Sample records for yielded variable results

  1. Estimating variability in grain legume yields across Europe and the Americas

    NASA Astrophysics Data System (ADS)

    Cernay, Charles; Ben-Ari, Tamara; Pelzer, Elise; Meynard, Jean-Marc; Makowski, David

    2015-06-01

    Grain legume production in Europe has recently come under scrutiny. Although legume crops are often promoted to provide environmental services, European farmers tend to turn to non-legume crops. It is assumed that high variability in legume yields explains this aversion, but so far this hypothesis has not been tested. Here, we estimate the variability of major grain legume and non-legume yields in Europe and the Americas from yield time series over 1961-2013. Results show that grain legume yields are significantly more variable than non-legume yields in Europe. These differences are smaller in the Americas. Our results are robust at the level of the statistical methods. In all regions, crops with high yield variability are allocated to less than 1% of cultivated areas. Although the expansion of grain legumes in Europe may be hindered by high yield variability, some species display risk levels compatible with the development of specialized supply chains.

  2. Recent changes in county-level corn yield variability in the United States from observations and crop models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong

    The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated the change trend of corn yield variability, in projecting its future changes.« less

  3. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    NASA Astrophysics Data System (ADS)

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  4. Whole season compared to growth-stage resolved temperature trends: implications for US maize yield

    NASA Astrophysics Data System (ADS)

    Butler, E. E.; Mueller, N. D.; Huybers, P. J.

    2014-12-01

    The effect of temperature on maize yield has generally been considered using a single value for the entire growing season. We compare the effect of temperature trends on yield between two distinct models: a single temperature sensitivity for the whole season and a variable sensitivity across four distinct agronomic development stages. The more resolved variable-sensitivity model indicates roughly a factor of two greater influence of temperature on yield than that implied by the single-sensitivity model. The largest discrepancies occur in silking, which is demonstrated to be the most sensitive stage in the variable-sensitivity model. For instance, whereas median yields are observed to be only 53% of typical values during the hottest 1% of silking-stage temperatures, the single-sensitivity model over predicts median yields of 68% whereas the variable-sensitivity model more correctly predicts median yields of 61%. That the variable sensitivity model is also not capable of capturing the full extent of yield losses suggests that further refinement to represent the non-linear response would be useful. Results from the variable sensitivity model also indicate that management decisions regarding planting times, which have generally shifted toward earlier dates, have led to greater yield benefit than that implied by the single-sensitivity model. Together, the variation of both temperature trends and yield variability within growing stages calls for closer attention to how changes in management interact with changes in climate to ultimately affect yields.

  5. [Winter wheat yield gap between field blocks based on comparative performance analysis].

    PubMed

    Chen, Jian; Wang, Zhong-Yi; Li, Liang-Tao; Zhang, Ke-Feng; Yu, Zhen-Rong

    2008-09-01

    Based on a two-year household survey data, the yield gap of winter wheat in Quzhou County of Hebei Province, China in 2003-2004 was studied through comparative performance analysis (CPA). The results showed that there was a greater yield gap (from 4.2 to 7.9 t x hm(-2)) between field blocks, with a variation coefficient of 0.14. Through stepwise forward linear multiple regression, it was found that the yield model with 8 selected variables could explain 63% variability of winter wheat yield. Among the variables selected, soil salinity, soil fertility, and irrigation water quality were the most important limiting factors, accounting for 52% of the total yield gap. Crop variety was another important limiting factor, accounting for 14%; while planting date, fertilizer type, disease and pest, and water press accounted for 7%, 14%, 10%, and 3%, respectively. Therefore, besides soil and climate conditions, management practices occupied the majority of yield variability in Quzhou County, suggesting that the yield gap could be reduced significantly through optimum field management.

  6. Electrical resistivity tomography to delineate greenhouse soil variability

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.

    2013-03-01

    Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.

  7. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008

    USGS Publications Warehouse

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.

    2013-01-01

    Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater than 10 percent point-source flow contributions to streamflow had higher yields relative to undeveloped watersheds (having less than 10 and 15 percent developed and agricultural land uses, respectively) and watersheds with relatively low agricultural land use (between 15 and 30 percent). The statistical tests further indicated that the median annual yields for total P were statistically higher for watersheds with high agricultural land use (greater than 30 percent) compared to the undeveloped watersheds and watersheds with low agricultural land use. The total P yields also were higher for watersheds with low urban land use (between 10 and 30 percent developed land) compared to the undeveloped watersheds. The study data indicate that grouping and examining stream nutrient yields based on the land-use classifications used in this report can be useful for characterizing relations between watershed settings and nutrient yields in streams located throughout central and eastern North Carolina. Compiled study data also were analyzed with four regression tree models as a means of determining which watershed environmental variables or combination of variables result in basins that are likely to have high or low nutrient yields. The regression tree analyses indicated that some of the environmental variables examined in this study were useful for predicting yields of nitrate, total N, and total P. When the median annual nutrient yields for all 48 sites were evaluated as a group (Model 1), annual point-source flow yields had the greatest influence on nitrate and total N yields observed in streams, and annual streamflow yields had the greatest influence on yields of total P. The Model 1 results indicated that watersheds with higher annual point-source flow yields had higher annual yields of nitrate and total N, and watersheds with higher annual streamflow yields had higher annual yields of total P. When sites with high point-source flows (greater than 10 percent of total streamflow) were excluded from the regression tree analyses (Models 2–4), the percentage of forested land in the watersheds was identified as the primary environmental variable influencing stream yields for both total N and total P. Models 2, 3 and 4 did not identify any watershed environmental variables that could adequately explain the observed variability in the nitrate yields among the set of sites examined by each of these models. The results for Models 2, 3, and 4 indicated that watersheds with higher percentages of forested land had lower annual total N and total P yields compared to watersheds with lower percentages of forested land, which had higher median annual total N and total P yields. Additional environmental variables determined to further influence the stream nutrient yields included median annual percentage of point-source flow contributions to the streams, variables of land cover (percentage of forested land, agricultural land, and (or) forested land plus wetlands) in the watershed and (or) in the stream buffer, and drainage area. The regression tree models can serve as a tool for relating differences in select watershed attributes to differences in stream yields of nitrate, total N, and total P, which can provide beneficial information for improving nutrient management in streams throughout North Carolina and for reducing nutrient loads to coastal waters.

  8. Recent climate variability and its impacts on soybean yields in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira, Danielle Barros; Rao, V. Brahmananda

    2011-08-01

    Recent climate variability in rainfall, temperatures (maximum and minimum), and the diurnal temperature range is studied with emphasis on its influence over soybean yields in southern Brazil, during 1969 to 2002. The results showed that the soybean ( Glycine max L. Merril) yields are more affected by changes in temperature during summer, while changes in rainfall are more important during the beginning of plantation and at its peak of development. Furthermore, soybean yields in Paraná are more sensitive to rainfall variations, while soybean yields in the Rio Grande do Sul are more sensitive to variations in temperature. Effects of interannual climatic variability on soybean yields are evaluated through three agro-meteorological models: additive Stewart, multiplicative Rao, and multiplicative Jensen. The Jensen model is able to reproduce the interannual behavior of soybean yield reasonably well.

  9. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  10. Past crops yield dynamics reconstruction from tree-ring chronologies in the forest-steppe zone based on low- and high-frequency components

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Shah, Santosh K.; Zhirnova, Dina F.

    2018-05-01

    Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees ( Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring width have more pronounced relationships between each other and with climatic variables than their chronologies per se. Corresponding low-frequency variability components are strongly correlated with maxima observed after 1- to 5-year time shift of tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics reconstruction on the base of high-frequency variability component of the growth of pine and low-frequency one of larch.

  11. Yield of bedrock wells in the Nashoba terrane, central and eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Barbaro, Jeffrey R.

    2012-01-01

    The yield of bedrock wells in the fractured-bedrock aquifers of the Nashoba terrane and surrounding area, central and eastern Massachusetts, was investigated with analyses of existing data. Reported well yield was compiled for 7,287 wells from Massachusetts Department of Environmental Protection and U.S. Geological Survey databases. Yield of these wells ranged from 0.04 to 625 gallons per minute. In a comparison with data from 103 supply wells, yield and specific capacity from aquifer tests were well correlated, indicating that reported well yield was a reasonable measure of aquifer characteristics in the study area. Statistically significant relations were determined between well yield and a number of cultural and hydrogeologic factors. Cultural variables included intended water use, well depth, year of construction, and method of yield measurement. Bedrock geology, topography, surficial geology, and proximity to surface waters were statistically significant hydrogeologic factors. Yield of wells was higher in areas of granites, mafic intrusive rocks, and amphibolites than in areas of schists and gneisses or pelitic rocks; higher in valleys and low-slope areas than on hills, ridges, or high slopes; higher in areas overlain by stratified glacial deposits than in areas overlain by till; and higher in close proximity to streams, ponds, and wetlands than at greater distances from these surface-water features. Proximity to mapped faults and to lineaments from aerial photographs also were related to well yield by some measures in three quadrangles in the study area. Although the statistical significance of these relations was high, their predictive power was low, and these relations explained little of the variability in the well-yield data. Similar results were determined from a multivariate regression analysis. Multivariate regression models for the Nashoba terrane and for a three-quadrangle subarea included, as significant variables, many of the cultural and hydrogeologic factors that were individually related to well yield, in ways that are consistent with conceptual understanding of their effects, but the models explained only 21 percent (regional model for the entire terrane) and 30 percent (quadrangle model) of the overall variance in yield. Moreover, most of the explained variance was due to well characteristics rather than hydrogeologic factors. Hydrogeologic factors such as topography and geology are likely important. However, the overall high variability in the well-yield data, which results from the high variability in aquifer hydraulic properties as well as from limitations of the dataset, would make it difficult to use hydrogeologic factors to predict well yield in the study area. Geostatistical analysis (variograms), on the other hand, indicated that, although highly variable, the well-yield data are spatially correlated. The spatial continuity appears greater in the northeast-southwest direction and less in the southeast-northwest direction, directions that are parallel and perpendicular, respectively, to the regional geologic structural trends. Geostatistical analysis (kriging), used to estimate yield values throughout the study area, identified regional-scale areas of higher and lower yield that may be related to regional structural features—in particular, to a northeast-southwest trending regional fault zone within the Nashoba terrane. It also would be difficult to use kriging to predict yield at specific locations, however, because of the spatial variability in yield, particularly at small scales. The regional-scale analyses in this study, both with hydrogeologic variables and geostatistics, provide a context for understanding the variability in well yield, rather a basis for precise predictions, and site-specific information would be needed to understand local conditions.

  12. Climate Variability and Yields of Major Staple Food Crops in Northern Ghana

    NASA Astrophysics Data System (ADS)

    Amikuzuno, J.

    2012-12-01

    Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.

  13. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.

    PubMed

    Mishra, Ashok; Singh, R; Raghuwanshi, N S; Chatterjee, C; Froebrich, Jochen

    2013-12-01

    Indian Ganga Basin (IGB), one of the most densely populated areas in the world, is facing a significant threat to food grain production, besides increased yield gap between actual and potential production, due to climate change. We have analyzed the spatial variability of climate change impacts on rice and wheat yields at three different locations representing the upper, middle and lower IGB. The DSSAT model is used to simulate the effects of climate variability and climate change on rice and wheat yields by analyzing: (i) spatial crop yield response to current climate, and (ii) impact of a changing climate as projected by two regional climate models, REMO and HadRM3, based on SRES A1B emission scenarios for the period 2011-2040. Results for current climate demonstrate a significant gap between actual and potential yield for upper, middle and lower IGB stations. The analysis based on RCM projections shows that during 2011-2040, the largest reduction in rice and wheat yields will occur in the upper IGB (reduction of potential rice and wheat yield respectively by 43.2% and 20.9% by REMO, and 24.8% and 17.2% by HadRM3). In the lower IGB, however, contrasting results are obtained, with HadRM3 based projections showing an increase in the potential rice and wheat yields, whereas, REMO based projections show decreased potential yields. We discuss the influence of agro-climatic factors; variation in temperature, length of maturity period and leaf area index which are responsible for modeled spatial variability in crop yield response within the IGB. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Climatic variability effects on summer cropping systems of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, M.; Rodríguez-Fonseca, B.; Ruiz-Ramos, M.

    2012-04-01

    Climate variability and changes in the frequency of extremes events have a direct impact on crop yield and damages. Climate anomalies projections at monthly and yearly timescale allows us for adapting a cropping system (crops, varieties and management) to take advantage of favorable conditions or reduce the effect of adverse conditions. The objective of this work is to develop indices to evaluate the effect of climatic variability in summer cropping systems of Iberian Peninsula, in an attempt of relating yield variability to climate variability, extending the work of Rodríguez-Puebla (2004). This paper analyses the evolution of the yield anomalies of irrigated maize in several representative agricultural locations in Spain with contrasting temperature and precipitation regimes and compare it to the evolution of different patterns of climate variability, extending the methodology of Porter and Semenov (2005). To simulate maize yields observed daily data of radiation, maximum and minimum temperature and precipitation were used. These data were obtained from the State Meteorological Agency of Spain (AEMET). Time series of simulated maize yields were computed with CERES-maize model for periods ranging from 22 to 49 years, depending on the observed climate data available for each location. The computed standardized anomalies yields were projected on different oceanic and atmospheric anomalous fields and the resulting patterns were compared with a set of documented patterns from the National Oceanic and Atmospheric Administration (NOAA). The results can be useful also for climate change impact assessment, providing a scientific basis for selection of climate change scenarios where combined natural and forced variability represent a hazard for agricultural production. Interpretation of impact projections would also be enhanced.

  15. Linking crop yield anomalies to large-scale atmospheric circulation in Europe.

    PubMed

    Ceglar, Andrej; Turco, Marco; Toreti, Andrea; Doblas-Reyes, Francisco J

    2017-06-15

    Understanding the effects of climate variability and extremes on crop growth and development represents a necessary step to assess the resilience of agricultural systems to changing climate conditions. This study investigates the links between the large-scale atmospheric circulation and crop yields in Europe, providing the basis to develop seasonal crop yield forecasting and thus enabling a more effective and dynamic adaptation to climate variability and change. Four dominant modes of large-scale atmospheric variability have been used: North Atlantic Oscillation, Eastern Atlantic, Scandinavian and Eastern Atlantic-Western Russia patterns. Large-scale atmospheric circulation explains on average 43% of inter-annual winter wheat yield variability, ranging between 20% and 70% across countries. As for grain maize, the average explained variability is 38%, ranging between 20% and 58%. Spatially, the skill of the developed statistical models strongly depends on the large-scale atmospheric variability impact on weather at the regional level, especially during the most sensitive growth stages of flowering and grain filling. Our results also suggest that preceding atmospheric conditions might provide an important source of predictability especially for maize yields in south-eastern Europe. Since the seasonal predictability of large-scale atmospheric patterns is generally higher than the one of surface weather variables (e.g. precipitation) in Europe, seasonal crop yield prediction could benefit from the integration of derived statistical models exploiting the dynamical seasonal forecast of large-scale atmospheric circulation.

  16. Yield response to landscape position under variable N for irrigated corn

    USDA-ARS?s Scientific Manuscript database

    Variable nutrient and water supply can result in spatial and temporal variation in crop yield within a given agricultural field. For the western Corn Belt, irrigated corn accounts for 58% of total annual corn production with the majority grown in Nebraska. Although irrigation decreases temporal yi...

  17. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    NASA Astrophysics Data System (ADS)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  18. The Impact of Changing Snowmelt Timing on Non-Irrigated Crop Yield in Idaho

    NASA Astrophysics Data System (ADS)

    Murray, E. M.; Cobourn, K.; Flores, A. N.; Pierce, J. L.; Kunkel, M. L.

    2013-12-01

    The impacts of climate change on water resources have implications for both agricultural production and grower welfare. Many mountainous regions in the western U.S. rely on snowmelt as the dominant surface water source, and in Idaho, reconstructions of spring snowmelt timing have demonstrated a trend toward earlier, more variable snowmelt dates within the past 20 years. This earlier date and increased variability in snowmelt timing have serious implications for agriculture, but there is considerable uncertainty about how agricultural impacts vary by region, crop-type, and practices like irrigation vs. dryland farming. Establishing the relationship between snowmelt timing and agricultural yield is important for understanding how changes in large-scale climatic indices (like snowmelt date) may be associated with changes in agricultural yield. This is particularly important where local practitioner behavior is influenced by historically observed relationships between these climate indices and yield. In addition, a better understanding of the influence of changes in snowmelt on non-irrigated crop yield may be extrapolated to better understand how climate change may alter biomass production in non-managed ecosystems. To investigate the impact of snowmelt date on non-irrigated crop yield, we developed a multiple linear regression model to predict historical wheat and barley yield in several Idaho counties as a function of snowmelt date, climate variables (precipitation and growing degree-days), and spatial differences between counties. The relationship between snowmelt timing and non-irrigated crop yield at the county level is strong in many of the models, but differs in magnitude and direction for the two different crops. Results show interesting spatial patterns of variability in the correlation between snowmelt timing and crop yield. In four southern counties that border the Snake River Plain and one county bordering Oregon, non-irrigated wheat and/or barley yield are significantly lower in years with early snowmelt timing, on average (P < 0.10). In contrast, in northern Idaho, barley yield is significantly higher in years with early snowmelt timing. Overall, this statistical modeling exercise indicates that the trend toward earlier snowmelt date may positively impact non-irrigated crop yield in some regions of Idaho, while negatively impacting yield in other areas. Additional research is necessary to identify spatial controls on the variable relationship between snowmelt timing and yield. Regional variability in the response of crops to changes in snowmelt timing may indicate that external factors (e.g. higher amounts of summer rain in northern vs. southern Idaho) may play an important role in crop yield. This study indicates that targeted regional analysis is necessary to determine the influence of climate change on agriculture, as local variability can cause the same forcing to produce opposite results.

  19. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania

    PubMed Central

    Tumbo, S. D.; Kihupi, N. I.; Rwehumbiza, Filbert B.

    2017-01-01

    Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly. PMID:28536708

  20. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania.

    PubMed

    Msongaleli, Barnabas M; Tumbo, S D; Kihupi, N I; Rwehumbiza, Filbert B

    2017-01-01

    Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly.

  1. The Role of Climate Covariability on Crop Yields in the Conterminous United States

    DOE PAGES

    Leng, Guoyong; Zhang, Xuesong; Huang, Maoyi; ...

    2016-09-12

    The covariability of temperature (T), precipitation (P) and radiation (R) is an important aspect in understanding the climate influence on crop yields. Here in this paper, we analyze county-level corn and soybean yields and observed climate for the period 1983–2012 to understand how growing-season (June, July and August) mean T, P and R influence crop yields jointly and in isolation across the CONterminous United States (CONUS). Results show that nationally averaged corn and soybean yields exhibit large interannual variability of 21% and 22%, of which 35% and 32% can be significantly explained by T and P, respectively. By including R,more » an additional of 5% in variability can be explained for both crops. Using partial regression analyses, we find that studies that ignore the covariability among T, P, and R can substantially overestimate the sensitivity of crop yields to a single climate factor at the county scale. Further analyses indicate large spatial variation in the relative contributions of different climate variables to the variability of historical corn and soybean yields. Finally, the structure of the dominant climate factors did not change substantially over 1983–2012, confirming the robustness of the findings, which have important implications for crop yield prediction and crop model validations.« less

  2. Interannual and spatial variability of maple syrup yield as related to climatic factors

    PubMed Central

    Houle, Daniel

    2014-01-01

    Sugar maple syrup production is an important economic activity for eastern Canada and the northeastern United States. Since annual variations in syrup yield have been related to climate, there are concerns about the impacts of climatic change on the industry in the upcoming decades. Although the temporal variability of syrup yield has been studied for specific sites on different time scales or for large regions, a model capable of accounting for both temporal and regional differences in yield is still lacking. In the present study, we studied the factors responsible for interregional and interannual variability in maple syrup yield over the 2001–2012 period, by combining the data from 8 Quebec regions (Canada) and 10 U.S. states. The resulting model explained 44.5% of the variability in yield. It includes the effect of climatic conditions that precede the sapflow season (variables from the previous growing season and winter), the effect of climatic conditions during the current sapflow season, and terms accounting for intercountry and temporal variability. Optimal conditions for maple syrup production appear to be spatially restricted by less favourable climate conditions occurring during the growing season in the north, and in the south, by the warmer winter and earlier spring conditions. This suggests that climate change may favor maple syrup production northwards, while southern regions are more likely to be negatively affected by adverse spring conditions. PMID:24949244

  3. Characterizing spatial and temporal variability of crop yield caused by climate and irrigation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Baethgen, Walter E.; Wang, Enli; Yu, Qiang

    2011-12-01

    Grain yields of wheat and maize were obtained from national statistics and simulated with an agricultural system model to investigate the effects of historical climate variability and irrigation on crop yield in the North China Plain (NCP). Both observed and simulated yields showed large temporal and spatial variability due to variations in climate and irrigation supply. Wheat yield under full irrigation (FI) was 8 t ha-1 or higher in 80% of seasons in the north, it ranged from 7 to 10 t ha-1 in 90% of seasons in central NCP, and less than 9 t ha-1 in 85% of seasons in the south. Reduced irrigation resulted in increased crop yield variability. Wheat yield under supplemental irrigation, i.e., to meet only 50% of irrigation water requirement [supplemental irrigation (SI)] ranged from 2.7 to 8.8 t ha-1 with the maximum frequency of seasons having the range of 4-6 t ha-1 in the north, 4-7 t ha-1 in central NCP, and 5-8 t ha-1 in the south. Wheat yield under no irrigation (NI) was lower than 1 t ha-1 in about 50% of seasons. Considering the NCP as a whole, simulated maize yield under FI ranged from 3.9 to 11.8 t ha-1 with similar frequency distribution in the range of 6-11.8 t ha-1 with the interval of 2 t ha-1. It ranged from 0 to 11.8 t ha-1, uniformly distributed into the range of 4-10 t ha-1 under SI, and NI. The results give an insight into the levels of regional crop production affected by climate and water management strategies.

  4. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  5. Yield variability prediction by remote sensing sensors with different spatial resolution

    NASA Astrophysics Data System (ADS)

    Kumhálová, Jitka; Matějková, Štěpánka

    2017-04-01

    Currently, remote sensing sensors are very popular for crop monitoring and yield prediction. This paper describes how satellite images with moderate (Landsat satellite data) and very high (QuickBird and WorldView-2 satellite data) spatial resolution, together with GreenSeeker hand held crop sensor, can be used to estimate yield and crop growth variability. Winter barley (2007 and 2015) and winter wheat (2009 and 2011) were chosen because of cloud-free data availability in the same time period for experimental field from Landsat satellite images and QuickBird or WorldView-2 images. Very high spatial resolution images were resampled to worse spatial resolution. Normalised difference vegetation index was derived from each satellite image data sets and it was also measured with GreenSeeker handheld crop sensor for the year 2015 only. Results showed that each satellite image data set can be used for yield and plant variability estimation. Nevertheless, better results, in comparison with crop yield, were obtained for images acquired in later phenological phases, e.g. in 2007 - BBCH 59 - average correlation coefficient 0.856, and in 2011 - BBCH 59-0.784. GreenSeeker handheld crop sensor was not suitable for yield estimation due to different measuring method.

  6. Land agroecological quality assessment in conditions of high spatial soil cover variability at the Pereslavskoye Opolye.

    NASA Astrophysics Data System (ADS)

    Morev, Dmitriy; Vasenev, Ivan

    2015-04-01

    The essential spatial variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest soils has been further complicated by a specific land-use history and human impacts. For demand-driven land-use planning and decision making the quantitative analysis and agroecological interpretation of representative soil cover spatial variability is an important and challenging task that receives increasing attention from private companies, governmental and environmental bodies. Pereslavskoye Opolye is traditionally actively used in agriculture due to dominated high-quality cultivated soddy-podzoluvisols which are relatively reached in organic matter (especially for conditions of the North part at the European territory of Russia). However, the soil cover patterns are often very complicated even within the field that significantly influences on crop yield variability and have to be considered in farming system development and land agroecological quality evaluation. The detailed investigations of soil regimes and mapping of the winter rye yield have been carried in conditions of two representative fields with slopes sharply contrasted both in aspects and degrees. Rye biological productivity and weed infestation have been measured in elementary plots of 0.25 m2 with the following analysis the quality of the yield. In the same plot soil temperature and moisture have been measured by portable devices. Soil sampling was provided from three upper layers by drilling. The results of ray yield detailed mapping shown high differences both in average values and within-field variability on different slopes. In case of low-gradient slope (field 1) there is variability of ray yield from 39.4 to 44.8 dt/ha. In case of expressed slope (field 2) the same species of winter rye grown with the same technology has essentially lower yield and within-field variability from 20 to 29.6 dt/ha. The variability in crop yield between two fields is determined by their differences in mesorelief, A-horizon average thickness and slightly changes in soil temperature. The within-field crop yield variability is determined by microrelief and connected differences in soil moisture. Higher soil cover variability reflects in higher variability of winter ray yield and its quality that could be predicted and planed in conditions of concrete field and year according to principal limiting factors evaluation.

  7. Climate variation explains a third of global crop yield variability

    PubMed Central

    Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.

    2015-01-01

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. PMID:25609225

  8. Differential Impacts of Climate Change on Crops and Agricultural Regions in India

    NASA Astrophysics Data System (ADS)

    Sharma, A. N.

    2015-12-01

    As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.

  9. Simulating and Predicting Cereal Crop Yields in Ethiopia: Model Calibration and Verification

    NASA Astrophysics Data System (ADS)

    Yang, M.; Wang, G.; Ahmed, K. F.; Eggen, M.; Adugna, B.; Anagnostou, E. N.

    2017-12-01

    Agriculture in developing countries are extremely vulnerable to climate variability and changes. In East Africa, most people live in the rural areas with outdated agriculture techniques and infrastructure. Smallholder agriculture continues to play a key role in this area, and the rate of irrigation is among the lowest of the world. As a result, seasonal and inter-annual weather patterns play an important role in the spatiotemporal variability of crop yields. This study investigates how various climate variables (e.g., temperature, precipitation, sunshine) and agricultural practice (e.g., fertilization, irrigation, planting date) influence cereal crop yields using a process-based model (DSSAT) and statistical analysis, and focuses on the Blue Nile Basin of Ethiopia. The DSSAT model is driven with meteorological forcing from the ECMWF's latest reanalysis product that cover the past 35 years; the statistical model will be developed by linking the same meteorological reanalysis data with harvest data at the woreda level from the Ethiopian national dataset. Results from this study will set the stage for the development of a seasonal prediction system for weather and crop yields in Ethiopia, which will serve multiple sectors in coping with the agricultural impact of climate variability.

  10. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  11. Variability in soybean yield in Brazil stemming from the interaction of heterogeneous management and climate variability

    NASA Astrophysics Data System (ADS)

    Cohn, A.; Bragança, A.; Jeffries, G. R.

    2017-12-01

    An increasing share of global agricultural production can be found in the humid tropics. Therefore, an improved understanding of the mechanisms governing variability in the output of tropical agricultural systems is of increasing importance for food security including through climate change adaptation. Yet, the long window over which many tropical crops can be sown, the diversity of crop varieties and management practices combine to challenge inference into climate risk to cropping output in analyses of tropical crop-climate sensitivity employing administrative data. In this paper, we leverage a newly developed spatially explicit dataset of soybean yields in Brazil to combat this problem. The dataset was built by training a model of remotely-sensed vegetation index data and land cover classification data using a rich in situ dataset of soybean yield and management variables collected over the period 2006 to 2016. The dataset contains soybean yields by plant date, cropping frequency, and maturity group for each 5km grid cell in Brazil. We model variation in these yields using an approach enabling the estimation of the influence of management factors on the sensitivity of soybean yields to variability in: cumulative solar radiation, extreme degree days, growing degree days, flooding rain in the harvest period, and dry spells in the rainy season. We find strong variation in climate sensitivity by management class. Planting date and maturity group each explained a great deal more variation in yield sensitivity than did cropping frequency. Brazil collects comparatively fine spatial resolution yield data. But, our attempt to replicate our results using administrative soy yield data revealed substantially lesser crop-climate sensitivity; suggesting that previous analyses employing administrative data may have underestimated climate risk to tropical soy production.

  12. Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis

    NASA Technical Reports Server (NTRS)

    Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)

    1979-01-01

    The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.

  13. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  14. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  15. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    NASA Astrophysics Data System (ADS)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  16. Efficient SRAM yield optimization with mixture surrogate modeling

    NASA Astrophysics Data System (ADS)

    Zhongjian, Jiang; Zuochang, Ye; Yan, Wang

    2016-12-01

    Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a moderate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algorithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications.

  17. Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.

    NASA Technical Reports Server (NTRS)

    Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; hide

    2017-01-01

    Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.

  18. The effects of temperature and frequencies in ultrasound assisted extraction of phycocyanin from microalgae Spirulina sp

    NASA Astrophysics Data System (ADS)

    Hadiyanto, Suttrisnorhadi, Sutanto, Heri; Suzery, Meiny; Soetrisnanto, Danny; Azizah, Nur

    2015-12-01

    Microalgae Spirulina sp has been identified as source of protein and other high added value compounds. One of the compounds is phycocyanin as also known for antioxidant use. The extraction of this compound by using conventional method (soxhlet extraction) resulted low yield and longer processing time. This research was aimed to extract phycocyanin by using an extraction assisted by ultrasound irradiation. The extraction was performed by using variable of ultrasound frequency and extraction temperature and ethanol was used as a solvent. The result showed that yield of phycocyanin extracted by conventional method was 11.13% while the ultrasound irradiation could increase the yield up to 15.61% at constant frequency of 42 kHz, while the optimum temperature was obtained at 45°C. The analysis of variable interactions showed that both temperature and time has an interaction and temperature was the highest variable in increasing the yield. The conclusion of this research was the ultrasound could improve significantly the efficiency of extraction as well as activity of phycocyanin extracted from microalgae.

  19. The effects of temperature and frequencies in ultrasound assisted extraction of phycocyanin from microalgae Spirulina sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadiyanto,, E-mail: hadiyanto@live.undip.ac.id; Suttrisnorhadi,; Soetrisnanto, Danny

    Microalgae Spirulina sp has been identified as source of protein and other high added value compounds. One of the compounds is phycocyanin as also known for antioxidant use. The extraction of this compound by using conventional method (soxhlet extraction) resulted low yield and longer processing time. This research was aimed to extract phycocyanin by using an extraction assisted by ultrasound irradiation. The extraction was performed by using variable of ultrasound frequency and extraction temperature and ethanol was used as a solvent. The result showed that yield of phycocyanin extracted by conventional method was 11.13% while the ultrasound irradiation could increasemore » the yield up to 15.61% at constant frequency of 42 kHz, while the optimum temperature was obtained at 45°C. The analysis of variable interactions showed that both temperature and time has an interaction and temperature was the highest variable in increasing the yield. The conclusion of this research was the ultrasound could improve significantly the efficiency of extraction as well as activity of phycocyanin extracted from microalgae.« less

  20. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production.

    PubMed

    Kukal, Meetpal S; Irmak, Suat

    2018-02-22

    Climate variability and trends affect global crop yields and are characterized as highly dependent on location, crop type, and irrigation. U.S. Great Plains, due to its significance in national food production, evident climate variability, and extensive irrigation is an ideal region of investigation for climate impacts on food production. This paper evaluates climate impacts on maize, sorghum, and soybean yields and effect of irrigation for individual counties in this region by employing extensive crop yield and climate datasets from 1968-2013. Variability in crop yields was a quarter of the regional average yields, with a quarter of this variability explained by climate variability, and temperature and precipitation explained these in singularity or combination at different locations. Observed temperature trend was beneficial for maize yields, but detrimental for sorghum and soybean yields, whereas observed precipitation trend was beneficial for all three crops. Irrigated yields demonstrated increased robustness and an effective mitigation strategy against climate impacts than their non-irrigated counterparts by a considerable fraction. The information, data, and maps provided can serve as an assessment guide for planners, managers, and policy- and decision makers to prioritize agricultural resilience efforts and resource allocation or re-allocation in the regions that exhibit risk from climate variability.

  1. Relationships between surface solar radiation and wheat yield in Spain

    NASA Astrophysics Data System (ADS)

    Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepción

    2017-04-01

    Here we examine the role of solar radiation to describe wheat-yield variability in Spain. We used Partial Least Square regression to capture the modes of surface solar radiation that drive wheat-yield variability. We will show that surface solar radiation introduces the effects of teleconnection patterns on wheat yield and also it is associated with drought and diurnal temperature range. We highlight the importance of surface solar radiation to obtain models for wheat-yield projections because it could reduce uncertainty with respect to the projections based on temperatures and precipitation variables. In addition, the significance of the model based on surface solar radiation is greater than the previous one based on drought and diurnal temperature range (Hernandez-Barrera et al., 2016). According to our results, the increase of solar radiation over Spain for 21st century could force a wheat-yield decrease (Hernandez-Barrera et al., 2017). Hernandez-Barrera S., Rodríguez-Puebla C. and Challinor A.J. 2016 Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology. DOI: 10.1007/s00704-016-1779-9 Hernandez-Barrera S., Rodríguez-Puebla C. 2017 Wheat yield in Spain and associated solar radiation patterns. International Journal of Climatology. DOI: 10.1002/joc.4975

  2. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    USGS Publications Warehouse

    Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  3. Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: a case study in Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei

    2017-09-01

    Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.

  4. A network-based approach for semi-quantitative knowledge mining and its application to yield variability

    NASA Astrophysics Data System (ADS)

    Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph

    2016-12-01

    Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.

  5. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Treesearch

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  6. Climate Variability and Sugarcane Yield in Louisiana.

    NASA Astrophysics Data System (ADS)

    Greenland, David

    2005-11-01

    This paper seeks to understand the role that climate variability has on annual yield of sugarcane in Louisiana. Unique features of sugarcane growth in Louisiana and nonclimatic, yield-influencing factors make this goal an interesting and challenging one. Several methods of seeking and establishing the relations between yield and climate variables are employed. First, yield climate relations were investigated at a single research station where crop variety and growing conditions could be held constant and yield relations could be established between a predominant older crop variety and a newer one. Interviews with crop experts and a literature survey were used to identify potential climatic factors that control yield. A statistical analysis was performed using statewide yield data from the American Sugar Cane League from 1963 to 2002 and a climate database. Yield values for later years were adjusted downward to form an adjusted yield dataset. The climate database was principally constructed from daily and monthly values of maximum and minimum temperature and daily and monthly total precipitation for six cooperative weather-reporting stations representative of the area of sugarcane production. The influence of 74 different, though not independent, climate-related variables on sugarcane yield was investigated. The fact that a climate signal exists is demonstrated by comparing mean values of the climate variables corresponding to the upper and lower third of adjusted yield values. Most of these mean-value differences show an intuitively plausible difference between the high- and low-yield years. The difference between means of the climate variables for years corresponding to the upper and lower third of annual yield values for 13 of the variables is statistically significant at or above the 90% level. A correlation matrix was used to identify the variables that had the largest influence on annual yield. Four variables [called here critical climatic variables (CCV)], mean maximum August temperature, mean minimum February temperature, soil water surplus between April and September, and occurrence of autumn (fall) hurricanes, were built into a model to simulate adjusted yield values. The CCV model simulates the yield value with an rmse of 5.1 t ha-1. The mean of the adjusted yield data over the study period was 60.4 t ha-1, with values for the highest and lowest years being 73.1 and 50.6 t ha-1, respectively, and a standard deviation of 5.9 t ha-1. Presumably because of the almost constant high water table and soil water availability, higher precipitation totals, which are inversely related to radiation and temperature, tend to have a negative effect on the yields. Past trends in the values of critical climatic variables and general projections of future climate suggest that, with respect to the climatic environment and as long as land drainage is continued and maintained, future levels of sugarcane yield will rise in Louisiana.

  7. Simulation of crop yield variability by improved root-soil-interaction modelling

    NASA Astrophysics Data System (ADS)

    Duan, X.; Gayler, S.; Priesack, E.

    2009-04-01

    Understanding the processes and factors that govern the within-field variability in crop yield has attached great importance due to applications in precision agriculture. Crop response to environment at field scale is a complex dynamic process involving the interactions of soil characteristics, weather conditions and crop management. The numerous static factors combined with temporal variations make it very difficult to identify and manage the variability pattern. Therefore, crop simulation models are considered to be useful tools in analyzing separately the effects of change in soil or weather conditions on the spatial variability, in order to identify the cause of yield variability and to quantify the spatial and temporal variation. However, tests showed that usual crop models such as CERES-Wheat and CERES-Maize were not able to quantify the observed within-field yield variability, while their performance on crop growth simulation under more homogeneous and mainly non-limiting conditions was sufficent to simulate average yields at the field-scale. On a study site in South Germany, within-field variability in crop growth has been documented since years. After detailed analysis and classification of the soil patterns, two site specific factors, the plant-available-water and the O2 deficiency, were considered as the main causes of the crop growth variability in this field. Based on our measurement of root distribution in the soil profile, we hypothesize that in our case the insufficiency of the applied crop models to simulate the yield variability can be due to the oversimplification of the involved root models which fail to be sensitive to different soil conditions. In this study, the root growth model described by Jones et al. (1991) was adapted by using data of root distributions in the field and linking the adapted root model to the CERES crop model. The ability of the new root model to increase the sensitivity of the CERES crop models to different enviromental conditions was then evaluated by means of comparison of the simualtion results with measured data and by scenario calculations.

  8. From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact

    PubMed Central

    Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael

    2005-01-01

    General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level. PMID:16433096

  9. Simulating maize yield and biomass with spatial variability of soil field capacity

    USDA-ARS?s Scientific Manuscript database

    Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...

  10. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  11. Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu

    2017-09-01

    Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.

  12. QIVIVE Approaches to Evaluate Inter-individual Toxicokinetic Variability

    EPA Science Inventory

    Manifestation of inter-individual variability in toxicokinetics (TK) will result in identical external exposure concentrations yielding differing blood or tissue concentrations. As efforts to incorporate in vitro testing strategies into human health assessment continue to grow, a...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combinedmore » with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.« less

  14. A Fast Track approach to deal with the temporal dimension of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2017-07-01

    Population growth, socio-economic development and climate changes are placing increasing pressure on water resources. Crop water footprint is a key indicator in the quantification of such pressure. It is determined by crop evapotranspiration and crop yield, which can be highly variable in space and time. While the spatial variability of crop water footprint has been the objective of several investigations, the temporal variability remains poorly studied. In particular, some studies approached this issue by associating the time variability of crop water footprint only to yield changes, while considering evapotranspiration patterns as marginal. Validation of this Fast Track approach has yet to be provided. In this Letter we demonstrate its feasibility through a comprehensive validation, an assessment of its uncertainty, and an example of application. Our results show that the water footprint changes are mainly driven by yield trends, while evapotranspiration plays a minor role. The error due to considering constant evapotranspiration is three times smaller than the uncertainty of the model used to compute the crop water footprint. These results confirm the suitability of the Fast Track approach and enable a simple, yet appropriate, evaluation of time-varying crop water footprint.

  15. Bayesian inference for the genetic control of water deficit tolerance in spring wheat by stochastic search variable selection.

    PubMed

    Safari, Parviz; Danyali, Syyedeh Fatemeh; Rahimi, Mehdi

    2018-06-02

    Drought is the main abiotic stress seriously influencing wheat production. Information about the inheritance of drought tolerance is necessary to determine the most appropriate strategy to develop tolerant cultivars and populations. In this study, generation means analysis to identify the genetic effects controlling grain yield inheritance in water deficit and normal conditions was considered as a model selection problem in a Bayesian framework. Stochastic search variable selection (SSVS) was applied to identify the most important genetic effects and the best fitted models using different generations obtained from two crosses applying two water regimes in two growing seasons. The SSVS is used to evaluate the effect of each variable on the dependent variable via posterior variable inclusion probabilities. The model with the highest posterior probability is selected as the best model. In this study, the grain yield was controlled by the main effects (additive and non-additive effects) and epistatic. The results demonstrate that breeding methods such as recurrent selection and subsequent pedigree method and hybrid production can be useful to improve grain yield.

  16. Estimating Latent Variable Interactions With Non-Normal Observed Data: A Comparison of Four Approaches

    PubMed Central

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of four latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of non-normality of the observed exogenous variables. Results showed that the CPI and LMS approaches yielded biased estimates of the interaction effect when the exogenous variables were highly non-normal. When the violation of non-normality was not severe (normal; symmetric with excess kurtosis < 1), the LMS approach yielded the most efficient estimates of the latent interaction effect with the highest statistical power. In highly non-normal conditions, the GAPI and UPI approaches with ML estimation yielded unbiased latent interaction effect estimates, with acceptable actual Type-I error rates for both the Wald and likelihood ratio tests of interaction effect at N ≥ 500. An empirical example illustrated the use of the four approaches in testing a latent variable interaction between academic self-efficacy and positive family role models in the prediction of academic performance. PMID:23457417

  17. Production of biodiesel from Jatropha curcas L. oil catalyzed by SO₄²⁻/ZrO₂ catalyst: effect of interaction between process variables.

    PubMed

    Yee, Kian Fei; Lee, Keat Teong; Ceccato, Riccardo; Abdullah, Ahmad Zuhairi

    2011-03-01

    This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Temporal changes in climatic variables and their impact on crop yields in southwestern China

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei

    2014-08-01

    Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing—a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series ( P < 0.05). Increased sunshine hours were observed during the oilseed rape growth period ( P < 0.05). Rainy days decreased slightly in annual and oilseed rape growth time series ( P < 0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall ( P < 0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity ( P < 0.01). Tobacco yield increased with mean temperature ( P < 0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.

  19. Temporal changes in climatic variables and their impact on crop yields in southwestern China.

    PubMed

    Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei

    2014-08-01

    Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing-a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series (P<0.05). Increased sunshine hours were observed during the oilseed rape growth period (P<0.05). Rainy days decreased slightly in annual and oilseed rape growth time series (P<0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall (P<0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity (P<0.01). Tobacco yield increased with mean temperature (P<0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.

  20. Commercially sterilized mussel meats (Mytilus chilensis): a study on process yield.

    PubMed

    Almonacid, S; Bustamante, J; Simpson, R; Urtubia, A; Pinto, M; Teixeira, A

    2012-06-01

    The processing steps most responsible for yield loss in the manufacture of canned mussel meats are the thermal treatments of precooking to remove meats from shells, and thermal processing (retorting) to render the final canned product commercially sterile for long-term shelf stability. The objective of this study was to investigate and evaluate the impact of different combinations of process variables on the ultimate drained weight in the final mussel product (Mytilu chilensis), while verifying that any differences found were statistically and economically significant. The process variables selected for this study were precooking time, brine salt concentration, and retort temperature. Results indicated 2 combinations of process variables producing the widest difference in final drained weight, designated best combination and worst combination with 35% and 29% yield, respectively. Significance of this difference was determined by employing a Bootstrap methodology, which assumes an empirical distribution of statistical error. A difference of nearly 6 percentage points in total yield was found. This represents a 20% increase in annual sales from the same quantity of raw material, in addition to increase in yield, the conditions for the best process included a retort process time 65% shorter than that for the worst process, this difference in yield could have significant economic impact, important to the mussel canning industry. © 2012 Institute of Food Technologists®

  1. Wheat yield estimation at the farm level using TM Landsat and agrometeorological data

    NASA Technical Reports Server (NTRS)

    Rudorff, B. F. T.; Batista, G. T.

    1991-01-01

    A model for estimating wheat yields on the farm level was developed, that integrates the Landsat TM data and agrometeorological information. Results obtained for a test site in southern Brasil for years of 1986 and 1987 show that the vegetation index derived from Landsat TM could account for the 60 to 40 percent wheat-yield variability observed between the two crop years. Compared to results using either the Landsat TM vegetation index or the agrometeorological data alone, the joint use of both types of data in a single model yielded a significant improvement.

  2. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields.

    PubMed

    Henson, Chasity; Market, Patrick; Lupo, Anthony; Guinan, Patrick

    2017-05-01

    An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov "method of cycles" demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April-September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55-70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases.

  3. Factors related to well yield in the fractured-bedrock aquifer of New Hampshire

    USGS Publications Warehouse

    Moore, Richard Bridge; Schwartz, Gregory E.; Clark, Stewart F.; Walsh, Gregory J.; Degnan, James R.

    2002-01-01

    The New Hampshire Bedrock Aquifer Assessment was designed to provide information that can be used by communities, industry, professional consultants, and other interests to evaluate the ground-water development potential of the fractured-bedrock aquifer in the State. The assessment was done at statewide, regional, and well field scales to identify relations that potentially could increase the success in locating high-yield water supplies in the fractured-bedrock aquifer. statewide, data were collected for well construction and yield information, bedrock lithology, surficial geology, lineaments, topography, and various derivatives of these basic data sets. Regionally, geologic, fracture, and lineament data were collected for the Pinardville and Windham quadrangles in New Hampshire. The regional scale of the study examined the degree to which predictive well-yield relations, developed as part of the statewide reconnaissance investigation, could be improved by use of quadrangle-scale geologic mapping. Beginning in 1984, water-well contractors in the State were required to report detailed information on newly constructed wells to the New Hampshire Department of Environmental Services (NHDES). The reports contain basic data on well construction, including six characteristics used in this study?well yield, well depth, well use, method of construction, date drilled, and depth to bedrock (or length of casing). The NHDES has determined accurate georeferenced locations for more than 20,000 wells reported since 1984. The availability of this large data set provided an opportunity for a statistical analysis of bedrock-well yields. Well yields in the database ranged from zero to greater than 500 gallons per minute (gal/min). Multivariate regression was used as the primary statistical method of analysis because it is the most efficient tool for predicting a single variable with many potentially independent variables. The dependent variable that was explored in this study was the natural logarithm (ln) of the reported well yield. One complication with using well yield as a dependent variable is that yield also is a function of demand. An innovative statistical technique that involves the use of instrumental variables was implemented to compensate for the effect of demand on well yield. Results of the multivariate-regression model show that a variety of factors are either positively or negatively related to well yields. Using instrumental variables, well depth is positively related to total well yield. Other factors that were found to be positively related to well yield include (1) distance to the nearest waterbody; (2) size of the drainage area upgradient of a well; (3) well location in swales or valley bottoms in the Massabesic Gneiss Complex and Breakfast Hill Granite; (4) well proximity to lineaments, identified using high-altitude (1:80,000-scale) aerial photography, which are correlated with the primary fracture direction (regional analysis); (5) use of a cable tool rig for well drilling; and (6) wells drilled for commercial or public supply. Factors negatively related to well yields include sites underlain by foliated plutons, sites on steep slopes sites at high elevations, and sites on hilltops. Additionally, seven detailed geologic map units, identified during the detailed geologic mapping of the Pinardville and Windham quadrangles, were found to be positively or negatively related to well yields. Twenty-four geologic map units, depicted on the Bedrock Geologic Map of New Hampshire, also were found to be positively or negatively related to well yields. Maps or geographic information system (GIS) data sets identifying areas of various yield probabilities clearly display model results. Probability criteria developed in this investigation can be used to select areas where other techniques, such as geophysical techniques, can be applied to more closely identify potential drilling sites for high-yielding

  4. Impacts of variability in cellulosic biomass yields on energy security.

    PubMed

    Mullins, Kimberley A; Matthews, H Scott; Griffin, W Michael; Anex, Robert

    2014-07-01

    The practice of modeling biomass yields on the basis of deterministic point values aggregated over space and time obscures important risks associated with large-scale biofuel use, particularly risks related to drought-induced yield reductions that may become increasingly frequent under a changing climate. Using switchgrass as a case study, this work quantifies the variability in expected yields over time and space through switchgrass growth modeling under historical and simulated future weather. The predicted switchgrass yields across the United States range from about 12 to 19 Mg/ha, and the 80% confidence intervals range from 20 to 60% of the mean. Average yields are predicted to decrease with increased temperatures and weather variability induced by climate change. Feedstock yield variability needs to be a central part of modeling to ensure that policy makers acknowledge risks to energy supplies and develop strategies or contingency plans that mitigate those risks.

  5. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  6. Ethanol-acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets.

    PubMed

    Jiménez, L; Pérez, I; López, F; Ariza, J; Rodríguez, A

    2002-06-01

    The influence of independent variables in the pulping of wheat straw by use of an ethanol-acetone-water mixture [processing temperature and time, ethanol/(ethanol + acetone) value and (ethanol + acetone)/(ethanol + acetone + water) value] and of the number of PFI beating revolutions to which the pulp was subjected, on the properties of the resulting pulp (yield and Shopper-Riegler index) and of the paper sheets obtained from it (breaking length, stretch, burst index and tear index) was examined. By using a central composite factor design and the BMDP software suite, equations that relate each dependent variable to the different independent variables were obtained that reproduced the experimental results for the dependent variables with errors less than 30% at temperatures, times, ethanol/(ethanol + acetone) value, (ethanol + acetone)/(ethanol + acetone + water) value and numbers of PFI beating revolutions in the ranges 140-180 degrees C, 60-120 min, 25-75%, 35-75% and 0-1750, respectively. Using values of the independent variables over the variation ranges considered provided the following optimum values of the dependent variables: 78.17% (yield), 15.21 degrees SR (Shopper-Riegler index), 5265 m (breaking length), 1.94% (stretch), 2.53 kN/g (burst index) and 4.26 mN m2/g (tear index). Obtaining reasonably good paper sheets (with properties that differed by less than 15% from their optimum values except for the burst index, which was 28% lower) entailed using a temperature of 180 degrees C, an ethanol/(ethanol + acetone) value of 50%, an (ethanol + acetone)/(ethanol + acetone + water) value of 75%, a processing time of 60 min and a number of PFI beating revolutions of 1750. The yield was 32% lower under these conditions, however. A comparison of the results provided by ethanol, acetone and ethanol-acetone pulping revealed that the second and third process-which provided an increased yield were the best choices. On the other hand, if the pulp is to be refined, ethanol pulping is the process of choice.

  7. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs.

    PubMed

    Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem

    2007-04-01

    Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.

  8. Real-time monitoring of smallholder farmer responses to intra-seasonal climate variability in central Kenya

    NASA Astrophysics Data System (ADS)

    Krell, N.; Evans, T. P.; Estes, L. D.; Caylor, K. K.

    2017-12-01

    While international metrics of food security and water availability are generated as spatial averages at the regional to national levels, climate variability impacts are differentially felt at the household level. This project investigated scales of variability of climate impacts on smallholder farmers using social and environmental data in central Kenya. Using sub-daily real-time environmental measurements to monitor smallholder agriculture, we investigated how changes in seasonal precipitation affected food security around Laikipia county from September 2015 to present. We also conducted SMS-based surveys of over 700 farmers to understand farmers' decision-making within the growing season. Our results highlight field-scale heterogeneity in biophysical and social factors governing crop yields using locally sensed real-time environmental data and weekly farmer-reported information about planting, harvesting, irrigation, and crop yields. Our preliminary results show relationships between changes in seasonal precipitation, NDVI, and soil moisture related to crop yields and decision-making at several scales. These datasets present a unique opportunity to collect highly spatially and temporally resolved information from data-poor regions at the household level.

  9. Temporal variability of green and blue water footprint worldwide

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania; Lomurno, Marianna; Tuninetti, Marta; Laio, Francesco; Ridolfi, Luca

    2016-04-01

    Water footprint assessment is becoming widely used in the scientific literature and it is proving useful in a number of multidisciplinary contexts. Given this increasing popularity, measures of green and blue water footprint (or virtual water content, VWC) require evaluations of uncertainty and variability to quantify the reliability of proposed analyses. As of today, no studies are known to assess the temporal variability of crop VWC at the global scale; the present contribution aims at filling this gap. We use a global high-resolution distributed model to compute the VWC of staple crops (wheat and maize), basing on the soil water balance, forced by hydroclimatic imputs, and on the total crop evapotranspiration in multiple growing seasons. Crop actual yield is estimated using country-based yield data, adjusted to account for spatial variability, allowing for the analysis of the different role played by climatic and management factors in the definition of crop yield. The model is then run using hydroclimatic data, i.e., precipitation and potential evapotranspiration, for the period 1961-2013 as taken from the CRU database (CRU TS v. 3.23) and using the corresponding country-based yield data from FAOSTAT. Results provide the time series of total evapotranspiration, actual yield and VWC, with separation between green and blue VWC, and the overall volume of water used for crop production, both at the cell scale (5x5 arc-min) and aggregated at the country scale. Preliminary results indicate that total (green+blue) VWC is, in general, weekly dependent on hydroclimatic forcings if water for irrigation is unlimited, because irrigated agriculture allows to compensate temporary water shortage. Conversely, most part of the VWC variability is found to be determined by the temporal evolution of crop yield. At the country scale, the total water used by countries for agricultural production has seen a limited change in time, but the marked increase in the water-use efficiency expressed by VWC has determined an increase of production. Such increase has helped to meet the increasing global food demand in the past 50 years.

  10. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and maximum temperature), beyond which the yields were negatively affected. These results are now being used for further regional-scale yield analysis as the aforementioned framework is adaptable to multiple geographic regions and crop types.

  11. Spatial variability of sugarcane yields in relation to soil salinity in Louisiana

    USDA-ARS?s Scientific Manuscript database

    High soil salinity levels have been documented to negatively impact sugarcane yields. Tests were conducted in commercial sugarcane fields in South Louisiana in 2009-2010 to determine if elevated soil salinity levels resulting from salt water intrusion from several recent hurricanes was having a neg...

  12. Biophysical Variables Retrieval Over Russian Winter Wheat Fields Using Medium Resolution

    NASA Astrophysics Data System (ADS)

    d'Andrimont, Raphael; Waldner, Francois; Bartalev, Sergey; Plotnikov, Dmitry; Kleschenko, Alexander; Virchenko, Oleg; de Wit, Allard; Roerink, Gerbert; Defourny, Pierre

    2013-12-01

    Winter wheat production in the Russian Federation represents one of the sources of uncertainty for the international commodity market. In particular, adverse weather conditions may induce winter kill resulting in large yields' losses. Improving the monitoring of winter- wheat in Russia with a focus on winter-kill damage and its impacts on yield is thus a key challenge.This paper presents the methods and the results of the biophysical variables retrieval on a daily basis as an input for crop growth modeling at parcel level over a 10-years period (2003-2012) in the Russian context. The field campaigns carried out on 2 sites in the Tula region from 2010 to 2012 shows that it is possible to characterize the spatial and temporal variability at pixel, field and regional scale using medium resolution sensors (MODIS) over Russian fields.

  13. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter?

    PubMed Central

    Williams, Alwyn; Hunter, Mitchell C.; Kammerer, Melanie; Kane, Daniel A.; Jordan, Nicholas R.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde

    2016-01-01

    Yield stability is fundamental to global food security in the face of climate change, and better strategies are needed for buffering crop yields against increased weather variability. Regional- scale analyses of yield stability can support robust inferences about buffering strategies for widely-grown staple crops, but have not been accomplished. We present a novel analytical approach, synthesizing 2000–2014 data on weather and soil factors to quantify their impact on county-level maize yield stability in four US states that vary widely in these factors (Illinois, Michigan, Minnesota and Pennsylvania). Yield stability is quantified as both ‘downside risk’ (minimum yield potential, MYP) and ‘volatility’ (temporal yield variability). We show that excessive heat and drought decreased mean yields and yield stability, while higher precipitation increased stability. Soil water holding capacity strongly affected yield volatility in all four states, either directly (Minnesota and Pennsylvania) or indirectly, via its effects on MYP (Illinois and Michigan). We infer that factors contributing to soil water holding capacity can help buffer maize yields against variable weather. Given that soil water holding capacity responds (within limits) to agronomic management, our analysis highlights broadly relevant management strategies for buffering crop yields against climate variability, and informs region-specific strategies. PMID:27560666

  14. Investigation of the Process Conditions for Hydrogen Production by Steam Reforming of Glycerol over Ni/Al₂O₃ Catalyst Using Response Surface Methodology (RSM).

    PubMed

    Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed

    2014-03-19

    In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X₁); the flow rate (X₂); the catalyst weight (X₃); the catalyst loading (X₄) and the glycerol-water molar ratio (X₅) on the H₂ yield (Y₁) and the conversion of glycerol to gaseous products (Y₂) were explored. Using multiple regression analysis; the experimental results of the H₂ yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H₂ yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t -test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied.

  15. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  16. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  17. Agricultural Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Tam, A.; Jain, M.

    2016-12-01

    This research includes two projects pertaining to agricultural systems' adaption to climate change. The first research project focuses on the wheat yielding regions of India. Wheat is a major staple crop and many rural households and smallholder farmers rely on crop yields for survival. We examine the impacts of weather variability and groundwater depletion on agricultural systems, using geospatial analysis and satellite-based analysis and household-based and census data sets. We use these methods to estimate the crop yields and identify what factors are associated with low versus high yielding regions. This can help identify strategies that should be further promoted to increase crop yields. The second research project is a literature review. We conduct a meta-analysis and synthetic review on literature about agricultural adaptation to climate change. We sort through numerous articles to identify and examine articles that associate socio-economic, biophysical, and perceptional factors to farmers' adaption to climate change. Our preliminary results show that researchers tend to associate few factors to a farmers' vulnerability and adaptive capacity, and most of the research conducted is concentrated in North America, whereas tropical regions that are highly vulnerable to weather variability are underrepresented by literature. There are no conclusive results in both research projects as of so far.

  18. Development of a winter wheat adjustable crop calendar model. [Colorado, Idaho, Oklahoma, Montana, Kansas, Missouri, North Dakota and Texas

    NASA Technical Reports Server (NTRS)

    Baker, J. R. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Least squares techniques were applied for parameter estimation of functions to predict winter wheat phenological stage with daily maximum temperature, minimum temperature, daylength, and precipitation as independent variables. After parameter estimation, tests were conducted using independent data. It may generally be concluded that exponential functions have little advantage over polynomials. Precipitation was not found to significantly affect the fits. The Robertson triquadratic form, in general use for spring wheat, yielded good results, but special techniques and care are required. In most instances, equations with nonlinear effects were found to yield erratic results when utilized with averaged daily environmental values as independent variables.

  19. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amber N. Hoover; Jaya Shankar Tumuluru; Farzaneh Teymouri

    Pelletization process variables including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C) were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating ormore » a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.« less

  20. Evaluation of Rgb-Based Vegetation Indices from Uav Imagery to Estimate Forage Yield in Grassland

    NASA Astrophysics Data System (ADS)

    Lussem, U.; Bolten, A.; Gnyp, M. L.; Jasper, J.; Bareth, G.

    2018-04-01

    Monitoring forage yield throughout the growing season is of key importance to support management decisions on grasslands/pastures. Especially on intensely managed grasslands, where nitrogen fertilizer and/or manure are applied regularly, precision agriculture applications are beneficial to support sustainable, site-specific management decisions on fertilizer treatment, grazing management and yield forecasting to mitigate potential negative impacts. To support these management decisions, timely and accurate information is needed on plant parameters (e.g. forage yield) with a high spatial and temporal resolution. However, in highly heterogeneous plant communities such as grasslands, assessing their in-field variability non-destructively to determine e.g. adequate fertilizer application still remains challenging. Especially biomass/yield estimation, as an important parameter in assessing grassland quality and quantity, is rather laborious. Forage yield (dry or fresh matter) is mostly measured manually with rising plate meters (RPM) or ultrasonic sensors (handheld or mounted on vehicles). Thus the in-field variability cannot be assessed for the entire field or only with potential disturbances. Using unmanned aerial vehicles (UAV) equipped with consumer grade RGB cameras in-field variability can be assessed by computing RGB-based vegetation indices. In this contribution we want to test and evaluate the robustness of RGB-based vegetation indices to estimate dry matter forage yield on a recently established experimental grassland site in Germany. Furthermore, the RGB-based VIs are compared to indices computed from the Yara N-Sensor. The results show a good correlation of forage yield with RGB-based VIs such as the NGRDI with R2 values of 0.62.

  1. Large Area Crop Inventory Experiment (LACIE). Feasibility of assessing crop condition and yield from LANDSAT data

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. Yield modelling for crop production estimation derived a means of predicting the within-a-year yield and the year-to-year variability of yield over some fixed or randomly located unit of area. Preliminary studies indicated that the requirements for interpreting LANDSAT data for yield may be sufficiently similar to those of signature extension that it is feasible to investigate the automated estimation of production. The concept of an advanced yield model consisting of both spectral and meteorological components was endorsed. Rationale for using meteorological parameters originated from known between season and near harvest dynamics in crop environmental-condition-yield relationships.

  2. Assessment of different gridded weather data for soybean yield simulations in Brazil

    NASA Astrophysics Data System (ADS)

    Battisti, R.; Bender, F. D.; Sentelhas, P. C.

    2018-01-01

    A high-density, well-distributed, and consistent historical weather data series is of major importance for agricultural planning and climatic risk evaluation. A possible option for regions where weather station network is irregular is the use of gridded weather data (GWD), which can be downloaded online from different sources. Based on that, the aim of this study was to assess the suitability of two GWD, AgMERRA and XAVIER, by comparing them with measured weather data (MWD) for estimating soybean yield in Brazil. The GWD and MWD were obtained for 24 locations across Brazil, considering the period between 1980 and 2010. These data were used to estimate soybean yield with DSSAT-CROPGRO-Soybean model. The comparison of MWD with GWD resulted in a good agreement between climate variables, except for solar radiation. The crop simulations with GWD and MWD resulted in a good agreement for vegetative and reproductive phases. Soybean potential yield (Yp) simulated with AgMERRA and XAVIER had a high correlation (r > 0.88) when compared to the estimates with MWD, with the RMSE of about 400 kg ha-1. For attainable yield (Ya), estimates with XAVIER resulted in a RMSE of 700 kg ha-1 against 864 kg ha-1 from AgMERRA, both compared to the simulations using MWD. Even with these differences in Ya simulations, both GWD can be considered suitable for simulating soybean growth, development, and yield in Brazil; however, with XAVIER GWD presenting a better performance for weather and crop variables assessed.

  3. Analysis of eccentric annular incompressible seals. II - Effects of eccentricity on rotordynamic coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, C. C.; Nguyen, D. T.

    1987-01-01

    A new analysis procedure has been presented which solves for the flow variables of an annular pressure seal in which the rotor has a large static displacement (eccentricity) from the centered position. The present paper incorporates the solutions to investigate the effect of eccentricity on the rotordynamic coefficients. The analysis begins with a set of governing equations based on a turbulent bulk-flow model and Moody's friction factor equation. Perturbations of the flow variables yields a set of zeroth- and first-order equations. After integration of the zeroth-order equations, the resulting zeroth-order flow variables are used as input in the solution of the first-order equations. Further integration of the first order pressures yields the eccentric rotordynamic coefficients. The results from this procedure compare well with available experimental and theoretical data, with accuracy just as good or slightly better than the predictions based on a finite-element model.

  4. An Extension of the Chi-Square Procedure for Non-NORMAL Statistics, with Application to Solar Neutrino Data

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.

    2008-01-01

    Using the chi-square statistic, one may conveniently test whether a series of measurements of a variable are consistent with a constant value. However, that test is predicated on the assumption that the appropriate probability distribution function (pdf) is normal in form. This requirement is usually not satisfied by experimental measurements of the solar neutrino flux. This article presents an extension of the chi-square procedure that is valid for any form of the pdf. This procedure is applied to the GALLEX-GNO dataset, and it is shown that the results are in good agreement with the results of Monte Carlo simulations. Whereas application of the standard chi-square test to symmetrized data yields evidence significant at the 1% level for variability of the solar neutrino flux, application of the extended chi-square test to the unsymmetrized data yields only weak evidence (significant at the 4% level) of variability.

  5. Global evidence of positive impacts of freshwater biodiversity on fishery yields.

    PubMed

    Brooks, Emma Grace Elizabeth; Holland, Robert Alan; Darwall, William Robert Thomas; Eigenbrod, Felix; Tittensor, Derek

    2016-05-01

    An often-invoked benefit of high biodiversity is the provision of ecosystem services. However, evidence for this is largely based on data from small-scale experimental studies of relationships between biodiversity and ecosystem function that may have little relevance to real-world systems. Here, large-scale biodiversity datasets are used to test the relationship between the yield of inland capture fisheries and species richness from 100 countries. Inland waters of Africa, Europe and parts of Asia. A multimodel inference approach was used to assess inland fishery yields at the country level against species richness, waterside human population, area, elevation and various climatic variables, to determine the relative importance of species richness to fisheries yields compared with other major large-scale drivers. Secondly, the mean decadal variation in fishery yields at the country level for 1981-2010 was regressed against species richness to assess if greater diversity reduces the variability in yields over time. Despite a widespread reliance on targeting just a few species of fish, freshwater fish species richness is highly correlated with yield ( R 2  = 0.55) and remains an important and statistically significant predictor of yield once other macroecological drivers are controlled for. Freshwater richness also has a significant negative relationship with variability of yield over time in Africa ( R 2  = 0.16) but no effect in Europe. The management of inland waters should incorporate the protection of freshwater biodiversity, particularly in countries with the highest-yielding inland fisheries as these also tend to have high freshwater biodiversity. As these results suggest a link between biodiversity and stable, high-yielding fisheries, an important win-win outcome may be possible for food security and conservation of freshwater ecosystems. However, findings also highlight the urgent need for more data to fully understand and monitor the contribution of biodiversity to inland fisheries globally.

  6. Isolation of fish skin and bone gelatin from tilapia (Oreochromis niloticus): Response surface approach

    NASA Astrophysics Data System (ADS)

    Arpi, N.; Fahrizal; Novita, M.

    2018-03-01

    In this study, gelatin from fish collagen, as one of halal sources, was extracted from tilapia (Oreochromis niloticus) skin and bone, by using Response Surface Methodology to optimize gelatin extraction conditions. Concentrations of alkaline NaOH and acid HCl, in the pretreatment process, and temperatures in extraction process were chosen as independent variables, while dependent variables were yield, gel strength, and emulsion activity index (EAI). The result of investigation showed that lower NaOH pretreatment concentrations provided proper pH extraction conditions which combine with higher extraction temperatures resulted in high gelatin yield. However, gelatin emulsion activity index increased proportionally to the decreased in NaOH concentrations and extraction temperatures. No significant effect of the three independent variables on the gelatin gel strength. RSM optimization process resulted in optimum gelatin extraction process conditions using alkaline NaOH concentration of 0.77 N, acid HCl of 0.59 N, and extraction temperature of 66.80 °C. The optimal solution formula had optimization targets of 94.38%.

  7. The Correlation of Selected Nonmathematical Measures with Mathematics Achievement

    ERIC Educational Resources Information Center

    Cathcart, W. George

    1974-01-01

    Investigation of second- and third-graders' achievement in mathematics and its correlation with nonmathematical variables yielded the following results: listening ability and vocabulary levels were significant variables, intelligence was significant for grade three but not grade two, and sex and the ability to conserve were not significant for…

  8. Influence of body weight and body conformation on the pressure-volume curve during capnoperitoneum in dogs.

    PubMed

    Dorn, Melissa J; Bockstahler, Barbara A; Dupré, Gilles P

    2017-05-01

    OBJECTIVE To evaluate the pressure-volume relationship during capnoperitoneum in dogs and effects of body weight and body conformation. ANIMALS 86 dogs scheduled for routine laparoscopy. PROCEDURES Dogs were allocated into 3 groups on the basis of body weight. Body measurements, body condition score, and body conformation indices were calculated. Carbon dioxide was insufflated into the abdomen with a syringe, and pressure was measured at the laparoscopic cannula. Volume and pressure data were processed, and the yield point, defined by use of a cutoff volume (COV) and cutoff pressure (COP), was calculated. RESULTS 20 dogs were excluded because of recording errors, air leakage attributable to surgical flaws, or trocar defects. For the remaining 66 dogs, the pressure-volume curve was linear-like until the yield point was reached, and then it became visibly exponential. Mean ± SD COP was 5.99 ± 0.805 mm Hg. No correlation was detected between yield point, body variables, or body weight. Mean COV was 1,196.2 ± 697.9 mL (65.15 ± 20.83 mL of CO 2 /kg), and COV was correlated significantly with body weight and one of the body condition indices but not with other variables. CONCLUSION AND CLINICAL RELEVANCE In this study, there was a similar COP for all dogs of all sizes. In addition, results suggested that increasing the abdominal pressure after the yield point was reached did not contribute to a substantial increase in working space in the abdomen. No correlation was found between yield point, body variables, and body weight.

  9. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India

    NASA Astrophysics Data System (ADS)

    Jayakumar, M.; Rajavel, M.; Surendran, U.

    2016-12-01

    A study on the variability of coffee yield of both Coffea arabica and Coffea canephora as influenced by climate parameters (rainfall (RF), maximum temperature (Tmax), minimum temperature (Tmin), and mean relative humidity (RH)) was undertaken at Regional Coffee Research Station, Chundale, Wayanad, Kerala State, India. The result on the coffee yield data of 30 years (1980 to 2009) revealed that the yield of coffee is fluctuating with the variations in climatic parameters. Among the species, productivity was higher for C. canephora coffee than C. arabica in most of the years. Maximum yield of C. canephora (2040 kg ha-1) was recorded in 2003-2004 and there was declining trend of yield noticed in the recent years. Similarly, the maximum yield of C. arabica (1745 kg ha-1) was recorded in 1988-1989 and decreased yield was noticed in the subsequent years till 1997-1998 due to year to year variability in climate. The highest correlation coefficient was found between the yield of C. arabica coffee and maximum temperature during January (0.7) and between C. arabica coffee yield and RH during July (0.4). Yield of C. canephora coffee had highest correlation with maximum temperature, RH and rainfall during February. Statistical regression model between selected climatic parameters and yield of C. arabica and C. canephora coffee was developed to forecast the yield of coffee in Wayanad district in Kerala. The model was validated for years 2010, 2011, and 2012 with the coffee yield data obtained during the years and the prediction was found to be good.

  10. Assessing the seasonal variability of ephemeral gully erosion using high-frequency monitoring: case study in a fully cultivated catchment (The Pommeroye, Northern France)

    NASA Astrophysics Data System (ADS)

    Patault, E.; Alary, C.; Franke, C.; Gauthier, A.; Abriak, N. E.

    2017-12-01

    Gully erosion results in on-site and off-site problems including the loss of cultivated soils, the silting of riverbeds and dams as well as infrastructure and property damage by muddy floods. Regions of intensive agricultural production situated on the European loess belt are particularly affected. Recently a growing interest has focused on ephemeral gullies since there have been recognized as a major contributor to the sediment yield in small agricultural catchment in this area. The aims of this case study are (i) to quantify the sediment yield transported by ephemeral gullies, (ii) to identify parameters that control the function of the hydro-sedimentary response and (iii) to evaluate the influence of seasonal variability on the ephemeral gully erosion. For this study a high-frequency monitoring station was implemented. For each flood event, 8 variables related to hydro-sedimentary and rainfall dynamics are calculated and the relationships between these variables are analyzed using the Pearson correlation matrix and Principal Component Analysis. During the first year of monitoring (03/2016-03/2017), 22 flood events were recorded of which 75% occurred in spring and winter. The specific sediment yield was evaluated to 30 t km-2 yr-1 which is conventional for the study region but the results show a highly variable seasonal distribution; 90% of the sedimentary transfer occurred in winter and autumn. The main reasons were a high cumulative rainfall and a long duration for the events. The maximum suspended sediment concentration at the catchment outlet was observed in spring, likely due to maximum rainfall intensities in that season. Also, a huge variability between the events is observed; e.g. one exceptional rain storm in 11/2016 represents 45% of the total sediment yield of the study period. For the monitored 22 events, 2 different types of hysteresis behavior were observed: (i) clockwise and (ii) complex. In winter, only clockwise hysteresis was observed. These results suggest that other factors have to be considered to better explain the variability of gully erosion, such as the soil surface characteristics (crop cover, crusting stage, roughness). A monitoring of these parameters on experimental plots is in progress.

  11. Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni.

    PubMed

    Pal, Probir Kumar; Kumar, Rajender; Guleria, Vipan; Mahajan, Mitali; Prasad, Ramdeen; Pathania, Vijaylata; Gill, Baljinder Singh; Singh, Devinder; Chand, Gopi; Singh, Bikram; Singh, Rakesh Deosharan; Ahuja, Paramvir Singh

    2015-02-27

    Plant nutrition and climatic conditions play important roles on the growth and secondary metabolites of stevia (Stevia rebaudiana Bertoni); however, the nutritional dose is strongly governed by the soil properties and climatic conditions of the growing region. In northern India, the interactive effects of crop ecology and plant nutrition on yield and secondary metabolites of stevia are not yet properly understood. Thus, a field experiment comprising three levels of nitrogen, two levels of phosphorus and three levels of potassium was conducted at three locations to ascertain whether the spatial and nutritional variability would dominate the leaf yield and secondary metabolites profile of stevia. Principal component analysis (PCA) indicates that the applications of 90 kg N, 40 kg P2O5 and 40 kg K2O ha-1 are the best nutritional conditions in terms of dry leaf yield for CSIR-IHBT (Council of Scientific and Industrial Research- Institute Himalayan Bioresource Technology) and RHRS (Regional Horticultural Research Station) conditions. The spatial variability also exerted considerable effect on the leaf yield and stevioside content in leaves. Among the three locations, CSIR-IHBT was found most suitable in case of dry leaf yield and secondary metabolites accumulation in leaves. The results suggest that dry leaf yield and accumulation of stevioside are controlled by the environmental factors and agronomic management; however, the accumulation of rebaudioside-A (Reb-A) is not much influenced by these two factors. Thus, leaf yield and secondary metabolite profiles of stevia can be improved through the selection of appropriate growing locations and proper nutrient management.

  12. Simulating maize yield and bomass with spatial variability of soil field capacity

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Trout, Thomas; Nolan, Bernard T.; Malone, Robert W.

    2015-01-01

    Spatial variability in field soil properties is a challenge for system modelers who use single representative values, such as means, for model inputs, rather than their distributions. In this study, the root zone water quality model (RZWQM2) was first calibrated for 4 yr of maize (Zea mays L.) data at six irrigation levels in northern Colorado and then used to study spatial variability of soil field capacity (FC) estimated in 96 plots on maize yield and biomass. The best results were obtained when the crop parameters were fitted along with FCs, with a root mean squared error (RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. When running the model using each of the 96 sets of field-estimated FC values, instead of calibrating FCs, the average simulated yield and biomass from the 96 runs were close to measured values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 for biomass. When an average of the 96 FC values for each soil layer was used, simulated yield and biomass were also acceptable with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for biomass. Therefore, when there are large numbers of FC measurements, an average value might be sufficient for model inputs. However, when the ranges of FC measurements were known for each soil layer, a sampled distribution of FCs using the Latin hypercube sampling (LHS) might be used for model inputs.

  13. Investigation of the Process Conditions for Hydrogen Production by Steam Reforming of Glycerol over Ni/Al2O3 Catalyst Using Response Surface Methodology (RSM)

    PubMed Central

    Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed

    2014-01-01

    In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X1); the flow rate (X2); the catalyst weight (X3); the catalyst loading (X4) and the glycerol-water molar ratio (X5) on the H2 yield (Y1) and the conversion of glycerol to gaseous products (Y2) were explored. Using multiple regression analysis; the experimental results of the H2 yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H2 yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t-test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied. PMID:28788567

  14. Comparing risk in conventional and organic dairy farming in the Netherlands: an empirical analysis.

    PubMed

    Berentsen, P B M; Kovacs, K; van Asseldonk, M A P M

    2012-07-01

    This study was undertaken to contribute to the understanding of why most dairy farmers do not convert to organic farming. Therefore, the objective of this research was to assess and compare risks for conventional and organic farming in the Netherlands with respect to gross margin and the underlying price and production variables. To investigate the risk factors a farm accountancy database was used containing panel data from both conventional and organic representative Dutch dairy farms (2001-2007). Variables with regard to price and production risk were identified using a gross margin analysis scheme. Price risk variables were milk price and concentrate price. The main production risk variables were milk yield per cow, roughage yield per hectare, and veterinary costs per cow. To assess risk, an error component implicit detrending method was applied and the resulting detrended standard deviations were compared between conventional and organic farms. Results indicate that the risk included in the gross margin per cow is significantly higher in organic farming. This is caused by both higher price and production risks. Price risks are significantly higher in organic farming for both milk price and concentrate price. With regard to production risk, only milk yield per cow poses a significantly higher risk in organic farming. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Impacts of climate variability and change on crop yield in sub-Sahara Africa

    NASA Astrophysics Data System (ADS)

    Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.

    2017-12-01

    Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.

  16. Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization.

    PubMed

    Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R

    2016-01-01

    Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p < 0.05) on the %yield of SB, with R(2) - 0.8989 which showed good fitness of a second-order model. Based on this model, optima operating variables for the extraction process were established as: sample weight of 30.04 g, solvent volume of 346.04 ml and extraction time of 40 min, which gave 66.90 % yield of SB. Furthermore, the result of the physico-chemical properties obtained for the shea butter extracted using traditional method (SBT) showed that it is a more suitable raw material for food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.

  17. The effect of soil moisture anomalies on maize yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis

    2018-03-01

    Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.

  18. Assessing the Impact of Climatic Variability and Change on Maize Production in the Midwestern USA

    NASA Astrophysics Data System (ADS)

    Andresen, J.; Jain, A. K.; Niyogi, D. S.; Alagarswamy, G.; Biehl, L.; Delamater, P.; Doering, O.; Elias, A.; Elmore, R.; Gramig, B.; Hart, C.; Kellner, O.; Liu, X.; Mohankumar, E.; Prokopy, L. S.; Song, C.; Todey, D.; Widhalm, M.

    2013-12-01

    Weather and climate remain among the most important uncontrollable factors in agricultural production systems. In this study, three process-based crop simulation models were used to identify the impacts of climate on the production of maize in the Midwestern U.S.A. during the past century. The 12-state region is a key global production area, responsible for more than 80% of U.S. domestic and 25% of total global production. The study is a part of the Useful to Useable (U2U) Project, a USDA NIFA-sponsored project seeking to improve the resilience and profitability of farming operations in the region amid climate variability and change. Three process-based crop simulation models were used in the study: CERES-Maize (DSSAT, Hoogenboom et al., 2012), the Hybrid-Maize model (Yang et al., 2004), and the Integrated Science Assessment Model (ISAM, Song et al., 2013). Model validation was carried out with individual plot and county observations. The models were run with 4 to 50 km spatial resolution gridded weather data for representative soils and cultivars, 1981-2012, to examine spatial and temporal yield variability within the region. We also examined the influence of different crop models and spatial scales on regional scale yield estimation, as well as a yield gap analysis between observed and attainable yields. An additional study was carried out with the CERES-Maize model at 18 individual site locations 1901-2012 to examine longer term historical trends. For all simulations, all input variables were held constant in order to isolate the impacts of climate. In general, the model estimates were in good agreement with observed yields, especially in central sections of the region. Regionally, low precipitation and soil moisture stress were chief limitations to simulated crop yields. The study suggests that at least part of the observed yield increases in the region during recent decades have occurred as the result of wetter, less stressful growing season weather conditions.

  19. Relationship between cotton yield and soil electrical conductivity, topography, and landsat imagery

    USDA-ARS?s Scientific Manuscript database

    Understanding spatial and temporal variability in crop yield is a prerequisite to implementing site-specific management of crop inputs. Apparent soil electrical conductivity (ECa), soil brightness, and topography are easily obtained data that can explain yield variability. The objectives of this stu...

  20. Analysis of the trade-off between high crop yield and low yield instability at the global scale

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2016-10-01

    Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.

  1. A biologically inspired variable-pH strategy for enhancing short-chain fatty acids (SCFAs) accumulation in maize straw fermentation.

    PubMed

    Meng, Yao; Mumme, Jan; Xu, Heng; Wang, Kaijun

    2016-02-01

    This study investigates the feasibility of varying the pH to enhance the accumulation of short-chain fatty acids (SCFAs) in the in vitro fermentation of maize straw. The corresponding hydrolysis rate and the net SCFA yield increased as inoculum ratio (VSinoculum/VSsubstrate) increased from 0.09 to 0.79. The pH were maintained at 5.3, 5.8, 6.3, 6.8, 7.3, and 7.8, respectively. A neutral pH of approximately 6.8 was optimal for hydrolysis. The net SCFA yield decreased by 34.9% for a pH of less than 5.8, but remained constant at approximately 721±5mg/gvs for a pH between 5.8 and 7.8. In addition, results were obtained for variable and constant pH levels at initial substrate concentrations of 10, 30 and 50g/L. A variable pH increased the net SCFA yield by 23.6%, 29.0%, and 36.6% for concentrations of 10, 30 and 50g/L. Therefore, a variable pH enhanced SCFA accumulation in maize straw fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimizing cropland cover for stable food production in Sub-Saharan Africa using simulated yield and Modern Portfolio Theory

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Olin, S.; Pugh, T. A. M.; Arneth, A.

    2014-12-01

    Food security can be defined as stable access to food of good nutritional quality. In Sub Saharan Africa access to food is strongly linked to local food production and the capacity to generate enough calories to sustain the local population. Therefore it is important in these regions to generate not only sufficiently high yields but also to reduce interannual variability in food production. Traditionally, climate impact simulation studies have focused on factors that underlie maximum productivity ignoring the variability in yield. By using Modern Portfolio Theory, a method stemming from economics, we here calculate optimum current and future crop selection that maintain current yield while minimizing variance, vs. maintaining variance while maximizing yield. Based on simulated yield using the LPJ-GUESS dynamic vegetation model, the results show that current cropland distribution for many crops is close to these optimum distributions. Even so, the optimizations displayed substantial potential to either increase food production and/or to decrease its variance regionally. Our approach can also be seen as a method to create future scenarios for the sown areas of crops in regions where local food production is important for food security.

  3. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology.

    PubMed

    Nazir, Sadaf; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad

    2017-05-01

    Aqueous extraction of basil seed mucilage was optimized using response surface methodology. A Central Composite Rotatable Design (CCRD) for modeling of three independent variables: temperature (40-91 °C); extraction time (1.6-3.3 h) and water/seed ratio (18:1-77:1) was used to study the response for yield. Experimental values for extraction yield ranged from 7.86 to 20.5 g/100 g. Extraction yield was significantly ( P  < 0.05) affected by all the variables. Temperature and water/seed ratio were found to have pronounced effect while the extraction time was found to have minor possible effects. Graphical optimization determined the optimal conditions for the extraction of mucilage. The optimal condition predicted an extraction yield of 20.49 g/100 g at 56.7 °C, 1.6 h, and a water/seed ratio of 66.84:1. Optimal conditions were determined to obtain highest extraction yield. Results indicated that water/seed ratio was the most significant parameter, followed by temperature and time.

  4. Climate change impacts on crop yield in the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Ceglar, Andrej; Dentener, Frank; Niemeyer, Stefan; Dosio, Alessandro; Fumagalli, Davide

    2017-04-01

    Agriculture is strongly influenced by climate variability, climate extremes and climate changes. Recent studies on past decades have identified and analysed the effects of climate variability and extremes on crop yields in the Euro-Mediterranean region. As these effects could be amplified in a changing climate context, it is essential to analyse available climate projections and investigate the possible impacts on European agriculture in terms of crop yield. In this study, five model runs from the Euro-CORDEX initiative under two scenarios (RCP4.5 and RCP8.5) have been used. Climate model data have been bias corrected and then used to feed a mechanistic crop growth model. The crop model has been run under different settings to better sample the intrinsic uncertainties. Among the main results, it is worth to report a weak but significant and spatially homogeneous increase in potential wheat yield at mid-century (under a CO2 fertilisation effect scenario). While more complex changes seem to characterise potential maize yield, with large areas in the region showing a weak-to-moderate decrease.

  5. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  6. Optimization of mucilage extraction from chia seeds (Salvia hispanica L.) using response surface methodology.

    PubMed

    Orifici, Stefania C; Capitani, Marianela I; Tomás, Mabel C; Nolasco, Susana M

    2018-02-25

    Chia mucilage has potential application as a functional ingredient; advances on maximizing its extraction yield could represent a significant technological and economic impact for the food industry. Thus, first, the effect of mechanical agitation time (1-3 h) on the exudation of chia mucilage was analyzed. Then, response surface methodology was used to determine the optimal combination of the independent variables temperature (15-85 °C) and seed: water ratio (1: 12-1: 40.8 w/v) for the 2 h exudation that give maximum chia mucilage yield. Experiments were designed according to central composite rotatable design. A second-order polynomial model predicted the variation in extraction mucilage yield with the variables temperature and seed: water ratio. The optimal operating conditions were found to be temperature 85 °C and a seed: water ratio of 1: 31 (w/v), reaching an experimental extraction yield of 116 ± 0.21 g kg -1 (dry basis). The mucilage obtained exhibited good functional properties, mainly in terms of water-holding capacity, emulsifying activity, and emulsion stability. The results obtained show that temperature, seed: water ratio, and exudation time are important variables of the process that affect the extraction yield and the quality of the chia mucilage, determined according to its physicochemical and functional properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Interannual variability of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Laio, F.; Ridolfi, L.

    2016-12-01

    The crop water footprint, CWF, is a useful tool to investigate the water-food nexus, since it measures the water requirement for crop production. Heterogeneous spatial patterns of climatic conditions and agricultural practices have inspired a flourishing literature on the geographic assessment of CWF, mostly referred to a fixed (time-averaged) period. However, given that both climatic conditions and crop yield may vary substantially over time, also the CWF temporal dynamics need to be addressed. As other studies have done, we base the CWF variability on yield, while keeping the crop evapotranspiration constant over time. As a new contribution, we prove the feasibility of this approach by comparing these CWF estimates with the results obtained with a full model considering variations of crop evapotranspiration: overall, the estimates compare well showing high coefficients of determination that read 0.98 for wheat, 0.97 for rice, 0.97 for maize, and 0.91 for soybean. From this comparison, we derive also the precision of the method, which is around ±10% that is higher than the precision of the model used to evaluate the crop evapotranspiration (i.e., ±30%). Over the period between 1961 and 2013, the CWF of the most cultivated grains has sharply decreased on a global basis (i.e., -68% for wheat, -62% for rice, -66% for maize, and -52% for soybean), mainly driven by enhanced yield values. The higher water use efficiency in crop production implies a reduced virtual displacement of embedded water per ton of traded crop and as a result, the temporal variability of virtual water trade is different if considering constant or time-varying CWF. The proposed yield-based approach to estimate the CWF variability implies low computational costs and requires limited input data, thus, it represents a promising tool for time-dependent water footprint assessments.

  8. Evaluating the applicability of using daily forecasts from seasonal prediction systems (SPSs) for agriculture: a case study of Nepal's Terai with the NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Jha, Prakash K.; Athanasiadis, Panos; Gualdi, Silvio; Trabucco, Antonio; Mereu, Valentina; Shelia, Vakhtang; Hoogenboom, Gerrit

    2018-03-01

    Ensemble forecasts from dynamic seasonal prediction systems (SPSs) have the potential to improve decision-making for crop management to help cope with interannual weather variability. Because the reliability of crop yield predictions based on seasonal weather forecasts depends on the quality of the forecasts, it is essential to evaluate forecasts prior to agricultural applications. This study analyses the potential of Climate Forecast System version 2 (CFSv2) in predicting the Indian summer monsoon (ISM) for producing meteorological variables relevant to crop modeling. The focus area was Nepal's Terai region, and the local hindcasts were compared with weather station and reanalysis data. The results showed that the CFSv2 model accurately predicts monthly anomalies of daily maximum and minimum air temperature (Tmax and Tmin) as well as incoming total surface solar radiation (Srad). However, the daily climatologies of the respective CFSv2 hindcasts exhibit significant systematic biases compared to weather station data. The CFSv2 is less capable of predicting monthly precipitation anomalies and simulating the respective intra-seasonal variability over the growing season. Nevertheless, the observed daily climatologies of precipitation fall within the ensemble spread of the respective daily climatologies of CFSv2 hindcasts. These limitations in the CFSv2 seasonal forecasts, primarily in precipitation, restrict the potential application for predicting the interannual variability of crop yield associated with weather variability. Despite these limitations, ensemble averaging of the simulated yield using all CFSv2 members after applying bias correction may lead to satisfactory yield predictions.

  9. Tradeoffs between water requirements and yield stability in annual vs. perennial crops

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Brunsell, Nathaniel A.

    2018-02-01

    Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.

  10. Global growth and stability of agricultural yield decrease with pollinator dependence

    PubMed Central

    Garibaldi, Lucas A.; Aizen, Marcelo A.; Klein, Alexandra M.; Cunningham, Saul A.; Harder, Lawrence D.

    2011-01-01

    Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers’ inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield–resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961–2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached. PMID:21422295

  11. Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate

    DOE PAGES

    Ong, Rebecca Garlock; Higbee, Alan; Bottoms, Scott; ...

    2016-11-08

    Here, interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strainsmore » of Saccharomyces cerevisiae and Zymomonas mobilis. As a result, a chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates.« less

  12. Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects

    NASA Technical Reports Server (NTRS)

    Makowski, David; Asseng, Senthold; Ewert, Frank; Bassu, Simona; Durand, Jean-Louis; Martre, Pierre; Adam, Myriam; Aggarwal, Pramod K.; Angulo, Carlos; Baron, Chritian; hide

    2015-01-01

    Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.

  13. Soil Moisture as an Estimator for Crop Yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Meyer, Volker; Samaniego, Luis; Thober, Stephan

    2015-04-01

    Annual crop yield depends on various factors such as soil properties, management decisions, and meteorological conditions. Unfavorable weather conditions, e.g. droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany. Predicting crop yields allows to mitigate negative effects of weather extremes which are assumed to occur more often in the future due to climate change. A standard approach in economics is to predict the impact of climate change on agriculture as a function of temperature and precipitation. This approach has been developed further using concepts like growing degree days. Other econometric models use nonlinear functions of heat or vapor pressure deficit. However, none of these approaches uses soil moisture to predict crop yield. We hypothesize that soil moisture is a better indicator to explain stress on plant growth than estimations based on precipitation and temperature. This is the case because the latter variables do not explicitly account for the available water content in the root zone, which is the primary source of water supply for plant growth. In this study, a reduced form panel approach is applied to estimate a multivariate econometric production function for the years 1999 to 2010. Annual crop yield data of various crops on the administrative district level serve as depending variables. The explanatory variable of major interest is the Soil Moisture Index (SMI), which quantifies anomalies in root zone soil moisture. The SMI is computed by the mesoscale Hydrological Model (mHM, www.ufz.de/mhm). The index represents the monthly soil water quantile at a 4 km2 grid resolution covering entire Germany. A reduced model approach is suitable because the SMI is the result of a stochastic weather process and therefore can be considered exogenous. For the ease of interpretation a linear functionality is preferred. Meteorological, phenological, geological, agronomic, and socio-economic variables are also considered to extend the model in order to reveal the proper causal relation. First results show that dry as well as wet extremes of SMI have a negative impact on crop yield for winter wheat. This indicates that soil moisture has at least a limiting affect on crop production.

  14. Effects of Hydrological Parameters on Palm Oil Fresh Fruit Bunch Yield)

    NASA Astrophysics Data System (ADS)

    Nda, M.; Adnan, M. S.; Suhadak, M. A.; Zakaria, M. S.; Lopa, R. T.

    2018-04-01

    Climate change effects and variability have been studied by many researchers in diverse geophysical fields. Malaysia produces large volume of palm oil, the effects of climate change on hydrological parameters (rainfall and precipitation) could have adverse effects on palm oil fresh fruit bunch (FFB) production with implications at both local and international market. It is important to understand the effects of climate change on crop yield to adopt new cultivation techniques and guaranteeing food security globally. Based on this background, the paper’s objective is to investigate the effects of rainfall and temperature pattern on crop yield (FFB) within five years period (2013 - 2017) at Batu Pahat District. The Man - Kendall rank technique (trend test) and statistical analyses (correlation and regression) were applied to the dataset used for the study. The results reveal that there are variabilities in rainfall and temperature from one month to the other and the statistical analysis reveals that the hydrological parameters have an insignificant effect on crop yield.

  15. Estimating crop yields and crop evapotranspiration distributions from remote sensing and geospatial agricultural data

    NASA Astrophysics Data System (ADS)

    Smith, T.; McLaughlin, D.

    2017-12-01

    Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.

  16. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    PubMed

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  17. Closing the Yield Gap of Sugar Beet in the Netherlands-A Joint Effort.

    PubMed

    Hanse, Bram; Tijink, Frans G J; Maassen, Jurgen; van Swaaij, Noud

    2018-01-01

    The reform of the European Union's sugar regime caused potential decreasing beet prices. Therefore, the Speeding Up Sugar Yield (SUSY) project was initiated. At the start, a 3 × 15 target was formulated: in 2015 the national average sugar yield in the Netherlands equals 15 t/ha (60% of the sugar beet potential) and the total variable costs 15 euro/t sugar beet, aspiring a saving on total variable costs and a strong increase in sugar yield. Based on their average sugar yield in 2000-2004, 26 pairs of "type top" (high yielding) and "type average" (average yielding) growers were selected from all sugar beet growing regions in the Netherlands. On the fields of those farmers, all measures of sugar beet cultivation were investigated, including cost calculation and recording phytopathological, agronomical and soil characteristics in 2006 and 2007. Although there was no significant difference in total variable costs, the "type top" growers yielded significantly 20% more sugar in each year compared to the "type average" growers. Therefore, the most profitable strategy for the growers is maximizing sugar yield and optimizing costs. The difference in sugar yield between growers could be explained by pests and diseases (50%), weed control (30%), soil structure (25%) and sowing date (14%), all interacting with each other. The SUSY-project revealed the effect of the grower's management on sugar yield. As a follow up for the SUSY-project, a growers' guide "Suikerbietsignalen" was published, Best Practice study groups of growers were formed and trainings and workshops were given and field days organized. Further, the benchmarking and feedback on the crop management recordings and the extension on variety choice, sowing performance, foliar fungi control and harvest losses were intensified. On the research part, a resistance breaking strain of the Beet Necrotic Yellow Vein Virus (BNYVV) and a new foliar fungus, Stemphylium beticola , were identified and options for control were tested, and implemented in growers practices. The joint efforts of sugar industry, sugar beet research and growers resulted in a raise in sugar yield from 10.6 t/ha in 2002-2006 to 13.8 t/ha in 2012-2016.

  18. Small-scale spatial variation in population dynamics and fishermen response in a coastal marine fishery.

    PubMed

    Wilson, Jono R; Kay, Matthew C; Colgate, John; Qi, Roy; Lenihan, Hunter S

    2012-01-01

    A major challenge for small-scale fisheries management is high spatial variability in the demography and life history characteristics of target species. Implementation of local management actions that can reduce overfishing and maximize yields requires quantifying ecological heterogeneity at small spatial scales and is therefore limited by available resources and data. Collaborative fisheries research (CFR) is an effective means to collect essential fishery information at local scales, and to develop the social, technical, and logistical framework for fisheries management innovation. We used a CFR approach with fishing partners to collect and analyze geographically precise demographic information for grass rockfish (Sebastes rastrelliger), a sedentary, nearshore species harvested in the live fish fishery on the West Coast of the USA. Data were used to estimate geographically distinct growth rates, ages, mortality, and length frequency distributions in two environmental subregions of the Santa Barbara Channel, CA, USA. Results indicated the existence of two subpopulations; one located in the relatively cold, high productivity western Channel, and another in the relatively warm, low productivity eastern Channel. We parameterized yield per recruit models, the results of which suggested nearly twice as much yield per recruit in the high productivity subregion relative to the low productivity subregion. The spatial distribution of fishing in the two environmental subregions demonstrated a similar pattern to the yield per recruit outputs with greater landings, effort, and catch per unit effort in the high productivity subregion relative to the low productivity subregion. Understanding how spatial variability in stock dynamics translates to variability in fishery yield and distribution of effort is important to developing management plans that maximize fishing opportunities and conservation benefits at local scales.

  19. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2018-06-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  20. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2017-12-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  1. Variability in cotton fiber yield, fiber quality, and soil properties in a southeastern coastal plain

    USDA-ARS?s Scientific Manuscript database

    To maximize profitability, cotton (GossypiumhirsutumL.) producers must attempt to control the quality of the crop while maximizing yield. The objective of this research was to measure the intrinsic variability present in cotton fiber yield and quality. The 0.5-ha experimental site was located in a...

  2. Relationship between soybean yield/quality and soil quality in a major soybean-producing area based on a 2D-QSAR model

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Li, Shiwei

    2017-05-01

    Based on experimental data of the soybean yield and quality from 30 sampling points, a quantitative structure-activity relationship model (2D-QSAR) was established using the soil quality (elements, pH, organic matter content and cation exchange capacity) as independent variables and soybean yield or quality as the dependent variable, with SPSS software. During the modeling, the full data set (30 and 14 compounds) was divided into a training set (24 and 11 compounds) for model generation and a test set (6 and 3 compounds) for model validation. The R2 values of the resulting models and data were 0.826 and 0.808 for soybean yield and quality, respectively, and all regression coefficients were significant (P < 0.05). The correlation coefficient R2pred of observed values and predicted values of the soybean yield and soybean quality in the test set were 0.961 and 0.956, respectively, indicating that the models had a good predictive ability. Moreover, the Mo, Se, K, N and organic matter contents and the cation exchange capacity of soil had a positive effect on soybean production, and the B, Mo, Se, K and N contents and cation exchange coefficient had a positive effect on soybean quality. The results are instructive for enhancing soils to improve the yield and quality of soybean, and this method can also be used to study other crops or regions, providing a theoretical basis to improving the yield and quality of crops.

  3. VARIABILITY AND CHARACTER ASSOCIATION IN ROSE COLOURED LEADWORT (PLUMBAGO ROSEA Linn.)

    PubMed Central

    Kurian, Alice; Anitha, C.A.; Nybe, E.V.

    2001-01-01

    Forty five plumbago rosea accessions collected from different parts of Kerala state were evaluated for variability in morphological and yield related characters and plumbagin content. Highly significant variation was evident for all the characters studied except leaf size indicating wide variability in the accessions. Accessions PR 25 and PR 31 appear to be promising with respect to root yield and high plumbagin content. Character association revelated significant and positive correlation of all the characters except leaf size with yield. Hence, selection of high yielding types could easily be done based on visual characters expressing more vegetative growth but with reduced leaf size. PMID:22557037

  4. Yield response to variable rate irrigation in corn

    USDA-ARS?s Scientific Manuscript database

    To investigate the impact of variable rate irrigation on corn yield, twenty plots of corn were laid out under a center pivot variable rate irrigation (VRI) system in an experimental field near Stoneville, MS. The VRI system is equipped with five VRI zone control units, a global positioning system (G...

  5. Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna

    NASA Astrophysics Data System (ADS)

    Faye, Babacar; Webber, Heidi; Naab, Jesse B.; MacCarthy, Dilys S.; Adam, Myriam; Ewert, Frank; Lamers, John P. A.; Schleussner, Carl-Friedrich; Ruane, Alex; Gessner, Ursula; Hoogenboom, Gerrit; Boote, Ken; Shelia, Vakhtang; Saeed, Fahad; Wisser, Dominik; Hadir, Sofia; Laux, Patrick; Gaiser, Thomas

    2018-03-01

    To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.

  6. Progress and Challenges in Predicting Crop Responses to Atmospheric [CO2

    NASA Astrophysics Data System (ADS)

    Kent, J.; Paustian, K.

    2017-12-01

    Increasing atmospheric [CO2] directly accelerates photosynthesis in C3 crops, and indirectly promotes yields by reducing stomatal conductance and associated water losses in C3 and C4 crops. Several decades of experiments have exposed crops to eCO2 in greenhouses and other enclosures and observed yield increases on the order of 33%. FACE systems were developed in the early 1990s to better replicate open-field growing conditions. Some authors contend that FACE results indicate lower crop yield responses than enclosure studies, while others maintain no significant difference or attribute differences to various methodological factors. The crop CO2 response processes in many crop models were developed using results from enclosure experiments. This work tested the ability of one such model, DayCent, to reproduce crop responses to CO2 enrichment from several FACE experiments. DayCent performed well at simulating yield and transpiration responses in C4 crops, but significantly overestimated yield responses in C3 crops. After adjustment of CO2-response parameters, DayCent was able to reproduce mean yield responses for specific crops. However, crop yield responses from FACE experiments vary widely across years and sites, and likely reflect complex interactions between conditions such as weather, soils, cultivars, and biotic stressors. Further experimental work is needed to identify the secondary variables that explain this variability so that models can more reliably forecast crop yields under climate change. Likewise, CO2 impacts on crop outcomes such as belowground biomass allocation and grain N content have implications for agricultural C fluxes and human nutrition, respectively, but are poorly understood and thus difficult to simulate with confidence.

  7. Application of Thermal Infrared Remote Sensing for Quantitative Evaluation of Crop Characteristics

    NASA Technical Reports Server (NTRS)

    Shaw, J.; Luvall, J.; Rickman, D.; Mask, P.; Wersinger, J.; Sullivan, D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Evidence suggests that thermal infrared emittance (TIR) at the field-scale is largely a function of the integrated crop/soil moisture continuum. Because soil moisture dynamics largely determine crop yields in non-irrigated farming (85 % of Alabama farms are non-irrigated), TIR may be an effective method of mapping within field crop yield variability, and possibly, absolute yields. The ability to map yield variability at juvenile growth stages can lead to improved soil fertility and pest management, as well as facilitating the development of economic forecasting. Researchers at GHCC/MSFC/NASA and Auburn University are currently investigating the role of TIR in site-specific agriculture. Site-specific agriculture (SSA), or precision farming, is a method of crop production in which zones and soils within a field are delineated and managed according to their unique properties. The goal of SSA is to improve farm profits and reduce environmental impacts through targeted agrochemical applications. The foundation of SSA depends upon the spatial and temporal characterization of soil and crop properties through the creation of management zones. Management zones can be delineated using: 1) remote sensing (RS) data, 2) conventional soil testing and soil mapping, and 3) yield mapping. Portions of this research have concentrated on using remote sensing data to map yield variability in corn (Zea mays L.) and soybean (Glycine max L.) crops. Remote sensing data have been collected for several fields in the Tennessee Valley region at various crop growth stages during the last four growing seasons. Preliminary results of this study will be presented.

  8. The Produce of Methyl Ester from Crude Palm Oil (CPO) Using Heterogene Catalyst Ash of Chicken Bone (CaO) using Ethanol as Solvent

    NASA Astrophysics Data System (ADS)

    Sinaga, M. S.; Fauzi, R.; Turnip, J. R.

    2017-03-01

    Methyl Ester (methyl ester) is generally made by trans esterification using heterogeneous base catalyst. To simplify the separation, the heterogeneous catalyst is used, such as CaO, which in this case was isolated from chicken bones made by softening chicken bones and do calcination process. Some other important variables other than the selection of the catalyst is the catalyst dosage, molar ratio of ethanol to the CPO and the reaction temperature. The best result from this observe is at the molar ratio of ethanol to the CPO is 17: 1, the reaction temperature is 70 ° C and 7% catalyst (w.t) with reaction time for 7 hours at 500 rpm as a constant variable, got 90,052 % purity, so that this result does not get the standard requirements of biodiesel, because of the purity of the biodiesel standard temporary must be achieve > 96.5 %. This study aims to produce methyl ester yield with the influence of the reaction temperature, percent of catalyst and molar ratio of ethanol and CPO. The most influential variable is the temperature of the reaction that gives a significant yield difference of methyl ester produced. It’s been proven by the increasing temperature used will also significantly increase the yield of methyl ester.

  9. Predicting meat yields and commercial meat cuts from carcasses of young bulls of Spanish breeds by the SEUROP method and an image analysis system.

    PubMed

    Oliver, A; Mendizabal, J A; Ripoll, G; Albertí, P; Purroy, A

    2010-04-01

    The SEUROP system is currently in use for carcass classification in Europe. Image analysis and other new technologies are being developed to enhance and supplement this classification system. After slaughtering, 91 carcasses of local Spanish beef breeds were weighed and classified according to the SEUROP system. Two digital photographs (a side and a dorsal view) were taken of the left carcass sides, and a total of 33 morphometric measurements (lengths, perimeters, areas) were made. Commercial butchering of these carcasses took place 24 h postmortem, and the different cuts were grouped according to four commercial meat cut quality categories: extra, first, second, and third. Multiple regression analysis of carcass weight and the SEUROP conformation score (x variables) on meat yield and the four commercial cut quality category yields (y variables) was performed as a measure of the accuracy of the SEUROP system. Stepwise regression analysis of carcass weight and the 33 morphometric image analysis measurements (x variables) and meat yield and yields of the four commercial cut quality categories (y variables) was carried out. Higher accuracy was achieved using image analysis than using only the current SEUROP conformation score. The regression coefficient values were between R(2)=0.66 and R(2)=0.93 (P<0.001) for the SEUROP system and between R(2)=0.81 and R(2)=0.94 (P<0.001) for the image analysis method. These results suggest that the image analysis method should be helpful as a means of supplementing and enhancing the SEUROP system for grading beef carcasses. 2009 Elsevier Ltd. All rights reserved.

  10. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S.

    NASA Technical Reports Server (NTRS)

    Mladenova, Iliana E.; Bolten, John D.; Crow, Wade T.; Anderson, Martha C.; Hain, C. R.; Johnson, David M.; Mueller, Rick

    2017-01-01

    This paper presents an intercomparative study of 12 operationally produced large-scale datasets describing soil moisture, evapotranspiration (ET), and or vegetation characteristics within agricultural regions of the contiguous United States (CONUS). These datasets have been developed using a variety of techniques, including, hydrologic modeling, satellite-based retrievals, data assimilation, and survey in-field data collection. The objectives are to assess the relative utility of each dataset for monitoring crop yield variability, to quantitatively assess their capacity for predicting end-of-season corn and soybean yields, and to examine the evolution of the yield-index correlations during the growing season. This analysis is unique both with regards to the number and variety of examined yield predictor datasets and the detailed assessment of the water availability timing on the end-of-season crop production during the growing season. Correlation results indicate that over CONUS, at state-level soil moisture and ET indices can provide better information for forecasting corn and soybean yields than vegetation-based indices such as normalized difference vegetation index. The strength of correlation with corn and soybean yields strongly depends on the interannual variability in yield measured at a given location. In this case study, some of the remotely derived datasets examined provide skill comparable to that of in situ field survey-based data further demonstrating the utility of these remote sensing-based approaches for estimating crop yield.

  11. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    NASA Astrophysics Data System (ADS)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  12. Shea (Vitellaria paradoxa Gaertn C. F.) fruit yield assessment and management by farm households in the Atacora district of Benin

    PubMed Central

    Villamor, Grace B.; Nyarko, Benjamin Kofi; Wala, Kperkouma; Akpagana, Koffi

    2018-01-01

    Vitellaria paradoxa (Gaertn C. F.), or shea tree, remains one of the most valuable trees for farmers in the Atacora district of northern Benin, where rural communities depend on shea products for both food and income. To optimize productivity and management of shea agroforestry systems, or "parklands," accurate and up-to-date data are needed. For this purpose, we monitored120 fruiting shea trees for two years under three land-use scenarios and different soil groups in Atacora, coupled with a farm household survey to elicit information on decision making and management practices. To examine the local pattern of shea tree productivity and relationships between morphological factors and yields, we used a randomized branch sampling method and applied a regression analysis to build a shea yield model based on dendrometric, soil and land-use variables. We also compared potential shea yields based on farm household socio-economic characteristics and management practices derived from the survey data. Soil and land-use variables were the most important determinants of shea fruit yield. In terms of land use, shea trees growing on farmland plots exhibited the highest yields (i.e., fruit quantity and mass) while trees growing on Lixisols performed better than those of the other soil group. Contrary to our expectations, dendrometric parameters had weak relationships with fruit yield regardless of land-use and soil group. There is an inter-annual variability in fruit yield in both soil groups and land-use type. In addition to observed inter-annual yield variability, there was a high degree of variability in production among individual shea trees. Furthermore, household socioeconomic characteristics such as road accessibility, landholding size, and gross annual income influence shea fruit yield. The use of fallow areas is an important land management practice in the study area that influences both conservation and shea yield. PMID:29346406

  13. Shea (Vitellaria paradoxa Gaertn C. F.) fruit yield assessment and management by farm households in the Atacora district of Benin.

    PubMed

    Aleza, Koutchoukalo; Villamor, Grace B; Nyarko, Benjamin Kofi; Wala, Kperkouma; Akpagana, Koffi

    2018-01-01

    Vitellaria paradoxa (Gaertn C. F.), or shea tree, remains one of the most valuable trees for farmers in the Atacora district of northern Benin, where rural communities depend on shea products for both food and income. To optimize productivity and management of shea agroforestry systems, or "parklands," accurate and up-to-date data are needed. For this purpose, we monitored120 fruiting shea trees for two years under three land-use scenarios and different soil groups in Atacora, coupled with a farm household survey to elicit information on decision making and management practices. To examine the local pattern of shea tree productivity and relationships between morphological factors and yields, we used a randomized branch sampling method and applied a regression analysis to build a shea yield model based on dendrometric, soil and land-use variables. We also compared potential shea yields based on farm household socio-economic characteristics and management practices derived from the survey data. Soil and land-use variables were the most important determinants of shea fruit yield. In terms of land use, shea trees growing on farmland plots exhibited the highest yields (i.e., fruit quantity and mass) while trees growing on Lixisols performed better than those of the other soil group. Contrary to our expectations, dendrometric parameters had weak relationships with fruit yield regardless of land-use and soil group. There is an inter-annual variability in fruit yield in both soil groups and land-use type. In addition to observed inter-annual yield variability, there was a high degree of variability in production among individual shea trees. Furthermore, household socioeconomic characteristics such as road accessibility, landholding size, and gross annual income influence shea fruit yield. The use of fallow areas is an important land management practice in the study area that influences both conservation and shea yield.

  14. Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation

    NASA Technical Reports Server (NTRS)

    Ponte, Rui M.; Frey, H. (Technical Monitor)

    2000-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic angular momentum (OAM) and mass fields and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability. The impact on OAM values of an optimization procedure that uses available data to constrain ocean model results was also tested for the first time. The optimization procedure yielded substantial changes, in OAM, related to adjustments in both motion and mass fields,as well as in the wind stress torques acting on the ocean. Constrained OAM values were found to yield noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale.

  15. The impact of sea surface temperature on winter wheat in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, Mirian; Rodríguez-Fonseca, Belen; Ruiz-Ramos, Margarita

    2016-04-01

    Climate variability is the main driver of changes in crops yield, especially for rainfed production systems. This is also the case of Iberian Peninsula (IP) (Capa-Morocho et al., 2014), where wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. Previous works have shown that large-scale oceanic patterns have a significant impact on precipitation over IP (Rodriguez-Fonseca and de Castro, 2002; Rodríguez-Fonseca et al., 2006). The existence of some predictability of precipitation has encouraged us to analyze the possible predictability of the wheat yield in the IP using sea surface temperature (SST) anomalies as predictor. For this purpose, a crop model site specific calibrated for the Northeast of IP and several reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that wheat yield anomalies are associated with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) SST. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures and precipitation experienced by the crop during flowering and grain filling. Results from this study could have important implications for predictability issues in agricultural planning and management, such as insurance coverage, changes in sowing dates and choice of species and varieties.

  16. Model-assisted forest yield estimation with light detection and ranging

    Treesearch

    Jacob L. Strunk; Stephen E. Reutebuch; Hans-Erik Andersen; Peter J. Gould; Robert J. McGaughey

    2012-01-01

    Previous studies have demonstrated that light detection and ranging (LiDAR)-derived variables can be used to model forest yield variables, such as biomass, volume, and number of stems. However, the next step is underrepresented in the literature: estimation of forest yield with appropriate confidence intervals. It is of great importance that the procedures required for...

  17. Assessment of impact of climate change and adaptation strategies on maize production in Uganda

    NASA Astrophysics Data System (ADS)

    Kikoyo, Duncan A.; Nobert, Joel

    2016-06-01

    Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability. The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country. Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially for the dry climates.

  18. Statistical modelling for precision agriculture: A case study in optimal environmental schedules for Agaricus Bisporus production via variable domain functional regression.

    PubMed

    Panayi, Efstathios; Peters, Gareth W; Kyriakides, George

    2017-01-01

    Quantifying the effects of environmental factors over the duration of the growing process on Agaricus Bisporus (button mushroom) yields has been difficult, as common functional data analysis approaches require fixed length functional data. The data available from commercial growers, however, is of variable duration, due to commercial considerations. We employ a recently proposed regression technique termed Variable-Domain Functional Regression in order to be able to accommodate these irregular-length datasets. In this way, we are able to quantify the contribution of covariates such as temperature, humidity and water spraying volumes across the growing process, and for different lengths of growing processes. Our results indicate that optimal oxygen and temperature levels vary across the growing cycle and we propose environmental schedules for these covariates to optimise overall yields.

  19. Statistical modelling for precision agriculture: A case study in optimal environmental schedules for Agaricus Bisporus production via variable domain functional regression

    PubMed Central

    Panayi, Efstathios; Kyriakides, George

    2017-01-01

    Quantifying the effects of environmental factors over the duration of the growing process on Agaricus Bisporus (button mushroom) yields has been difficult, as common functional data analysis approaches require fixed length functional data. The data available from commercial growers, however, is of variable duration, due to commercial considerations. We employ a recently proposed regression technique termed Variable-Domain Functional Regression in order to be able to accommodate these irregular-length datasets. In this way, we are able to quantify the contribution of covariates such as temperature, humidity and water spraying volumes across the growing process, and for different lengths of growing processes. Our results indicate that optimal oxygen and temperature levels vary across the growing cycle and we propose environmental schedules for these covariates to optimise overall yields. PMID:28961254

  20. Statistical rice yield modeling using blended MODIS-Landsat based crop phenology metrics in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.; Lau, K. V.

    2015-12-01

    Taiwan is a populated island with a majority of residents settled in the western plains where soils are suitable for rice cultivation. Rice is not only the most important commodity, but also plays a critical role for agricultural and food marketing. Information of rice production is thus important for policymakers to devise timely plans for ensuring sustainably socioeconomic development. Because rice fields in Taiwan are generally small and yet crop monitoring requires information of crop phenology associating with the spatiotemporal resolution of satellite data, this study used Landsat-MODIS fusion data for rice yield modeling in Taiwan. We processed the data for the first crop (Feb-Mar to Jun-Jul) and the second (Aug-Sep to Nov-Dec) in 2014 through five main steps: (1) data pre-processing to account for geometric and radiometric errors of Landsat data, (2) Landsat-MODIS data fusion using using the spatial-temporal adaptive reflectance fusion model, (3) construction of the smooth time-series enhanced vegetation index 2 (EVI2), (4) rice yield modeling using EVI2-based crop phenology metrics, and (5) error verification. The fusion results by a comparison bewteen EVI2 derived from the fusion image and that from the reference Landsat image indicated close agreement between the two datasets (R2 > 0.8). We analysed smooth EVI2 curves to extract phenology metrics or phenological variables for establishment of rice yield models. The results indicated that the established yield models significantly explained more than 70% variability in the data (p-value < 0.001). The comparison results between the estimated yields and the government's yield statistics for the first and second crops indicated a close significant relationship between the two datasets (R2 > 0.8), in both cases. The root mean square error (RMSE) and mean absolute error (MAE) used to measure the model accuracy revealed the consistency between the estimated yields and the government's yield statistics. This study demonstrates advantages of using EVI2-based phenology metrics (derived from Landsat-MODIS fusion data) for rice yield estimation in Taiwan prior to the harvest period.

  1. Relationship between mozzarella yield and milk composition, processing factors, and recovery of whey constituents.

    PubMed

    Sales, D C; Rangel, A H N; Urbano, S A; Freitas, Alfredo R; Tonhati, Humberto; Novaes, L P; Pereira, M I B; Borba, L H F

    2017-06-01

    Our aim was to identify the relationship between mozzarella cheese yield and buffalo milk composition, processing factors, and recovery of whey constituents. A production of 30 batches of mozzarella cheese at a dairy industry in northeast Brazil (Rio Grande do Norte) was monitored between March and November 2015. Mozzarella yield and 32 other variables were observed for each batch, and divided into 3 groups: milk composition variables (12); variables involved in the cheesemaking process (14); and variables for recovery of whey constituents (6). Data were analyzed using descriptive statistics, Pearson correlation, and principal component analysis. Most of the correlations between milk composition variables and between the variables of the manufacturing processes were not significant. Significant correlations were mostly observed between variables for recovery of whey constituents. Yield only showed significant correlation with time elapsed between curd cuttings and age of the starter culture, and it showed greater association with age of the starter culture, time elapsed between curd cuttings, and during stretching, as well as with milk pH and density. Thus, processing factors and milk characteristics are closely related to dairy efficiency in mozzarella manufacturing. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Change in the magnitude and mechanisms of global temperature variability with warming.

    PubMed

    Brown, Patrick T; Ming, Yi; Li, Wenhong; Hill, Spencer A

    2017-01-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

  3. Change in the Magnitude and Mechanisms of Global Temperature Variability with Warming

    NASA Astrophysics Data System (ADS)

    Brown, P. T.; Ming, Y.; Li, W.; Hill, S. A.

    2017-12-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

  4. Use of Drought Index and Crop Modelling for Drought Impacts Analysis on Maize (Zea mays L.) Yield Loss in Bandung District

    NASA Astrophysics Data System (ADS)

    Kurniasih, E.; Impron; Perdinan

    2017-03-01

    Drought impacts on crop yield loss depend on drought magnitude and duration and on plant genotype at every plant growth stages when droughts occur. This research aims to assess the difference calculation results of 2 drought index methods and to study the maize yield loss variability impacted by drought magnitude and duration during maize growth stages in Bandung district, province of West Java, Indonesia. Droughts were quantified by the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at 1- to 3-month lags for the January1986-December 2015 period data. Maize yield responses to droughts were simulated by AquaCrop for the January 1986-May 2016 period of growing season. The analysis showed that the SPI and SPEI methods provided similar results in quantifying drought event. Droughts during maize reproductive stages caused the highest maize yield loss.

  5. A Geostatistical Approach to the Trickle Irrigation Design in a Heterogeneous Soil 2. A Field Test

    NASA Astrophysics Data System (ADS)

    Russo, David

    1984-05-01

    In a heterogeneous field in which the soil water properties vary under a "deterministic" uniform trickle irrigation system, the midway soil-water pressure head hc and the yield of a crop also differ from place to place. These differences may, in turn, reduce the average (over the field) yield relative to the yield that would be obtained if the soil was uniform throughout the field. A field experiment was conducted to test the hypothesis that this yield reduction may be eliminated by using a spatially variable trickle irrigation system. Twenty-five plots (200 m2 each) were established on a 30-m2 grid. Half of each plot was equipped with a standard trickle irrigation system with constant spacing between emitters of d = 50 cm (control plots), and the other half was equipped with a trickle irrigation system for which the spacing between the emitters was selected by using the pertinent hydraulic properties (the saturated hydraulic conductivity Ks and the soil parameter α) according to the procedure of Bresler (1978) as described in paper 1 (Russo, 1983b). Values of hc measured at different times, as well as the total fruit yield Y of bell pepper (Capsicum frutescens var. "Maor"), were used to estimate the seasonal and the spatial distributions of hc and the spatial distribution of Y and their moments. The variograms of hc and Y were calculated and used to estimate their integral scales. It was found that the use of a spatially variable d relative to the use of a uniform d did not change the seasonal behavior of hc but reduced the spatial variability in hc and Y by 35% and 11%, respectively, and increased the integral scale of hc and Y by 30% and 10%, respectively, but increased the average total fruit yield by only 1.9%. The use of a spatially variable d reduced the dependence of Y on hc. This indicates that when the emitters are properly spaced, it is not the water but other factors that most influence yield. When a constant d was used, the dependence of Y of hc decreased with time. This and the relatively good agreement between the values of hc measured at the initial stages of the growing season and those calculated in paper 1 demonstrate that the concept of hc is important in the early stages of the plant's growth, when the root system is not fully developed. Both the theoretical (paper 1) and the experimental results showed that although Ks and α, as well as hc, varied considerably in the field the spatial variability of the crop yield was relatively small. This explains why the use of a spatially variable d essentially was not an improvement over the fixed d. It is suggested that this study will be considered as a methodological one, which can be adapted to solve practical problems associated with field spatial variability.

  6. Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm

    PubMed Central

    Tra, Viet; Kim, Jaeyoung; Kim, Jong-Myon

    2017-01-01

    This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs) trained via the stochastic diagonal Levenberg-Marquardt (S-DLM) algorithm. The CNNs utilize the spectral energy maps (SEMs) of the acoustic emission (AE) signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds. PMID:29211025

  7. Tensile and compressive behavior of Borsic/aluminum

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.

    1977-01-01

    The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.

  8. Effects of diurnal temperature range and drought on wheat yield in Spain

    NASA Astrophysics Data System (ADS)

    Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.

    2017-07-01

    This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.

  9. Pancreatic islet isolation variables in non-human primates (rhesus macaques).

    PubMed

    Andrades, P; Asiedu, C K; Gansuvd, B; Inusah, S; Goodwin, K J; Deckard, L A; Jargal, U; Thomas, J M

    2008-07-01

    Non-human primates (NHPs) are important preclinical models for pancreatic islet transplantation (PIT) because of their close phylogenetic and immunological relationship with humans. However, low availability of NHP tissue, long learning curves and prohibitive expenses constrain the consistency of isolated NHP islets for PIT studies. To advance preclinical studies, we attempted to identify key variables that consistently influence the quantity and quality of NHP islets. Seventy-two consecutive pancreatic islet isolations from rhesus macaques were reviewed retrospectively. A scaled down, semi-automated islet isolation method was used, and monkeys with streptozotocin-induced diabetes, weighing 3-7 kg, served as recipients for allotransplantation. We analysed the effects of 22 independent variables grouped as donor factors, surgical factors and isolation technique factors. Islet yields, success of isolation and transplantation results were used as quantitative and qualitative outcomes. In the multivariate analysis, variables that significantly affected islet yield were the type of monkey, pancreas preservation, enzyme lot and volume of enzyme delivered. The variables associated with successful isolation were the enzyme lot and volume delivered. The transplant result was correlated with pancreas preservation, enzyme lot, endotoxin levels and COBE collection method. Islet quantity and quality are highly variable between isolations. The data reviewed suggest that future NHP isolations should use bilayer preservation, infuse more than 80 ml of Liberase into the pancreas, collect non-fractioned tissue from the COBE, and strictly monitor for infection.

  10. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Anderson, M. C.; Gao, F.; Wardlow, B.; Hain, C.; Otkin, J.; Sun, L.; Dulaney, W.

    2017-12-01

    In agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability and vegetation health and thus has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) describes temporal anomalies in a normalized evapotranspiration metric (fRET) as derived from satellite remote sensing and has demonstrated capacity to explain regional yield variability in water limited crop growing regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded. In this study we generated maps of ET, fRET, and ESI at high spatiotemporal resolution (30-m pixels, daily timesteps) using a multi-sensor data fusion method, integrating information from satellite platforms with good temporal coverage and other platforms that provide field-scale spatial detail. The study was conducted over the period 2010-2014, covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of corn yield are investigated at both the field and county level to assess the value of ESI as a yield forecasting tool. To examine the role of phenology in ESI-yield correlations, annual input fRET timeseries were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). Results demonstrate that mapping of fRET and ESI at 30-m has the advantage of being able to resolve different crop types with varying phenology. The study also suggests that incorporating phenological information significantly improves yield-correlations by accounting for effects of phenology such as variable planting date and emergence date. The yield-ESI relationship in this study well captures the inter-annual variability of yields and thus has potential to be used for yield prediction, or for ingestion into a crop simulation model as a crop-specific moisture stress function.

  11. Strengths and Limitations of Operational Use of 1 Km EO Biophysical Products for Regional Prediction of Grain Yelds in Europe (wheat, barley and maize)

    NASA Astrophysics Data System (ADS)

    Meroni, M.; LEO, O.; Lopez-Lozano, R.; Baruth, B.; Duveiller, G.; Garcia-Condado, S.; Hooker, J.; Seguini, L.

    2014-12-01

    The site-specific relationship between EO indicators and actual crop yields has been explored in many different studies, describing semi-empirical regression models between spatially aggregated biophysical parameters or vegetation indices and observed yields (from field measurements or official statistics). However, when considering larger extensions -from countries to continents- agro-climatic conditions and crop management may differ substantially among regions, and these differences may greatly influence the relationship between biophysical indicators and the observed yields, which may be also driven by limiting factors other than green biomass formation. The present study aims to better assess the contribution of EO indicators within an operational crop yield forecasting system in Europe and neighbouring countries, by evaluating how these above mentioned geographic differences influence the relationship between biophysical indicators and crop yield. We therefore explore, as a first step, the correspondence between fAPAR time-series (1999-2013) and the inter-annual yield variability of wheat, barley and grain maize, at sub-national level across Europe (270-450 Administrative Units, depending on crop). In a second step, we map the agro-climatic contexts in which EO indicators better explain the observed yield inter-annual variability, identify the influence of some meteorological events on the fAPAR -yield relationship and provide some recommendations for further investigation. The results indicate that in water-limited environments (e.g. Mediterranean and Black Sea areas), fAPAR is highly correlated with yields whereas in northern Europe, crop yield appears much less limited by leaf area expansion along the season, and the relationship between yield and EO products becomes more difficult to interpret.

  12. First-Order System Least-Squares for the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Bochev, P.; Cai, Z.; Manteuffel, T. A.; McCormick, S. F.

    1996-01-01

    This paper develops a least-squares approach to the solution of the incompressible Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable and associated curl and trace equations. We show that the resulting system is well-posed, and that an associated least-squares principle yields optimal discretization error estimates in the H(sup 1) norm in each variable (including the velocity flux) and optimal multigrid convergence estimates for the resulting algebraic system.

  13. A systems approach to identify adaptation strategies for Midwest US cropping systems under increased climate variability and change.

    NASA Astrophysics Data System (ADS)

    Basso, B.; Dumont, B.

    2015-12-01

    A systems approach was implemented to assess the impact of management strategies and climate variability on crop yield, nitrate leaching and soil organic carbon across the the Midwest US at a fine scale spatial resolution. We used the SALUS model which designed to simulated yield and environmental outcomes of continous crop rotations under different agronomic management, soil, weather. We extracted soil parameters from the SSURGO (Soil Survey Geographic) data of nine Midwest states (IA, IL, IN, MI, MN, MO, OH, SD, WI) and weather from NARR (North American Regional Reanalysis). State specific management itineraries were extracted from USDA-NAS. We present the results different cropping systems (continuous corn, corn-soybean and extended rotations) under different management practices (no-tillage, cover crops and residue management). Simulations were conducted under both the baseline (1979-2014) and projected climatic projections (RCP2.5, 6). Results indicated that climate change would likely have a negative impact on corn yields in some areas and positive in others. Soil N, and C losses can be reduced with the adoption of conservation practices.

  14. Improving Seasonal Crop Monitoring and Forecasting for Soybean and Corn in Iowa

    NASA Astrophysics Data System (ADS)

    Togliatti, K.; Archontoulis, S.; Dietzel, R.; VanLoocke, A.

    2016-12-01

    Accurately forecasting crop yield in advance of harvest could greatly benefit farmers, however few evaluations have been conducted to determine the effectiveness of forecasting methods. We tested one such method that used a combination of short-term weather forecasting from the Weather Research and Forecasting Model (WRF) to predict in season weather variables, such as, maximum and minimum temperature, precipitation and radiation at 4 different forecast lengths (2 weeks, 1 week, 3 days, and 0 days). This forecasted weather data along with the current and historic (previous 35 years) data from the Iowa Environmental Mesonet was combined to drive Agricultural Production Systems sIMulator (APSIM) simulations to forecast soybean and corn yields in 2015 and 2016. The goal of this study is to find the forecast length that reduces the variability of simulated yield predictions while also increasing the accuracy of those predictions. APSIM simulations of crop variables were evaluated against bi-weekly field measurements of phenology, biomass, and leaf area index from early and late planted soybean plots located at the Agricultural Engineering and Agronomy Research Farm in central Iowa as well as the Northwest Research Farm in northwestern Iowa. WRF model predictions were evaluated against observed weather data collected at the experimental fields. Maximum temperature was the most accurately predicted variable, followed by minimum temperature and radiation, and precipitation was least accurate according to RMSE values and the number of days that were forecasted within a 20% error of the observed weather. Our analysis indicated that for the majority of months in the growing season the 3 day forecast performed the best. The 1 week forecast came in second and the 2 week forecast was the least accurate for the majority of months. Preliminary results for yield indicate that the 2 week forecast is the least variable of the forecast lengths, however it also is the least accurate. The 3 day and 1 week forecast have a better accuracy, with an increase in variability.

  15. A Random Variable Approach to Nuclear Targeting and Survivability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Undem, Halvor A.

    We demonstrate a common mathematical formalism for analyzing problems in nuclear survivability and targeting. This formalism, beginning with a random variable approach, can be used to interpret past efforts in nuclear-effects analysis, including targeting analysis. It can also be used to analyze new problems brought about by the post Cold War Era, such as the potential effects of yield degradation in a permanently untested nuclear stockpile. In particular, we illustrate the formalism through four natural case studies or illustrative problems, linking these to actual past data, modeling, and simulation, and suggesting future uses. In the first problem, we illustrate themore » case of a deterministically modeled weapon used against a deterministically responding target. Classic "Cookie Cutter" damage functions result. In the second problem, we illustrate, with actual target test data, the case of a deterministically modeled weapon used against a statistically responding target. This case matches many of the results of current nuclear targeting modeling and simulation tools, including the result of distance damage functions as complementary cumulative lognormal functions in the range variable. In the third problem, we illustrate the case of a statistically behaving weapon used against a deterministically responding target. In particular, we show the dependence of target damage on weapon yield for an untested nuclear stockpile experiencing yield degradation. Finally, and using actual unclassified weapon test data, we illustrate in the fourth problem the case of a statistically behaving weapon used against a statistically responding target.« less

  16. Simple agrometeorological models for estimating Guineagrass yield in Southeast Brazil.

    PubMed

    Pezzopane, José Ricardo Macedo; da Cruz, Pedro Gomes; Santos, Patricia Menezes; Bosi, Cristiam; de Araujo, Leandro Coelho

    2014-09-01

    The objective of this work was to develop and evaluate agrometeorological models to simulate the production of Guineagrass. For this purpose, we used forage yield from 54 growing periods between December 2004-January 2007 and April 2010-March 2012 in irrigated and non-irrigated pastures in São Carlos, São Paulo state, Brazil (latitude 21°57'42″ S, longitude 47°50'28″ W and altitude 860 m). Initially we performed linear regressions between the agrometeorological variables and the average dry matter accumulation rate for irrigated conditions. Then we determined the effect of soil water availability on the relative forage yield considering irrigated and non-irrigated pastures, by means of segmented linear regression among water balance and relative production variables (dry matter accumulation rates with and without irrigation). The models generated were evaluated with independent data related to 21 growing periods without irrigation in the same location, from eight growing periods in 2000 and 13 growing periods between December 2004-January 2007 and April 2010-March 2012. The results obtained show the satisfactory predictive capacity of the agrometeorological models under irrigated conditions based on univariate regression (mean temperature, minimum temperature and potential evapotranspiration or degreedays) or multivariate regression. The response of irrigation on production was well correlated with the climatological water balance variables (ratio between actual and potential evapotranspiration or between actual and maximum soil water storage). The models that performed best for estimating Guineagrass yield without irrigation were based on minimum temperature corrected by relative soil water storage, determined by the ratio between the actual soil water storage and the soil water holding capacity.irrigation in the same location, in 2000, 2010 and 2011. The results obtained show the satisfactory predictive capacity of the agrometeorological models under irrigated conditions based on univariate regression (mean temperature, potential evapotranspiration or degree-days) or multivariate regression. The response of irrigation on production was well correlated with the climatological water balance variables (ratio between actual and potential evapotranspiration or between actual and maximum soil water storage). The models that performed best for estimating Guineagrass yield without irrigation were based on degree-days corrected by the water deficit factor.

  17. Vine vigor components and its variability - relationship to wine composition

    NASA Astrophysics Data System (ADS)

    Lafontaine, Magali; Tittmann, Susanne; Stoll, Manfred

    2015-04-01

    It was pointed out that a high spatial variability for canopy size and yield would exist within a vineyard but a high temporal stability over the years was observed. Furthermore, a greater variability in grape phenolics than in sugars and pH was detected within a vineyard. But the link between remote sensing indices and quality parameters of grapes is still unclear. Indeed, though in red grape varieties anthocyanins content was spatially negatively correlated to vigor parameters, it seemed that yield, Normalized Difference Vegetation Index (NDVI) and Plant Cell Density (PCD) indices were poorly correlated. Moreover, the link to quality parameters of wines remains uncertain. It was shown that more vigorous vines would lead to wines with less tannins while anthocyanins in wines would be highest when the vines were balanced but the question is if vine size or architecture, yield or nitrogen assimilation would play major contribution to those differences. The general scope of our project was to provide further knowledge on the relationship between vigor parameters and wine composition and relate these to the information gained by remote sensing. Variability in a 0.15 ha vineyard of Pinot noir planted in 2003 and grafted on SO4 rootstock at Geisenheim (Germany) was followed. Vine vigor was assessed manually for each of the 400 vines (cane number, pruning weight, trunk diameter) together with yield parameters (number of bunches per vine, crop yield). Leaf composition was assessed with a hand-held optical sensor (Multiplex3® [Mx3] (Force-A, Orsay, France) based on chlorophyll fluorescence screening providing information on leaf chlorophyll (SFR_G) and nitrogen (NBI_G) content. A micro-scale winemaking of single vines with a 3 factorial design on yield (L low, M middle, H high), SFRG (L, M, H) and canopy size (pruning weight, trunk diameter) (L, M, H) was performed for 2013 and 2014 to completely reflect variability. Wine tannin concentration represented the highest variability with a 11 fold concentration range (50-550 mg CE L-1) while variability of anthocyanins was lower with a 3 fold concentration range (90-250 mg M3OG L-1). The results showed that differences in leaf chlorophyll (SFR_G) would represent the most important factor influencing wine phenolic composition. Measurements of soil resistivity based on ARP technique (Geocarta, Paris, France), leaf composition with a mounted Multiplex providing information on porosity (NFI), biomass (BIOMASS) and chlorophyll (BISFR) together with NDVI assessed by geo-X8000 (geo-konzept-Gesellschaft für Umweltplanungssysteme mbH, Adelschlag, Germany) were performed. Grapes and berry composition was also assessed with Mx3 providing information on anthocyanins (ANTH, FERARI) and sugar (SFR_R) variability. In a second step, vines similar in size (trunk diameter and cane number) and similar yield (number of bunches per vines) were divided in 3 groups differing in leaf SFR_G. A larger scale winemaking (150kg) showed that with increasing SFR_G, Pinot noir wine typicity decreased together with anthocyanin concentration while tannin concentration increased. A better understanding of vineyard variability for targeted management or harvest would allow better understanding to produce and select fruit to a favored wine style.

  18. Estimating milk yield and value losses from increased somatic cell count on US dairy farms.

    PubMed

    Hadrich, J C; Wolf, C A; Lombard, J; Dolak, T M

    2018-04-01

    Milk loss due to increased somatic cell counts (SCC) results in economic losses for dairy producers. This research uses 10 mo of consecutive dairy herd improvement data from 2013 and 2014 to estimate milk yield loss using SCC as a proxy for clinical and subclinical mastitis. A fixed effects regression was used to examine factors that affected milk yield while controlling for herd-level management. Breed, milking frequency, days in milk, seasonality, SCC, cumulative months with SCC greater than 100,000 cells/mL, lactation, and herd size were variables included in the regression analysis. The cumulative months with SCC above a threshold was included as a proxy for chronic mastitis. Milk yield loss increased as the number of test days with SCC ≥100,000 cells/mL increased. Results from the regression were used to estimate a monetary value of milk loss related to SCC as a function of cow and operation related explanatory variables for a representative dairy cow. The largest losses occurred from increased cumulative test days with a SCC ≥100,000 cells/mL, with daily losses of $1.20/cow per day in the first month to $2.06/cow per day in mo 10. Results demonstrate the importance of including the duration of months above a threshold SCC when estimating milk yield losses. Cows with chronic mastitis, measured by increased consecutive test days with SCC ≥100,000 cells/mL, resulted in higher milk losses than cows with a new infection. This provides farm managers with a method to evaluate the trade-off between treatment and culling decisions as it relates to mastitis control and early detection. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes

    NASA Astrophysics Data System (ADS)

    Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.

    2016-09-01

    Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.

  20. Understanding the weather signal in national crop-yield variability

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders

    2017-06-01

    Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

  1. Search for dark matter particles in proton-proton collisions at $$\\sqrt{s} = 8 $$ TeV using razor variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    A search for dark matter particles directly produced in proton-proton collisions recorded by the CMS experiment at the LHC is presented. The data correspond to an integrated luminosity of 18.8 fb -1 at a center-of-mass energy of 8TeV. The event selection requires at least two jets and no isolated leptons. The razor variables are used to quantify the transverse momentum balance in the jet momenta. The study is performed separately for events with and without jets originating from b quarks. Furthermore, the observed yields are consistent with the expected backgrounds and, depending on the nature of the production mechanism, darkmore » matter production at the LHC is excluded at 90% confidence level for a mediator mass scale Λ below 1 TeV. The use of razor variables yields results that complement those previously published.« less

  2. Search for dark matter particles in proton-proton collisions at $$\\sqrt{s} = 8 $$ TeV using razor variables

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-12-19

    A search for dark matter particles directly produced in proton-proton collisions recorded by the CMS experiment at the LHC is presented. The data correspond to an integrated luminosity of 18.8 fb -1 at a center-of-mass energy of 8TeV. The event selection requires at least two jets and no isolated leptons. The razor variables are used to quantify the transverse momentum balance in the jet momenta. The study is performed separately for events with and without jets originating from b quarks. Furthermore, the observed yields are consistent with the expected backgrounds and, depending on the nature of the production mechanism, darkmore » matter production at the LHC is excluded at 90% confidence level for a mediator mass scale Λ below 1 TeV. The use of razor variables yields results that complement those previously published.« less

  3. Search for dark matter particles in proton-proton collisions at √{s}=8 TeV using the razor variables

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; de Visscher, S.; Delaere, C.; Delcourt, M.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Awad, A.; El-Khateeb, E.; Elgammal, S.; Mohamed, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Traczyk, P.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Golutvin, I.; Gorbounov, N.; Gorbunov, I.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Chistov, R.; Danilov, M.; Markin, O.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; Curras, E.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sextonkennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; McBrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Kumar, A.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.

    2016-12-01

    A search for dark matter particles directly produced in proton-proton collisions recorded by the CMS experiment at the LHC is presented. The data correspond to an integrated luminosity of 18.8 fb-1, at a center-of-mass energy of 8 TeV. The event selection requires at least two jets and no isolated leptons. The razor variables are used to quantify the transverse momentum balance in the jet momenta. The study is performed separately for events with and without jets originating from b quarks. The observed yields are consistent with the expected backgrounds and, depending on the nature of the production mechanism, dark matter production at the LHC is excluded at 90% confidence level for a mediator mass scale Λ below 1 TeV. The use of razor variables yields results that complement those previously published. [Figure not available: see fulltext.

  4. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.

    PubMed

    Dias de Oliveira, Eduardo A; Siddique, Kadambot H M; Bramley, Helen; Stefanova, Katia; Palta, Jairo A

    2015-02-01

    The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components. © 2014 Commonwealth of Australia. Global Change Biology © 2014 John Wiley & Sons Ltd.

  5. Fertilizing growth: Agricultural inputs and their effects in economic development.

    PubMed

    McArthur, John W; McCord, Gordon C

    2017-07-01

    This paper estimates the role of agronomic inputs in cereal yield improvements and the consequences for countries' processes of structural change. The results suggest a clear role for fertilizer, modern seeds and water in boosting yields. We then test for respective empirical links between agricultural yields and economic growth, labor share in agriculture and non-agricultural value added per worker. The identification strategy includes a novel instrumental variable that exploits the unique economic geography of fertilizer production and transport costs to countries' agricultural heartlands. We estimate that a half ton increase in staple yields generates a 14 to 19 percent higher GDP per capita and a 4.6 to 5.6 percentage point lower labor share in agriculture five years later. The results suggest a strong role for agricultural productivity as a driver of structural change.

  6. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009.

    PubMed

    Xiao, Dengpan; Tao, Fulu

    2016-07-01

    The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize (Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.

  7. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Tao, Fulu

    2016-07-01

    The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize ( Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.

  8. An analysis of yield stability in a conservation agriculture system

    USDA-ARS?s Scientific Manuscript database

    Climate models predict increasing growing-season weather variability, with negative consequences for crop production. Maintaining agricultural productivity despite variability in weather (i.e., crop yield stability) will be critical to meeting growing global demand. Conservation agriculture is an ...

  9. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa

    USGS Publications Warehouse

    Piniak, G.A.; Brown, E.K.

    2009-01-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.

  10. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    NASA Astrophysics Data System (ADS)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  11. Application of Regional Drought and Crop Yield Information System to enhance drought monitoring and forecasting in Lower Mekong region

    NASA Astrophysics Data System (ADS)

    Jayasinghe, S.; Dutta, R.; Basnayake, S. B.; Granger, S. L.; Andreadis, K. M.; Das, N.; Markert, K. N.; Cutter, P. G.; Towashiraporn, P.; Anderson, E.

    2017-12-01

    The Lower Mekong Region has been experiencing frequent and prolonged droughts resulting in severe damage to agricultural production leading to food insecurity and impacts on livelihoods of the farming communities. Climate variability further complicates the situation by making drought harder to forecast. The Regional Drought and Crop Yield Information System (RDCYIS), developed by SERVIR-Mekong, helps decision makers to take effective measures through monitoring, analyzing and forecasting of drought conditions and providing early warnings to farmers to make adjustments to cropping calendars. The RDCYIS is built on regionally calibrated Regional Hydrologic Extreme Assessment System (RHEAS) framework that integrates the Variable Infiltration Capacity (VIC) and Decision Support System for Agro-technology Transfer (DSSAT) models, allowing both nowcast and forecast of drought. The RHEAS allows ingestion of numerus freely available earth observation and ground observation data to generate and customize drought related indices, variables and crop yield information for better decision making. The Lower Mekong region has experienced severe drought in 2016 encompassing the region's worst drought in 90 years. This paper presents the simulation of the 2016 drought event using RDCYIS based on its hindcast and forecast capabilities. The regionally calibrated RDCYIS can help capture salient features of drought through a variety of drought indices, soil variables, energy balance variables and water balance variables. The RDCYIS is capable of assimilating soil moisture data from different satellite products and perform ensemble runs to further reduce the uncertainty of it outputs. The calibrated results have correlation coefficient around 0.73 and NSE between 0.4-0.5. Based on the acceptable results of the retrospective runs, the system has the potential to generate reliable drought monitoring and forecasting information to improve decision-makings at operational, technological and institutional level of mandated institutes of lower Mekong countries. This is turn would help countries to prepare for and respond to drought situations by taking short and long-term risk mitigation measures such as adjusting cropping calendars, rainwater harvesting, and so on.

  12. Random Forests for Global and Regional Crop Yield Predictions.

    PubMed

    Jeong, Jig Han; Resop, Jonathan P; Mueller, Nathaniel D; Fleisher, David H; Yun, Kyungdahm; Butler, Ethan E; Timlin, Dennis J; Shim, Kyo-Moon; Gerber, James S; Reddy, Vangimalla R; Kim, Soo-Hyung

    2016-01-01

    Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data.

  13. Assessment of wildland fire impacts on watershed annual water yield: Analytical framework and case studies in the United States

    Treesearch

    Dennis W. Hallema; Ge Sun; Peter V. Caldwell; Steve Norman; Erika Cohen Mack; Yongqiang Liu; Eric J. Ward; Steve McNulty

    2016-01-01

    More than 50% of water supplies in the conterminous United States originate on forestland or rangeland, and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known however about the long-term impacts of fire on annual water yield, and the role of climate variability within this context. We here propose a framework for...

  14. Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of substrates into the desired products. However, chemical production titer or yield remains difficult to predict based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S. cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen availability. Results Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical models with numerical and categorical variables to predict production yield. Statistically, the models showed that: 1. Chemical production from central metabolic precursors decreased exponentially with increasing number of enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0); 2. Categorical variables of gene overexpression and knockout improved product yield by 2~4 folds (P-value < 0.1); 3. Addition of notable amount of intermediate precursors or nutrients improved product yield by over five folds (P-value < 0.05); 4. Performing the cultivation in a well-controlled bioreactor enhanced the yield of product by three folds (P-value < 0.05); 5. Contribution of oxygen to product yield was not statistically significant. Yield calculations for various chemicals using the linear model were in fairly good agreement with the experimental values. The model generally underestimated the ethanol production as compared to other chemicals, which supported the notion that the metabolism of Saccharomyces cerevisiae has historically evolved for robust alcohol fermentation. Conclusions We generated simple mathematical models for first-order approximation of chemical production yield from S. cerevisiae. These linear models provide empirical insights to the effects of strain engineering and cultivation conditions toward biosynthetic efficiency. These models may not only provide guidelines for metabolic engineers to synthesize desired products, but also be useful to compare the biosynthesis performance among different research papers. PMID:21689458

  15. Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications

    NASA Astrophysics Data System (ADS)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2011-02-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  16. Some Effects of Attitudinal Similarity and Exposure on Attraction and Aggression

    ERIC Educational Resources Information Center

    Shuntich, Richard J.

    1976-01-01

    Previous research investigating the relationship of attraction and aggression has yielded somewhat equivocal results. The present study investigated the influence of two variables, attitudinal similarity and exposure, on interpersonal attraction and physical aggression. (Editor)

  17. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    USGS Publications Warehouse

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently, in the response of agricultural systems.

  18. Change in the magnitude and mechanisms of global temperature variability with warming

    PubMed Central

    Brown, Patrick T.; Ming, Yi; Li, Wenhong; Hill, Spencer A.

    2017-01-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future. PMID:29391875

  19. Mathematical characterization of mechanical behavior of porous frictional granular media

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Lee, J. K.

    1972-01-01

    A new definition of loading and unloading along the yield surface of Roscoe and Burland is introduced. This is achieved by noting that the strain-hardening parameter in the plastic potential function is deduced from the yield locus equation of Roscoe and Burland. The analytical results are compared with the experimental results for plate-bearing and cone-penetrometer problems and close agreements are demonstrated. The wheel-soil interaction is studied under dynamic loading. The rate-dependent plasticity or viscoelastoplastic behavior is considered. This is accomplished by the internal (hidden) variables associated with time-dependent viscous properties directly superimposed with inelastic behavior governed by the yield criteria of Roscoe and Burland. Effects of inertia and energy dissipation are properly accounted for. Example problems are presented.

  20. Climate Based Predictability of Oil Palm Tree Yield in Malaysia.

    PubMed

    Oettli, Pascal; Behera, Swadhin K; Yamagata, Toshio

    2018-02-02

    The influence of local conditions and remote climate modes on the interannual variability of oil palm fresh fruit bunches (FFB) total yields in Malaysia and two major regions (Peninsular Malaysia and Sabah/Sarawak) is explored. On a country scale, the state of sea-surface temperatures (SST) in the tropical Pacific Ocean during the previous boreal winter is found to influence the regional climate. When El Niño occurs in the Pacific Ocean, rainfall in Malaysia reduces but air temperature increases, generating a high level of water stress for palm trees. As a result, the yearly production of FFB becomes lower than that of a normal year since the water stress during the boreal spring has an important impact on the total annual yields of FFB. Conversely, La Niña sets favorable conditions for palm trees to produce more FFB by reducing chances of water stress risk. The region of the Leeuwin current also seems to play a secondary role through the Ningaloo Niño/ Niña in the interannual variability of FFB yields. Based on these findings, a linear model is constructed and its ability to reproduce the interannual signal is assessed. This model has shown some skills in predicting the total FFB yield.

  1. Using NOAA/AVHRR based remote sensing data and PCR method for estimation of Aus rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Mohammad; Akhand, Kawsar; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-06-01

    Rice is a dominant food crop of Bangladesh accounting about 75 percent of agricultural land use for rice cultivation and currently Bangladesh is the world's fourth largest rice producing country. Rice provides about two-third of total calorie supply and about one-half of the agricultural GDP and one-sixth of the national income in Bangladesh. Aus is one of the main rice varieties in Bangladesh. Crop production, especially rice, the main food staple, is the most susceptible to climate change and variability. Any change in climate will, thus, increase uncertainty regarding rice production as climate is major cause year-to-year variability in rice productivity. This paper shows the application of remote sensing data for estimating Aus rice yield in Bangladesh using official statistics of rice yield with real time acquired satellite data from Advanced Very High Resolution Radiometer (AVHRR) sensor and Principal Component Regression (PCR) method was used to construct a model. The simulated result was compared with official agricultural statistics showing that the error of estimation of Aus rice yield was less than 10%. Remote sensing, therefore, is a valuable tool for estimating crop yields well in advance of harvest, and at a low cost.

  2. Behavior of Three Metallic Alloys Under Combined Axial-Shear Stress at 650 C

    NASA Technical Reports Server (NTRS)

    Colaiuta, Jason F.; Lerch, Bradley (Technical Monitor)

    2001-01-01

    Three materials, Inconel 718, Haynes 188, and 316 stainless steel, were tested under an axial-torsional stress state at 650 C. The objective of this study was to quantify the evolution of the material while in the viscoplastic domain. Initial and subsequent yield surfaces were experimentally determined to quantify hardening. Subsequent yield surfaces (yield surfaces taken after a preload) had a well-defined front side, in the prestrain direction, but a poorly defined back side, opposite the prestrain direction. Subsequent yield surfaces exhibited isotropic hardening by expansion of the yield surface, kinematic hardening by translation of the yield surface, and distortional hardening by flattening of the yield surface in the direction opposite to the last prestrain. An existing yield function capable of representing isotropic, kinematic, and distortional hardening was used to fit each yield surface. Four variables are used to describe each surface. These variables evolve as the material state changes and have been regressed to the yield surface data.

  3. Calculations Supporting Management Zones

    USDA-ARS?s Scientific Manuscript database

    Since the early 1990’s the tools of precision farming (GPS, yield monitors, soil sensors, etc.) have documented how spatial and temporal variability are important factors impacting crop yield response. For precision farming, variability can be measured then used to divide up a field so that manageme...

  4. Precision agriculture in dry land: spatial variability of crop yield and roles of soil surveys, aerial photos, and digital elevation models

    NASA Astrophysics Data System (ADS)

    Nachabe, Mahmood; Ahuja, Laj; Shaffer, Mary Lou; Ascough, J.; Flynn, Brian; Cipra, J.

    1998-12-01

    In dryland, yield of crop varies substantially in space, often changing by an order of magnitude within few meters. Precision agriculture aims at exploiting this variability by changing agriculture management practices in space according to site specific conditions. Thus instead of managing a field (typical area 50 to 100 hectares) as a single unit using average conditions, the field is partitioned into small pieces of land known as management units. The size of management units can be in the order of 100 to 1,000 m2 to capture the patterns of variation of yield in the field. Agricultural practices like seeding rate, type of crop, and tillage and fertilizers are applied at the scale of the management unit to suit local agronomic conditions in unit. If successfully practiced, precision agriculture has the potential of increasing income and minimizing environmental impacts by reducing over application of crop production inputs. In the 90s, the implementation of precision agriculture was facilitated tremendously due to the wide availability and use of three technologies: (1) the Global Positioning System (GPS), (2) the Geographic Information System (GIS), and (3) remote sensing. The introduction of the GPS allowed the farmer to determine his coordinate location as equipments are moved in the field. Thus, any piece of equipment can be easily programmed to vary agricultural practices according to coordinate location over the field. The GIS allowed the storage and manipulation of large sets of data and the production of yield maps. Yield maps can be correlated with soil attributes from soil survey, and/or topographical attributes from a Digital Elevation Model (DEM). This helps predicting variation of potential yield over the landscape based on the spatial distribution of soil and topographical attributes. Soil attributes may include soil PH, Organic Matter, porosity, and hydraulic conductivity, whereas topographical attributes involve the estimations of elevation, slope, aspect, curvature, and specific catchment area. Finally remote sensing provided a means of assessing soil and crop conditions over large scales from the air, without excessive sampling on the ground. There are two objectives for this work. The first objective is to analyze the spatial variability of yield across a spectrum of scales to identify the spatial characteristics of yield variation; in essence, we are trying to answer the following questions, at what scale of management unit we should resolve the field level variability and what is the relationship between this resolution and the observed variability form a yield map? The second objective is to identify the soil and topographical attributes that control yield variation over the landscape topography. We already know that, because erosion and deposition are major processes in the formation of a catena, soil variations occur in response to surface and subsurface flow over the landscape. Also landscape positions corresponding to low elevation tend to have high catchment area which usually results in high soil water content in the root zone and thick A horizon. Can topographical attributes explain yield variation observed in the landscape? Will topographical attributes extracted from a DEM compensate for the relatively poor spatial resolution from a soil survey?

  5. 28nm node process optimization: a lithography centric view

    NASA Astrophysics Data System (ADS)

    Seltmann, Rolf

    2014-10-01

    Many experts claim that the 28nm technology node will be the most cost effective technology node forever. This results from primarily from the cost of manufacturing due to the fact that 28nm is the last true Single Patterning (SP) node. It is also affected by the dramatic increase of design costs and the limited shrink factor of the next following nodes. Thus, it is assumed that this technology still will be alive still for many years. To be cost competitive, high yields are mandatory. Meanwhile, leading edge foundries have optimized the yield of the 28nm node to such a level that that it is nearly exclusively defined by random defectivity. However, it was a long way to go to come to that level. In my talk I will concentrate on the contribution of lithography to this yield learning curve. I will choose a critical metal patterning application. I will show what was needed to optimize the process window to a level beyond the usual OPC model work that was common on previous nodes. Reducing the process (in particular focus) variability is a complementary need. It will be shown which improvements were needed in tooling, process control and design-mask-wafer interaction to remove all systematic yield detractors. Over the last couple of years new scanner platforms were introduced that were targeted for both better productivity and better parametric performance. But this was not a clear run-path. It needed some extra affords of the tool suppliers together with the Fab to bring the tool variability down to the necessary level. Another important topic to reduce variability is the interaction of wafer none-planarity and lithography optimization. Having an accurate knowledge of within die topography is essential for optimum patterning. By completing both the variability reduction work and the process window enhancement work we were able to transfer the original marginal process budget to a robust positive budget and thus ensuring high yield and low costs.

  6. Lameness detection based on multivariate continuous sensing of milk yield, rumination, and neck activity.

    PubMed

    Van Hertem, T; Maltz, E; Antler, A; Romanini, C E B; Viazzi, S; Bahr, C; Schlageter-Tello, A; Lokhorst, C; Berckmans, D; Halachmi, I

    2013-07-01

    The objective of this study was to develop and validate a mathematical model to detect clinical lameness based on existing sensor data that relate to the behavior and performance of cows in a commercial dairy farm. Identification of lame (44) and not lame (74) cows in the database was done based on the farm's daily herd health reports. All cows were equipped with a behavior sensor that measured neck activity and ruminating time. The cow's performance was measured with a milk yield meter in the milking parlor. In total, 38 model input variables were constructed from the sensor data comprising absolute values, relative values, daily standard deviations, slope coefficients, daytime and nighttime periods, variables related to individual temperament, and milk session-related variables. A lame group, cows recognized and treated for lameness, to not lame group comparison of daily data was done. Correlations between the dichotomous output variable (lame or not lame) and the model input variables were made. The highest correlation coefficient was obtained for the milk yield variable (rMY=0.45). In addition, a logistic regression model was developed based on the 7 highest correlated model input variables (the daily milk yield 4d before diagnosis; the slope coefficient of the daily milk yield 4d before diagnosis; the nighttime to daytime neck activity ratio 6d before diagnosis; the milk yield week difference ratio 4d before diagnosis; the milk yield week difference 4d before diagnosis; the neck activity level during the daytime 7d before diagnosis; the ruminating time during nighttime 6d before diagnosis). After a 10-fold cross-validation, the model obtained a sensitivity of 0.89 and a specificity of 0.85, with a correct classification rate of 0.86 when based on the averaged 10-fold model coefficients. This study demonstrates that existing farm data initially used for other purposes, such as heat detection, can be exploited for the automated detection of clinically lame animals on a daily basis as well. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Argentina soybean yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the soybean growing area. Predictor variables for the model were derived from monthly total precipitation and monthly average temperature. A trend variable was included for the years 1969 to 1978 since an increasing trend in yields due to technology was observed between these years.

  8. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s

    PubMed Central

    Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M

    2013-01-01

    Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849

  9. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  10. Climate change impacts on crop yield: evidence from China.

    PubMed

    Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi

    2014-11-15

    When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.

    PubMed

    Zhang, Tianyi; Huang, Yao

    2012-06-01

    Negative climate impacts on crop yield increase pressures on food security in China. In this study, climatic impacts on cereal yields (rice, wheat and maize) were investigated by analyzing climate-yield relationships from 1980 to 2008. Results indicated that warming was significant, but trends in precipitation and solar radiation were not statistically significant in most of China. In general, maize is particularly sensitive to warming. However, increase in temperature was correlated with both lower and higher yield of rice and wheat, which is inconsistent with the current view that warming results in decline in yields. Of the three cereal crops, further analysis suggested that reduction in yields with higher temperature is accompanied by lower precipitation, which mainly occurred in northern parts of China, suggesting droughts reduced yield due to lack of water resources. Similarly, a positive correlation between temperature and yield can be alternatively explained by the effect of solar radiation, mainly in the southern part of China where water resources are abundant. Overall, our study suggests that it is inter-annual variations in precipitation and solar radiation that have driven change in cereal yields in China over the last three decades. Copyright © 2011 Society of Chemical Industry.

  12. Large Variability of Proanthocyanidin Content and Composition in Sainfoin (Onobrychis viciifolia)

    PubMed Central

    2015-01-01

    Proanthocyanidins (PAs) in sainfoin (Onobrychis viciifolia Scop.) are of interest to ameliorate the sustainability of livestock production. However, sainfoin forage yield and PA concentrations, as well as their composition, require optimization. Individual plants of 27 sainfoin accessions from four continents were analyzed with LC-ESI-QqQ-MS/MS for PA concentrations and simple phenolic compounds. Large variability existed in PA concentrations (23.0–47.5 mg g–1 leaf dry matter (DM)), share of prodelphinidins (79–96%), and mean degree of polymerization (11–14) among, but also within, accessions. PAs were mainly located in leaves (26.8 mg g–1 DM), whereas stems had less PAs (7.8 mg g–1 DM). Overall, high-yielding plants had lower PA leaf concentrations (R2 = 0.16, P < 0.001) and fewer leaves (R2 = 0.66, P < 0.001). However, the results show that these two trade-offs between yield and bioactive PAs can be overcome. PMID:26551032

  13. Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin.

    PubMed

    Lamminpää, Kaisa; Ahola, Juha; Tanskanen, Juha

    2015-02-01

    In this study, the effects of kraft lignin (Indulin AT) on acid-catalysed xylose dehydration into furfural were studied in formic and sulphuric acids. The study was done using D-optimal design. Three variables in both acids were included in the design: time (20-80 min), temperature (160-180°C) and initial lignin concentration (0-20 g/l). The dependent variables were xylose conversion, furfural yield, furfural selectivity and pH change. The results showed that the xylose conversion and furfural yield decreased in sulphuric acid, while in formic acid the changes were minor. Additionally, it was showed that lignin has an acid-neutralising capacity, and the added lignin increased the pH of reactant solutions in both acids. The pH rise was considerably lower in formic acid than in sulphuric acid. However, the higher pH did not explain all the changes in conversion and yield, and thus lignin evidently inhibits the formation of furfural. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cannabinoids concentration variability in cannabis olive oil galenic preparations.

    PubMed

    Carcieri, Chiara; Tomasello, Cristina; Simiele, Marco; De Nicolò, Amedeo; Avataneo, Valeria; Canzoneri, Luca; Cusato, Jessica; Di Perri, Giovanni; D'Avolio, Antonio

    2018-01-01

    Knowledge of the exact concentration of active compounds in galenic preparations is crucial to be able to ensure their quality and to properly administer the prescribed dose. Currently, the need for titration of extracts is still debated. Considering this, together with the absence of a standard preparation method, the aim of this study was to evaluate cannabinoids concentrations variability in galenic olive oil extracts, to evaluate the interlot and interlaboratory variability in the extraction yield and in the preparation composition. Two hundred and one extracts (123 (61.2%) from Bedrocan ® , 54 (26.9%) from Bediol ® , 11 (5.5%) from Bedrolite ® , and 13 (6.5%) from mixed preparations) were analysed by liquid chromatography coupled with tandem mass spectrometry, quantifying cannabinoids (THC, CBD, THCA, CBDA and CBN) concentrations. The RSD% of THC and CBD concentrations resulted higher than 50%. Specifically for Bedrocan ® , Bediol ® , Bedrolite ® (5 g/50 ml), these were THC 82%, THC 53% and CBD 91%, THC 58% and CBD 59%, respectively. The median extraction yields were greater than 75% for all preparations. Our results highlighted a wide variability in THC and CBD concentrations that justify the need for titration and opens further questions about other pharmaceutical preparations without regulatory indication for this procedure. © 2017 Royal Pharmaceutical Society.

  15. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    NASA Astrophysics Data System (ADS)

    B, Potgieter A.; D, Rodriguez; B, Power; J, Mclean; P, Davis

    2014-02-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (~1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible and 90m for thermal) satellite platforms. Results showed that spatial variations in crop yield were related to a satellite derived canopy stress index (CSIsat) and a moisture stress index (MSIsat). A weather station level canopy stress index (CSIws) calculated at midday was correlated to the CSIsat at late morning. In addition, a strong linear relationship was observed between EVI and LST at point scale throughout the crop growth period. Differences were smallest at anthesis when the canopy closure was highest. This suggests that LST imagery data around flowering could be used to calculate crop stress over large areas of the crop. The harvested yield was related (R2 = 0.67) to CSIsat using a fix date across all fields. This relationship improved (R2 = 0.92) using both indices from all five dates across all fields during the crop growth period. Here we successfully showed that satellite derived crop attributes (CSIsat and MSIsat) can account for most of the variability in final crop yield and that they can be used to predict crop yield at field scales. Applications of these results could enhance the ability of producers to hedge their financial on -farm crop production losses due to in-season water stress by taking crop insurance. This is likely to further improve their adaptive capacity and thus strengthening the long-term viability of the industry domestically and elsewhere.

  16. Case-Crossover Analysis of Air Pollution Health Effects: A Systematic Review of Methodology and Application

    PubMed Central

    Carracedo-Martínez, Eduardo; Taracido, Margarita; Tobias, Aurelio; Saez, Marc; Figueiras, Adolfo

    2010-01-01

    Background Case-crossover is one of the most used designs for analyzing the health-related effects of air pollution. Nevertheless, no one has reviewed its application and methodology in this context. Objective We conducted a systematic review of case-crossover (CCO) designs used to study the relationship between air pollution and morbidity and mortality, from the standpoint of methodology and application. Data sources and extraction A search was made of the MEDLINE and EMBASE databases. Reports were classified as methodologic or applied. From the latter, the following information was extracted: author, study location, year, type of population (general or patients), dependent variable(s), independent variable(s), type of CCO design, and whether effect modification was analyzed for variables at the individual level. Data synthesis The review covered 105 reports that fulfilled the inclusion criteria. Of these, 24 addressed methodological aspects, and the remainder involved the design’s application. In the methodological reports, the designs that yielded the best results in simulation were symmetric bidirectional CCO and time-stratified CCO. Furthermore, we observed an increase across time in the use of certain CCO designs, mainly symmetric bidirectional and time-stratified CCO. The dependent variables most frequently analyzed were those relating to hospital morbidity; the pollutants most often studied were those linked to particulate matter. Among the CCO-application reports, 13.6% studied effect modification for variables at the individual level. Conclusions The use of CCO designs has undergone considerable growth; the most widely used designs were those that yielded better results in simulation studies: symmetric bidirectional and time-stratified CCO. However, the advantages of CCO as a method of analysis of variables at the individual level are put to little use. PMID:20356818

  17. Ultraviolet spectroscopy of the brightest supergiants in M31 and M33

    NASA Technical Reports Server (NTRS)

    Humphreys, R. M.; Blaha, C.; Dodorico, S.; Gull, T. R.; Benevenuti, P.

    1983-01-01

    Ultraviolet spectroscopy from the IUE, in combination with groundbased visual and infrared photometry, are to determine the energy distributions of the luminous blue variables, the Hubble-Sandage variables, in M31 and M33. The observed energy distributions, especially in the ultraviolet, show that these stars are suffering interstellar reddening. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and black body temperatures of the stars. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the sub B01 vs. log T sub e diagram as do eta Car, P Cyg and S Dor in our galaxy and the LMC. Many of the Hubble-Sandage variables have excess infrared radiation which is attributed to free-free emission from their extended atmospheres. Rough mass loss estimates from the infrared excess yield rates of 0.00001 M sub annual/yr. The ultraviolet spectra of the H-S variables are also compared with similar spectra of eta Car, P Cyg and S For.

  18. Optimization of grapevine yield by applying mathematical models to obtain quality wine products

    NASA Astrophysics Data System (ADS)

    Alina, Dobrei; Alin, Dobrei; Eleonora, Nistor; Teodor, Cristea; Marius, Boldea; Florin, Sala

    2016-06-01

    Relationship between the crop load and the grape yield and quality is a dynamic process, specific for wine cultivars and for fresh consumption varieties. Modeling these relations is important for the improvement of technological works. This study evaluated the interrelationship of crop load (B - buds number) and several production parameters (Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric index; AP - alcoholic potential; F - flavorings, WA - wine alcohol; SR - sugar residue, in Muscat Ottonel wine cultivar and Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric Index; CP - commercial production; BS - berries size in the Victoria table grape cultivar). In both varieties have been identified correlations between the independent variable (B - buds number as a result of pruning and training practices) and quality parameters analyzed (r = -0.699 for B vsY relationship; r = 0.961 for the relationship B vs S; r = -0.959 for B vs AP relationship; r = 0.743 for the relationship Y vs S, p <0.01, in the Muscat Ottonel cultivar, respectively r = -0.907 for relationship B vs Y; r = -0.975 for B vs CP relationship; r = -0.971 for relationship B vs BS; r = 0.990 for CP vs BS relationship in the Victoria cultivar. Through regression analysis were obtained models that describe the variation concerning production and quality parameters in relation to the independent variable (B - buds number) with statistical significance results.

  19. Effect of warming temperatures on US wheat yields.

    PubMed

    Tack, Jesse; Barkley, Andrew; Nalley, Lawton Lanier

    2015-06-02

    Climate change is expected to increase future temperatures, potentially resulting in reduced crop production in many key production regions. Research quantifying the complex relationship between weather variables and wheat yields is rapidly growing, and recent advances have used a variety of model specifications that differ in how temperature data are included in the statistical yield equation. A unique data set that combines Kansas wheat variety field trial outcomes for 1985-2013 with location-specific weather data is used to analyze the effect of weather on wheat yield using regression analysis. Our results indicate that the effect of temperature exposure varies across the September-May growing season. The largest drivers of yield loss are freezing temperatures in the Fall and extreme heat events in the Spring. We also find that the overall effect of warming on yields is negative, even after accounting for the benefits of reduced exposure to freezing temperatures. Our analysis indicates that there exists a tradeoff between average (mean) yield and ability to resist extreme heat across varieties. More-recently released varieties are less able to resist heat than older lines. Our results also indicate that warming effects would be partially offset by increased rainfall in the Spring. Finally, we find that the method used to construct measures of temperature exposure matters for both the predictive performance of the regression model and the forecasted warming impacts on yields.

  20. Sediment Concentration and Its Relation to Catchment Characteristics in Forested Headwater Streams of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J.; Safeeq, M.; Hunsaker, C. T.

    2017-12-01

    Sediment yields are highly variable and controlled by multiple topographic, geomorphic, and hydrologic factors that make its generalization or prediction challenging. We examined the characteristics of sediment concentration across ten headwater catchments located in the Kings River Experimental Watersheds, Sierra Nevada, California. Study catchments ranged from 50 to 475 ha and spanned from 1,782 to 2,373 m in elevation in the rain-snow transition zone. Mean annual streamflow ranged from 281 to 408 mm in the low elevation Providence and 436 to 656 mm in the high elevation Bull catchments. We measured suspended sediment concentration (SSC) and bedload sediment yield from 2004-2016. We related these outputs to catchment mean elevation, relief, slope, and drainage density as natural controls and runoff ratio, baseflow index, recession constant, and slope of the flow duration curve as hydrologic controls. The SSC were higher in the high elevation Bull catchments (64 ± 34 mg L-1) as compared to low elevation Providence catchments (30 ± 17 mg L-1). Measured SSC in both Bull and Providence declined with increasing catchment mean elevation (R > - 0.5). We found slope of the flow duration curve (R = 0.85) and recession constant (R = -0.91) as the two of best predictors of SSC in Providence. In Bull, drainage area (R = 0.87) and baseflow index (R = -0.78) were the two best predictors of SSC. The intercept and slope of the suspended sediment yield - discharge rating curve (SSY-Q) in Providence was positively related to catchment relief. In contrast, the SSY-Q intercept increased and SSY-Q slope declined with increasing relief in Bull. The mean annual bedload sediment yield varied between 0.4 Mg km-2 and 4.2 Mg km-2 across the ten watersheds, and bedload contributed a relatively small fraction to the total sediment load. Mean bedload sediment yields across the catchments were most associated with catchment slope and relief. These preliminary results provide insight on the dynamics of sediment yield and the natural range of variability in small headwater Sierra Nevada streams. These results can guide selection of appropriate predictor variables for catchment-scale sediment yield models that inform forest management.

  1. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operatingmore » variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.« less

  2. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Walberg, Gerald D.

    1993-01-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  3. Spatio-temporal response of maize yield to edaphic and meteorological conditions in a saline farmland

    USDA-ARS?s Scientific Manuscript database

    Spatio-temporal variability of crop production strongly depends on soil heterogeneity, meteorological conditions, and their interaction. Canopy reflectance can be used to describe crop status and yield spatial variability. The objectives of this work were to understand the spatio-temporal variabilit...

  4. Encapsulation Processing and Manufacturing Yield Analysis

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    The development of encapsulation processing and a manufacturing productivity analysis for photovoltaic cells are discussed. The goals were: (1) to understand the relationships between both formulation variables and process variables; (2) to define conditions required for optimum performance; (3) to predict manufacturing yield; and (4) to provide documentation to industry.

  5. Variable Rate Application of Nematicides on Cotton Fields: A Promising Site-Specific Management Strategy

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) lint yield losses associated with southern root-knot nematode [Meloidogyne incognita] (RKN) parasitism have increased during the last 20 years. The hypothesis that variable rate application of nematicides can reduce yield losses and reduce the risk for under- and over-...

  6. Encapsulation processing and manufacturing yield analysis

    NASA Astrophysics Data System (ADS)

    Willis, P. B.

    1984-10-01

    The development of encapsulation processing and a manufacturing productivity analysis for photovoltaic cells are discussed. The goals were: (1) to understand the relationships between both formulation variables and process variables; (2) to define conditions required for optimum performance; (3) to predict manufacturing yield; and (4) to provide documentation to industry.

  7. Argentina wheat yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.

  8. Argentina corn yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.

  9. Attribution of maize yield increase in China to climate change and technological advancement between 1980 and 2010

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Zhao, Junfang; Wu, Dingrong; Mu, Jia; Xu, Yanhong

    2014-12-01

    Crop yields are affected by climate change and technological advancement. Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change. In this study, daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010, detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010, and results using an Agro-Ecological Zones (AEZ) model, are used to explore the attribution of maize (Zea mays L.) yield change to climate change and technological advancement. In the AEZ model, the climatic potential productivity is examined through three step-by-step levels: photosynthetic potential productivity, photosynthetic thermal potential productivity, and climatic potential productivity. The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated. Combined with the observations of maize, the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated. The results show that, from 1961 to 2010, climate change had a significant adverse impact on the climatic potential productivity of maize in China. Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity. However, changes in precipitation had only a small effect. The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years, which was opposite to the decreasing trends of climatic potential productivity. This suggests that technological advancement has offset the negative effects of climate change on maize yield. Technological advancement contributed to maize yield increases by 99.6%-141.6%, while climate change contribution was from -41.4% to 0.4%. In particular, the actual maize yields in Shandong, Henan, Jilin, and Inner Mongolia increased by 98.4, 90.4, 98.7, and 121.5 kg hm-2 yr-1 over the past 30 years, respectively. Correspondingly, the maize yields affected by technological advancement increased by 113.7, 97.9, 111.5, and 124.8 kg hm-2 yr-1, respectively. On the contrary, maize yields reduced markedly under climate change, with an average reduction of -9.0 kg hm-2 yr-1. Our findings highlight that agronomic technological advancement has contributed dominantly to maize yield increases in China in the past three decades.

  10. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates

    PubMed Central

    Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971

  11. Specific yield: compilation of specific yields for various materials

    USGS Publications Warehouse

    Johnson, A.I.

    1967-01-01

    Specific yield is defined as the ratio of (1) the volume of water that a saturated rock or soil will yield by gravity to (2) the total volume of the rock or soft. Specific yield is usually expressed as a percentage. The value is not definitive, because the quantity of water that will drain by gravity depends on variables such as duration of drainage, temperature, mineral composition of the water, and various physical characteristics of the rock or soil under consideration. Values of specific yields nevertheless offer a convenient means by which hydrologists can estimate the water-yielding capacities of earth materials and, as such, are very useful in hydrologic studies. The present report consists mostly of direct or modified quotations from many selected reports that present and evaluate methods for determining specific yield, limitations of those methods, and results of the determinations made on a wide variety of rock and soil materials. Although no particular values are recommended in this report, a table summarizes values of specific yield, and their averages, determined for 10 rock textures. The following is an abstract of the table. [Table

  12. How model and input uncertainty impact maize yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli

    2015-02-01

    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.

  13. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions1[OPEN

    PubMed Central

    Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-01-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  14. Environmental factors controlling spatial variation in sediment yield in a central Andean mountain area

    NASA Astrophysics Data System (ADS)

    Molina, Armando; Govers, Gerard; Poesen, Jean; Van Hemelryck, Hendrik; De Bièvre, Bert; Vanacker, Veerle

    2008-06-01

    A large spatial variability in sediment yield was observed from small streams in the Ecuadorian Andes. The objective of this study was to analyze the environmental factors controlling these variations in sediment yield in the Paute basin, Ecuador. Sediment yield data were calculated based on sediment volumes accumulated behind checkdams for 37 small catchments. Mean annual specific sediment yield (SSY) shows a large spatial variability and ranges between 26 and 15,100 Mg km - 2 year - 1 . Mean vegetation cover (C, fraction) in the catchment, i.e. the plant cover at or near the surface, exerts a first order control on sediment yield. The fractional vegetation cover alone explains 57% of the observed variance in ln(SSY). The negative exponential relation (SSY = a × e- b C) which was found between vegetation cover and sediment yield at the catchment scale (10 3-10 9 m 2), is very similar to the equations derived from splash, interrill and rill erosion experiments at the plot scale (1-10 3 m 2). This affirms the general character of an exponential decrease of sediment yield with increasing vegetation cover at a wide range of spatial scales, provided the distribution of cover can be considered to be essentially random. Lithology also significantly affects the sediment yield, and explains an additional 23% of the observed variance in ln(SSY). Based on these two catchment parameters, a multiple regression model was built. This empirical regression model already explains more than 75% of the total variance in the mean annual sediment yield. These results highlight the large potential of revegetation programs for controlling sediment yield. They show that a slight increase in the overall fractional vegetation cover of degraded land is likely to have a large effect on sediment production and delivery. Moreover, they point to the importance of detailed surface vegetation data for predicting and modeling sediment production rates.

  15. Crop Yield Predictions - High Resolution Statistical Model for Intra-season Forecasts Applied to Corn in the US

    NASA Astrophysics Data System (ADS)

    Cai, Y.

    2017-12-01

    Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Balkovic, Juraj; van der Velde, M.

    Crop models are increasingly used to assess impacts of climate change/variability and management practices on productivity and environmental performance of alternative cropping systems. Calibration is an important procedure to improve reliability of model simulations, especially for large area applications. However, global-scale crop model calibration has rarely been exercised due to limited data availability and expensive computing cost. Here we present a simple approach to calibrate Environmental Policy Integrated Climate (EPIC) model for a global implementation of rice. We identify four parameters (potential heat unit – PHU, planting density – PD, harvest index – HI, and biomass energy ratio – BER)more » and calibrate them regionally to capture the spatial pattern of reported rice yield in 2000. Model performance is assessed by comparing simulated outputs with independent FAO national data. The comparison demonstrates that the global calibration scheme performs satisfactorily in reproducing the spatial pattern of rice yield, particularly in main rice production areas. Spatial agreement increases substantially when more parameters are selected and calibrated, but with varying efficiencies. Among the parameters, PHU and HI exhibit the highest efficiencies in increasing the spatial agreement. Simulations with different calibration strategies generate a pronounced discrepancy of 5–35% in mean yields across latitude bands, and a small to moderate difference in estimated yield variability and yield changing trend for the period of 1981–2000. Present calibration has little effects in improving simulated yield variability and trends at both regional and global levels, suggesting further works are needed to reproduce temporal variability of reported yields. This study highlights the importance of crop models’ calibration, and presents the possibility of a transparent and consistent up scaling approach for global crop simulations given current availability of global databases of weather, soil, crop calendar, fertilizer and irrigation management information, and reported yield.« less

  17. Strategies for narrowing the maize yield gap of household farms through precision fertigation under irrigated conditions using CERES-Maize model.

    PubMed

    Liu, Jiangang; Wang, Guangyao; Chu, Qingquan; Chen, Fu

    2017-07-01

    Nitrogen (N) application significantly increases maize yield; however, the unreasonable use of N fertilizer is common in China. The analysis of crop yield gaps can reveal the limiting factors for yield improvement, but there is a lack of practical strategies for narrowing yield gaps of household farms. The objectives of this study were to assess the yield gap of summer maize using an integrative method and to develop strategies for narrowing the maize yield gap through precise N fertilization. The results indicated that there was a significant difference in maize yield among fields, with a low level of variation. Additionally, significant differences in N application rate were observed among fields, with high variability. Based on long-term simulation results, the optimal N application rate was 193 kg ha -1 , with a corresponding maximum attainable yield (AY max ) of 10 318 kg ha -1 . A considerable difference between farmers' yields and AY max was observed. Low agronomic efficiency of applied N fertilizer (AE N ) in farmers' fields was exhibited. The integrative method lays a foundation for exploring the specific factors constraining crop yield gaps at the field scale and for developing strategies for rapid site-specific N management. Optimization strategies to narrow the maize yield gap include increasing N application rates and adjusting the N application schedule. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Video image analysis as a potential grading system for Uruguayan beef carcasses.

    PubMed

    Vote, D J; Bowling, M B; Cunha, B C N; Belk, K E; Tatum, J D; Montossi, F; Smith, G C

    2009-07-01

    A study was conducted in 2 phases to evaluate the effectiveness of 1) the VIAscan Beef Carcass System (BCSys; hot carcass system) and the CVS BeefCam (chilled carcass system), used independently or in combination, to predict Uruguayan beef carcass fabrication yields; and 2) the CVS BeefCam to segregate Uruguayan beef carcasses into groups that differ in the Warner-Bratzler shear force (WBSF) values of their LM steaks. The results from the meat yield phase of the present study indicated that the prediction of saleable meat yield percentages from Uruguayan beef carcasses by use of the BCSys or CVS BeefCam is similar to, or slightly better than, the use of USDA yield grade calculated to the nearest 0.1 and was much more effective than prediction based on Uruguay National Institute of Meat (INAC) grades. A further improvement in fabrication yield prediction could be obtained by use of a dual-component video image analysis (VIA) system. Whichever method of VIA prediction of fabrication yield is used, a single predicted value of fabrication yield for every carcass removes an impediment to the implementation of a value-based pricing system. Additionally, a VIA method of predicting carcass yield has the advantage over the current INAC classification system in that estimates would be produced by an instrument rather than by packing plant personnel, which would appeal to cattle producers. Results from the tenderness phase of the study indicated that the CVS BeefCam output variable for marbling was not (P > 0.05) able to segregate steer and heifer carcasses into groups that differed in WBSF values. In addition, the results of segregating steer and heifer carcasses according to muscle color output variables indicate that muscle maturity and skeletal maturity were useful for segregating carcasses according to differences in WBSF values of their steaks (P > 0.05). Use of VIA to predict beef carcass fabrication yields could improve accuracy and reduce subjectivity in comparison with use of current INAC grades. Use of VIA to sort carcasses according to muscle color would allow for the marketing of more consistent beef products with respect to tenderness. This would help facilitate the initiation of a value-based marketing system for the Uruguayan beef industry.

  19. Diagnosis of edge condition based on force measurement during milling of composites

    NASA Astrophysics Data System (ADS)

    Felusiak, Agata; Twardowski, Paweł

    2018-04-01

    The present paper presents comparative results of the forecasting of a cutting tool wear with the application of different methods of diagnostic deduction based on the measurement of cutting force components. The research was carried out during the milling of the Duralcan F3S.10S aluminum-ceramic composite. Prediction of the toolwear was based on one variable, two variables regression Multilayer Perceptron(MLP)and Radial Basis Function(RBF)neural networks. Forecasting the condition of the cutting tool on the basis of cutting forces has yielded very satisfactory results.

  20. Identification of potentially high yielding irradiated cassava ‘Gajah’ genotype with different geographic coordinates

    NASA Astrophysics Data System (ADS)

    Subekti, I.; Khumaida, N.; Ardie, SW

    2017-01-01

    Cassava is one of the main and important carbohydrate producing crops in Indonesia. Thus cassava production and its tuber quality need to be improved. ‘Gajah’ genotype is a local genotypes cassava from East Kalimantan, has high potential yield (> 60 ton Ha-1). However, the harvest time of this genotype is quite long (>= 12 months). The objective of this research was to identify the high yielding cassava mutants from the gamma rays irradiated ‘Gajah’ genotype at M1V3 population and potential yield at different location. Several putative cassava mutants (12 mutants) were planted in Cikabayan Experimental Field, IPB from March 2015 to March 2016 and the yields compared with the same genotype grown at different location by seeing its coordinates to observe the potential yield. Our result showed that the fresh tuber weight per plant of some putative mutants could reach more than 8 kg (yield potential of 64 ton Ha-1). The harvested tubers also had sweet flavor, although the tubers of some putative mutants were bitter. Based on previous research study, the different geographic coordinate has resulted variability on fresh tuber yield. It seems that it needs to observe the stability of ‘Gajah’- irradiated mutants in several location in Java Island.

  1. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A.

    2017-06-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat. In this study, we characterize and attribute the effects of these climate extremes on wheat yield anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we have developed a composite indicator that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains a significant portion (more than 40%) of the inter-annual production variability. By quantifying the contribution of national yield anomalies to global fluctuations, we have found that just two concurrent yield anomalies affecting the larger producers of the world could be responsible for more than half of the global annual fluctuations. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Moreover, in contrast to common perception, water excess affects wheat production more than drought in several countries. We have also performed the same analysis at the subnational level for France, which is the largest wheat producer of the European Union, and home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is mostly captured by the heat and water stress indicators, consistently with the country-level result.

  2. Musculoskeletal motion flow fields using hierarchical variable-sized block matching in ultrasonographic video sequences.

    PubMed

    Revell, J D; Mirmehdi, M; McNally, D S

    2004-04-01

    We examine tissue deformations using non-invasive dynamic musculoskeletal ultrasonograhy, and quantify its performance on controlled in vitro gold standard (groundtruth) sequences followed by clinical in vivo data. The proposed approach employs a two-dimensional variable-sized block matching algorithm with a hierarchical full search. We extend this process by refining displacements to sub-pixel accuracy. We show by application that this technique yields quantitatively reliable results.

  3. Stability Criteria for Differential Equations with Variable Time Delays

    ERIC Educational Resources Information Center

    Schley, D.; Shail, R.; Gourley, S. A.

    2002-01-01

    Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…

  4. A systematic approach to parameter selection for CAD-virtual reality data translation using response surface methodology and MOGA-II.

    PubMed

    Abidi, Mustufa Haider; Al-Ahmari, Abdulrahman; Ahmad, Ali

    2018-01-01

    Advanced graphics capabilities have enabled the use of virtual reality as an efficient design technique. The integration of virtual reality in the design phase still faces impediment because of issues linked to the integration of CAD and virtual reality software. A set of empirical tests using the selected conversion parameters was found to yield properly represented virtual reality models. The reduced model yields an R-sq (pred) value of 72.71% and an R-sq (adjusted) value of 86.64%, indicating that 86.64% of the response variability can be explained by the model. The R-sq (pred) is 67.45%, which is not very high, indicating that the model should be further reduced by eliminating insignificant terms. The reduced model yields an R-sq (pred) value of 73.32% and an R-sq (adjusted) value of 79.49%, indicating that 79.49% of the response variability can be explained by the model. Using the optimization software MODE Frontier (Optimization, MOGA-II, 2014), four types of response surfaces for the three considered response variables were tested for the data of DOE. The parameter values obtained using the proposed experimental design methodology result in better graphics quality, and other necessary design attributes.

  5. Strategies for soil-based precision agriculture in cotton

    NASA Astrophysics Data System (ADS)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  6. Analysis of Biomass Feedstock Availability and Variability for the Peace River Region of Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.

    2009-11-01

    Biorefineries or other biomass-dependent facilities require a predictable, dependable feedstock supplied over many years to justify capital investments. Determining inter-year variability in biomass availability is essential to quantifying the feedstock supply risk. Using a geographic information system (GIS) and historic crop yield data, average production was estimated for 10 sites in the Peace River region of Alberta, Canada. Four high-yielding potential sites were investigated for variability over a 20 year time-frame (1980 2000). The range of availability was large, from double the average in maximum years to nothing in minimum years. Biomass availability is a function of grain yield, themore » biomass to grain ratio, the cropping frequency, and residue retention rate to ensure future crop productivity. Storage strategies must be implemented and alternate feedstock sources identified to supply biomass processing facilities in low-yield years.« less

  7. Athletics, Applications, & Yields: The Relationship between Successful College Football and Institutional Attractiveness

    ERIC Educational Resources Information Center

    Jones, Willis A.

    2009-01-01

    This study examines the impact of fielding a successful college football team on institutional popularity using a dependent variable (admissions yield) and an independent variable (bowl game television rating) which have been unexamined in previous research on this topic. The findings suggest that college football success is correlated with a…

  8. Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohd Azmier; Afandi, Nur Syahidah; Bello, Olugbenga Solomon

    2017-05-01

    This study investigates the adsorptive removal of malachite green (MG) dye from aqueous solutions using chemically modified lime-peel-based activated carbon (LPAC). The adsorbent prepared was characterized using FTIR, SEM, Proximate analysis and BET techniques, respectively. Central composite design (CCD) in response surface methodology (RSM) was used to optimize the adsorption process. The effects of three variables: activation temperature, activation time and chemical impregnation ratio (IR) using KOH and their effects on percentage of dye removal and LPAC yield were investigated. Based on CCD design, quadratic models and two factor interactions (2FI) were developed correlating the adsorption variables to the two responses. Analysis of variance (ANOVA) was used to judge the adequacy of the model. The optimum conditions of MG dye removal using LPAC are: activation temperature (796 °C), activation time (1.0 h) and impregnation ratio (2.6), respectively. The percentage of MG dye removal obtained was 94.68 % resulting in 17.88 % LPAC yield. The percentage of error between predicted and experimental results for the removal of MG dye is 0.4 %. Model prediction was in good agreement with experimental results and LPAC was found to be effective in removing MG dye from aqueous solution.

  9. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  10. Using artificial neural network and satellite data to predict rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-09-01

    Rice production in Bangladesh is a crucial part of the national economy and providing about 70 percent of an average citizen's total calorie intake. The demand for rice is constantly rising as the new populations are added in every year in Bangladesh. Due to the increase in population, the cultivation land decreases. In addition, Bangladesh is faced with production constraints such as drought, flooding, salinity, lack of irrigation facilities and lack of modern technology. To maintain self sufficiency in rice, Bangladesh will have to continue to expand rice production by increasing yield at a rate that is at least equal to the population growth until the demand of rice has stabilized. Accurate rice yield prediction is one of the most important challenges in managing supply and demand of rice as well as decision making processes. Artificial Neural Network (ANN) is used to construct a model to predict Aus rice yield in Bangladesh. Advanced Very High Resolution Radiometer (AVHRR)-based remote sensing satellite data vegetation health (VH) indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) are used as input variables and official statistics of Aus rice yield is used as target variable for ANN prediction model. The result obtained with ANN method is encouraging and the error of prediction is less than 10%. Therefore, prediction can play an important role in planning and storing of sufficient rice to face in any future uncertainty.

  11. Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain

    NASA Astrophysics Data System (ADS)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2010-08-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  12. BROMIDE'S EFFECT ON DBP FORMATION, SPECIATION, AND CONTROL: PART 1, OZONATION

    EPA Science Inventory

    The effect of variable ozone dosage and bromide concentration on the formation of organic disinfection byproducts (DBPs) and bromate were evaluated. Low ozone dosages resulted in oxidation of organic precursors, yielding decreases in the formation potential for total trihalometha...

  13. Variable-rate nitrogen application algorithm based on canopy reflected spectrum and its influence on wheat

    NASA Astrophysics Data System (ADS)

    Liang, Hongxia; Zhao, Chunjiang; Huang, Wenjiang; Liu, Liangyun; Wang, Jihua; Ma, Youhua

    2005-01-01

    This study was to develop the time-specific and time-critical method to overcome the limitations of traditional field sampling methods for variable rate fertilization. Farmers, agricultural managers and grain processing enterprises are interested in measuring and assessing soil and crop status in order to apply adequate fertilizer quantities to crop growth. This paper focused on studying the relationship between vegetation index (OSAVI) and nitrogen content to determine the amount of nitrogen fertilizer recommended for variable rate management in precision agriculture. The traditional even rate fertilizer management was chosen as the CK. The grain yield, ear numbers, 1000-grain weight and grain protein content were measured among the CK, uniform treatments and variable rate fertilizer treatments. It indicated that variable rate fertilization reduced the variability of wheat yield, ear numbers and dry biomass, but it didn't increased crop yield and grain protein content significantly and did not decrease the variety of 1000-grain weight, compared to traditional rate application. The nitrogen fertilizer use efficiency was improved, for this purpose, the variable rate technology based on vegetation index could be used to prevent under ground water pollution and environmental deterioration.

  14. Spatial Sampling of Weather Data for Regional Crop Yield Simulations

    NASA Technical Reports Server (NTRS)

    Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian; hide

    2016-01-01

    Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.

  15. Linkages among climate change, crop yields and Mexico–US cross-border migration

    PubMed Central

    Feng, Shuaizhang; Krueger, Alan B.; Oppenheimer, Michael

    2010-01-01

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately −0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15–65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming. PMID:20660749

  16. Linkages among climate change, crop yields and Mexico-US cross-border migration.

    PubMed

    Feng, Shuaizhang; Krueger, Alan B; Oppenheimer, Michael

    2010-08-10

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately -0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15-65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming.

  17. The role of climatic variables in winter cereal yields: a retrospective analysis.

    PubMed

    Luo, Qunying; Wen, Li

    2015-02-01

    This study examined the effects of observed climate including [CO2] on winter cereal [winter wheat (Triticum aestivum), barley (Hordeum vulgare) and oat (Avena sativa)] yields by adopting robust statistical analysis/modelling approaches (i.e. autoregressive fractionally integrated moving average, generalised addition model) based on long time series of historical climate data and cereal yield data at three locations (Moree, Dubbo and Wagga Wagga) in New South Wales, Australia. Research results show that (1) growing season rainfall was significantly, positively and non-linearly correlated with crop yield at all locations considered; (2) [CO2] was significantly, positively and non-linearly correlated with crop yields in all cases except wheat and barley yields at Wagga Wagga; (3) growing season maximum temperature was significantly, negatively and non-linearly correlated with crop yields at Dubbo and Moree (except for barley); and (4) radiation was only significantly correlated with oat yield at Wagga Wagga. This information will help to identify appropriate management adaptation options in dealing with the risk and in taking the opportunities of climate change.

  18. Detection of meteorological extreme effect on historical crop yield anomaly

    NASA Astrophysics Data System (ADS)

    Kim, W.; Iizumi, T.; Nishimori, M.

    2017-12-01

    Meteorological extremes of temperature and precipitation are a critical issue in the global climate change, and some studies investigating how the extreme changes in accordance with the climate change are continuously reported. However, it is rarely understandable that the extremes affect crop yield worldwide as heatwave, coolwave, drought, and flood, albeit some local or national reports are available. Therefore, we globally investigated the extremes effects on the variability of historical yield of maize, rice, soy, and wheat with a standardized index and a historical yield anomaly. For the regression analysis, the standardized index is annually aggregated in the consideration of a crop calendar, and the historical yield is detrended with 5-year moving average. Throughout this investigation, we found that the relationship between the aggregated standardized index and the historical yield anomaly shows not merely positive correlation but also negative correlation in all crops in the globe. Namely, the extremes cause decrease of crop yield as a matter of course, but increase in some regions contrastingly. These results help us to quantify the extremes effect on historical crop yield anomaly.

  19. Variation in the ovine MYF5 gene and its effect on carcass lean meat yield in New Zealand Romney sheep.

    PubMed

    Wang, Jiqing; Zhou, Huitong; Forrest, Rachel H J; Hu, Jiang; Liu, Xiu; Li, Shaobin; Luo, Yuzhu; Hickford, Jon G H

    2017-09-01

    Myogenic factor 5 (MYF5) plays an important role in regulating skeletal muscle, but to date there have been no reports on whether the gene is variable and whether this variation is associated with meat yield in sheep. In this study, four variants (A to D) of ovine MYF5 containing two Single Nucleotide Polymorphisms (SNPs) and one basepair (bp) insertion/deletion were detected by Polymerase Chain Reaction - Single Stranded Conformational Polymorphism (PCR-SSCP) analysis. Breed differences in variant frequencies were observed. The effect of variation in ovine MYF5 on lean meat yield, predicted using VIAScan® technology, was investigated in 388 male NZ Romney lambs. Only genotypes AA and AB were found in these lambs. Lambs with genotype AA had a higher leg yield (P=0.044), loin yield (P=0.002) and total yield (P=0.012) than those with genotype AB. No association with shoulder yield was detected. These results suggest that ovine MYF5 may be a valuable genetic marker for improved lean meat yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Projected changes in crop yield mean and variability over West Africa in a world 1.5 K warmer than the pre-industrial era

    NASA Astrophysics Data System (ADS)

    Parkes, Ben; Defrance, Dimitri; Sultan, Benjamin; Ciais, Philippe; Wang, Xuhui

    2018-02-01

    The ability of a region to feed itself in the upcoming decades is an important issue. The West African population is expected to increase significantly in the next 30 years. The responses of crops to short-term climate change is critical to the population and the decision makers tasked with food security. This leads to three questions: how will crop yields change in the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to ameliorate undesirable changes? An ensemble of near-term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent historic period (1986-2005) and a near-term future when global temperatures are 1.5 K above pre-industrial levels to assess the change in yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic and future climates. Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields increase, the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined as yield negative anomalies beyond 1 standard deviation during the historic period. The increasing variability increases the frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively. The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an idealized sensitivity test. The generalized doption of a cultivar resistant to high-temperature stress during flowering is shown to be more beneficial than using rainwater harvesting.

  1. Future Warming Increases Global Maize Yield Variability with Implications for Food Markets

    NASA Astrophysics Data System (ADS)

    Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.

    2017-12-01

    If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable to agricultural price spikes.

  2. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  3. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  4. Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes

    USDA-ARS?s Scientific Manuscript database

    The information on genotypic variation for inulin content, inulin yield and water use efficiency of inulin yield (WUEi) in response to drought is limited. This study was to investigate the genetic variability in inulin content, inulin yield and WUEi of Jerusalem artichoke (Helianthus tuberosus L.) ...

  5. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.

    PubMed

    Calus, M P L; de Haas, Y; Veerkamp, R F

    2013-10-01

    Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01-0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction models are especially important in small data sets. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Water and Temperature Stresses Impact Canola (Brassica napus L.) Fatty Acid, Protein, and Yield over Nitrogen and Sulfur.

    PubMed

    Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L

    2017-12-06

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.

  7. Intraday X-Ray Variability of QSOs/AGN Using the Chandra Archives

    NASA Astrophysics Data System (ADS)

    Tartamella, C.; Busche, J.

    2005-05-01

    X-ray variability is a common characteristic of Active Galactic Nuclei (AGN), and it can be used to probe the nuclear region at short time scales. Quantitative analysis of this variability has been difficult due to low signal-to-noise ratios and short time baselines, but serendipitous Chandra data acquired within the last six years have opened the door to such analysis. Cross-correlation of the Chandra archives with QSO/AGN catalogs on NASA's HEASARC website (e.g. Veron, Sloan) yields a sample of 50+ objects that satisfy the following criteria: absolute magnitude M≤ -22.5, proper time baselines greater than 2 hours, and count rates leading to 10% error bars for 8+ flux points on the light curve. The sample includes a range of red-shifts, magnitudes, and type (e.g. radio loud, radio quiet), and hence may yield empirical clues about luminosity or evolutionary trends. As a beginning of such analysis, we present 11 light curves for 9 objects for which the exposure time was greater than 10 hours. The variability was analyzed using three different statistical methods. The Kolmogorov-Smirnov (KS) test proved to be impractical because of the unavoidably small number of data points and the simplistic nature of the test. A χ2 test indicated in most cases that there were significant departures from constant brightness (as expected). Autocorrelation plots were also generated for each light curve. With more work and a larger sample size, these plots can be used to identify any trends in the lightcurve such as whether the variability is stochastic or periodic in nature. This test was useful even with the small number of datapoints available. In future work, more sophisticated analyses based on Fourier series, power density spectra, or wavelets are likely to yield more meaningful and useful results.

  8. Effects of process variables on the yield stress of rheologically modified biomass

    Treesearch

    Joseph R. Samaniuk; C Tim Scott; Thatcher W. Root; Daniel J. Klingenberg

    2015-01-01

    Additives that alter the rheology of lignocellulosic biomass suspensions were tested under conditions of variable pH, temperature, and solid concentration. The effects of certain ions, biomass type, after the addition of rheological modifier were also examined. Torque and vane rheometry were used to measure the yield stress of samples. It was found that the...

  9. Spatial variability effects on precision and power of forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...

  10. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields.

    PubMed

    Pan, Xuejun; Gilkes, Neil; Kadla, John; Pye, Kendall; Saka, Shiro; Gregg, David; Ehara, Katsunobu; Xie, Dan; Lam, Dexter; Saddler, Jack

    2006-08-05

    An organosolv process involving extraction with hot aqueous ethanol has been evaluated for bioconversion of hybrid poplar to ethanol. The process resulted in fractionation of poplar chips into a cellulose-rich solids fraction, an ethanol organosolv lignin (EOL) fraction, and a water-soluble fraction containing hemicellulosic sugars, sugar breakdown products, degraded lignin, and other components. The influence of four independent process variables (temperature, time, catalyst dose, and ethanol concentration) on product yields was analyzed over a broad range using a small composite design and response surface methodology. Center point conditions for the composite design (180 degrees C, 60 min, 1.25% H(2)SO(4), and 60% ethanol), yielded a solids fraction containing approximately 88% of the cellulose present in the untreated poplar. Approximately 82% of the total cellulose in the untreated poplar was recovered as monomeric glucose after hydrolysis of the solids fraction for 24 h using a low enzyme loading (20 filter paper units of cellulase/g cellulose); approximately 85% was recovered after 48 h hydrolysis. Total recovery of xylose (soluble and insoluble) was equivalent to approximately 72% of the xylose present in untreated wood. Approximately 74% of the lignin in untreated wood was recovered as EOL. Other cooking conditions resulted in either similar or inferior product yields although the distribution of components between the various fractions differed markedly. Data analysis generated regression models that describe process responses for any combination of the four variables. (c) 2006 Wiley Periodicals, Inc.

  11. Investment risk in bioenergy crops

    DOE PAGES

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; ...

    2015-11-18

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  12. Investment risk in bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  13. Precipitation Storage Efficiency During Fallow in Wheat-Fallow Systems

    USDA-ARS?s Scientific Manuscript database

    Wheat-fallow production systems arose in order to stabilize widely ranging wheat yields that resulted from highly variable precipitation in the Great Plains. Historically, precipitation storage efficiency (PSE) over the fallow period increased over time as inversion tillage systems used for weed con...

  14. Efficient Simulation of Wing Modal Response: Application of 2nd Order Shape Sensitivities and Neural Networks

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    2000-01-01

    At the preliminary design stage of a wing structure, an efficient simulation, one needing little computation but yielding adequately accurate results for various response quantities, is essential in the search of optimal design in a vast design space. In the present paper, methods of using sensitivities up to 2nd order, and direct application of neural networks are explored. The example problem is how to decide the natural frequencies of a wing given the shape variables of the structure. It is shown that when sensitivities cannot be obtained analytically, the finite difference approach is usually more reliable than a semi-analytical approach provided an appropriate step size is used. The use of second order sensitivities is proved of being able to yield much better results than the case where only the first order sensitivities are used. When neural networks are trained to relate the wing natural frequencies to the shape variables, a negligible computation effort is needed to accurately determine the natural frequencies of a new design.

  15. Identification of saline soils with multi-year remote sensing of crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Ortiz-Monasterio, I; Gurrola, F C

    2006-10-17

    Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions or its impact on regional crop productivity remains sparse. We evaluated the relationships between remotely sensed wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The goals of this study were to (1) document the relative importance of salinity as a constraint to regional wheat production and (2) develop techniques to accurately identify saline fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-based records on individual fields (R{sup 2} = 0.65).more » Salinity measurements on 122 randomly selected fields revealed that average 0-60 cm salinity levels > 4 dS m{sup -1} reduced wheat yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years. However, temporal analysis of yield images showed a significant fraction of fields exhibited consistently low yields over the six year period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These results suggest that high subsurface salinity is associated with consistently low yields in this region, and that multi-year yield maps derived from remote sensing therefore provide an opportunity to map salinity across agricultural regions.« less

  16. Impacts of multiple global environmental changes on African crop yield and water use efficiency: Implications to food and water security

    NASA Astrophysics Data System (ADS)

    Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.

    2016-12-01

    Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land management practices including the increased uses of fertilizers and irrigation will be the key for reducing the loss of crop yield in a warming climate and extreme weather.

  17. Optimizing Dense Plasma Focus Neutron Yields With Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Stein, Elizabeth; Higginson, Drew; Kueny, Christopher; Link, Anthony; Schmidt, Andrea

    2017-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high-density jets are modeled in the large-eddy Navier-Stokes code CharlesX, which is suitable for modeling both sub-sonic and supersonic gas flow. The gas pattern, which is essentially static on z-pinch time scales, is imported from CharlesX to LSP for neutron yield predictions. Fast gas puffs allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of a subsonic jet increases relative to the background fill, we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density via super-sonic flow (also known as Mach diamonds) allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration and the necessary jet conditions for increasing neutron yield and reducing yield variability are explored. Simulations of realistic jet profiles are performed and compared to the ideal scenario. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL.

  18. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups

    PubMed Central

    Dar, Manzoor H.; de Janvry, Alain; Emerick, Kyle; Raitzer, David; Sadoulet, Elisabeth

    2013-01-01

    Approximately 30% of the cultivated rice area in India is prone to crop damage from prolonged flooding. We use a randomized field experiment in 128 villages of Orissa India to show that Swarna-Sub1, a recently released submergence-tolerant rice variety, has significant positive impacts on rice yield when fields are submerged for 7 to 14 days with no yield penalty without flooding. We estimate that Swarna-Sub1 offers an approximate 45% increase in yields over the current popular variety when fields are submerged for 10 days. We show additionally that low-lying areas prone to flooding tend to be more heavily occupied by people belonging to lower caste social groups. Thus, a policy relevant implication of our findings is that flood-tolerant rice can deliver both efficiency gains, through reduced yield variability and higher expected yield, and equity gains in disproportionately benefiting the most marginal group of farmers. PMID:24263095

  19. Acrolein Yields in Mainstream Smoke From Commercial Cigarette and Little Cigar Tobacco Products.

    PubMed

    Cecil, Todd L; Brewer, Tim M; Young, Mimy; Holman, Matthew R

    2017-07-01

    Many carbonyls are produced from the combustion of tobacco products and many of these carbonyls are harmful or potentially harmful constituents of mainstream cigarette smoke. One carbonyl of particular interest is acrolein, which is formed from the incomplete combustion of organic matter and the most significant contributor to non-cancer respiratory effects from cigarette smoke. Sheet-wrapped cigars, also known as "little cigars," are a type of tobacco products that have not been extensively investigated in literature. This study uses standard cigarette testing protocols to determine the acrolein yields from sheet-wrapped cigars. Sheet-wrapped cigar and cigarette products were tested by derivatizing the mainstream smoke with 2,4-dinitrophenylhydrazine (DNPH) solution and then quantifying the derivatives using conventional analytical systems. The results demonstrate that sheet-wrapped cigars can be tested for acrolein yields in mainstream smoke using the same methods used for the evaluation of cigarettes. The variability in the sheet-wrapped cigars and cigarettes under the International Organization for Standardization smoking regimen is statistically similar at the 95% confidence interval; however, increased variability is observed for sheet-wrapped cigar products under the Health Canada Intense (CI) smoking regimen. The amount of acrolein released by smoking sheet-wrapped cigars can be measured using standard smoking regimen currently used for cigarettes. The sheet-wrapped cigars were determined to yield similar quantity of acrolein from commercial cigarette products using two standard smoking regimens. This article reports on the measured quantity of acrolein from 15 commercial sheet-wrapped cigars using a validated standard smoking test method that derivatizes acrolein in the mainstream smoke with DNPH solution, and uses Liquid Chromatography/Ultra-Violet Detection (LC/UV) for separation and detection. These acrolein yields were similar to the levels found in the smoke from 35 commercial cigarette products measured in the same manner. Although sheet-wrapped cigar data were slightly more variable than those found for the cigarette data, this article reports that the production of acrolein is similar to cigarettes. The results demonstrate that sheet-wrapped cigars can be tested for acrolein yields in mainstream smoke using the same methods used for the evaluation of cigarettes. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Pointwise Partial Information Decomposition Using the Specificity and Ambiguity Lattices

    NASA Astrophysics Data System (ADS)

    Finn, Conor; Lizier, Joseph

    2018-04-01

    What are the distinct ways in which a set of predictor variables can provide information about a target variable? When does a variable provide unique information, when do variables share redundant information, and when do variables combine synergistically to provide complementary information? The redundancy lattice from the partial information decomposition of Williams and Beer provided a promising glimpse at the answer to these questions. However, this structure was constructed using a much criticised measure of redundant information, and despite sustained research, no completely satisfactory replacement measure has been proposed. In this paper, we take a different approach, applying the axiomatic derivation of the redundancy lattice to a single realisation from a set of discrete variables. To overcome the difficulty associated with signed pointwise mutual information, we apply this decomposition separately to the unsigned entropic components of pointwise mutual information which we refer to as the specificity and ambiguity. This yields a separate redundancy lattice for each component. Then based upon an operational interpretation of redundancy, we define measures of redundant specificity and ambiguity enabling us to evaluate the partial information atoms in each lattice. These atoms can be recombined to yield the sought-after multivariate information decomposition. We apply this framework to canonical examples from the literature and discuss the results and the various properties of the decomposition. In particular, the pointwise decomposition using specificity and ambiguity satisfies a chain rule over target variables, which provides new insights into the so-called two-bit-copy example.

  1. Variable screening via quantile partial correlation

    PubMed Central

    Ma, Shujie; Tsai, Chih-Ling

    2016-01-01

    In quantile linear regression with ultra-high dimensional data, we propose an algorithm for screening all candidate variables and subsequently selecting relevant predictors. Specifically, we first employ quantile partial correlation for screening, and then we apply the extended Bayesian information criterion (EBIC) for best subset selection. Our proposed method can successfully select predictors when the variables are highly correlated, and it can also identify variables that make a contribution to the conditional quantiles but are marginally uncorrelated or weakly correlated with the response. Theoretical results show that the proposed algorithm can yield the sure screening set. By controlling the false selection rate, model selection consistency can be achieved theoretically. In practice, we proposed using EBIC for best subset selection so that the resulting model is screening consistent. Simulation studies demonstrate that the proposed algorithm performs well, and an empirical example is presented. PMID:28943683

  2. Intraindividual variability in cognitive performance in persons with chronic fatigue syndrome.

    PubMed

    Fuentes, K; Hunter, M A; Strauss, E; Hultsch, D F

    2001-05-01

    Studies of cognitive performance among persons with chronic fatigue syndrome (CFS) have yielded inconsistent results. We sought to contribute to findings in this area by examining intraindividual variability as well as level of performance in cognitive functioning. A battery of cognitive measures was administered to 14 CFS patients and 16 healthy individuals on 10 weekly occasions. Analyses comparing the two groups in terms of level of performance defined by latency and accuracy scores revealed that the CFS patients were slower but not less accurate than healthy persons. The CFS group showed greater intraindividual variability (as measured by intraindividual standard deviations and coefficients of variation) than the healthy group, although the results varied by task and time frame. Intraindividual variability was found to be stable across time and correlated across tasks at each testing occasion. Intraindividual variability also uniquely differentiated the groups. The present findings support the proposition that intraindividual variability is a meaningful indicator of cognitive functioning in CFS patients.

  3. Active sensing: An innovative tool for evaluating grain yield and nitrogen use efficiency of multiple wheat genotypes

    NASA Astrophysics Data System (ADS)

    Naser, Mohammed Abdulridha

    Precision agricultural practices have significantly contributed to the improvement of crop productivity and profitability. Remote sensing based indices, such as Normalized Difference Vegetative Index (NDVI) have been used to obtain crop information. It is used to monitor crop development and to provide rapid and nondestructive estimates of plant biomass, nitrogen (N) content and grain yield. Remote sensing tools are helping improve nitrogen use efficiency (NUE) through nitrogen management and could also be useful for high NUE genotype selection. The objectives of this study were: (i) to determine if active sensor based NDVI readings can differentiate wheat genotypes, (ii) to determine if NDVI readings can be used to classify wheat genotypes into grain yield productivity classes, (iii) to identify and quantify the main sources of variation in NUE across wheat genotypes, and (iv) to determine if normalized difference vegetation index (NDVI) could characterize variability in NUE across wheat genotypes. This study was conducted in north eastern Colorado for two years, 2010 and 2011. The NDVI readings were taken weekly during the winter wheat growing season from March to late June, in 2010 and 2011 and NUE were calculated as partial factor productivity and as partial nitrogen balance at the end of the season. For objectives i and ii, the correlation between NDVI and grain yield was determined using Pearson's product-moment correlation coefficient (r) and linear regression analysis was used to explain the relationship between NDVI and grain yield. The K-means clustering algorithm was used to classify mean NDVI and mean grain yield into three classes. For objectives iii and iv, the parameters related to NUE were also calculated to measure their relative importance in genotypic variation of NUE and power regression analysis between NDVI and NUE was used to characterize the relationship between NDVI and NUE. The results indicate more consistent association between grain yield and NDVI and between NDVI and NUE later in the season, after anthesis and during mid-grain filling stage under dryland and a poor association in wheat grown in irrigated conditions. The results suggest that below saturation of NDVI values (about 0.9), (i.e. prior to full canopy closure and after the beginning of senescence or most of the season under dryland conditions) NDVI could assess grain yield and NUE. The results also indicate that nitrogen uptake efficiency was the main source of variation of NUE among genotypes grown in site-years with lower yield. Overall, results from this study demonstrate that NDVI readings successfully classified wheat genotypes into grain yield classes across dryland and irrigated conditions and characterized variability in NUE across wheat genotypes.

  4. Response of wheat yield in Spain to large-scale patterns

    NASA Astrophysics Data System (ADS)

    Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepcion

    2016-04-01

    Crops are vulnerable to extreme climate conditions as drought, heat stress and frost risk. In previous study we have quantified the influence of these climate conditions for winter wheat in Spain (Hernandez-Barrera et al. 2015). The climate extremes respond to large-scale atmospheric and oceanic patterns. Therefore, a question emerges in our investigation: How large-scale patterns affect wheat yield? Obtaining and understanding these relationships require different approaches. In this study, we first obtained the leading mode of observed wheat yield variability to characterize the common variability over different provinces in Spain. Then, the wheat variability is related to different modes of mean sea level pressure, jet stream and sea surface temperature by using Partial Least-Squares, which captures the relevant climate drivers accounting for variations in wheat yield from sowing to harvesting. We used the ERA-Interim reanalysis data and the Extended Reconstructed Sea Surface Temperature (SST) (ERSST v3b). The derived model provides insight about the teleconnections between wheat yield and atmospheric and oceanic circulations, which is considered to project the wheat yield trend under global warming using outputs of twelve climate models corresponding to the Coupled Models Intercomparison Project phase 5 (CMIP5). Hernandez-Barrera S., C. Rodríguez-Puebla and A.J. Challinor. Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology (submitted)

  5. The importance of environmental variability and management control error to optimal harvest policies

    USGS Publications Warehouse

    Hunter, C.M.; Runge, M.C.

    2004-01-01

    State-dependent strategies (SDSs) are the most general form of harvest policy because they allow the harvest rate to depend, without constraint, on the state of the system. State-dependent strategies that provide an optimal harvest rate for any system state can be calculated, and stochasticity can be appropriately accommodated in this optimization. Stochasticity poses 2 challenges to harvest policies: (1) the population will never be at the equilibrium state; and (2) stochasticity induces uncertainty about future states. We investigated the effects of 2 types of stochasticity, environmental variability and management control error, on SDS harvest policies for a white-tailed deer (Odocoileus virginianus) model, and contrasted these with a harvest policy based on maximum sustainable yield (MSY). Increasing stochasticity resulted in more conservative SDSs; that is, higher population densities were required to support the same harvest rate, but these effects were generally small. As stochastic effects increased, SDSs performed much better than MSY. Both deterministic and stochastic SDSs maintained maximum mean annual harvest yield (AHY) and optimal equilibrium population size (Neq) in a stochastic environment, whereas an MSY policy could not. We suggest 3 rules of thumb for harvest management of long-lived vertebrates in stochastic systems: (1) an SDS is advantageous over an MSY policy, (2) using an SDS rather than an MSY is more important than whether a deterministic or stochastic SDS is used, and (3) for SDSs, rankings of the variability in management outcomes (e.g., harvest yield) resulting from parameter stochasticity can be predicted by rankings of the deterministic elasticities.

  6. Ensembles modeling approach to study Climate Change impacts on Wheat

    NASA Astrophysics Data System (ADS)

    Ahmed, Mukhtar; Claudio, Stöckle O.; Nelson, Roger; Higgins, Stewart

    2017-04-01

    Simulations of crop yield under climate variability are subject to uncertainties, and quantification of such uncertainties is essential for effective use of projected results in adaptation and mitigation strategies. In this study we evaluated the uncertainties related to crop-climate models using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS and EPIC) and 14 general circulation models (GCMs) for 2 representative concentration pathways (RCP) of atmospheric CO2 (4.5 and 8.5 W m-2) in the Pacific Northwest (PNW), USA. The aim was to assess how different process-based crop models could be used accurately for estimation of winter wheat growth, development and yield. Firstly, all models were calibrated for high rainfall, medium rainfall, low rainfall and irrigated sites in the PNW using 1979-2010 as the baseline period. Response variables were related to farm management and soil properties, and included crop phenology, leaf area index (LAI), biomass and grain yield of winter wheat. All five models were run from 2000 to 2100 using the 14 GCMs and 2 RCPs to evaluate the effect of future climate (rainfall, temperature and CO2) on winter wheat phenology, LAI, biomass, grain yield and harvest index. Simulated time to flowering and maturity was reduced in all models except EPIC with some level of uncertainty. All models generally predicted an increase in biomass and grain yield under elevated CO2 but this effect was more prominent under rainfed conditions than irrigation. However, there was uncertainty in the simulation of crop phenology, biomass and grain yield under 14 GCMs during three prediction periods (2030, 2050 and 2070). We concluded that to improve accuracy and consistency in simulating wheat growth dynamics and yield under a changing climate, a multimodel ensemble approach should be used.

  7. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology

    PubMed Central

    Ahamad, Javed; Amin, Saima; Mir, Showkat R.

    2015-01-01

    Background: Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. Objective: The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Materials and Methods: Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. Results: The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. Conclusions: A facile UAE protocol for a high extraction yield of charantin was developed and validated. PMID:26681889

  8. A need for a standardization in anaerobic digestion experiments? Let's get some insight from meta-analysis and multivariate analysis.

    PubMed

    Lavergne, Céline; Jeison, David; Ortega, Valentina; Chamy, Rolando; Donoso-Bravo, Andrés

    2018-09-15

    An important variability in the experimental results in anaerobic digestion lab test has been reported. This study presents a meta-analysis coupled with multivariate analysis aiming to assess the impact of this experimental variability in batch and continuous operation at mesophilic and thermophilic anaerobic digestion of waste activated sludge. An analysis of variance showed that there was no significant difference between mesophilic and thermophilic conditions in both continuous and batch conditions. Concerning the operation mode, the values of methane yield were significantly higher in batch experiment than in continuous reactors. According to the PCA, for both cases, the methane yield is positive correlated to the temperature rises. Interestingly, in the batch experiments, the higher the volatile solids in the substrate was, the lowest was the methane production, which is correlated to experimental flaws when setting up those tests. In continuous mode, unlike the batch test, the methane yield is strongly (positively) correlated to the organic content of the substrate. Experimental standardization, above all, in batch conditions are urgently necessary or move to continuous experiments for reporting results. The modeling can also be a source of disturbance in batch test. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE PAGES

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  10. Adaptation of six shallots varieties to phosphate solubilizing bacteria on the flower formation, seeds fromation, and yields on the lowland

    NASA Astrophysics Data System (ADS)

    Triharyanto, E.; Sudadi; Rawandari, S.

    2018-03-01

    Using seeds as planting materials is a solution to improve the quality and quantity of shallot. This study aims to determine the interaction between shallot varieties and Phosphate- Solubilizing Bacteria (PSB) on the flowering and shallot yield on the lowlands. The research was conducted in Mijil Village, Jaten, Karanganyar, 98 m altitude with Vertisol-type soil order in June to December 2016, using Randomized Complete Block Design (RCBD) with two factors. Shallot varieties used as factors are Bima, Manjung, Ilokos, Bima (bulb seeds), Mentes and Rubaru. PSB factors are control and with PSB inoculation. Observed variables included plant height, number of leaves, flowering percentage, seed formation and shallot bulb yield. Results showed that there was no interaction between varieties and PSB inoculation on all observed variables. However, PSB inoculation were able to increase the number of flowering plants and seed weight per plot. Bima variety have the highest average yield compared to other varieties in terms of number of leaves, number of bulbs per plant and bulb weight per plot (fresh harvest weight 317.74 g equivalent to 17.65 ton per hectare and dry weight 288.16 g consumption equivalent to 16 ton per hectare).

  11. Building a pantheoretical model of dehumanization with transgender men: Integrating objectification and minority stress theories.

    PubMed

    Velez, Brandon L; Breslow, Aaron S; Brewster, Melanie E; Cox, Robert; Foster, Aasha B

    2016-10-01

    With a national sample of 304 transgender men, the present study tested a pantheoretical model of dehumanization (Moradi, 2013) with hypotheses derived from objectification theory (Fredrickson & Roberts, 1997), minority stress theory (Meyer, 2003), and prior research regarding men's body image concerns. Specifically, we tested common objectification theory constructs (internalization of sociocultural standards of attractiveness [SSA], body surveillance, body satisfaction) as direct and indirect predictors of compulsive exercise. We also examined the roles of transgender-specific minority stress variables-antitransgender discrimination and transgender identity congruence-in the model. Results of a latent variable structural equation model yielded mixed support for the posited relations. The direct and indirect interrelations of internalization of SSA, body surveillance, and body satisfaction were consistent with prior objectification theory research, but only internalization of SSA yielded a significant direct relation with compulsive exercise. In addition, neither internalization of SSA nor body surveillance yielded significant indirect relations with compulsive exercise. However, antitransgender discrimination yielded predicted indirect relations with body surveillance, body satisfaction, and compulsive exercise, with transgender congruence playing a key mediating role in most of these relations. The implications of this pantheoretical model for research and practice with transgender men are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Inferring genetic parameters on latent variables underlying milk yield and quality, protein composition, curd firmness and cheese-making traits in dairy cattle.

    PubMed

    Dadousis, C; Cipolat-Gotet, C; Bittante, G; Cecchinato, A

    2018-02-01

    We studied the genetics of cheese-related latent variables (factors; Fs) for application in dairy cattle breeding. In total, 26 traits, recorded in 1264 Brown Swiss cows, were analyzed through multivariate factor analysis (MFA). Traits analyzed were descriptors of milk quality and yield (including protein fractions) and measures of coagulation, curd firmness (CF), cheese yields (%CY) and nutrient recoveries in the curd (REC). A total of 10 Fs (mutual orthogonal with a varimax rotation) were obtained. To assess the practical use of the Fs into breeding, we inferred their genetic parameters using single and bivariate animal models under a Bayesian framework. Heritability estimates (intra-herd) varied between 0.11 and 0.72 (F3: Yield and F7: κ-β-CN, respectively). The Fs underlined basic characteristics of the cheese-making process, milk components and udder health, while retaining 74% of the original variability. The first two Fs were indicators of the CY percentage (F1: %CY) and the CF process (F2: CF t ), and presented similar heritability estimates: 0.268 and 0.295, respectively. The third factor was associated with the yield of milk and solids (F3: Yield) characterized by a low heritability (0.108) and the fourth with the cheese nitrogen (N) (F4: Cheese N) that conversely appeared to be characterized by a high heritability (0.618). Three Fs were associated with the proportion of the basic milk caseins on total milk protein (F5: as1-β-CN, F7: κ-β-CN, F8: as2-CN), also highly heritable (0.565, 0.723 and 0.397, respectively) and 1 factor with the phosphorylated form of the as1-CN (F9: as1-CN-Ph; 0.318). Moreover, 1 factor was linked to the whey protein α-LA (F10: α-LA; 0.147). An indicator factor of a cow's udder health (F6: Udder health) was also obtained and showed a moderate heritability (0.204). Although the Fs were phenotypically uncorrelated, considerable additive genetic correlations existed among them, with highest values observed between F10: α-LA and F6: Udder health (-0.67) as well as between F9: as1-CN-Ph and F3: Yield (-0.60). Our results show the usefulness of MFA in dairy cattle breeding. The ability to replace a large number of variables with a few latent indicators of the same biological meaning marks MFA as a valuable tool for developing breeding strategies to improve cow's cheese-related traits.

  13. A fast collocation method for a variable-coefficient nonlocal diffusion model

    NASA Astrophysics Data System (ADS)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  14. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index.

    PubMed

    Lofton, Josh; Tubana, Brenda S; Kanke, Yumiko; Teboh, Jasper; Viator, Howard; Dalen, Marilyn

    2012-01-01

    Estimating crop yield using remote sensing techniques has proven to be successful. However, sugarcane possesses unique characteristics; such as, a multi-year cropping cycle and plant height-limiting for midseason fertilizer application timing. Our study objective was to determine if sugarcane yield potential could be estimated using an in-season estimation of normalized difference vegetative index (NDVI). Sensor readings were taken using the GreenSeeker® handheld sensor from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was between 601-750 GDD. In-season estimated yield values improved the yield potential (YP) model compared to using NDVI. Generally, INSEY value showed a positive exponential relationship with yield (r(2) values 0.48 and 0.42 for cane tonnage and sugar yield, respectively). When models were separated based on canopy structure there was an increase the strength of the relationship for the erectophile varieties (r(2) 0.53 and 0.47 for cane tonnage and sugar yield, respectively); however, the model for planophile varieties weakened slightly. Results of this study indicate using an INSEY value for predicting sugarcane yield shows potential of being a valuable management tool for sugarcane producers in Louisiana.

  15. Computer optimization of cutting yield from multiple ripped boards

    Treesearch

    A.R. Stern; K.A. McDonald

    1978-01-01

    RIPYLD is a computer program that optimizes the cutting yield from multiple-ripped boards. Decisions are based on automatically collected defect information, cutting bill requirements, and sawing variables. The yield of clear cuttings from a board is calculated for every possible permutation of specified rip widths and both the maximum and minimum percent yield...

  16. The Safe Yield and Climatic Variability: Implications for Groundwater Management.

    PubMed

    Loáiciga, Hugo A

    2017-05-01

    Methods for calculating the safe yield are evaluated in this paper using a high-quality and long historical data set of groundwater recharge, discharge, extraction, and precipitation in a karst aquifer. Consideration is given to the role that climatic variability has on the determination of a climatically representative period with which to evaluate the safe yield. The methods employed to estimate the safe yield are consistent with its definition as a long-term average extraction rate that avoids adverse impacts on groundwater. The safe yield is a useful baseline for groundwater planning; yet, it is herein shown that it is not an operational rule that works well under all climatic conditions. This paper shows that due to the nature of dynamic groundwater processes it may be most appropriate to use an adaptive groundwater management strategy that links groundwater extraction rates to groundwater discharge rates, thus achieving a safe yield that represents an estimated long-term sustainable yield. An example of the calculation of the safe yield of the Edwards Aquifer (Texas) demonstrates that it is about one-half of the average annual recharge. © 2016, National Ground Water Association.

  17. Contribution of morphoagronomic traits to grain yield and earliness in grain sorghum.

    PubMed

    da Silva, K J; Teodoro, P E; de Menezes, C B; Júlio, M P M; de Souza, V F; da Silva, M J; Pimentel, L D; Borém, A

    2017-05-04

    Given the importance of selecting lines to obtain hybrids, we aimed to verify the relationship between morphological traits that can be used as the criteria for the selection of sorghum lines with high grain yield and earliness. A total of 18 traits were evaluated in 160 sorghum elite lines, in an incomplete block design with two replicates. A correlation network was used to graphically express the estimates of phenotypic and genotypic correlations between the traits. Two path analyses were processed, the first considering grain yield and the second considering flowering as the principle dependent variable. In general, most of the variation in the grain yield and flowering of sorghum lines was explained by the traits evaluated. Selecting sorghum lines with greater width of the third leaf blade from flag leaf, panicle weight, and panicle harvest index might lead to increased grain yield, and selecting sorghum genotypes with higher plant height might lead to reduced earliness and increased grain yield. Thus, the results suggest the establishment of selection indices aiming at simultaneously increasing the grain yield and earliness in sorghum genotypes.

  18. Variation in nutrients formulated and nutrients supplied on 5 California dairies.

    PubMed

    Rossow, H A; Aly, S S

    2013-01-01

    Computer models used in ration formulation assume that nutrients supplied by a ration formulation are the same as the nutrients presented in front of the cow in the final ration. Deviations in nutrients due to feed management effects such as dry matter changes (i.e., rain), loading, mixing, and delivery errors are assumed to not affect delivery of nutrients to the cow and her resulting milk production. To estimate how feed management affects nutrients supplied to the cow and milk production, and determine if nutrients can serve as indexes of feed management practices, weekly total mixed ration samples were collected and analyzed for 4 pens (close-up cows, fresh cows, high-milk-producing, and low-milk-producing cows, if available) for 7 to 12 wk on 5 commercial California dairies. Differences among nutrient analyses from these samples and nutrients from the formulated rations were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Milk fat and milk protein percentages did not vary as much [coefficient of variation (CV) = 18 to 33%] as milk yield (kg; CV = 16 to 47 %) across all dairies and pens. Variability in nutrients delivered were highest for macronutrient fat (CV = 22%), lignin (CV = 15%), and ash (CV = 11%) percentages and micronutrients Fe (mg/kg; CV = 48%), Na (%; CV = 42%), and Zn (mg/kg; CV = 38%) for the milking pens across all dairies. Partitioning of the variability in random effects of nutrients delivered and intraclass correlation coefficients showed that variability in lignin percentage of TMR had the highest correlation with variability in milk yield and milk fat percentage, followed by fat and crude protein percentages. But, variability in ash, fat, and lignin percentages of total mixed ration had the highest correlation with variability in milk protein percentage. Therefore, lignin, fat, and ash may be the best indices of feed management to include effects of variability in nutrients on variability in milk yield, milk fat, and milk protein percentages in ration formulation models. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Topsoil depth effects on corn yield and nitrogen uptake efficiency

    USDA-ARS?s Scientific Manuscript database

    Decades of erosion on claypan soil fields under row crop production has led to varying topsoil thickness across fields of the Midwest, resulting in variable crop fertilizer requirements across landscapes. Determining how these crop needs, specifically nitrogen, vary across fields is crucial for gett...

  20. Human impact on sediment fluxes within the Blue Nile and Atbara River basins

    NASA Astrophysics Data System (ADS)

    Balthazar, Vincent; Vanacker, Veerle; Girma, Atkilt; Poesen, Jean; Golla, Semunesh

    2013-01-01

    A regional assessment of the spatial variability in sediment yields allows filling the gap between detailed, process-based understanding of erosion at field scale and empirical sediment flux models at global scale. In this paper, we focus on the intrabasin variability in sediment yield within the Blue Nile and Atbara basins as biophysical and anthropogenic factors are presumably acting together to accelerate soil erosion. The Blue Nile and Atbara River systems are characterized by an important spatial variability in sediment fluxes, with area-specific sediment yield (SSY) values ranging between 4 and 4935 t/km2/y. Statistical analyses show that 41% of the observed variation in SSY can be explained by remote sensing proxy data of surface vegetation cover, rainfall intensity, mean annual temperature, and human impact. The comparison of a locally adapted regression model with global predictive sediment flux models indicates that global flux models such as the ART and BQART models are less suited to capture the spatial variability in area-specific sediment yields (SSY), but they are very efficient to predict absolute sediment yields (SY). We developed a modified version of the BQART model that estimates the human influence on sediment yield based on a high resolution composite measure of local human impact (human footprint index) instead of countrywide estimates of GNP/capita. Our modified version of the BQART is able to explain 80% of the observed variation in SY for the Blue Nile and Atbara basins and thereby performs only slightly less than locally adapted regression models.

  1. Post-heading heat stress and yield impact in winter wheat of China.

    PubMed

    Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold

    2014-02-01

    Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.

  2. Evaluation of the Williams-type model for barley yields in North Dakota and Minnesota

    NASA Technical Reports Server (NTRS)

    Barnett, T. L. (Principal Investigator)

    1981-01-01

    The Williams-type yield model is based on multiple regression analysis of historial time series data at CRD level pooled to regional level (groups of similar CRDs). Basic variables considered in the analysis include USDA yield, monthly mean temperature, monthly precipitation, soil texture and topographic information, and variables derived from these. Technologic trend is represented by piecewise linear and/or quadratic functions of year. Indicators of yield reliability obtained from a ten-year bootstrap test (1970-1979) demonstrate that biases are small and performance based on root mean square appears to be acceptable for the intended AgRISTARS large area applications. The model is objective, adequate, timely, simple, and not costly. It consideres scientific knowledge on a broad scale but not in detail, and does not provide a good current measure of modeled yield reliability.

  3. Connecting Groundwater, Crop Price, and Crop Production Variability in India

    NASA Astrophysics Data System (ADS)

    Pollack, A.; Lobell, D. B.; Jain, M.

    2015-12-01

    Farmers in India rely on groundwater resources for irrigation and production of staple crops that provide over half of the calories consumed domestically each year. While this has been a productive strategy in increasing agricultural production and maintaining high yields, groundwater resources are depleting at a quicker rate than natural resources can replace. This issue gains relevance as climate variability concurrently adds to yearly fluctuations in farmer demand for irrigation each year, which can create high risk for farmers that depend on consistent yields, but do not have access to dwindling water resources. This study investigates variability in groundwater levels from 2005 to 2013 in relation to crop prices and production by analyzing district-level datasets made available through India's government. Through this analysis, we show the impact of groundwater variability on price variability, crop yield, and production during these years. By examining this nine-year timescale, we extend our analysis to forthcoming years to demonstrate the increasing importance of groundwater resources in irrigation, and suggest strategies to reduce the impact of groundwater shortages on crop production and prices.

  4. Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand.

    PubMed

    Prabnakorn, Saowanit; Maskey, Shreedhar; Suryadi, F X; de Fraiture, Charlotte

    2018-04-15

    Rice yields in Thailand are among the lowest in Asia. In northeast Thailand where about 90% of rice cultivation is rain-fed, climate variability and change affect rice yields. Understanding climate characteristics and their impacts on the rice yield is important for establishing proper adaptation and mitigation measures to enhance productivity. In this paper, we investigate climatic conditions of the past 30years (1984-2013) and assess the impacts of the recent climate trends on rice yields in the Mun River Basin in northeast Thailand. We also analyze the relationship between rice yield and a drought indicator (Standardized Precipitation and Evapotranspiration Index, SPEI), and the impact of SPEI trends on the yield. Our results indicate that the total yield losses due to past climate trends are rather low, in the range of <50kg/ha per decade (3% of actual average yields). In general, increasing trends in minimum and maximum temperatures lead to modest yield losses. In contrast, precipitation and SPEI-1, i.e. SPEI based on one monthly data, show positive correlations with yields in all months, except in the wettest month (September). If increasing trends of temperatures during the growing season persist, a likely climate change scenario, there is high possibility that the yield losses will become more serious in future. In this paper, we show that the drought index SPEI-1 detects soil moisture deficiency and crop stress in rice better than precipitation or precipitation based indicators. Further, our results emphasize the importance of spatial and temporal resolutions in detecting climate trends and impacts on yields. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Rainfall Variability, Adaptation through Irrigation, and Sustainable Management of Water Resources in India

    NASA Astrophysics Data System (ADS)

    Fishman, R.

    2013-12-01

    Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.

  6. Unified Static and Dynamic Recrystallization Model for the Minerals of Earth's Mantle Using Internal State Variable Model

    NASA Astrophysics Data System (ADS)

    Cho, H. E.; Horstemeyer, M. F.; Baumgardner, J. R.

    2017-12-01

    In this study, we present an internal state variable (ISV) constitutive model developed to model static and dynamic recrystallization and grain size progression in a unified manner. This method accurately captures temperature, pressure and strain rate effect on the recrystallization and grain size. Because this ISV approach treats dislocation density, volume fraction of recrystallization and grain size as internal variables, this model can simultaneously track their history during the deformation with unprecedented realism. Based on this deformation history, this method can capture realistic mechanical properties such as stress-strain behavior in the relationship of microstructure-mechanical property. Also, both the transient grain size during the deformation and the steady-state grain size of dynamic recrystallization can be predicted from the history variable of recrystallization volume fraction. Furthermore, because this model has a capability to simultaneously handle plasticity and creep behaviors (unified creep-plasticity), the mechanisms (static recovery (or diffusion creep), dynamic recovery (or dislocation creep) and hardening) related to dislocation dynamics can also be captured. To model these comprehensive mechanical behaviors, the mathematical formulation of this model includes elasticity to evaluate yield stress, work hardening in treating plasticity, creep, as well as the unified recrystallization and grain size progression. Because pressure sensitivity is especially important for the mantle minerals, we developed a yield function combining Drucker-Prager shear failure and von Mises yield surfaces to model the pressure dependent yield stress, while using pressure dependent work hardening and creep terms. Using these formulations, we calibrated against experimental data of the minerals acquired from the literature. Additionally, we also calibrated experimental data for metals to show the general applicability of our model. Understanding of realistic mantle dynamics can only be acquired once the various deformation regimes and mechanisms are comprehensively modeled. The results of this study demonstrate that this ISV model is a good modeling candidate to help reveal the realistic dynamics of the Earth's mantle.

  7. Simulation of nitrous oxide effluxes, crop yields and soil physical properties using the LandscapeDNDC model in managed ecosystem

    NASA Astrophysics Data System (ADS)

    Nyckowiak, Jedrzej; Lesny, Jacek; Haas, Edwin; Juszczak, Radoslaw; Kiese, Ralf; Butterbach-Bahl, Klaus; Olejnik, Janusz

    2014-05-01

    Modeling of nitrous oxide emissions from soil is very complex. Many different biological and chemical processes take place in soils which determine the amount of emitted nitrous oxide. Additionaly, biogeochemical models contain many detailed factors which may determine fluxes and other simulated variables. We used the LandscapeDNDC model in order to simulate N2O emissions, crop yields and soil physical properties from mineral cultivated soils in Poland. Nitrous oxide emissions from soils were modeled for fields with winter wheat, winter rye, spring barley, triticale, potatoes and alfalfa crops. Simulations were carried out for the plots of the Brody arable experimental station of Poznan University of Life Science in western Poland and covered the period 2003 - 2012. The model accuracy and its efficiency was determined by comparing simulations result with measurements of nitrous oxide emissions (measured with static chambers) from about 40 field campaigns. N2O emissions are strongly dependent on temperature and soil water content, hence we compared also simulated soil temperature at 10cm depth and soil water content at the same depth with the daily measured values of these driving variables. We compared also simulated yield quantities for each individual experimental plots with yield quantities which were measured in the period 2003-2012. We conclude that the LandscapeDNDC model is capable to simulate soil N2O emissions, crop yields and physical properties of soil with satisfactorily good accuracy and efficiency.

  8. Potential impacts of agricultural drought on crop yield variability under a changing climate in Texas

    NASA Astrophysics Data System (ADS)

    Lee, K.; Leng, G.; Huang, M.; Sheffield, J.; Zhao, G.; Gao, H.

    2017-12-01

    Texas has the largest farm area in the U.S, and its revenue from crop production ranks third overall. With the changing climate, hydrological extremes such as droughts are becoming more frequent and intensified, causing significant yield reduction in rainfed agricultural systems. The objective of this study is to investigate the potential impacts of agricultural drought on crop yields (corn, sorghum, and wheat) under a changing climate in Texas. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over 10 major Texas river basins during the historical period, is employed in this study.The model is forced by a set of statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four Representative Concentration Pathways (RCP) that represent different greenhouse gas concentration (4.5 and 8.5 w/m2 are selected in this study). To carry out the analysis, VIC simulations from 1950 to 2099 are first analyzed to investigate how the frequency and severity of agricultural droughts will be altered in Texas (under a changing climate). Second, future crop yields are projected using a statistical crop model. Third, the effects of agricultural drought on crop yields are quantitatively analyzed. The results are expected to contribute to future water resources planning, with a goal of mitigating the negative impacts of future droughts on agricultural production in Texas.

  9. Evaluation of microtiter-plate enzyme-linked immunosorbent assay for the analysis of triazine and chloroacetanilide herbicides in rainfall

    USGS Publications Warehouse

    Pomes, M.L.; Thurman, E.M.; Aga, D.S.; Goolsby, D.A.

    1998-01-01

    Triazine and chloroacetanilide concentrations in rainfall samples collected from a 23-state region of the United States were analyzed with microtiter-plate enzyme-linked immunosorbent assay (ELISA). Thirty-six percent of rainfall samples (2072 out of 5691) were confirmed using gas chromatography/mass spectrometry (GC/MS) to evaluate the operating performance of ELISA as a screening test. Comparison of ELISA to GC/MS results showed that the two ELISA methods accurately reported GC/MS results (m = 1), but with more variability evident with the triazine than with the chloroacetanilide ELISA. Bayes's rule, a standardized method to report the results of screening tests, indicated that the two ELISA methods yielded comparable predictive values (80%), but the triazine ELISA yielded a false- positive rate of 11.8% and the chloroacetanilide ELISA yielded a false- negative rate of 23.1%. The false-positive rate for the triazine ELISA may arise from cross reactivity with an unknown triazine or metabolite. The false-negative rate of the chloroacetanilide ELISA probably resulted from a combination of low sensitivity at the reporting limit of 0.15 ??g/L and a distribution characterized by 75% of the samples at or below the reporting limit of 0.15 ??g/L.Triazine and chloroacetanilide concentrations in rainfall samples collected from a 23-state region of the United States were analyzed with microtiter-plate enzyme-linked immunosorbent assay (ELISA). Thirty-six percent of rainfall samples (2072 out of 5691) were confirmed using gas chromatography/mass spectrometry (GC/MS) to evaluate the operating performance of ELISA as a screening test. Comparison of ELISA to GC/MS results showed that the two ELISA methods accurately reported GC/MS results (m = 1), but with more variability evident with the triazine than with the chloroacetanilide ELISA. Bayes's rule, a standardized method to report the results of screening tests, indicated that the two ELISA methods yielded comparable predictive values (80%), but the triazine ELISA yielded a false-positive rate of 11.8% and the chloroacetanilide ELISA yielded a false-negative rate of 23.1%. The false-positive rate for the triazine ELISA may arise from cross reactivity with an unknown triazine or metabolite. The false-negative rate of the chloroacetanilide ELISA probably resulted from a combination of low sensitivity at the reporting limit of 0.15 ??g/L and a distribution characterized by 75% of the samples at or below the reporting limit of 0.15 ??g/L.

  10. Nondestructive methods for the structural evaluation of wood floor systems in historic buildings : preliminary results : [abstract

    Treesearch

    Zhiyong Cai; Michael O. Hunt; Robert J. Ross; Lawrence A. Soltis

    1999-01-01

    To date, there is no standard method for evaluating the structural integrity of wood floor systems using nondestructive techniques. Current methods of examination and assessment are often subjective and therefore tend to yield imprecise or variable results. For this reason, estimates of allowable wood floor loads are often conservative. The assignment of conservatively...

  11. Hyperspectral imagery for mapping crop yield for precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Crop yield is perhaps the most important piece of information for crop management in precision agriculture. It integrates the effects of various spatial variables such as soil properties, topographic attributes, tillage, plant population, fertilization, irrigation, and pest infestations. A yield map...

  12. Biasogram: Visualization of Confounding Technical Bias in Gene Expression Data

    PubMed Central

    Krzystanek, Marcin; Szallasi, Zoltan; Eklund, Aron C.

    2013-01-01

    Gene expression profiles of clinical cohorts can be used to identify genes that are correlated with a clinical variable of interest such as patient outcome or response to a particular drug. However, expression measurements are susceptible to technical bias caused by variation in extraneous factors such as RNA quality and array hybridization conditions. If such technical bias is correlated with the clinical variable of interest, the likelihood of identifying false positive genes is increased. Here we describe a method to visualize an expression matrix as a projection of all genes onto a plane defined by a clinical variable and a technical nuisance variable. The resulting plot indicates the extent to which each gene is correlated with the clinical variable or the technical variable. We demonstrate this method by applying it to three clinical trial microarray data sets, one of which identified genes that may have been driven by a confounding technical variable. This approach can be used as a quality control step to identify data sets that are likely to yield false positive results. PMID:23613961

  13. Climate variability and nitrogen rate interactions affecting corn nitrogen use efficiency in Alabama

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) fertilization is an important practice to increase yield; however, plant–soil interactions to in-season changes in climatic conditions result on site-specific responses of corn to nitrogen rates. The objective of this study was to evaluate the effect of different climatic conditions and...

  14. Development of a Scale to Measure Attitudes toward Inclusive Education.

    ERIC Educational Resources Information Center

    Wilczenski, Felicia L.

    1995-01-01

    The Attitudes toward Inclusive Education Scale (ATIES) is a measure of positive and negative attitudes toward integrating children with disabilities into regular classes. Results with 445 teachers show that the ATIES defines a unidimensional attitudinal variable and yields interval measures of attitudes toward inclusive education. (SLD)

  15. Variability associated with screening for common scab and verticillium wilt in potato

    USDA-ARS?s Scientific Manuscript database

    Common Scab (CS) and Verticillium Wilt (VW) are caused by the soilborne bacteria Streptomyces scabies, and fungi, Verticillium dahliae and V. albo-atrum, respectively, in potato (Solanum tuberosum). Both diseases result in biological and/or marketable yield loss and are tested in fields with high di...

  16. Sensitivity of barley varieties to weather in Finland.

    PubMed

    Hakala, K; Jauhiainen, L; Himanen, S J; Rötter, R; Salo, T; Kahiluoto, H

    2012-04-01

    Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such 'weather response diversity' within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3-7 weeks after sowing, a temperature change 3-4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (⩾25°C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading.

  17. Logging effects on streamflow: water yields and summer flows at Caspar Creek in northwestern California

    Treesearch

    Elizabeth T. Keppeler; Robert R. Ziemer

    1990-01-01

    Streamflow data for a 21-year period were analyzed to determine the effects of selective tractor harvesting of second-growth Douglas fir and redwood forest on the volume, timing, and duration of low flows and annual water yield in northwestern California. The flow response to logging was highly variable. Some of this variability was correlated with antecedent...

  18. Bounds on internal state variables in viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1993-01-01

    A typical viscoplastic model will introduce up to three types of internal state variables in order to properly describe transient material behavior; they are as follows: the back stress, the yield stress, and the drag strength. Different models employ different combinations of these internal variables--their selection and description of evolution being largely dependent on application and material selection. Under steady-state conditions, the internal variables cease to evolve and therefore become related to the external variables (stress and temperature) through simple functional relationships. A physically motivated hypothesis is presented that links the kinetic equation of viscoplasticity with that of creep under steady-state conditions. From this hypothesis one determines how the internal variables relate to one another at steady state, but most importantly, one obtains bounds on the magnitudes of stress and back stress, and on the yield stress and drag strength.

  19. Predicted stand volume for Eucalyptus plantations by spatial analysis

    NASA Astrophysics Data System (ADS)

    Latifah, Siti; Teodoro, RV; Myrna, GC; Nathaniel, CB; Leonardo, M. F.

    2018-03-01

    The main objective of the present study was to assess nonlinear models generated by integrating the stand volume growth rate to estimate the growth and yield of Eucalyptus. The primary data was done for point of interest (POI) of permanent sample plots (PSPs) and inventory sample plots, in Aek Nauli sector, Simalungun regency,North Sumatera Province,Indonesia. from December 2008- March 2009. Today,the demand for forestry information has continued to grow over recent years. Because many forest managers and decision makers face complex decisions, reliable information has become the necessity. In the assessment of natural resources including plantation forests have been widely used geospatial technology.The yield of Eucalyptus plantations represented by merchantable volume as dependent variable while factors affecting yield namely stands variables and the geographic variables as independent variables. The majority of the areas in the study site has stand volume class 0 - 50 m3/ha with 16.59 ha or 65.85 % of the total study site.

  20. Remodeling characteristics and collagen distribution in synthetic mesh materials explanted from human subjects after abdominal wall reconstruction: an analysis of remodeling characteristics by patient risk factors and surgical site classifications

    PubMed Central

    Cavallo, Jaime A.; Roma, Andres A.; Jasielec, Mateusz S.; Ousley, Jenny; Creamer, Jennifer; Pichert, Matthew D.; Baalman, Sara; Frisella, Margaret M.; Matthews, Brent D.

    2014-01-01

    Background The purpose of this study was to evaluate the associations between patient characteristics or surgical site classifications and the histologic remodeling scores of synthetic meshes biopsied from their abdominal wall repair sites in the first attempt to generate a multivariable risk prediction model of non-constructive remodeling. Methods Biopsies of the synthetic meshes were obtained from the abdominal wall repair sites of 51 patients during a subsequent abdominal re-exploration. Biopsies were stained with hematoxylin and eosin, and evaluated according to a semi-quantitative scoring system for remodeling characteristics (cell infiltration, cell types, extracellular matrix deposition, inflammation, fibrous encapsulation, and neovascularization) and a mean composite score (CR). Biopsies were also stained with Sirius Red and Fast Green, and analyzed to determine the collagen I:III ratio. Based on univariate analyses between subject clinical characteristics or surgical site classification and the histologic remodeling scores, cohort variables were selected for multivariable regression models using a threshold p value of ≤0.200. Results The model selection process for the extracellular matrix score yielded two variables: subject age at time of mesh implantation, and mesh classification (c-statistic = 0.842). For CR score, the model selection process yielded two variables: subject age at time of mesh implantation and mesh classification (r2 = 0.464). The model selection process for the collagen III area yielded a model with two variables: subject body mass index at time of mesh explantation and pack-year history (r2 = 0.244). Conclusion Host characteristics and surgical site assessments may predict degree of remodeling for synthetic meshes used to reinforce abdominal wall repair sites. These preliminary results constitute the first steps in generating a risk prediction model that predicts the patients and clinical circumstances for which non-constructive remodeling of an abdominal wall repair site with synthetic mesh reinforcement is most likely to occur. PMID:24442681

  1. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    PubMed

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important role in modifying the cycles of water and sediment yields in Mediterranean mountain catchments. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Improved detection of congestive heart failure via probabilistic symbolic pattern recognition and heart rate variability metrics.

    PubMed

    Mahajan, Ruhi; Viangteeravat, Teeradache; Akbilgic, Oguz

    2017-12-01

    A timely diagnosis of congestive heart failure (CHF) is crucial to evade a life-threatening event. This paper presents a novel probabilistic symbol pattern recognition (PSPR) approach to detect CHF in subjects from their cardiac interbeat (R-R) intervals. PSPR discretizes each continuous R-R interval time series by mapping them onto an eight-symbol alphabet and then models the pattern transition behavior in the symbolic representation of the series. The PSPR-based analysis of the discretized series from 107 subjects (69 normal and 38 CHF subjects) yielded discernible features to distinguish normal subjects and subjects with CHF. In addition to PSPR features, we also extracted features using the time-domain heart rate variability measures such as average and standard deviation of R-R intervals. An ensemble of bagged decision trees was used to classify two groups resulting in a five-fold cross-validation accuracy, specificity, and sensitivity of 98.1%, 100%, and 94.7%, respectively. However, a 20% holdout validation yielded an accuracy, specificity, and sensitivity of 99.5%, 100%, and 98.57%, respectively. Results from this study suggest that features obtained with the combination of PSPR and long-term heart rate variability measures can be used in developing automated CHF diagnosis tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Variability of Precipitation and Evapotranspiration across an Andean Paramo

    NASA Astrophysics Data System (ADS)

    Jaimes, J. C.; Riveros-Iregui, D.; Avery, W. A.; Gaviria, S.; Peña-Quemba, C.; Herran, G.

    2012-12-01

    Paramos are alpine grasslands that occur mostly in the Andes Mountains of South America. Typically soils in the paramo have a volcanic origin, which leads to high permeability and high water yield and makes the paramo a reliable drinking water supply for many highland cities. Because hydrological measurements in these humid systems are rare, current understanding of the hydrologic behavior of paramos relies on modeling studies with little validation against ground observations. We present measurements of evapotranspiration (ET) and precipitation (P) across Chingaza Paramo, near Bogotá, Colombia. This paramo supplies water for ~80% of Bogotá's population (a total of 8 million people). Meteorological variables such us air temperature, relative humidity, wind speed, precipitation, and solar radiation were monitored using five weather stations located at various elevations from 3000m to 3600m. Our results show that ET varies from 500 to 700 mm y-1 as a function of elevation, whereas precipitation commonly exceeds ET, ranging between 1500 and 1800 mm y-1. These spatial differences between P and ET make water yield highly variable across this mountainous environment. Our results demonstrate that while paramos play an important role in the hydrologic cycle of tropical environments, understanding their hydrologic behavior requires characterization and monitoring of the pronounced spatial gradients of precipitation and evapotranspiration.

  4. Spotting effect in microarray experiments

    PubMed Central

    Mary-Huard, Tristan; Daudin, Jean-Jacques; Robin, Stéphane; Bitton, Frédérique; Cabannes, Eric; Hilson, Pierre

    2004-01-01

    Background Microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio) and intensity across the array. Results Using the variogram, a geostatistical tool, we characterized the observed variability, called here the spotting effect because it most probably arises during steps in the array printing procedure. Conclusions The spotting effect is not appropriately corrected by current normalization methods, even by those addressing spatial variability. Importantly, the spotting effect may alter differential and clustering analysis. PMID:15151695

  5. Reequilibration of fluid inclusions in low-temperature calcium-carbonate cement

    NASA Astrophysics Data System (ADS)

    Goldstein, Robert H.

    1986-09-01

    Calcium-carbonate cements precipitated in low-temperature, near-surface, vadose environments contain fluid inclusions of variable vapor-to-liquid ratios that yield variable homogenization temperatures. Cements precipitated in low-temperature, phreatic environments contain one-phase, all-liquid fluid inclusions. Neomorphism of unstable calcium-carbonate phases may cause reequilibration of fluid inclusions. Stable calcium-carbonate cements of low-temperature origin, which have been deeply buried, contain fluid inclusions of variable homogenization temperature and variable salt composition. Most inclusion fluids are not representative of the fluids present during cement growth and are more indicative of burial pore fluids. Therefore, low-temperature fluid inclusions probably reequilibrate with burial fluids during progressive burial. Reequilibration is likely caused by high internal pressures in inclusions which result in hydrofracturing. The resulting fluid-inclusion population could contain a nearly complete record of burial fluids in which a particular rock has been bathed. *Present address: Department of Geology, University of Kansas, Lawrence, Kansas 66045

  6. Predawn respiration rates during flowering are highly predictive of yield response in Gossypium hirsutum when yield variability is water-induced.

    PubMed

    Snider, John L; Chastain, Daryl R; Meeks, Calvin D; Collins, Guy D; Sorensen, Ronald B; Byrd, Seth A; Perry, Calvin D

    2015-07-01

    Respiratory carbon evolution by leaves under abiotic stress is implicated as a major limitation to crop productivity; however, respiration rates of fully expanded leaves are positively associated with plant growth rates. Given the substantial sensitivity of plant growth to drought, it was hypothesized that predawn respiration rates (RPD) would be (1) more sensitive to drought than photosynthetic processes and (2) highly predictive of water-induced yield variability in Gossypium hirsutum. Two studies (at Tifton and Camilla Georgia) addressed these hypotheses. At Tifton, drought was imposed beginning at the onset of flowering (first flower) and continuing for three weeks (peak bloom) followed by a recovery period, and predawn water potential (ΨPD), RPD, net photosynthesis (AN) and maximum quantum yield of photosystem II (Fv/Fm) were measured throughout the study period. At Camilla, plants were exposed to five different irrigation regimes throughout the growing season, and average ΨPD and RPD were determined between first flower and peak bloom for all treatments. For both sites, fiber yield was assessed at crop maturity. The relationships between ΨPD, RPD and yield were assessed via non-linear regression. It was concluded for field-grown G. hirsutum that (1) RPD is exceptionally sensitive to progressive drought (more so than AN or Fv/Fm) and (2) average RPD from first flower to peak bloom is highly predictive of water-induced yield variability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Changes in rainfed and irrigated crop yield response to climate in the western US

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T. J.

    2018-06-01

    As the global population increases and the climate changes, ensuring a secure food supply is increasingly important. One strategy is irrigation, which allows for crops to be grown outside their optimal climate growing regions and which buffers against climate variability. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources as it can lead to groundwater depletion and diminished surface water supplies. This study quantifies how crop yields are affected by climate variability and extremes and the impact of irrigation on crop yield increases under various growing-season climate conditions. To do this, we use historical climate data and county-level rainfed and irrigated crop yields for maize, soybean, winter and spring wheat over the US to analyze the relationship between climate, crop yields, and irrigation. We find that there are optimal climates, specific to each crop, where irrigation provides a benefit and other conditions where irrigation proves to have marginal, if any, benefits. Furthermore, the relationship between crop yields and climate has changed over the last decades, with a changing sensitivity in the relationship of soybean and winter wheat yields to certain climate variables, like crop reference evapotranspiration. These two conclusions have important implications for agricultural and water resource system planning, as it implies there are more optimal climate conditions where irrigation is particularly productive and regions where irrigation should be reconsidered as there is not a significant agricultural benefit and the water could be used more productively.

  8. Variability of arginine content and yield components in Valencia peanut germplasm.

    PubMed

    Aninbon, Chorkaew; Jogloy, Sanun; Vorasoot, Nimitr; Nuchadomrong, Suporn; Holbrook, C Corley; Kvien, Craig; Puppala, Naveen; Patanothai, Aran

    2017-06-01

    Peanut seeds are rich in arginine, an amino acid that has several positive effects on human health. Establishing the genetic variability of arginine content in peanut will be useful for breeding programs that have high arginine as one of their goals. The objective of this study was to evaluate the variation of arginine content, pods/plant, seeds/pod, seed weight, and yield in Valencia peanut germplasm. One hundred and thirty peanut genotypes were grown under field condition for two years. A randomized complete block design with three replications was used for this study. Arginine content was analyzed in peanut seeds at harvest using spectrophotometry. Yield and yield components were recorded for each genotype. Significant differences in arginine content and yield components were found in the tested Valencia peanut germplasm. Arginine content ranged from 8.68-23.35 μg/g seed. Kremena was the best overall genotype of high arginine content, number of pods/plant, 100 seed weight and pod yield.

  9. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment.

    PubMed

    Petridis, Antonios; van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan; Graham, Julie; Hancock, Robert D

    2018-05-25

    Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments.

  10. Application of artificial intelligent tools to modeling of glucosamine preparation from exoskeleton of shrimp.

    PubMed

    Valizadeh, Hadi; Pourmahmood, Mohammad; Mojarrad, Javid Shahbazi; Nemati, Mahboob; Zakeri-Milani, Parvin

    2009-04-01

    The objective of this study was to forecast and optimize the glucosamine production yield from chitin (obtained from Persian Gulf shrimp) by means of genetic algorithm (GA), particle swarm optimization (PSO), and artificial neural networks (ANNs) as tools of artificial intelligence methods. Three factors (acid concentration, acid solution to chitin ratio, and reaction time) were used as the input parameters of the models investigated. According to the obtained results, the production yield of glucosamine hydrochloride depends linearly on acid concentration, acid solution to solid ratio, and time and also the cross-product of acid concentration and time and the cross-product of solids to acid solution ratio and time. The production yield significantly increased with an increase of acid concentration, acid solution ratio, and reaction time. The production yield is inversely related to the cross-product of acid concentration and time. It means that at high acid concentrations, the longer reaction times give lower production yields. The results revealed that the average percent error (PE) for prediction of production yield by GA, PSO, and ANN are 6.84, 7.11, and 5.49%, respectively. Considering the low PE, it might be concluded that these models have a good predictive power in the studied range of variables and they have the ability of generalization to unknown cases.

  11. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment

    PubMed Central

    van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan

    2018-01-01

    Abstract Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments. PMID:29590429

  12. Effects of bovine necrotic vulvovaginitis on productivity in a dairy herd in Israel.

    PubMed

    Blum, S; Mazuz, M; Brenner, J; Friedgut, O; Koren, O; Goshen, T; Elad, D

    2008-05-01

    Bovine necrotic vulvovaginitis (BNVV) is characterized by the development of a necrotic vulvovaginal lesion, almost exclusively in post-parturient first-lactation cows, associated with Porphyromonas levii. The scope of this survey was to evaluate the impact of BNVV on herd productivity as a means to rationally evaluate the resources that should be allocated in dealing with the syndrome. During an outbreak of BNVV in a dairy herd, following the introduction of a large number of cows from another farm, the impact of the animals' origin (local or transferred) and BNVV (positive or negative) upon involuntary culling rate, milk yield and days between pregnancies were assessed. The results indicated that the number of days between pregnancies was significantly higher in first-lactation cows with BNVV but was not influenced by the other independent variables. None of the other variables included in this survey had any effect on the involuntary culling rate and milk yield.

  13. Prototypicality in Sentence Production

    PubMed Central

    Onishi, Kristine H.; Murphy, Gregory L.; Bock, Kathryn

    2008-01-01

    Three cued-recall experiments examined the effect of category typicality on the ordering of words in sentence production. Past research has found that typical items tend to be mentioned before atypical items in a phrase—a pattern usually associated with lexical variables (like word frequency), and yet typicality is a conceptual variable. Experiment 1 revealed that an appropriate conceptual framework was necessary to yield the typicality effect. Experiment 2 tested ad-hoc categories that do not have prior representations in long-term memory and yielded no typicality effect. Experiment 3 used carefully matched sentences in which two category members appeared in the same or in different phrases. Typicality affected word order only when the two words appeared in the same phrase. These results are consistent with an account in which typicality has its origin in conceptual structure, which leads to differences in lexical accessibility in appropriate contexts. PMID:17631877

  14. Subcritical water liquefaction of oil palm fruit press fiber in the presence of sodium hydroxide: an optimisation study using response surface methodology.

    PubMed

    Mazaheri, Hossein; Lee, Keat Teong; Bhatia, Subhash; Mohamed, Abdul Rahman

    2010-12-01

    Thermal decomposition of oil palm fruit press fiber (FPF) into a liquid product (LP) was achieved using subcritical water treatment in the presence of sodium hydroxide in a high pressure batch reactor. This study uses experimental design and process optimisation tools to maximise the LP yield using response surface methodology (RSM) with central composite rotatable design (CCRD). The independent variables were temperature, residence time, particle size, specimen loading, and additive loading. The mathematical model that was developed fit the experimental results well for all of the response variables that were studied. The optimal conditions were found to be a temperature of 551 K, a residence time of 40 min, a particle size of 710-1000 microm, a specimen loading of 5 g, and a additive loading of 9 wt.% to achieve a LP yield of 76.16%. 2010 Elsevier Ltd. All rights reserved.

  15. Changes in yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Childers, Katelin

    2015-04-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the political discussion about mitigation targets as well as for the inclusion of climate change impacts in Integrated Assessment Models (IAMs) that generally only provide global mean temperature change as an indicator of climate change. While there is a well-established framework for the scalability of regional temperature and precipitation changes with global mean temperature change we provide an assessment of the extent to which impacts such as crop yield changes can also be described in terms of global mean temperature changes without accounting for the specific underlying emissions scenario. Based on multi-crop-model simulations of the four major cereal crops (maize, rice, soy, and wheat) on a 0.5 x 0.5 degree global grid generated within ISI-MIP, we show the average spatial patterns of projected crop yield changes at one half degree warming steps. We find that emissions scenario dependence is a minor component of the overall variance of projected yield changes at different levels of global warming. Furthermore, scenario dependence can be reduced by accounting for the direct effects of CO2 fertilization in each global climate model (GCM)/impact model combination through an inclusion of the global atmospheric CO2 concentration as a second predictor. The choice of GCM output used to force the crop model simulations accounts for a slightly larger portion of the total yield variance, but the greatest contributor to variance in both global and regional crop yields and at all levels of warming, is the inter-crop-model spread. The unique multi impact model ensemble available with ISI-MIP data also indicates that the overall variability of crop yields is projected to increase in conjunction with increasing global mean temperature. This result is consistent throughout the ensemble of impact models and across many world regions. Such a hike in yield volatility could have significant policy implications by affecting food prices and supplies.

  16. Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change

    NASA Astrophysics Data System (ADS)

    Folberth, Christian; Yang, Hong; Gaiser, Thomas; Liu, Junguo; Wang, Xiuying; Williams, Jimmy; Schulin, Rainer

    2014-04-01

    Much of Africa is among the world’s regions with lowest yields in staple food crops, and climate change is expected to make it more difficult to catch up in crop production in particular in the long run. Various agronomic measures have been proposed for lifting agricultural production in Africa and to adapt it to climate change. Here, we present a projection of potential climate change impacts on maize yields under different intensification options in Sub-Saharan Africa (SSA) using an agronomic model, GIS-based EPIC (GEPIC). Fallow and nutrient management options taken into account are (a) conventional intensification with high mineral N supply and a bare fallow, (b) moderate mineral N supply and cowpea rotation, and (c) moderate mineral N supply and rotation with a fast growing N fixing tree Sesbania sesban. The simulations suggest that until the 2040s rotation with Sesbania will lead to an increase in yields due to increasing N supply besides improving water infiltration and soils’ water holding capacity. Intensive cultivation with a bare fallow or an herbaceous crop like cowpea in the rotation is predicted to result in lower yields and increased soil erosion during the same time span. However, yields are projected to decrease in all management scenarios towards the end of the century, should temperature increase beyond critical thresholds. The results suggest that the effect of eco-intensification as a sole means of adapting agriculture to climate change is limited in Sub-Saharan Africa. Highly adverse temperatures would rather have to be faced by improved heat tolerant cultivars, while strongly adverse decreases in precipitation would have to be faced by expanding irrigation where feasible. While the evaluation of changes in agro-environmental variables like soil organic carbon, erosion, and soil humidity hints that these are major factors influencing climate change resilience of the field crop, no direct relationship between these factors, crop yields, and changes in climate variables could be identified. This will need further detailed studies at the field and regional scale.

  17. Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea

    2016-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Monitoring Crop Yield in USA Using a Satellite-Based Climate-Variability Impact Index

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Anderson, Bruce; Tan, Bin; Barlow, Mathew; Myneni, Ranga

    2011-01-01

    A quantitative index is applied to monitor crop growth and predict agricultural yield in continental USA. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to overall anomalies in growth during a given year, is derived from 1-km MODIS Leaf Area Index. The growing-season integrated CVII can provide an estimate of the fractional change in overall growth during a given year. In turn these estimates can provide fine-scale and aggregated information on yield for various crops. Trained from historical records of crop production, a statistical model is used to produce crop yield during the growing season based upon the strong positive relationship between crop yield and the CVII. By examining the model prediction as a function of time, it is possible to determine when the in-season predictive capability plateaus and which months provide the greatest predictive capacity.

  19. Development of an online, publicly accessible naive Bayesian decision support tool for mammographic mass lesions based on the American College of Radiology (ACR) BI-RADS lexicon.

    PubMed

    Benndorf, Matthias; Kotter, Elmar; Langer, Mathias; Herda, Christoph; Wu, Yirong; Burnside, Elizabeth S

    2015-06-01

    To develop and validate a decision support tool for mammographic mass lesions based on a standardized descriptor terminology (BI-RADS lexicon) to reduce variability of practice. We used separate training data (1,276 lesions, 138 malignant) and validation data (1,177 lesions, 175 malignant). We created naïve Bayes (NB) classifiers from the training data with tenfold cross-validation. Our "inclusive model" comprised BI-RADS categories, BI-RADS descriptors, and age as predictive variables; our "descriptor model" comprised BI-RADS descriptors and age. The resulting NB classifiers were applied to the validation data. We evaluated and compared classifier performance with ROC-analysis. In the training data, the inclusive model yields an AUC of 0.959; the descriptor model yields an AUC of 0.910 (P < 0.001). The inclusive model is superior to the clinical performance (BI-RADS categories alone, P < 0.001); the descriptor model performs similarly. When applied to the validation data, the inclusive model yields an AUC of 0.935; the descriptor model yields an AUC of 0.876 (P < 0.001). Again, the inclusive model is superior to the clinical performance (P < 0.001); the descriptor model performs similarly. We consider our classifier a step towards a more uniform interpretation of combinations of BI-RADS descriptors. We provide our classifier at www.ebm-radiology.com/nbmm/index.html . • We provide a decision support tool for mammographic masses at www.ebm-radiology.com/nbmm/index.html . • Our tool may reduce variability of practice in BI-RADS category assignment. • A formal analysis of BI-RADS descriptors may enhance radiologists' diagnostic performance.

  20. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    Crop productivity is associated with the food security and hence, several models have been developed to estimate crop yield by combining remote sensing data with carbon cycle processes. In present study, we attempted to estimate crop GPP and NPP using algorithm based on the LUE model and a simplified respiration model. The state of Iowa and Illinois was chosen as the study site for estimating the crop yield for a period covering the 5 years (2006-2010), as it is the main Corn-Belt area in US. Present study focuses on developing crop-specific parameters for corn and soybean to estimate crop productivity and yield mapping using satellite remote sensing data. We utilized a 10 km spatial resolution daily meteorological data from WRF to provide cloudy-day meteorological variables but in clear-say days, MODIS-based meteorological data were utilized to estimate daily GPP, NPP, and biomass. County-level statistics on yield, area harvested, and productions were used to test model predicted crop yield. The estimated input meteorological variables from MODIS and WRF showed with good agreements with the ground observations from 6 Ameriflux tower sites in 2006. For examples, correlation coefficients ranged from 0.93 to 0.98 for Tmin and Tavg ; from 0.68 to 0.85 for daytime mean VPD; from 0.85 to 0.96 for daily shortwave radiation, respectively. We developed county-specific crop conversion coefficient, i.e. ratio of yield to biomass on 260 DOY and then, validated the estimated county-level crop yield with the statistical yield data. The estimated corn and soybean yields at the county level ranged from 671 gm-2 y-1 to 1393 gm-2 y-1 and from 213 gm-2 y-1 to 421 gm-2 y-1, respectively. The county-specific yield estimation mostly showed errors less than 10%. Furthermore, we estimated crop yields at the state level which were validated against the statistics data and showed errors less than 1%. Further analysis for crop conversion coefficient was conducted for 200 DOY and 280 DOY. For the case of 280 DOY, Crop yield estimation showed better accuracy for soybean at county level. Though the case of 200 DOY resulted in less accuracy (i.e. 20% mean bias), it provides a useful tool for early forecasting of crop yield. We improved the spatial accuracy of estimated crop yield at county level by developing county-specific crop conversion coefficient. Our results indicate that the aboveground crop biomass can be estimated successfully with the simple LUE and respiration models combined with MODIS data and then, county-specific conversion coefficient can be different with each other across different counties. Hence, applying region-specific conversion coefficient is necessary to estimate crop yield with better accuracy.

  1. Energy yields for hydrogen cyanide and formaldehyde syntheses - The HCN and amino acid concentrations in the primitive ocean

    NASA Technical Reports Server (NTRS)

    Stribling, Roscoe; Miller, Stanley L.

    1987-01-01

    Simulated prebiotic atmospheres containing either CH4, CO, or CO2, in addition to N2, H2O, and variable amounts of H2, were subjected to the spark from a high-frequency Tesla coil, and the energy yields for the syntheses of HCN and H2CO were estimated from periodic (every two days) measurements of the compound concentrations. The mixtures with CH4 were found to yield the highest amounts of HCN, whereas the CO mixtures produced the highest yields of H2CO. These results model atmospheric corona discharges. From the yearly energy yields calculated and the corona discharge available on the earth, the yearly production rate of HCN was estimated; using data on the HCN production rates and the experimental rates of decomposition of amino acids through the submarine vents, the steady state amino acid production rate in the primitive ocean was calculated to be about 10 nmoles/sq cm per year.

  2. Effects of input uncertainty on cross-scale crop modeling

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input data from very little to very detailed information, and compare the models' abilities to represent the spatial variability and temporal variability in crop yields. We display the uncertainty in crop yield simulations from different input data and crop models in Taylor diagrams which are a graphical summary of the similarity between simulations and observations (Taylor, 2001). The observed spatial variability can be represented well from both models (R=0.6-0.8) but APSIM predicts higher spatial variability than LPJmL due to its sensitivity to soil parameters. Simulations with the same crop model, climate and sowing dates have similar statistics and therefore similar skill to reproduce the observed spatial variability. Soil data is less important for the skill of a crop model to reproduce the observed spatial variability. However, the uncertainty in simulated spatial variability from the two crop models is larger than from input data settings and APSIM is more sensitive to input data then LPJmL. Even with a detailed, point-scale crop model and detailed input data it is difficult to capture the complexity and diversity in maize cropping systems.

  3. Long-term variability in sugarcane bagasse feedstock compositional methods: Sources and magnitude of analytical variability

    DOE PAGES

    Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie; ...

    2016-10-18

    In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each),more » were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good analytical procedures needed to generate this data. As a result, when combined with a robust QA/QC oversight protocol, these empirical methods can be relied upon to generate high-quality data over a long period of time.« less

  4. Long-term variability in sugarcane bagasse feedstock compositional methods: Sources and magnitude of analytical variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie

    In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each),more » were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good analytical procedures needed to generate this data. As a result, when combined with a robust QA/QC oversight protocol, these empirical methods can be relied upon to generate high-quality data over a long period of time.« less

  5. Precalving and early lactation factors that predict milk casein and fertility in the transition dairy cow.

    PubMed

    Rodney, Rachael M; Hall, Jenianne K; Westwood, Charlotte T; Celi, Pietro; Lean, Ian J

    2016-09-01

    Multiparous Holstein cows (n=82) of either high or low genetic merit (GM) (for milk fat + protein yield) were allocated to 1 of 2 diets in a 2×2 factorial design. Diets differed in the ratio of rumen-undegradable protein (RUP) to rumen-degradable protein (37% RUP vs. 15% RUP) and were fed from 21 d precalving to 150 days in milk. This study evaluated the effects of these diets and GM on concentrations of milk casein (CN) variants and aimed to identify precalving and early lactation variables that predict milk CN and protein yield and composition and fertility of dairy cows. It explored the hypothesis that low milk protein content is associated with lower fertility and extended this hypothesis to also evaluate the association of CN contents with fertility. Yields (kg/d) for CN variants were 0.49 and 0.45 of α-CN, 0.38 and 0.34 of β-CN, 0.07 and 0.06 for κ-CN, and 0.10 and 0.09 of γ-CN for high- and low-RUP diets, respectively. Increased RUP increased milk, CN, and milk protein yields. Increased GM increased milk protein and γ-CN yields and tended to increase milk CN yield. The effects of indicator variables on CN variant yields and concentrations were largely consistent, with higher body weight and α-amino nitrogen resulting in higher yields, but lower concentrations. An increase in cholesterol was associated with decreased CN variant concentrations, and disease lowered CN variant yield. A diet high in RUP increased proportion of first services that resulted in pregnancy from 41 to 58%. Increased precalving metabolizable protein (MP) balance decreased the proportion of first services that resulted in pregnancy when evaluated in a model containing CN percentage, milk protein yield, diet, and GM. This finding suggests that the positive effects of increasing dietary RUP on fertility may be curvilinear because cows with a very positive MP balance before calving were less fertile than those with a lower, but positive, MP balance. Prepartum MP balance was important to production and reproductive outcomes, but surprisingly, metabolizable energy balance was not. The hazard of pregnancy in the first 150 d of lactation was 28% lower in cows producing milk with the lowest quartile of protein percentage compared with cows with milk in the upper 3 quartiles. Milk CN percentage was positively associated with improved pregnancy at first service. This study demonstrates the importance of protein metabolism to reproductive performance of the dairy cow. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Optimization of Enzymatic Saccharification of Alkali Pretreated Parthenium sp. Using Response Surface Methodology

    PubMed Central

    Pandiyan, K.; Tiwari, Rameshwar; Singh, Surender; Nain, Pawan K. S.; Rana, Sarika; Arora, Anju; Singh, Shashi B.; Nain, Lata

    2014-01-01

    Parthenium sp. is a noxious weed which threatens the environment and biodiversity due to its rapid invasion. This lignocellulosic weed was investigated for its potential in biofuel production by subjecting it to mild alkali pretreatment followed by enzymatic saccharification which resulted in significant amount of fermentable sugar yield (76.6%). Optimization of enzymatic hydrolysis variables such as temperature, pH, enzyme, and substrate loading was carried out using central composite design (CCD) in response to surface methodology (RSM) to achieve the maximum saccharification yield. Data obtained from RSM was validated using ANOVA. After the optimization process, a model was proposed with predicted value of 80.08% saccharification yield under optimum conditions which was confirmed by the experimental value of 85.80%. This illustrated a good agreement between predicted and experimental response (saccharification yield). The saccharification yield was enhanced by enzyme loading and reduced by temperature and substrate loading. This study reveals that under optimized condition, sugar yield was significantly increased which was higher than earlier reports and promises the use of Parthenium sp. biomass as a feedstock for bioethanol production. PMID:24900917

  7. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps

    NASA Astrophysics Data System (ADS)

    Bryan, B. A.; King, D.; Zhao, G.

    2014-04-01

    In the future, agriculture will need to produce more, from less land, more sustainably. But currently, in many places, actual crop yields are below those attainable. We quantified the ability for agricultural management to increase wheat yields across 179 Mha of potentially arable land in Australia. Using the Agricultural Production Systems Simulator (APSIM), we simulated the impact on wheat yield of 225 fertilization and residue management scenarios at a high spatial, temporal, and agronomic resolution from 1900 to 2010. The influence of management and environmental variables on wheat yield was then assessed using Spearman’s non-parametric correlation test with bootstrapping. While residue management showed little correlation, fertilization strongly increased wheat yield up to around 100 kg N ha-1 yr-1. However, this effect was highly dependent on the key environment variables of rainfall, temperature, and soil water holding capacity. The influence of fertilization on yield was stronger in cooler, wetter climates, and in soils with greater water holding capacity. We conclude that the effectiveness of management intensification to increase wheat yield is highly dependent upon local climate and soil conditions. We provide context-specific information on the yield benefits of fertilization to support adaptive agronomic decision-making and contribute to the closure of yield gaps. We also suggest that future assessments consider the economic and environmental sustainability of management intensification for closing yield gaps.

  8. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali

    Heat and drought stresses are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentration. Here we present a study that quantified the current and future yield responses of US rainfed maize and soybean to climate extremes, and for the first time characterized spatial shifts in the relative importance of temperature, heat and drought stress. Crop yields are simulated using the Agricultural Production Systems sIMulator (APSIM), driven by the high-resolution (12 km) Weather Research and Forecasting (WRF) Model downscaled futuremore » climate scenarios at two time slices (1995-2005 and 2085-2094). Our results show that climatic yield gaps and interannual variability are greater in the core production area than in the remaining US by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of change is highly dependent on the current climate sensitivity and vulnerability. Elevated CO2 partially offsets the climatic yield gaps and reduces interannual yield variability, and effect is more prominent in soybean than in maize. We demonstrate that drought will continue to be the largest threat to US rainfed maize and soybean production, although its dominant role gradually gives way to other impacts of heat extremes. We also reveal that shifts in the geographic distributions of dominant stressors are characterized by increases in the concurrent stress, especially for the US Midwest. These findings imply the importance of considering drought and extreme heat simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management.« less

  9. A regional modeling framework of phosphorus sources and transport in streams of the southeastern United States

    USGS Publications Warehouse

    Garcia, Ana Maria.; Hoos, Anne B.; Terziotti, Silvia

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p < 0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables – soil organic matter and soil pH – are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity.

  10. Branching, flowering and fruiting of Jatropha curcas treated with ethephon or benzyladenine and gibberellins.

    PubMed

    Costa, Anne P; Vendrame, Wagner; Nietsche, Sílvia; Crane, Jonathan; Moore, Kimberly; Schaffer, Bruce

    2016-05-31

    Jatropha curcas L. has been identified for biofuel production but it presents limited commercial yields due to limited branching and a lack of yield uniformity. The objective of this study was to evaluate the effects of single application of ethephon or a combination of 6-benzyladenine (BA) with gibberellic acid isomers A4 and A7 (GA4+7) on branch induction, flowering and fruit production in jatropha plants with and without leaves. Plants with and without leaves showed differences for growth and reproductive variables. For all variables except inflorescence set, there were no significant statistical interactions between the presence of leaves and plant growth regulators concentration. The total number of flowers per inflorescence was reduced as ethephon concentration was increased. As BA + GA4 +7 concentration increased, seed dry weight increased. Thus, ethephon and BA + GA4 +7 applications appeared to affect flowering and seed production to a greater extent than branching. The inability to discern significant treatment effects for most variables might have been due to the large variability within plant populations studied and thus resulting in an insufficient sample size. Therefore, data collected from this study were used for statistical estimations of sample sizes to provide a reference for future studies.

  11. Advanced reliability methods for structural evaluation

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.; Wu, Y.-T.

    1985-01-01

    Fast probability integration (FPI) methods, which can yield approximate solutions to such general structural reliability problems as the computation of the probabilities of complicated functions of random variables, are known to require one-tenth the computer time of Monte Carlo methods for a probability level of 0.001; lower probabilities yield even more dramatic differences. A strategy is presented in which a computer routine is run k times with selected perturbed values of the variables to obtain k solutions for a response variable Y. An approximating polynomial is fit to the k 'data' sets, and FPI methods are employed for this explicit form.

  12. Climate risks on potato yield in Europe

    NASA Astrophysics Data System (ADS)

    Sun, Xun; Lall, Upmanu

    2016-04-01

    The yield of potatoes is affected by water and temperature during the growing season. We study the impact of a suite of climate variables on potato yield at country level. More than ten climate variables related to the growth of potato are considered, including the seasonal rainfall and temperature, but also extreme conditions at different averaging periods from daily to monthly. A Bayesian hierarchical model is developed to jointly consider the risk of heat stress, cold stress, wet and drought. Future climate risks are investigated through the projection of future climate data. This study contributes to assess the risks of present and future climate risks on potatoes yield, especially the risks of extreme events, which could be used to guide better sourcing strategy and ensure food security in the future.

  13. Crop insurance evaluation in response to extreme events

    NASA Astrophysics Data System (ADS)

    Moriondo, Marco; Ferrise, Roberto; Bindi, Marco

    2013-04-01

    Crop yield insurance has been indicated as a tool to manage the uncertainties of crop yields (Sherrick et al., 2004) but the changes in crop yield variability as expected in the near future should be carefully considered for a better quantitative assessment of farmer's revenue risk and insurance values in a climatic change regime (Moriondo et al., 2011). Under this point of view, mechanistic crop growth models coupled to the output of General/Regional Circulation Models (GCMs, RCMs) offer a valuable tool to evaluate crop responses to climatic change and this approach has been extensively used to describe crop yield distribution in response to climatic change considering changes in both mean climate and variability. In this work, we studied the effect of a warmer climate on crop yield distribution of durum wheat (Triticum turgidum L. subsp durum) in order to assess the economic significance of climatic change in a risk decision context. Specifically, the outputs of 6 RCMs (Tmin, Tmax, Rainfall, Global Radiation) (van der Linden and Mitchell 2009) have been statistically downscaled by a stochastic weather generator over eight sites across the Mediterranean basin and used to feed the crop growth model Sirius Quality. Three time slices were considered i) the present period PP (average of the period 1975-1990, [CO2]=350 ppm), 2020 (average of the period 2010-2030, SRES scenario A1b, [CO2]=415 ppm) and 2040 (average of the period 2030-2050, SRES scenario A1b, [CO2]=480 ppm). The effect of extreme climate events (i.e. heat stress at anthesis stage) was also considered. The outputs of these simulations were used to estimate the expected payout per hectare from insurance triggered when yields fall below a specific threshold defined as "the insured yield". For each site, the threshold was calculated as a fraction (70%) of the median of yield distribution under PP that represents the percentage of median yield above which indemnity payments are triggered. The results indicated that when the effect of extreme events was not considered, climate change had a low or no impact on crop yield distribution in 2020 and 2040. This resulted into an expected payout close to what observed in the present period. Conversely, the simulation of the effect of extreme events highly affected the PDFs by reducing the expected yield. This highlights that insured yield in future projections may be overestimated when not considering the impact of extremes, leading to distortions in the risk management of crop insurance companies. References Moriondo M, Giannakopoulos C, Bindi M (2011) Climate ch'ange impact assessment: the role of climate extremes in crop yield simulation. Clim Change 104:679-701 Sherrick BJ, Zanini FC, Schnitkey GD, Irwin SH (2004) Crop Insurance Valuation under Alternative Yield Distributions. American Journal of Agricultural Economics, 86:406-419. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK. 160 pp

  14. On locally and nonlocally related potential systems

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.; Bluman, George W.

    2010-07-01

    For any partial differential equation (PDE) system, a local conservation law yields potential equations in terms of some potential variable, which normally is a nonlocal variable. The current paper examines situations when such a potential variable is a local variable, i.e., is a function of the independent and dependent variables of a given PDE system, and their derivatives. In the case of two independent variables, a simple necessary and sufficient condition is presented for the locality of such a potential variable, and this is illustrated by several examples. As a particular example, two-dimensional reductions of equilibrium equations for fluid and plasma dynamics are considered. It is shown that such reductions with respect to helical, axial, and translational symmetries have conservation laws which yield local potential variables. This leads to showing that the well-known Johnson-Frieman-Kruskal-Oberman (JFKO) and Bragg-Hawthorne (Grad-Shafranov) equations are locally related to the corresponding helically and axially symmetric PDE systems of fluid/plasma dynamics. For the axially symmetric case, local symmetry classifications and arising invariant solutions are compared for the original PDE system and the Bragg-Hawthorne (potential) equation. The potential equation is shown to have additional symmetries, denoted as restricted symmetries. Restricted symmetries leave invariant a family of solutions of a given PDE system but not the whole solution manifold, and hence are not symmetries of the given PDE system. Corresponding reductions are shown to yield solutions, which are not obtained as invariant solutions from local symmetry reduction.

  15. Variable sensitivity of US maize yield to high temperatures across developmental stages

    NASA Astrophysics Data System (ADS)

    Butler, E. E.; Huybers, P. J.

    2013-12-01

    The sensitivity of maize to high temperatures has been widely demonstrated. Furthermore, field work has indicated that reproductive development stages are particularly sensitive to stress, but this relationship has not been quantified across a wide geographic region. Here, the relationship between maize yield and temperature variations is examined as a function of developmental stage. US state-level data from the National Agriculture Statistics Service provide dates for six growing stages: planting, silking, doughing, dented, mature, and harvested. Temperatures that correspond to each developmental stage are then inferred from a network of weather station observations interpolated to the county level, and a multiple linear regression technique is employed to estimate the sensitivity of county yield outcomes to variations in growing-degree days and an analogous measure of high temperatures referred to as killing-degree days. Uncertainties in the transition times between county-level growth stages are accounted for. Results indicate that the silking and dented stages are generally the most sensitive to killing degree days, with silking the most sensitive stage in the US South and dented the most sensitive in the US North. These variable patterns of sensitivity aid in interpreting which weather events are of greatest significance to maize yields and provide some insight into how shifts in planting time or changes in developmental timing would influence the risks associated with exposure to high temperatures.

  16. Simplified Method to Isolate Highly Pure Canine Pancreatic Islets

    PubMed Central

    Woolcott, Orison O.; Bergman, Richard N.; Richey, Joyce M.; Kirkman, Erlinda L.; Harrison, L. Nicole; Ionut, Viorica; Lottati, Maya; Zheng, Dan; Hsu, Isabel R.; Stefanovski, Darko; Kabir, Morvarid; Kim, Stella P.; Catalano, Karyn J.; Chiu, Jenny D.; Chow, Robert H.

    2015-01-01

    Objectives The canine model has been used extensively to improve the human pancreatic islet isolation technique. At the functional level, dog islets show high similarity to human islets and thus can be a helpful tool for islet research. We describe and compare 2 manual isolation methods, M1 (initial) and M2 (modified), and analyze the variables associated with the outcomes, including islet yield, purity, and glucose-stimulated insulin secretion (GSIS). Methods Male mongrel dogs were used in the study. M2 (n = 7) included higher collagenase concentration, shorter digestion time, faster shaking speed, colder purification temperature, and higher differential density gradient than M1 (n = 7). Results Islet yield was similar between methods (3111.0 ± 309.1 and 3155.8 ± 644.5 islets/g, M1 and M2, respectively; P = 0.951). Pancreas weight and purity together were directly associated with the yield (adjusted R2 = 0.61; P = 0.002). Purity was considerably improved with M2 (96.7% ± 1.2% vs 75.0% ± 6.3%; P = 0.006). M2 improved GSIS (P = 0.021). Independently, digestion time was inversely associated with GSIS. Conclusions We describe an isolation method (M2) to obtain a highly pure yield of dog islets with adequate β-cell glucose responsiveness. The isolation variables associated with the outcomes in our canine model confirm previous reports in other species, including humans. PMID:21792087

  17. Photoproduction of hydrated electrons from natural organic solutes in aquatic environments

    USGS Publications Warehouse

    Zepp, R.G.; Braun, A.M.; Hoigne, J.; Leenheer, J.A.

    1987-01-01

    Laser flash photolysis was used to investigate the transients formed on absorption of 355-nm light by dissolved organic matter (DOM) from natural water bodies and from soil. Absorption spectra and quenching studies of the transients provided confirming evidence that hydrated electrons were formed by all of the DOM that were studied. The DOM from the Suwannee River in Georgia and from the Greifensee, a Swiss lake, exhibited great variability in light-absorbing properties. Despite this high variability in absorption coefficients, the primary quantum yields for electron ejection from the Greifensee and Suwannee DOM fell in a narrow range (0.005-0.008). Steady-state irradiations (355 nm) of the DOM with 2-chloroethanol (0.02 M) present as an electron scavenger produced chloride ions with quantum yields that were about 2 orders of magnitude lower than the primary quantum yields. This result indicates that most of the photoejected electrons recombine with cations before escaping into bulk solution. Irradiations of DOM solutions under sunlight (April, latitude 34?? N) photoproduced electrons at rates falling in the range of 0.2-0.4 ??mol/[(mg of DOC) h]. These results indicate that hydrated electrons can play a significant role in the environmental photoreduction of persistent, electronegative pollutants but may be relatively unimportant in the environmental production of hydrogen peroxide. ?? 1987 American Chemical Society.

  18. Relationship of goat milk flow emission variables with milking routine, milking parameters, milking machine characteristics and goat physiology.

    PubMed

    Romero, G; Panzalis, R; Ruegg, P

    2017-11-01

    The aim of this paper was to study the relationship between milk flow emission variables recorded during milking of dairy goats with variables related to milking routine, goat physiology, milking parameters and milking machine characteristics, to determine the variables affecting milking performance and help the goat industry pinpoint farm and milking practices that improve milking performance. In total, 19 farms were visited once during the evening milking. Milking parameters (vacuum level (VL), pulsation ratio and pulsation rate, vacuum drop), milk emission flow variables (milking time, milk yield, maximum milk flow (MMF), average milk flow (AVMF), time until 500 g/min milk flow is established (TS500)), doe characteristics of 8 to 10 goats/farm (breed, days in milk and parity), milking practices (overmilking, overstripping, pre-lag time) and milking machine characteristics (line height, presence of claw) were recorded on every farm. The relationships between recorded variables and farm were analysed by a one-way ANOVA analysis. The relationships of milk yield, MMF, milking time and TS500 with goat physiology, milking routine, milking parameters and milking machine design were analysed using a linear mixed model, considering the farm as the random effect. Farm was significant (P<0.05) in all the studied variables. Milk emission flow variables were similar to those recommended in scientific studies. Milking parameters were adequate in most of the farms, being similar to those recommended in scientific studies. Few milking parameters and milking machine characteristics affected the tested variables: average vacuum level only showed tendency on MMF, and milk pipeline height on TS500. Milk yield (MY) was mainly affected by parity, as the interaction of days in milk with parity was also significant. Milking time was mainly affected by milk yield and breed. Also significant were parity, the interaction of days in milk with parity and overstripping, whereas overmilking showed a slight tendency. We concluded that most of the studied variables were mainly related to goat physiology characteristics, as the effects of milking parameters and milking machine characteristics were scarce.

  19. Meteorological fluctuations define long-term crop yield patterns in conventional and organic production systems

    USDA-ARS?s Scientific Manuscript database

    Periodic variability in meteorological patterns presents significant challenges to crop production consistency and yield stability. Meteorological influences on corn and soybean grain yields were analyzed over an 18-year period at a long-term experiment in Beltsville, Maryland, U.S.A., comparing c...

  20. The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012.

    PubMed

    Páscoa, P; Gouveia, C M; Russo, A; Trigo, R M

    2017-03-01

    The production of wheat in the Iberian Peninsula is strongly affected by climate conditions being particularly vulnerable to interannual changes in precipitation and long-term trends of both rainfall and evapotranspiration. Recent trends in precipitation and temperature point to an increase in dryness in this territory, thus highlighting the need to understand the dependence of wheat yield on climate conditions. The present work aims at studying the relation between wheat yields and drought events in the Iberian Peninsula, using a multiscalar drought index, the standardized precipitation evapotranspiration index (SPEI), at various timescales. The effects of the occurrence of dry episodes on wheat yields were analyzed, on regional spatial scale for two subperiods (1929-1985 and 1986-2012). The results show that in western areas, wheat yield is positively affected by dryer conditions, whereas the opposite happens in eastern areas. The winter months have a bigger influence in the west while the east is more dependent on the spring and summer months. Moreover, in the period of 1986-2012, the simultaneous occurrence of low-yield anomalies and dry events reaches values close to 100 % over many provinces. Results suggest that May and June have a strong control on wheat yield, namely, for longer timescales (9 to 12 months). A shift in the dependence of wheat yields on climatic droughts is evidenced by the increase in the area with positive correlation and the decrease in area with negative correlation between wheat yields and SPEI, probably due to the increase of dry events.

  1. Optimisation of gelatin extraction from Unicorn leatherjacket (Aluterus monoceros) skin waste: response surface approach.

    PubMed

    Hanjabam, Mandakini Devi; Kannaiyan, Sathish Kumar; Kamei, Gaihiamngam; Jakhar, Jitender Kumar; Chouksey, Mithlesh Kumar; Gudipati, Venkateshwarlu

    2015-02-01

    Physical properties of gelatin extracted from Unicorn leatherjacket (Aluterus monoceros) skin, which is generated as a waste from fish processing industries, were optimised using Response Surface Methodology (RSM). A Box-Behnken design was used to study the combined effects of three independent variables, namely phosphoric acid (H3PO4) concentration (0.15-0.25 M), extraction temperature (40-50 °C) and extraction time (4-12 h) on different responses like yield, gel strength and melting point of gelatin. The optimum conditions derived by RSM for the yield (10.58%) were 0.2 M H3PO4 for 9.01 h of extraction time and hot water extraction of 45.83 °C. The maximum achieved gel strength and melting point was 138.54 g and 22.61 °C respectively. Extraction time was found to be most influencing variable and had a positive coefficient on yield and negative coefficient on gel strength and melting point. The results indicated that Unicorn leatherjacket skins can be a source of gelatin having mild gel strength and melting point.

  2. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology.

    PubMed

    Ahamad, Javed; Amin, Saima; Mir, Showkat R

    2015-01-01

    Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  3. Tuberculosis in Alpacas (Lama pacos) Caused by Mycobacterium bovis▿

    PubMed Central

    García-Bocanegra, I.; Barranco, I.; Rodríguez-Gómez, I. M.; Pérez, B.; Gómez-Laguna, J.; Rodríguez, S.; Ruiz-Villamayor, E.; Perea, A.

    2010-01-01

    We report three cases of tuberculosis in alpacas from Spain caused by Mycobacterium bovis. The animals revealed two different lesional patterns. Mycobacterial culture and PCR assay yielded positive results for M. bovis. Molecular typing of the isolates identified spoligotype SB0295 and identical variable-number tandem repeat (VNTR) allele sizes. PMID:20237097

  4. Lean Principles and Defense Information Technology Acquisition: An Investigation of the Determinants of Successful Application

    ERIC Educational Resources Information Center

    Haley, M.

    2013-01-01

    The purpose of this study was to investigate whether or not there have been successful applications of lean manufacturing principles in highly variable defense IT environments. Specifically, the study assessed if implementation of the lean philosophies by a defense organization yielded repeatable, predictable results in software release schedules…

  5. Methods of rapid, early selection of poplar clones for maximum yield potential: a manual of procedures.

    Treesearch

    USDA FS

    1982-01-01

    Instructions, illustrated with examples and experimental results, are given for the controlled-environment propagation and selection of poplar clones. Greenhouse and growth-room culture of poplar stock plants and scions are described, and statistical techniques for discriminating among clones on the basis of growth variables are emphasized.

  6. Adolescents and Adults at the Mall: Dyadic Interactions.

    ERIC Educational Resources Information Center

    Readdick, Christine A.; Mullis, Ronald L.

    1997-01-01

    Examines differences in interpersonal engagements between teen-teen dyads (n=865) and teen-adults dyads (n=190) in a mall. Results indicate that teen-teen dyads differed from teen-adult dyads on two variables: conversation and shopping evidence. Within teen-teen dyad comparisons yielded gender and racial differences, but only one age difference.…

  7. Foreign Language Anxiety: A Study at Ufuk University Preparatory School

    ERIC Educational Resources Information Center

    Karabiyik, Ceyhun; Özkan, Neslihan

    2017-01-01

    The number of studies carried out regards the effects of certain demographic variables on Foreign Language Anxiety (FLA) is rather limited in the English as a foreign language (EFL) context. Besides, the findings of these studies yielded differential results. This study researched the levels of FLA exhibited by Turkish undergraduates and effects…

  8. Evaluating accuracy of DSSAT model for soybean yield estimation using satellite weather data

    NASA Astrophysics Data System (ADS)

    Ovando, Gustavo; Sayago, Silvina; Bocco, Mónica

    2018-04-01

    Crop models allow simulating the development and yield of the crops, to represent and to evaluate the influence of multiple factors. The DSSAT cropping system model is one of the most widely used and contains CROPGRO module for soybean. This crop has a great importance for many southern countries of Latin America and for Argentina. Solar radiation and rainfall are necessary variables as inputs for crop models; however these data are not as readily available. The satellital products from Clouds and Earth's Radiant Energy System (CERES) and Tropic Rainfall Measurement Mission (TRMM) provide continuous spatial and temporal information of solar radiation and precipitation, respectively. This study evaluates and quantifies the uncertainty in estimating soybean yield using a DSSAT model, when recorded weather data are replaced with CERES and TRMM ones. Different percentages of data replacements, soybean maturity groups and planting dates are considered, for 2006-2016 period in Oliveros (Argentina). Results show that CERES and TRMM products can be used for soybean yield estimation with DSSAT considering that: percentage of data replacement, campaign, planting date and maturity group, determine the amounts and trends of yield errors. Replacements with CERES data up to 30% result in %RMSE lower than 10% in 87% of the cases; while the replacement with TRMM data presents the best statisticals in campaigns with high yields. Simulations based entirely on CERES solar radiation give better results than those with TRMM. In general, similar percentages of replacement show better performance in the estimation of soybean yield for solar radiation than the replacement of precipitation values.

  9. Including climate variability in determination of the optimum rate of N fertilizer application using a crop model: A case study for rainfed corn in eastern Canada

    NASA Astrophysics Data System (ADS)

    Mesbah, M.; Pattey, E.; Jégo, G.; Geng, X.; Tremblay, N.; Didier, A.

    2017-12-01

    Identifying optimum nitrogen (N) application rate is essential for increasing agricultural production while limiting potential environmental contaminations caused by release of reactive N, especially for high demand N crops such as corn. The central question of N management is then how the optimum N rate is affected by climate variability for given soil. The experimental determination of optimum N rates involve the analyses of variance on the mean value of crop yield response to various N application rates used by factorial plot based experiments for a few years in several regions. This traditional approach has limitations to capture 1) the non-linear response of yield to N application rates due to large incremental N rates (often more than 40 kg N ha-1) and 2) the ecophysiological response of the crop to climate variability because of limited numbers of growing seasons considered. Modeling on the other hand, does not have such limitations and hence we use a crop model and propose a model-based methodology called Finding NEMO (N Ecophysiologically Modelled Optimum) to identify the optimum N rates for variable agro-climatic conditions and given soil properties. The performance of the methodology is illustrated using the STICS crop model adapted for rainfed corn in the Mixedwood Plains ecozone of eastern Canada (42.3oN 83oW-46.8oN 71oW) where more than 90% of Canadian corn is produced. The simulations were performed using small increment of preplant N application rate (10 kg N ha -1), long time series of daily climatic data (48 to 61 years) for 5 regions along the ecozone, and three contrasting soils per region. The results show that N recommendations should be region and soil specific. Soils with lower available water capacity required more N compared to soil with higher available water capacity. When N rates were at their ecophysiologically optimum level, 10 to 17 kg increase in dry yield could be achieved by adding 1 kg N. Expected yield also affected the optimum N rates for the region and soil. For instance, the probability to achieve a yield of 9.2 t ha-1 at 15% grain moisture on a loamy soil varied from 0 to 73% along the ecozone. For this level of expected yield, the recommended N rates ranged from 64 to 155 kg ha-1, which are relatively less than current provincial recommendations in Ontario and Quebec (120-170 kg ha-1).

  10. Impact of Lygus spp. (Hemiptera: Miridae) on damage, yield and quality of lesquerella (Physaria fendleri), a potential new oil-seed crop.

    PubMed

    Naranjo, Steven E; Ellsworth, Peter C; Dierig, David A

    2011-10-01

    Lesquerella, Physaria fendleri (A. Gray) S. Watson, is a mustard native to the western United States and is currently being developed as a commercial source of valuable hydroxy fatty acids that can be used in a number of industrial applications, including biolubricants, biofuel additives, motor oils, resins, waxes, nylons, plastics, corrosion inhibitors, cosmetics, and coatings. The plant is cultivated as a winter-spring annual and in the desert southwest it harbors large populations of arthropods, several of which could be significant pests once production expands. Lygus spp. (Hemiptera: Miridae) are common in lesquerella and are known pests of a number of agronomic and horticultural crops where they feed primarily on reproductive tissues. A 4-yr replicated plot study was undertaken to evaluate the probable impact of Lygus spp. on production of this potential new crop. Plant damage and subsequent seed yield and quality were examined relative to variable and representative densities of Lygus spp. (0.3-4.9 insects per sweep net) resulting from variable frequency and timing of insecticide applications. Increasing damage to various fruiting structures (flowers [0.9-13.9%], buds [1.2-7.1%], and seed pods [19.4-42.5%]) was significantly associated with increasing pest abundance, particularly the abundance of nymphs, in all years. This damage, however, did not consistently translate into reductions in seed yield (481-1,336 kg/ha), individual seed weight (0.5-0.7 g per 1,000 seed), or seed oil content (21.8-30.4%), and pest abundance generally explained relatively little of the variation in crop yield and quality. Negative effects on yield were not sensitive to the timing of pest damage (early versus late season) but were more pronounced during years when potential yields were lower due to weed competition and other agronomic factors. Results suggest that if the crop is established and managed in a more optimal fashion, Lygus spp. may not significantly limit yield. Nonetheless, additional work will be needed once more uniform cultivars become available and yield effects can be more precisely measured. Densities of Lygus spp. in unsprayed lesquerella are on par with those in other known agroecosystem level sources of this pest (e.g., forage and seed alfalfa, Medicago sativa L.). Thus, lesquerella production may introduce new challenges to pest management in crops such as cotton.

  11. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast.

    PubMed

    Ceglar, Andrej; Toreti, Andrea; Prodhomme, Chloe; Zampieri, Matteo; Turco, Marco; Doblas-Reyes, Francisco J

    2018-01-22

    Seasonal crop yield forecasting represents an important source of information to maintain market stability, minimise socio-economic impacts of crop losses and guarantee humanitarian food assistance, while it fosters the use of climate information favouring adaptation strategies. As climate variability and extremes have significant influence on agricultural production, the early prediction of severe weather events and unfavourable conditions can contribute to the mitigation of adverse effects. Seasonal climate forecasts provide additional value for agricultural applications in several regions of the world. However, they currently play a very limited role in supporting agricultural decisions in Europe, mainly due to the poor skill of relevant surface variables. Here we show how a combined stress index (CSI), considering both drought and heat stress in summer, can predict maize yield in Europe and how land-surface initialised seasonal climate forecasts can be used to predict it. The CSI explains on average nearly 53% of the inter-annual maize yield variability under observed climate conditions and shows how concurrent heat stress and drought events have influenced recent yield anomalies. Seasonal climate forecast initialised with realistic land-surface achieves better (and marginally useful) skill in predicting the CSI than with climatological land-surface initialisation in south-eastern Europe, part of central Europe, France and Italy.

  12. Climate-mediated spatiotemporal variability in terrestrial productivity across Europe

    NASA Astrophysics Data System (ADS)

    Wu, X.; Babst, F.; Ciais, P.; Frank, D.; Reichstein, M.; Wattenbach, M.; Zang, C.; Mahecha, M. D.

    2014-06-01

    Quantifying the interannual variability (IAV) of the terrestrial ecosystem productivity and its sensitivity to climate is crucial for improving carbon budget predictions. In this context it is necessary to disentangle the influence of climate from impacts of other mechanisms underlying the spatiotemporal patterns of IAV of the ecosystem productivity. In this study we investigated the spatiotemporal patterns of IAV of historical observations of European crop yields in tandem with a set of climate variables. We further evaluated if relevant remote-sensing retrievals of NDVI (normalized difference vegetation index) and FAPAR (fraction of absorbed photosynthetically active radiation) depict a similar behaviour. Our results reveal distinct spatial patterns in the IAV of the analysed proxies linked to terrestrial productivity. In particular, we find higher IAV in water-limited regions of Europe (Mediterranean and temperate continental Europe) compared to other regions in both crop yield and remote-sensing observations. Our results further indicate that variations in the water balance during the active growing season exert a more pronounced and direct effect than variations of temperature on explaining the spatial patterns in IAV of productivity-related variables in temperate Europe. Overall, we observe a temporally increasing trend in the IAV of terrestrial productivity and an increasing sensitivity of productivity to water availability in dry regions of Europe during the 1975-2009 period. In the same regions, a simultaneous increase in the IAV of water availability was detected. These findings suggest intricate responses of carbon fluxes to climate variability in Europe and that the IAV of terrestrial productivity has become potentially more sensitive to changes in water availability in the dry regions in Europe. The changing sensitivity of terrestrial productivity accompanied by the changing IAV of climate is expected to impact carbon stocks and the net carbon balance of European ecosystems.

  13. Predictive data modeling of human type II diabetes related statistics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Kristina L.; Jaenisch, Holger M.; Handley, James W.; Albritton, Nathaniel G.

    2009-04-01

    During the course of routine Type II treatment of one of the authors, it was decided to derive predictive analytical Data Models of the daily sampled vital statistics: namely weight, blood pressure, and blood sugar, to determine if the covariance among the observed variables could yield a descriptive equation based model, or better still, a predictive analytical model that could forecast the expected future trend of the variables and possibly eliminate the number of finger stickings required to montior blood sugar levels. The personal history and analysis with resulting models are presented.

  14. Can APEX Represent In-Field Spatial Variability and Simulate Its Effects On Crop Yields?

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture, from variable rate nitrogen application to precision irrigation, promises improved management of resources by considering the spatial variability of topography and soil properties. Hydrologic models need to simulate the effects of this variability if they are to inform about t...

  15. A provisional effective evaluation when errors are present in independent variables

    NASA Technical Reports Server (NTRS)

    Gurin, L. S.

    1983-01-01

    Algorithms are examined for evaluating the parameters of a regression model when there are errors in the independent variables. The algorithms are fast and the estimates they yield are stable with respect to the correlation of errors and measurements of both the dependent variable and the independent variables.

  16. Correlation studies on nitrogen for sunflower crop across the agroclimatic variability.

    PubMed

    Nasim, Wajid; Belhouchette, Hatem; Tariq, Muhammad; Fahad, Shah; Hammad, Hafiz Mohkum; Mubeen, Muhammad; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed; Khan, Imran; Mahmood, Faisal; Abbas, Tauqeer; Rasul, Fahd; Nadeem, Muhammad; Bajwa, Ali Ahsan; Ullah, Najeeb; Alghabari, Fahad; Saud, Shah; Mubarak, Hussani; Ahmad, Rafiq

    2016-02-01

    Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.

  17. The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Estes, L. D.; Vergopolan, N.

    2017-12-01

    Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water stress. Understanding the relationships between soil moisture spatiotemporal variability and yields can help to improve agricultural drought risk assessment and seasonal crop yield forecasting as well as early season warning of potential famines.

  18. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1975-01-01

    A model was developed for predicting the day 50 percent of the wheat crop is planted in North Dakota. This model incorporates location as an independent variable. The Julian date when 50 percent of the crop was planted for the nine divisions of North Dakota for seven years was regressed on the 49 variables through the step-down multiple regression procedure. This procedure begins with all of the independent variables and sequentially removes variables that are below a predetermined level of significance after each step. The prediction equation was tested on daily data. The accuracy of the model is considered satisfactory for finding the historic dates on which to initiate yield prediction model. Growth prediction models were also developed for spring wheat.

  19. Framework for the rapid optimization of soluble protein expression in Escherichia coli combining microscale experiments and statistical experimental design.

    PubMed

    Islam, R S; Tisi, D; Levy, M S; Lye, G J

    2007-01-01

    A major bottleneck in drug discovery is the production of soluble human recombinant protein in sufficient quantities for analysis. This problem is compounded by the complex relationship between protein yield and the large number of variables which affect it. Here, we describe a generic framework for the rapid identification and optimization of factors affecting soluble protein yield in microwell plate fermentations as a prelude to the predictive and reliable scaleup of optimized culture conditions. Recombinant expression of firefly luciferase in Escherichia coli was used as a model system. Two rounds of statistical design of experiments (DoE) were employed to first screen (D-optimal design) and then optimize (central composite face design) the yield of soluble protein. Biological variables from the initial screening experiments included medium type and growth and induction conditions. To provide insight into the impact of the engineering environment on cell growth and expression, plate geometry, shaking speed, and liquid fill volume were included as factors since these strongly influence oxygen transfer into the wells. Compared to standard reference conditions, both the screening and optimization designs gave up to 3-fold increases in the soluble protein yield, i.e., a 9-fold increase overall. In general the highest protein yields were obtained when cells were induced at a relatively low biomass concentration and then allowed to grow slowly up to a high final biomass concentration, >8 g.L-1. Consideration and analysis of the model results showed 6 of the original 10 variables to be important at the screening stage and 3 after optimization. The latter included the microwell plate shaking speeds pre- and postinduction, indicating the importance of oxygen transfer into the microwells and identifying this as a critical parameter for subsequent scale translation studies. The optimization process, also known as response surface methodology (RSM), predicted there to be a distinct optimum set of conditions for protein expression which could be verified experimentally. This work provides a generic approach to protein expression optimization in which both biological and engineering variables are investigated from the initial screening stage. The application of DoE reduces the total number of experiments needed to be performed, while experimentation at the microwell scale increases experimental throughput and reduces cost.

  20. Alterations to Functional Analysis Methodology to Clarify the Functions of Low Rate, High Intensity Problem Behavior

    PubMed Central

    Davis, Barbara J; Schmidt, Jonathan; Bowman, Lynn G; Boelter, Eric W

    2012-01-01

    Current research provides few suggestions for modifications to functional analysis procedures to accommodate low rate, high intensity problem behavior. This study examined the results of the extended duration functional analysis procedures of Kahng, Abt, and Schonbachler (2001) with six children admitted to an inpatient hospital for the treatment of severe problem behavior. Results of initial functional analyses (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) were inconclusive for all children because of low levels of responding. The altered functional analyses, which changed multiple variables including the duration of the functional analysis (i.e., 6 or 7 hrs), yielded clear behavioral functions for all six participants. These results add additional support for the utility of an altered analysis of low rate, high intensity problem behavior when standard functional analyses do not yield differentiated results. PMID:23326628

  1. Alterations to functional analysis methodology to clarify the functions of low rate, high intensity problem behavior.

    PubMed

    Davis, Barbara J; Kahng, Sungwoo; Schmidt, Jonathan; Bowman, Lynn G; Boelter, Eric W

    2012-01-01

    Current research provides few suggestions for modifications to functional analysis procedures to accommodate low rate, high intensity problem behavior. This study examined the results of the extended duration functional analysis procedures of Kahng, Abt, and Schonbachler (2001) with six children admitted to an inpatient hospital for the treatment of severe problem behavior. Results of initial functional analyses (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) were inconclusive for all children because of low levels of responding. The altered functional analyses, which changed multiple variables including the duration of the functional analysis (i.e., 6 or 7 hrs), yielded clear behavioral functions for all six participants. These results add additional support for the utility of an altered analysis of low rate, high intensity problem behavior when standard functional analyses do not yield differentiated results.

  2. State-specific enhancement of Cl+ and Cl- desorption for SiCl4 adsorbed on a Si(100) surface following Cl 2 p and Si 2 p core-level excitations.

    PubMed

    Chen, J M; Lu, K T

    2001-04-02

    State-specific desorption for SiCl4 adsorbed on a Si(100) surface at approximately 90 K with variable coverage following the Cl 2p and Si 2p core-level excitations has been investigated using synchrotron radiation. The Cl+ yields show a significant enhancement following the Cl 2p-->8a*1 excitation. The Cl- yields are notably enhanced at the 8a*1 resonance at both Cl 2p and Si 2p edges. The enhancement of the Cl- yield occurs through the formation of highly excited states of the adsorbed molecules. These results provide some new dissociation processes from adsorbates on surfaces via core-level excitation.

  3. Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction.

    PubMed

    Martino, Emanuela; Ramaiola, Ilaria; Urbano, Mariangela; Bracco, Francesco; Collina, Simona

    2006-09-01

    Soxhlet extraction, ultrasound-assisted extraction (USAE) and microwaves-assisted extraction (MAE) in closed system have been investigated to determine the content of coumarin, o-coumaric and melilotic acids in flowering tops of Melilotus officinalis. The extracts were analyzed with an appropriate HPLC procedure. The reproducibility of extraction and of chromatographic analysis was proved. Taking into account the extraction yield, the cost and the time, we studied the effects of extraction variables on the yield of the above-mentioned compounds. Better results were obtained with MAE (50% v/v aqueous ethanol, two heating cycles of 5 min, 50 degrees C). On the basis of the ratio extraction yield/extraction time, we therefore propose MAE as the most efficient method.

  4. Vergence variability: a key to understanding oculomotor adaptability?

    PubMed

    Petrock, Annie Marie; Reisman, S; Alvarez, T

    2006-01-01

    Vergence eye movements were recorded from three different populations: healthy young (ages 18-35 years), adaptive presbyopic and non-adaptive presbyopic(the presbyopic groups aged above 45 years) to determine how the variability of the eye movements made by the populations differs. The variability was determined using Shannon Entropy calculations of Wavelet transform coefficients, to yield a non-linear analysis of the vergence movement variability. The data were then fed through a k-means clustering algorithm to classify each subject, with no a priori knowledge of true subject classification. The results indicate a highly significant difference in the total entropy values between the three groups, indicating a difference in the level of information content, and thus hypothetically the oculomotor adaptability, between the three groups.Further, the frequency distribution of the entropy varied across groups.

  5. Improving uncertainty estimates: Inter-annual variability in Ireland

    NASA Astrophysics Data System (ADS)

    Pullinger, D.; Zhang, M.; Hill, N.; Crutchley, T.

    2017-11-01

    This paper addresses the uncertainty associated with inter-annual variability used within wind resource assessments for Ireland in order to more accurately represent the uncertainties within wind resource and energy yield assessments. The study was undertaken using a total of 16 ground stations (Met Eireann) and corresponding reanalysis datasets to provide an update to previous work on this topic undertaken nearly 20 years ago. The results of the work demonstrate that the previously reported 5.4% of wind speed inter-annual variability is considered to be appropriate, guidance is given on how to provide a robust assessment of IAV using available sources of data including ground stations, MERRA-2 and ERA-Interim.

  6. Preparation and characterization of ibuprofen-cetyl alcohol beads by melt solidification technique: effect of variables.

    PubMed

    Maheshwari, Manish; Ketkar, Anant R; Chauhan, Bhaskar; Patil, Vinay B; Paradkar, Anant R

    2003-08-11

    Ibuprofen (IBU) exhibits short half-life, poor compressibility, flowability and caking tendency. IBU melt has sufficiently low viscosity and exhibits interfacial tension sufficient to form droplet even at low temperature. A single step novel melt solidification technique (MST) was developed to produce IBU beads with lower amounts of excipient. Effect of variables was studied using a 3(2) factorial approach with speed of agitation and amount of cetyl alcohol (CA) as variables. The beads were evaluated using DSC, FT-IR and scanning electron microscope (SEM). Yield, micromeritic properties, crushing strength and release kinetics were also studied. Spherical beads with a method yield of above 90% were obtained. The data was analyzed by response surface methodology. The variables showed curvilinear relationship with yield in desired particle size range, crushing strength and, bulk and tap density. The drug release followed non-Fickian case II transport and the release rate decreased linearly with respect to amount of CA in the initial stages followed by curvilinearity at later stages of elution. The effect of changing porosity and tortuosity was well correlated.

  7. Water management in the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, Brian J.; van Beek, Rens L. P. H.; Meeks, Elijah; Klein Goldewijk, Kees; Bierkens, Marc F. P.; Scheidel, Walter; Wassen, Martin J.; van der Velde, Ype; Dekker, Stefan C.

    2014-05-01

    Climate variability can have extreme impacts on societies in regions that are water-limited for agriculture. A society's ability to manage its water resources in such environments is critical to its long-term viability. Water management can involve improving agricultural yields through in-situ irrigation or redistributing water resources through trade in food. Here, we explore how such water management strategies affected the resilience of the Roman Empire to climate variability in the water-limited region of the Mediterranean. Using the large-scale hydrological model PCR-GLOBWB and estimates of landcover based on the Historical Database of the Global Environment (HYDE) we generate potential agricultural yield maps under variable climate. HYDE maps of population density in conjunction with potential yield estimates are used to develop maps of agricultural surplus and deficit. The surplus and deficit regions are abstracted to nodes on a water redistribution network based on the Stanford Geospatial Network Model of the Roman World (ORBIS). This demand-driven, water redistribution network allows us to quantitatively explore how water management strategies such as irrigation and food trade improved the resilience of the Roman Empire to climate variability.

  8. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability.

    PubMed

    Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S

    2018-05-31

    Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.

  9. Crop biomass and evapotranspiration estimation using SPOT and Formosat-2 Data

    NASA Astrophysics Data System (ADS)

    Veloso, Amanda; Demarez, Valérie; Ceschia, Eric; Claverie, Martin

    2013-04-01

    The use of crop models allows simulating plant development, growth and yield under different environmental and management conditions. When combined with high spatial and temporal resolution remote sensing data, these models provide new perspectives for crop monitoring at regional scale. We propose here an approach to estimate time courses of dry aboveground biomass, yield and evapotranspiration (ETR) for summer (maize, sunflower) and winter crops (wheat) by assimilating Green Area Index (GAI) data, obtained from satellite observations, into a simple crop model. Only high spatial resolution and gap-free satellite time series can provide enough information for efficient crop monitoring applications. The potential of remote sensing data is often limited by cloud cover and/or gaps in observation. Data from different sensor systems need then to be combined. For this work, we employed a unique set of Formosat-2 and SPOT images (164 images) and in-situ measurements, acquired from 2006 to 2010 in southwest France. Among the several land surface biophysical variables accessible from satellite observations, the GAI is the one that has a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Many methods have been developed to relate GAI to optical remote sensing signal. Here, seasonal dynamics of remotely sensed GAI were estimated by applying a method based on the inversion of a radiative transfer model using artificial neural networks. The modelling approach is based on the Simple Algorithm for Yield and Evapotranspiration estimate (SAFYE) model, which couples the FAO-56 model with an agro-meteorological model, based on Monteith's light-use efficiency theory. The SAFYE model is a daily time step crop model that simulates time series of GAI, dry aboveground biomass, grain yield and ETR. Crop and soil model parameters were determined using both in-situ measurements and values found in the literature. Phenological parameters were calibrated by the assimilation of the remotely sensed GAI time series. The calibration process led to accurate spatial estimates of GAI, ETR as well as of biomass and yield over the study area (24 km x 24 km window). The results highlight the interest of using a combined approach (crop model coupled with high spatial and temporal resolution remote sensing data) for the estimation of agronomical variables. At local scale, the model reproduced correctly the biomass production and ETR for summer crops (with relative RMSE of 29% and 35%, respectively). At regional scale, estimated yield and water requirement for irrigation were compared to regional statistics of yield and irrigation inventories provided by the local water agency. Results showed good agreements for inter-annual dynamics of yield estimates. Differences between water requirement for irrigation and actual supply were lower than 10% and inter-annual variability was well represented as well. The work, initially focused on summer crops, is being adapted to winter crops.

  10. Growth and yield in Eucalyptus globulus

    Treesearch

    James A. Rinehart; Richard B. Standiford

    1983-01-01

    A study of the major Eucalyptus globulus stands throughout California conducted by Woodbridge Metcalf in 1924 provides a complete and accurate data set for generating variable site-density yield models. Two models were developed using linear regression techniques. Model I depicts a linear relationship between age and yield best used for stands between five and fifteen...

  11. Control of growth of juvenile leaves of Eucalyptus globulus: effects of leaf age.

    PubMed

    Metcalfe, J C; Davies, W J; Pereira, J S

    1991-12-01

    Biophysical variables influencing the expansion of plant cells (yield threshold, cell wall extensibility and turgor) were measured in individual Eucalyptus globulus leaves from the time of emergence until cessation of growth. Leaf water relations variables and growth rates were determined as relative humidity was changed on an hourly basis. Yield threshold and cell wall extensibility were estimated from plots of leaf growth rate versus turgor. Cell wall extensibility was also measured by the Instron technique, and yield threshold was determined experimentally both by stress relaxation in a psychrometer chamber and by incubation in a range of polyethylene glycol solutions. Once emerging leaves reached approximately 5 cm(2) in size, increases in leaf area were rapid throughout the expansive phase and varied little between light and dark periods. Both leaf growth rate and turgor were sensitive to changes in humidity, and in the longer term, both yield threshold and cell wall extensibility changed as the leaf aged. Rapidly expanding leaves had a very low yield threshold and high cell wall extensibility, whereas mature leaves had low cell wall extensibility. Yield threshold increased with leaf age.

  12. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    NASA Astrophysics Data System (ADS)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely offset temperature-related yield losses in irrigated maize.

  13. The drive for muscularity in men: media influences and objectification theory.

    PubMed

    Daniel, Samantha; Bridges, Sara K

    2010-01-01

    Presently, objectification theory has yielded mixed results when utilized to explain body image concerns in men. An online survey assessing internalization of media ideals, self-objectification, body surveillance, body shame, the drive for muscularity, and body mass index (BMI) was completed by 244 predominantly college-aged males. Path analyses were used to investigate relationships among these variables where it was hypothesized that objectification variables would mediate the relationship between internalization of media ideals and the drive for muscularity. Internalization of media ideals was the strongest predictor of the drive for muscularity, followed by BMI, though variables of objectification theory had no impact on the drive for muscularity contrary to hypotheses. The results suggest that objectification theory may not be applicable to men as it is currently measured. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    PubMed

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  15. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach

    PubMed Central

    Qin, Yaochen; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention. PMID:28950027

  16. Predicting red meat yields in carcasses from beef-type and calf-fed Holstein steers using the United States Department of Agriculture calculated yield grade.

    PubMed

    Lawrence, T E; Elam, N A; Miller, M F; Brooks, J C; Hilton, G G; VanOverbeke, D L; McKeith, F K; Killefer, J; Montgomery, T H; Allen, D M; Griffin, D B; Delmore, R J; Nichols, W T; Streeter, M N; Yates, D A; Hutcheson, J P

    2010-06-01

    Analyses were conducted to evaluate the ability of the USDA yield grade equation to detect differences in subprimal yield of beef-type steers and calf-fed Holstein steers that had been fed zilpaterol hydrochloride (ZH; Intervet Inc., Millsboro, DE) as well as those that had not been fed ZH. Beef-type steer (n = 801) and calf-fed Holstein steer (n = 235) carcasses were fabricated into subprimal cuts and trim. Simple correlations between calculated yield grades and total red meat yields ranged from -0.56 to -0.62 for beef-type steers. Reliable correlations from calf-fed Holstein steers were unobtainable; the probability of a type I error met or exceeded 0.39. Linear models were developed for the beef-type steers to predict total red meat yield based on calculated USDA yield grade within each ZH duration. At an average calculated USDA yield grade of 2.9, beef-type steer carcasses that had not been fed ZH had an estimated 69.4% red meat yield, whereas those fed ZH had an estimated 70.7% red meat yield. These results indicate that feeding ZH increased red meat yield by 1.3% at a constant calculated yield grade. However, these data also suggest that the calculated USDA yield grade score is a poor and variable estimator (adjusted R(2) of 0.31 to 0.38) of total red meat yield of beef-type steer carcasses, regardless of ZH feeding. Moreover, no relationship existed (adjusted R(2) of 0.00 to 0.01) for calf-fed Holstein steer carcasses, suggesting the USDA yield grade is not a valid estimate of calf-fed Holstein red meat yield.

  17. Spatial variability in nutrient transport by HUC8, state, and subbasin based on Mississippi/Atchafalaya River Basin SPARROW models

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.; Schwarz, Gregory E.

    2014-01-01

    Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. With geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and monitored loads throughout the MARB, SPAtially Referenced Regression On Watershed attributes (SPARROW) watershed models were constructed specifically for the MARB, which reduced simulation errors from previous models. Based on these models, N loads/yields were highest from the central part (centered over Iowa and Indiana) of the MARB (Corn Belt), and the highest P yields were scattered throughout the MARB. Spatial differences in yields from previous studies resulted from different descriptions of the dominant sources (N yields are highest with crop-oriented agriculture and P yields are highest with crop and animal agriculture and major WWTPs) and different descriptions of downstream transport. Delivered loads/yields from the MARB SPARROW models are used to rank subbasins, states, and eight-digit Hydrologic Unit Code basins (HUC8s) by N and P contributions and then rankings are compared with those from other studies. Changes in delivered yields result in an average absolute change of 1.3 (N) and 1.9 (P) places in state ranking and 41 (N) and 69 (P) places in HUC8 ranking from those made with previous national-scale SPARROW models. This information may help managers decide where efforts could have the largest effects (highest ranked areas) and thus reduce hypoxia in the Gulf of Mexico.

  18. A Regional Modeling Framework of Phosphorus Sources and Transport in Streams of the Southeastern United States

    USGS Publications Warehouse

    Garcia, A.M.; Hoos, A.B.; Terziotti, S.

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p<0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables - soil organic matter and soil pH - are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity. ?? 2011 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.

  19. Comparison of CEAS and Williams-type models for spring wheat yields in North Dakota and Minnesota

    NASA Technical Reports Server (NTRS)

    Barnett, T. L. (Principal Investigator)

    1982-01-01

    The CEAS and Williams-type yield models are both based on multiple regression analysis of historical time series data at CRD level. The CEAS model develops a separate relation for each CRD; the Williams-type model pools CRD data to regional level (groups of similar CRDs). Basic variables considered in the analyses are USDA yield, monthly mean temperature, monthly precipitation, and variables derived from these. The Williams-type model also used soil texture and topographic information. Technological trend is represented in both by piecewise linear functions of year. Indicators of yield reliability obtained from a ten-year bootstrap test of each model (1970-1979) demonstrate that the models are very similar in performance in all respects. Both models are about equally objective, adequate, timely, simple, and inexpensive. Both consider scientific knowledge on a broad scale but not in detail. Neither provides a good current measure of modeled yield reliability. The CEAS model is considered very slightly preferable for AgRISTARS applications.

  20. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  1. Changes in crop yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  2. The gender earnings gap among pharmacists.

    PubMed

    Carvajal, Manuel J; Armayor, Graciela M; Deziel, Lisa

    2012-01-01

    A gender earnings gap exists across professions. Compared with men, women earn consistently lower income levels. The determinants of wages and salaries should be explored to assess whether a gender earnings gap exists in the pharmacy profession. The objectives of this study were to (1) compare the responses of male and female pharmacists' earnings with human-capital stock, workers' preferences, and opinion variables and (2) assess whether the earnings determination models for male and female pharmacists yielded similar results in estimating the wage-and-salary gap through earnings projections, the influence of each explanatory variable, and gender differences in statistical significance. Data were collected through the use of a 37-question survey mailed to registered pharmacists in South Florida, United States. Earnings functions were formulated and tested separately for male and female pharmacists using unlogged and semilog equation forms. Number of hours worked, human-capital stock, job preferences, and opinion variables were hypothesized to explain wage-and-salary differentials. The empirical evidence led to 3 major conclusions: (1) men's and women's earnings sometimes were influenced by different stimuli, and when they responded to the same variables, the effect often was different; (2) although the influence of some explanatory variables on earnings differed in the unlogged and semilog equations, the earnings projections derived from both equation forms for male and female pharmacists were remarkably similar and yielded nearly identical male-female earnings ratios; and (3) controlling for number of hours worked, human-capital stock, job preferences, and opinion variables reduced the initial unadjusted male-female earnings ratios only slightly, which pointed toward the presence of gender bias. After controlling for human-capital stock, job-related characteristics, and opinion variables, male pharmacists continued to earn higher income levels than female pharmacists. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. How can we reduce costs of solid-phase multiplex-bead assays used to determine anti-HLA antibodies?

    PubMed

    Kamburova, E G; Wisse, B W; Joosten, I; Allebes, W A; van der Meer, A; Hilbrands, L B; Baas, M C; Spierings, E; Hack, C E; van Reekum, F E; van Zuilen, A D; Verhaar, M; Bots, M L; Drop, A C A D; Plaisier, L; Seelen, M A J; Sanders, J S F; Hepkema, B G; Lambeck, A J; Bungener, L B; Roozendaal, C; Tilanus, M G J; Vanderlocht, J; Voorter, C E; Wieten, L; van Duijnhoven, E M; Gelens, M; Christiaans, M H L; van Ittersum, F J; Nurmohamed, A; Lardy, N M; Swelsen, W; van der Pant, K A; van der Weerd, N C; Ten Berge, I J M; Bemelman, F J; Hoitsma, A; van der Boog, P J M; de Fijter, J W; Betjes, M G H; Heidt, S; Roelen, D L; Claas, F H; Otten, H G

    2016-09-01

    Solid-phase multiplex-bead assays are widely used in transplantation to detect anti-human leukocyte antigen (HLA) antibodies. These assays enable high resolution detection of low levels of HLA antibodies. However, multiplex-bead assays are costly and yield variable measurements that limit the comparison of results between laboratories. In the context of a Dutch national Consortium study we aimed to determine the inter-assay and inter-machine variability of multiplex-bead assays, and we assessed how to reduce the assay reagents costs. Fifteen sera containing a variety of HLA antibodies were used yielding in total 7092 median fluorescence intensities (MFI) values. The inter-assay and inter-machine mean absolute relative differences (MARD) of the screening assay were 12% and 13%, respectively. The single antigen bead (SAB) inter-assay MARD was comparable, but showed a higher lot-to-lot variability. Reduction of screening assay reagents to 50% or 40% of manufacturers' recommendations resulted in MFI values comparable to 100% of the reagents, with an MARD of 12% or 14%, respectively. The MARD of the 50% and 40% SAB assay reagent reductions were 11% and 22%, respectively. From this study, we conclude that the reagents can be reliably reduced at least to 50% of manufacturers' recommendations with virtually no differences in HLA antibody assignments. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  5. Assessing the inter-observer variability of Computer-Aided Nodule Assessment and Risk Yield (CANARY) to characterize lung adenocarcinomas.

    PubMed

    Nakajima, Erica C; Frankland, Michael P; Johnson, Tucker F; Antic, Sanja L; Chen, Heidi; Chen, Sheau-Chiann; Karwoski, Ronald A; Walker, Ronald; Landman, Bennett A; Clay, Ryan D; Bartholmai, Brian J; Rajagopalan, Srinivasan; Peikert, Tobias; Massion, Pierre P; Maldonado, Fabien

    2018-01-01

    Lung adenocarcinoma (ADC), the most common lung cancer type, is recognized increasingly as a disease spectrum. To guide individualized patient care, a non-invasive means of distinguishing indolent from aggressive ADC subtypes is needed urgently. Computer-Aided Nodule Assessment and Risk Yield (CANARY) is a novel computed tomography (CT) tool that characterizes early ADCs by detecting nine distinct CT voxel classes, representing a spectrum of lepidic to invasive growth, within an ADC. CANARY characterization has been shown to correlate with ADC histology and patient outcomes. This study evaluated the inter-observer variability of CANARY analysis. Three novice observers segmented and analyzed independently 95 biopsy-confirmed lung ADCs from Vanderbilt University Medical Center/Nashville Veterans Administration Tennessee Valley Healthcare system (VUMC/TVHS) and the Mayo Clinic (Mayo). Inter-observer variability was measured using intra-class correlation coefficient (ICC). The average ICC for all CANARY classes was 0.828 (95% CI 0.76, 0.895) for the VUMC/TVHS cohort, and 0.852 (95% CI 0.804, 0.901) for the Mayo cohort. The most invasive voxel classes had the highest ICC values. To determine whether nodule size influenced inter-observer variability, an additional cohort of 49 sub-centimeter nodules from Mayo were also segmented by three observers, with similar ICC results. Our study demonstrates that CANARY ADC classification between novice CANARY users has an acceptably low degree of variability, and supports the further development of CANARY for clinical application.

  6. Removal of Zinc from Aqueous Solution by Optimized Oil Palm Empty Fruit Bunches Biochar as Low Cost Adsorbent

    PubMed Central

    Salleh, M. A. Mohd; Asady, Bahareh

    2017-01-01

    This study aims to produce optimized biochar from oil palm empty fruit bunches (OPEFB), as a green, low cost adsorbent for uptake of zinc from aqueous solution. The impact of pyrolysis conditions, namely, highest treatment temperature (HTT), heating rate (HR), and residence time (RT) on biochar yield and adsorption capacity towards zinc, was investigated. Mathematical modeling and optimization of independent variables were performed employing response surface methodology (RSM). HTT was found to be the most influential variable, followed by residence time and heating rate. Based on the central composite design (CCD), two quadratic models were developed to correlate three independent variables to responses. The optimum production condition for OPEFB biochar was found as follows: HTT of 615°C, HR of 8°C/min, and RT of 128 minutes. The optimum biochar showed 15.18 mg/g adsorption capacity for zinc and 25.49% of yield which was in agreement with the predicted values, satisfactory. Results of the characterization of optimum product illustrated well-developed BET surface area and porous structure in optimum product which favored its sorptive ability. PMID:28420949

  7. Multimodel ensembles of wheat growth: many models are better than one.

    PubMed

    Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W; Rötter, Reimund P; Boote, Kenneth J; Ruane, Alex C; Thorburn, Peter J; Cammarano, Davide; Hatfield, Jerry L; Rosenzweig, Cynthia; Aggarwal, Pramod K; Angulo, Carlos; Basso, Bruno; Bertuzzi, Patrick; Biernath, Christian; Brisson, Nadine; Challinor, Andrew J; Doltra, Jordi; Gayler, Sebastian; Goldberg, Richie; Grant, Robert F; Heng, Lee; Hooker, Josh; Hunt, Leslie A; Ingwersen, Joachim; Izaurralde, Roberto C; Kersebaum, Kurt Christian; Müller, Christoph; Kumar, Soora Naresh; Nendel, Claas; O'leary, Garry; Olesen, Jørgen E; Osborne, Tom M; Palosuo, Taru; Priesack, Eckart; Ripoche, Dominique; Semenov, Mikhail A; Shcherbak, Iurii; Steduto, Pasquale; Stöckle, Claudio O; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Travasso, Maria; Waha, Katharina; White, Jeffrey W; Wolf, Joost

    2015-02-01

    Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models. © 2014 John Wiley & Sons Ltd.

  8. Multimodel Ensembles of Wheat Growth: More Models are Better than One

    NASA Technical Reports Server (NTRS)

    Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alex C.; Thorburn, Peter J.; Cammarano, Davide; hide

    2015-01-01

    Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.

  9. Multimodel Ensembles of Wheat Growth: Many Models are Better than One

    NASA Technical Reports Server (NTRS)

    Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alexander C.; Thorburn, Peter J.; Cammarano, Davide; hide

    2015-01-01

    Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop model scan give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 2438 for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.

  10. Sensitivity analysis for axis rotation diagrid structural systems according to brace angle changes

    NASA Astrophysics Data System (ADS)

    Yang, Jae-Kwang; Li, Long-Yang; Park, Sung-Soo

    2017-10-01

    General regular shaped diagrid structures can express diverse shapes because braces are installed along the exterior faces of the structures and the structures have no columns. However, since irregular shaped structures have diverse variables, studies to assess behaviors resulting from various variables are continuously required to supplement the imperfections related to such variables. In the present study, materials elastic modulus and yield strength were selected as variables for strength that would be applied to diagrid structural systems in the form of Twisters among the irregular shaped buildings classified by Vollers and that affect the structural design of these structural systems. The purpose of this study is to conduct sensitivity analysis for axial rotation diagrid structural systems according to changes in brace angles in order to identify the design variables that have relatively larger effects and the tendencies of the sensitivity of the structures according to changes in brace angles and axial rotation angles.

  11. Climate Change and ENSO Effects on Southeastern US Climate Patterns and Maize Yield.

    PubMed

    Mourtzinis, Spyridon; Ortiz, Brenda V; Damianidis, Damianos

    2016-07-19

    Climate change has a strong influence on weather patterns and significantly affects crop yields globally. El Niño Southern Oscillation (ENSO) has a strong influence on the U.S. climate and is related to agricultural production variability. ENSO effects are location-specific and in southeastern U.S. strongly connect with climate variability. When combined with climate change, the effects on growing season climate patterns and crop yields might be greater than expected. In our study, historical monthly precipitation and temperature data were coupled with non-irrigated maize yield data (33-43 years depending on the location) to show a potential yield suppression of ~15% for one °C increase in southeastern U.S. growing season maximum temperature. Yield suppression ranged between -25 and -2% among locations suppressing the southeastern U.S. average yield trend since 1981 by 17 kg ha(-1)year(-1) (~25%), mainly due to year-to-year June temperature anomalies. Yields varied among ENSO phases from 1971-2013, with greater yields observed during El Niño phase. During La Niña years, maximum June temperatures were higher than Neutral and El Niño, whereas June precipitation was lower than El Niño years. Our data highlight the importance of developing location-specific adaptation strategies quantifying both, climate change and ENSO effects on month-specific growing season climate conditions.

  12. Resistance to Phakopsora pachyrhizi in soybean PI 587905 maps to the Rpp1 locus and exhibits variable dominance associated with plant ontogeny

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi Sydow, results in significant yield loss worldwide. Soybean accession PI 587905, previously identified as having resistance to P. pachyrhizi, was used to create two independent populations (F2 plants and F2-derived F3 lines) segregating for resistance. ...

  13. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield

    PubMed Central

    Ferris, Michael; Bruggeman, Frank J.

    2018-01-01

    Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM) and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts. PMID:29451895

  14. Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.).

    PubMed

    Luo, Xiaojin; Wu, Shuang; Tian, Feng; Xin, Xiaoyun; Zha, Xiaojun; Dong, Xianxin; Fu, Yongcai; Wang, Xiangkun; Yang, Jinshui; Sun, Chuanqing

    2011-07-01

    Many rice breeding programs have currently reached yield plateaus as a result of limited genetic variability in parental strains. Dongxiang common wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.) and serves as an important gene pool for the genetic improvement of rice cultivars. In this study, heterotic loci (HLs) associated with six yield-related traits were identified in wild and cultivated rice and investigated using a set of 265 introgression lines (ILs) of O. rufipogon Griff. in the background of the Indica high-yielding cultivar Guichao 2 (O. sativa L.). Forty-two HLs were detected by a single point analysis of mid-parent heterosis values from test cross F(1) offspring, and 30 (71.5%) of these HLs showed significantly positive effects, consistent with the superiority shown by the F(1) test cross population in the six yield-related traits under study. Genetic mapping of hsp11, a locus responsible for the number of spikelets per panicle, confirmed the utility of these HLs. The results indicate that favorable HLs capable of improving agronomic traits are available. The identification of HLs between wild rice and cultivated rice could lead to a new strategy for the application of heterosis in rice breeding. Copyright © 2011. Published by Elsevier Ireland Ltd.

  15. Changing environmental conditions and applying organic fertilizers in Origanum vulgare L.

    PubMed Central

    Murillo-Amador, Bernardo; Morales-Prado, Luis E.; Troyo-Diéguez, Enrique; Córdoba-Matson, Miguel V.; Hernández-Montiel, Luis G.; Rueda-Puente, Edgar O.; Nieto-Garibay, Alejandra

    2015-01-01

    Any improvement in agricultural systems that results in higher production should also reduce negative environmental impacts and enhance sustainability. The aim of this research was to investigate the effect of two different production systems, one open-field and the other shade-enclosure with four bocashi doses, in order to find the best environmental option in terms of yield, physiological and morphometric characteristics in one oregano (Origanum vulgare L.) cultivar. In this study a completely randomized block design was used with four replications and evaluated for photosynthetic and transpiration rate, stomatal conductance, chlorophyll, leaf area and temperature, aerial and roots fresh and dry biomass, fresh and dry yield. The results showed that oregano adapted best to the shade-enclosure with increase yield of fresh and dry leaf weight of 165% and 118%, respectively, when compared to open-field. Also, higher doses of bocashi improved yield in both environments but more so in shade-enclosure. Soil moisture retention was higher in shade-enclosure which was reflected in physiological variables for soil matric potential, transpiration, stomatal conductivity, photosynthesis being significantly higher in shade-enclosure compared to open-field, thus improving yield. It seems that oregano plants can be grown and perform better under shade-enclosure than open-field and bocashi is a suitable organic fertilizer. PMID:26257756

  16. Remote Sensing Analysis of Malawi's Agricultural Inputs Subsidy and Climate Variability Impacts on Productivity

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Fiske, G. J.; Sedano, F.; Michelson, H.

    2016-12-01

    Agriculture in sub-Saharan Africa is characterized by smallholder production and low yields ( 1 ton ha-1 year-1 since records began in 1961) for staple food crops such as maize (Zea mays). Many years of low-input farming have depleted much of the region's agricultural land of critical soil carbon and nitrogen, further reducing yield potentials. Malawi is a 98,000 km2 subtropical nation with a short rainy season from November to May, with most rainfall occurring between December and mid-April. This short growing season supports the cultivation of one primary crop, maize. In Malawi, many smallholder farmers face annual nutrient deficits as nutrients removed as grain harvest and residues are beyond replenishment levels. As a result, Malawi has had stagnant maize yields averaging 1.2 ton ha-1 year-1 for decades. After multiple years of drought and widespread hunger in the early 2000s, Malawi introduced an agricultural input support program (fertilizer and seed subsidy) in time for the 2006 harvest that was designed to restore soil nutrients, improve maize production, and decrease dependence on food aid. Malawi's subsidy program targets 50-67% of smallholder farmers who cultivate half a hectare or less, yet collectively supply 80% of the country's maize. The country has achieved significant increases in crop yields (now 2 tons/ha/year) and, as our analysis shows, benefited from a new resilience against drought. We utilized Landsat time series to determine cropland extent from 2000-present and identify areas of marginal and/or intermittent production. We found a strong latitudinal gradient of precipitation variability from north to south in CHIRPS data. We used the precipitation variability to normalize trends in a productivity proxy derived from MODIS EVI. After normalization of productivity to precipitation variability, we found significant productivity trends correlated to subsidy distribution. This work was conducted with Google's Earth Engine, a cloud-based platform for data storage and analysis with unprecedented speed and efficient computing by making use of Google's computing infrastructure.

  17. Selection Index in the Study of Adaptability and Stability in Maize

    PubMed Central

    Lunezzo de Oliveira, Rogério; Garcia Von Pinho, Renzo; Furtado Ferreira, Daniel; Costa Melo, Wagner Mateus

    2014-01-01

    This paper proposes an alternative method for evaluating the stability and adaptability of maize hybrids using a genotype-ideotype distance index (GIDI) for selection. Data from seven variables were used, obtained through evaluation of 25 maize hybrids at six sites in southern Brazil. The GIDI was estimated by means of the generalized Mahalanobis distance for each plot of the test. We then proceeded to GGE biplot analysis in order to compare the predictive accuracy of the GGE models and the grouping of environments and to select the best five hybrids. The G × E interaction was significant for both variables assessed. The GGE model with two principal components obtained a predictive accuracy (PRECORR) of 0.8913 for the GIDI and 0.8709 for yield (t ha−1). Two groups of environments were obtained upon analyzing the GIDI, whereas all the environments remained in the same group upon analyzing yield. Coincidence occurred in only two hybrids considering evaluation of the two features. The GIDI assessment provided for selection of hybrids that combine adaptability and stability in most of the variables assessed, making its use more highly recommended than analyzing each variable separately. Not all the higher-yielding hybrids were the best in the other variables assessed. PMID:24696641

  18. Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuai; Xiong, Lihua; Li, Hong-Yi

    2015-05-26

    Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging (BMA) of four monthly water balance models was proposed. The method was applied to the Weihe River Basin (WRB), the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities tomore » runoff changes. The change point, which was used to determine the baseline period (1956-1990) and human-impacted period (1991-2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.« less

  19. A probabilistic approach towards understanding how planet composition affects plate tectonics - through time and space.

    NASA Astrophysics Data System (ADS)

    Stamenkovic, V.

    2017-12-01

    We focus on the connections between plate tectonics and planet composition — by studying how plate yielding is affected by surface and mantle water, and by variable amounts of Fe, SiC, or radiogenic heat sources within the planet interior. We especially explore whether we can make any robust conclusions if we account for variable initial conditions, current uncertainties in model parameters and the pressure dependence of the viscosity, as well as uncertainties on how a variable composition affects mantle rheology, melting temperatures, and thermal conductivities. We use a 1D thermal evolution model to explore with more than 200,000 simulations the robustness of our results and use our previous results from 3D calculations to help determine the most likely scenario within the uncertainties we still face today. The results that are robust in spite of all uncertainties are that iron-rich mantle rock seems to reduce the efficiency of plate yielding occurring on silicate planets like the Earth if those planets formed along or above mantle solidus and that carbon planets do not seem to be ideal candidates for plate tectonics because of slower creep rates and generally higher thermal conductivities for SiC. All other conclusions depend on not yet sufficiently constrained parameters. For the most likely case based on our current understanding, we find that, within our range of varied planet conditions (1-10 Earth masses), planets with the greatest efficiency of plate yielding are silicate rocky planets of 1 Earth mass with large metallic cores (average density 5500-7000 kg m-3) with minimal mantle concentrations of iron (as little as 0% is preferred) and radiogenic isotopes at formation (up to 10 times less than Earth's initial abundance; less heat sources do not mean no heat sources). Based on current planet formation scenarios and observations of stellar abundances across the Galaxy as well as models of the evolution of the interstellar medium, such planets are suggested to be statistically more common around young stars in the outer disk of the Milky Way. Rocky super-Earths, undifferentiated planets, and still hypothetical carbon planets have the lowest plate yielding efficiencies found in our study. This work aids exoplanet characterization and helps explore the fundamental drivers of plate tectonics.

  20. Variability and performance evaluation of introgressed Nigerian dura x Deli dura oil palm progenies.

    PubMed

    Noh, A; Rafii, M Y; Mohd Din, A; Kushairi, A; Norziha, A; Rajanaidu, N; Latif, M A; Malek, M A

    2014-04-03

    Twelve introgressed oil palm (Elaeis guineensis) progenies of Nigerian dura x Deli dura were evaluated for bunch yield, yield attributes, bunch quality components and vegetative characters at the Malaysian Palm Oil Board Research Station, in Keratong, Pahang, Malaysia. Analysis of variance revealed significant to highly significant genotypic differences, indicating sufficient genetic variability among the progenies for bunch yield and its attributes, vegetative characters and bunch quality components, except fruit to bunch ratio. Fresh fruit bunch yield ranged from 167 kg·palm(-1)·year(-1) in PK1330 to 212 kg·palm(-1)·year(-1) in PK1351, with a mean yield of 192 kg·palm(-1)·year(-1). Among the progeny, PK1313 had the highest oil to bunch ratio (19.36%), due to its high mesocarp to fruit ratio, fruit to bunch ratio and low shell to fruit ratio. Among the progenies, PK1313 produced the highest oil yield of 31.4 kg·palm(-1)·year(-1), due to a high mesocarp to fruit ratio (61.2%) and a low shell to fruit ratio (30.7%), coupled with high fruit to bunch ratio (65.6%). PK1330 was found promising for selection, as it had desirable vegetative characters, including smaller petiole cross section (27.15 cm2), short rachis length (4.83 m), short palm height (1.85 m), and the lowest leaf number (164.6), as these vegetative characters are prerequisites for selecting palms for high density planting and high yield per hectare. The genetic variability among the progenies was found to be high, indicating ample scope for further breeding, followed by selection.

  1. Do genotypic differences in thermotolerance plasticity correspond with water-induced differences in yield and photosynthetic stability for field-grown upland cotton?

    USDA-ARS?s Scientific Manuscript database

    To determine if cultivar differences in thermotolerance plasticity of photosystem II promote yield or photosynthetic stability when variability in both parameters is water-induced, the temperature response of maximum quantum yield of photosystem II (Fv/Fm) was evaluated for two cotton cultivars (FM ...

  2. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus)

    PubMed Central

    Sarker, Mohamed Zaidul Islam; Selamat, Jinap; Habib, Abu Sayem Md. Ahsan; Ferdosh, Sahena; Akanda, Mohamed Jahurul Haque; Jaffri, Juliana Mohamed

    2012-01-01

    Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method. PMID:23109854

  3. Costs and Benefits of Orthographic Inconsistency in Reading: Evidence from a Cross-Linguistic Comparison

    PubMed Central

    Marinelli, Chiara Valeria; Romani, Cristina; Burani, Cristina; McGowan, Victoria A.; Zoccolotti, Pierluigi

    2016-01-01

    We compared reading acquisition in English and Italian children up to late primary school analyzing RTs and errors as a function of various psycholinguistic variables and changes due to experience. Our results show that reading becomes progressively more reliant on larger processing units with age, but that this is modulated by consistency of the language. In English, an inconsistent orthography, reliance on larger units occurs earlier on and it is demonstrated by faster RTs, a stronger effect of lexical variables and lack of length effect (by fifth grade). However, not all English children are able to master this mode of processing yielding larger inter-individual variability. In Italian, a consistent orthography, reliance on larger units occurs later and it is less pronounced. This is demonstrated by larger length effects which remain significant even in older children and by larger effects of a global factor (related to speed of orthographic decoding) explaining changes of performance across ages. Our results show the importance of considering not only overall performance, but inter-individual variability and variability between conditions when interpreting cross-linguistic differences. PMID:27355364

  4. Costs and Benefits of Orthographic Inconsistency in Reading: Evidence from a Cross-Linguistic Comparison.

    PubMed

    Marinelli, Chiara Valeria; Romani, Cristina; Burani, Cristina; McGowan, Victoria A; Zoccolotti, Pierluigi

    2016-01-01

    We compared reading acquisition in English and Italian children up to late primary school analyzing RTs and errors as a function of various psycholinguistic variables and changes due to experience. Our results show that reading becomes progressively more reliant on larger processing units with age, but that this is modulated by consistency of the language. In English, an inconsistent orthography, reliance on larger units occurs earlier on and it is demonstrated by faster RTs, a stronger effect of lexical variables and lack of length effect (by fifth grade). However, not all English children are able to master this mode of processing yielding larger inter-individual variability. In Italian, a consistent orthography, reliance on larger units occurs later and it is less pronounced. This is demonstrated by larger length effects which remain significant even in older children and by larger effects of a global factor (related to speed of orthographic decoding) explaining changes of performance across ages. Our results show the importance of considering not only overall performance, but inter-individual variability and variability between conditions when interpreting cross-linguistic differences.

  5. Scheduling admissions and reducing variability in bed demand.

    PubMed

    Bekker, René; Koeleman, Paulien M

    2011-09-01

    Variability in admissions and lengths of stay inherently leads to variability in bed occupancy. The aim of this paper is to analyse the impact of these sources of variability on the required amount of capacity and to determine admission quota for scheduled admissions to regulate the occupancy pattern. For the impact of variability on the required number of beds, we use a heavy-traffic limit theorem for the G/G/∞ queue yielding an intuitively appealing approximation in case the arrival process is not Poisson. Also, given a structural weekly admission pattern, we apply a time-dependent analysis to determine the mean offered load per day. This time-dependent analysis is combined with a Quadratic Programming model to determine the optimal number of elective admissions per day, such that an average desired daily occupancy is achieved. From the mathematical results, practical scenarios and guidelines are derived that can be used by hospital managers and support the method of quota scheduling. In practice, the results can be implemented by providing admission quota prescribing the target number of admissions for each patient group.

  6. Global Crop Yields, Climatic Trends and Technology Enhancement

    NASA Astrophysics Data System (ADS)

    Najafi, E.; Devineni, N.; Khanbilvardi, R.; Kogan, F.

    2016-12-01

    During the last decades the global agricultural production has soared up and technology enhancement is still making positive contribution to yield growth. However, continuing population, water crisis, deforestation and climate change threaten the global food security. Attempts to predict food availability in the future around the world can be partly understood from the impact of changes to date. A new multilevel model for yield prediction at the country scale using climate covariates and technology trend is presented in this paper. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling and/or clustering to automatically group and reduce estimation uncertainties. El Niño Southern Oscillation (ENSO), Palmer Drought Severity Index (PDSI), Geopotential height (GPH), historical CO2 level and time-trend as a relatively reliable approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2007. Results show that these indicators can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications.

  7. Dynamic strain aging and plastic instabilities

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    1995-05-01

    A constitutive model proposed by McCormick [(1988) Theory of flow localization due to dynamic strain ageing. Acta. Metall.36, 3061-3067] based on dislocation-solute interaction and describing dynamic strain aging behavior, is analyzed for the simple loading case of uniaxial tension. The model is rate dependent and includes a time-varying state variable, representing the local concentration of the impurity atoms at dislocations. Stability of the system and its post-instability behavior are considered. The methods used include analytical and numerical stability and bifurcation analysis with a numerical continuation technique. Yield point behavior and serrated yielding are found to result for well defined intervals of temperature and strain rate. Serrated yielding emerges as a branch of periodic solutions of the relaxation oscillation type, similar to frictional stick-slip. The distinction between the temporal and spatial (loss of homogeneity of strain) instability is emphasized. It is found that a critical machine stiffness exists above which a purely temporal instability cannot occur. The results are compared to the available experimental data.

  8. Comparison of SVAT models for simulating and optimizing deficit irrigation systems in arid and semi-arid countries under climate variability

    NASA Astrophysics Data System (ADS)

    Kloss, Sebastian; Schuetze, Niels; Schmitz, Gerd H.

    2010-05-01

    The strong competition for fresh water in order to fulfill the increased demand for food worldwide has led to a renewed interest in techniques to improve water use efficiency (WUE) such as controlled deficit irrigation. Furthermore, as the implementation of crop models into complex decision support systems becomes more and more common, it is imperative to reliably predict the WUE as ratio of water consumption and yield. The objective of this paper is the assessment of the problems the crop models - such as FAO-33, DAISY, and APSIM in this study - face when maximizing the WUE. We applied these crop models for calculating the risk in yield reduction in view of different sources of uncertainty (e.g. climate) employing a stochastic framework for decision support for the planning of water supply in irrigation. The stochastic framework consists of: (i) a weather generator for simulating regional impacts of climate change; (ii) a new tailor-made evolutionary optimization algorithm for optimal irrigation scheduling with limited water supply; and (iii) the above mentioned models for simulating water transport and crop growth in a sound manner. The results present stochastic crop water production functions (SCWPF) for different crops which can be used as basic tools for assessing the impact of climate variability on the risk for the potential yield. Case studies from India, Oman, Malawi, and France are presented to assess the differences in modeling water stress and yield response for the different crop models.

  9. Fabric and connectivity as field descriptors for deformations in granular media

    NASA Astrophysics Data System (ADS)

    Wan, Richard; Pouragha, Mehdi

    2015-01-01

    Granular materials involve microphysics across the various scales giving rise to distinct behaviours of geomaterials, such as steady states, plastic limit states, non-associativity of plastic and yield flow, as well as instability of homogeneous deformations through strain localization. Incorporating such micro-scale characteristics is one of the biggest challenges in the constitutive modelling of granular materials, especially when micro-variables may be interdependent. With this motivation, we use two micro-variables such as coordination number and fabric anisotropy computed from tessellation of the granular material to describe its state at the macroscopic level. In order to capture functional dependencies between micro-variables, the correlation between coordination number and fabric anisotropy limits is herein formulated at the particle level rather than on an average sense. This is the essence of the proposed work which investigates the evolutions of coordination number distribution (connectivity) and anisotropy (contact normal) distribution curves with deformation history and their inter-dependencies through discrete element modelling in two dimensions. These results enter as probability distribution functions into homogenization expressions during upscaling to a continuum constitutive model using tessellation as an abstract representation of the granular system. The end product is a micro-mechanically inspired continuum model with both coordination number and fabric anisotropy as underlying micro-variables incorporated into a plasticity flow rule. The derived plastic potential bears striking resemblance to cam-clay or stress-dilatancy-type yield surfaces used in soil mechanics.

  10. Optimization process of tribenzoine production as a glycerol derived product

    NASA Astrophysics Data System (ADS)

    Widayat, Abdurrakhman, Rifianto, Y.; Abdullah, Hadiyanto, Samsudin, Asep M.; Annisa, A. N.

    2015-12-01

    Tribenzoin is a derived product from glycerol that can produce from glycerol conversion via esterification process. The product can be used in the food industry, cosmetics industry, polymer industry and also can be used to improve the properties of adhesive materials and water resistance in the ink printer.In the other hand, it advantages is environmentally friendly andrenewable because it is not derived from petroleum. This paper discusses the effect of temperature and catalyst concentration for tribenzoin production. For the responses, yield and product composition were observed. Results showed that the highest yield achieved at optimal variable data processed using Central Composite Design (CCD) which is 63.64 temperature (°C), mole ratio of benzoic acidto glycerol is 3.644:1, and catalyst concentration 6.25% (wt% glycerol). Yield products produced 58.71%. FTIR analysis results showed that the samples contained the results of IR spectra wavelength 1761 cm-1 in the fingerprint region and 3165 cm-1 frequency region group. The existence of these two adjustments that fixed in the area is strong evidence that the compound is tribenzoin.

  11. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Zhao; Tao, Fulu

    2018-05-01

    A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice) in China during 2106-2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop-Weather relationship over a Large Area (MCWLA) family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6), +4.1 (+9.4) and +0.2 % (-1.7 %), respectively, in a warming scenario of 1.5 °C (2.0 °C). In general, the warming scenarios would bring more opportunities than risks for crop development and food security in China. Moreover, although the variability of crop yield would increase from 1.5 °C warming to 2.0 °C warming, the probability of a crop yield decrease would decrease. Our findings highlight that the 2.0 °C warming scenario would be more suitable for crop production in China, but more attention should be paid to the expected increase in extreme event impacts.

  12. Process Development in the Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Klein, Leonard C.; Dana, Susanne M.

    1998-06-01

    Many experiences in high school and undergraduate laboratories are well-tested cookbook recipes that have already been designed to yield optimal results; the well-known synthesis of aspirin is such an example. In this project for advanced placement or second-year high school chemistry students, students mimic the process development in industrial laboratories by investigating the effect of varying conditions in the synthesis of aspirin. The class decides on criteria that should be explored (quantity of catalyst, temperature of reaction, etc.). The class is then divided into several teams with each team assigned a variable to study. Each team must submit a proposal describing how they will explore the variable before they start their study. After data on yield and purity has been gathered and evaluated, students discuss which method is most desirable, based on their agreed-upon criteria. This exercise provides an opportunity for students to review many topics from the course (rate of reaction, limiting reagents, Beer's Law) while participating in a cooperative exercise designed to imitate industrial process development.

  13. Optimization of extraction process by response surface methodology and preliminary structural analysis of polysaccharides from defatted peanut (Arachis hypogaea) cakes.

    PubMed

    Song, Yi; Du, Bingjian; Zhou, Ting; Han, Bing; Yu, Fei; Yang, Rui; Hu, Xiaosong; Ni, Yuanying; Li, Quanhong

    2011-02-01

    In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from defatted peanut cake. A central composite design including independent variables, such as extraction temperature (x(1)), extraction time (x(2)), and ethanol concentration (x(3)) was used. Selected response which evaluates the extraction process was polysaccharide yield, and the second-order model obtained for polysaccharide yield revealed coefficient of determination of 97.81%. The independent variable with the largest effect on response was ethanol concentration (x(3)). The optimum extraction conditions were found to be extraction temperature 48.7°C, extraction time 1.52 h, and ethanol concentration of 61.9% (v/v), respectively. Under these conditions, the extraction efficiency of polysaccharide can increase to 25.89%. The results of structural analysis showed that the main composition of defatted peanut cake polysaccharide was α-galactose. 2010 Elsevier Ltd. All rights reserved.

  14. Non-linear modelling and control of semi-active suspensions with variable damping

    NASA Astrophysics Data System (ADS)

    Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin

    2013-10-01

    Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.

  15. Spatialized Application of Remotely Sensed Data Assimilation Methods for Farmland Drought Monitoring Using Two Different Crop Models

    NASA Astrophysics Data System (ADS)

    Silvestro, Paolo Cosmo; Casa, Raffaele; Pignatti, Stefano; Castaldi, Fabio; Yang, Hao; Guijun, Yang

    2016-08-01

    The aim of this work was to develop a tool to evaluate the effect of water stress on yield losses at the farmland and regional scale, by assimilating remotely sensed biophysical variables into crop growth models. Biophysical variables were retrieved from HJ1A, HJ1B and Landsat 8 images, using an algorithm based on the training of artificial neural networks on PROSAIL.For the assimilation, two crop models of differing degree of complexity were used: Aquacrop and SAFY. For Aquacrop, an optimization procedure to reduce the difference between the remotely sensed and simulated CC was developed. For the modified version of SAFY, the assimilation procedure was based on the Ensemble Kalman Filter.These procedures were tested in a spatialized application, by using data collected in the rural area of Yangling (Shaanxi Province) between 2013 and 2015Results were validated by utilizing yield data both from ground measurements and statistical survey.

  16. Heterogeneous benefits of precision nitrogen management over the Midwestern US: evidence from 1,000 fields derived by satellite imagery and crop modeling

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Archontoulis, S.; Lobell, D. B.

    2017-12-01

    The wise management of nitrogen (N) fertilizer is important for both economic and environmental considerations. The variable rate technology (VRT) that applies different rates of N fertilizer by fully taking account of the spatial heterogeneity within fields has gained popularity with the recent advent of high-resolution satellites and spectrometers, but its profitability is still uncertain given the dependence of corn-nitrogen responses to soil and climate. To our knowledge, the benefits of adopting VRT in the vast Midwestern US agricultural zones have only been assessed at a very limited number of fields based on labor-costing on-farm samplings. Here we present a study that integrates a range of geospatial tools and data to quantifying the economic benefit of VRT versus uniform N application over 1,000 randomly selected corn fields in the US Midwest. We employed the Google Earth Engine (GEE) and Landsat-5, 7 and 8 collections to derive 30m-resolution yield map for years 2007-2015, and used the multi-year averaged yields to characterize the yield variation and hence the management zones for each field and zone-specific yield goal. The yield goals as well as the Soil Survey Geographic Database (SSURGO) data were then used to calibrate the Agricultural Production Systems sIMulator (APSIM) model, which generated a range of variables such as yields, N balance and leaching. Our preliminary results showed that the calibrated APSIM model was able to capture about 60% of the variation in the satellite-based yield estimates, and more than 70% of the yield spread (i.e. maximum - minimum yield). Regardless of the overall environmental benefits of less N loss through leaching, the economic difference between adopting VRT and uniform application ranged from -50 to 200 per acre, with the majority lay between -10 and 40 per acre. Fields with a wider range of yield spread benefited more from adopting VRT, yet the conclusion varies upon weather, especially the precipitation. Our study confirmed that adopting VRT in the US Midwest was economically feasible under most cases, and highlighted the potential of using big-data platform to facilitate precision N management over a large scale. The methodology developed in this study can serve as a good foundation for other precision management applications over the world.

  17. Yield impact for wafer shape misregistration-based binning for overlay APC diagnostic enhancement

    NASA Astrophysics Data System (ADS)

    Jayez, David; Jock, Kevin; Zhou, Yue; Govindarajulu, Venugopal; Zhang, Zhen; Anis, Fatima; Tijiwa-Birk, Felipe; Agarwal, Shivam

    2018-03-01

    The importance of traditionally acceptable sources of variation has started to become more critical as semiconductor technologies continue to push into smaller technology nodes. New metrology techniques are needed to pursue the process uniformity requirements needed for controllable lithography. Process control for lithography has the advantage of being able to adjust for cross-wafer variability, but this requires that all processes are close in matching between process tools/chambers for each process. When this is not the case, the cumulative line variability creates identifiable groups of wafers1 . This cumulative shape based effect is described as impacting overlay measurements and alignment by creating misregistration of the overlay marks. It is necessary to understand what requirements might go into developing a high volume manufacturing approach which leverages this grouping methodology, the key inputs and outputs, and what can be extracted from such an approach. It will be shown that this line variability can be quantified into a loss of electrical yield primarily at the edge of the wafer and proposes a methodology for root cause identification and improvement. This paper will cover the concept of wafer shape based grouping as a diagnostic tool for overlay control and containment, the challenges in implementing this in a manufacturing setting, and the limitations of this approach. This will be accomplished by showing that there are identifiable wafer shape based signatures. These shape based wafer signatures will be shown to be correlated to overlay misregistration, primarily at the edge. It will also be shown that by adjusting for this wafer shape signal, improvements can be made to both overlay as well as electrical yield. These improvements show an increase in edge yield, and a reduction in yield variability.

  18. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.

    PubMed

    De Gioannis, G; Muntoni, A; Polettini, A; Pomi, R

    2013-06-01

    Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Development and validation of equations utilizing lamb vision system output to predict lamb carcass fabrication yields.

    PubMed

    Cunha, B C N; Belk, K E; Scanga, J A; LeValley, S B; Tatum, J D; Smith, G C

    2004-07-01

    This study was performed to validate previous equations and to develop and evaluate new regression equations for predicting lamb carcass fabrication yields using outputs from a lamb vision system-hot carcass component (LVS-HCC) and the lamb vision system-chilled carcass LM imaging component (LVS-CCC). Lamb carcasses (n = 149) were selected after slaughter, imaged hot using the LVS-HCC, and chilled for 24 to 48 h at -3 to 1 degrees C. Chilled carcasses yield grades (YG) were assigned on-line by USDA graders and by expert USDA grading supervisors with unlimited time and access to the carcasses. Before fabrication, carcasses were ribbed between the 12th and 13th ribs and imaged using the LVS-CCC. Carcasses were fabricated into bone-in subprimal/primal cuts. Yields calculated included 1) saleable meat yield (SMY); 2) subprimal yield (SPY); and 3) fat yield (FY). On-line (whole-number) USDA YG accounted for 59, 58, and 64%; expert (whole-number) USDA YG explained 59, 59, and 65%; and expert (nearest-tenth) USDA YG accounted for 60, 60, and 67% of the observed variation in SMY, SPY, and FY, respectively. The best prediction equation developed in this trial using LVS-HCC output and hot carcass weight as independent variables explained 68, 62, and 74% of the variation in SMY, SPY, and FY, respectively. Addition of output from LVS-CCC improved predictive accuracy of the equations; the combined output equations explained 72 and 66% of the variability in SMY and SPY, respectively. Accuracy and repeatability of measurement of LM area made with the LVS-CCC also was assessed, and results suggested that use of LVS-CCC provided reasonably accurate (R2 = 0.59) and highly repeatable (repeatability = 0.98) measurements of LM area. Compared with USDA YG, use of the dual-component lamb vision system to predict cut yields of lamb carcasses improved accuracy and precision, suggesting that this system could have an application as an objective means for pricing carcasses in a value-based marketing system.

  20. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    USGS Publications Warehouse

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  1. What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)?

    PubMed Central

    Brown, L.K.; George, T.S.; Thompson, J.A.; Wright, G.; Lyon, J.; Dupuy, L.; Hubbard, S.F.; White, P.J.

    2012-01-01

    Background and Aims Phosphorus commonly limits crop yield and is frequently applied as fertilizer; however, supplies of quality rock phosphate for fertilizer production are diminishing. Plants have evolved many mechanisms to increase their P-fertilizer use efficiency, and an understanding of these traits could result in improved long-term sustainability of agriculture. Here a mutant population is utilized to assess the impact of root hair length on P acquisition and yield under P-deficient conditions alone or when combined with drought. Methods Mutants with various root hair phenotypes were grown in the glasshouse in pots filled with soil representing sufficient and deficient P treatments and, in one experiment, a range of water availability was also imposed. Plants were variously harvested at 7 d, 8 weeks and 14 weeks, and variables including root hair length, rhizosheath weight, biomass, P accumulation and yield were measured. Key Results The results confirmed the robustness of the root hair phenotypes in soils and their relationship to rhizosheath production. The data demonstrated that root hair length is important for shoot P accumulation and biomass, while only the presence of root hairs is critical for yield. Root hair presence was also critical for tolerance to extreme combined P deficit and drought stress, with genotypes with no root hairs suffering extreme growth retardation in comparison with those with root hairs. Conclusions The results suggest that although root hair length is not important for maintaining yield, the presence of root hairs is implicit to sustainable yield of barley under P-deficient conditions and when combined with extreme drought. Root hairs are a trait that should be maintained in future germplasm. PMID:22539540

  2. The effect of biomass densification on structural sugar release and yield in biofuel feedstock and feedstock blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfrum, Edward J.; Nagle, Nicholas J.; Ness, Ryan M.

    In this work, we examined the behavior of feedstock blends and the effect of a specific feedstock densification strategy (pelleting) on the release and yield of structural carbohydrates in a laboratory-scale dilute acid pretreatment (PT) and enzymatic hydrolysis (EH) assay. We report overall carbohydrate release and yield from the two-stage PT-EH assay for five single feedstocks (two corn stovers, miscanthus, switchgrass, and hybrid poplar) and three feedstock blends (corn stover-switchgrass, corn stover-switchgrass-miscanthus, and corn stover-switchgrass-hybrid poplar). We first examined the experimental results over time to establish the robustness of the PT-EH assay, which limits the precision of the experimental results.more » The use of two different control samples in the assay enabled us to identify (and correct for) a small bias in the EH portion of the combined assay for some runs. We then examined the effect of variable pretreatment reaction conditions (residence time, acid loading, and reactor temperature) on the conversion of a single feedstock (single-pass corn stover, CS-SP) in order to establish the range of pretreatment reaction conditions likely to provide optimal conversion data. Finally, we applied the assay to the 16 materials (8 feedstocks in 2 formats, loose and pelleted) over a more limited range of pretreatment experimental conditions. The four herbaceous feedstocks behaved similarly, while the hybrid poplar feedstock required higher pretreatment temperatures for optimal results. As expected, the yield data for three blended feedstocks were the average of the yield data for the individual feedstocks. As a result, the pelleting process appears to provide a slightly positive effect on overall total sugar yield.« less

  3. The effect of biomass densification on structural sugar release and yield in biofuel feedstock and feedstock blends

    DOE PAGES

    Wolfrum, Edward J.; Nagle, Nicholas J.; Ness, Ryan M.; ...

    2017-01-13

    In this work, we examined the behavior of feedstock blends and the effect of a specific feedstock densification strategy (pelleting) on the release and yield of structural carbohydrates in a laboratory-scale dilute acid pretreatment (PT) and enzymatic hydrolysis (EH) assay. We report overall carbohydrate release and yield from the two-stage PT-EH assay for five single feedstocks (two corn stovers, miscanthus, switchgrass, and hybrid poplar) and three feedstock blends (corn stover-switchgrass, corn stover-switchgrass-miscanthus, and corn stover-switchgrass-hybrid poplar). We first examined the experimental results over time to establish the robustness of the PT-EH assay, which limits the precision of the experimental results.more » The use of two different control samples in the assay enabled us to identify (and correct for) a small bias in the EH portion of the combined assay for some runs. We then examined the effect of variable pretreatment reaction conditions (residence time, acid loading, and reactor temperature) on the conversion of a single feedstock (single-pass corn stover, CS-SP) in order to establish the range of pretreatment reaction conditions likely to provide optimal conversion data. Finally, we applied the assay to the 16 materials (8 feedstocks in 2 formats, loose and pelleted) over a more limited range of pretreatment experimental conditions. The four herbaceous feedstocks behaved similarly, while the hybrid poplar feedstock required higher pretreatment temperatures for optimal results. As expected, the yield data for three blended feedstocks were the average of the yield data for the individual feedstocks. As a result, the pelleting process appears to provide a slightly positive effect on overall total sugar yield.« less

  4. Sahelian rangeland response to changes in rainfall over two decades in the Gourma region, Mali

    NASA Astrophysics Data System (ADS)

    Hiernaux, Pierre; Mougin, Eric; Diarra, Lassine; Soumaguel, Nogmana; Lavenu, François; Tracol, Yann; Diawara, Mamadou

    2009-08-01

    SummaryTwenty-five rangeland sites were monitored over two decades (1984-2006) first to assess the impact of the 1983-1984 droughts on fodder resources, then to better understand ecosystem functioning and dynamics. Sites are sampled along the south-north bioclimatic gradient in Gourma (Mali), within three main edaphic situations: sandy, loamy-clay and shallow soils. In addition, three levels of grazing pressure where systematically sampled within sandy soils. Located at the northern edge of the area reached by the West African monsoon, the Gourma gradient has recorded extremes in inter-annual variations of rainfall and resulting variations in vegetation growth. Following rainfall variability, inter-annual variability of herbaceous yield increases as climate gets dryer with latitudes at least on the sandy soils sites. Local redistribution of rainfall explains the high patchiness of herbaceous vegetation, especially on shallow soils. Yet spatial heterogeneity of the vegetation does not buffer between year yield variability that increases with spatial heterogeneity. At short term, livestock grazing during the wet season affects plant growth and thus yield in direction and proportions that vary with the timing and intensity of grazing. In the longer term, grazing also impinges upon species composition in many ways. Hence, long histories of heavy grazing promote either long cycle annuals refused by livestock or else short cycle good quality feed species. Primary production is maintained or even increased in the case of refusal such as Sida cordifolia, and is lessened in the case of short cycle species such as Zornia glochidiata. These behaviours explain that the yield anomalies calculated for the rangelands on sandy soils relative to the yield of site less grazed under similar climate tend to be negative in northern Sahel where the scenario of short cycle species dominates, while yield anomalies are close to nil in centre Sahel and slightly positive in South Sahel where the refusal scenario is more frequent. Because grazing promotes short cycle species, grazed rangelands respond faster to droughts. Year to year changes in species composition are abrupt as expected from the transient soil seed stock. However, some decadal trends in species composition are identified, with a wave of pioneer species following the 1983-1984 droughts, and a more progressive diversification and return to typical Sahel flora from 1992 onwards.

  5. Extraction of astaxanthin from Euphausia pacific using subcritical 1, 1, 1, 2-tetrafluoroethane

    NASA Astrophysics Data System (ADS)

    Han, Yuqian; Ma, Qinchuan; Wang, Lan; Xue, Changhu

    2012-12-01

    Euphausia pacific is an important source of natural astaxanthin. Studies were carried out to assess the extractability of astaxanthin from E. pacific using subcritical 1, 1, 1, 2-tetrafluoroethane (R134a). To examine the effects of multiple process variables on the extraction yield, astaxanthin was extracted under various conditions of pressure (30-150 bar), temperature (303-343 K), time (10-50 min), flow rate (2-10 g min-1), moisture content (5.5%-63.61%), and particle size (0.25-0.109 mm). The results showed that the extraction yield increased with temperature, pressure, time and flow rate, but decreased with moisture content and particle size. A maximum yield of 87.74% was obtained under conditions of 100 bar, 333 K, and 30 min with a flow rate of 6 g min-1 and a moisture content of 5.5%. The substantial astaxanthin yield obtained under low-pressure conditions demonstrates that subcritical R134a is a good alternative to CO2 for extraction of astaxanthin from E. pacific.

  6. Variability of Suitable Habitat of Western Winter-Spring Cohort for Neon Flying Squid in the Northwest Pacific under Anomalous Environments.

    PubMed

    Yu, Wei; Chen, Xinjun; Yi, Qian; Chen, Yong; Zhang, Yang

    2015-01-01

    We developed a habitat suitability index (HSI) model to evaluate the variability of suitable habitat for neon flying squid (Ommastrephes bartramii) under anomalous environments in the Northwest Pacific Ocean. Commercial fisheries data from the Chinese squid-jigging vessels on the traditional fishing ground bounded by 35°-45°N and 150°-175°E from July to November during 1998-2009 were used for analyses, as well as the environmental variables including sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, sea surface height anomaly (SSHA) and sea surface salinity (SSS). Two empirical HSI models (arithmetic mean model, AMM; geometric mean model, GMM) were established according to the frequency distribution of fishing efforts. The AMM model was found to perform better than the GMM model. The AMM-based HSI model was further validated by the fishery and environmental data in 2010. The predicted HSI values in 1998 (high catch), 2008 (average catch) and 2009 (low catch) indicated that the squid habitat quality was strongly associated with the ENSO-induced variability in the oceanic conditions on the fishing ground. The La Niña events in 1998 tended to yield warm SST and favorable range of Chl-a concentration and SSHA, resulting in high-quality habitats for O. bartramii. While the fishing ground in the El Niño year of 2009 experienced anomalous cool waters and unfavorable range of Chl-a concentration and SSHA, leading to relatively low-quality squid habitats. Our findings suggest that the La Niña event in 1998 tended to result in more favorable habitats for O. bartramii in the Northwest Pacific with the gravity centers of fishing efforts falling within the defined suitable habitat and yielding high squid catch; whereas the El Niño event in 2009 yielded less favorable habitat areas with the fishing effort distribution mismatching the suitable habitat and a dramatic decline of the catch of O. bartramii. This study might provide some potentially valuable insights into exploring the relationship between the underlying squid habitat and the inter-annual environmental change.

  7. Variability of Suitable Habitat of Western Winter-Spring Cohort for Neon Flying Squid in the Northwest Pacific under Anomalous Environments

    PubMed Central

    Yu, Wei; Chen, Xinjun; Yi, Qian; Chen, Yong; Zhang, Yang

    2015-01-01

    We developed a habitat suitability index (HSI) model to evaluate the variability of suitable habitat for neon flying squid (Ommastrephes bartramii) under anomalous environments in the Northwest Pacific Ocean. Commercial fisheries data from the Chinese squid-jigging vessels on the traditional fishing ground bounded by 35°-45°N and 150°-175°E from July to November during 1998-2009 were used for analyses, as well as the environmental variables including sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, sea surface height anomaly (SSHA) and sea surface salinity (SSS). Two empirical HSI models (arithmetic mean model, AMM; geometric mean model, GMM) were established according to the frequency distribution of fishing efforts. The AMM model was found to perform better than the GMM model. The AMM-based HSI model was further validated by the fishery and environmental data in 2010. The predicted HSI values in 1998 (high catch), 2008 (average catch) and 2009 (low catch) indicated that the squid habitat quality was strongly associated with the ENSO-induced variability in the oceanic conditions on the fishing ground. The La Niña events in 1998 tended to yield warm SST and favorable range of Chl-a concentration and SSHA, resulting in high-quality habitats for O. bartramii. While the fishing ground in the El Niño year of 2009 experienced anomalous cool waters and unfavorable range of Chl-a concentration and SSHA, leading to relatively low-quality squid habitats. Our findings suggest that the La Niña event in 1998 tended to result in more favorable habitats for O. bartramii in the Northwest Pacific with the gravity centers of fishing efforts falling within the defined suitable habitat and yielding high squid catch; whereas the El Niño event in 2009 yielded less favorable habitat areas with the fishing effort distribution mismatching the suitable habitat and a dramatic decline of the catch of O. bartramii. This study might provide some potentially valuable insights into exploring the relationship between the underlying squid habitat and the inter-annual environmental change. PMID:25923519

  8. Biodegradability study of high-erucic-acid-rapeseed-oil-based lubricant additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, E.; Crawford, R.L.; Shanahan, A.

    1995-12-31

    A variety of high-erucic-acid-rapeseed (HEAR)-oil-based lubricants, lubricant additives, and greases were examined for biodegradability at the University of Idaho Center for Hazardous Waste Remediation Research. Two standard biodegradability tests were employed, a currently accepted US Environmental Protection Agency (EPA) protocol and the Sturm Test. As is normal for tests that employ variable inocula such as sewage as a source of microorganisms, these procedures yielded variable results from one repetition to another. However, a general trend of rapid and complete biodegradability of the HEAR-oil-based materials was observed.

  9. Root carboxylate exudation capacity under phosphorus stress does not improve grain yield in green gram.

    PubMed

    Pandey, Renu; Meena, Surendra Kumar; Krishnapriya, Vengavasi; Ahmad, Altaf; Kishora, Naval

    2014-06-01

    Genetic variability in carboxylate exudation capacity along with improved root traits was a key mechanism for P-efficient green gram genotype to cope with P-stress but it did not increase grain yield. This study evaluates genotypic variability in green gram for total root carbon exudation under low phosphorus (P) using (14)C and its relationship with root exuded carboxylates, growth and yield potential in contrasting genotypes. Forty-four genotypes grown hydroponically with low (2 μM) and sufficient (100 μM) P concentrations were exposed to (14)CO2 to screen for total root carbon exudation. Contrasting genotypes were employed to study carboxylate exudation and their performance in soil at two P levels. Based on relative (14)C exudation and biomass, genotypes were categorized. Carboxylic acids were measured in exudates and root apices of contrasting genotypes belonging to efficient and inefficient categories. Oxalic and citric acids were released into the medium under low-P. PDM-139 (efficient) was highly efficient in carboxylate exudation as compared to ML-818 (inefficient). In low soil P, the reduction in biomass was higher in ML-818 as compared to PDM-139. Total leaf area and photosynthetic rate averaged for genotypes increased by 71 and 41 %, respectively, with P fertilization. Significantly, higher root surface area and volume were observed in PDM-139 under low soil P. Though the grain yield was higher in ML-818, the total plant biomass was significantly higher in PDM-139 indicating improved P uptake and its efficient translation into biomass. The higher carboxylate exudation capacity and improved root traits in the later genotype might be the possible adaptive mechanisms to cope with P-stress. However, it is not necessary that higher root exudation would result in higher grain yield.

  10. Comparing demographic, health status and psychosocial strategies of audience segmentation to promote physical activity.

    PubMed

    Boslaugh, Sarah E; Kreuter, Matthew W; Nicholson, Robert A; Naleid, Kimberly

    2005-08-01

    The goal of audience segmentation is to identify population subgroups that are homogeneous with respect to certain variables associated with a given outcome or behavior. When such groups are identified and understood, targeted intervention strategies can be developed to address their unique characteristics and needs. This study compares the results of audience segmentation for physical activity that is based on either demographic, health status or psychosocial variables alone, or a combination of all three types of variables. Participants were 1090 African-American and White adults from two public health centers in St Louis, MO. Using a classification-tree algorithm to form homogeneous groups, analyses showed that more segments with greater variability in physical activity were created using psychosocial versus health status or demographic variables and that a combination of the three outperformed any individual set of variables. Simple segmentation strategies such as those relying on demographic variables alone provided little improvement over no segmentation at all. Audience segmentation appears to yield more homogeneous subgroups when psychosocial and health status factors are combined with demographic variables.

  11. Spectrally-Based Assessment of Crop Seasonal Performance and Yield

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Borisova, Denitsa; Georgiev, Georgy

    The rapid advances of space technologies concern almost all scientific areas from aeronautics to medicine, and a wide range of application fields from communications to crop yield predictions. Agricultural monitoring is among the priorities of remote sensing observations for getting timely information on crop development. Monitoring agricultural fields during the growing season plays an important role in crop health assessment and stress detection provided that reliable data is obtained. Successfully spreading is the implementation of hyperspectral data to precision farming associated with plant growth and phenology monitoring, physiological state assessment, and yield prediction. In this paper, we investigated various spectral-biophysical relationships derived from in-situ reflectance measurements. The performance of spectral data for the assessment of agricultural crops condition and yield prediction was examined. The approach comprisesd development of regression models between plant spectral and state-indicative variables such as biomass, vegetation cover fraction, leaf area index, etc., and development of yield forecasting models from single-date (growth stage) and multitemporal (seasonal) reflectance data. Verification of spectral predictions was performed through comparison with estimations from biophysical relationships between crop growth variables. The study was carried out for spring barley and winter wheat. Visible and near-infrared reflectance data was acquired through the whole growing season accompanied by detailed datasets on plant phenology and canopy structural and biochemical attributes. Empirical relationships were derived relating crop agronomic variables and yield to various spectral predictors. The study findings were tested using airborne remote sensing inputs. A good correspondence was found between predicted and actual (ground-truth) estimates

  12. Variability and mass loss in IA O-B-A supergiants

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Garrison, R. F.; Hiltner, W. A.

    1983-01-01

    Recently completed catalogs of MK spectral types and UBV photometry of 1227 OB stars in the southern Milky Way have been analyzed to investigate brightness and color variability among the Ia supergiants. It is found that brightness variability is common among the O9-B1 supergiants with typical amplitudes about 0.1 and time scales longer than a week and shorter than 1000 days. Among the A supergiants fluctuations in U-B color are found on similar time scales and with amplitude about 0.1. For many early Ia supergiants there is a poor correlation between Balmer jump and spectral type, as had been known previously. An attempt to correlate the Balmer jump deficiency with mass loss rate yielded uncertain results.

  13. Birth Order and health: major issues.

    PubMed

    Elliott, B A

    1992-08-01

    Birth Order has been described as a variable with a complex relationship to child and adult outcomes. A review of the medical literature over the past 5 years identified 20 studies that investigated the relationship between Birth Order and a health outcome. Only one of the studies established a relationship between Birth Order and a health outcome: third and fourth-born children have a higher incidence of accidents that result in hospitalization. The other demonstrated relationships are each explained by intervening variables or methodological limitations. Although Birth Order is not a strongly independent explanatory factor in understanding health outcomes, it is an important marker variable. Statistically significant relationships between Birth Order and health outcomes yield insights into the ways a family influences an individual's health.

  14. On the Misconception of Multicollinearity in Detection of Moderating Effects: Multicollinearity Is Not Always Detrimental.

    PubMed

    Shieh, Gwowen

    2010-05-28

    Due to its extensive applicability and computational ease, moderated multiple regression (MMR) has been widely employed to analyze interaction effects between 2 continuous predictor variables. Accordingly, considerable attention has been drawn toward the supposed multicollinearity problem between predictor variables and their cross-product term. This article attempts to clarify the misconception of multicollinearity in MMR studies. The counterintuitive yet beneficial effects of multicollinearity on the ability to detect moderator relationships are explored. Comprehensive treatments and numerical investigations are presented for the simplest interaction model and more complex three-predictor setting. The results provide critical insight that both helps avoid misleading interpretations and yields better understanding for the impact of intercorrelation among predictor variables in MMR analyses.

  15. IUE and ground-based observations of the Hubble-Sandage variables in M31 and M33

    NASA Technical Reports Server (NTRS)

    Blaha, C.; Dodorico, S.; Gull, T. R.; Benvenuti, P.; Humphreys, R. M.

    1984-01-01

    Ultraviolet spectra were obtained from the International Ultraviolet Explorer for the brightest Hubble-Sandage (H-S) variables in M31 and M33. The ultraviolet fluxes were then used in combination with ground-based visual and infrared photometry to determine the energy distributions, luminosities, and temperatures of these stars. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and blackbody temperatures of the H-S variables. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the bolometric magnitude vs temperature diagram as Eta Car and P Cyg in the Galaxy and S Dor in the LMC.

  16. The long-term strength of Europe and its implications for plate-forming processes.

    PubMed

    Pérez-Gussinyé, M; Watts, A B

    2005-07-21

    Field-based geological studies show that continental deformation preferentially occurs in young tectonic provinces rather than in old cratons. This partitioning of deformation suggests that the cratons are stronger than surrounding younger Phanerozoic provinces. However, although Archaean and Phanerozoic lithosphere differ in their thickness and composition, their relative strength is a matter of much debate. One proxy of strength is the effective elastic thickness of the lithosphere, Te. Unfortunately, spatial variations in Te are not well understood, as different methods yield different results. The differences are most apparent in cratons, where the 'Bouguer coherence' method yields large Te values (> 60 km) whereas the 'free-air admittance' method yields low values (< 25 km). Here we present estimates of the variability of Te in Europe using both methods. We show that when they are consistently formulated, both methods yield comparable Te values that correlate with geology, and that the strength of old lithosphere (> or = 1.5 Gyr old) is much larger (mean Te > 60 km) than that of younger lithosphere (mean Te < 30 km). We propose that this strength difference reflects changes in lithospheric plate structure (thickness, geothermal gradient and composition) that result from mantle temperature and volatile content decrease through Earth's history.

  17. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf.

    PubMed

    Afshari, Kasra; Samavati, Vahid; Shahidi, Seyed-Ahmad

    2015-03-01

    The effects of ultrasonic power, extraction time, extraction temperature, and the water-to-raw material ratio on extraction yield of crude polysaccharide from the leaf of Hibiscus rosa-sinensis (HRLP) were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize HRLP extraction yield by implementing the Box-Behnken design (BBD). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and also analyzed by appropriate statistical methods (ANOVA). Analysis of the results showed that the linear and quadratic terms of these four variables had significant effects. The optimal conditions for the highest extraction yield of HRLP were: ultrasonic power, 93.59 W; extraction time, 25.71 min; extraction temperature, 93.18°C; and the water to raw material ratio, 24.3 mL/g. Under these conditions, the experimental yield was 9.66±0.18%, which is well in close agreement with the value predicted by the model 9.526%. The results demonstrated that HRLP had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Socio-economic, Biophysical, and Perceptional Factors Associated with Agricultural Adaptation of Smallholder Farmers in Gujarat, Northwest India

    NASA Astrophysics Data System (ADS)

    Jain, M.; DeFries, R. S.

    2012-12-01

    Climate change is predicted to negatively impact many agricultural communities across the globe, particularly smallholder farmers who often do not have access to appropriate technologies to reduce their vulnerability. To better predict which farmers will be most impacted by future climate change at a regional scale, we use remote sensing and agricultural census data to examine how cropping intensity and crop type have shifted based on rainfall variability across Gujarat, India from 1990 to 2010. Using household-level interviews, we then identify the socio-economic, biophysical, perceptional, and psychological factors associated with smallholder farmers who are the most impacted and the least able to adapt to contemporaneous rainfall variability. We interviewed 750 farmers in 2011 and 2012 that span a rainfall, irrigation, socio-economic, and caste gradient across central Gujarat. Our results show that farmers shift cropping practices in several ways based on monsoon onset, which farmers state is the main observable rainfall signal influencing cropping decisions during the monsoon season. When monsoon onset is delayed, farmers opt to plant more drought-tolerant crops, push back the date of sowing, and increase the number of irrigations used. Comparing self-reported income and yields, we find that switching crops does not improve agricultural income, shifting planting date does not influence crop yield, yet increasing the number of irrigations significantly increases yield. Future work will identify which social (e.g. social networks), psychological (e.g. risk preference), and knowledge (e.g. information sources) factors are associated with farmers who are best able to adapt to rainfall variability.

  19. Dry-bean production under climate change conditions in the north of Argentina: Risk assessment and economic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feijoo, M.; Mestre, F.; Castagnaro, A.

    This study evaluates the potential effect of climate change on Dry-bean production in Argentina, combining climate models, a crop productivity model and a yield response model estimation of climate variables on crop yields. The study was carried out in the North agricultural regions of Jujuy, Salta, Santiago del Estero and Tucuman which include the largest areas of Argentina where dry beans are grown as a high input crop. The paper combines the output from a crop model with different techniques of analysis. The scenarios used in this study were generated from the output of two General Circulation Models (GCMs): themore » Goddard Institute for Space Studies model (GISS) and the Canadian Climate Change Model (CCCM). The study also includes a preliminary evaluation of the potential changes in monetary returns taking into account the possible variability of yields and prices, using mean-Gini stochastic dominance (MGSD). The results suggest that large climate change may have a negative impact on the Argentine agriculture sector, due to the high relevance of this product in the export sector. The difference negative effect depends on the varieties of dry bean and also the General Circulation Model scenarios considered for double levels of atmospheric carbon dioxide.« less

  20. Optimization of critical quality attributes in continuous twin-screw wet granulation via design space validated with pilot scale experimental data.

    PubMed

    Liu, Huolong; Galbraith, S C; Ricart, Brendon; Stanton, Courtney; Smith-Goettler, Brandye; Verdi, Luke; O'Connor, Thomas; Lee, Sau; Yoon, Seongkyu

    2017-06-15

    In this study, the influence of key process variables (screw speed, throughput and liquid to solid (L/S) ratio) of a continuous twin screw wet granulation (TSWG) was investigated using a central composite face-centered (CCF) experimental design method. Regression models were developed to predict the process responses (motor torque, granule residence time), granule properties (size distribution, volume average diameter, yield, relative width, flowability) and tablet properties (tensile strength). The effects of the three key process variables were analyzed via contour and interaction plots. The experimental results have demonstrated that all the process responses, granule properties and tablet properties are influenced by changing the screw speed, throughput and L/S ratio. The TSWG process was optimized to produce granules with specific volume average diameter of 150μm and the yield of 95% based on the developed regression models. A design space (DS) was built based on volume average granule diameter between 90 and 200μm and the granule yield larger than 75% with a failure probability analysis using Monte Carlo simulations. Validation experiments successfully validated the robustness and accuracy of the DS generated using the CCF experimental design in optimizing a continuous TSWG process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Pilot Investigation of the Relationship between Climate Variability and Milk Compounds under the Bootstrap Technique

    PubMed Central

    Marami Milani, Mohammad Reza; Hense, Andreas; Rahmani, Elham; Ploeger, Angelika

    2015-01-01

    This study analyzes the linear relationship between climate variables and milk components in Iran by applying bootstrapping to include and assess the uncertainty. The climate parameters, Temperature Humidity Index (THI) and Equivalent Temperature Index (ETI) are computed from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis (2002–2010). Milk data for fat, protein (measured on fresh matter bases), and milk yield are taken from 936,227 milk records for the same period, using cows fed by natural pasture from April to September. Confidence intervals for the regression model are calculated using the bootstrap technique. This method is applied to the original times series, generating statistically equivalent surrogate samples. As a result, despite the short time data and the related uncertainties, an interesting behavior of the relationships between milk compound and the climate parameters is visible. During spring only, a weak dependency of milk yield and climate variations is obvious, while fat and protein concentrations show reasonable correlations. In summer, milk yield shows a similar level of relationship with ETI, but not with temperature and THI. We suggest this methodology for studies in the field of the impacts of climate change and agriculture, also environment and food with short-term data. PMID:28231215

  2. Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents.

    PubMed

    Bicu, Ioan; Mustata, Fanica

    2013-10-15

    Response surface methodology was used to optimize cellulose recovery from orange peel using sodium hydroxide (NaOH) as isolation reagent, and to minimize its ash content using ethylenediaminetetraacetic acid (EDTA) as chelating agent. The independent variables were NaOH charge, EDTA charge and cooking time. Other two constant parameters were cooking temperature (98 °C) and liquid-to-solid ratio (7.5). The dependent variables were cellulose yield and ash content. A second-order polynomial model was used for plotting response surfaces and for determining optimum cooking conditions. The analysis of coefficient values for independent variables in the regression equation showed that NaOH and EDTA charges were major factors influencing the cellulose yield and ash content, respectively. Optimum conditions were defined by: NaOH charge 38.2%, EDTA charge 9.56%, and cooking time 317 min. The predicted cellulose yield was 24.06% and ash content 0.69%. A good agreement between the experimental values and the predicted was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Defining process design space for a hydrophobic interaction chromatography (HIC) purification step: application of quality by design (QbD) principles.

    PubMed

    Jiang, Canping; Flansburg, Lisa; Ghose, Sanchayita; Jorjorian, Paul; Shukla, Abhinav A

    2010-12-15

    The concept of design space has been taking root under the quality by design paradigm as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. This paper outlines the development of a design space for a hydrophobic interaction chromatography (HIC) process step. The design space included the impact of raw material lot-to-lot variability and variations in the feed stream from cell culture. A failure modes and effects analysis was employed as the basis for the process characterization exercise. During mapping of the process design space, the multi-dimensional combination of operational variables were studied to quantify the impact on process performance in terms of yield and product quality. Variability in resin hydrophobicity was found to have a significant influence on step yield and high-molecular weight aggregate clearance through the HIC step. A robust operating window was identified for this process step that enabled a higher step yield while ensuring acceptable product quality. © 2010 Wiley Periodicals, Inc.

  4. Response of winter and spring wheat grain yields to meteorological variation

    NASA Technical Reports Server (NTRS)

    Feyerherm, A. M.; Kanemasu, E. T.; Paulsen, G. M.

    1977-01-01

    Mathematical models which quantify the relation of wheat yield to selected weather-related variables are presented. Other sources of variation (amount of applied nitrogen, improved varieties, cultural practices) have been incorporated in the models to explain yield variation both singly and in combination with weather-related variables. Separate models were developed for fall-planted (winter) and spring-planted (spring) wheats. Meteorological variation is observed, basically, by daily measurements of minimum and maximum temperatures, precipitation, and tabled values of solar radiation at the edge of the atmosphere and daylength. Two different soil moisture budgets are suggested to compute simulated values of evapotranspiration; one uses the above-mentioned inputs, the other uses the measured temperatures and precipitation but replaces the tabled values (solar radiation and daylength) by measured solar radiation and satellite-derived multispectral scanner data to estimate leaf area index. Weather-related variables are defined by phenological stages, rather than calendar periods, to make the models more universally applicable.

  5. Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica.

    PubMed

    Samavati, Vahid; Adeli, Mostafa

    2014-01-30

    The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    PubMed Central

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  7. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  8. NUTRItion and CLIMate (NUTRICLIM): investigating the relationship between climate variables and childhood malnutrition through agriculture, an exploratory study in Burkina Faso.

    PubMed

    Sorgho, Raissa; Franke, Jonas; Simboro, Seraphin; Phalkey, Revati; Saeurborn, Rainer

    Malnutrition remains a leading cause of death in children in low- and middle-income countries; this will be aggravated by climate change. Annually, 6.9 million deaths of children under 5 were attributable directly or indirectly to malnutrition. Although these figures have recently decreased, evidence shows that a world with a medium climate (local warming up to 3-4 °C) will create an additional 25.2 million malnourished children. This proof of concept study explores the relationships between childhood malnutrition (more specifically stunting), regional agricultural yields, and climate variables through the use of remote sensing (RS) satellite imaging along with algorithms to predict the effect of climate variability on agricultural yields and on malnutrition of children under 5. The success of this proof of purpose study, NUTRItion and CLIMate (NUTRICLIM), should encourage researchers to apply both concept and tools to study of the link between weather variability, crop yield, and malnutrition on a larger scale. It would also allow for linking such micro-level data to climate models and address the challenge of projecting the additional impact of childhood malnutrition from climate change to various policy relevant time horizons.

  9. Brazil soybean yield covariance model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the seven soybean-growing states of Brazil. The meteorological data of these seven states were pooled and the years 1975 to 1980 were used to model since there was no technological trend in the yields during these years. Predictor variables were derived from monthly total precipitation and monthly average temperature.

  10. Evaluation of the CEAS trend and monthly weather data models for soybean yields in Iowa, Illinois, and Indiana

    NASA Technical Reports Server (NTRS)

    French, V. (Principal Investigator)

    1982-01-01

    The CEAS models evaluated use historic trend and meteorological and agroclimatic variables to forecast soybean yields in Iowa, Illinois, and Indiana. Indicators of yield reliability and current measures of modeled yield reliability were obtained from bootstrap tests on the end of season models. Indicators of yield reliability show that the state models are consistently better than the crop reporting district (CRD) models. One CRD model is especially poor. At the state level, the bias of each model is less than one half quintal/hectare. The standard deviation is between one and two quintals/hectare. The models are adequate in terms of coverage and are to a certain extent consistent with scientific knowledge. Timely yield estimates can be made during the growing season using truncated models. The models are easy to understand and use and are not costly to operate. Other than the specification of values used to determine evapotranspiration, the models are objective. Because the method of variable selection used in the model development is adequately documented, no evaluation can be made of the objectivity and cost of redevelopment of the model.

  11. Environmental and genetic factors affecting milk yield and quality in three Italian sheep breeds.

    PubMed

    Selvaggi, Maria; D'Alessandro, Angela Gabriella; Dario, Cataldo

    2017-02-01

    The aims of the study described in the Research Communication were to determine the level of influence of some environmental factors on milk yield and quality traits, including lactose, and lactation length in ewes belonging to three different Italian breeds and to estimate the heritability for the same traits. A total of 2138 lactation records obtained from 535 ewes belonging to three different Italian breeds (Comisana, Leccese, and Sarda) were used. Breed significantly affected all of the considered traits. Moreover, year of lambing affected milk yield and lactation length without influence on milk quality traits. Parity affected significantly only the milk yield, whereas type of birth showed its effect on milk yield, fat, protein, and lactose yield. On the whole, the presently reported heritability estimates are within the range of those already obtained in other dairy breeds by other authors, with values for lactation length being very low in all the investigated populations. Considering the heritability estimates for lactose content and yield, to the best of our knowledge, there is a lack of information on these parameters in ovine species and this is the first report on heritability of lactose content and yield in dairy sheep breeds. Our results suggest that genetic variability for milk traits other than lactation length is adequate for selection indicating a good response to selection in these breeds.

  12. Analysis of MINIE2013 Explosion Air-Blast Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnurr, Julie M.; Rodgers, Arthur J.; Kim, Keehoon

    We report analysis of air-blast overpressure measurements from the MINIE2013 explosive experiments. The MINIE2013 experiment involved a series of nearly 70 near-surface (height-ofburst, HOB, ranging from -1 to +4 m) low-yield (W=2-20 kg TNT equivalent) chemical highexplosives tests that were recorded at local distances (230 m – 28.5 km). Many of the W and HOB combinations were repeated, allowing for quantification of the variability in air-blast features and corresponding yield estimates. We measured canonical signal features (peak overpressure, impulse per unit area, and positive pulse duration) from the air-blast data and compared these to existing air-blast models. Peak overpressure measurementsmore » showed good agreement with the models at close ranges but tended to attenuate more rapidly at longer range (~ 1 km), which is likely caused by upward refraction of acoustic waves due to a negative vertical gradient of sound speed. We estimated yields of the MINIE2013 explosions using the Integrated Yield Determination Tool (IYDT). Errors of the estimated yields were on average within 30% of the reported yields, and there were no significant differences in the accuracy of the IYDT predictions grouped by yield. IYDT estimates tend to be lower than ground truth yields, possibly because of reduced overpressure amplitudes by upward refraction. Finally, we report preliminary results on a development of a new parameterized air-blast waveform.« less

  13. A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models

    NASA Astrophysics Data System (ADS)

    Holsman, Kirstin K.; Ianelli, James; Aydin, Kerim; Punt, André E.; Moffitt, Elizabeth A.

    2016-12-01

    Multi-species statistical catch at age models (MSCAA) can quantify interacting effects of climate and fisheries harvest on species populations, and evaluate management trade-offs for fisheries that target several species in a food web. We modified an existing MSCAA model to include temperature-specific growth and predation rates and applied the modified model to three fish species, walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias), from the eastern Bering Sea (USA). We fit the model to data from 1979 through 2012, with and without trophic interactions and temperature effects, and use projections to derive single- and multi-species biological reference points (BRP and MBRP, respectively) for fisheries management. The multi-species model achieved a higher over-all goodness of fit to the data (i.e. lower negative log-likelihood) for pollock and Pacific cod. Variability from water temperature typically resulted in 5-15% changes in spawning, survey, and total biomasses, but did not strongly impact recruitment estimates or mortality. Despite this, inclusion of temperature in projections did have a strong effect on BRPs, including recommended yield, which were higher in single-species models for Pacific cod and arrowtooth flounder that included temperature compared to the same models without temperature effects. While the temperature-driven multi-species model resulted in higher yield MBPRs for arrowtooth flounder than the same model without temperature, we did not observe the same patterns in multi-species models for pollock and Pacific cod, where variability between harvest scenarios and predation greatly exceeded temperature-driven variability in yield MBRPs. Annual predation on juvenile pollock (primarily cannibalism) in the multi-species model was 2-5 times the annual harvest of adult fish in the system, thus predation represents a strong control on population dynamics that exceeds temperature-driven changes to growth and is attenuated through harvest-driven reductions in predator populations. Additionally, although we observed differences in spawning biomasses at the accepted biological catch (ABC) proxy between harvest scenarios and single- and multi-species models, discrepancies in spawning stock biomass estimates did not translate to large differences in yield. We found that multi-species models produced higher estimates of combined yield for aggregate maximum sustainable yield (MSY) targets than single species models, but were more conservative than single-species models when individual MSY targets were used, with the exception of scenarios where minimum biomass thresholds were imposed. Collectively our results suggest that climate and trophic drivers can interact to affect MBRPs, but for prey species with high predation rates, trophic- and management-driven changes may exceed direct effects of temperature on growth and predation. Additionally, MBRPs are not inherently more conservative than single-species BRPs. This framework provides a basis for the application of MSCAA models for tactical ecosystem-based fisheries management decisions under changing climate conditions.

  14. Ozone and sulfur dioxide effects on three tall fescue cultivars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagler, R.B.; Youngner, V.B.

    Although many reports have been published concerning differential susceptibility of various crops and/or cultivars to air pollutants, most have used foliar injury instead of the marketable yield as the factor that determined susceptibility for the crop. In an examination of screening in terms of marketable yield, three cultivars of tall fescue (Festuca arundinacea Schreb.), 'Alta,' 'Fawn,' and 'Kentucky 31,' were exposed to 0-0.40 ppm O/sub 3/ or 0-0.50 ppm SO/sub 2/ 6 h/d, once a week, for 7 and 9 weeks, respectively. Experimental design was a randomized complete block with three replications. Statistical analysis was by standard analysis of variancemore » and regression techniques. Three variables were analyzed: top dry weight (yield), tiller number, and weight per tiller. Ozone had a significant effect on all three variables. Significant linear decreases in yield and weight per tiller occurred with increasing O/sub 3/ concentrations. Linear regressions of these variables on O/sub 3/ concentration produced significantly different regression coefficients. The coefficient for Kentucky 31 was significantly greater than Alta or Fawn, which did not differ from each other. This indicated that Kentucky 31 was more susceptible to O/sub 3/ than either of the other cultivars. Percent reductions in dry weight for the three cultivars at highest O/sub 3/ level were 35, 44, and 53%, respectively, for Fawn, Alta, and Kentucky 31. For weight per tiller, Kentucky 31 had a higher percent reduction than the other cultivars (59 vs. 46 and 44%). Tiller number was generally increased by O/sub 3/, but this variable was not useful for determining differential susceptibility to the pollutant. Sulfur dioxide treatments produced no significant effects on any of the variables analyzed.« less

  15. Intelligent Use of Intelligence Tests: Empirical and Clinical Support for Canadian WAIS-IV Norms

    ERIC Educational Resources Information Center

    Miller, Jessie L.; Weiss, Lawrence G.; Beal, A. Lynne; Saklofske, Donald H.; Zhu, Jianjun; Holdnack, James A.

    2015-01-01

    It is well established that Canadians produce higher raw scores than their U.S. counterparts on intellectual assessments. As a result of these differences in ability along with smaller variability in the population's intellectual performance, Canadian normative data will yield lower standard scores for most raw score points compared to U.S. norms.…

  16. Variability and Variation of L2 Grammar: A Cross-Sectional Analysis of German Learners' Performance on Two Tasks

    ERIC Educational Resources Information Center

    Abrams, Zsuzsanna; Rott, Susanne

    2017-01-01

    Research on second language (L2) grammar in task-based language learning has yielded inconsistent results regarding the effects of task-complexity, prompting calls for more nuanced analyses of L2 development and task performance. The present cross-sectional study contributes to this discussion by comparing the performance of 245 learners of German…

  17. Evolution of learning strategies in temporally and spatially variable environments: A review of theory

    PubMed Central

    Aoki, Kenichi; Feldman, Marcus W.

    2013-01-01

    The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change – coevolutionary, two-timescale, and information decay – are compared and shown to sometimes yield contradictory results. The so-called Rogers’ paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers’ paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. PMID:24211681

  18. Evolution of learning strategies in temporally and spatially variable environments: a review of theory.

    PubMed

    Aoki, Kenichi; Feldman, Marcus W

    2014-02-01

    The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change--coevolutionary, two-timescale, and information decay--are compared and shown to sometimes yield contradictory results. The so-called Rogers' paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers' paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Bromide's effect on DBP formation, speciation, and control; Part 1: Ozonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukairy, H.M.; Summers, R.S.; Miltner, R.J.

    1994-06-01

    The effect of variable ozone dosage and bromide concentration on the formation of organic disinfection by-products (DBPs) and bromate were evaluated. Low ozone dosages resulted in oxidation of organic precursors, yielding decreases in the formation potential for total trihalomethanes (THMs), six haloacetic acids (HAAs), and total organic halide (TOX). Increasing the ozone dosage oxidized bromide to bromate, decreasing the bromide for incorporation into DBPs. Bromate concentrations were linearly correlated with ozone residuals. Changes in the bromine incorporation factors n and n[prime] reflected differences in the resulting speciation of THMs and HAAs, respectively. Because TOX measurements based on chloride equivalence maymore » underestimate the halogenated DBP yield for high-bromide waters, a procedure is described whereby bromide and bromate concentrations were used to correct the TOX measurement.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavas, Daniel R.; Izaurralde, Roberto C.; Thomson, Allison M.

    Increasing atmospheric greenhouse gas concentrations are expected to induce significant climate change over the next century and beyond, but the impacts on society remain highly uncertain. This work examines potential climate change impacts on the productivity of five major crops in northeastern China: canola, corn, potato, rice, and winter wheat. In addition to determining domain-wide trends, the objective is to identify vulnerable and emergent regions under future climate conditions, defined as having a greater than 10% decrease and increase in productivity, respectively. Data from the ICTP RegCM3 regional climate model for baseline (1961-1990) and future (2071-2100) periods under A2 scenariomore » conditions are used as input in the EPIC agro-ecosystem simulation model in the domain [30ºN, 108ºE] to [42ºN, 123ºE]. Simulations are performed with and without the enhanced CO2 fertilization effect. Results indicate that aggregate potential productivity (i.e. if the crop is grown everywhere) increases 6.5% for rice, 8.3% for canola, 18.6% for corn, 22.9% for potato, and 24.9% for winter wheat, although with significant spatial variability for each crop. However, absent the enhanced CO2 fertilization effect, potential productivity declines in all cases ranging from 2.5-12%. Interannual yield variability remains constant or declines in all cases except rice. Climate variables are found to be more significant drivers of simulated yield changes than changes in soil properties, except in the case of potato production in the northwest where the effects of wind erosion are more significant. Overall, in the future period corn and winter wheat benefit significantly in the North China Plain, rice remains dominant in the southeast and emerges in the northeast, potato and corn yields become viable in the northwest, and potato yields suffer in the southwest with no other crop emerging as a clear beneficiary from among those simulated in this study.« less

  1. A potato model intercomparison across varying climates and productivity levels.

    PubMed

    Fleisher, David H; Condori, Bruno; Quiroz, Roberto; Alva, Ashok; Asseng, Senthold; Barreda, Carolina; Bindi, Marco; Boote, Kenneth J; Ferrise, Roberto; Franke, Angelinus C; Govindakrishnan, Panamanna M; Harahagazwe, Dieudonne; Hoogenboom, Gerrit; Naresh Kumar, Soora; Merante, Paolo; Nendel, Claas; Olesen, Jorgen E; Parker, Phillip S; Raes, Dirk; Raymundo, Rubi; Ruane, Alex C; Stockle, Claudio; Supit, Iwan; Vanuytrecht, Eline; Wolf, Joost; Woli, Prem

    2017-03-01

    A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach. © 2016 John Wiley & Sons Ltd.

  2. Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW

    NASA Astrophysics Data System (ADS)

    Duan, W. L.; He, B.; Takara, K.; Luo, P. P.; Nover, D.; Hu, M. C.

    2015-03-01

    It is important to understand the mechanisms that control the fate and transport of suspended sediment (SS) in rivers, because high suspended sediment loads have significant impacts on riverine hydroecology. In this study, the SPARROW (SPAtially Referenced Regression on Watershed Attributes) watershed model was applied to estimate the sources and transport of SS in surface waters of the Ishikari River basin (14 330 km2), the largest watershed in Hokkaido, Japan. The final developed SPARROW model has four source variables (developing lands, forest lands, agricultural lands, and stream channels), three landscape delivery variables (slope, soil permeability, and precipitation), two in-stream loss coefficients, including small streams (streams with drainage area < 200 km2) and large streams, and reservoir attenuation. The model was calibrated using measurements of SS from 31 monitoring sites of mixed spatial data on topography, soils and stream hydrography. Calibration results explain approximately 96% (R2) of the spatial variability in the natural logarithm mean annual SS flux (kg yr-1) and display relatively small prediction errors at the 31 monitoring stations. Results show that developing land is associated with the largest sediment yield at around 1006 kg km-2 yr-1, followed by agricultural land (234 kg km-2 yr-1). Estimation of incremental yields shows that 35% comes from agricultural lands, 23% from forested lands, 23% from developing lands, and 19% from stream channels. The results of this study improve our understanding of sediment production and transportation in the Ishikari River basin in general, which will benefit both the scientific and management communities in safeguarding water resources.

  3. Comparative Effectiveness of Frame-based, Frameless and Intraoperative MRI Guided Brain Biopsy Techniques

    PubMed Central

    Lu, Yi; Yeung, Cecil; Radmanesh, Alireza; Wiemann, Robert; Black, Peter M.; Golby, Alexandra J.

    2015-01-01

    Objective Intraoperative MRI (IoMRI) guided brain biopsy provides a real time visual feedback of the lesion that is sampled during surgery. The objective of the study is to compare the diagnostic yield and safety profiles of ioMRI needle brain biopsy with two traditional brain biopsy methods: frame-based and frameless stereotactic brain biopsies. Methods A retrospective analysis from 288 consecutive needle brain biopsies in 277 patients undergoing stereotactic brain biopsy with any of the three biopsy methods at Brigham and Women's Hospital from 2000 to 2008 was performed. Variables such as age, sex, history of radiation and previous surgery, pathology results, complications and postoperative stays were analyzed. Results Over the course of eight years, 288 brain biopsies were performed. 253 (87.8%) biopsies yielded positive diagnostic tissue. Young age (<40 years), history of brain radiation or surgery were significant negative predictors for a positive biopsy diagnostic yield. Excluding patients with prior radiation or surgeries, no significant difference in diagnostic yield was detected among the three groups, with frame-based, frameless and ioMRI guided needle biopsies yield 96.9%, 91.8% and 89.9% positive diagnostic yield, respectively. 19 biopsies (6.6%) were complicated by serious adverse events. The ioMRI-guided brain biopsy was associated with less serious adverse events and the shortest postoperative hospital stay. Conclusions Frame-based, frameless stereotactic and ioMRI guided brain needle biopsy have comparable diagnostic yield for patients with no prior treatments (either radiation or surgery). IoMRI guided brain biopsy is associated with fewer serious adverse events and shorter hospital stay. PMID:25088233

  4. What Is the Role of Land-Use Compositions and Spatial Configurations in Sediment Yield from Mountainous Watershed?

    NASA Astrophysics Data System (ADS)

    Shi, Z. H.

    2014-12-01

    There are strong ties between land use and sediment yield in watersheds. Many studies have used multivariate regression techniques to explore the response of sediment yield to land-use compositions and spatial configurations in watersheds. However, one issue with the use of conventional statistical methods to address relationships between land-use compositions and spatial configurations and sediment yield is multicollinearity. This paper examines the combined effects of land-use compositions and land-use spatial configurations of the watershed on the specific sediment yield of the Upper Du River watershed (8,973 km2) in China using the Soil and Water Assessment Tool (SWAT) and partial least-squares regression (PLSR). The land-use compositions and spatial configurations of the watershed were calculated at the sub-watershed scale. The sediment yields from sub-watershed were evaluated using SWAT model. The first-order factors were identified by calculating the variable importance for the projection (VIP). The results revealed that the land-use compositions exerted the largest effects on the specific sediment yield and explained 61.2% of the variation in the specific sediment yield. Land-use spatial configurations were also found to have a large effect on the specific sediment yield and explained 21.7% of the observed variation in the specific sediment yield. The following are the dominant first-order factors of the specific sediment yield at the sub-watershed scale: the areal percentages of agriculture and forest, patch density, value of the Shannon's diversity index, contagion. The VIP values suggested that the Shannon's diversity index and contagion are important factors for sediment delivery.

  5. Effect of structural carbohydrates and lignin content on the anaerobic digestion of paper and paper board materials by anaerobic granular sludge.

    PubMed

    Gonzalez-Estrella, Jorge; Asato, Caitlin M; Jerke, Amber C; Stone, James J; Gilcrease, Patrick C

    2017-05-01

    Anaerobic digestion (AD) of lignocellulosic materials is commonly limited by the hydrolysis step. Unlike unprocessed lignocellulosic materials, paper and paper board (PPB) are processed for their fabrication. Such modifications may affect their methane yields and methane production rates. Previous studies have investigated the correlation between lignin and biomethane yields of unprocessed lignocellulosic materials; nevertheless, there is limited knowledge regarding the relationship between the AD kinetic parameters and composition of PPB. This study evaluated correlations of methane yields and Monod and Gompertz kinetic parameters with structural carbohydrates, lignin, and ash concentration of five types of PPBs. All components were used as single and combined independent variables in linear regressions to predict methane yield, maximum specific methanogenic activity (SMA max ), saturation constant (K s ), and lag phase (λ). Additionally, microbial community profiles were obtained for each PPB assay. Results showed methane yields ranging from 69.2 ± 8.61 to 97.2 ± 2.29% of PPB substrates provided. The highest correlation coefficients were obtained for SMA max as function of hemicellulose/(lignin + ash) (R 2  = 0.86) and for λ as a function of lignin + cellulose (R 2  = 0.85). All other parameters exhibited weaker correlations (R 2  ≤ 0.77). Relative abundance analyses revealed no major changes in the community profile for each of the substrates evaluated. The overall findings of this study are: (i) combinations of structural carbohydrates, lignin, and ash used as ratios of degradable to either non-degradable or slowly degradable fractions predict AD kinetic parameters of PPB materials better than single independent variables; and (ii) other components added during their fabrication may also influence both methane yield and kinetic parameters. Biotechnol. Bioeng. 2017;114: 951-960. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2 O emissions.

    PubMed

    Ehrhardt, Fiona; Soussana, Jean-François; Bellocchi, Gianni; Grace, Peter; McAuliffe, Russel; Recous, Sylvie; Sándor, Renáta; Smith, Pete; Snow, Val; de Antoni Migliorati, Massimiliano; Basso, Bruno; Bhatia, Arti; Brilli, Lorenzo; Doltra, Jordi; Dorich, Christopher D; Doro, Luca; Fitton, Nuala; Giacomini, Sandro J; Grant, Brian; Harrison, Matthew T; Jones, Stephanie K; Kirschbaum, Miko U F; Klumpp, Katja; Laville, Patricia; Léonard, Joël; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; Massad, Raia S; Meier, Elizabeth; Merbold, Lutz; Moore, Andrew D; Myrgiotis, Vasileios; Newton, Paul; Pattey, Elizabeth; Rolinski, Susanne; Sharp, Joanna; Smith, Ward N; Wu, Lianhai; Zhang, Qing

    2018-02-01

    Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N 2 O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N 2 O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N 2 O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N 2 O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N 2 O emissions. Yield-scaled N 2 O emissions (N 2 O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N 2 O emissions at field scale is discussed. © 2017 John Wiley & Sons Ltd.

  7. The Effects of Temperature and Precipitation on the Yield of Zea Mays L. I the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Stooksbury, David Emory

    Three families of straightforward maize (Zea mays L.) yield/climate models using monthly temperature and precipitation terms are produced. One family of models uses USDA's Crop Reporting Districts (CRD) as its scale of aggregation. The other two families of models use three different district aggregates based on climate or yield patterns. The climate and yield districts are determined by using a two-stage cluster analysis. The CRD-based family of models perform as well as the climate and yield based models. All models explain between 80% and 90% of the variance in maize yield. The most important climate term affecting maize yield in the South is the daily maximum temperature at pollination time. The higher the maximum temperature, the lower the yield. Above normal minimum temperature during pollination increases yield in the Middle South. Weather that favors early planting and rapid vegetative growth increases yield. Ideal maize yield weather includes a dry period during planting followed by a warm period during vegetative growth. Moisture variables are important only during the planting and harvest periods when above normal precipitation delays field work and thereby reduces yield. The model results indicate that the dire predictions about the fate of Southern agriculture in a trace gas warmed world may not be true. This is due to the overwhelming influence of the daily maximum temperature on yield. An optimum aggregate for climate impact studies was not found. I postulate that this is due to the dynamic nature of the American maize production system. For most climate impact studies on a dynamic agricultural system, there does not need to be a concern about the model aggregation.

  8. Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms

    PubMed Central

    Dube, Timothy; Mutanga, Onisimo; Adam, Elhadi; Ismail, Riyad

    2014-01-01

    The quantification of aboveground biomass using remote sensing is critical for better understanding the role of forests in carbon sequestration and for informed sustainable management. Although remote sensing techniques have been proven useful in assessing forest biomass in general, more is required to investigate their capabilities in predicting intra-and-inter species biomass which are mainly characterised by non-linear relationships. In this study, we tested two machine learning algorithms, Stochastic Gradient Boosting (SGB) and Random Forest (RF) regression trees to predict intra-and-inter species biomass using high resolution RapidEye reflectance bands as well as the derived vegetation indices in a commercial plantation. The results showed that the SGB algorithm yielded the best performance for intra-and-inter species biomass prediction; using all the predictor variables as well as based on the most important selected variables. For example using the most important variables the algorithm produced an R2 of 0.80 and RMSE of 16.93 t·ha−1 for E. grandis; R2 of 0.79, RMSE of 17.27 t·ha−1 for P. taeda and R2 of 0.61, RMSE of 43.39 t·ha−1 for the combined species data sets. Comparatively, RF yielded plausible results only for E. dunii (R2 of 0.79; RMSE of 7.18 t·ha−1). We demonstrated that although the two statistical methods were able to predict biomass accurately, RF produced weaker results as compared to SGB when applied to combined species dataset. The result underscores the relevance of stochastic models in predicting biomass drawn from different species and genera using the new generation high resolution RapidEye sensor with strategically positioned bands. PMID:25140631

  9. Bayesian imperfect information analysis for clinical recurrent data

    PubMed Central

    Chang, Chih-Kuang; Chang, Chi-Chang

    2015-01-01

    In medical research, clinical practice must often be undertaken with imperfect information from limited resources. This study applied Bayesian imperfect information-value analysis to realistic situations to produce likelihood functions and posterior distributions, to a clinical decision-making problem for recurrent events. In this study, three kinds of failure models are considered, and our methods illustrated with an analysis of imperfect information from a trial of immunotherapy in the treatment of chronic granulomatous disease. In addition, we present evidence toward a better understanding of the differing behaviors along with concomitant variables. Based on the results of simulations, the imperfect information value of the concomitant variables was evaluated and different realistic situations were compared to see which could yield more accurate results for medical decision-making. PMID:25565853

  10. Between-cow variation in digestion and rumen fermentation variables associated with methane production.

    PubMed

    Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J; Huhtanen, P

    2017-06-01

    A meta-analysis based on an individual-cow data set was conducted to investigate the effects of between-cow variation and related animal variables on predicted CH 4 emissions from dairy cows. Data were taken from 40 change-over studies consisting of a total of 637 cow/period observations. Animal production and rumen fermentation characteristics were measured for 154 diets in 40 studies; diet digestibility was measured for 135 diets in 34 studies, and ruminal digestion kinetics was measured for 56 diets in 15 studies. The experimental diets were based on grass silage, with cereal grains or by-products as energy supplements, and soybean or canola meal as protein supplements. Average forage:concentrate ratio across all diets on a dry matter basis was 59:41. Methane production was predicted from apparently fermented substrate using stoichiometric principles. Data were analyzed by mixed-model regression using diet and period within experiment as random effects, thereby allowing the effect of experiment, diet, and period to be excluded. Dry matter intake and milk yield were more repeatable experimental measures than rumen fermentation, nutrient outflow, diet digestibility, or estimated CH 4 yield. Between-cow coefficient of variation (CV) was 0.010 for stoichiometric CH 4 per mol of volatile fatty acids and 0.067 for predicted CH 4 yield (CH 4 /dry matter intake). Organic matter digestibility (OMD) also displayed little between-cow variation (CV = 0.013), indicating that between-cow variation in diet digestibility and rumen fermentation pattern do not markedly contribute to between cow-variation in CH 4 yield. Digesta passage rate was much more variable (CV = 0.08) between cows than OMD or rumen fermentation pattern. Increased digesta passage rate is associated with improved energetic efficiency of microbial N synthesis, which partitions fermented substrate from volatile fatty acids and gases to microbial cells that are more reduced than fermented carbohydrates. Positive relationships were observed between CH 4 per mol of volatile fatty acids versus OMD and rumen ammonia N concentration versus OMD; and negative relationships between the efficiency of microbial N synthesis versus OMD and digesta passage rate versus OMD, suggesting that the effects of these variables on CH 4 yield were additive. It can be concluded that variations in OMD and efficiency in microbial N synthesis resulting from variations in digesta passage contribute more to between-animal variation in CH 4 emissions than rumen fermentation pattern. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Monitoring Agricultural Drought Using Geographic Information Systems and Remote Sensing on the Primary Corn and Soybean Belt in the United States

    NASA Astrophysics Data System (ADS)

    Al-Shomrany, Adel

    The study aims to evaluate various remote sensing drought indices to assess those most fitting for monitoring agricultural drought. The objectives are (1) to assess and study the impact of drought effect on (corn and soybean) crop production by crop mapping information and GIS technology; (2) to use Geographical Weighted Regression (GWR) as a technical approach to evaluate the spatial relationships between precipitation vs. irrigated and non-irrigated corn and soybean yield, using a Nebraska county-level case study; (3) to assess agricultural drought indices derived from remote sensing (NDVI, NMDI, NDWI, and NDII6); (4) to develop an optimal approach for agricultural drought detection based on remote sensing measurements to determine the relationship between US county-level yields versus relatively common variables collected. Extreme drought creates low corn and soybean production where irrigation systems are not implemented. This results in a lack of moisture in soil leading to dry land and stale crop yields. When precipitation and moisture is found across all states, corn and soybean production flourishes. For Kansas, Nebraska, and South Dakota, irrigation management methods assist in strong crop yields throughout SPI monthly averages. The data gathered on irrigation consisted of using drought indices gathered by the national agricultural statistics service website. For the SPI levels ranging between one-month and nine-months, Kansas and Nebraska performed the best out of all 12-states contained in the Midwestern primary Corn and Soybean Belt. The reasoning behind Kansas and Nebraska's results was due to a more efficient and sustainable irrigation system, where upon South Dakota lacked. South Dakota was leveled by strong correlations throughout all SPI periods for corn only. Kansas showed its strongest correlations for the two-month and three-month averages, for both corn and soybean. Precipitation regression with irrigated and non-irrigated maize (corn) and soybean levels show yields as a function of precipitation. The GWR models predicted that yields were significantly better than OLS performances for maize (corn) and soybean. The OLS regression model when used showed a general trend of correlation between observed yields and long-term mean precipitation totals, with 84% and 63% of the variability in mean yield explained by the mean annual precipitation for the non-irrigated crops. The GWR technique performance in predicting yields was significantly better than OLS performances. For instance in the months of June, July, and August precipitations had greater impacts on maize (corn) yields than soybeans under non-irrigated conditions as a result of the greater sensitivity maize (corn) had to water stress. SPI is capable of offering various time-scales enabling it to show initial warning signs of drought conditions and accompanying severity levels. SPI calculation techniques used for various locations are reflected upon the precipitation records acquired during those periods. Over the 3, 6, and 9-month periods, NDII6 performed the best out of all of the MODIS indices as shown in its results in monitoring vegetation moisture and drought detection. NDII6 performed the best due to its detection abilities. The 9-month SPI provides an indication of inter-seasonal precipitation patterns over medium timescale duration. A new approach used is to average corn and soybean yields for all counties of the study area in comparison with average anomalies of the MODIS indices for the growing season between May through September from 2006-2012. There was a strong correlation between average corn yields versus MODIS NDII6 averages for these years with R2 equaling 0.62. That means NDII6 is the best indicator to show drought conditions and vegetation moisture monitoring. There was a weak correlation with R2 = 0.16 between averages of soybean yields and averages of precipitation. Irrigation and management systems, technological improvements from hybrids, producer management techniques, and other management practices have an impact on crop yield productions. (Abstract shortened by ProQuest.).

  12. THE BERLIN EXOPLANET SEARCH TELESCOPE II CATALOG OF VARIABLE STARS. I. CHARACTERIZATION OF THREE SOUTHERN TARGET FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruth, T.; Cabrera, J.; Csizmadia, Sz.

    2013-11-01

    A photometric survey of three southern target fields with BEST II yielded the detection of 2406 previously unknown variable stars and an additional 617 stars with suspected variability. This study presents a catalog including their coordinates, magnitudes, light curves, ephemerides, amplitudes, and type of variability. In addition, the variability of 17 known objects is confirmed, thus validating the results. The catalog contains a number of known and new variables that are of interest for further astrophysical investigations, in order to, e.g., search for additional bodies in eclipsing binary systems, or to test stellar interior models. Altogether, 209,070 stars were monitoredmore » with BEST II during a total of 128 nights in 2009/2010. The overall variability fraction of 1.2%-1.5% in these target fields is well comparable to similar ground-based photometric surveys. Within the main magnitude range of R in [11, 17], we identify 0.67(3)% of all stars to be eclipsing binaries, which indicates a completeness of about one third for this particular type in comparison to space surveys.« less

  13. Late Language Emergence at 24 Months: An Epidemiological Study of Prevalence, Predictors, and Covariates

    PubMed Central

    Zubrick, Stephen R.; Taylor, Catherine L.; Rice, Mabel L.

    2012-01-01

    Purpose The primary objectives of this study were to determine the prevalence of late language emergence (LLE) and to investigate the predictive status of maternal, family, and child variables. Method This is a prospective cohort study of 1766 epidemiologically ascertained twenty-four-month singleton children. The framework was an ecological model of child development, encompassing a wide range of maternal, family, and child variables. Data were obtained using postal questionnaire. Item analyses of the 6-item Ages and Stages Questionnaire (ASQ) Communication Scale yielded a composite score encompassing comprehension as well as production items. One standard deviation below the mean yielded good separation of affected from unaffected children. Analyses of bivariate relationships with maternal, family, and child variables were carried out, followed by multivariate logistic regression to predict LLE group membership. Results 13.4% of the sample showed late language emergence via the ASQ criterion; 19.1% using a single item “combining words.” Risk for LLE at 24 months was not associated with particular strata of parental educational levels, socioeconomic resources, parental mental health, parenting practices or family functioning. Significant predictors included familial history of late language emergence, male gender and early neurobiological growth. Covariates included psychosocial indicators. Conclusion Results are congruent with models of language emergence and impairment that posit a strong role for neurobiological and genetic mechanisms of onset that operate across a wide variation in maternal and family characteristics. PMID:18055773

  14. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity.

    PubMed

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-09-01

    At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study sought to test whether visual and auditory cues are optimally integrated at that specific kinematic marker when it is the critical part of the trajectory. Participants performed an upper-limb movement in which they were required to reach their peak limb velocity when the right index finger intersected a virtual target (i.e., a flinging movement). Brief auditory, visual, or audiovisual feedback (i.e., 20 ms in duration) was provided to participants at peak limb velocity. Performance was assessed primarily through the resultant position of peak limb velocity and the variability of that position. Relative to when no feedback was provided, auditory feedback significantly reduced the resultant endpoint variability of the finger position at peak limb velocity. However, no such reductions were found for the visual or audiovisual feedback conditions. Further, providing both auditory and visual cues concurrently also failed to yield the theoretically predicted improvements in endpoint variability. Overall, the central nervous system can make significant use of an auditory cue but may not optimally integrate a visual and auditory cue at peak limb velocity, when peak velocity is the critical part of the trajectory.

  15. Supporting Climatic Trends of Corn and Soybean Production in the USA

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cherkauer, K. A.; Verdin, J. P.

    2010-12-01

    The United States of America (USA) is a major source of corn and soybeans, producing about 39 percent of the world’s corn and 50 percent of world’s soybean supply. The north central states, including parts of the Midwestern US and the Great Plains form what is commonly described as the “Corn Belt” and consist of the most productive grain growing region in the United States. Changes in climate, including precipitation and temperature, are being observed throughout the world, and the Corn Belt region of the US is not immune posing a potential threat to global food security. We conducted a retrospective analysis of observed climate variables and crop production statistics to evaluate if observed climatic trends are having a positive or negative effect on corn and soybean production in the US. We selected climate indices based on gridded daily precipitation, maximum and minimum air temperature data from the National Climatic Data Center (NCDC) for the period of 1920-2009 and for 13 states in the Corn Belt region. We used the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for different periods overlapping the important seasons for crop growths, such as the planting (April-May), grain-filling (June-August), and harvesting (September -October) seasons. We estimated the seasonal average of maximum and minimum daily temperatures to identify the historic trends and variability in air temperature during the key crop-growth seasons. Extreme warm temperatures can affect crop growth and yields adversely; therefore, cumulative maximum air temperature above the 90th percentiles (e.g. Cumulative Heat Index) was estimated for each growing period. We evaluated historic trends and variability of areal extents of severe or extreme droughts along with the areal extents facing the high cumulative heat stress. Our results showed that climatic extremes (e.g. droughts and heat stress) that occurred during the period of June - August (JJA), affected the yields of corn and soybeans most severely. High moisture and low heat stress during the JJA period favored crop yields, while low moisture and high heat conditions during the planting season (April-May) increased yields. Results also indicated that this part of the US is trending towards lower heat stress and drought extents, and higher moisture conditions during the JJA period. Therefore, in future, if the present trends persist, we expect the climate will more supportive of increased corn and soybean yields.

  16. Benefits of seasonal forecasts of crop yields

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  17. Evidence for a weakening strength of temperature-corn yield relation in the United States during 1980–2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong

    Temperature is known to be correlated with crop yields, causing reduction of crop yield with climate warming without adaptations or CO2 fertilization effects. The historical temperature-crop yield relation has often been used for informing future changes. This relationship, however, may change over time following alternations in other environmental factors. Results show that the strength of the relationship between the interannual variability of growing season temperature and corn yield (RGST_CY) has declined in the United States between 1980 and 2010 with a loss in the statistical significance. The regression slope which represents the anomalies in corn yield that occur in associationmore » with 1 degree temperature anomaly has decreased significantly from -6.9%/K of the first half period to -2.4%/K~-3.5%/K of the second half period. This implies that projected corn yield reduction will be overestimated by a fact of 2 in a given warming scenario, if the corn-temperature relation is derived from the earlier historical period. Changes in RGST_CY are mainly observed in Midwest Corn Belt and central High Plains, and are well reproduced by 11 process-based crop models. In Midwest rain-fed systems, the decrease of negative temperature effects coincides with an increase in water availability by precipitation. In irrigated areas where water stress is minimized, the decline of beneficial temperature effects is significantly related to the increase in extreme hot days. The results indicate that an extrapolation of historical yield response to temperature may bias the assessment of agriculture vulnerability to climate change. Efforts to reduce climate impacts on agriculture should pay attention not only to climate change, but also to changes in climate-crop yield relations. There are some caveats that should be acknowledged as the analysis is restricted to the changes in the linear relation between growing season mean temperature and corn yield for the specific study period.« less

  18. Evidence for a weakening strength of temperature-corn yield relation in the United States during 1980-2010.

    PubMed

    Leng, Guoyong

    2017-12-15

    Temperature is known to be correlated with crop yields, causing reduction of crop yield with climate warming without adaptations or CO 2 fertilization effects. The historical temperature-crop yield relation has often been used for informing future changes. This relationship, however, may change over time following alternations in other environmental factors. Results show that the strength of the relationship between the interannual variability of growing season temperature and corn yield (R GST_CY ) has declined in the United States between 1980 and 2010 with a loss in the statistical significance. The regression slope which represents the anomalies in corn yield that occur in association with 1 degree temperature anomaly has decreased significantly from -6.9%/K of the first half period to -2.4%/K--3.5%/K of the second half period. This implies that projected corn yield reduction will be overestimated by a fact of 2 in a given warming scenario, if the corn-temperature relation is derived from the earlier historical period. Changes in R GST_CY are mainly observed in Midwest Corn Belt and central High Plains, but are partly reproduced by 11 process-based crop models. In Midwest rain-fed systems, the decrease of negative temperature effects coincides with an increase in water availability by precipitation. In irrigated areas where water stress is minimized, the decline of beneficial temperature effects is significantly related to the increase in extreme hot days. The results indicate that an extrapolation of historical yield response to temperature may bias the assessment of agriculture vulnerability to climate change. Efforts to reduce climate impacts on agriculture should pay attention not only to climate change, but also to changes in climate-crop yield relations. There are some caveats that should be acknowledged as the analysis is restricted to the changes in the linear relation between growing season mean temperature and corn yield for the specific study period. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Extraction of citral oil from lemongrass (Cymbopogon Citratus) by steam-water distillation technique

    NASA Astrophysics Data System (ADS)

    Alam, P. N.; Husin, H.; Asnawi, T. M.; Adisalamun

    2018-04-01

    In Indonesia, production of citral oil from lemon grass (Cymbopogon Cytratus) is done by a traditional technique whereby a low yield results. To improve the yield, an appropriate extraction technology is required. In this research, a steam-water distillation technique was applied to extract the essential oil from the lemongrass. The effects of sample particle size and bed volume on yield and quality of citral oil produced were investigated. The drying and refining time of 2 hours were used as fixed variables. This research results that minimum citral oil yield of 0.53% was obtained on sample particle size of 3 cm and bed volume of 80%, whereas the maximum yield of 1.95% on sample particle size of 15 cm and bed volume of 40%. The lowest specific gravity of 0.80 and the highest specific gravity of 0.905 were obtained on sample particle size of 8 cm with bed volume of 80% and particle size of 12 cm with bed volume of 70%, respectively. The lowest refractive index of 1.480 and the highest refractive index of 1.495 were obtained on sample particle size of 8 cm with bed volume of 70% and sample particle size of 15 cm with bed volume of 40%, respectively. The solubility of the produced citral oil in alcohol was 70% in ratio of 1:1, and the citral oil concentration obtained was around 79%.

  20. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans.

    PubMed

    Falkowski, Paul G; Lin, Hanzhi; Gorbunov, Maxim Y

    2017-09-26

    Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  1. Climate Change Impacts on Agriculture and Food Security in 2050 under a Range of Plausible Socioeconomic and Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Wiebe, K.; Lotze-Campen, H.; Bodirsky, B.; Kavallari, A.; Mason-d'Croz, D.; van der Mensbrugghe, D.; Robinson, S.; Sands, R.; Tabeau, A.; Willenbockel, D.; Islam, S.; van Meijl, H.; Mueller, C.; Robertson, R.

    2014-12-01

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. New work extends that analysis to cover a range of plausible socioeconomic scenarios and emission pathways. Results from three general circulation models are combined with one crop model and five global economic models to examine the global and regional impacts of climate change on yields, area, production, prices and trade for coarse grains, rice, wheat, oilseeds and sugar to 2050. Results show that yield impacts vary with changes in population, income and technology as well as emissions, but are reduced in all cases by endogenous changes in prices and other variables.

  2. VizieR Online Data Catalog: RR Lyrae in SDSS Stripe 82 (Suveges+, 2012)

    NASA Astrophysics Data System (ADS)

    Suveges, M.; Sesar, B.; Varadi, M.; Mowlavi, N.; Becker, A. C.; Ivezic, Z.; Beck, M.; Nienartowicz, K.; Rimoldini, L.; Dubath, P.; Bartholdi, P.; Eyer, L.

    2013-05-01

    We propose a robust principal component analysis framework for the exploitation of multiband photometric measurements in large surveys. Period search results are improved using the time-series of the first principal component due to its optimized signal-to-noise ratio. The presence of correlated excess variations in the multivariate time-series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude delta Scuti variables. We also found 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample also comprises 25 multiperiodic or Blazhko RR Lyrae stars. (8 data files).

  3. Effect of temperature, time, and milling process on yield, flavonoid, and total phenolic content of Zingiber officinale water extract

    NASA Astrophysics Data System (ADS)

    Andriyani, R.; Kosasih, W.; Ningrum, D. R.; Pudjiraharti, S.

    2017-03-01

    Several parameters such as temperature, time of extraction, and size of simplicia play significant role in medicinal herb extraction. This study aimed to investigate the effect of those parameters on yield extract, flavonoid, and total phenolic content in water extract of Zingiber officinale. The temperatures used were 50, 70 and 90°C and the extraction times were 30, 60 and 90 min. Z. officinale in the form of powder and chips were used to study the effect of milling treatment. The correlation among those variables was analysed using ANOVA two-way factors without replication. The result showed that time and temperature did not influence the yield of extract of Powder simplicia. However, time of extraction influenced the extract of simplicia treated without milling process. On the other hand, flavonoid and total phenolic content were not influenced by temperature, time, and milling treatment.

  4. Relations among storage, yield, and instream flow

    NASA Astrophysics Data System (ADS)

    Vogel, Richard M.; Sieber, Jack; Archfield, Stacey A.; Smith, Mark P.; Apse, Colin D.; Huber-Lee, Annette

    2007-05-01

    An extensive literature documents relations between reservoir storage capacity and water supply yield and the properties of instream flow needed to support downstream aquatic ecosystems. However, the literature that evaluates the impact of reservoir operating rules on instream flow properties is limited to a few site-specific studies, and as a result, few general conclusions can be drawn to date. This study adapts the existing generalized water evaluation and planning model (WEAP) to enable general explorations of relations between reservoir storage, instream flow, and water supply yield for a wide class of reservoirs and operating rules. Generalized relationships among these variables document the types of instream flow policies that when combined with drought management strategies, are likely to provide compromise solutions to the ecological and human negotiations for water for different sized reservoir systems. The concept of a seasonal ecodeficit/ecosurplus is introduced for evaluating the impact of reservoir regulation on ecological flow regimes.

  5. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid.

    PubMed

    Sacha, Gregory A; Schmitt, William J; Nail, Steven L

    2006-01-01

    The critical processing parameters affecting average particle size, particle size distribution, yield, and level of residual carrier solvent using the supercritical anti-solvent method (SAS) were identified. Carbon dioxide was used as the supercritical fluid. Methylprednisolone acetate was used as the model solute in tetrahydrofuran. Parameters examined included pressure of the supercritical fluid, agitation rate, feed solution flow rate, impeller diameter, and nozzle design. Pressure was identified as the most important process parameter affecting average particle size, either through the effect of pressure on dispersion of the feed solution into the precipitation vessel or through the effect of pressure on solubility of drug in the CO2/organic solvent mixture. Agitation rate, impeller diameter, feed solution flow rate, and nozzle design had significant effects on particle size, which suggests that dispersion of the feed solution is important. Crimped HPLC tubing was the most effective method of introducing feed solution into the precipitation vessel, largely because it resulted in the least amount of clogging during the precipitation. Yields of 82% or greater were consistently produced and were not affected by the processing variables. Similarly, the level of residual solvent was independent of the processing variables and was present at 0.0002% wt/wt THF or less.

  6. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1976-01-01

    One phase of the large area crop inventory project is presented. Wheat yield models based on the input of environmental variables potentially obtainable through the use of space remote sensing were developed and demonstrated. By the use of a unique method for visually qualifying daily plant development and subsequent multifactor computer analyses, it was possible to develop practical models for predicting crop development and yield. Development of wheat yield prediction models was based on the discovery that morphological changes in plants are detected and quantified on a daily basis, and that this change during a portion of the season was proportional to yield.

  7. Water erosion and climate change in a small alpine catchment

    NASA Astrophysics Data System (ADS)

    Berteni, Francesca; Grossi, Giovanna

    2017-04-01

    WATER EROSION AND CLIMATE CHANGE IN A SMALL ALPINE CATCHMENT Francesca Berteni, Giovanna Grossi A change in the mean and variability of some variables of the climate system is expected to affect the sediment yield of mountainous areas in several ways: for example through soil temperature and precipitation peak intensity change, permafrost thawing, snow- and ice-melt time shifting. Water erosion, sediment transport and yield and the effects of climate change on these physical phenomena are the focus of this work. The study area is a small mountainous basin, the Guerna creek watershed, located in the Central Southern Alps. The sensitivity of sediment yield estimates to a change of condition of the climate system may be investigated through the application of different models, each characterized by its own features and limits. In this preliminary analysis two different empirical mathematical models are considered: RUSLE (Revised Universal Soil Loss Equation; Renard et al., 1991) and EPM (Erosion Potential Method; Gavrilovic, 1988). These models are implemented in a Geographical Information System (GIS) supporting the management of the territorial database used to estimate relevant geomorphological parameters and to create different thematic maps. From one side the geographical and geomorphological information is required (land use, slope and hydrogeological instability, resistance to erosion, lithological characterization and granulometric composition). On the other side the knowledge of the weather-climate parameters (precipitation and temperature data) is fundamental as well to evaluate the intensity and variability of the erosive processes and estimate the sediment yield at the basin outlet. Therefore different climate change scenarios were considered in order to tentatively assess the impact on the water erosion and sediment yield at the small basin scale. Keywords: water erosion, sediment yield, climate change, empirical mathematical models, EPM, RUSLE, GIS, Guerna

  8. Evaluation of Second-Level Inference in fMRI Analysis

    PubMed Central

    Roels, Sanne P.; Loeys, Tom; Moerkerke, Beatrijs

    2016-01-01

    We investigate the impact of decisions in the second-level (i.e., over subjects) inferential process in functional magnetic resonance imaging on (1) the balance between false positives and false negatives and on (2) the data-analytical stability, both proxies for the reproducibility of results. Second-level analysis based on a mass univariate approach typically consists of 3 phases. First, one proceeds via a general linear model for a test image that consists of pooled information from different subjects. We evaluate models that take into account first-level (within-subjects) variability and models that do not take into account this variability. Second, one proceeds via inference based on parametrical assumptions or via permutation-based inference. Third, we evaluate 3 commonly used procedures to address the multiple testing problem: familywise error rate correction, False Discovery Rate (FDR) correction, and a two-step procedure with minimal cluster size. Based on a simulation study and real data we find that the two-step procedure with minimal cluster size results in most stable results, followed by the familywise error rate correction. The FDR results in most variable results, for both permutation-based inference and parametrical inference. Modeling the subject-specific variability yields a better balance between false positives and false negatives when using parametric inference. PMID:26819578

  9. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability.

    PubMed

    Brown, Christopher U; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  10. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability

    PubMed Central

    Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2017-01-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure. PMID:28243032

  11. Interlaboratory Study for Nickel Alloy 625 Made by Laser Powder Bed Fusion to Quantify Mechanical Property Variability

    NASA Astrophysics Data System (ADS)

    Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser powder bed fusion-additive manufacturing machines. The tensile specimens were heat treated and tensile tests were conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to four times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  12. Phosphorus component in AnnAGNPS

    USGS Publications Warehouse

    Yuan, Y.; Bingner, R.L.; Theurer, F.D.; Rebich, R.A.; Moore, P.A.

    2005-01-01

    The USDA Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) has been developed to aid in evaluation of watershed response to agricultural management practices. Previous studies have demonstrated the capability of the model to simulate runoff and sediment, but not phosphorus (P). The main purpose of this article is to evaluate the performance of AnnAGNPS on P simulation using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. A sensitivity analysis was performed to identify input parameters whose impact is the greatest on P yields. Sensitivity analysis results indicate that the most sensitive variables of those selected are initial soil P contents, P application rate, and plant P uptake. AnnAGNPS simulations of dissolved P yield do not agree well with observed dissolved P yield (Nash-Sutcliffe coefficient of efficiency of 0.34, R2 of 0.51, and slope of 0.24); however, AnnAGNPS simulations of total P yield agree well with observed total P yield (Nash-Sutcliffe coefficient of efficiency of 0.85, R2 of 0.88, and slope of 0.83). The difference in dissolved P yield may be attributed to limitations in model simulation of P processes. Uncertainties in input parameter selections also affect the model's performance.

  13. Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data

    NASA Astrophysics Data System (ADS)

    Peel, M. C.; Srikanthan, R.; McMahon, T. A.; Karoly, D. J.

    2015-04-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between global climate models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) data sets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to present a proof-of-concept approximation of within-GCM uncertainty for monthly precipitation and temperature projections and to assess the impact of within-GCM uncertainty on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and scenario are unavailable, other than the Climateprediction.net data set for the Hadley Centre GCM. To date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2015) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from CMIP3 for use in this paper. Here we present within- and between-GCM uncertainty results in mean annual precipitation (MAP), mean annual temperature (MAT), mean annual runoff (MAR), the standard deviation of annual precipitation (SDP), standard deviation of runoff (SDR) and reservoir yield for five CMIP3 GCMs at 17 worldwide catchments. Based on 100 stochastic replicates of each GCM run at each catchment, within-GCM uncertainty was assessed in relative form as the standard deviation expressed as a percentage of the mean of the 100 replicate values of each variable. The average relative within-GCM uncertainties from the 17 catchments and 5 GCMs for 2015-2044 (A1B) were MAP 4.2%, SDP 14.2%, MAT 0.7%, MAR 10.1% and SDR 17.6%. The Gould-Dincer Gamma (G-DG) procedure was applied to each annual runoff time series for hypothetical reservoir capacities of 1 × MAR and 3 × MAR and the average uncertainties in reservoir yield due to within-GCM uncertainty from the 17 catchments and 5 GCMs were 25.1% (1 × MAR) and 11.9% (3 × MAR). Our approximation of within-GCM uncertainty is expected to be an underestimate due to not replicating the GCM trend. However, our results indicate that within-GCM uncertainty is important when interpreting climate change impact assessments. Approximately 95% of values of MAP, SDP, MAT, MAR, SDR and reservoir yield from 1 × MAR or 3 × MAR capacity reservoirs are expected to fall within twice their respective relative uncertainty (standard deviation/mean). Within-GCM uncertainty has significant implications for interpreting climate change impact assessments that report future changes within our range of uncertainty for a given variable - these projected changes may be due solely to within-GCM uncertainty. Since within-GCM variability is amplified from precipitation to runoff and then to reservoir yield, climate change impact assessments that do not take into account within-GCM uncertainty risk providing water resources management decision makers with a sense of certainty that is unjustified.

  14. Effects of Langmuir Circulations on the Plankton

    DTIC Science & Technology

    1999-09-30

    remains the same as stated previously for this project. I wish to establish whether the plankton is affected by Langmuir Circulations (LCs). LCs are wind...particles from Optical Plankton Counter data) variables. This also has proved fruitful and has yielded results (below) different than those I originally...complement the standard, depth-integrated estimates of zooplankton abundance from bongo net deployments. This is proving to be a significant

  15. Shifts in plant functional types have time-dependent and regionally variable impacts on dryland ecosystem water balance

    USGS Publications Warehouse

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Burke, Ingrid C.

    2014-01-01

    5. Synthesis. This study provides a novel, regional-scale assessment of how plant functional type transitions may impact ecosystem water balance in sagebrush-dominated ecosystems of North America. Results illustrate that the ecohydrological consequences of changing vegetation depend strongly on climate and suggest that decreasing woody plant abundance may have only limited impact on evapotranspiration and water yield.

  16. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6 /f complex.

    PubMed

    Yamori, Wataru; Kondo, Eri; Sugiura, Daisuke; Terashima, Ichiro; Suzuki, Yuji; Makino, Amane

    2016-01-01

    Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6 /f complex between 10 and 100% of wild-type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6 /f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single-leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6 /f complex could be a potential target for enhancing photosynthetic capacity in higher plants. © 2015 John Wiley & Sons Ltd.

  17. Societal resilience to hydroclimatic change in the Roman World

    NASA Astrophysics Data System (ADS)

    Dermody, Brian; van Beek, Rens; Bierkens, Marc; Dekker, Stefan

    2016-04-01

    The Romans were masters of water resource management. They employed sophisticated irrigation techniques alongside a highly integrated food redistribution system that provided stable food supplies under the variable hydroclimatic regime within the Roman World. However, a number of paleoclimate studies have demonstrated hydroclimatic changes during the Roman Period that exceeded the amplitude and persistence of normal climate variability. In particular, there was a shift from warmer and more stable hydroclimatic conditions in the Roman Warm Period (c.250 BC - 250 AD) to cooler and more variable conditions in Late Roman Period (after c.250 AD). In this study we use a socio-hydrological model of the Roman world to explore the impact of hydroclimatic changes between the Roman Warm Period and Late Roman Period on the Roman food production and redistribution system. We calculate crop yields based on temperature and water resource availability using PC Raster Global Water Balance model (PCR-GLOBWB). PCR-GLOBWB is forced with reanalysis climate fields reflecting reconstructions of Roman Warm Period to the Late Roman climate patterns. Cropland areas and settlement patterns are derived from a database of 14,700 Roman settlement sites and crop suitability maps. We simulate food redistribution using a multi-agent food redistribution network with link weights based on Orbis: The Stanford Geospatial Network of the Roman World. Our analysis indicates a reduction in crop yields during the Late Roman Period compared with the Roman Warm Period owing to cooler temperatures. In addition, our simulations indicate that increased hydroclimatic variability decreased the stability of yields in the Late Roman period. Crop yields in the Western Empire are simulated to have been impacted most by the change in climate owing to cooler average temperatures and greater hydroclimatic variability compared with the Eastern part of the Empire. The food redistribution network was essential to buffer against lower and less stable yields in the Late Roman Period. However, the Late Roman Period coincided with a breakdown in the food redistribution network, making the Western Roman Empire particularly vulnerable to changing climate conditions. Our analysis demonstrates a number of important processes that have general implications for water resource management in food production and redistribution systems.

  18. Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Prahutama, Alan; Suparti; Wahyu Utami, Tiani

    2018-03-01

    Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.

  19. Viscosity of thickened fluids that relate to the Australian National Standards.

    PubMed

    Karsten Hadde, Enrico; Ann Yvette Cichero, Julie; Michael Nicholson, Timothy

    2016-08-01

    In 2007, Australia published standardized terminology and definitions for three levels of thickened fluids used in the management of dysphagia. This study examined the thickness of the current Australian National Fluid Standards rheologically (i.e. viscosity, yield stress) and correlated these results with the "fork test", as described in the national standards. Clinicians who prescribe or work with thickened liquids and laypersons were recruited to categorize 15 different thickened fluids of known viscosities using the fork test. The mean apparent viscosity and the yield stress for each fluid category were calculated. Clear responses were obtained by both clinicians and laypersons for very thin fluids (< 90 mPa.s) and very thick fluids (> 1150 mPa.s), but large variations of responses were seen for intermediate viscosities. Measures of viscosity and yield stress were important in allocating liquids to different categories. Three bands of fluid viscosity with distinct intermediate band gaps and associated yield stress measures were clearly identifiable and are proposed as objective complements to the Australian National Standards. The "fork test" provides rudimentary information about both viscosity and yield stress, but is an inexact measure of both variables.

  20. Comparison of methods for the analysis of relatively simple mediation models.

    PubMed

    Rijnhart, Judith J M; Twisk, Jos W R; Chinapaw, Mai J M; de Boer, Michiel R; Heymans, Martijn W

    2017-09-01

    Statistical mediation analysis is an often used method in trials, to unravel the pathways underlying the effect of an intervention on a particular outcome variable. Throughout the years, several methods have been proposed, such as ordinary least square (OLS) regression, structural equation modeling (SEM), and the potential outcomes framework. Most applied researchers do not know that these methods are mathematically equivalent when applied to mediation models with a continuous mediator and outcome variable. Therefore, the aim of this paper was to demonstrate the similarities between OLS regression, SEM, and the potential outcomes framework in three mediation models: 1) a crude model, 2) a confounder-adjusted model, and 3) a model with an interaction term for exposure-mediator interaction. Secondary data analysis of a randomized controlled trial that included 546 schoolchildren. In our data example, the mediator and outcome variable were both continuous. We compared the estimates of the total, direct and indirect effects, proportion mediated, and 95% confidence intervals (CIs) for the indirect effect across OLS regression, SEM, and the potential outcomes framework. OLS regression, SEM, and the potential outcomes framework yielded the same effect estimates in the crude mediation model, the confounder-adjusted mediation model, and the mediation model with an interaction term for exposure-mediator interaction. Since OLS regression, SEM, and the potential outcomes framework yield the same results in three mediation models with a continuous mediator and outcome variable, researchers can continue using the method that is most convenient to them.

Top