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. As of 2009, continuous streamflow and water-quality data as well as discrete water-quality samples were being collected for 14 watershed monitoring stations in Gwinnett County. This report provides statistical summaries of total suspended solids (TSS) concentrations for 730 stormflow and 710 base-flow water-quality samples collected between 1996 and 2009 for 14 watershed monitoring stations in Gwinnett County. Annual yields of TSS were estimated for each of the 14 watersheds using methods described in previous studies. TSS yield was estimated using linear, ordinary least-squares regression of TSS and explanatory variables of discharge, turbidity, season, date, and flow condition. The error of prediction for estimated yields ranged from 1 to 42 percent for the stations in this report; however, the actual overall uncertainty of the estimated yields cannot be less than that of the observed yields (± 15 to 20 percent). These watershed yields provide a basis for evaluation of how watershed characteristics, climate, and watershed management practices affect suspended sediment yield.

  10. Managing Southeastern US Forests for Increased Water Yield

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2017-12-01

    Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.

  11. Climate Change Impacts on Sediment Yield in Headwaters of a High-latitude Region in China

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Xu, Y. J.; Wang, J., , Dr; Weihua, X.; Huang, Y.

    2017-12-01

    Climate change is expected to have strongest effects in higher latitude regions. Despite intensive research on possible hydrological responses to global warming in these regions, our knowledge of climate change on surface erosion and sediment yield in high-latitude headwaters is limited. In this study, we used the Soil and Water Assessment Tool (SWAT) to predict future runoff and sediment yield from the headwaters of a high-latitude river basin in China's far northeast. The SWAT model was first calibrated with historical discharge records and the model parameterization achieved satisfactory validation. The calibrated model was then applied to two greenhouse gas concentration trajectories, RCP4.5 and RCP8.5, for the period from 2020 to 2050 to estimate future runoff. Sediment yields for this period were predicted using a discharge-sediment load rating curve developed from field measurements in the past nine years. Our preliminary results show an increasing trend of sediment yield under both climate change scenarios, and that the increase is more pronounced in the summer and autumn months. Changes in precipitation and temperature seem to exert variable impacts on runoff and sediment yield at interannual and seasonal scales in these headwaters. These findings imply that the current river basin management in the region needs to be reviewed and improved in order to be effective under a changing climate.

  12. Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendritic cell-based immunotherapy.

    PubMed

    Buhl, Timo; Legler, Tobias J; Rosenberger, Albert; Schardt, Anke; Schön, Michael P; Haenssle, Holger A

    2012-11-01

    Availability of large quantities of functionally effective dendritic cells (DC) represents one of the major challenges for immunotherapeutic trials against infectious or malignant diseases. Low numbers or insufficient T-cell activation of DC may result in premature termination of treatment and unsatisfying immune responses in clinical trials. Based on the notion that cryopreservation of monocytes is superior to cryopreservation of immature or mature DC in terms of resulting DC quantity and immuno-stimulatory capacity, we aimed to establish an optimized protocol for the cryopreservation of highly concentrated peripheral blood mononuclear cells (PBMC) for DC-based immunotherapy. Cryopreserved cell preparations were analyzed regarding quantitative recovery, viability, phenotype, and functional properties. In contrast to standard isopropyl alcohol (IPA) freezing, PBMC cryopreservation in an automated controlled-rate freezer (CRF) with subsequent thawing and differentiation resulted in significantly higher cell yields of immature and mature DC. Immature DC yields and total protein content after using CRF were comparable with results obtained with freshly prepared PBMC and exceeded results of standard IPA freezing by approximately 50 %. While differentiation markers, allogeneic T-cell stimulation, viability, and cytokine profiles were similar to DC from standard freezing procedures, DC generated from CRF-cryopreserved PBMC induced a significantly higher antigen-specific IFN-γ release from autologous effector T cells. In summary, automated controlled-rate freezing of highly concentrated PBMC represents an improved method for increasing DC yields and autologous T-cell stimulation.

  13. [Study on High-yield Cultivation Measures for Arctii Fructus].

    PubMed

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  14. Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins

    PubMed Central

    Maccani, Andreas; Landes, Nils; Stadlmayr, Gerhard; Maresch, Daniel; Leitner, Christian; Maurer, Michael; Gasser, Brigitte; Ernst, Wolfgang; Kunert, Renate; Mattanovich, Diethard

    2014-01-01

    Chinese hamster ovary (CHO) cells are currently the workhorse of the biopharmaceutical industry. However, yeasts such as Pichia pastoris are about to enter this field. To compare their capability for recombinant protein secretion, P. pastoris strains and CHO cell lines producing human serum albumin (HSA) and the 3D6 single chain Fv-Fc anti-HIV-1 antibody (3D6scFv-Fc) were cultivated in comparable fed batch processes. In P. pastoris, the mean biomass-specific secretion rate (qp) was 40-fold lower for 3D6scFv-Fc compared to HSA. On the contrary, qp was similar for both proteins in CHO cells. When comparing both organisms, the mean qp of the CHO cell lines was 1011-fold higher for 3D6scFv-Fc and 26-fold higher for HSA. Due to the low qp of the 3D6scFv-Fc producing strain, the space-time yield (STY) was 9.6-fold lower for P. pastoris. In contrast, the STY of the HSA producer was 9.2-fold higher compared to CHO cells because of the shorter process time and higher biomass density. The results indicate that the protein secretion machinery of P. pastoris is much less efficient and the secretion rate strongly depends on the complexity of the recombinant protein. However, process efficiency of the yeast system allows higher STYs for less complex proteins. PMID:24390926

  15. Apparent annual survival estimates of tropical songbirds better reflect life history variation when based on intensive field methods

    USGS Publications Warehouse

    Martin, Thomas E.; Riordan, Margaret M.; Repin, Rimi; Mouton, James C.; Blake, William M.

    2017-01-01

    AimAdult survival is central to theories explaining latitudinal gradients in life history strategies. Life history theory predicts higher adult survival in tropical than north temperate regions given lower fecundity and parental effort. Early studies were consistent with this prediction, but standard-effort netting studies in recent decades suggested that apparent survival rates in temperate and tropical regions strongly overlap. Such results do not fit with life history theory. Targeted marking and resighting of breeding adults yielded higher survival estimates in the tropics, but this approach is thought to overestimate survival because it does not sample social and age classes with lower survival. We compared the effect of field methods on tropical survival estimates and their relationships with life history traits.LocationSabah, Malaysian Borneo.Time period2008–2016.Major taxonPasseriformes.MethodsWe used standard-effort netting and resighted individuals of all social and age classes of 18 tropical songbird species over 8 years. We compared apparent survival estimates between these two field methods with differing analytical approaches.ResultsEstimated detection and apparent survival probabilities from standard-effort netting were similar to those from other tropical studies that used standard-effort netting. Resighting data verified that a high proportion of individuals that were never recaptured in standard-effort netting remained in the study area, and many were observed breeding. Across all analytical approaches, addition of resighting yielded substantially higher survival estimates than did standard-effort netting alone. These apparent survival estimates were higher than for temperate zone species, consistent with latitudinal differences in life histories. Moreover, apparent survival estimates from addition of resighting, but not from standard-effort netting alone, were correlated with parental effort as measured by egg temperature across species

  16. Factors determining yield and quality of illicit indoor cannabis (Cannabis spp.) production.

    PubMed

    Vanhove, Wouter; Van Damme, Patrick; Meert, Natalie

    2011-10-10

    Judiciary currently faces difficulties in adequately estimating the yield of illicit indoor cannabis plantations. The latter data is required in penalization which is based on the profits gained. A full factorial experiment in which two overhead light intensities, two plant densities and four varieties were combined in the indoor cultivation of cannabis (Cannabis spp.) was used to reveal cannabis drug yield and quality under each of the factor combinations. Highest yield was found for the Super Skunk and Big Bud varieties which also exhibited the highest concentrations of Δ(9)-tetrahydrocannabinol (THC). Results show that plant density and light intensity are additive factors whereas the variety factor significantly interacts with both plant density and light intensity factors. Adequate estimations of yield of illicit, indoor cannabis plantations can only be made if upon seizure all factors considered in this study are accounted for. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Adapting the CROPGRO cotton model to simulate cotton biomass and yield under southern root-knot nematode parasitism

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) yield losses by southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] (RKN) are usually estimated after significant damage has been caused. However, estimation of potential yield reduction before planting is possible by using crop simulation mod...

  18. Attitude Estimation or Quaternion Estimation?

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2003-01-01

    The attitude of spacecraft is represented by a 3x3 orthogonal matrix with unity determinant, which belongs to the three-dimensional special orthogonal group SO(3). The fact that all three-parameter representations of SO(3) are singular or discontinuous for certain attitudes has led to the use of higher-dimensional nonsingular parameterizations, especially the four-component quaternion. In attitude estimation, we are faced with the alternatives of using an attitude representation that is either singular or redundant. Estimation procedures fall into three broad classes. The first estimates a three-dimensional representation of attitude deviations from a reference attitude parameterized by a higher-dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. The second class, which estimates a higher-dimensional representation subject to enough constraints to leave only three degrees of freedom, is difficult to formulate and apply consistently. The third class estimates a representation of SO(3) with more than three dimensions, treating the parameters as independent. We refer to the most common member of this class as quaternion estimation, to contrast it with attitude estimation. We analyze the first and third of these approaches in the context of an extended Kalman filter with simplified kinematics and measurement models.

  19. Reliability of reservoir firm yield determined from the historical drought of record

    USGS Publications Warehouse

    Archfield, S.A.; Vogel, R.M.

    2005-01-01

    The firm yield of a reservoir is typically defined as the maximum yield that could have been delivered without failure during the historical drought of record. In the future, reservoirs will experience droughts that are either more or less severe than the historical drought of record. The question addressed here is what the reliability of such systems will be when operated at the firm yield. To address this question, we examine the reliability of 25 hypothetical reservoirs sited across five locations in the central and western United States. These locations provided a continuous 756-month streamflow record spanning the same time interval. The firm yield of each reservoir was estimated from the historical drought of record at each location. To determine the steady-state monthly reliability of each firm-yield estimate, 12,000-month synthetic records were generated using the moving-blocks bootstrap method. Bootstrapping was repeated 100 times for each reservoir to obtain an average steady-state monthly reliability R, the number of months the reservoir did not fail divided by the total months. Values of R were greater than 0.99 for 60 percent of the study reservoirs; the other 40 percent ranged from 0.95 to 0.98. Estimates of R were highly correlated with both the level of development (ratio of firm yield to average streamflow) and average lag-1 monthly autocorrelation. Together these two predictors explained 92 percent of the variability in R, with the level of development alone explaining 85 percent of the variability. Copyright ASCE 2005.

  20. Closing yield gaps: perils and possibilities for biodiversity conservation.

    PubMed

    Phalan, Ben; Green, Rhys; Balmford, Andrew

    2014-04-05

    Increasing agricultural productivity to 'close yield gaps' creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms.

  1. Closing yield gaps: perils and possibilities for biodiversity conservation

    PubMed Central

    Phalan, Ben; Green, Rhys; Balmford, Andrew

    2014-01-01

    Increasing agricultural productivity to ‘close yield gaps’ creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms. PMID:24535392

  2. Estimating the abundance of mouse populations of known size: promises and pitfalls of new methods

    USGS Publications Warehouse

    Conn, P.B.; Arthur, A.D.; Bailey, L.L.; Singleton, G.R.

    2006-01-01

    Knowledge of animal abundance is fundamental to many ecological studies. Frequently, researchers cannot determine true abundance, and so must estimate it using a method such as mark-recapture or distance sampling. Recent advances in abundance estimation allow one to model heterogeneity with individual covariates or mixture distributions and to derive multimodel abundance estimators that explicitly address uncertainty about which model parameterization best represents truth. Further, it is possible to borrow information on detection probability across several populations when data are sparse. While promising, these methods have not been evaluated using mark?recapture data from populations of known abundance, and thus far have largely been overlooked by ecologists. In this paper, we explored the utility of newly developed mark?recapture methods for estimating the abundance of 12 captive populations of wild house mice (Mus musculus). We found that mark?recapture methods employing individual covariates yielded satisfactory abundance estimates for most populations. In contrast, model sets with heterogeneity formulations consisting solely of mixture distributions did not perform well for several of the populations. We show through simulation that a higher number of trapping occasions would have been necessary to achieve good estimator performance in this case. Finally, we show that simultaneous analysis of data from low abundance populations can yield viable abundance estimates.

  3. Large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} decay modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishima, Satoshi; Yoshikawa, Tadashi

    2004-11-01

    We discuss a possibility of large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} from recent experimental data. The experimental data may be suggesting that there are some discrepancies between the data and theoretical estimation in the branching ratios of them. In B{yields}K{pi} decays, to explain it, a large electroweak penguin contribution and large strong phase differences seem to be needed. The contributions should appear also in B{yields}{pi}{pi}. We show, as an example, a solution to solve the discrepancies in both B{yields}K{pi} and B{yields}{pi}{pi}. However the magnitude of the parameters and the strong phase estimated from experimental data are quite largemore » compared with the theoretical estimations. It may be suggesting some new physics effects are included in these processes. We will have to discuss about the dependence of the new physics. To explain both modes at once, we may need large electroweak penguin contribution with new weak phases and some SU(3) breaking effects by new physics in both QCD and electroweak penguin-type processes.« less

  4. Vacuum transfer system increases sugar maple sap yield

    Treesearch

    Russell S. Walters

    1978-01-01

    Yields of sugar maple sap collected from three plastic pipeline systems by gravity, vacuum pump, and a vacuum pump with a transfer tank were compared during 2 years in northern Vermont. The transfer system yielded 27 percent more sap one year and 17 percent more the next year. Higher vacuum levels at the tapholes were observed in the transfer system.

  5. Global Agriculture Yields and Conflict under Future Climate

    NASA Astrophysics Data System (ADS)

    Rising, J.; Cane, M. A.

    2013-12-01

    Aspects of climate have been shown to correlate significantly with conflict. We investigate a possible pathway for these effects through changes in agriculture yields, as predicted by field crop models (FAO's AquaCrop and DSSAT). Using satellite and station weather data, and surveyed data for soil and management, we simulate major crop yields across all countries between 1961 and 2008, and compare these to FAO and USDA reported yields. Correlations vary by country and by crop, from approximately .8 to -.5. Some of this range in crop model performance is explained by crop varieties, data quality, and other natural, economic, and political features. We also quantify the ability of AquaCrop and DSSAT to simulate yields under past cycles of ENSO as a proxy for their performance under changes in climate. We then describe two statistical models which relate crop yields to conflict events from the UCDP/PRIO Armed Conflict dataset. The first relates several preceding years of predicted yields of the major grain in each country to any conflict involving that country. The second uses the GREG ethnic group maps to identify differences in predicted yields between neighboring regions. By using variation in predicted yields to explain conflict, rather than actual yields, we can identify the exogenous effects of weather on conflict. Finally, we apply precipitation and temperature time-series under IPCC's A1B scenario to the statistical models. This allows us to estimate the scale of the impact of future yields on future conflict. Centroids of the major growing regions for each country's primary crop, based on USDA FAS consumption. Correlations between simulated yields and reported yields, for AquaCrop and DSSAT, under the assumption that no irrigation, fertilization, or pest control is used. Reported yields are the average of FAO yields and USDA FAS yields, where both are available.

  6. Winter wheat stand density determination and yield estimates from handheld and airborne scanners. [Montana

    NASA Technical Reports Server (NTRS)

    Aase, J. K.; Millard, J. P.; Siddoway, F. H. (Principal Investigator)

    1982-01-01

    Radiance measurements from handheld (Exotech 100-A) and air-borne (Daedalus DEI 1260) radiometers were related to wheat (Triticum aestivum L.) stand densities (simulated winter wheat winterkill) and to grain yield for a field located 11 km northwest of Sidney, Montana, on a Williams loam soil (fine-loamy, mixed Typic Argiborolls) where a semidwarf hard red spring wheat cultivar was needed to stand. Radiances were measured with the handheld radiometer on clear mornings throughout the growing season. Aircraft overflight measurements were made at the end of tillering and during the early stem extension period, and the mid-heading period. The IR/red ratio and normalized difference vegetation index were used in the analysis. The aircraft measurements corroborated the ground measurements inasmuch as wheat stand densities were detected and could be evaluated at an early enough growth stage to make management decision. The aircraft measurements also corroborated handheld measurements when related to yield prediction. The IR/red ratio, although there was some growth stage dependency, related well to yield when measured from just past tillering until about the watery-ripe stage.

  7. Evaluation of Thompson-type trend and monthly weather data models for corn yields in Iowa, Illinois, and Indiana

    NASA Technical Reports Server (NTRS)

    French, V. (Principal Investigator)

    1982-01-01

    An evaluation was made of Thompson-Type models which use trend terms (as a surrogate for technology), meteorological variables based on monthly average temperature, and total precipitation to forecast and estimate corn yields in Iowa, Illinois, and Indiana. Pooled and unpooled Thompson-type models were compared. Neither was found to be consistently superior to the other. Yield reliability indicators show that the models are of limited use for large area yield estimation. The models are objective and consistent with scientific knowledge. Timely yield forecasts and estimates can be made during the growing season by using normals or long range weather forecasts. The models are not costly to operate and are easy to use and understand. The model standard errors of prediction do not provide a useful current measure of modeled yield reliability.

  8. Production yield of rare-earth ions implanted into an optical crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornher, Thomas, E-mail: t.kornher@physik.uni-stuttgart.de; Xia, Kangwei; Kolesov, Roman

    2016-02-01

    Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.

  9. Monitoring Crop Yield in USA Using a Satellite-Based Climate-Variability Impact Index

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Anderson, Bruce; Tan, Bin; Barlow, Mathew; Myneni, Ranga

    2011-01-01

    A quantitative index is applied to monitor crop growth and predict agricultural yield in continental USA. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to overall anomalies in growth during a given year, is derived from 1-km MODIS Leaf Area Index. The growing-season integrated CVII can provide an estimate of the fractional change in overall growth during a given year. In turn these estimates can provide fine-scale and aggregated information on yield for various crops. Trained from historical records of crop production, a statistical model is used to produce crop yield during the growing season based upon the strong positive relationship between crop yield and the CVII. By examining the model prediction as a function of time, it is possible to determine when the in-season predictive capability plateaus and which months provide the greatest predictive capacity.

  10. Contributions of human activities to suspended sediment yield during storm events from a small, steep, tropical watershed

    NASA Astrophysics Data System (ADS)

    Messina, A. M.; Biggs, T. W.

    2016-07-01

    Suspended sediment concentrations (SSC) and yields (SSY) were measured during storm and non-storm periods from undisturbed and human-disturbed portions of a small (1.8 km2), mountainous watershed that drains to a sediment-stressed coral reef. Event-wise SSY (SSYEV) was calculated for 142 storms from measurements of water discharge (Q), turbidity (T), and SSC measured downstream of three key sediment sources: undisturbed forest, an aggregate quarry, and a village. SSC and SSYEV were significantly higher downstream of the quarry during both storm- and non-storm periods. The human-disturbed subwatershed (10.1% disturbed) accounted for an average of 87% of SSYEV from the watershed. Observed sediment yield (mass) to the coast, including human disturbed subwatersheds, was 3.9× the natural background. Specific SSY (mass/area) from the disturbed quarry area was 49× higher than from natural forest compared with 8× higher from the village area. Similar to mountainous watersheds in semi-arid and temperate climates, SSYEV from both the undisturbed and disturbed watersheds correlated closely with maximum event discharge (Qmax), event total precipitation and event total Q, but not with the Erosivity Index. Best estimates of annual SSY varied by method, from 45 to 143 tons/km2/yr from the undisturbed subwatershed, 441-598 tons/km2/yr from the human-disturbed subwatershed, and 241-368 tons/km2/yr from the total watershed. Sediment yield was very sensitive to disturbance; the quarry covers 1.1% of the total watershed area, but contributed 36% of SSYEV. Given the limited access to gravel for infrastructure development, sediment disturbance from local aggregate mining may be a critical sediment source on remote islands in the Pacific and elsewhere. Identification of erosion hotspots like the quarry using rapid, event-wise measures of suspended sediment yield will help efforts to mitigate sediment stress and restore coral reefs.

  11. A combined simple bubbling method with high performance liquid chromatography purification strategy, higher radiochemical yield and purity and faster preparation of carbon-11-raclopride.

    PubMed

    Huang, Huacheng; Ning, Yanli; Zhang, Bucheng; Lou, Cen

    2015-01-01

    Carbon-11-raclopride (¹¹C-R) is a positron-emitting radiotracer successfully used for the study of cognitive control and widely applied in PET imaging. A simple automated preparation of ¹¹C-R by using the reaction of carbon-(11)-methyl triflate (¹¹C-MeOTF) or ¹¹C-methyl iodide (¹¹C-MeI) with demethylraclopride is described. Specifically we used a simple setup applied an additional "U" reaction vessel for ¹¹C-MeOTf compared with ¹¹C-MeI and assessed the influence of several solvents and of the amount of the percussor for ¹¹C-methylation of demethylraclopride by the bubbling method. The reversal of retention order between product and its precursor has been achieved for ¹¹C-R, enabling collection of the purified ¹¹C-R by using the HPLC column after shorter retention time. By the improved radiosynthesis and purification strategy, ¹¹C-R could be prepared with higher radiochemical yield than that of the previous studies. The yield for ¹¹C-MeOTf was 76% and for ¹¹C-CH3I >26% and with better radiochemical purity (>99% based on both ¹¹C-MeOTf and ¹¹C-MeI) as compared to the previously obtained purity of ¹¹C-R using HPLC method with acetonitrile as a part of mobile phase. Furthermore, by using ethanol as the organic modifier, residual solvent analysis prior to human injection could be avoided and ¹¹C-R could be injected directly following simple dilution and sterile filtration. Improved radiosynthesis and HPLC purification in combination with ethanol containing eluent, extremely shortened the time for preparation of ¹¹C-R, gave a higher radiochemical yield and purity for ¹¹C-R and can be used for multiple and faster synthesis of ¹¹C-R and probably for other ¹¹C-labeled radiopharmaceuticals.

  12. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.

    PubMed

    Centritto, Mauro; Lauteri, Marco; Monteverdi, Maria Cristina; Serraj, Rachid

    2009-01-01

    Genotypic variations in leaf gas exchange and yield were analysed in five upland-adapted and three lowland rice cultivars subjected to a differential soil moisture gradient, varying from well-watered to severely water-stressed conditions. A reduction in the amount of water applied resulted in a significant decrease in leaf gas exchange and, subsequently, in above-ground dry mass and grain yield, that varied among genotypes and distance from the line source. The comparison between the variable J and the Delta values in recently synthesized sugars methods, yielded congruent estimations of mesophyll conductance (g(m)), confirming the reliability of these two techniques. Our data demonstrate that g(m) is a major determinant of photosynthesis (A), because rice genotypes with inherently higher g(m) were capable of keeping higher A in stressed conditions. Furthermore, A, g(s), and g(m) of water-stressed genotypes rapidly recovered to the well-watered values upon the relief of water stress, indicating that drought did not cause any lasting metabolic limitation to photosynthesis. The comparisons between the A/C(i) and corresponding A/C(c) curves, measured in the genotypes that showed intrinsically higher and lower instantaneous A, confirmed this finding. Moreover, the effect of drought stress on grain yield was correlated with the effects on both A and total diffusional limitations to photosynthesis. Overall, these data indicate that genotypes which showed higher photosynthesis and conductances were also generally more productive across the entire soil moisture gradient. The analysis of Delta revealed a substantial variation of water use efficiency among the genotypes, both on the long-term (leaf pellet analysis) and short-term scale (leaf soluble sugars analysis).

  13. Biogas production from Pongamia biomass wastes and a model to estimate biodegradability from their composition.

    PubMed

    Gunaseelan, Victor Nallathambi

    2014-02-01

    In this study, I investigated the chemical characteristics, biochemical methane potential, conversion kinetics and biodegradability of untreated and NaOH-treated Pongamia plant parts, and pod husk and press cake from the biodiesel industry to evaluate their suitability as an alternative feedstock for biogas production. The untreated Pongamia seeds exhibited the maximum CH4 yield of 473 ml g (-1) volatile solid (VS) added. Yellow, withered leaves gave a yield as low as 122 ml CH4 g (-1) VS added. There were significant variations in the CH4 production rate constants, which ranged from 0.02 to 0.15 d (-1), and biodegradability, which ranged from 0.25 to 0.98. NaOH treatment of leaf and pod husk, which were highly rich in fibers, increased the yields by 15-22% and CH4 production rate constants by 20-75%. Utilization of Pongamia wastes in biogas digesters not only influences the economics of biodiesel production but also yields CH4 fuel and protects the environment. The experimental data from this study were used to develop a multiple regression model, which could estimate biodegradability based on biochemical characteristics. The model predicted the biodegradability of previously published biomass wastes (r(2) = 0.88) from their biochemical composition. The theoretical CH4 yields estimated as 350 ml g(-1) chemical oxygen demand destroyed are much higher than the experimental yields as 100% biodegradability is assumed for each substrate. Upon correcting the theoretical CH4 yields with biodegradability data obtained from chemical analyses of substrates, their ultimate CH4 yields could be predicted rapidly.

  14. Evaluating high temporal and spatial resolution vegetation index for crop yield prediction

    USDA-ARS?s Scientific Manuscript database

    Remote sensing data have been widely used in estimating crop yield. Remote sensing derived parameters such as Vegetation Index (VI) were used either directly in building empirical models or by assimilating with crop growth models to predict crop yield. The abilities of remote sensing VI in crop yiel...

  15. Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea

    2016-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA

    NASA Astrophysics Data System (ADS)

    Hammond, Patrick A.

    2018-02-01

    Most studies of fractured-rock aquifers are about analytical models used for evaluating aquifer tests or numerical methods for describing groundwater flow, but there have been few investigations on how to estimate the reliable long-term drought yields of individual hard-rock wells. During the drought period of 1998 to 2002, many municipal water suppliers in the Piedmont/Blue Ridge areas of central Maryland (USA) had to institute water restrictions due to declining well yields. Previous estimates of the yields of those wells were commonly based on extrapolating drawdowns, measured during short-term single-well hydraulic pumping tests, to the first primary water-bearing fracture in a well. The extrapolations were often made from pseudo-equilibrium phases, frequently resulting in substantially over-estimated well yields. The methods developed in the present study to predict yields consist of extrapolating drawdown data from infinite acting radial flow periods or by fitting type curves of other conceptual models to the data, using diagnostic plots, inverse analysis and derivative analysis. Available drawdowns were determined by the positions of transition zones in crystalline rocks or thin-bedded consolidated sandstone/limestone layers (reservoir rocks). Aquifer dewatering effects were detected by type-curve matching of step-test data or by breaks in the drawdown curves constructed from hydraulic tests. Operational data were then used to confirm the predicted yields and compared to regional groundwater levels to determine seasonal variations in well yields. Such well yield estimates are needed by hydrogeologists and water engineers for the engineering design of water systems, but should be verified by the collection of long-term monitoring data.

  17. Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale

    PubMed Central

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2018-01-01

    Timely and accurate information on crop yield is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to enable temporal resolution of an image every 3–5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat assessment at regional scale. For the former, we adapt a previously developed approach for Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m resolution that allows automatic mapping of winter crops taking into account knowledge on crop calendar and without ground truth data. For the latter, we use a generalized winter wheat yield model that is based on NDVI-peak estimation and MODIS data, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A has a positive impact both for winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times comparing to the single satellite usage. PMID:29888751

  18. Spectrally-Based Assessment of Crop Seasonal Performance and Yield

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Borisova, Denitsa; Georgiev, Georgy

    The rapid advances of space technologies concern almost all scientific areas from aeronautics to medicine, and a wide range of application fields from communications to crop yield predictions. Agricultural monitoring is among the priorities of remote sensing observations for getting timely information on crop development. Monitoring agricultural fields during the growing season plays an important role in crop health assessment and stress detection provided that reliable data is obtained. Successfully spreading is the implementation of hyperspectral data to precision farming associated with plant growth and phenology monitoring, physiological state assessment, and yield prediction. In this paper, we investigated various spectral-biophysical relationships derived from in-situ reflectance measurements. The performance of spectral data for the assessment of agricultural crops condition and yield prediction was examined. The approach comprisesd development of regression models between plant spectral and state-indicative variables such as biomass, vegetation cover fraction, leaf area index, etc., and development of yield forecasting models from single-date (growth stage) and multitemporal (seasonal) reflectance data. Verification of spectral predictions was performed through comparison with estimations from biophysical relationships between crop growth variables. The study was carried out for spring barley and winter wheat. Visible and near-infrared reflectance data was acquired through the whole growing season accompanied by detailed datasets on plant phenology and canopy structural and biochemical attributes. Empirical relationships were derived relating crop agronomic variables and yield to various spectral predictors. The study findings were tested using airborne remote sensing inputs. A good correspondence was found between predicted and actual (ground-truth) estimates

  19. Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and Earth Observation data.

    PubMed

    Ogutu, Booker O; Dash, Jadunandan; Dawson, Terence P

    2013-09-01

    This article develops a new carbon exchange diagnostic model [i.e. Southampton CARbon Flux (SCARF) model] for estimating daily gross primary productivity (GPP). The model exploits the maximum quantum yields of two key photosynthetic pathways (i.e. C3 and C4 ) to estimate the conversion of absorbed photosynthetically active radiation into GPP. Furthermore, this is the first model to use only the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (i.e. FAPARps ) rather than total canopy, to predict GPP. The GPP predicted by the SCARF model was comparable to in situ GPP measurements (R(2)  > 0.7) in most of the evaluated biomes. Overall, the SCARF model predicted high GPP in regions dominated by forests and croplands, and low GPP in shrublands and dry-grasslands across USA and Europe. The spatial distribution of GPP from the SCARF model over Europe and conterminous USA was comparable to those from the MOD17 GPP product except in regions dominated by croplands. The SCARF model GPP predictions were positively correlated (R(2)  > 0.5) to climatic and biophysical input variables indicating its sensitivity to factors controlling vegetation productivity. The new model has three advantages, first, it prescribes only two quantum yield terms rather than species specific light use efficiency terms; second, it uses only the fraction of PAR absorbed by photosynthetic elements of the canopy (FAPARps ) hence capturing the actual PAR used in photosynthesis; and third, it does not need a detailed land cover map that is a major source of uncertainty in most remote sensing based GPP models. The Sentinel satellites planned for launch in 2014 by the European Space Agency have adequate spectral channels to derive FAPARps at relatively high spatial resolution (20 m). This provides a unique opportunity to produce global GPP operationally using the Southampton CARbon Flux (SCARF) model at high spatial resolution. © 2013 John Wiley & Sons

  20. Forecasting of cereals yields in a semi-arid area using the agrometeorological model «SAFY» combined to optical SPOT/HRV images

    NASA Astrophysics Data System (ADS)

    Chahbi, Aicha; Zribi, Mehrez; Lili-Chabaane, Zohra; Mougenot, Bernard

    2015-10-01

    In semi-arid areas, an operational grain yield forecasting system, which could help decision-makers to plan annual imports, is needed. It can be challenging to monitor the crop canopy and production capacity of plants, especially cereals. Many models, based on the use of remote sensing or agro-meteorological models, have been developed to estimate the biomass and grain yield of cereals. Remote sensing has demonstrated its strong potential for the monitoring of the vegetation's dynamics and temporal variations. Through the use of a rich database, acquired over a period of two years for more than 60 test fields, and from 20 optical satellite SPOT/HRV images, the aim of the present study is to evaluate the feasibility of two approaches to estimate the dynamics and yields of cereals in the context of semi-arid, low productivity regions in North Africa. The first approach is based on the application of the semi-empirical growth model SAFY "Simple Algorithm For Yield estimation", developed to simulate the dynamics of the leaf area index and the grain yield, at the field scale. The model is able to reproduce the time evolution of the LAI of all fields. However, the yields are under-estimated. Therefore, we developed a new approach to improve the SAFY model. The grain yield is function of LAI area in the growth period between 25 March and 5 April. This approach is robust, the measured and estimated grain yield are well correlated. Finally, this model is used in combination with remotely sensed LAI measurements to estimate yield for the entire studied site.

  1. Food security in the 21st century: Global yield projections and agricultural expansion

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Rulli, M.; D'Odorico, P.

    2013-12-01

    Global demands on agricultural lands are ever increasing as a result of population growth, changes in diet and increasing biofuel use. By mid-century, the demands for food and fiber are expected to roughly double with the population reaching 9.5 billion. However, earth's finite resource base places a ceiling on the amount of agricultural production that is possible. Several strategies have been widely discussed to meet these rapid increases and to extend the ceiling yet higher, including reducing waste, modifying diets, improving yield and productivity and expanding agriculture and aquaculture. One of the most promising of these is closing the yield gap of currently under-performing agricultural land that has the potential to be much more productive. With high inputs (e.g. irrigation, fertilizers), this strategy has real potential to increase food security, particularly in the developing world where population is expected to sharply increase and where a high potential for yield gap closure exists. Thus it is important to consider whether improvements in global yield can adequately meet global dietary demand during the 21st century. Constructing yield projections to the end of the century, we examine whether global crop production for 154 countries and 16 major food crops under selected agricultural and dietary scenarios can keep pace with estimates of population growth to 2100. By calculating the global production of calories, we are then able to examine how many people can be supported under future scenarios and how closing yield gaps can increase this potential. Our findings agree with previous studies that closing the yield gap alone cannot provide sufficient production by mid-century and that a heavy global dependence on trade will persist throughout the century. Using high-resolution global land suitability maps under a suite of climate models, we find that scenarios incorporating a combination of yield gap closure and agricultural expansion provide the most

  2. Fission yield covariances for JEFF: A Bayesian Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Leray, Olivier; Rochman, Dimitri; Fleming, Michael; Sublet, Jean-Christophe; Koning, Arjan; Vasiliev, Alexander; Ferroukhi, Hakim

    2017-09-01

    The JEFF library does not contain fission yield covariances, but simply best estimates and uncertainties. This situation is not unique as all libraries are facing this deficiency, firstly due to the lack of a defined format. An alternative approach is to provide a set of random fission yields, themselves reflecting covariance information. In this work, these random files are obtained combining the information from the JEFF library (fission yields and uncertainties) and the theoretical knowledge from the GEF code. Examples of this method are presented for the main actinides together with their impacts on simple burn-up and decay heat calculations.

  3. High yield fabrication of fluorescent nanodiamonds

    PubMed Central

    Boudou, Jean-Paul; Curmi, Patrick; Jelezko, Fedor; Wrachtrup, Joerg; Aubert, Pascal; Sennour, Mohamed; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties. PMID:19451687

  4. Pit-1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls.

    PubMed

    Renaville, R; Gengler, N; Vrech, E; Prandi, A; Massart, S; Corradini, C; Bertozzi, C; Mortiaux, F; Burny, A; Portetelle, D

    1997-12-01

    The growth hormone factor-1/pituitary-specific transcription factor Pit-1 is responsible for the expression of growth hormone in mammals. Mutations in Pit-1 have been found in growth hormone disorders of mice and humans. We studied the eventual association between Pit-1 polymorphism using the HinfI enzyme and the milk yield and conformation traits of 89 Italian Holstein-Friesian bulls. A strategy employing polymerase chain reaction was used to amplify a 451-bp fragment from semen DNA. Digestion of polymerase chain reaction products with HinfI revealed two alleles: allele A was not digested (451-bp fragment), and allele B was cut at one restriction site, generating two fragments of 244 and 207 bp. Three patterns were observed; frequencies were 2.2, 31.5, and 66.3% for AA, AB, and BB, respectively. Fixed and mixed linear models were fitted on daughter yield deviations for milk yields and on deregressed proofs for conformation traits. Predictions were weighted using the inverse of the estimated variance of records. The models used contained mean and gene substitution effects for Pit-1 A allele as fixed effects and random sire effect for the mixed model. The A allele was found to be superior for milk and protein yields, inferior for fat percentage, and superior for body depth, angularity, and rear leg set, which is difficult to explain. A canonical transformation revealed that Pit-1 had three actions, one linked to milk yield traits and angularity, a second linked to body depth and rear leg set, and a third linked to lower fat yields and to higher angularity.

  5. Influence of Cutting Cycle and Spacing on Coppice Sycamore Yield

    Treesearch

    H. E. Kennedy

    1975-01-01

    Cutting cycle significantly affected total aboveground dry-weight yields, which were greater with the 2-, 3-, and 4-year cycles than with the I-year. For all cutting cycles, significantly higher yields were obtained with 2- by 5-foot spacings than with 4 by 5. Dry-weight yields ranged from 3,229 pounds per acre per year for the I-year cutting cycle spaced at 4 by 5...

  6. Cyclophosphamide induces bone marrow to yield higher numbers of precursor dendritic cells in vitro capable of functional antigen presentation to T cells in vivo

    PubMed Central

    Salem, Mohamed L.; El-Naggar, Sabry A.; Cole, David J.

    2009-01-01

    We have shown recently that cyclophosphamide (CTX) treatment induced a marked increase in the numbers of immature dendritic cells (DCs) in blood, coinciding with enhanced antigen-specific responses of the adoptively transferred CD8+ T cells. Because this DC expansion was preceded by DC proliferation in bone marrow (BM), we tested whether BM post CTX treatment can generate higher numbers of functional DCs. BM was harvested three days after treatment of C57BL/6 mice with PBS or CTX and cultured with GM-CSF/IL-4 in vitro. Compared with control, BM from CTX-treated mice showed faster generation and yielded higher numbers of DCs with superior activation in response to toll-like receptor (TLR) agonists. Vaccination with peptide-pulsed DCs generated from BM from CTX-treated mice induced comparable adjuvant effects to those induced by control DCs. Taken together, post CTX BM harbors higher numbers of DC precursors capable of differentiating into functional DCs, which be targeted to create host microenvironment riches in activated DCs upon treatment with TLR agonists. PMID:20036354

  7. Multi-scale modeling to relate Be surface temperatures, concentrations and molecular sputtering yields

    NASA Astrophysics Data System (ADS)

    Lasa, Ane; Safi, Elnaz; Nordlund, Kai

    2015-11-01

    Recent experiments and Molecular Dynamics (MD) simulations show erosion rates of Be exposed to deuterium (D) plasma varying with surface temperature and the correlated D concentration. Little is understood how these three parameters relate for Be surfaces, despite being essential for reliable prediction of impurity transport and plasma facing material lifetime in current (JET) and future (ITER) devices. A multi-scale exercise is presented here to relate Be surface temperatures, concentrations and sputtering yields. Kinetic Monte Carlo (MC) code MMonCa is used to estimate equilibrium D concentrations in Be at different temperatures. Then, mixed Be-D surfaces - that correspond to the KMC profiles - are generated in MD, to calculate Be-D molecular erosion yields due to D irradiation. With this new database implemented in the 3D MC impurity transport code ERO, modeling scenarios studying wall erosion, such as RF-induced enhanced limiter erosion or main wall surface temperature scans run at JET, can be revisited with higher confidence. Work supported by U.S. DOE under Contract DE-AC05-00OR22725.

  8. Soybean yield in relation to distance from the Itaipu reservoir

    NASA Astrophysics Data System (ADS)

    de Faria, Rogério Teixeira; Junior, Ruy Casão; Werner, Simone Silmara; Junior, Luiz Antônio Zanão; Hoogenboom, Gerrit

    2016-07-01

    Crops close to small water bodies may exhibit changes in yield if the water mass causes significant changes in the microclimate of areas near the reservoir shoreline. The scientific literature describes this effect as occurring gradually, with higher intensity in the sites near the shoreline and decreasing intensity with distance from the reservoir. Experiments with two soybean cultivars were conducted during four crop seasons to evaluate soybean yield in relation to distance from the Itaipu reservoir and determine the effect of air temperature and water availability on soybean crop yield. Fifteen experimental sites were distributed in three transects perpendicular to the Itaipu reservoir, covering an area at approximately 10 km from the shoreline. The yield gradient between the site closest to the reservoir and the sites farther away in each transect did not show a consistent trend, but varied as a function of distance, crop season, and cultivar. This finding indicates that the Itaipu reservoir does not affect the yield of soybean plants grown within approximately 10 km from the shoreline. In addition, the variation in yield among the experimental sites was not attributed to thermal conditions because the temperature was similar within transects. However, the crop water availability was responsible for higher differences in yield among the neighboring experimental sites related to water stress caused by spatial variability in rainfall, especially during the soybean reproductive period in January and February.

  9. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  10. Kill ratio calculation for in-line yield prediction

    NASA Astrophysics Data System (ADS)

    Lorenzo, Alfonso; Oter, David; Cruceta, Sergio; Valtuena, Juan F.; Gonzalez, Gerardo; Mata, Carlos

    1999-04-01

    The search for better yields in IC manufacturing calls for a smarter use of the vast amount of data that can be generated by a world class production line.In this scenario, in-line inspection processes produce thousands of wafer maps, number of defects, defect type and pictures every day. A step forward is to correlate these with the other big data- generator area: test. In this paper, we present how these data can be put together and correlated to obtain a very useful yield predicting tool. This correlation will first allow us to calculate the kill ratio, i.e. the probability for a defect of a certain size in a certain layer to kill the die. Then we will use that number to estimate the cosmetic yield that a wafer will have.

  11. Association of HMO penetration and other credit quality factors with tax-exempt bond yields.

    PubMed

    McCue, M J

    1997-01-01

    This paper evaluates the relationship of HMO penetration, as well as other credit quality measures of market, institutional, operational, and financial traits, to tax-exempt bond yields. The study analyzed more than 1,500 bond issues from 1990 through 1993 and corrected for simultaneous relationships between bond size and yield and selection bias. The study found lower bond yields for hospitals located in markets with no HMO penetration. Lower yields for bond issues also were found for facilities generating higher numbers of days cash on hand and greater debt service coverage. Finally, results show that hospitals with higher occupancy rates achieve a lower yield.

  12. Spectral estimates of solar radiation intercepted by corn canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.

    1982-01-01

    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.

  13. Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Enhancing Cocrystal Yield.

    PubMed

    Li, Shu; Yu, Tao; Tian, Yiwei; Lagan, Colette; Jones, David S; Andrews, Gavin P

    2017-11-22

    Pharmaceutical cocrystals have attracted increasing attention over the past decade as an alternative way to modify the physicochemical properties and hence improve the bioavailability of a drug, without sacrificing thermodynamic stability. Our previous work has demonstrated the viability of in-situ formation of ibuprofen/isonicotinamide cocrystal suspensions within a matrix carrier via a single-step hot-melt extrusion (HME) process. The key aim of the current work is to establish optimised processing conditions to improve cocrystal yield within extruded matrices. The solubility of each individual cocrystal component in the matrix carrier was estimated using two different methods, calculation of Hansen solubility parameters, and Flory-Huggins solution theory using melting point depression measurement, respectively. The latter was found to be more relevant to extrusion cocrystallisation because of the ability to predict miscibility across a range of temperatures. The predictions obtained from the F-H phase diagrams were verified using ternary extrusion processing. Temperatures that promote solubilisation of the parent reagents during processing, and precipitation of the newly formed cocrystal were found to be the most suitable in generating high cocrystal yields. The incorporation of intensive mixing/kneading elements to the screw configuration was also shown to significantly improve the cocrystal yield when utilising a matrix platform. This work has shown that intensive mixing in combination with appropriate temperature selection, can significantly improve the cocrystal yield within a stable and low viscosity carrier during HME processing. Most importantly, this work reports, for the very first time in the literature, the use of the F-H phase diagrams to predict the most appropriate HME processing window to drive higher cocrystal yield.

  14. Local yield stress statistics in model amorphous solids

    NASA Astrophysics Data System (ADS)

    Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain

    2018-03-01

    We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.

  15. The potential for using canopy spectral reflectance as an indirect selection tool for yield improvement in winter wheat

    NASA Astrophysics Data System (ADS)

    Prasad, Bishwajit

    Scope and methods of study. Complementing breeding effort by deploying alternative methods of identifying higher yielding genotypes in a wheat breeding program is important for obtaining greater genetic gains. Spectral reflectance indices (SRI) are one of the many indirect selection tools that have been reported to be associated with different physiological process of wheat. A total of five experiments (a set of 25 released cultivars from winter wheat breeding programs of the U.S. Great Plains and four populations of randomly derived recombinant inbred lines having 25 entries in each population) were conducted in two years under Great Plains winter wheat rainfed environments at Oklahoma State University research farms. Grain yield was measured in each experiment and biomass was measured in three experiments at three growth stages (booting, heading, and grainfilling). Canopy spectral reflectance was measured at three growth stages and eleven SRI were calculated. Correlation (phenotypic and genetic) between grain yield and SRI, biomass and SRI, heritability (broad sense) of the SRI and yield, response to selection and correlated response, relative selection efficiency of the SRI, and efficiency in selecting the higher yielding genotypes by the SRI were assessed. Findings and conclusions. The genetic correlation coefficients revealed that the water based near infrared indices (WI and NWI) were strongly associated with grain yield and biomass production. The regression analysis detected a linear relationship between the water based indices with grain yield and biomass. The two newly developed indices (NWI-3 and NWI-4) gave higher broad sense heritability than grain yield, higher direct response to selection compared to grain yield, correlated response equal to or higher than direct response for grain yield, relative selection efficiency greater than one, and higher efficiency in selecting higher yielding genotypes. Based on the overall genetic analysis required to

  16. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    PubMed Central

    Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  17. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    PubMed

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  18. Specific Yield--Column drainage and centrifuge moisture content

    USGS Publications Warehouse

    Johnson, A.I.; Prill, R.C.; Morris, D.A.

    1963-01-01

    The specific yield of a rock or soil, with respect to water, is the ratio of (1) the volume of water which, after being saturated, it will yield by gravity to (2) its own volume. Specific retention represents the water retained against gravity drainage. The specific yield and retention when added together are equal to the total interconnected porosity of the rock or soil. Because specific retention is more easily determined than specific yield, most methods for obtaining yield first require the determination of specific retention. Recognizing the great need for developing improved methods of determining the specific yield of water-bearing materials, the U.S. Geological Survey and the California Department of Water Resources initiated a cooperative investigation of this subject. The major objectives of this research are (1) to review pertinent literature on specific yield and related subjects, (2) to increase basic knowledge of specific yield and rate of drainage and to determine the most practical methods of obtaining them, (3) to compare and to attempt to correlate the principal laboratory and field methods now commonly used to obtain specific yield, and (4) to obtain improved estimates of specific yield of water-bearing deposits in California. An open-file report, 'Specific yield of porous media, an annotated bibliography,' by A. I. Johnson, D. A. Morris, and R. C. Prill, was released in 1960 in partial fulfillment of the first objective. This report describes the second phase of the specific-yield study by the U.S. Geological Survey Hydrologic Laboratory at Denver, Colo. Laboratory research on column drainage and centrifuge moisture equivalent, two methods for estimating specific retention of porous media, is summarized. In the column-drainage study, a wide variety of materials was packed into plastic columns of 1- to 8-inch diameter, wetted with Denver tap water, and drained under controlled conditions of temperature and humidity. The effects of cleaning the

  19. Relationship of grapevine yield and growth to nematode densities.

    PubMed

    Ferris, H; McKenry, M V

    1975-07-01

    Yield, growth, and vigor of individual grape vines were correlated with nematode population densities in a series of California vineyards. In a Hanford sandy loam soil, Xiphinema americanum densities showed negative correlations with yield, growth, and vigor of vines. When vines were categorized according to vigor, X. americanurn densities had little relationship to yield of high-vigor vines, but were negatively correlated with yield of low-vigor vines. Densities of Paratylenchus harnatus were positively correlated with yield, growth, and vigor of vines. Correlations between Meloidogyne spp. densities and vine performance were variable, even when the vines were separated according to soil type and plant vigor. Densities of Meloidogyne spp. populations were generally higher on coarser-textured, sandy soils and the vines were less vigorous there. Densities of P. hamatus were greater in fine-textured soils.

  20. Detection of Powdery Mildew in Two Winter Wheat Plant Densities and Prediction of Grain Yield Using Canopy Hyperspectral Reflectance

    PubMed Central

    Cao, Xueren; Luo, Yong; Zhou, Yilin; Fan, Jieru; Xu, Xiangming; West, Jonathan S.; Duan, Xiayu; Cheng, Dengfa

    2015-01-01

    To determine the influence of plant density and powdery mildew infection of winter wheat and to predict grain yield, hyperspectral canopy reflectance of winter wheat was measured for two plant densities at Feekes growth stage (GS) 10.5.3, 10.5.4, and 11.1 in the 2009–2010 and 2010–2011 seasons. Reflectance in near infrared (NIR) regions was significantly correlated with disease index at GS 10.5.3, 10.5.4, and 11.1 at two plant densities in both seasons. For the two plant densities, the area of the red edge peak (Σdr 680–760 nm), difference vegetation index (DVI), and triangular vegetation index (TVI) were significantly correlated negatively with disease index at three GSs in two seasons. Compared with other parameters Σdr 680–760 nm was the most sensitive parameter for detecting powdery mildew. Linear regression models relating mildew severity to Σdr 680–760 nm were constructed at three GSs in two seasons for the two plant densities, demonstrating no significant difference in the slope estimates between the two plant densities at three GSs. Σdr 680–760 nm was correlated with grain yield at three GSs in two seasons. The accuracies of partial least square regression (PLSR) models were consistently higher than those of models based on Σdr 680760 nm for disease index and grain yield. PLSR can, therefore, provide more accurate estimation of disease index of wheat powdery mildew and grain yield using canopy reflectance. PMID:25815468

  1. AMMI adjustment for statistical analysis of an international wheat yield trial.

    PubMed

    Crossa, J; Fox, P N; Pfeiffer, W H; Rajaram, S; Gauch, H G

    1991-01-01

    Multilocation trials are important for the CIMMYT Bread Wheat Program in producing high-yielding, adapted lines for a wide range of environments. This study investigated procedures for improving predictive success of a yield trial, grouping environments and genotypes into homogeneous subsets, and determining the yield stability of 18 CIMMYT bread wheats evaluated at 25 locations. Additive Main effects and Multiplicative Interaction (AMMI) analysis gave more precise estimates of genotypic yields within locations than means across replicates. This precision facilitated formation by cluster analysis of more cohesive groups of genotypes and locations for biological interpretation of interactions than occurred with unadjusted means. Locations were clustered into two subsets for which genotypes with positive interactions manifested in high, stable yields were identified. The analyses highlighted superior selections with both broad and specific adaptation.

  2. What Your Yield Says about You

    ERIC Educational Resources Information Center

    Hoover, Eric

    2009-01-01

    The recession has turned Americans into numbers addicts. Seemingly endless supplies of statistics--stock prices, retail sales, and the gross domestic product--offer various views about the health of the nation's economy. Higher education has its own economic indicators. Among the most important is "yield," the percentage of admitted students who…

  3. Impacts of management practices on bioenergy feedstock yield and economic feasibility on Conservation Reserve Program grasslands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Eric K.; Aberle, Ezra; Chen, Chengci

    Perennial grass mixtures planted on Conservation Reserve Program (CRP) land are a potential source of dedicated bioenergy feedstock. Long-term nitrogen (N) and harvest management are critical factors for maximizing biomass yield while maintaining the longevity of grass stands. A six-year farm-scale study was conducted to understand the impact of weather variability on biomass yield, determine optimal N fertilization and harvest timing management practices for sustainable biomass production, and estimate economic viability at six CRP sites in the United States. Precipitation during the growing season was a critical factor for annual biomass production across all regions, and annual biomass production wasmore » severely reduced when growing season precipitation was below 50% of average. The N rate of 112 kg ha -1 produced the highest biomass yield at each location. Harvest timing resulting in the highest biomass yield was site-specific and was a factor of predominant grass type, seasonal precipitation, and the number of harvests taken per year. The use of N fertilizer for yield enhancement unambiguously increased the cost of biomass regardless of the harvest timing for all six sites. The breakeven price of biomass at the farmgate ranged from 37 dollars to 311 dollars Mg -1 depending on the rate of N application, timing of harvesting, and location when foregone opportunity costs were not considered. Breakeven prices ranged from 69 dollars to 526 dollars Mg -1 when the loss of CRP land rental payments was included as an opportunity cost. Annual cost of the CRP to the federal government could be reduced by over 8% in the states included in this study; however, this would require the biomass price to be much higher than in the case where the landowner receives the CRP land rent. Lastly, this field research demonstrated the importance of long-term, farm-scale research for accurate estimation of biomass feedstock production and economic viability from perennial

  4. Impacts of management practices on bioenergy feedstock yield and economic feasibility on Conservation Reserve Program grasslands

    DOE PAGES

    Anderson, Eric K.; Aberle, Ezra; Chen, Chengci; ...

    2015-12-21

    Perennial grass mixtures planted on Conservation Reserve Program (CRP) land are a potential source of dedicated bioenergy feedstock. Long-term nitrogen (N) and harvest management are critical factors for maximizing biomass yield while maintaining the longevity of grass stands. A six-year farm-scale study was conducted to understand the impact of weather variability on biomass yield, determine optimal N fertilization and harvest timing management practices for sustainable biomass production, and estimate economic viability at six CRP sites in the United States. Precipitation during the growing season was a critical factor for annual biomass production across all regions, and annual biomass production wasmore » severely reduced when growing season precipitation was below 50% of average. The N rate of 112 kg ha -1 produced the highest biomass yield at each location. Harvest timing resulting in the highest biomass yield was site-specific and was a factor of predominant grass type, seasonal precipitation, and the number of harvests taken per year. The use of N fertilizer for yield enhancement unambiguously increased the cost of biomass regardless of the harvest timing for all six sites. The breakeven price of biomass at the farmgate ranged from 37 dollars to 311 dollars Mg -1 depending on the rate of N application, timing of harvesting, and location when foregone opportunity costs were not considered. Breakeven prices ranged from 69 dollars to 526 dollars Mg -1 when the loss of CRP land rental payments was included as an opportunity cost. Annual cost of the CRP to the federal government could be reduced by over 8% in the states included in this study; however, this would require the biomass price to be much higher than in the case where the landowner receives the CRP land rent. Lastly, this field research demonstrated the importance of long-term, farm-scale research for accurate estimation of biomass feedstock production and economic viability from perennial

  5. Unexpected high yields of carbonyl and peroxide products of aqueous isoprene ozonolysis and implications

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Huang, D.; Zhang, X.; Zhao, Y.; Chen, Z. M.

    2012-03-01

    The aqueous phase reaction of volatile organic compounds (VOCs) has not been considered in most analyses of atmospheric chemical processes. However, some experimental evidence has shown that, compared to the corresponding gas phase reaction, the aqueous chemical processes of VOCs in the bulk solutions and surfaces of ambient wet particles (cloud, fog, and wet aerosols) may potentially contribute to the products and formation of secondary organic aerosol (SOA). In the present study, we performed a laboratory experiment of the aqueous ozonolysis of isoprene at different pHs (3-7) and temperatures (4-25 °C). We detected three important kinds of products, including carbonyl compounds, peroxide compounds, and organic acids. Our results showed that the molar yields of these products were nearly independent of the investigated pHs and temperatures. These products included (1) carbonyls: 56.7 ± 6.7% formaldehyde, 42.8 ± 2.5% methacrolein (MAC), and 57.7 ± 3.4% methyl vinyl ketone (MVK); (2) peroxides: 53.4 ± 4.1% hydrogen peroxide (H2O2) and 15.1 ± 3.1% hydroxylmethyl hydroperoxide (HMHP); and (3) organic acids: undetectable (< 1% estimated by the detection limit). Based on the amounts of products formed and the isoprene consumed, the total carbon yield was estimated to be 95 ± 4%. This implied that most of the products in the reaction system were detected. Of note, the combined yields of both MAC + MVK and H2O2 + HMHP in the aqueous isoprene ozonolysis were much higher than those observed in the corresponding gas phase reaction. We suggested that these unexpected high yields of carbonyls and peroxides were related to the greater capability of condensed water, compared to water vapor, to stabilize energy-rich Criegee radicals. This aqueous ozonolysis of isoprene (and possibly other biogenic VOCs) could potentially occur on the surfaces of ambient wet particles and plants. Moreover, the high-yield carbonyl and peroxide products might provide a considerable source of

  6. Estimating the effect of treatment rate changes when treatment benefits are heterogeneous: antibiotics and otitis media.

    PubMed

    Park, Tae-Ryong; Brooks, John M; Chrischilles, Elizabeth A; Bergus, George

    2008-01-01

    Contrast methods to assess the health effects of a treatment rate change when treatment benefits are heterogeneous across patients. Antibiotic prescribing for children with otitis media (OM) in Iowa Medicaid is the empirical example. Instrumental variable (IV) and linear probability model (LPM) are used to estimate the effect of antibiotic treatments on cure probabilities for children with OM in Iowa Medicaid. Local area physician supply per capita is the instrument in the IV models. Estimates are contrasted in terms of their ability to make inferences for patients whose treatment choices may be affected by a change in population treatment rates. The instrument was positively related to the probability of being prescribed an antibiotic. LPM estimates showed a positive effect of antibiotics on OM patient cure probability while IV estimates showed no relationship between antibiotics and patient cure probability. Linear probability model estimation yields the average effects of the treatment on patients that were treated. IV estimation yields the average effects for patients whose treatment choices were affected by the instrument. As antibiotic treatment effects are heterogeneous across OM patients, our estimates from these approaches are aligned with clinical evidence and theory. The average estimate for treated patients (higher severity) from the LPM model is greater than estimates for patients whose treatment choices are affected by the instrument (lower severity) from the IV models. Based on our IV estimates it appears that lowering antibiotic use in OM patients in Iowa Medicaid did not result in lost cures.

  7. Optimizing Dense Plasma Focus Neutron Yields With Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Stein, Elizabeth; Higginson, Drew; Kueny, Christopher; Link, Anthony; Schmidt, Andrea

    2017-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high-density jets are modeled in the large-eddy Navier-Stokes code CharlesX, which is suitable for modeling both sub-sonic and supersonic gas flow. The gas pattern, which is essentially static on z-pinch time scales, is imported from CharlesX to LSP for neutron yield predictions. Fast gas puffs allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of a subsonic jet increases relative to the background fill, we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density via super-sonic flow (also known as Mach diamonds) allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration and the necessary jet conditions for increasing neutron yield and reducing yield variability are explored. Simulations of realistic jet profiles are performed and compared to the ideal scenario. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL.

  8. Yields of Soviet underground nuclear explosions at Novaya Zemlya, 1964-1976, from seismic body and surface waves

    PubMed Central

    Sykes, Lynn R.; Wiggins, Graham C.

    1986-01-01

    Surface and body wave magnitudes are determined for 15 U.S.S.R. underground nuclear weapons tests conducted at Novaya Zemlya between 1964 and 1976 and are used to estimate yields. These events include the largest underground explosions detonated by the Soviet Union. A histogram of body wave magnitude (mb) values indicates a clustering of explosions at a few specific yields. The most pronounced cluster consists of six explosions of yield near 500 kilotons. Several of these seem to be tests of warheads for major strategic systems that became operational in the late 1970s. The largest Soviet underground explosion is estimated to have a yield of 3500 ± 600 kilotons, somewhat smaller than the yield of the largest U.S. underground test. A preliminary estimation of the significance of tectonic release is made by measuring the amplitude of Love waves. The bias in mb for Novaya Zemlya relative to the Nevada test site is about 0.35, nearly identical to that of the eastern Kazakhstan test site relative to Nevada. PMID:16593645

  9. Yield Potential of Soil Water and Its Sustainability for Dryland Spring Maize with Plastic Film Mulch on the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Lin, Wen; Liu, Wenzhao

    2016-04-01

    Plastic film mulch(PM) is an agronomic measure widely used in the dryland spring maize production system on the Loess Plateau of China. The measure can greatly increase yield of dryland maize due to its significant effects on soil water conservation. Few researches have been done to investigate how the yield potential is impacted by PM. The yield-water use (ET) boundary equation raised by French and Schultz provides a simple approach to calculate crop water limited yield potential and gives a benchmark for farmers in managing their crops. However, method used in building the equation is somewhat arbitrary and has no strict principle, which leads to the uncertainty of equation when it is applied. Though using PM can increase crop yield, it increases soil temperature, promotes crop growth and increases the water transpired by crop, which further leads to high water consumption as compared with crops without PM. This means that PM may lead to the overuse of soil water and hence is unsustainable in a long run. This research is mainly focused on the yield potential and sustainability of PMing for spring maize on the Loess Plateau. A principle that may be utilized by any other researchers was proposed based on French & Schultz's boundary equation and on part of quantile regression theory. We used a data set built by collecting the experimental data from published papers and analyzed the water-limited yield potential of spring maize on the Loess Plateau. Moreover, maize yield and soil water dynamics under PM were investigated by a long-term site field experiment. Results show that on the Loess Plateau, the water limited yield potential can be calculated using the boundary equation y = 60.5×(x - 50), with a platform yield of 15954 kghm-2 after the water use exceeds 314 mm. Without PMing, the water limited yield potential can be estimated by the boundary equation y = 47.5×(x - 62.3) , with a platform yield of 12840 kghm-2 when the water use exceeds 325 mm, which

  10. Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder.

    PubMed

    Tammimies, Kristiina; Marshall, Christian R; Walker, Susan; Kaur, Gaganjot; Thiruvahindrapuram, Bhooma; Lionel, Anath C; Yuen, Ryan K C; Uddin, Mohammed; Roberts, Wendy; Weksberg, Rosanna; Woodbury-Smith, Marc; Zwaigenbaum, Lonnie; Anagnostou, Evdokia; Wang, Zhuozhi; Wei, John; Howe, Jennifer L; Gazzellone, Matthew J; Lau, Lynette; Sung, Wilson W L; Whitten, Kathy; Vardy, Cathy; Crosbie, Victoria; Tsang, Brian; D'Abate, Lia; Tong, Winnie W L; Luscombe, Sandra; Doyle, Tyna; Carter, Melissa T; Szatmari, Peter; Stuckless, Susan; Merico, Daniele; Stavropoulos, Dimitri J; Scherer, Stephen W; Fernandez, Bridget A

    2015-09-01

    The use of genome-wide tests to provide molecular diagnosis for individuals with autism spectrum disorder (ASD) requires more study. To perform chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular diagnostic yield of these tests in a sample typical of a developmental pediatric clinic. The sample consisted of 258 consecutively ascertained unrelated children with ASD who underwent detailed assessments to define morphology scores based on the presence of major congenital abnormalities and minor physical anomalies. The children were recruited between 2008 and 2013 in Newfoundland and Labrador, Canada. The probands were stratified into 3 groups of increasing morphological severity: essential, equivocal, and complex (scores of 0-3, 4-5, and ≥6). All probands underwent CMA, with WES performed for 95 proband-parent trios. The overall molecular diagnostic yield for CMA and WES in a population-based ASD sample stratified in 3 phenotypic groups. Of 258 probands, 24 (9.3%, 95%CI, 6.1%-13.5%) received a molecular diagnosis from CMA and 8 of 95 (8.4%, 95%CI, 3.7%-15.9%) from WES. The yields were statistically different between the morphological groups. Among the children who underwent both CMA and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8% (95%CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular diagnoses from both tests. The combined yield was significantly higher in the complex group when compared with the essential group (pairwise comparison, P = .002). [table: see text]. Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may

  11. Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.

    2007-01-01

    The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.

  12. Yield of active screening for tuberculosis among asylum seekers in Germany: a systematic review and meta-analysis

    PubMed Central

    Bozorgmehr, Kayvan; Razum, Oliver; Saure, Daniel; Joggerst, Brigitte; Szecsenyi, Joachim; Stock, Christian

    2017-01-01

    All asylum seekers in Germany undergo upon-entry screening for tuberculosis TB, but comprehensive evidence on the yield is lacking. We compared the national estimates with the international literature in a systematic review and meta-analysis of studies reporting the yield of TB, defined as the fraction of active TB cases detected among asylum seekers screened in Germany upon entry. We searched 11 national and international databases for empirical studies and the internet for grey literature published in English or German without restrictions on publication time. Among 1,253 screened articles, we identified six articles reporting the yield of active TB based on German data, ranging from 0.72 (95% confidence interval (CI): 0.45–1.10) to 6.41 (95% CI: 4.19–9.37) per 1,000 asylum seekers. The pooled estimate across all studies was 3.47 (95% CI: 1.78–5.73; I2 = 94.9%; p < 0.0001) per 1,000 asylum seekers. This estimate was in line with international evidence (I2 = 0%; p for heterogeneity 0.55). The meta-analysis of available international estimates resulted in a pooled yield of 3.04 (95% CI: 2.24–3.96) per 1,000. This study provides an estimate across several German federal states for the yield of TB screening in asylum seekers. Further research is needed to develop more targeted screening programmes. PMID:28367795

  13. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees.

    PubMed

    Pfister, Sonja C; Eckerter, Philipp W; Schirmel, Jens; Cresswell, James E; Entling, Martin H

    2017-05-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees.

  14. Character-marked furniture: potential for lumber yield increase in rip-first rough mills

    Treesearch

    Urs Buehlmann; Janice K. Wiedenbeck; D. Earl Kline; D. Earl Kline

    1998-01-01

    The inclusion of character marks in furniture parts increases part yield at least as much as previously estimated by industrial practitioners and scientists specializing in yield efficiency. However, character-marked furniture is uncommon in the more popular North American furniture species and designs. Opportunities for extending the hardwood resource associated with...

  15. Spatial Distribution of Hydrologic Ecosystem Service Estimates: Comparing Two Models

    NASA Astrophysics Data System (ADS)

    Dennedy-Frank, P. J.; Ghile, Y.; Gorelick, S.; Logsdon, R. A.; Chaubey, I.; Ziv, G.

    2014-12-01

    We compare estimates of the spatial distribution of water quantity provided (annual water yield) from two ecohydrologic models: the widely-used Soil and Water Assessment Tool (SWAT) and the much simpler water models from the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) toolbox. These two models differ significantly in terms of complexity, timescale of operation, effort, and data required for calibration, and so are often used in different management contexts. We compare two study sites in the US: the Wildcat Creek Watershed (2083 km2) in Indiana, a largely agricultural watershed in a cold aseasonal climate, and the Upper Upatoi Creek Watershed (876 km2) in Georgia, a mostly forested watershed in a temperate aseasonal climate. We evaluate (1) quantitative estimates of water yield to explore how well each model represents this process, and (2) ranked estimates of water yield to indicate how useful the models are for management purposes where other social and financial factors may play significant roles. The SWAT and InVEST models provide very similar estimates of the water yield of individual subbasins in the Wildcat Creek Watershed (Pearson r = 0.92, slope = 0.89), and a similar ranking of the relative water yield of those subbasins (Spearman r = 0.86). However, the two models provide relatively different estimates of the water yield of individual subbasins in the Upper Upatoi Watershed (Pearson r = 0.25, slope = 0.14), and very different ranking of the relative water yield of those subbasins (Spearman r = -0.10). The Upper Upatoi watershed has a significant baseflow contribution due to its sandy, well-drained soils. InVEST's simple seasonality terms, which assume no change in storage over the time of the model run, may not accurately estimate water yield processes when baseflow provides such a strong contribution. Our results suggest that InVEST users take care in situations where storage changes are significant.

  16. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  17. DETECTING TEMPORAL CHANGE IN WATERSHED NUTRIENT YIELDS

    EPA Science Inventory

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increase...

  18. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  19. Disinfection byproduct yields from the chlorination of natural waters

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Yields for the formation of trihalomethane and nonpurgeable total organic-halide disinfection byproducts were determined as a function of pH and initial free-chlorine concentration for the chlorination of water from the Mississippi, Missouri, and Ohio Rivers. Samples were collected at 12 sites on the Mississippi River from Minneapolis, MN, to New Orleans. LA, and on the Missouri and Ohio Rivers 1.6 km above their confluences with the Mississippi during the summer, fall, and spring seasons of the year. Yields varied little with distance along the Mississippi River, although the dissolved organic-carbon concentration decreased considerably with distance downstream. Yields for the Missouri and Ohio were comparable to yields for the Mississippi, despite much higher bromide concentrations for the Missouri and Ohio. Trihalomethane yields increased as the pH and initial free- chlorine concentration increased. Nonpurgeable total organic-halide yields also increased as the initial free-chlorine concentration increased, but decreased as the pH increased.

  20. Statistical rice yield modeling using blended MODIS-Landsat based crop phenology metrics in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.; Lau, K. V.

    2015-12-01

    Taiwan is a populated island with a majority of residents settled in the western plains where soils are suitable for rice cultivation. Rice is not only the most important commodity, but also plays a critical role for agricultural and food marketing. Information of rice production is thus important for policymakers to devise timely plans for ensuring sustainably socioeconomic development. Because rice fields in Taiwan are generally small and yet crop monitoring requires information of crop phenology associating with the spatiotemporal resolution of satellite data, this study used Landsat-MODIS fusion data for rice yield modeling in Taiwan. We processed the data for the first crop (Feb-Mar to Jun-Jul) and the second (Aug-Sep to Nov-Dec) in 2014 through five main steps: (1) data pre-processing to account for geometric and radiometric errors of Landsat data, (2) Landsat-MODIS data fusion using using the spatial-temporal adaptive reflectance fusion model, (3) construction of the smooth time-series enhanced vegetation index 2 (EVI2), (4) rice yield modeling using EVI2-based crop phenology metrics, and (5) error verification. The fusion results by a comparison bewteen EVI2 derived from the fusion image and that from the reference Landsat image indicated close agreement between the two datasets (R2 > 0.8). We analysed smooth EVI2 curves to extract phenology metrics or phenological variables for establishment of rice yield models. The results indicated that the established yield models significantly explained more than 70% variability in the data (p-value < 0.001). The comparison results between the estimated yields and the government's yield statistics for the first and second crops indicated a close significant relationship between the two datasets (R2 > 0.8), in both cases. The root mean square error (RMSE) and mean absolute error (MAE) used to measure the model accuracy revealed the consistency between the estimated yields and the government's yield statistics. This

  1. Yield performance and stability of CMS-based triticale hybrids.

    PubMed

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  2. Mean size estimation yields left-side bias: Role of attention on perceptual averaging.

    PubMed

    Li, Kuei-An; Yeh, Su-Ling

    2017-11-01

    The human visual system can estimate mean size of a set of items effectively; however, little is known about whether information on each visual field contributes equally to the mean size estimation. In this study, we examined whether a left-side bias (LSB)-perceptual judgment tends to depend more heavily on left visual field's inputs-affects mean size estimation. Participants were instructed to estimate the mean size of 16 spots. In half of the trials, the mean size of the spots on the left side was larger than that on the right side (the left-larger condition) and vice versa (the right-larger condition). Our results illustrated an LSB: A larger estimated mean size was found in the left-larger condition than in the right-larger condition (Experiment 1), and the LSB vanished when participants' attention was effectively cued to the right side (Experiment 2b). Furthermore, the magnitude of LSB increased with stimulus-onset asynchrony (SOA), when spots on the left side were presented earlier than the right side. In contrast, the LSB vanished and then induced a reversed effect with SOA when spots on the right side were presented earlier (Experiment 3). This study offers the first piece of evidence suggesting that LSB does have a significant influence on mean size estimation of a group of items, which is induced by a leftward attentional bias that enhances the prior entry effect on the left side.

  3. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units

  4. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    PubMed

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes.

    PubMed

    Li, Min; Tian, Ying; Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic.

  6. Higher Level Phylogeny and the First Divergence Time Estimation of Heteroptera (Insecta: Hemiptera) Based on Multiple Genes

    PubMed Central

    Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic. PMID:22384163

  7. Yield of illicit indoor cannabis cultivation in the Netherlands.

    PubMed

    Toonen, Marcel; Ribot, Simon; Thissen, Jac

    2006-09-01

    To obtain a reliable estimation on the yield of illicit indoor cannabis cultivation in The Netherlands, cannabis plants confiscated by the police were used to determine the yield of dried female flower buds. The developmental stage of flower buds of the seized plants was described on a scale from 1 to 10 where the value of 10 indicates a fully developed flower bud ready for harvesting. Using eight additional characteristics describing the grow room and cultivation parameters, regression analysis with subset selection was carried out to develop two models for the yield of indoor cannabis cultivation. The median Dutch illicit grow room consists of 259 cannabis plants, has a plant density of 15 plants/m(2), and 510 W of growth lamps per m(2). For the median Dutch grow room, the predicted yield of female flower buds at the harvestable developmental stage (stage 10) was 33.7 g/plant or 505 g/m(2).

  8. A toy model for the yield of a tamped fission bomb

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2018-02-01

    A simple expression is developed for estimating the yield of a tamped fission bomb, that is, a basic nuclear weapon comprising a fissile core jacketed by a surrounding neutron-reflecting tamper. This expression is based on modeling the nuclear chain reaction as a geometric progression in combination with a previously published expression for the threshold-criticality condition for such a core. The derivation is especially straightforward, as it requires no knowledge of diffusion theory and should be accessible to students of both physics and policy. The calculation can be set up as a single page spreadsheet. Application to the Little Boy and Fat Man bombs of World War II gives results in reasonable accord with published yield estimates for these weapons.

  9. Relative yield of two transferrin phenotypes in coho salmon

    USGS Publications Warehouse

    McIntyre, John D.; Johnson, A. Kenneth

    1977-01-01

    Experimental groups of coho salmon (Oncorhynchus kisutch) of transferring types AA and AC were compared to determine relative growth and survival before release, yields from the fishery, and returns of fish to the hatchery as 2- and 3-yr-olds. In the hatchery, growth was faster and survival higher in the AA than in the AC types. However, yields of AA and AC types were equal, although the yield of AC types as 3-yr-olds was greater than that of AA types because more of the AA males matured in 2 years. We concluded that it would be futile to attempt to increase the yield of coho salmon by maximizing the frequency of biochemical phenotypes that display only a temporary advantage over other types.

  10. Yield gaps and yield relationships in US soybean production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...

  11. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees

    PubMed Central

    Eckerter, Philipp W.; Schirmel, Jens; Cresswell, James E.; Entling, Martin H.

    2017-01-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees. PMID:28573019

  12. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  13. Exotic Grass Yields Under Southern Pines

    Treesearch

    H.A. Pearson

    1975-01-01

    Kentucky 31 and Kenwell tall fescue, Pensacola bahia, and Brunswick grasses yielded nea,rly three times more forage under an established pine stand than native grasses 7 years after seeding. Introducing exotic grasses did not significantly increase total grass production but did enhance range quality since the cool-season grasses are green during winter and are higher...

  14. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition.

    PubMed

    Joshi, Rohit; Sahoo, Khirod Kumar; Tripathi, Amit Kumar; Kumar, Ritesh; Gupta, Brijesh Kumar; Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2018-05-01

    Cytokinins play a significant role in determining grain yield in plants. Cytokinin oxidases catalyse irreversible degradation of cytokinins and hence modulate cellular cytokinin levels. Here, we studied the role of an inflorescence meristem-specific rice cytokinin oxidase - OsCKX2 - in reducing yield penalty under salinity stress conditions. We utilized an RNAi-based approach to study the function of OsCKX2 in maintaining grain yield under salinity stress condition. Ultra-performance liquid chromatography-based estimation revealed a significant increase in cytokinins in the inflorescence meristem of OsCKX2-knockdown plants. To determine if there exists a correlation between OsCKX2 levels and yield under salinity stress condition, we assessed the growth, physiology and grain yield of OsCKX2-knockdown plants vis-à-vis the wild type. OsCKX2-knockdown plants showed better vegetative growth, higher relative water content and photosynthetic efficiency and reduced electrolyte leakage as compared with the wild type under salinity stress. Importantly, we found a negative correlation between OsCKX2 expression and plant productivity as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions. These results suggest that OsCKX2, via controlling cytokinin levels, regulates floral primordial activity modulating rice grain yield under normal as well as abiotic stress conditions. © 2017 John Wiley & Sons Ltd.

  15. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  16. Using groundwater levels to estimate recharge

    USGS Publications Warehouse

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  17. Usefulness of the HMRPGV method for simultaneous selection of upland cotton genotypes with greater fiber length and high yield stability.

    PubMed

    Farias, F J C; Carvalho, L P; Silva Filho, J L; Teodoro, P E

    2016-08-19

    The harmonic mean of the relative performance of genotypic predicted value (HMRPGV) method has been used to measure the genotypic stability and adaptability of various crops. However, its use in cotton is still restricted. This study aimed to use mixed models to select cotton genotypes that simultaneously result in longer fiber length, higher fiber yield, and phenotypic stability in both of these traits. Eight trials with 16 cotton genotypes were conducted in the 2008/2009 harvest in Mato Grosso State. The experimental design was randomized complete blocks with four replicates of each of the 16 genotypes. In each trial, we evaluated fiber yield and fiber length. The genetic parameters were estimated using the restricted maximum likelihood/best linear unbiased predictor method. Joint selection considering, simultaneously, fiber length, fiber yield, stability, and adaptability is possible with the HMRPGV method. Our results suggested that genotypes CNPA MT 04 2080 and BRS CEDRO may be grown in environments similar to those tested here and may be predicted to result in greater fiber length, fiber yield, adaptability, and phenotypic stability. These genotypes may constitute a promising population base in breeding programs aimed at increasing these trait values.

  18. Hot-boning enhances cook yield of boneless skinless chicken thighs.

    PubMed

    Zhuang, H; Bowker, B C; Buhr, R J; Brambila, G Sanchez

    2014-06-01

    Three experiments were conducted to evaluate the effects of postmortem deboning time on cook yield of boneless skinless chicken thighs. In experiment 1, chicken thigh meat was deboned at 0.75 (hot-bone), 2, and 24 h postmortem (PM) and trimmed to obtain mainly iliotibialis muscle. Samples were cooked directly from a frozen state. Cook yield of the muscle was significantly influenced by PM deboning time. Hot-boned thighs exhibited a 7% greater cook yield than the samples deboned at 24 h. In experiment 2, boneless skinless chicken thighs were deboned at 0.3, 2, and 24 h PM and cooked directly from a fresh, never-frozen state at 24 h PM. Cook yield of the hot-boned thighs was significantly higher than those of the 2 and 24 h deboned samples, which did not differ from each other. In experiment 3, whole legs (thigh + drumstick) were cut from the carcass backbone at 0.3 (hot-cut), 2, and 24 h PM. Thighs were separated from the legs (drumsticks) at either the same time the whole legs were removed from the carcasses or at 24 h PM. Intact thighs (bone in) were cooked fresh at 24 h PM. Color of fresh thigh muscles, cook yield, and Warner-Bratzler shear force of cooked samples were measured. Cook yield of the thighs cut from the backbone before chilling was significantly higher than those cut from the carcasses at 2 and 24 h PM, which did not differ from each other. The PM time at which intact thighs were separated from the leg (drumstick) did not influence cook yield. These results demonstrate that postmortem deboning time can significantly affect cook yield of boneless skinless chicken thigh products. Deboning chicken thighs after chilling reduces the cook yield. Differences in the cook yield of thighs may also result from the removal of whole chicken legs from the carcass backbone. Poultry Science Association Inc.

  19. Enrichment desired quality chitosan fraction and advance yield by sequential static and static-dynamic supercritical CO2.

    PubMed

    Hsieh, Yi-Yin; Chin, Hui Yen; Tsai, Min-Lang

    2015-11-20

    This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Pions as gluons in higher dimensions

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Remmen, Grant N.; Shen, Chia-Hsien; Wen, Congkao

    2018-04-01

    We derive the nonlinear sigma model as a peculiar dimensional reduction of Yang-Mills theory. In this framework, pions are reformulated as higher-dimensional gluons arranged in a kinematic configuration that only probes cubic interactions. This procedure yields a purely cubic action for the nonlinear sigma model that exhibits a symmetry enforcing color-kinematics duality. Remarkably, the associated kinematic algebra originates directly from the Poincaré algebra in higher dimensions. Applying the same construction to gravity yields a new quartic action for Born-Infeld theory and, applied once more, a cubic action for the special Galileon theory. Since the nonlinear sigma model and special Galileon are subtly encoded in the cubic sectors of Yang-Mills theory and gravity, respectively, their double copy relationship is automatic.

  1. Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis

    NASA Technical Reports Server (NTRS)

    Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)

    1979-01-01

    The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.

  2. Spring wheat-leaf phytomass and yield estimates from airborne scanner and hand-held radiometer measurements

    NASA Technical Reports Server (NTRS)

    Aase, J. K.; Siddoway, F. H.; Millard, J. P.

    1984-01-01

    An attempt has been made to relate hand-held radiometer measurements, and airborne multispectral scanner readings, with both different wheat stand densities and grain yield. Aircraft overflights were conducted during the tillering, stem extension and heading period stages of growth, while hand-held radiometer readings were taken throughout the growing season. The near-IR/red ratio was used in the analysis, which indicated that both the aircraft and the ground measurements made possible a differentiation and evaluation of wheat stand densities at an early enough growth stage to serve as the basis of management decisions. The aircraft data also corroborated the hand-held radiometer measurements with respect to yield prediction. Winterkill was readily evaluated.

  3. Using Landsat to provide potato production estimates to Columbia Basin farmers and processors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A summary of project activities relative to the estimation of potato yields in the Columbia Basin is given. Oregon State University is using a two-pronged approach to yield estimation, one using simulation models and the other using purely empirical models. The simulation modeling approach has used satellite observations to determine key dates in the development of the crop for each field identified as potatoes. In particular, these include planting dates, emergence dates, and harvest dates. These critical dates are fed into simulation models of crop growth and development to derive yield forecasts. Two empirical modeling approaches are illustrated. One relates tuber yield to estimates of cumulative intercepted solar radiation; the other relates tuber yield to the integral under the GVI curve.

  4. Using LANDSAT to provide potato production estimates to Columbia Basin farmers and processors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The estimation of potato yields in the Columbia basin is described. The fundamental objective is to provide CROPIX with working models of potato production. A two-pronged approach was used to yield estimation: (1) using simulation models, and (2) using purely empirical models. The simulation modeling approach used satellite observations to determine certain key dates in the development of the crop for each field identified as potatoes. In particular, these include planting dates, emergence dates, and harvest dates. These critical dates are fed into simulation models of crop growth and development to derive yield forecasts. Purely empirical models were developed to relate yield to some spectrally derived measure of crop development. Two empirical approaches are presented: one relates tuber yield to estimates of cumulative intercepted solar radiation, the other relates tuber yield to the integral under GVI (Global Vegetation Index) curve.

  5. Shrinkage and growth compensation in common sunflowers: refining estimates of damage

    USGS Publications Warehouse

    Sedgwick, James A.; Oldemeye, John L.; Swenson, Elizabeth L.

    1986-01-01

    Shrinkage and growth compensation of artificially damaged common sunflowers (Helianthus annuus) were studied in central North Dakota during 1981-1982 in an effort to increase accuracy of estimates of blackbird damage to sunflowers. In both years, as plants matured damaged areas on seedheads shrank at a greater rate than the sunflower heads themselves. This differential shrinkage resulted in an underestimation of the area damaged. Sunflower head and damaged-area shrinkage varied widely by time and degree of damage and by size of the seedhead damaged. Because variation in shrinkage by time of damage was so large, predicting when blackbird damage occurs may be the most important factor in estimating seed loss. Yield'occupied seed area was greater (P < 0.05) for damaged than undamaged heads and tended to increase as degree of damage inflicted increased, indicating growth compensation was occurring in response to lost seeds. Yields of undamaged seeds in seedheads damaged during early seed development were higher than those of heads damaged later. This suggested that there was a period of maximal response to damage when plants were best able to redirect growth to seeds remaining in the head. Sunflowers appear to be able to compensate for damage of ≤ 15% of the total hear area. Estimates of damage can be improved by applying empirical results of differential shrinkage and growth compensations.

  6. Influence of body condition score on carcass characteristics and subprimal yield from cull beef cows.

    PubMed

    Apple, J K; Davis, J C; Stephenson, J; Hankins, J E; Davis, J R; Beaty, S L

    1999-10-01

    Mature beef cows (n = 83) were slaughtered to measure the influence of body condition score (BCS) on carcass characteristics and subprimal yields. All cows were weighed and assigned BCS, based on a 9-point scale, 24 h before slaughter. Cows were slaughtered, and, after a 48-h chilling period, quality and yield grade data were collected on the left side of each carcass. The right side was quartered, fabricated into primal cuts, and weighed. Each primal cut was further processed into boneless subprimal cuts, minor cuts, lean trim, fat, and bone. Cuts were progressively trimmed to 6.4 and 0 mm of external and visible seam fat. Weights were recorded at all stages of fabrication, and subprimal yields were calculated as a percentage of the chilled carcass weight. Live weight, carcass weight, dressing percentage, fat thickness, longissimus muscle area, muscle:bone ratio, and numerical yield grade increased linearly (P = .0001) and predicted cutability and actual muscle-to-fat ratio decreased linearly (P = .0001) as BCS increased from 2 to 8. Carcasses from BCS-8 cows had the most (P<.05) marbling. The percentage of carcasses grading U.S. Utility, or higher, was 16.7, 20.0, 63.6, 43.3, 73.3, 100.0, and 100.0% for cows assigned a BCS of 2, 3, 4, 5, 6, 7, and 8, respectively. At 6.4 mm of fat trim, carcasses from BCS-5 cows had higher (P<.05) shoulder clod yields than carcasses from cows having a BCS of 6, 7, and 8. Carcasses of BCS-2 cows had lower (P<.05) strip loin yields than carcasses from BCS-3, 4, 5, 6, and 7 cows. Top sirloin butt yields were higher (P<.05) for carcasses of BCS-2, 3, 4, and 5 cows than those of BCS-6, 7, or 8 cows. Carcasses from BCS-7 and 8 cows had lower (P<.05) tenderloin and inside round yields than carcasses of BCS-5, or less, cows. At both fat-trim levels, carcasses from BCS-5 cows had higher (P<.05) eye of round yields than cows assigned BCS of 2, 7, or 8. When subprimal cuts were trimmed to 6.4 mm of visible fat, carcasses from BCS-5 cows had

  7. Post-fire land management: Comparative effects of different strategies on hillslope sediment yield

    NASA Astrophysics Data System (ADS)

    Cole, R.; Bladon, K. D.; Wagenbrenner, J.; Coe, D. B. R.

    2017-12-01

    High-severity wildfire can increase erosion on burned, forested hillslopes. Salvage logging is a post-fire land management practice to extract economic value from burned landscapes, reduce fuel loads, and improve forest safety. Few studies assess the impact of post-fire salvage logging or alternative land management approaches on erosion in forested landscapes, especially in California. In September 2015, the Valley Fire burned approximately 31,366 ha of forested land and wildland-urban interface in the California's Northern Coast Range, including most of Boggs Mountain Demonstration State Forest. The primary objective of our study is to quantify erosion rates at the plot scale ( 75 m2) for different post-fire land management practices, including mechanical logging and subsoiling (or ripping) after logging. We measured sediment yields using sediment fences in four sets of replicated plots. We also estimated ground cover in each plot using three randomly positioned 1-meter quadrats. We are also measuring rainfall near each plot to understand hydrologic factors that influence erosion. Preliminary results indicate that burned, unlogged reference plots yielded the most sediment over the winter rainy season (3.3 kg m-2). Sediment yields of burned and logged (0.9 kg m-2), and burned, logged, and ripped (0.7 kg m-2), were substantially lower. Burned and unlogged reference plots had the least ground cover (49%), while ground cover was higher and more similar between logged (65%) and logged and ripped (72%) plots. These initial results contrast with previous studies in which the effect of post-fire salvage logging ranged from no measured impact to increased sediment yield related to salvage logging.

  8. Simulating maize yield and bomass with spatial variability of soil field capacity

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Trout, Thomas; Nolan, Bernard T.; Malone, Robert W.

    2015-01-01

    Spatial variability in field soil properties is a challenge for system modelers who use single representative values, such as means, for model inputs, rather than their distributions. In this study, the root zone water quality model (RZWQM2) was first calibrated for 4 yr of maize (Zea mays L.) data at six irrigation levels in northern Colorado and then used to study spatial variability of soil field capacity (FC) estimated in 96 plots on maize yield and biomass. The best results were obtained when the crop parameters were fitted along with FCs, with a root mean squared error (RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. When running the model using each of the 96 sets of field-estimated FC values, instead of calibrating FCs, the average simulated yield and biomass from the 96 runs were close to measured values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 for biomass. When an average of the 96 FC values for each soil layer was used, simulated yield and biomass were also acceptable with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for biomass. Therefore, when there are large numbers of FC measurements, an average value might be sufficient for model inputs. However, when the ranges of FC measurements were known for each soil layer, a sampled distribution of FCs using the Latin hypercube sampling (LHS) might be used for model inputs.

  9. Evidence for compensatory photosynthetic and yield response of soybeans to aphid herbivory

    DOE PAGES

    Kucharik, Christopher J.; Mork, Amelia C.; Meehan, Timothy D.; ...

    2016-04-13

    The soybean aphid, Aphis glycines Matsumura, an exotic species in North America that has been detected in 21 U.S. states and Canada, is a major pest for soybean that can reduce maximum photosynthetic capacity and yields. Our existing knowledge is based on relatively few studies that do not span a wide variety of environmental conditions, and often focus on relatively high and damaging population pressure. We examined the effects of varied populations and duration of soybean aphids on soybean photosynthetic rates and yield in two experiments. In a 2011 field study, we found that plants with low cumulative aphid daysmore » (CAD, less than 2,300) had higher yields than plants not experiencing significant aphid pressure, suggesting a compensatory growth response to low aphid pressure. This response did not hold at higher CAD, and yields declined. In a 2013 controlled-environment greenhouse study, soybean plants were well-watered and fertilized with nitrogen (N), and aphid populations were manipulated to reach moderate to high levels (8,000–50,000 CAD). Plants tolerated these population levels when aphids were introduced during the vegetative or reproductive phenological stages of the plant, showing no significant reduction in yield. Leaf N concentration and CAD were positively and significantly correlated with increasing ambient photosynthetic rates. Our findings suggest that, given the right environmental conditions, modern soybean plants can withstand higher aphid pressure than previously assumed. Moreover, soybean plants also responded positively through a compensatory photosynthetic effect to moderate population pressure, contributing to stable or increased yield.« less

  10. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress

    PubMed Central

    Ambavaram, Madana M. R.; Basu, Supratim; Krishnan, Arjun; Ramegowda, Venkategowda; Batlang, Utlwang; Rahman, Lutfor; Baisakh, Niranjan; Pereira, Andy

    2014-01-01

    Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions. PMID:25358745

  11. Estimated harvesting on jellyfish in Sarawak

    NASA Astrophysics Data System (ADS)

    Bujang, Noriham; Hassan, Aimi Nuraida Ali

    2017-04-01

    There are three species of jellyfish recorded in Sarawak which are the Lobonema smithii (white jellyfish), Rhopilema esculenta (red jellyfish) and Mastigias papua. This study focused on two particular species which are L.smithii and R.esculenta. This study was done to estimate the highest carrying capacity and the population growth rate of both species by using logistic growth model. The maximum sustainable yield for the harvesting of this species was also determined. The unknown parameters in the logistic model were estimated using center finite different method. As for the results, it was found that the carrying capacity for L.smithii and R.esculenta were 4594.9246456819 tons and 5855.9894242086 tons respectively. Whereas, the population growth rate for both L.smithii and R.esculenta were estimated at 2.1800463754 and 1.144864086 respectively. Hence, the estimated maximum sustainable yield for harvesting for L.smithii and R.esculenta were 2504.2872047638 tons and 1676.0779949431 tons per year.

  12. Automatic yield-line analysis of slabs using discontinuity layout optimization

    PubMed Central

    Gilbert, Matthew; He, Linwei; Smith, Colin C.; Le, Canh V.

    2014-01-01

    The yield-line method of analysis is a long established and extremely effective means of estimating the maximum load sustainable by a slab or plate. However, although numerous attempts to automate the process of directly identifying the critical pattern of yield-lines have been made over the past few decades, to date none has proved capable of reliably analysing slabs of arbitrary geometry. Here, it is demonstrated that the discontinuity layout optimization (DLO) procedure can successfully be applied to such problems. The procedure involves discretization of the problem using nodes inter-connected by potential yield-line discontinuities, with the critical layout of these then identified using linear programming. The procedure is applied to various benchmark problems, demonstrating that highly accurate solutions can be obtained, and showing that DLO provides a truly systematic means of directly and reliably automatically identifying yield-line patterns. Finally, since the critical yield-line patterns for many problems are found to be quite complex in form, a means of automatically simplifying these is presented. PMID:25104905

  13. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    PubMed

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  14. Comparison of Fatigue Life Estimation Using Equivalent Linearization and Time Domain Simulation Methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Dhainaut, Jean-Michel

    2000-01-01

    The Monte Carlo simulation method in conjunction with the finite element large deflection modal formulation are used to estimate fatigue life of aircraft panels subjected to stationary Gaussian band-limited white-noise excitations. Ten loading cases varying from 106 dB to 160 dB OASPL with bandwidth 1024 Hz are considered. For each load case, response statistics are obtained from an ensemble of 10 response time histories. The finite element nonlinear modal procedure yields time histories, probability density functions (PDF), power spectral densities and higher statistical moments of the maximum deflection and stress/strain. The method of moments of PSD with Dirlik's approach is employed to estimate the panel fatigue life.

  15. Advantage of multiple spot urine collections for estimating daily sodium excretion: comparison with two 24-h urine collections as reference.

    PubMed

    Uechi, Ken; Asakura, Keiko; Ri, Yui; Masayasu, Shizuko; Sasaki, Satoshi

    2016-02-01

    Several estimation methods for 24-h sodium excretion using spot urine sample have been reported, but accurate estimation at the individual level remains difficult. We aimed to clarify the most accurate method of estimating 24-h sodium excretion with different numbers of available spot urine samples. A total of 370 participants from throughout Japan collected multiple 24-h urine and spot urine samples independently. Participants were allocated randomly into a development and a validation dataset. Two estimation methods were established in the development dataset using the two 24-h sodium excretion samples as reference: the 'simple mean method' estimated by multiplying the sodium-creatinine ratio by predicted 24-h creatinine excretion, whereas the 'regression method' employed linear regression analysis. The accuracy of the two methods was examined by comparing the estimated means and concordance correlation coefficients (CCC) in the validation dataset. Mean sodium excretion by the simple mean method with three spot urine samples was closest to that by 24-h collection (difference: -1.62  mmol/day). CCC with the simple mean method increased with an increased number of spot urine samples at 0.20, 0.31, and 0.42 using one, two, and three samples, respectively. This method with three spot urine samples yielded higher CCC than the regression method (0.40). When only one spot urine sample was available for each study participant, CCC was higher with the regression method (0.36). The simple mean method with three spot urine samples yielded the most accurate estimates of sodium excretion. When only one spot urine sample was available, the regression method was preferable.

  16. Robust Magnetotelluric Impedance Estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2010-12-01

    Robust magnetotelluric (MT) response function estimators are now in standard use by the induction community. Properly devised and applied, these have ability to reduce the influence of unusual data (outliers). The estimators always yield impedance estimates which are better than the conventional least square (LS) estimation because the `real' MT data almost never satisfy the statistical assumptions of Gaussian distribution and stationary upon which normal spectral analysis is based. This paper discuses the development and application of robust estimation procedures which can be classified as M-estimators to MT data. Starting with the description of the estimators, special attention is addressed to the recent development of a bounded-influence robust estimation, including utilization of the Hilbert Transform (HT) operation on causal MT impedance functions. The resulting robust performances are illustrated using synthetic as well as real MT data.

  17. Understanding the weather signal in national crop-yield variability

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders

    2017-06-01

    Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

  18. Trading forests for yields in the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly

    2012-03-01

    Our knowledge of how agriculture expands, and the types of land it replaces, is remarkably limited across the tropics. Most remote-sensing studies focus on the net gains and losses in forests and agricultural land rather than the land-use transition pathways (Gibbs et al 2010). Only a handful of studies identify land sources for new croplands or plantations, and then only for farming systems aggregated together (e.g., Koh and Wilcove 2008, Morton et al 2006, Gibbs et al 2010). Gutiérrez-Vélez et al (2011), however, have taken a leap forward by tracking the different expansion pathways for smallholder and industrial oil palm plantations. Using a combination of Landsat, MODIS and field surveys, they investigate whether higher yields in new agricultural lands spare forests in the Peruvian Amazon and in a smaller focus area in the Ucayali region. Across the Peruvian Amazon, they show that between 2000 and 2010, new high-yield oil palm plantations replaced forests 72% of the time and accounted for 1.3% of total deforestation, with most expansion occurring after 2006. Gutiérrez-Vélez et al went further in the Ucayali region and compared land sources for new high-yield and low-yield plantations. Expansion of higher-yield agricultural lands should logically reduce the total area needed for production, thus potentially sparing forests. In the Ucayali focus area, expansion of high-yield oil palm did convert less total land area but more forest was cleared than with low-yield expansion. Smaller-scale plantations tended to expand into already cleared areas while industrial-scale plantations traded their greater yields for forests, leading to higher land-clearing carbon emissions per production unit (Gibbs et al 2008). Gutiérrez-Vélez et al show that higher yields may require less land for production but more forest may be lost in the process, and they emphasize the need for stronger incentives for land sparing. The potential land-saving nature of these high-yield

  19. Negative impacts of climate change on cereal yields: statistical evidence from France

    NASA Astrophysics Data System (ADS)

    Gammans, Matthew; Mérel, Pierre; Ortiz-Bobea, Ariel

    2017-05-01

    In several world regions, climate change is predicted to negatively affect crop productivity. The recent statistical yield literature emphasizes the importance of flexibly accounting for the distribution of growing-season temperature to better represent the effects of warming on crop yields. We estimate a flexible statistical yield model using a long panel from France to investigate the impacts of temperature and precipitation changes on wheat and barley yields. Winter varieties appear sensitive to extreme cold after planting. All yields respond negatively to an increase in spring-summer temperatures and are a decreasing function of precipitation about historical precipitation levels. Crop yields are predicted to be negatively affected by climate change under a wide range of climate models and emissions scenarios. Under warming scenario RCP8.5 and holding growing areas and technology constant, our model ensemble predicts a 21.0% decline in winter wheat yield, a 17.3% decline in winter barley yield, and a 33.6% decline in spring barley yield by the end of the century. Uncertainty from climate projections dominates uncertainty from the statistical model. Finally, our model predicts that continuing technology trends would counterbalance most of the effects of climate change.

  20. Estimation of regional material yield from coastal landslides based on historical digital terrain modelling

    USGS Publications Warehouse

    Hapke, C.J.

    2005-01-01

    High-resolution historical (1942) and recent (1994) digital terrain models were derived from aerial photographs along the Big Sur coastline in central California to measure the long-term volume of material that enters the nearshore environment. During the 52-year measurement time period, an average of 21 000 ?? 3100 m3 km-1 a-1 of material was eroded from nine study sections distributed along the coast, with a low yield of 1000 ?? 240 m3 km-1 a-1 and a high of 46 700 ?? 7300 m3 km-1 a-1. The results compare well with known volumes from several deep-seated landslides in the area and suggest that the processes by which material is delivered to the coast are episodic in nature. In addition, a number of parameters are investigated to determine what influences the substantial variation in yield along the coast. It is found that the magnitude of regional coastal landslide sediment yield is primarily related to the physical strength of the slope-forming material. Coastal Highway 1 runs along the lower portion of the slope along this stretch of coastline, and winter storms frequently damage the highway. The California Department of Transportation is responsible for maintaining this scenic highway while minimizing the impacts to the coastal ecosystems that are part of the Monterey Bay National Marine Sanctuary. This study provides environmental managers with critical background data on the volumes of material that historically enter the nearshore from landslides, as well as demonstrating the application of deriving historical digital terrain data to model landscape evolution. Published in 2005 by John Wiley & Sons, Ltd.

  1. Plausible rice yield losses under future climate warming.

    PubMed

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population 1-3 . Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K -1 . Local crop models give a similar sensitivity (-6.3 ± 0.4% K -1 ), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K -1 , respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K -1 ). The constraint implies a more negative response to warming (-8.3 ± 1.4% K -1 ) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K -1 ) (ref. 4). Our study suggests that without CO 2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  2. Climate Variability and Sugarcane Yield in Louisiana.

    NASA Astrophysics Data System (ADS)

    Greenland, David

    2005-11-01

    )], mean maximum August temperature, mean minimum February temperature, soil water surplus between April and September, and occurrence of autumn (fall) hurricanes, were built into a model to simulate adjusted yield values. The CCV model simulates the yield value with an rmse of 5.1 t ha-1. The mean of the adjusted yield data over the study period was 60.4 t ha-1, with values for the highest and lowest years being 73.1 and 50.6 t ha-1, respectively, and a standard deviation of 5.9 t ha-1. Presumably because of the almost constant high water table and soil water availability, higher precipitation totals, which are inversely related to radiation and temperature, tend to have a negative effect on the yields. Past trends in the values of critical climatic variables and general projections of future climate suggest that, with respect to the climatic environment and as long as land drainage is continued and maintained, future levels of sugarcane yield will rise in Louisiana.

  3. Effect of Damping and Yielding on the Seismic Response of 3D Steel Buildings with PMRF

    PubMed Central

    Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions. PMID:25097892

  4. Effect of damping and yielding on the seismic response of 3D steel buildings with PMRF.

    PubMed

    Reyes-Salazar, Alfredo; Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions.

  5. Hot spots of wheat yield decline with rising temperatures.

    PubMed

    Asseng, Senthold; Cammarano, Davide; Basso, Bruno; Chung, Uran; Alderman, Phillip D; Sonder, Kai; Reynolds, Matthew; Lobell, David B

    2017-06-01

    Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production. © 2016 John Wiley & Sons Ltd.

  6. Colostrum immunoglobulin G concentration of multiparous Jersey cows at first and second milking is associated with parity, colostrum yield, and time of first milking, and can be estimated with Brix refractometry.

    PubMed

    Silva-Del-Río, N; Rolle, D; García-Muñoz, A; Rodríguez-Jiménez, S; Valldecabres, A; Lago, A; Pandey, P

    2017-07-01

    The objective of this study was to evaluate colostrum IgG concentration harvested at first and second milking from multiparous Jersey cows, the dam's lactation number, colostrum yield, and time of first milking. In addition, we validated the use of a Brix refractometer to estimate IgG concentration in colostrum from multiparous Jersey cows using radial immunodiffusion as the reference method. Colostrum samples and total weight of colostrum harvested at first (n = 134) and second (n = 68) milking were collected from 134 multiparous Jersey cows housed in a California herd. Fresh colostrum samples were analyzed for IgG concentration with Brix refractometry and frozen samples by radial immunodiffusion. A total of 90.4 and 42.7% of the samples from first and second milking met industry standards of quality for IgG concentration (>50 g/L). Second and third lactation cows had similar colostrum IgG concentration but lower than cows on their fourth and greater lactation. At second milking, 56.4% of cows on their fourth or greater lactation had colostrum IgG concentrations >50 g/L. When colostrum yield increased from low (<3 kg), medium (3 to 6 kg), to high (>6 kg), IgG concentration decreased. Higher IgG concentration was observed on colostrum harvested at <6 h (short) versus 6 to 11 h (medium) after calving. However, IgG concentration in colostrum harvested after 11 h (long) was similar to that harvested at short and medium time. Readings of %Brix were highly correlated with IgG at first (r = 0.81) and second (r = 0.77) milking. The best Brix threshold to identify colostrum from first milking with >50 IgG g/L was 20.9% based on logit equations with Youden's index criterion and 18.0% based on accuracy criterion. For colostrum harvested at second milking, similar Brix thresholds were obtained, 19.2 and 19.0%, regardless of whether Youden's index or accuracy was used as the selection criterion. Our results indicate that the dam's lactation number, colostrum yield, and time of

  7. Estimates of genetic parameters and eigenvector indices for milk production of Holstein cows.

    PubMed

    Savegnago, R P; Rosa, G J M; Valente, B D; Herrera, L G G; Carneiro, R L R; Sesana, R C; El Faro, L; Munari, D P

    2013-01-01

    The objectives of the present study were to estimate genetic parameters of monthly test-day milk yield (TDMY) of the first lactation of Brazilian Holstein cows using random regression (RR), and to compare the genetic gains for milk production and persistency, derived from RR models, using eigenvector indices and selection indices that did not consider eigenvectors. The data set contained monthly TDMY of 3,543 first lactations of Brazilian Holstein cows calving between 1994 and 2011. The RR model included the fixed effect of the contemporary group (herd-month-year of test days), the covariate calving age (linear and quadratic effects), and a fourth-order regression on Legendre orthogonal polynomials of days in milk (DIM) to model the population-based mean curve. Additive genetic and nongenetic animal effects were fit as RR with 4 classes of residual variance random effect. Eigenvector indices based on the additive genetic RR covariance matrix were used to evaluate the genetic gains of milk yield and persistency compared with the traditional selection index (selection index based on breeding values of milk yield until 305 DIM). The heritability estimates for monthly TDMY ranged from 0.12 ± 0.04 to 0.31 ± 0.04. The estimates of additive genetic and nongenetic animal effects correlation were close to 1 at adjacent monthly TDMY, with a tendency to diminish as the time between DIM classes increased. The first eigenvector was related to the increase of the genetic response of the milk yield and the second eigenvector was related to the increase of the genetic gains of the persistency but it contributed to decrease the genetic gains for total milk yield. Therefore, using this eigenvector to improve persistency will not contribute to change the shape of genetic curve pattern. If the breeding goal is to improve milk production and persistency, complete sequential eigenvector indices (selection indices composite with all eigenvectors) could be used with higher economic

  8. Yield and yield gaps in central U.S. corn production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield. Quantile regression analysis was applied to county maize (Zea mays L.) yields (1972 – 2011) from Kentucky, Iowa and Nebraska (irrigated) (total of 115 counties) to e...

  9. Prediction of beef carcass salable yield and trimmable fat using bioelectrical impedance analysis.

    PubMed

    Zollinger, B L; Farrow, R L; Lawrence, T E; Latman, N S

    2010-03-01

    Bioelectrical impedance technology (BIA) is capable of providing an objective method of beef carcass yield estimation with the rapidity of yield grading. Electrical resistance (Rs), reactance (Xc), impedance (I), hot carcass weight (HCW), fat thickness between the 12th and 13th ribs (FT), estimated percentage kidney, pelvic, and heart fat (KPH%), longissimus muscle area (LMA), length between electrodes (LGE) as well as three derived carcass values that included electrical volume (EVOL), reactive density (XcD), and resistive density (RsD) were determined for the carcasses of 41 commercially fed cattle. Carcasses were subsequently fabricated into salable beef products reflective of industry standards. Equations were developed to predict percentage salable carcass yield (SY%) and percentage trimmable fat (FT%). Resulting equations accounted for 81% and 84% of variation in SY% and FT%, respectively. These results indicate that BIA technology is an accurate predictor of beef carcass composition. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Parental smoking and childhood obesity: higher effect estimates for maternal smoking in pregnancy compared with paternal smoking--a meta-analysis.

    PubMed

    Riedel, Christina; Schönberger, Katharina; Yang, Seungmi; Koshy, Gibby; Chen, Yang-Ching; Gopinath, Bamini; Ziebarth, Stephanie; von Kries, Rüdiger

    2014-10-01

    Some studies reported similar effect estimates for the impact of maternal smoking in pregnancy and paternal smoking on childhood obesity, whereas others suggested higher effects for maternal smoking. We performed a meta-analysis to compare the effect of in utero exposure to maternal smoking and that of paternal or household smoking exposure in utero or after birth with mutual adjustment. Meta-analysis of observational studies identified in MEDLINE, EMBASE and Web of Knowledge published in 1900-2013. Study inclusion criterion was assessment of the association of maternal smoking during pregnancy and paternal or household smoking (anyone living in the household who smokes) at any time with childhood overweight and obesity. The analyses were based on all studies with mutually adjusted effect estimates for maternal and paternal/household smoking applying a random-effects model. Data for 109,838 mother/child pairs were reported in 12 studies. The pooled odds ratios (ORs) for overweight 1.33 [95% confidence interval (CI) 1.23;1.44] (n=6, I2=0.00%) and obesity 1.60 (95% CI 1.37;1.88) (n=4, I2=32.47%) for maternal smoking during pregnancy were higher than for paternal smoking: 1.07 (95% CI 1.00;1.16) (n=6, I2=41.34%) and 1.23 (95% CI 1.10;1.38) (n=4, I2=14.61%), respectively. Similar estimates with widely overlapping confidence limits were found for maternal smoking during pregnancy and childhood overweight and obesity: 1.35 (95% CI 1.20;1.51) (n=3, I2=0.00%) and 1.28 (95% CI 1.07;1.54) (n=3, I2=0.00%) compared with household smoking 1.22 (95% CI 1.06;1.39) (n=3, I2=72.14%) and 1.31 (95% CI 1.15;1.50)] (n=3, I2=0.00%). Higher effect estimates for maternal smoking in pregnancy compared with paternal smoking in mutually adjusted models may suggest a direct intrauterine effect. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  11. Interactions of viruses in Cowpea: effects on growth and yield parameters

    PubMed Central

    Kareem, KT; Taiwo, MA

    2007-01-01

    The study was carried out to investigate the effects of inoculating three cowpea cultivars: "OLO II", "OLOYIN" and IT86D-719 with three unrelated viruses: Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture on growth and yield of cultivars at 10 and 30 days after planting (DAP). Generally, the growth and yield of the buffer inoculated control plants were significantly higher than those of the virus inoculated plants. Inoculation of plants at an early age of 10 DAP resulted in more severe effect than inoculations at a later stage of 30 DAP. The average values of plant height and number of leaves produced by plants inoculated 30 DAP were higher than those produced by plants inoculated 10 DAP. Most of the plants inoculated 10 DAP died and did not produce seeds. However, " OLOYIN" cultivar was most tolerant and produced reasonable yields when infected 30 DAP. The effect of single viruses on growth and yield of cultivars showed that CABMV caused more severe effects in IT86D-719, SBMV had the greatest effect on "OLO II" while CMeV induced the greatest effect on "OLOYIN". Yield was greatly reduced in double infections involving CABMV in combination with either CMeV or SBMV in "OLOYIN" and "OLO II", however, there was complete loss in yield of IT86D-719. Triple infection led to complete yield loss in all the three cultivars. PMID:17286870

  12. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds

    USGS Publications Warehouse

    Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.

    2009-01-01

    Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from

  13. A reassessment of ground water flow conditions and specific yield at Borden and Cape Cod

    USGS Publications Warehouse

    Grimestad, Garry

    2002-01-01

    Recent widely accepted findings respecting the origin and nature of specific yield in unconfined aquifers rely heavily on water level changes observed during two pumping tests, one conducted at Borden, Ontario, Canada, and the other at Cape Cod, Massachusetts. The drawdown patterns observed during those tests have been taken as proof that unconfined specific yield estimates obtained from long-duration pumping tests should approach the laboratory-estimated effective porosity of representative aquifer formation samples. However, both of the original test reports included direct or referential descriptions of potential supplemental sources of pumped water that would have introduced intractable complications and errors into straightforward interpretations of the drawdown observations if actually present. Searches for evidence of previously neglected sources were performed by screening the original drawdown observations from both locations for signs of diagnostic skewing that should be present only if some of the extracted water was derived from sources other than main aquifer storage. The data screening was performed using error-guided computer assisted fitting techniques, capable of accurately sensing and simulating the effects of a wide range of non-traditional and external sources. The drawdown curves from both tests proved to be inconsistent with traditional single-source pumped aquifer models but consistent with site-specific alternatives that included significant contributions of water from external sources. The corrected pumping responses shared several important features. Unsaturated drainage appears to have ceased effectively at both locations within the first day of pumping, and estimates of specific yield stabilized at levels considerably smaller than the corresponding laboratory-measured or probable effective porosity. Separate sequential analyses of progressively later field observations gave stable and nearly constant specific yield estimates for each

  14. Preliminary Estimates of 1972-73 Full-Time Instructional Faculty in Institutions of Higher Education. Bulletin. Advanced Statistics for Management. No. 14, March 1, 1973.

    ERIC Educational Resources Information Center

    National Center for Educational Statistics (DHEW/OE), Washington, DC.

    In response to needs expressed by the community of higher education institutions, the National Center for Educational Statistics has produced early estimates of a selected group of mean salaries of instructional faculty in institutions of higher education in 1972-73. The number and salaries of male and female instructional staff by rank are of…

  15. Wild-harvested venison yields and sharing by Michigan deer hunters

    USGS Publications Warehouse

    Goguen, Amber D.; Riley, Shawn J.; Organ, John F.; Rudolph, Brent A.

    2018-01-01

    An increased societal focus on wildlife as food and recent policy deliberations regarding legal markets for wild-harvested meat are encouraging wildlife managers and researchers to examine the amount, use, and distribution of meat yielded through recreational hunting. We used responses to questions on the Michigan Deer Harvest Study to estimate the maximum yield of edible venison and assess hunters’ sharing behaviors. We estimated 11,402–14,473 metric tons of edible venison were procured during the 2013 hunting season. Of hunters who harvested a deer, 85% shared their venison. Hunters who shared did so with an average of 5.6 people (SD = 4.5). Sharing occurred most frequently within tight social networks: members of hunters’ households (69%), relatives (52%), and friends, neighbors, or coworkers (50%). In the absence of legal markets, venison is distributed widely by hunters and greatly amplifies the number of people benefiting from hunting. Nonetheless, we also identified the potential breadth of exposure to disease or contaminants from wild-harvested meat.

  16. Genetic Analysis of Milk Yield in First-Lactation Holstein Friesian in Ethiopia: A Lactation Average vs Random Regression Test-Day Model Analysis

    PubMed Central

    Meseret, S.; Tamir, B.; Gebreyohannes, G.; Lidauer, M.; Negussie, E.

    2015-01-01

    The development of effective genetic evaluations and selection of sires requires accurate estimates of genetic parameters for all economically important traits in the breeding goal. The main objective of this study was to assess the relative performance of the traditional lactation average model (LAM) against the random regression test-day model (RRM) in the estimation of genetic parameters and prediction of breeding values for Holstein Friesian herds in Ethiopia. The data used consisted of 6,500 test-day (TD) records from 800 first-lactation Holstein Friesian cows that calved between 1997 and 2013. Co-variance components were estimated using the average information restricted maximum likelihood method under single trait animal model. The estimate of heritability for first-lactation milk yield was 0.30 from LAM whilst estimates from the RRM model ranged from 0.17 to 0.29 for the different stages of lactation. Genetic correlations between different TDs in first-lactation Holstein Friesian ranged from 0.37 to 0.99. The observed genetic correlation was less than unity between milk yields at different TDs, which indicated that the assumption of LAM may not be optimal for accurate evaluation of the genetic merit of animals. A close look at estimated breeding values from both models showed that RRM had higher standard deviation compared to LAM indicating that the TD model makes efficient utilization of TD information. Correlations of breeding values between models ranged from 0.90 to 0.96 for different group of sires and cows and marked re-rankings were observed in top sires and cows in moving from the traditional LAM to RRM evaluations. PMID:26194217

  17. Integrated model for predicting rice yield with climate change

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ki; Das, Amrita; Park, Jong-Hwa

    2018-04-01

    Rice is the chief agricultural product and one of the primary food source. For this reason, it is of pivotal importance for worldwide economy and development. Therefore, in a decision-support-system both for the farmers and in the planning and management of the country's economy, forecasting yield is vital. However, crop yield, which is a dependent of the soil-bio-atmospheric system, is difficult to represent in statistical language. This paper describes a novel approach for predicting rice yield using artificial neural network, spatial interpolation, remote sensing and GIS methods. Herein, the variation in the yield is attributed to climatic parameters and crop health, and the normalized difference vegetation index from MODIS is used as an indicator of plant health and growth. Due importance was given to scaling up the input parameters using spatial interpolation and GIS and minimising the sources of error in every step of the modelling. The low percentage error (2.91) and high correlation (0.76) signifies the robust performance of the proposed model. This simple but effective approach is then used to estimate the influence of climate change on South Korean rice production. As proposed in the RCP8.5 scenario, an upswing in temperature may increase the rice yield throughout South Korea.

  18. Global estimates of shark catches using trade records from commercial markets.

    PubMed

    Clarke, Shelley C; McAllister, Murdoch K; Milner-Gulland, E J; Kirkwood, G P; Michielsens, Catherine G J; Agnew, David J; Pikitch, Ellen K; Nakano, Hideki; Shivji, Mahmood S

    2006-10-01

    Despite growing concerns about overexploitation of sharks, lack of accurate, species-specific harvest data often hampers quantitative stock assessment. In such cases, trade studies can provide insights into exploitation unavailable from traditional monitoring. We applied Bayesian statistical methods to trade data in combination with genetic identification to estimate by species, the annual number of globally traded shark fins, the most commercially valuable product from a group of species often unrecorded in harvest statistics. Our results provide the first fishery-independent estimate of the scale of shark catches worldwide and indicate that shark biomass in the fin trade is three to four times higher than shark catch figures reported in the only global data base. Comparison of our estimates to approximated stock assessment reference points for one of the most commonly traded species, blue shark, suggests that current trade volumes in numbers of sharks are close to or possibly exceeding the maximum sustainable yield levels.

  19. Colored plastic mulch microclimates affect strawberry fruit yield and quality

    NASA Astrophysics Data System (ADS)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry ( Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC50 value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  20. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    PubMed

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.