Sample records for yielding high quality

  1. Rational design of high-yield and superior-quality rice.

    PubMed

    Zeng, Dali; Tian, Zhixi; Rao, Yuchun; Dong, Guojun; Yang, Yaolong; Huang, Lichao; Leng, Yujia; Xu, Jie; Sun, Chuan; Zhang, Guangheng; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Hu, Xingming; Guo, Longbiao; Xiong, Guosheng; Wang, Yonghong; Li, Jiayang; Qian, Qian

    2017-03-20

    Rice (Oryza sativa L.) is a staple food for more than half of the world's population. To meet the ever-increasing demand for food, because of population growth and improved living standards, world rice production needs to double by 2030 1 . The development of new elite rice varieties with high yield and superior quality is challenging for traditional breeding approaches, and new strategies need to be developed. Here, we report the successful development of new elite varieties by pyramiding major genes that significantly contribute to grain quality and yield from three parents over five years. The new varieties exhibit higher yield potential and better grain quality than their parental varieties and the China's leading super-hybrid rice, Liang-you-pai-jiu (LYP9 or Pei-ai 64S/93-11). Our results demonstrate that rational design is a powerful strategy for meeting the challenges of future crop breeding, particularly in pyramiding multiple complex traits.

  2. Extracting DNA from 'jaws': high yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material.

    PubMed

    Nielsen, E E; Morgan, J A T; Maher, S L; Edson, J; Gauthier, M; Pepperell, J; Holmes, B J; Bennett, M B; Ovenden, J R

    2017-05-01

    Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples of white shark (Carcharodon carcharias). Application of the optimized methods to 38 museum and private angler trophy specimens dating back to 1912 yielded sufficient DNA for downstream genomic analysis for 68% of the samples. No clear relationships between age of samples, DNA quality and quantity were observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield. © 2016 John Wiley & Sons Ltd.

  3. Air-insufflated high-definition dacryoendoscopy yields significantly better image quality than conventional dacryoendoscopy.

    PubMed

    Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa

    2017-01-01

    To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.

  4. RNA isolation from loquat and other recalcitrant woody plants with high quality and yield.

    PubMed

    Morante-Carriel, Jaime; Sellés-Marchart, Susana; Martínez-Márquez, Ascensión; Martínez-Esteso, María José; Luque, Ignacio; Bru-Martínez, Roque

    2014-05-01

    RNA isolation is difficult in plants that contain large amounts of polysaccharides and polyphenol compounds. To date, no commercial kit has been developed for the isolation of high-quality RNA from tissues with these characteristics, especially for fruit. The common protocols for RNA isolation are tedious and usually result in poor yields when applied to recalcitrant plant tissues. Here an efficient RNA isolation protocol based on cetyltrimethylammonium bromide (CTAB) and two successive precipitations with 10 M lithium chloride (LiCl) was developed specifically for loquat fruits, but it was proved to work efficiently in other tissues of loquat and woody plants. The RNA isolated by this improved protocol was not only of high purity and integrity (A260/A280 ratios ranged from 1.90 to 2.04 and A260/A230 ratios were>2.0) but also of high yield (up to 720 μg on average [coefficient of variation=21%] total RNA per gram fresh tissue). The protocol was tested on loquat fruit (different stages of development, postharvest, ripening, and bruising), leaf, root, flower, stem, and bud; quince fruit and root; grapevine cells in liquid culture; and rose petals. The RNA obtained with this method is amenable to enzymatic treatments and can be efficiently applied for research on gene characterization, expression, and function. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Neck blast disease influences grain yield and quality traits of aromatic rice.

    PubMed

    Khan, Mohammad Ashik Iqbal; Bhuiyan, Md Rejwan; Hossain, Md Shahadat; Sen, Partha Pratim; Ara, Anjuman; Siddique, Md Abubakar; Ali, Md Ansar

    2014-11-01

    A critical investigation was conducted to find out the effect of neck blast disease on yield-contributing characters, and seed quality traits of aromatic rice in Bangladesh. Both healthy and neck-blast-infected panicles of three aromatic rice cultivars (high-yielding and local) were collected and investigated at Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh. All of the tested varieties were highly susceptible to neck blast disease under natural conditions, though no leaf blast symptoms appear on leaves. Neck blast disease increased grain sterility percentages, reduced grain size, yield and quality traits of seeds. The degrees of yield and seed quality reduction depended on disease severity and variety's genetic make-up. Unfilled grains were the main source of seed-borne pathogen, especially for blast in the seed lot. Transmission of blast pathogen from neck (panicle base) to seed was very poor. These findings are important, especially concerning the seed certification programme in which seed lots are certified on the basis of field inspection. Finally, controlled experiments are needed to draw more critical conclusions. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. [Effects of micronutrient fertilizer application on yield and quality of Aconitum carmichaeli].

    PubMed

    Luo, Yi; Chen, Xingfu; Liu, Sha; Xiang, Dabing; Li, Jia; Shu, Guangming; Xia, Yanli

    2011-01-01

    To study the effects of Fe, Zn, B and Mn fertilizer with different ratio on the yield and quality of Aconitum carmichaeli. Field experiment with the uniform design was applied, the yield and the contents of the total alkaloids and diester-alkaloids were measured. Fe, Zn, B and Mn fertilizer of appropriate ratio could promote the growth of vegetative organs, increase the biomass, the content of alkaloids and the yield of Aconite significantly. Fe, Zn fertilizer of highly concentrated ratio increased the proportion of first sub-roots, but inhibited the growth of other vegetative organs, the number of roots was less than that with other treatments, so it was not conducive to the formation of production. High concentration of Mn was not conducive to the growth of underground of Aconite, its number of sub-roots was fewer, but the number of third sub-roots was more than that with other treatments, the yield was low. The yield treated with low concentration of B was 10% higher than that with high concentration, and the high concentration of B was not conducive to increase the content of the alkaloids. Among these treatments, The fourth treatment was the optimal combination, of which the volume of sub-roots was the largest and the most homogeneous, the growth of the vegetative organs was better and the accumulation of dry matters was more, the yield of this treatment was 10,754.7 kg x hm(-2), which was increased by 14.9%, and the content of alkaloid was increased by 13.9%. The ratio of 4 is the best treatment for high yield and quality cultivation of Aconite.

  7. Colored plastic mulch microclimates affect strawberry fruit yield and quality

    NASA Astrophysics Data System (ADS)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry ( Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC50 value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  8. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    PubMed

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  9. Effects of delayed winter harvest on biomass yield and quality of napiergrass and energycane

    USDA-ARS?s Scientific Manuscript database

    Napiergrass (Cenchrus purpureus Schumach) and energycane (Saccharum hyb.) are high-yielding perennial grasses that are well-suited for biomass production in the southeast USA. The purpose of this study was to determine the effects of delayed winter harvest on biomass yield and quality of these two ...

  10. [Study on High-yield Cultivation Measures for Arctii Fructus].

    PubMed

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  11. Total suspended solids concentrations and yields for water-quality monitoring stations in Gwinnett County, Georgia, 1996-2009

    USGS Publications Warehouse

    Landers, Mark N.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Gwinnett County Department of Water Resources, established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. As of 2009, continuous streamflow and water-quality data as well as discrete water-quality samples were being collected for 14 watershed monitoring stations in Gwinnett County. This report provides statistical summaries of total suspended solids (TSS) concentrations for 730 stormflow and 710 base-flow water-quality samples collected between 1996 and 2009 for 14 watershed monitoring stations in Gwinnett County. Annual yields of TSS were estimated for each of the 14 watersheds using methods described in previous studies. TSS yield was estimated using linear, ordinary least-squares regression of TSS and explanatory variables of discharge, turbidity, season, date, and flow condition. The error of prediction for estimated yields ranged from 1 to 42 percent for the stations in this report; however, the actual overall uncertainty of the estimated yields cannot be less than that of the observed yields (± 15 to 20 percent). These watershed yields provide a basis for evaluation of how watershed characteristics, climate, and watershed management practices affect suspended sediment yield.

  12. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.).

    PubMed

    Bahuguna, Rajeev N; Solis, Celymar A; Shi, Wanju; Jagadish, Krishna S V

    2017-01-01

    High night temperature (HNT) is a major constraint to sustaining global rice production under future climate. Physiological and biochemical mechanisms were elucidated for HNT-induced grain yield and quality loss in rice. Contrasting rice cultivars (N22, tolerant; Gharib, susceptible; IR64, high yielding with superior grain quality) were tested under control (23°C) and HNT (29°C) using unique field-based tents from panicle initiation till physiological maturity. HNT affected 1000 grain weight, grain yield, grain chalk and amylose content in Gharib and IR64. HNT increased night respiration (Rn) accounted for higher carbon losses during post-flowering phase. Gharib and IR64 recorded 16 and 9% yield reduction with a 63 and 35% increase in average post-flowering Rn under HNT, respectively. HNT altered sugar accumulation in the rachis and spikelets across the cultivars with Gharib and IR64 recording higher sugar accumulation in the rachis. HNT reduced panicle starch content in Gharib (22%) and IR64 (11%) at physiological maturity, but not in the tolerant N22. At the enzymatic level, HNT reduced sink strength with lower cell wall invertase and sucrose synthase activity in Gharib and IR64, which affected starch accumulation in the developing grain, thereby reducing grain weight and quality. Interestingly, N22 recorded lower Rn-mediated carbon losses and minimum impact on sink strength under HNT. Mechanistic responses identified will facilitate crop models to precisely estimate HNT-induced damage under future warming scenarios. © 2016 Scandinavian Plant Physiology Society.

  13. [Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties].

    PubMed

    Cong, Xi Han; Shi, Fu Zhi; Ruan, Xin Min; Luo, Yu Xiang; Ma, Ting Chen; Luo, Zhi Xiang

    2017-04-18

    To provide scientific basis for reasonable application of nitrogen and create varieties with high N use-efficiency, an experiment was carried out to study the effects of nitrogen fertilizer application rate on grain yield, N use rate and quality of different rice varieties. Four different genotypic rice varieties, Nipponbare, N70, N178 and OM052 were used as tested material and three levels of nitrogen application rate (0, 120, 270 kg·hm -2 ) were conducted. Urea as nitrogen source was applied as basal (70%) and panicle (30%) fertilizer. The results showed that nitrogen fertilizer could raise yield mainly because of the increased effective panicles and filled grains per panicle. When the N application rate was 120 and 270 kg·hm -2 , OM052 had the largest grain yield among four varieties, being 41.1% and 76.8% higher, respectively compared with control. Difference in grain yield among four varieties was due to the difference of nitrogen use efficiency. Under 120 and 270 kg·hm -2 nitrogen levels, Nipponbare had the lowest grain yield and N agronomic efficiency (NAE, 40.90 g·g -1 and 18.56 g·g -1 ), which was a variety with low N use-efficiency. On the contrary, OM052 had the highest grain yield and NAE (145.9 g·g -1 and 81.24 g·g -1 ), was a variety with high N use-efficiency. N fertilizer application increased the amylose content and protein content, lengthened gel consistency, reduced chalky kernel, chalkiness, and alkali digestion value. With the increase of N fertilizer application, hot paste viscosity, peak viscosity, consistence viscosity and breakdown viscosity were decreased gradually, and setback viscosity was increased. Correlation analysis showed that the yield and yield components had more significant correlations with appearance quality, cooking and eating quality under low N level. This study confirmed that OM052 was a double high variety with extremely high N agronomic efficiency and yield. Reasonable application of nitrogen fertilizer could

  14. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L.

    PubMed

    Su, Zhen-Zhu; Wang, Ting; Shrivastava, Neeraj; Chen, You-Yuan; Liu, Xiaoxi; Sun, Chao; Yin, Yufeng; Gao, Qi-Kang; Lou, Bing-Gan

    2017-06-01

    In current scenario, crop productivity is being challenged by decreasing soil fertility. To cope up with this problem, different beneficial microbes are explored to increase the crop productivity with value additions. In this study, Brassica napus L., an important agricultural economic oilseed crop with rich source of nutritive qualities, was interacted with Piriformospora indica, a unique root colonizing fungus with wide host range and multifunctional aspects. The fungus-treated plants showed a significant increase in agronomic parameters with plant biomass, lodging-resistance, early bolting and flowering, oil yield and quality. Nutritional analysis revealed that plants treated by P. indica had reduced erucic acid and glucosinolates contents, and increased the accumulation of N, Ca, Mg, P, K, S, B, Fe and Zn elements. Low erucic acid and glucosinolates contents are important parameters for high quality oil, because oils high in erucic acid and glucosinolates are considered undesirable for human nutrition. Furthermore, the expression profiles of two encoding enzyme genes, Bn-FAE1 and BnECR, which are responsible for regulating erucic acid biosynthesis, were down-regulated at mid- and late- life stages during seeds development in colonized plants. These results demonstrated that P. indica played an important role in enhancing plant growth, rapeseed yield and quality improvement of B. napus. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Sodium bisulfite improves rhizome yield and quality in Paris polyphylla.

    PubMed

    Yu, Kun; Wang, Yan; Wei, Jian-Rong; Ma, Qing; Wang, Bu-Qiong; Yang, Chang-Hong; Wang, Ming-Hui; Yu, Dan; Li, Jia-Ru

    2010-03-01

    Rhizomes of the perennial herb Paris polyphylla have been used in traditional Chinese medicine for hundreds of years. Agricultural production of the rhizomes requires 7-10 years, which is too long to meet the demand of the medicinal industry. Therefore, studies on improving the yield of the herb and shortening the culturing period are imperative. The present work aimed to investigate the effect of sodium bisulfite (NaHSO (3)) on rhizome yield and quality, as well as some related metabolic features of P. polyphylla. The rhizome yield was improved by NaHSO (3) treatment in long-term experiments conducted during 2006 and 2007, with 2 mM NaHSO (3) giving the highest yield. HPLC analysis revealed that NaHSO (3) treatment increased the total saponin content (49 %), including three pennogenin glycosides and two diosgenin glycosides. In a short-term experiment, NaHSO (3) treatment resulted in an enhanced net photosynthetic rate (Pn) for about 4 days without significant changes in the chlorophyll or carotenoid content. The total soluble sugars and sucrose contents in the leaves also significantly increased after 2 mM NaHSO (3) treatment, whereas the starch content changed only slightly. The activities of the enzymes involved in ammonium assimilation (glutamine synthetase [GS] and glutamate dehydrogenase [GDH]) were not significantly influenced. In a long-term experiment, chlorophylls and carotenoids were not significantly affected, and neither was the starch content in leaves, but the total soluble sugars and sucrose contents in leaves increased significantly. The NaHSO (3) treatment significantly increased GS and GDH activities. These results indicate that NaHSO (3) treatment improved the rhizome yield in P. polyphylla, not only through enhancement of Pn but also by improving carbohydrate accumulation and ammonium assimilation. The increased saponin content after NaHSO (3) treatment was indicative of high rhizome quality. (c) Georg Thieme Verlag KG Stuttgart . New York.

  16. Effects of irrigation moisture regimes on yield and quality of paprika ( Capsicum annuum L)

    NASA Astrophysics Data System (ADS)

    Shongwe, Victor D.; Magongo, Bekani N.; Masarirambi, Michael T.; Manyatsi, Absalom M.

    Although paprika ( Capsicum annuum L) is not widely grown in Swaziland it is becoming increasingly popular as a spice and food colourant. It is a crop that requires irrigation at specific stages of growth as this affects not only the yield but most importantly the quality of the crop. Yield of paprika has been found to increase with relative increase in moisture whereas the quality of fruits has not followed the same trend. The objective of this study was to find the effect of varying irrigation water regimes on the yield and quality of paprika at uniform fertiliser levels. The study was carried out in the 2006/2007 cropping season at the Luyengo campus of the University of Swaziland in a greenhouse. A randomised complete block design was used with four water treatments (0.40, 0.60, 0.80, and 1.00 × Field Capacity). Parameters measured included leaf number per plant, plant height, chlorophyll content, canopy size, leaf width, leaf length, stem girth, dry mass, fresh mass, fruit length, and brix content. There were significant ( P < 0.05) increases in leaf number, plant height, chlorophyll content, canopy size, fresh and dry mass tops and fruit length at the highest moisture level (1.00 × FC) followed by the second highest regime (0.80 × FC) whilst the lower water regimes resulted in lower increases in each of the parameters. Leaf area index did not differ significantly across all treatments. In increasing order the treatments 0.80 × FC and 1.00 × FC gave higher yields but in decreasing order lower brix and thus subsequent lower paprika quality. It is recommended that growers who are aiming for optimum yield and high quality of paprika may use the 0.8 × FC treatment when irrigating.

  17. Review on the significance of chlorine for crop yield and quality.

    PubMed

    Geilfus, Christoph-Martin

    2018-05-01

    The chloride concentration in the plant determines yield and quality formation for two reasons. First, chlorine is a mineral nutrient and deficiencies thereof induce metabolic problems that interfere with growth. However, due to low requirement of most crops, deficiency of chloride hardly appears in the field. Second, excess of chloride, an event that occurs under chloride-salinity, results in severe physiological dysfunctions impairing both quality and yield formation. The chloride ion can effect quality of plant-based products by conferring a salty taste that decreases market appeal of e.g. fruit juices and beverages. However, most of the quality impairments are based on physiological dysfunctions that arise under conditions of chloride-toxicity: Shelf life of persimmon is shortened due to an autocatalytic ethylene production in fruit tissues. High concentrations of chloride in the soil can increase phyto-availability of the heavy metal cadmium, accumulating in wheat grains above dietary intake thresholds. When crops are cultivated on soils that are moderately salinized by chloride, nitrate fertilization might be a strategy to suppress uptake of chloride by means of an antagonistic anion-anion uptake competition. Overall, knowledge about proteins that catalyse chloride-efflux out of the roots or that restrict xylem loading is needed to engineer more resistant crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. LED Lighting - Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity.

    PubMed

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  19. Estimates of genetics and phenotypics parameters for the yield and quality of soybean seeds.

    PubMed

    Zambiazzi, E V; Bruzi, A T; Guilherme, S R; Pereira, D R; Lima, J G; Zuffo, A M; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M

    2017-09-27

    Estimating genotype x environment (GxE) parameters for quality and yield in soybean seed grown in different environments in Minas Gerais State was the goal of this study, as well as to evaluate interaction effects of GxE for soybean seeds yield and quality. Seeds were produced in three locations in Minas Gerais State (Lavras, Inconfidentes, and Patos de Minas) in 2013/14 and 2014/15 seasons. Field experiments were conducted in randomized blocks in a factorial 17 x 6 (GxE), and three replications. Seed yield and quality were evaluated for germination in substrates paper and sand, seedling emergence, speed emergency index, mechanical damage by sodium hypochlorite, electrical conductivity, speed aging, vigor and viability of seeds by tetrazolium test in laboratory using completely randomized design. Quadratic component genotypic, GXE variance component, genotype determination coefficient, genetic variation coefficient and environmental variation coefficient were estimated using the Genes software. Percentage analysis of genotypes contribution, environments and genotype x environment interaction were conducted by sites combination two by two and three sites combination, using the R software. Considering genotypes selection of broad adaptation, TMG 1179 RR, CD 2737 RR, and CD 237 RR associated better yield performance at high physical and physiological potential of seed. Environmental effect was more expressive for most of the characters related to soybean seed quality. GxE interaction effects were expressive though genotypes did not present coincidental behavior in different environments.

  20. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE PAGES

    Stoeckl, C.; Boni, R.; Ehrne, F.; ...

    2016-05-10

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  1. Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C.; Boni, R.; Ehrne, F.

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium–tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera inmore » a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  2. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C.; Boni, R.; Ehrne, F.

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  3. Yield and quality attributes of faba bean inbred lines grown under marginal environmental conditions of Sudan.

    PubMed

    Gasim, Seif; Hamad, Solafa A A; Abdelmula, Awadalla; Mohamed Ahmed, Isam A

    2015-11-01

    Faba beans (Vicia faba L.) represent an essential source of food protein for many people in Sudan, especially those who cannot afford to buy animal meat. The demand for faba bean seeds is greatly increased in recent years, and consequently its production area was extended southward where the climate is marginally suitable. Therefore, this study was aimed to evaluate seed yield and nutritional quality of five faba bean inbred lines grown under marginal environmental conditions of Sudan. The inbred lines have considerable (P ≤ 0.05) variability in yield and yield components, and seed chemical composition. The mean carbohydrate content was very high (501.1 g kg(-1)) and negatively correlated with seed yield, whereas the average protein content was relatively high (253.1 g kg(-1)) and positively correlated with seed yield. Globulin was the significant fraction (613.5 g kg(-1)protein) followed by albumin (200.2 g kg(-1)protein). Biplot analysis indicates that inbred lines Hudeiba/93-S5 and Ed-damar-S5 outscore other lines in terms of seed yield and nutritional quality. This study demonstrates that Hudeiba/93-S5 and Ed-damar-S5 are useful candidates in faba bean breeding program to terminate the protein deficiency malnutrition and provide healthy and nutritious meal for people living in subtropical areas.

  4. Description and Yield of Current Quality and Safety Review in Selected US Academic Emergency Departments.

    PubMed

    Griffey, Richard Thomas; Schneider, Ryan M; Sharp, Brian R; Pothof, Jeffrey J; Hodkins, Sheridan; Capp, Roberta; Wiler, Jennifer L; Sreshta, Neil; Sather, John E; Sampson, Christopher S; Powell, Jonathan T; Groner, Kathryn Y; Adler, Lee M

    2017-06-29

    Quality and safety review for performance improvement is important for systems of care and is required for US academic emergency departments (EDs). Assessment of the impact of patient safety initiatives in the context of increasing burdens of quality measurement compels standardized, meaningful, high-yield approaches for performance review. Limited data describe how quality and safety reviews are currently conducted and how well they perform in detecting patient harm and areas for improvement. We hypothesized that decades-old approaches used in many academic EDs are inefficient and low yield for identifying patient harm. We conducted a prospective observational study to evaluate the efficiency and yield of current quality review processes at five academic EDs for a 12-month period. Sites provided descriptions of their current practice and collected summary data on the number and severity of events identified in their reviews and the referral sources that led to their capture. Categories of common referral sources were established at the beginning of the study. Sites used the Institute for Healthcare Improvement's definition in defining an adverse event and a modified National Coordinating Council for Medication Error Reporting and Prevention (MERP) Index for grading severity of events. Participating sites had similar processes for quality review, including a two-level review process, monthly reviews and conferences, similar screening criteria, and a grading system for evaluating cases. In 60 months of data collection, we reviewed a total of 4735 cases and identified 381 events. This included 287 near-misses, errors/events (MERP A-I) and 94 adverse events (AEs) (MERP E-I). The overall AE rate (event rate with harm) was 1.99 (95% confidence interval = 1.62%-2.43%), ranging from 1.24% to 3.47% across sites. The overall rate of quality concerns (events without harm) was 6.06% (5.42%-6.78%), ranging from 2.96% to 10.95% across sites. Seventy-two-hour returns were the

  5. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

    PubMed

    Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali

    2016-01-13

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

  6. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    PubMed Central

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B.; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity. PMID:29780400

  7. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalyga, V.; Sidorov, A.; Lobachevsky State University of Nizhny Novgorod

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental resultsmore » show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.« less

  8. [Effects of irrigation amount and various fertigation methods on yield and quality of cucumber in greenhouse].

    PubMed

    Fang, Dong-ping; Zhang, Fu-cang; Li, Jing; Wang, Hai-dong; Xiang, You-zhen; Zhang, Yan

    2015-06-01

    Taking cucumber as experimental plant, an experiment was conducted to study the effects of irrigation amount and fertigation methods on growth, yield and quality of cucumber in greenhouse. The experiment had designed two irrigation levels, i.e. 100% ET0 (W1) and 75% ET0 (W2), and four fertigation fertilization ratios, i.e. 100%, 66.6%, 33.3% and 0% (Z100, Z66 , Z33, Z0) fertigation of a total amount of (360:180:540 kg · hm(-2)) (N:P2O5:K2O) by 8 times with the corresponding remainders (0%, 33.3%, 66.6% and 100%) were applied to soil as basic fertilization before the planting according to the recommended fertilization rate, and no fertilizer treatment was set up as the control (CK). Results showed that irrigation and fertilization levels had positive correlations with plant height, leaf areas, dry mass, yield and quality of cucumber. Yield at W1Z100 was the highest, reaching 67760 kg · hm(-2). W2 treatment increased the mean water use efficiency (WUE) by 9.4% compared to W1. W2Z100 treatment had the highest WUE, reaching 47.13 kg · m(-3). Yield at W2Z100 was only 3.4% lower than the maximum, but saved 25% of water. Yield and dry matter at Z100 were 15.3% and 16.8% higher than at Z0, respectively, the cucumber fruit vitamin C, soluble protein and soluble sugar contents were increased, and the water use efficiency was increased by 19.1%. W2Z100 treatment was the best treatment which could enable cucumber to obtain both the high-yield and the high-quality.

  9. Relationship between soybean yield/quality and soil quality in a major soybean-producing area based on a 2D-QSAR model

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Li, Shiwei

    2017-05-01

    Based on experimental data of the soybean yield and quality from 30 sampling points, a quantitative structure-activity relationship model (2D-QSAR) was established using the soil quality (elements, pH, organic matter content and cation exchange capacity) as independent variables and soybean yield or quality as the dependent variable, with SPSS software. During the modeling, the full data set (30 and 14 compounds) was divided into a training set (24 and 11 compounds) for model generation and a test set (6 and 3 compounds) for model validation. The R2 values of the resulting models and data were 0.826 and 0.808 for soybean yield and quality, respectively, and all regression coefficients were significant (P < 0.05). The correlation coefficient R2pred of observed values and predicted values of the soybean yield and soybean quality in the test set were 0.961 and 0.956, respectively, indicating that the models had a good predictive ability. Moreover, the Mo, Se, K, N and organic matter contents and the cation exchange capacity of soil had a positive effect on soybean production, and the B, Mo, Se, K and N contents and cation exchange coefficient had a positive effect on soybean quality. The results are instructive for enhancing soils to improve the yield and quality of soybean, and this method can also be used to study other crops or regions, providing a theoretical basis to improving the yield and quality of crops.

  10. Fillet proximate composition, lipid quality, yields, and organoleptic quality of Mediterranean-farmed marine fish: A review with emphasis on new species.

    PubMed

    Grigorakis, Kriton

    2017-09-22

    Species diversification in Mediterranean mariculture involves various important fish that contribute to the diet of many human populations. These include meagres (Sciaenidae), flatfishes, mullets, and various sparids. Their quality aspects (yields, fillet proximate composition, and lipid quality) are discussed in this review. Their filleting yield is mostly 40-45%. The viscerosomatic index ranges from 1.5% to 14%, depending on species. Low muscle fat contents of flatfishes and meagres differentiate them from the rest of the farmed species. Farmed fish contain high n-3 polyunsaturates fatty acids (PUFA; 12.3-36.3% vs. 5.48-37.2% in the wild) and have higher muscle fat and n-6 PUFA contents (mainly 18:2 n-6) than their wild counterparts. The aquaculture management, diet, and season can affect fillet composition and fatty acids, while season (i.e. food availability and maturation) largely affects lipid quality in wild fish. Data on the sensory quality of Mediterranean-farmed species are mainly limited to whether specific management differentiates the sensory quality; thus, further development of tools for sensory analysis is required. Observations on the quality features in farmed Mediterranean fish indicate that species diversification can also provide product diversification based on different commercial weights and fillet quality specifications.

  11. [Effects of interaction between vermicompost and probiotics on soil nronerty, yield and quality of tomato].

    PubMed

    Shen, Fei; Zhu, Tong-bin; Teng, Ming-jiao; Chen, Yue; Liu, Man-qiang; Hu, Feng; Li, Hui-xin

    2016-02-01

    In this study, we investigated the effects of two strains of probiotic bacteria (Bacillus megaterium BM and Bacillus amyloliquefaciens BA) combined with chemical fertilizers and vermicompost on the soil property, the yield and quality of tomato. The results showed that under the same nutrient level, vermicompost significantly increased the yield, soluble sugar and protein contents of fruit, the soil pH and available phosphorus when compared with chemical fertilizers. Vermicompost combined with probiotics not only increased the tomato yield, soluble sugar, protein and vitamin C contents, sugar/acid ratio of fruit, and reduced the organic acid and nitrate nitrogen contents of fruit, also increased the soil pH and nitrate nitrogen content, and reduced soil electric conductivity when compared with vermicompost treatment. This improved efficiency was better than that by chemical fertilizers combined with probiotics. For BA and BM applied with chemical fertilizers or vermicompost, both stains had no significant effect on tomato quality. When co-applied with vermicompost, BA and BM showed significant difference in tomato yield. High soil available phosphorus content was determined when BM was combined with chemical fertilizers, while high soil available potassium content was obtained when BA was combined with vermicompost. Our results suggested that probiotics and vermicompost could be used as alternatives of chemical fertilizers in tomato production and soil fertility improvement.

  12. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

    DOE PAGES

    Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin; ...

    2015-12-21

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less

  13. Do Yield and Quality of Big Bluestem and Switchgrass Feedstock Decline over Winter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jane M. F.; Gresham, Garold L.

    Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of mineralsmore » from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha-1 (fall) and 5.4 Mg ha-1 (spring) with similar high heating value (17.7 MJ kg-1). The K/(Ca + Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13% by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.« less

  14. The yield and post-yield behavior of high-density polyethylene

    NASA Technical Reports Server (NTRS)

    Semeliss, M. A.; Wong, R.; Tuttle, M. E.

    1990-01-01

    An experimental and analytical evaluation was made of the yield and post-yield behavior of high-density polyethylene, a semi-crystalline thermoplastic. Polyethylene was selected for study because it is very inexpensive and readily available in the form of thin-walled tubes. Thin-walled tubular specimens were subjected to axial loads and internal pressures, such that the specimens were subjected to a known biaxial loading. A constant octahederal shear stress rate was imposed during all tests. The measured yield and post-yield behavior was compared with predictions based on both isotropic and anisotropic models. Of particular interest was whether inelastic behavior was sensitive to the hydrostatic stress level. The major achievements and conclusions reached are discussed.

  15. Grain Yield and Quality of Foxtail Millet (Setaria italica L.) in Response to Tribenuron-Methyl.

    PubMed

    Ning, Na; Yuan, Xiangyang; Dong, Shuqi; Wen, Yinyuan; Gao, Zhenpan; Guo, Meijun; Guo, Pingyi

    2015-01-01

    Foxtail millet (Setaria italica L.) is cultivated around the world for human and animal consumption. There is no suitable herbicide available for weed control in foxtail millet fields during the post-emergence stage. In this study, we investigated the effect and safety of the post-emergence herbicide tribenuron-methyl (TBM) on foxtail millet in terms of grain yield and quality using a split-plot field design. Field experiments were conducted using two varieties in 2013 and 2014, i.e., high-yielding hybrid Zhangzagu 10 and high-quality conventional Jingu 21. TBM treatments at 11.25 to 90 g ai ha(-1) reduced root and shoot biomass and grain yield to varying degrees. In each of the two years, grain yield declined by 50.2% in Zhangzagu 10 with a herbicide dosage of 45 g ai ha(-1) and by 45.2% in Jingu 21 with a herbicide dosage of 22.5 g ai ha(-1) (recommended dosage). Yield reduction was due to lower grains per panicle, 1000-grain weight, panicle length, and panicle diameter. Grain yield was positively correlated with grains per panicle and 1000-grain weight, but not with panicles ha(-1). With respect to grain protein content at 22.5 g ai ha(-1,) Zhangzagu 10 was similar to the control, whereas Jingu 21 was markedly lower. An increase in TBM dosage led to a decrease in grain Mn, Cu, Fe, and Zn concentrations. In conclusion, the recommended dosage of TBM was relatively safe for Zhangzagu 10, but not for Jingu 21. Additionally, the hybrid variety Zhangzagu 10 had a greater tolerance to TBM than the conventional variety Jingu 21.

  16. Qualitative and quantitative assessment of DNA quality of frozen beef based on DNA yield, gel electrophoresis and PCR amplification and their correlations to beef quality.

    PubMed

    Zhao, Jing; Zhang, Ting; Liu, Yongfeng; Wang, Xingyu; Zhang, Lan; Ku, Ting; Quek, Siew Young

    2018-09-15

    Freezing is a practical method for meat preservation but the quality of frozen meat can deteriorate with storage time. This research investigated the effect of frozen storage time (up to 66 months) on changes in DNA yield, purity and integrity in beef, and further analyzed the correlation between beef quality (moisture content, protein content, TVB-N value and pH value) and DNA quality in an attempt to establish a reliable, high-throughput method for meat quality control. Results showed that frozen storage time influenced the yield and integrity of DNA significantly (p < 0.05). The DNA yield decreased as frozen storage time increased due to DNA degradation. The half-life (t 1/2  = ln2/0.015) was calculated as 46 months. The DNA quality degraded dramatically with the increased storage time based on gel electrophoresis results. Polymerase chain reaction (PCR) products from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) were observed in all frozen beef samples. Using real-time PCR for quantitative assessment of DNA and meat quality revealed that correlations could be established successfully with mathematical models to evaluate frozen beef quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Improving the yield and quality of DNA isolated from white-rot fungi.

    PubMed

    Kuhad, R C; Kapoor, R K; Lal, R

    2004-01-01

    A new simple method used to eliminate polysaccharides that cause problems during DNA isolation was established for 6 different white-rot fungi using 1% hexadecyltrimethylammonium bromide (CTAB) as wash buffer and followed by centrifugation. Variation in the DNA yield and quality was ascertained using precipitating agents, detergents and cell-wall-hydrolyzing chitinase. Considerable amount of exopolysaccharides from fungal biomass was removed with the use of 1% CTAB wash buffer followed by centrifugation. The DNA varied in terms of yield and quality. For the DNA extraction use of 2% SDS in extraction buffer worked best for Pycnoporus cinnabarinus, Cyathus bulleri, Cyathus striatus and Cyathus stercoreus, while 2% CTAB worked best for Phanerochaete chrysosporium and Pleurotus ostreatus. Elimination of phenol and use of absolute ethanol for precipitating DNA resulted in good yield and quality of DNA. This DNA was amenable to restriction endonuclease digestion.

  18. Has the use of talc an effect on yield and extra virgin olive oil quality?

    PubMed

    Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele

    2016-08-01

    The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Nutritive quality and forage yield of three brassica varieties for use in livestock grazing systems

    USDA-ARS?s Scientific Manuscript database

    Brassicas are gaining popularity as high-quality forage for pasture-based livestock producers due to their use to extend the fall grazing season and during the summer forage slump. Little research has been conducted to evaluate forage yield and nutritive value of brassica species. A study was design...

  20. Effect of natural biostimulants on yield and nutritional quality: an example of sweet yellow pepper (Capsicum annuum L.) plants.

    PubMed

    Parađiković, Nada; Vinković, Tomislav; Vinković Vrček, Ivana; Žuntar, Irena; Bojić, Mirza; Medić-Šarić, Marica

    2011-09-01

    Modifications in growing techniques can affect the yield and nutritional quality of various cultivated plant species. Owing to its high nutritional value, pepper (Capsicum annuum L.) was used in this study as a model plant to investigate the effect of natural biostimulants on yield and fruit quality parameters under conditions of reduced fertilisation. A positive influence of biostimulant treatment on yield parameters was observed. The overall increase in the pigment content of leaves after biostimulant application agreed well with the higher total and commercial yields of treated pepper cultivars compared with their controls. The results showed that natural biostimulants had a positive effect on the vitamin C and total phenolic contents in pepper fruits during the hot summer season. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) antioxidant activities were also significantly higher (P < 0.05) in treated plants and correlated strongly with all measured quality parameters except total phenolic content. Generally, biostimulants improved the antioxidant activity, vitamin C and phenolic contents in fruits as well as the pigment content in leaves of treated compared with non-treated pepper plants grown hydroponically. Thus the application of biostimulants could be considered as a good production strategy for obtaining high yields of nutritionally valuable vegetables with lower impact on the environment. Copyright © 2011 Society of Chemical Industry.

  1. Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management

    PubMed Central

    Döring, Johanna; Frisch, Matthias; Tittmann, Susanne; Stoll, Manfred; Kauer, Randolf

    2015-01-01

    The main objective of this study was to determine growth, yield and fruit quality of grapevines under organic and biodynamic management in relation to integrated viticultural practices. Furthermore, the mechanisms for the observed changes in growth, yield and fruit quality were investigated by determining nutrient status, physiological performance of the plants and disease incidence on bunches in three consecutive growing seasons. A field trial (Vitis vinifera L. cv. Riesling) was set up at Hochschule Geisenheim University, Germany. The integrated treatment was managed according to the code of good practice. Organic and biodynamic plots were managed according to Regulation (EC) No 834/2007 and Regulation (EC) No 889/2008 and according to ECOVIN- and Demeter-Standards, respectively. The growth and yield of the grapevines differed strongly among the different management systems, whereas fruit quality was not affected by the management system. The organic and the biodynamic treatments showed significantly lower growth and yield in comparison to the integrated treatment. The physiological performance was significantly lower in the organic and the biodynamic systems, which may account for differences in growth and cluster weight and might therefore induce lower yields of the respective treatments. Soil management and fertilization strategy could be responsible factors for these changes. Yields of the organic and the biodynamic treatments partially decreased due to higher disease incidence of downy mildew. The organic and the biodynamic plant protection strategies that exclude the use of synthetic fungicides are likely to induce higher disease incidence and might partially account for differences in the nutrient status of vines under organic and biodynamic management. Use of the biodynamic preparations had little influence on vine growth and yield. Due to the investigation of important parameters that induce changes especially in growth and yield of grapevines under

  2. Effect of environmental change on yield and quality of fruits and vegetables: two systematic reviews and projections of possible health effects

    NASA Astrophysics Data System (ADS)

    Smith, P.; Scheelbeek, P.; Bird, F.; Green, R.; Dangour, A.

    2017-12-01

    Background - Environmental changes—including climatic change, water scarcity, and biodiversity loss—threaten agricultural production and pose challenges to global food security. In this study, we review the evidence of the effects of environmental change on the yield and quality of fruits and vegetables - a food group that plays a highly important role in our diets - and assess possible implications for nutrition and health outcomes. Methods - We undertook two systematic reviews of the published literature on the effect of 8 different environmental stressors on yields and nutritional quality of (1) fruits and (2) vegetables, measured in greenhouse and field studies. We combined the review outcomes with Food Balance Sheet data to assess the potential consequences of changed availability and quality of fruits and vegetables for global nutrient deficiencies and related chronic diseases. Findings - Overall, fruits were affected more prominently by changing environmental patterns than vegetables. In tropical countries, there were largely adverse effects on yield of increased temperature and changing precipitation patterns, although in more temperate zones some beneficial effects were reported. In contrast, the effects on nutritional quality were mostly positive, especially in fruit crops, with higher vitamin and mineral content measured in most crops. Increased atmospheric CO2 concentrations had a predominantly positive effect on yield, especially in legumes, but a negative effect on nutritional quality of both fruits and vegetables. Adverse nutritional implications were estimated to be largest in areas characterised by high vulnerability to environmental change, high dependency on local markets, and high rates of food insecurity. Interpretation - Our study identified effects of environmental change on yields and quality of fruits and vegetables that might pose threats to population health, especially in areas vulnerable to climate-change and food insecurity. To

  3. High yield fabrication of fluorescent nanodiamonds

    PubMed Central

    Boudou, Jean-Paul; Curmi, Patrick; Jelezko, Fedor; Wrachtrup, Joerg; Aubert, Pascal; Sennour, Mohamed; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties. PMID:19451687

  4. Biochar in vineyards: impact on soil quality and crop yield four years after the application

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Verheijen, Frank; Puga, João; Keizer, Jacob; Ferreira, António

    2017-04-01

    Biochar is a recalcitrant organic carbon compound, created by biomass heating at high temperatures (300-1000°C) under low oxygen concentrations. Biochar application to agricultural soils has received increasing attention over the last years, due to its climate change mitigation and adaptation potential and reported improved soil properties and functions relevant to agronomic and environmental performance. Reported impacts are linked with increased cation exchange capacity, enhanced nutrient and water retention, and positive influences on soil microbial communities, which influence crop yields. Nevertheless, few studies have focused on mid-to-long term impacts of biochar application. This study investigated the impact of biochar on soil quality and crop yield four years after biochar application in a vineyard in North-Central Portugal. The site has a Mediterranean climate with a strong Atlantic Ocean influence, with mean annual rainfall and temperature of 1100 mm and 15°C, respectively. The soil is a relatively deep ( 80cm) sandy loam Cambisol, with gentle slopes (3°). The experimental design included three treatments: (i) control, without biochar; (ii) high biochar application rate (40 ton/ha); and (iii) biochar compost (40 ton/ha, 10% biochar). Three plots per treatment (2m×3m) were installed in March 2012, using a mini-rotavator (0-15cm depth). In May 2016, soil quality was also assessed through soil surveys and sampling. Penetration resistance was performed at the soil surface with a pocket penetrometer, and soil surface sampling rings were used for bulk density analyses (100 cm3). Bulked soil samples (0-30 cm) were collected in each plot for aggregate stability, microbial biomass (by chloroform fumigation extraction) and net mineralization rate (through photometric determination of non-incubated and incubated samples). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number

  5. Nitrogen fertilization effects on sorghum forage yield and quality

    USDA-ARS?s Scientific Manuscript database

    The study objective was to determine the effect of nitrogen fertilization on yield and quality of photoperiod sensitive (PS) and non-PS forage sorghum, sorghum-sudangrass, and sudangrass compared to corn. This study was a randomized complete block design with treatments arranged in a 4 x 8 factorial...

  6. Yield and quality of seed from yellow birch progenies.

    Treesearch

    Knud E. Clausen

    1980-01-01

    Seed yield in 8- ad 9-year-old yellow birch varied among families and years but averaged more than 1,500 seeds per tree. Long catkins contained more seed than short ones. Seed quality was poor due to insufficient pollination and to differences among trees in flowering phenology.

  7. Impact of volunteer rice infestation on yield and grain quality of rice.

    PubMed

    Singh, Vijay; Burgos, Nilda R; Singh, Shilpa; Gealy, David R; Gbur, Edward E; Caicedo, Ana L

    2017-03-01

    Volunteer rice (Oryza sativa L.) grains may differ in physicochemical traits from cultivated rice, which may reduce the quality of harvested rice grain. To evaluate the effect of volunteer rice on cultivated rice, fields were surveyed in Arkansas in 2012. Cropping history that included hybrid cultivars in the previous two years (2010 and 2011) had higher volunteer rice infestation (20%) compared with fields planted previously with inbred rice (5.5%). The total grain yield of rice was reduced by 0.4% for every 1% increase in volunteer rice density. The grain quality did not change in fields planted with the same cultivar for three years. Volunteer rice density of at least 7.6% negatively impacted the head rice and when infestation reached 17.7%, it also reduced the rice grain yield. The protein and amylose contents of rice were not affected until volunteer rice infestation exceeded 30%. Crop rotation systems that include hybrid rice are expected to have higher volunteer rice infestation than systems without hybrid rice. It is predicted that, at 8% infestation, volunteer rice will start to impact head rice yield and will reduce total yield at 18% infestation. It could alter the chemical quality of rice grain at >30% infestation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.).

    PubMed

    Ademe, Mulugeta Seyoum; He, Shoupu; Pan, Zhaoe; Sun, Junling; Wang, Qinglian; Qin, Hongde; Liu, Jinhai; Liu, Hui; Yang, Jun; Xu, Dongyong; Yang, Jinlong; Ma, Zhiying; Zhang, Jinbiao; Li, Zhikun; Cai, Zhongmin; Zhang, Xuelin; Zhang, Xin; Huang, Aifen; Yi, Xianda; Zhou, Guanyin; Li, Lin; Zhu, Haiyong; Pang, Baoyin; Wang, Liru; Jia, Yinhua; Du, Xiongming

    2017-12-01

    Fiber yield and quality are the most important traits for Upland cotton (Gossypium hirsutum L.). Identifying high yield and good fiber quality genes are the prime concern of researchers in cotton breeding. Association mapping offers an alternative and powerful method for detecting those complex agronomic traits. In this study, 198 simple sequence repeats (SSRs) were used to screen markers associated with fiber yield and quality traits with 302 elite Upland cotton accessions that were evaluated in 12 locations representing the Yellow River and Yangtze River cotton growing regions of China. Three subpopulations were found after the estimation of population structure. The pair-wise kinship values varied from 0 to 0.867. Only 1.59% of the total marker locus pairs showed significant linkage disequilibrium (LD, p < 0.001). The genome-wide LD decayed within the genetic distance of ~30 to 32 cM at r 2  = 0.1, and decreased to ~1 to 2 cM at r 2  = 0.2, indicating the potential for association mapping. Analysis based on a mixed linear model detected 57 significant (p < 0.01) marker-trait associations, including seven associations for fiber length, ten for fiber micronaire, nine for fiber strength, eight for fiber elongation, five for fiber uniformity index, five for fiber uniformity ratio, six for boll weight and seven for lint percent, for a total of 35 SSR markers, of which 11 markers were associated with more than one trait. Among marker-trait associations, 24 associations coincided with the previously reported quantitative trait loci (QTLs), the remainder were newly identified QTLs/genes. The QTLs identified in this study will potentially facilitate improvement of fiber yield and quality in the future cotton molecular breeding programs.

  9. Combining high biodiversity with high yields in tropical agroforests.

    PubMed

    Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja

    2011-05-17

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland.

  10. Variability in cotton fiber yield, fiber quality, and soil properties in a southeastern coastal plain

    USDA-ARS?s Scientific Manuscript database

    To maximize profitability, cotton (GossypiumhirsutumL.) producers must attempt to control the quality of the crop while maximizing yield. The objective of this research was to measure the intrinsic variability present in cotton fiber yield and quality. The 0.5-ha experimental site was located in a...

  11. Algorithm for evaluating the effectiveness of a high-rise development project based on current yield

    NASA Astrophysics Data System (ADS)

    Soboleva, Elena

    2018-03-01

    The article is aimed at the issues of operational evaluation of development project efficiency in high-rise construction under the current economic conditions in Russia. The author touches the following issues: problems of implementing development projects, the influence of the operational evaluation quality of high-rise construction projects on general efficiency, assessing the influence of the project's external environment on the effectiveness of project activities under crisis conditions and the quality of project management. The article proposes the algorithm and the methodological approach to the quality management of the developer project efficiency based on operational evaluation of the current yield efficiency. The methodology for calculating the current efficiency of a development project for high-rise construction has been updated.

  12. Influence of raw milk quality on processed dairy products: How do raw milk quality test results relate to product quality and yield?

    PubMed

    Murphy, Steven C; Martin, Nicole H; Barbano, David M; Wiedmann, Martin

    2016-12-01

    This article provides an overview of the influence of raw milk quality on the quality of processed dairy products and offers a perspective on the merits of investing in quality. Dairy farmers are frequently offered monetary premium incentives to provide high-quality milk to processors. These incentives are most often based on raw milk somatic cell and bacteria count levels well below the regulatory public health-based limits. Justification for these incentive payments can be based on improved processed product quality and manufacturing efficiencies that provide the processor with a return on their investment for high-quality raw milk. In some cases, this return on investment is difficult to measure. Raw milks with high levels of somatic cells and bacteria are associated with increased enzyme activity that can result in product defects. Use of raw milk with somatic cell counts >100,000cells/mL has been shown to reduce cheese yields, and higher levels, generally >400,000 cells/mL, have been associated with textural and flavor defects in cheese and other products. Although most research indicates that fairly high total bacteria counts (>1,000,000 cfu/mL) in raw milk are needed to cause defects in most processed dairy products, receiving high-quality milk from the farm allows some flexibility for handling raw milk, which can increase efficiencies and reduce the risk of raw milk reaching bacterial levels of concern. Monitoring total bacterial numbers in regard to raw milk quality is imperative, but determining levels of specific types of bacteria present has gained increasing importance. For example, spores of certain spore-forming bacteria present in raw milk at very low levels (e.g., <1/mL) can survive pasteurization and grow in milk and cheese products to levels that result in defects. With the exception of meeting product specifications often required for milk powders, testing for specific spore-forming groups is currently not used in quality incentive programs in

  13. Improvement of bio-oil yield and quality in co-pyrolysis of corncobs and high density polyethylene in a fixed bed reactor at low heating rate

    NASA Astrophysics Data System (ADS)

    Supramono, D.; Lusiani, S.

    2016-11-01

    Over the past few decades, interest in developing biomass-derived fuel has been increasing rapidly due to the decrease in fossil fuel reserves. Bio-oil produced by biomass pyrolysis however contains high oxygen compounds resulting in low calorific-value fuel and therefore requiring upgrading. In co-pyrolysis of the feed blend of plastics of High Density Polyethylene (HDPE) and biomass of com cob particles, at some compositions free radicals from plastic decomposition containing more hydrogen radicals are able to bond oxygen radicals originating from biomass to reduce oxygenate compounds in the bio-oil thus increasing bio-oil quality. This phenomenon is usually called synergetic effect. In addition to that, the pattern of heating of the feed blend in the pyrolysis reactor is predicted to affect biooil quality and yield. In a batch reactor, co-pyrolysis of corncobs and HDPE requires low heating rate to reach a peak temperature at temperature rise period followed by heating for some time at peak temperature called holding time at constant temperature period. No research has been carried out to investigate how long holding time is set in co-pyrolysis of plastic and biomass to obtain high yield of bio-oil. Holding time may affect either crosslinking of free radicals in gas phase, which increases char product, or secondary pyrolysis in the gas phase, which increases non-condensable gas in the gas phase of pyrolysis reactor, both of which reduce bio-oil yield. Therefore, holding time of co-pyrolysis affects the mass rate of bio-oil formation as the pyrolysis proceeds and quality of the bio-oil. In the present work, effects of holding time on the yield and quality of bio-oil have been investigated using horizontal fixed bed of the feed blends at heating rate of 5°C, peak temperature of 500°C and N2 flow rate of 700 ml/minute. Holding time was varied from 0 to 70 minutes with 10 minutes interval. To investigate the effects of holding time, the composition of HDPE in the

  14. Identification of potentially high yielding irradiated cassava ‘Gajah’ genotype with different geographic coordinates

    NASA Astrophysics Data System (ADS)

    Subekti, I.; Khumaida, N.; Ardie, SW

    2017-01-01

    Cassava is one of the main and important carbohydrate producing crops in Indonesia. Thus cassava production and its tuber quality need to be improved. ‘Gajah’ genotype is a local genotypes cassava from East Kalimantan, has high potential yield (> 60 ton Ha-1). However, the harvest time of this genotype is quite long (>= 12 months). The objective of this research was to identify the high yielding cassava mutants from the gamma rays irradiated ‘Gajah’ genotype at M1V3 population and potential yield at different location. Several putative cassava mutants (12 mutants) were planted in Cikabayan Experimental Field, IPB from March 2015 to March 2016 and the yields compared with the same genotype grown at different location by seeing its coordinates to observe the potential yield. Our result showed that the fresh tuber weight per plant of some putative mutants could reach more than 8 kg (yield potential of 64 ton Ha-1). The harvested tubers also had sweet flavor, although the tubers of some putative mutants were bitter. Based on previous research study, the different geographic coordinate has resulted variability on fresh tuber yield. It seems that it needs to observe the stability of ‘Gajah’- irradiated mutants in several location in Java Island.

  15. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    PubMed Central

    Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  16. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    PubMed

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  17. Combining high biodiversity with high yields in tropical agroforests

    PubMed Central

    Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H.; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja

    2011-01-01

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland. PMID:21536873

  18. Static yields and quality issues: Is the agri-environment program the primary driver?

    PubMed

    Peltonen-Sainio, Pirjo; Salo, Tapio; Jauhiainen, Lauri; Lehtonen, Heikki; Sieviläinen, Elina

    2015-10-01

    The Finnish agri-environmental program (AEP) has been in operation for 20 years with >90 % farmer commitment. This study aimed to establish whether reduced nitrogen (N) and phosphorus (P) use has impacted spring cereal yields and quality based on comprehensive follow-up studies and long-term experiments. We found that the gap between genetic yield potential and attained yield has increased after the AEP was imposed. However, many contemporary changes in agricultural practices, driven by changes in prices and farm subsidies, also including the AEP, were likely reasons, together with reduced N, but not phosphorus use. Such overall changes in crop management coincided with stagnation or decline in yields and adverse changes in quality, but yield-removed N increased and residual N decreased. Further studies are needed to assess whether all the changes are environmentally, economically, and socially sustainable, and acceptable, in the long run. The concept of sustainable intensification is worth considering as a means to develop northern European agricultural systems to combine environmental benefits with productivity.

  19. Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on-farm during 1983-2014.

    PubMed

    Laidig, Friedrich; Piepho, Hans-Peter; Rentel, Dirk; Drobek, Thomas; Meyer, Uwe; Huesken, Alexandra

    2017-01-01

    Over the last 32 years, a large gain in grain yield (24 %) was achieved in official German variety trials, and despite considerable loss in protein concentration (-7.9 %), winter wheat baking quality was partially improved over the last 32 years. On-farm gain in grain yield (32 %) exceeded gain in trials, but at yield level about 25 dt ha -1 lower. Breeding progress was very successfully transferred into both progress in grain yield and on-farm baking quality. Long-term gains in grain yield and baking quality of 316 winter wheat varieties from German official trials were evaluated. We dissected progress into a genetic and a non-genetic part to quantify the contribution of genetic improvement. We further investigated the influence of genotype and environment on total variation by estimating variance components. We also estimated genetic and phenotypic correlation between quality traits. For trial data, we found a large gain in grain yield (24%), but a strong decline in protein concentration (-8.0%) and loaf volume (-8.5%) relative to 1983. Improvement of baking quality could be achieved for falling number (5.8%), sedimentation value (7.9%), hardness (13.4%), water absorption (1.2%) and milling yield (2.4%). Grain yield, falling number and protein concentration were highly influenced by environment, whereas for sedimentation value, hardness, water absorption and loaf volume genotypes accounted for more than 60% of total variation. Strong to very strong relations exist among protein concentration, sedimentation value, and loaf volume. On-farm yields were obtained from national statistics, and grain quality data from samples collected by national harvest survey. These on-farm data were compared with trial results. On-farm gain in grain yield was 31.6%, but at a mean level about 25 dt ha -1  lower. Improvement of on-farm quality exceeded trial results considerably. A shift to varieties with improved baking quality can be considered as the main reason for this

  20. Effect of Simultaneous Water Deficit Stress and Meloidogyne incognita Infection on Cotton Yield and Fiber Quality

    PubMed Central

    Davis, R. F.; Earl, H. J.; Timper, P.

    2014-01-01

    Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive. PMID:24987162

  1. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    PubMed

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel.

  2. Mapping the Medical Literature for High Quality Studies and Reviews for Age-specific Clinical Specialties

    PubMed Central

    Stevens, Adrienne L.; Wilczynski, Nancy L.; McKibbon, K. Ann; Haynes, R. Brian

    2001-01-01

    Objective: To identify a journal subset that publishes reports of high quality studies and reviews relating to age-specific clinical specialties, such as pediatrics and geriatrics. Design: Handsearch of 172 journals using explicit criteria to determine methodologic quality for generating evidence for clinical practice. Main outcome measure: Frequency of high quality articles and their top yielding journals. Results: Between 17% and 33% of articles published in age-specific specialties are of high quality for clinical use. Top yielding journals for the specialties ranged from 16 to 130. Conclusion: Handsearch of the clinical literature for the year 2000 reveals that high quality articles for some age-specific specialties are concentrated in a small subset of journals (eg, obstetrics), whereas articles for other specialties are widely scattered among a large number of journals (eg, adult medicine).

  3. Elevated and super-elevated CO2 differ in their interactive effects with nitrogen availability on fruit yield and quality of cucumber.

    PubMed

    Dong, Jinlong; Xu, Qiao; Gruda, Nazim; Chu, Wenying; Li, Xun; Duan, Zengqiang

    2018-02-25

    Elevated carbon dioxide (CO 2 ) and nitrogen (N) availability can interactively promote cucumber yield, but how the yield increase is realized remains unclear, whilst the interactive effects on fruit quality are unknown. In this study, cucumber plants (Cucumis sativus L. cv. Jinmei No. 3) were grown in a paddy soil under three CO 2 concentrations - 400 (ambient CO 2 ), 800 (elevated CO 2 , eCO 2 ) and 1200 µmol mol -1 (super-elevated CO 2 ) - and two N applications - 0.06 (low N) and 0.24 g N kg -1 soil (high N). Compared with ambient CO 2 , eCO 2 increased yield by 106% in high N but the increase in total biomass was only 33%. This can result from greater carbon translocation to fruits from other organs, indicated by the increased biomass allocation from stems and leaves, particularly source leaves, to fruits and the decreased concentrations of fructose and glucose in source leaves. Super-elevated CO 2 reduced the carbon allocation to fruits thus yield increase (71%). Additionally, eCO 2 also increased the concentrations of fructose and glucose in fruits, maintained the concentrations of dietary fiber, phosphorus, potassium, calcium, magnesium, sulfur, manganese, copper, molybdenum and sodium, whilst it decreased the concentrations of nitrate, protein, iron, and zinc in high N. Compared with eCO 2 , super-elevated CO 2 can still improve the fruit quality to some extent in low N availability. Elevated CO 2 promotes cucumber yield largely by carbon allocation from source leaves to fruits in high N availability. Besides a dilution effect, carbon allocation to fruits, carbohydrate transformation, and nutrient uptake and assimilation can affect the fruit quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. High-performance thin layer chromatography to assess pharmaceutical product quality.

    PubMed

    Kaale, Eliangiringa; Manyanga, Vicky; Makori, Narsis; Jenkins, David; Michael Hope, Samuel; Layloff, Thomas

    2014-06-01

    To assess the sustainability, robustness and economic advantages of high-performance thin layer chromatography (HPTLC) for quality control of pharmaceutical products. We compared three laboratories where three lots of cotrimoxazole tablets were assessed using different techniques for quantifying the active ingredient. The average assay relative standard deviation for the three lots was 1.2 with a range of 0.65-2.0. High-performance thin layer chromatography assessments are yielding valid results suitable for assessing product quality. The local pharmaceutical manufacturer had evolved the capacity to produce very high quality products. © 2014 John Wiley & Sons Ltd.

  5. High-Yield Synthesis and Optical Properties of Carbon Nanotube Porins

    DOE PAGES

    Tunuguntla, Ramya H.; Chen, Xi; Belliveau, Allison; ...

    2017-01-18

    Carbon nanotube porins (CNTPs) are a convenient membrane-based model system for studying nanofluidic transport that replicates a number of key structural features of biological membrane channels. We present a generalized approach for CNTP synthesis using sonochemistry-assisted segmenting of carbon nanotubes. Prolonged tip sonication in the presence of lipid molecules debundles and fragments long carbon nanotube aggregates into stable and water-soluble individual CNTPs with lengths in the range 5–20 nm. We discuss the main parameters that determine the efficiency and the yield of this process, describe the optimized conditions for high-yield CNTP synthesis, and demonstrate that this methodology can be adaptedmore » for synthesis of CNTPs of different diameters. We also present the optical properties of CNTPs and show that a combination of Raman and UV–vis–NIR spectroscopy can be used to monitor the quality of the CNTP synthesis. Altogether, CNTPs represent a versatile nanopore building block for creating higher-order functional biomimetic materials.« less

  6. Effects of Elevated CO2 and Temperature on Yield and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) at Two Levels of Nitrogen Application

    PubMed Central

    Sun, Peng; Mantri, Nitin; Lou, Heqiang; Hu, Ya; Sun, Dan; Zhu, Yueqing; Dong, Tingting; Lu, Hongfei

    2012-01-01

    We investigated if elevated CO2 could alleviate the negative effect of high temperature on fruit yield of strawberry (Fragaria × ananassa Duch. cv. Toyonoka) at different levels of nitrogen and also tested the combined effects of CO2, temperature and nitrogen on fruit quality of plants cultivated in controlled growth chambers. Results show that elevated CO2 and high temperature caused a further 12% and 35% decrease in fruit yield at low and high nitrogen, respectively. The fewer inflorescences and smaller umbel size during flower induction caused the reduction of fruit yield at elevated CO2 and high temperature. Interestingly, nitrogen application has no beneficial effect on fruit yield, and this may be because of decreased sucrose export to the shoot apical meristem at floral transition. Moreover, elevated CO2 increased the levels of dry matter-content, fructose, glucose, total sugar and sweetness index per dry matter, but decreased fruit nitrogen content, total antioxidant capacity and all antioxidant compounds per dry matter in strawberry fruit. The reduction of fruit nitrogen content and antioxidant activity was mainly caused by the dilution effect of accumulated non-structural carbohydrates sourced from the increased net photosynthetic rate at elevated CO2. Thus, the quality of strawberry fruit would increase because of the increased sweetness and the similar amount of fruit nitrogen content, antioxidant activity per fresh matter at elevated CO2. Overall, we found that elevated CO2 improved the production of strawberry (including yield and quality) at low temperature, but decreased it at high temperature. The dramatic fluctuation in strawberry yield between low and high temperature at elevated CO2 implies that more attention should be paid to the process of flower induction under climate change, especially in fruits that require winter chilling for reproductive growth. PMID:22911728

  7. High-quality cardiopulmonary resuscitation: current and future directions.

    PubMed

    Abella, Benjamin S

    2016-06-01

    Cardiopulmonary resuscitation (CPR) represents the cornerstone of cardiac arrest resuscitation care. Prompt delivery of high-quality CPR can dramatically improve survival outcomes; however, the definitions of optimal CPR have evolved over several decades. The present review will discuss the metrics of CPR delivery, and the evidence supporting the importance of CPR quality to improve clinical outcomes. The introduction of new technologies to quantify metrics of CPR delivery has yielded important insights into CPR quality. Investigations using CPR recording devices have allowed the assessment of specific CPR performance parameters and their relative importance regarding return of spontaneous circulation and survival to hospital discharge. Additional work has suggested new opportunities to measure physiologic markers during CPR and potentially tailor CPR delivery to patient requirements. Through recent laboratory and clinical investigations, a more evidence-based definition of high-quality CPR continues to emerge. Exciting opportunities now exist to study quantitative metrics of CPR and potentially guide resuscitation care in a goal-directed fashion. Concepts of high-quality CPR have also informed new approaches to training and quality improvement efforts for cardiac arrest care.

  8. Yield, Quality, and Nutrient Concentrations of Strawberry (Fragaria ×ananassa Duch. cv. 'Sonata') Grown with Different Organic Fertilizer Strategies.

    PubMed

    Pokhrel, Bhaniswor; Laursen, Kristian Holst; Petersen, Karen Koefoed

    2015-06-17

    Four combinations of two solid organic fertilizers (Monterra Malt and chicken manure) applied before planting and two liquid organic fertilizers (broad bean and Pioner Hi-Fruit/K-Max) given through drip irrigation (fertigation) were compared with inorganic fertilization regarding growth, yield, nutrient concentration, and fruit quality of strawberries. Broad bean fertigation combined with Monterra Malt resulted in a similar fruit yield as inorganic fertilizer and a higher yield than Monterra Malt combined with Pioner; however, total soluble solids, firmness, and titratable acid were improved with Pioner fertigation, although these parameters were more affected by harvest time than the applied fertilizers. The concentrations of most nutrients in fruits and leaves were higher in inorganically fertigated plants. The reductions in fruit yield in three of four treatments and fruit weight in all organic treatments may be due to a combination of the following conditions in the root zone: (1) high pH and high NH4(+)/NO3(-) ratio; (2) high EC and/or high NaCl concentration; (3) cation imbalance; and (4) nutrient deficiency.

  9. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture.

    PubMed

    Cassman, K G

    1999-05-25

    Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.

  10. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    PubMed

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Isolation of high quality RNA from pistachio (Pistacia vera L.) and other woody plants high in secondary metabolites.

    PubMed

    Moazzam Jazi, Maryam; Rajaei, Saideh; Seyedi, Seyed Mahdi

    2015-10-01

    The quality and quantity of RNA are critical for successful downstream transcriptome-based studies such as microarrays and RNA sequencing (RNA-Seq). RNA isolation from woody plants, such as Pistacia vera, with very high amounts of polyphenols and polysaccharides is an enormous challenge. Here, we describe a highly efficient protocol that overcomes the limitations posed by poor quality and low yield of isolated RNA from pistachio and various recalcitrant woody plants. The key factors that resulted in a yield of 150 μg of high quality RNA per 200 mg of plant tissue include the elimination of phenol from the extraction buffer, raising the concentration of β-mercaptoethanol, long time incubation at 65 °C, and nucleic acid precipitation with optimized volume of NaCl and isopropyl alcohol. Also, the A260/A280 and A260/A230 of extracted RNA were about 1.9-2.1and 2.2-2.3, respectively, revealing the high purity. Since the isolated RNA passed highly stringent quality control standards for sensitive reactions, including RNA sequencing and real-time PCR, it can be considered as a reliable and cost-effective method for RNA extraction from woody plants.

  12. High-biomass C4 grasses-Filling the yield gap.

    PubMed

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.

    PubMed

    Egg, R P; Sweeten, J M; Coble, C G

    1985-12-01

    Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.

  14. A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.).

    PubMed

    Topdar, N; Kundu, A; Sinha, M K; Sarkar, D; Das, M; Banerjee, S; Kar, C S; Satya, P; Balyan, H S; Mahapatra, B S; Gupta, P K

    2013-01-01

    We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2x = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as colocalized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest colocalized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those of fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.

  15. Environmental and genetic factors affecting milk yield and quality in three Italian sheep breeds.

    PubMed

    Selvaggi, Maria; D'Alessandro, Angela Gabriella; Dario, Cataldo

    2017-02-01

    The aims of the study described in the Research Communication were to determine the level of influence of some environmental factors on milk yield and quality traits, including lactose, and lactation length in ewes belonging to three different Italian breeds and to estimate the heritability for the same traits. A total of 2138 lactation records obtained from 535 ewes belonging to three different Italian breeds (Comisana, Leccese, and Sarda) were used. Breed significantly affected all of the considered traits. Moreover, year of lambing affected milk yield and lactation length without influence on milk quality traits. Parity affected significantly only the milk yield, whereas type of birth showed its effect on milk yield, fat, protein, and lactose yield. On the whole, the presently reported heritability estimates are within the range of those already obtained in other dairy breeds by other authors, with values for lactation length being very low in all the investigated populations. Considering the heritability estimates for lactose content and yield, to the best of our knowledge, there is a lack of information on these parameters in ovine species and this is the first report on heritability of lactose content and yield in dairy sheep breeds. Our results suggest that genetic variability for milk traits other than lactation length is adequate for selection indicating a good response to selection in these breeds.

  16. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  17. Association of HMO penetration and other credit quality factors with tax-exempt bond yields.

    PubMed

    McCue, M J

    1997-01-01

    This paper evaluates the relationship of HMO penetration, as well as other credit quality measures of market, institutional, operational, and financial traits, to tax-exempt bond yields. The study analyzed more than 1,500 bond issues from 1990 through 1993 and corrected for simultaneous relationships between bond size and yield and selection bias. The study found lower bond yields for hospitals located in markets with no HMO penetration. Lower yields for bond issues also were found for facilities generating higher numbers of days cash on hand and greater debt service coverage. Finally, results show that hospitals with higher occupancy rates achieve a lower yield.

  18. [Influence of saltwater irrigation on the yield and quality of Cynodon dactylon under desert conditions].

    PubMed

    Zhou, Ruilian; Dov, Paternak; Zhao, Halin

    2002-08-01

    Responses of six varieties (Suwannee, Coast cross, Tifton44, Tifton68, Tifton78 and Tifton85) of Cynodon dactylon to irrigation-water salinity were investigated in field by means of a double line source experimental design. The digestibility of the grass by goat was analyzed using the rumen gastric justice digestion method. The results showed that the six varieties grew well, and had a high yield of fresh grass when eletro-conductivity (Eci) < 10 ds.m-1. Particularly when Eci = 4.4 ds.m-1, the fresh grass yield of Coast cross, Suwannee, Tifton44, Tifton68, Tifton78 and Tifton85 was respectively increased by 142.1%, 61.1%, 136%, 121.1%, 202.3% and 109.7%, in comparison with fresh water (Eci = 1.2) irrigation. Dry matter yield was also elevated with the increasing salinity of irrigated water. There was no obvious effect of salinity on crude protein, fiber and ash contents in the six varieties. Goats were fond of eating the hay irrigated by saline water, perhaps because of its higher digestibility. At least, the yield and quality of Cynodon dactylon were not effected by saltwater irrigation.

  19. Corn silage replacement with barley silage in dairy cows' diet does not change milk quality, cheese quality and yield.

    PubMed

    Migliorati, Luciano; Boselli, Leonardo; Pirlo, Giacomo; Moschini, Maurizio; Masoero, Francesco

    2017-08-01

    Considering that water availability for agricultural needs is being restricted, an alternative to corn in animal nutrition should be explored in the Po Valley. The present study aimed to evaluate the effects of either a partial (Trial I) or a total (Trial II) corn silage substitution with barley silage in dairy cows' diet on milk yield and composition, its coagulation properties, cheese yield and the sensorial profile of 16-month-aged Grana Padano cheese. A partial or a total substitution of corn silage with barley silage had no effect on milk yield. Milk fat content in Trial I and milk urea content in both trials were higher with barley silage based diets than in corn silage based diets. No effects were observed concerning the lactodinamographic profile for milk aptitude to cheese-making, cheese yield and its organoleptic traits between feed treatments in Trials I and II. In both trials, hardness, friability and solubility scores were generally lower than reference values, whereas deformability, elasticity and stickiness scores were generally higher than reference values. A partial or a total substitution of corn silage with barley silage in diets for dairy cows did not induce any negative effects on animal performance, nor on milk-quality traits, cheese quality and yield. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    PubMed

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Diversity of cacao trees in Waslala, Nicaragua: associations between genotype spectra, product quality and yield potential.

    PubMed

    Trognitz, Bodo; Cros, Emile; Assemat, Sophie; Davrieux, Fabrice; Forestier-Chiron, Nelly; Ayestas, Eusebio; Kuant, Aldo; Scheldeman, Xavier; Hermann, Michael

    2013-01-01

    The sensory quality and the contents of quality-determining chemical compounds in unfermented and fermented cocoa from 100 cacao trees (individual genotypes) representing groups of nine genotype spectra (GG), grown at smallholder plantings in the municipality of Waslala, Nicaragua, were evaluated for two successive harvest periods. Cocoa samples were fermented using a technique mimicking recommended on-farm practices. The sensory cocoa quality was assessed by experienced tasters, and seven major chemical taste compounds were quantified by near infrared spectrometry (NIRS). The association of the nine, partially admixed, genotype spectra with the analytical and sensory quality parameters was tested. The individual parameters were analyzed as a function of the factors GG and harvest (including the date of fermentation), individual trees within a single GG were used as replications. In fermented cocoa, significant GG-specific differences were observed for methylxanthines, theobromine-to-caffeine (T/C) ratio, total fat, procyanidin B5 and epicatechin, as well as the sensory attributes global score, astringency, and dry fruit aroma, but differences related to harvest were also apparent. The potential cocoa yield was also highly determined by the individual GG, although there was significant tree-to-tree variation within every single GG. Non-fermented samples showed large harvest-to-harvest variation of their chemical composition, while differences between GG were insignificant. These results suggest that selection by the genetic background, represented here by groups of partially admixed genotype spectra, would be a useful strategy toward enhancing quality and yield of cocoa in Nicaragua. Selection by the GG within the local, genetically segregating populations of seed-propagated cacao, followed by clonal propagation of best-performing individuals of the selected GG could be a viable alternative to traditional propagation of cacao by seed from open pollination. Fast and

  2. Diversity of Cacao Trees in Waslala, Nicaragua: Associations between Genotype Spectra, Product Quality and Yield Potential

    PubMed Central

    Trognitz, Bodo; Cros, Emile; Assemat, Sophie; Davrieux, Fabrice; Forestier-Chiron, Nelly; Ayestas, Eusebio; Kuant, Aldo; Scheldeman, Xavier; Hermann, Michael

    2013-01-01

    The sensory quality and the contents of quality-determining chemical compounds in unfermented and fermented cocoa from 100 cacao trees (individual genotypes) representing groups of nine genotype spectra (GG), grown at smallholder plantings in the municipality of Waslala, Nicaragua, were evaluated for two successive harvest periods. Cocoa samples were fermented using a technique mimicking recommended on-farm practices. The sensory cocoa quality was assessed by experienced tasters, and seven major chemical taste compounds were quantified by near infrared spectrometry (NIRS). The association of the nine, partially admixed, genotype spectra with the analytical and sensory quality parameters was tested. The individual parameters were analyzed as a function of the factors GG and harvest (including the date of fermentation), individual trees within a single GG were used as replications. In fermented cocoa, significant GG-specific differences were observed for methylxanthines, theobromine-to-caffeine (T/C) ratio, total fat, procyanidin B5 and epicatechin, as well as the sensory attributes global score, astringency, and dry fruit aroma, but differences related to harvest were also apparent. The potential cocoa yield was also highly determined by the individual GG, although there was significant tree-to-tree variation within every single GG. Non-fermented samples showed large harvest-to-harvest variation of their chemical composition, while differences between GG were insignificant. These results suggest that selection by the genetic background, represented here by groups of partially admixed genotype spectra, would be a useful strategy toward enhancing quality and yield of cocoa in Nicaragua. Selection by the GG within the local, genetically segregating populations of seed-propagated cacao, followed by clonal propagation of best-performing individuals of the selected GG could be a viable alternative to traditional propagation of cacao by seed from open pollination. Fast and

  3. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    PubMed Central

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  4. Analysis of the trade-off between high crop yield and low yield instability at the global scale

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2016-10-01

    Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.

  5. Effects of Fumigant Nematicides on Yield and Quality of Paste Tomatoes Grown in Southwestern Ontario

    PubMed Central

    Reynolds, L. B.; Olthof, Th. H. A.; Potter, J. W.

    1992-01-01

    Field trials were conducted at the Delhi Research Station, Ontario, Canada, on a Fox loamy sand soil during 1987 and 1988 to evaluate the effects of row application of the fumigants Telone II, Telone C-17, Vorlex Plus, and Vorlex Plus CP on the yield and quality of paste tomato (Lycopersicon esculentum Mill. cv. Ferry Morse 6203). The four fumigants were equally effective in controlling the natural field populations of root lesion nematodes (Pratylenchus penetrans Cobb). A significant reduction in marketable red fruit yield due to different nematode densities at time of transplanting was observed in 1988. Fumigation did not significantly affect the yield of nonmarketable fruit, the relative maturation rate, or the processing quality in either year. PMID:19283042

  6. Factors determining yield and quality of illicit indoor cannabis (Cannabis spp.) production.

    PubMed

    Vanhove, Wouter; Van Damme, Patrick; Meert, Natalie

    2011-10-10

    Judiciary currently faces difficulties in adequately estimating the yield of illicit indoor cannabis plantations. The latter data is required in penalization which is based on the profits gained. A full factorial experiment in which two overhead light intensities, two plant densities and four varieties were combined in the indoor cultivation of cannabis (Cannabis spp.) was used to reveal cannabis drug yield and quality under each of the factor combinations. Highest yield was found for the Super Skunk and Big Bud varieties which also exhibited the highest concentrations of Δ(9)-tetrahydrocannabinol (THC). Results show that plant density and light intensity are additive factors whereas the variety factor significantly interacts with both plant density and light intensity factors. Adequate estimations of yield of illicit, indoor cannabis plantations can only be made if upon seizure all factors considered in this study are accounted for. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. High-yield positron systems for linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for everymore » electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.« less

  8. Yield and water quality for different residue managements of sugarcane in Louisiana

    USDA-ARS?s Scientific Manuscript database

    The focus of the study was to provide information on implementation of a modified post-harvest crop residue sweeper on sugarcane yield and water quality. Field experiments were established at three different locations in south Louisiana: Paincourtville, Duson and Baton Rouge. In each location, lar...

  9. Strontium and barium iodide high light yield scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Hull, Giulia; Drobshoff, Alexander D.; Payne, Stephen A.; van Loef, Edgar; Wilson, Cody M.; Shah, Kanai S.; Roy, Utpal N.; Burger, Arnold; Boatner, Lynn A.; Choong, Woon-Seng; Moses, William W.

    2008-02-01

    Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields. SrI2(Eu ) emits into the Eu2+ band, centered at 435nm, with a decay time of 1.2μs and a light yield of ˜90000photons/MeV. It offers energy resolution better than 4% full width at half maximum at 662keV, and exhibits excellent light yield proportionality. BaI2(Eu ) produces >30000photons/MeV into the Eu2+ band at 420nm (<1μs decay). An additional broad impurity-mediated recombination band is present at 550nm (>3μs decay), unless high-purity feedstock is used.

  10. Reducing pressure on natural forests through high-yield forestry

    Treesearch

    W.T. Gladstone; F. Thomas Ledig

    1990-01-01

    High-yield forestry can make a valuable contribution to the conservation and sustained use of forest ecosystems. Despite the pressing reasons for conserving forest resources, population growth creates pressures for exploiting them. Unless needs for forest products, export credits, and local employment can be met by new devices, such as high-yield forestry, these...

  11. Total nutrient and sediment loads, trends, yields, and nontidal water-quality indicators for selected nontidal stations, Chesapeake Bay Watershed, 1985–2011

    USGS Publications Warehouse

    Langland, Michael J.; Blomquist, Joel D.; Moyer, Douglas; Hyer, Kenneth; Chanat, Jeffrey G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Chesapeake Bay Program (CBP) partners, routinely reports long-term concentration trends and monthly and annual constituent loads for stream water-quality monitoring stations across the Chesapeake Bay watershed. This report documents flow-adjusted trends in sediment and total nitrogen and phosphorus concentrations for 31 stations in the years 1985–2011 and for 32 stations in the years 2002–2011. Sediment and total nitrogen and phosphorus yields for 65 stations are presented for the years 2006–2011. A combined nontidal water-quality indicator (based on both trends and yields) indicates there are more stations classified as “improving water-quality trend and a low yield” than “degrading water-quality trend and a high yield” for total nitrogen. The same type of 2-way classification for total phosphorus and sediment results in equal numbers of stations in each indicator class.

  12. Estimated loads and yields of suspended soils and water-quality constituents in Kentucky streams

    USGS Publications Warehouse

    Crain, Angela S.

    2001-01-01

    Loads and yields of suspended solids, nutrients, major ions, trace elements, organic carbon, fecal coliform, dissolved oxygen, and alkalinity were estimated for 22 streams in 11 major river basins in Kentucky. Mean daily discharge was estimated at ungaged stations or stations with incomplete discharge records using drainage-area ratio, regression analysis, or a combination of the two techniques. Streamflow was partitioned into total and base flow and used to estimate loads and yields for suspended solids and water-quality constituents by use of the ESTIMATOR and FLUX computer programs. The relative magnitude of constituent transport to streams from groundand surface-water sources was determined for the 22 stations. Nutrient and suspended solids yields for drainage basins with relatively homogenous land use were used to estimate the total-flow and base-flow yields of nutrient and suspended solids for forested, agricultural, and urban land. Yields of nutrients?nitrite plus nitrate, ammonia plus organic nitrogen, and total phosphorus?in forested drainage basins were generally less than 1 ton per square mile per year ((ton/mi2)/yr) and were generally less than 2 (ton/mi2)/yr in agricultural drainage basins. The smallest total-flow yields for nitrogen (nitrite plus nitrate) was estimated at Levisa Fork at Paintsville in which 95 percent of the land is forested. This site also had one of the smallest total-flow yields for ammonia plus organic nitrogen. In general, nutrient yields from forested lands were lower than those from urban and agricultural land. Some of the largest estimated total-flow yields of nutrients among agricultural basins were for streams in the Licking River Basin, the North Fork Licking River near Milford, and the South Fork Licking River at Cynthiana. Agricultural land constitutes greater than 75 percent of the drainage area in these two basins. Possible sources of nutrients discharging into the Licking River are farm and residential fertilizers

  13. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    PubMed

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  14. Effect of simultaneous drought stress and root-knot nematode infection on cotton yield and fiber quality

    USDA-ARS?s Scientific Manuscript database

    Both drought stress and root-knot nematode (Meloidogyne incognita) infection can reduce cotton yield, and drought can affect fiber quality, but it not known what effect the nematodes have on fiber quality. To determine whether nematode parasitism affects fiber quality and whether the combined effec...

  15. Yield and fruit quality traits of atemoya hybrids grown in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    As consumers seek healthy and more diverse food products the demand for tropical fruits has increased significantly during the past 15 years. There is a lack of formal experimentation to determine yield performance and fruit quality traits of atemoya (Annona squamosa x A. cherimola) hybrids. Six a...

  16. High yield production of extracellular recombinant levansucrase by Bacillus megaterium.

    PubMed

    Korneli, Claudia; Biedendieck, Rebekka; David, Florian; Jahn, Dieter; Wittmann, Christoph

    2013-04-01

    In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH 6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg L(-1)) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U mL(-1) on fructose and 17.2 U mL(-1) on glycerol). This was further increased in high cell density fed-batch processes up to 55 U mL(-1), reflecting a levansucrase concentration of 0.52 g L(-1). This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.

  17. Deciphering Natural Allelic Variation in Switchgrass for Biomass Yield and Quality Using a Nested Association Mapping Population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Malay C.; Brummer, E. Charles; Kaeppler, Shawn

    Switchgrass (Panicum virgatum L.) is a C4 grass with high biomass yield potential and a model species for bioenergy feedstock development. Understanding the genetic basis of quantitative traits is essential to facilitate genome-enabled breeding programs. The nested association mapping (NAM) analysis combines the best features of both bi-parental and association analyses and can provide high power and high resolution in QTL detection and will ensure significant improvements in biomass yield and quality. To develop a NAM population of switchgrass, 15 highly diverse genotypes with specific characteristics were selected from a diversity panel and crossed to a recurrent parent, AP13, amore » genotype selected for whole genome sequencing and parent of a mapping population. Ten genotypes from each of the 15 F1 families were then chain crossed. Progenies form each family were randomly selected to develop the NAM population. The switchgrass NAM population consists of a total of 2000 genotypes from 15 families. All the progenies, founder parents, F1 parents (n=2350) were evaluated in replicated field trials at Ardmore, OK and Knoxville, TN. Phenotypic data on plant height, tillering ability, regrowth, flowering time, and biomass yield were collected. Dried biomass samples were also analyzed using prediction equations of NIRS at the Noble Foundation and for lignin content, S/G ratio, and sugar release characteristics at the NREL. Genomic shotgun sequencing of 15 switchgrass NAM founder parental genomes at JGI produced 28-66 Gb high-quality sequence data. Alignment of these sequences with the reference genome, AP13 (v3.0), revealed that up to 99% of the genomic sequences mapped to the reference genome. A total of 2,149 individuals from NAM populations were sequenced by exome capture and two sets of 15 SNP matrices (one for each family) were generated. QTL associated with important traits have been identified and verified in breeding populations. The QTL detected and their

  18. The influence of organic amendment and nickel pollution on tomato fruit yield and quality.

    PubMed

    Palacios, G; Carbonell-Barrachina, A; Gómez, I; Mataix, J

    1999-01-01

    The effects of organic fertilization (sludge application) and/or different levels of Ni pollution on tomato fruit yield, quality, nutrition, and Ni accumulation were investigated. The mass loading of sewage sludge solids used in this study for the amendment of a calcareous soil with low organic matter content was 2% (w/w). A control with no sewage sludge amendment was also included (S). Nickel was added to the sludge amended soil at 0, 60, 120 and 240 mg kg-1 concentrations. Sewage sludge addition to the calcareous soil significantly increased fruit yield but did not adversely affect the quality and nutritional status of the tomato fruit. The results demonstrated that sewage sludge could be successfully used as a horticultural fertilizer. Only the highest addition rate of Ni (240 mg kg-1) to an organic amended calcareous soil had negative effects on fruit yield and quality, and caused a Ni accumulation in fruit that could be considered as a hazard for human health. Thus, no toxic problems will be encountered in tomato fruit due to Ni pollution provided the total Ni (soil Ni plus Ni incorporated with sludge amendment) concentration is kept below the maximum concentration of Ni allowed for agricultural alkaline soils in Spain (112 mg Ni kg-1).

  19. Yield and Fruit Quality Traits of Atemoya Cultivars Grown in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    The demand for tropical fruits has increased more than 33% during the last decade as consumers seek healthy and more diverse food products. There is a lack of formal experimentation to determine yield performance and fruit quality traits of atemoya (Annona squamosa x A. cherimola) cultivars. Six a...

  20. The influence of steaming and a ratio of grated coconut to water on the yield and quality of virgin coconut oil

    NASA Astrophysics Data System (ADS)

    Rahmah, N. L.; Istikoma, R.; Kumalaningsih, S.

    2018-03-01

    The quality of Virgin Coconut Oil (VCO) is determined by the quality of coconut milk. High quality of coconut milk can be obtained by proper handling of grated coconut as raw material. When coconut was shredded, the lipases are exposed which can hydrolyse the oil resulting free fatty acid (FFA).Steaming is a technique to inactivate lipases. In addition, a ratio of grated coconut to water and steaming duration are important factor to the VCO extraction. Therefore, this study aimed to obtain the best combination of steaming duration and suitable ratio of grated coconut to water in order to produce high quality VCO. The research design was Factorial Randomized Block Design consisted of 2 factors: steaming duration (5; 10; and 15 minutes) and grated coconut to water ratio (1:0; 1:1; 1:2; 1:3; and 1:4 w/v),each treatment was repeated twice. Parameters analyzed were FFA, moisture content, and yield values. The result showed that the best treatment was a treatment with 15 minutes steaming of grated coconut and 1:4 ratio of grated coconut to water. The best treatment VCO had characteristic as follows: FFA 0.054 %, moisture content 0.129 % and yield 17.563 %.

  1. Optimization of grapevine yield by applying mathematical models to obtain quality wine products

    NASA Astrophysics Data System (ADS)

    Alina, Dobrei; Alin, Dobrei; Eleonora, Nistor; Teodor, Cristea; Marius, Boldea; Florin, Sala

    2016-06-01

    Relationship between the crop load and the grape yield and quality is a dynamic process, specific for wine cultivars and for fresh consumption varieties. Modeling these relations is important for the improvement of technological works. This study evaluated the interrelationship of crop load (B - buds number) and several production parameters (Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric index; AP - alcoholic potential; F - flavorings, WA - wine alcohol; SR - sugar residue, in Muscat Ottonel wine cultivar and Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric Index; CP - commercial production; BS - berries size in the Victoria table grape cultivar). In both varieties have been identified correlations between the independent variable (B - buds number as a result of pruning and training practices) and quality parameters analyzed (r = -0.699 for B vsY relationship; r = 0.961 for the relationship B vs S; r = -0.959 for B vs AP relationship; r = 0.743 for the relationship Y vs S, p <0.01, in the Muscat Ottonel cultivar, respectively r = -0.907 for relationship B vs Y; r = -0.975 for B vs CP relationship; r = -0.971 for relationship B vs BS; r = 0.990 for CP vs BS relationship in the Victoria cultivar. Through regression analysis were obtained models that describe the variation concerning production and quality parameters in relation to the independent variable (B - buds number) with statistical significance results.

  2. Effect of crude protein concentration and dietary electrolyte balance on litter quality, foot pad dermatitis, growth performance and processing yields in two medium heavy turkey hybrids.

    PubMed

    Veldkamp, T; Hocking, P M; Vinco, L J

    2017-10-01

    1. An experiment was conducted to investigate the effect of crude protein (CP) concentration and dietary electrolyte balance (DEB) on growth performance, processing yields, litter quality and foot pad dermatitis (FPD) in male turkeys from two commercial hybrids. Soya bean meal was replaced by vegetable protein sources selected for lower K concentrations to lower DEB in order to improve litter quality and subsequent quality of foot pads. 2. Effects of CP on litter friability and wetness were not consistent during the production period. FPD in turkeys fed on diets with low CP was significantly lower than FPD in turkeys fed on diets with high CP until 84 d. Growth performance was adversely affected at low CP. Processing yields were not affected by CP. 3. Litter was significantly dryer in pens of turkeys fed on diets with low DEB than in pens of turkeys fed on diets with high DEB. FPD in turkeys fed on diets with low DEB was significantly lower than in turkeys fed on diets with high DEB. Growth performance and processing yields were adversely affected at low DEB. 4. FPD in turkey hybrid A was higher than in turkey hybrid B at 28 d of age. Thereafter, no differences in FPD between turkey hybrids were observed. Growth performance and processing yields were not affected by turkey hybrid. 5. Overall, a significant interaction effect of CP × DEB was observed for FCR: in turkeys fed on the high DEB treatment, FCR of turkeys fed on the high CP diets was lower than FCR of turkeys fed on the low CP (LCP) diets whereas on the low DEB treatment, FCR was not affected by CP treatment. 6. It was concluded that litter quality can be improved and FPD may be decreased in turkeys fed on diets containing lower CP and DEB levels.

  3. Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L).

    PubMed

    Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan

    2017-01-01

    Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65-70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency.

  4. Potential link between fruit yield, quality parameters and phytohormonal changes in preharvest UV-C treated strawberry.

    PubMed

    Xu, Yanqun; Charles, Marie Thérèse; Luo, Zisheng; Roussel, Dominique; Rolland, Daniel

    2017-07-01

    Preharvest ultraviolet-C (UV-C) treatment of strawberry is a very new approach, and little information is available on the effect of this treatment on plant growth regulators. In this study, the effect of preharvest UV-C irradiations at three different doses on strawberry yield, fruit quality parameters and endogenous phytohormones was investigated simultaneously. The overall marketable yield of strawberry was not affected by the preharvest UV-C treatments, although more aborted and misshapen fruits were found in UV-C treated groups than in the untreated control. The fruits in the high dose group were firmer and had approximately 20% higher sucrose content and 15% higher ascorbic acid content than the control, while fruits from the middle and low dose groups showed no significant changes in these parameters. The lower abscisic acid (ABA) content found in the fruits in the high UV-C group may be associated with those quality changes. The citric acid content decreased only in the low dose group (reduction of 5.8%), with a concomitant 37% reduction in jasmonic acid (JA) content, compared to the control. The antioxidant status of fruits that received preharvest UV-C treatment was considered enhanced based on their oxygen radical absorbance capacity (ORAC) and malondialdehyde (MDA) content. In terms of aroma, three volatile alcohols differed significantly among the various treatments with obvious activation of alcohol acyltransferase (AAT) activity. The observed synchronous influence on physiological indexes and related phytohormones suggests that preharvest UV-C might affect fruit quality via the action of plant hormones. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.

  5. Improving methane yield and quality via co-digestion of cow dung mixed with food waste.

    PubMed

    Awasthi, Sanjeev Kumar; Joshi, Rutu; Dhar, Hiya; Verma, Shivpal; Awasthi, Mukesh Kumar; Varjani, Sunita; Sarsaiya, Surendra; Zhang, Zengqiang; Kumar, Sunil

    2018-03-01

    Methane (CH 4 ) production and quality were enhanced by the co-digestion of cow dung and food waste (FW) mixed with organic fraction of municipal solid waste (OFMSW) under optimized conditions in bench and semi continuous-scale mode for a period of 30 days. A bacterium capable of high yield of CH 4 was enriched and isolated by employing activated sewage sludge as the inoculums. The thirteen bacterial isolates were identified through morphological and biochemical tests. Gas chromatography was used to analyze the chemical compositions of the generated biogas. CH 4 yields were significantly higher during co-digestion of Run II (7.59 L) than Run I (3.7 L). Therefore, the co-digestion of FW with OFMSW and Run II was observed to be a competent method for biogas conversion from organic waste resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Highland Russet: A Full Season, Processing Variety with High Yields of Uniform U.S. No. 1 Tubers

    USDA-ARS?s Scientific Manuscript database

    Highland Russet is a late-season potato variety with light russet skin notable for its high yield of uniform U.S. No. 1 tubers, and good processing and culinary qualities. It resulted from a 1990 cross between Ranger Russet and Russet Legend and has been evaluated for over 15 years in public and ind...

  7. Effect of kernel size and mill type on protein, milling yield, and baking quality of hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end-use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, ...

  8. Evaluation of yield and quality of photoperiod sensitive sorghum and sorghum sudangrass

    USDA-ARS?s Scientific Manuscript database

    A 2-year study was conducted at 2 sites (Hancock, Marshfield) in central Wisconsin to assess yield and quality of photoperiod sensitive (PS) and non-PS sorghums in relation to corn planted on 2 dates and harvested once or twice. At each site, treatments were arranged as a split-split plot in a rando...

  9. Preparation of DNA from cytological material: effects of fixation, staining, and mounting medium on DNA yield and quality.

    PubMed

    Dejmek, Annika; Zendehrokh, Nooreldin; Tomaszewska, Malgorzata; Edsjö, Anders

    2013-07-01

    Personalized oncology requires molecular analysis of tumor cells. Several studies have demonstrated that cytological material is suitable for DNA analysis, but to the authors' knowledge there are no systematic studies comparing how the yield and quality of extracted DNA is affected by the various techniques used for the preparation of cytological material. DNA yield and quality were compared using cultured human lung cancer cells subjected to different preparation techniques used in routine cytology, including fixation, mounting medium, and staining. The results were compared with the outcome of epidermal growth factor receptor (EGFR) genotyping of 66 clinical cytological samples using the same DNA preparation protocol. All tested protocol combinations resulted in fragment lengths of at least 388 base pairs. The mounting agent EcoMount resulted in higher yields than traditional xylene-based medium. Spray and ethanol fixation resulted in both a higher yield and better DNA quality than air drying. In liquid-based cytology (LBC) methods, CytoLyt solution resulted in a 5-fold higher yield than CytoRich Red. Papanicolaou staining provided twice the yield of hematoxylin and eosin staining in both liquid-based preparations. Genotyping outcome and quality control values from the clinical EGFR genotyping demonstrated a sufficient amount and amplifiability of DNA in both spray-fixed and air-dried cytological samples. Reliable clinical genotyping can be performed using all tested methods. However, in the cell line experiments, spray- or ethanol-fixed, Papanicolaou-stained slides provided the best results in terms of yield and fragment length. In LBC, the DNA recovery efficiency of the preserving medium may differ considerably, which should be taken into consideration when introducing LBC. Cancer (Cancer Cytopathol) 2013;121:344-353. © 2013 American Cancer Society. © 2013 American Cancer Society.

  10. Interactive Effects of Elevated CO2 and N Fertilization on Yield and Quality of Tomato Grown Under Reduced Irrigation Regimes

    PubMed Central

    Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai

    2018-01-01

    The interactive effects of CO2 elevation, N fertilization, and reduced irrigation regimes on fruit yield (FY) and quality in tomato (Solanum lycopersicum L.) were investigated in a split-root pot experiment. The plants were grown in two separate climate-controlled greenhouse cells at atmospheric [CO2] of 400 and 800 ppm, respectively. In each cell, the plants were fertilized at either 100 or 200 mg N kg-1 soil and were either irrigated to full water holding capacity [i.e., a volumetric soil water content of 18%; full irrigation (FI)], or using 70% water of FI to the whole pot [deficit irrigation (DI)] or alternately to only half of the pot [partial root-zone irrigation (PRI)]. The yield and fruit quality attributes mainly from sugars (sucrose, fructose, and glucose) and organic acids (OAs; citric acid and malic acid) to various ionic (NH4+, K+, Mg2+, Ca2+, NO3-, SO42-, and PO43-) concentrations in fruit juice were determined. The results indicated that lower N supply reduced fruit number and yield, whereas it enhanced some of the quality attributes of fruit as indicated by greater firmness and higher concentrations of sugars and OAs. Elevated [CO2] (e[CO2]) attenuated the negative influence of reduced irrigation (DI and PRI) on FY. Principal component analysis revealed that the reduced irrigation regimes, especially PRI, in combination with e[CO2] could synergistically improve the comprehensive quality of tomato fruits at high N supply. These findings provide useful knowledge for sustaining tomato FY and quality in a future drier and CO2-enriched environment. PMID:29636756

  11. [Effects of nitrogen management on yield, quality, nitrogen accumulation and its transportation of watermelon in gravel-mulched field].

    PubMed

    Ma, Zhong-ming; Du, Shao-ping; Xue, Liang

    2015-11-01

    The effects of nitrogen management on yield, quality, nitrogen and dry matter accumulation and transportation of watermelon in sand field were studied based on a field experiment. The results showed that too low or too high basal nitrogen fertilzation was unfavorable to seedling growth of watermelon in sand field, and no nitrogen application at vine extension or fruiting stages limited the formation of 'source' or 'sink'. At the same nitrogen rate, compared with the traditional T1 treatment (30% basal N fertilizer + 70% N fertilizer in vine extension), the nitrogen and dry matter accumulation of vegetative organs of T4 treatment (30% basal N fertilizer + 30% N fertilizer in vine extension + 40% N fertilizer in fruiting) and T6 treatment (100% basal N fertilizer + NAM) were reduced significantly, but the nitrogen and dry matter accumulation of fruit were increased significantly in the flushing period. The nitrogen transportation ratio and nitrogen contribution ratio of T4 were 33.6% and 12.0%, respectively. Compared to T1, the nitrogen harvest index, nitrogen fertilizer partial factor productivity and nitrogen fertilizer recovery efficiency of T4 and T6 treatments increased by 14.1% and 12.7%, 11.6% and 12.5%, 5.3% and 8.7%, respectively, and yield of watermelon increased by 11.6% and 12.5%, the soluble sugar, effective acid, the ratio of sugar and acid, Vc content increased by 16.5% and 11.7%, 4.5% and 2.8%, 19.4% and 13.4%, 35.6% and 19.0%, respectively. Therefore, T4 and T6 treatments were the optimal nitrogen fertilizer management mode which could not only achieve high yield and quality but also obtain high nitrogen fertilizer use efficiency in sand field. T6 treatment was the best nitrogen fertilizer management mode considering reduction of fertilizing labor intensity and extending service time of gravel-mulched field.

  12. [Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice].

    PubMed

    Wei, Hai-Yan; Wang, Ya-Jiang; Meng, Tian-Yao; Ge, Meng-Jie; Zhang, Hong-Cheng; Dai, Qi-Gen; Huo, Zhong-Yang; Xu, Ke

    2014-02-01

    (-2). Therefore, in the existing super rice production, classified management of N fertilizer would be required to meet differentiated demands of high yield, good quality, high efficiency, low N fertilizer input and so on.

  13. Anatomy and dry weight yields of two Populus clones grown under intensive culture.

    Treesearch

    John B. Crist; David H. Dawson

    1975-01-01

    Two Populus clones grown for short rotations at three dense planting spacings produced some extremely high yields of material of acceptable quality. However, variation in yields and quality illustrates that selection of genetic material and the cultured regime under which a species is growth are significant factors that must be determined in maximum-yield systems....

  14. High Energy Explosive Yield Enhancer Using Microencapsulation.

    DTIC Science & Technology

    The invention consists of a class of high energy explosive yield enhancers created through the use of microencapsulation techniques. The... microcapsules consist of combinations of highly reactive oxidizers that are encapsulated in either passivated inorganic fuels or inert materials and inorganic...fuels. Depending on the application, the availability of the various oxidizers and fuels within the microcapsules can be customized to increase the

  15. Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost.

    PubMed

    Lazcano, Cristina; Revilla, Pedro; Malvar, Rosa Ana; Domínguez, Jorge

    2011-05-01

    Vermicompost has been proposed as a valuable fertilizer for sustainable agriculture. The effects of vermicompost on yield and quality of sweet corn were evaluated in this study. In two field trials, sweet corn plants were grown under (i) a conventional fertilization regime with inorganic fertilizer, and integrated fertilization regimes in which 75% of the nutrients were supplied by the inorganic fertilizer and 25% of the nutrients were supplied by either (ii) rabbit manure, or (iii) vermicompost. All three types of fertilization regime were supplied at two doses. Two pairs of nearly isogenic sweet corn hybrids homozygous for sugary1 and shrunken2 mutants were included in the trials to explore fertilizer × genotype interactions. Growth, yield and ear quality of the plants were evaluated in relation to the three fertilization regimes. In general, the integrated regimes yielded the same productivity levels as the conventional treatment. Moreover, both vermicompost and manure produced significant increases in plant growth and marketable yield, and also affected the chemical composition and quality of the marketable ear. Nevertheless, most of the observed effects of the organic fertilizers were genotype-dependent. The results confirm that the use of organic fertilizers such as vermicompost has a positive effect on crop yield and quality. Nevertheless, these effects were not general, indicating the complexity of the organic amendment-plant interactions and the importance of controlling genetic variation when studying the effects of vermicompost on plant growth. Copyright © 2011 Society of Chemical Industry.

  16. Effects of different regulatory methods on improvement of greenhouse saline soils, tomato quality, and yield.

    PubMed

    Maomao, Hou; Xiaohou, Shao; Yaming, Zhai

    2014-01-01

    To identify effective regulatory methods scheduling with the compromise between the soil desalination and the improvement of tomato quality and yield, a 3-year field experiment was conducted to evaluate and compare the effect of straw mulching and soil structure conditioner and water-retaining agent on greenhouse saline soils, tomato quality, and yield. A higher salt removing rate of 80.72% in plough layer with straw mulching was obtained based on the observation of salt mass fraction in 0 ~ 20 cm soil layer before and after the experiment. Salts were also found to move gradually to the deeper soil layer with time. Straw mulching enhanced the content of soil organic matter significantly and was conductive to reserve soil available N, P, and K, while available P and K in soils of plough layer with soil structure conditioner decreased obviously; thus a greater usage of P fertilizer and K fertilizer was needed when applying soil structure conditioner. Considering the evaluation indexes including tomato quality, yield, and desalination effects of different regulatory methods, straw mulching was recommended as the main regulatory method to improve greenhouse saline soils in south China. Soil structure conditioner was the suboptimal method, which could be applied in concert with straw mulching.

  17. Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L)

    PubMed Central

    Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan

    2017-01-01

    Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65–70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency. PMID:28384647

  18. Relationships between Soil and Levels of Meloidogyne incognita and Tobacco Yield and Quality.

    PubMed

    Barker, K R; Weeks, W W

    1991-01-01

    A 2-year study with six soils and four levels of Meloidogyne incognita in microplots was designed to determine the effects of these parameters on nematode activity and tobacco yield and quality. Key components under study were affected by soil, nematode level, and season (year-cultivar). In 1980, low initial nematode numbers (1,250) enhanced tobacco yield in Cecil clay loam, but caused slight to moderate yield losses in the other soils. Yield losses to M. incognita were generally greatest in sandy and muck soils. In 1980, regression analyses of the independent parameters Pi - clay-sand vs. yield gave an R(2) of 0.40. Examples of other coefficients of determination for yield vs. selected factors were root-necrosis index, 0.40; root-gall index, 0.18; root-gall index-cation exchange capacity (CEC), 0.34; root-necrosis index-CEC, 0.56; and root-necrosis index-sand-soil acidity-calcium, 0.62. In contrast, the R(2) for Pi alone versus yield in 1981 was 0.84. Soil also affected nematode reproduction with the greatest increases occurring in the sandy soils. In both years, low nematode numbers enhanced the synthesis of sugar in tobacco, whereas leaves from all other nematode treatments had low sugar levels. A low nicotine content was associated with nematode infection. Tobacco from sandy soils had a higher nicotine content than tobacco from clay soils.

  19. Whole lactation production responses in high-yielding dairy cows using high-quality grass/clover silage.

    PubMed

    Patel, Mikaela; Wredle, Ewa; Spörndly, Eva; Bertilsson, Jan

    2017-07-01

    Limiting the use of purchased concentrate for livestock and replacing it with home-grown forage without compromising milk production can offer benefits in both organic and conventional dairy systems. A full lactation trial was conducted with 92 cows over two years comparing three diets, each differing in the mean forage proportion over the lactation, 500 (500F), 600 (600F) and 700 (700F) g kg -1 dry matter (DM) respectively. The diets were designed to represent common conventional feeding, current regulations for organic production and more extreme high-forage-based production respectively. The aims were to determine the effects of forage proportion in the diet on milk production and feed utilisation. Compared with 500F, daily milk yield did not differ in 600F but was lower in 700F (31.3, 31.1 and 29.2 kg energy-corrected milk respectively). Daily dry matter intake (DMI) was similar between treatments (20.3, 20.4 and 19.9 kg in 500F, 600F and 700F respectively). Increasing the forage proportion from 500 to 600 g kg -1 DM did not have any adverse effects on milk production or DMI. Thus it is possible to produce the same quantity of milk with less concentrate and reduce the use of potential human feeds in dairy production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Effects of Nitrogen Application Rate on the Yields, Nutritive Value and Silage Fermentation Quality of Whole-crop Wheat.

    PubMed

    Li, C J; Xu, Z H; Dong, Z X; Shi, S L; Zhang, J G

    2016-08-01

    Whole-crop wheat (Triticum aestivum L.) as forage has been extensively used in the world. In this study, the effects of N application rates on the yields, nutritive value and silage quality were investigated. The N application rates were 0, 75, 150, 225, and 300 kg/ha. The research results indicated that the dry matter yield of whole-crop wheat increased significantly with increasing N rate up to 150 kg/ha, and then leveled off. The crude protein content and in vitro dry matter digestibility of whole-crop wheat increased significantly with increasing N up to 225 kg/ha, while they no longer increased at N 300 kg/ha. On the contrary, the content of various fibers tended to decrease with the increase of N application. The content of lactic acid, acetic acid and propionic acid in silages increased with the increase of N rate (p<0.05). The ammonia-N content of silages with higher N application rates (≥225 kg/ha) was significantly higher than that with lower N application rates (≤150 kg/ha). Whole-crop wheat applied with high levels of N accumulated more nitrate-N. In conclusion, taking account of yields, nutritive value, silage quality and safety, the optimum N application to whole-crop wheat should be about 150 kg/ha at the present experiment conditions.

  1. Effect of wheat stem sawfly damage on yield and quality of selected Canadian spring wheat.

    PubMed

    Beres, B L; Cárcamo, H A; Byers, J R

    2007-02-01

    The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), has reached outbreak status at most locations in the southern Canadian prairies. Solid-stemmed wheat, Triticum aestivum L., cultivars, which are less susceptible to damage, remain the primary management option. This article quantifies the effect of wheat stem sawfly damage on grain yield and quality at harvest and determines how cultivar selection affects harvest losses. Solid-stemmed cultivars were compared with hollow-stemmed cultivars and with blends of a 1:1 ratio of each. The hollow-stemmed cultivars with the exception of'McKenzie', which had intermediate levels of stem cutting, were all significantly more susceptible to stem cutting than solid-stemmed cultivars. Cultivar blends had lower damage but were still significantly higher than the solid-stemmed cultivars. The solid-stemmed 'AC Eatonia' and 'AC Abbey' had the lowest levels of stem cutting and ranked second and third overall for yield in 2001 and 2002. McKenzie ranked first, which reflects its yield potential in combination with its partial resistance to stem cutting. Lower cutting in AC Eatonia, AC Abbey, McKenzie, and the blend of AC Abbey/ McKenzie was significantly correlated with lower grain losses. Grain lost at harvest has major economic implications if sawfly pressure is moderate to high and susceptible cultivars predominate.

  2. [Influence of cutting seedling on growth, quality and yield of both aerial and underground part by cutting seedling in Scutellaria baicalensis].

    PubMed

    Liu, Rong-Xiu; Li, Yong-Jie; Li, Lin; Miao, Xiao-Su; Wang, Xue-Sen; Zhang, Dan; Wei, Sheng-Li

    2016-06-01

    By measuring the growth data of Scutellaria baicalensis in different cutting-seedling and determined active ingredient contents by HPLC and ultraviolet spectrophotometric determination. such as flavonoids. baicalin. wogonoside. baicalein. wogonin. oroxylin A. scutellarin. luteolin. and apigenin in the whole plant. Under circumstances of guaranteeing the quality and yield of medicinal materials. the yield of medicinal materials. and stems and leaves reached 193.60,63.21 kg/mu after twice cutting seedling. Not only yield but also active ingredient contents have been improved to some extent. the contents of flavonoids. baicalin. wogonoside. baicalein. wogonin. oroxylin A reached 18.52%. 15.13%. 4.03%. 1.04%. 1.04%. 0.12%. respectively in roots. Luteolin was not detected in young stems and leaves of S. baicalensis,the contents of other active ingredients such as scutellarin. luteolin and apigenin reached 7.00%. 0.96%. 0.04% respectively under twice cutting seedling. Therefore. regular cutting seedling could be regard as a new cultivation technique for wider range of promotion. And gaining high quality and yield of medicinal materials and tea with the purpose of rational utilization of natural resources and promoting the development of integration of herbal combination. Copyright© by the Chinese Pharmaceutical Association.

  3. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    PubMed

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sample preservation, transport and processing strategies for honeybee RNA extraction: Influence on RNA yield, quality, target quantification and data normalization.

    PubMed

    Forsgren, Eva; Locke, Barbara; Semberg, Emilia; Laugen, Ane T; Miranda, Joachim R de

    2017-08-01

    Viral infections in managed honey bees are numerous, and most of them are caused by viruses with an RNA genome. Since RNA degrades rapidly, appropriate sample management and RNA extraction methods are imperative to get high quality RNA for downstream assays. This study evaluated the effect of various sampling-transport scenarios (combinations of temperature, RNA stabilizers, and duration) of transport on six RNA quality parameters; yield, purity, integrity, cDNA synthesis efficiency, target detection and quantification. The use of water and extraction buffer were also compared for a primary bee tissue homogenate prior to RNA extraction. The strategy least affected by time was preservation of samples at -80°C. All other regimens turned out to be poor alternatives unless the samples were frozen or processed within 24h. Chemical stabilizers have the greatest impact on RNA quality and adding an extra homogenization step (a QIAshredder™ homogenizer) to the extraction protocol significantly improves the RNA yield and chemical purity. This study confirms that RIN values (RNA Integrity Number), should be used cautiously with bee RNA. Using water for the primary homogenate has no negative effect on RNA quality as long as this step is no longer than 15min. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Improving the Yield and Nutritional Quality of Forage Crops

    PubMed Central

    Capstaff, Nicola M.; Miller, Anthony J.

    2018-01-01

    Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability. PMID:29740468

  6. High-resolution mapping of yield curve shape and evolution for high porosity sandstones

    NASA Astrophysics Data System (ADS)

    Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.

    2017-12-01

    The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.

  7. Influence of Hydroponically Grown Hoyt Soybeans and Radiation Encountered on Mars Missions on the Yield and Quality of Soymilk and Tofu

    NASA Technical Reports Server (NTRS)

    Wilson, Lester A.

    2005-01-01

    Soybeans were chosen for hmar and planetary missions due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to crew consumption. Wilson et al. (2003) raised questions about (1) the influence of radiation (on germination and functional properties) that the soybeans would be exposed to during bulk storage for a Mars mission, and (2) the impact of using hydroponically grown versus field grown soybeans on the yield and quality of soyfoods. The influence of radiation can be broken down into two components: (A) affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (a Hazard Analysis Critical Control Point), and (B) affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants and free radical formation and oxidation induced changes in the soybean (lipid, protein, etc.) will influence the nutritional value, texture, quality, and safety of soyfoods made from them. The objectives of this project are to (1) evaluate the influence of gamma and electron beam radiation on bulk soybeans (HACCP, CCP) on the microbial load, germination, ease of processing, and quality of soymilk and tofu; (2) provide scale up and mass balance data for Advanced Life Support subsystems including Biomass, Solid Waste Processing, and Water Recovery Systems; and (3) to compare Hoyt field grown to hydroponically grown Hoyt soybeans for soymilk and tofu production. The soybean cultivar Hoyt, a small standing, high protein cultivar that could grow hydroponically in the AIMS facility on Mars) was evaluated for the production of soymilk and tofu. The quality and yield of the soymilk and tofu from hydroponic Hoyt, was compared to Vinton 81 (a soyfood industry standard), field Hoyt, IA 2032LS (lipoxygenase-free), and Proto (high protein and antioxidant potential). Soymilk and tofu were produced using the Japanese

  8. Lateral-Directional Eigenvector Flying Qualities Guidelines for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Andrisani, Dominick, II

    1996-01-01

    This report presents the development of lateral-directional flying qualities guidelines with application to eigenspace (eigenstructure) assignment methods. These guidelines will assist designers in choosing eigenvectors to achieve desired closed-loop flying qualities or performing trade-offs between flying qualities and other important design requirements, such as achieving realizable gain magnitudes or desired system robustness. This has been accomplished by developing relationships between the system's eigenvectors and the roll rate and sideslip transfer functions. Using these relationships, along with constraints imposed by system dynamics, key eigenvector elements are identified and guidelines for choosing values of these elements to yield desirable flying qualities have been developed. Two guidelines are developed - one for low roll-to-sideslip ratio and one for moderate-to-high roll-to-sideslip ratio. These flying qualities guidelines are based upon the Military Standard lateral-directional coupling criteria for high performance aircraft - the roll rate oscillation criteria and the sideslip excursion criteria. Example guidelines are generated for a moderate-to-large, an intermediate, and low value of roll-to-sideslip ratio.

  9. Yield and Economic Responses of Peanut to Crop Rotation Sequence

    USDA-ARS?s Scientific Manuscript database

    National Peanut Research Laboratory, Dawson, GA 39842. Proper crop rotation is essential to maintaining high peanut yield and quality. However, the economic considerations of maintaining or altering crop rotation sequences must incorporate the commodity prices, production costs, and yield responses...

  10. Adaptability and stability of soybean cultivars for grain yield and seed quality.

    PubMed

    Silva, K B; Bruzi, A T; Zambiazzi, E V; Soares, I O; Pereira, J L A R; Carvalho, M L M

    2017-05-10

    This study aimed at verifying the adaptability and stability of soybean cultivars, considering the grain yield and quality of seeds, adopting univariate and multivariate approaches. The experiments were conducted in two crops, three environments, in 2013/2014 and 2014/2015 crop seasons, in the county of Inconfidentes, Lavras, and Patos de Minas, in the Minas Gerais State, Brazil. We evaluated 17 commercial soybean cultivars. For adaptability and stability evaluations, the Graphic and GGE biplot methods were employed. Previously, a selection index was estimated based on the sum of the standardized variables (Z index). The data relative to grain yield, mass of one thousand grain, uniformity test (sieve retention), and germination test were standardized (Z ij ) per cultivar. With the sum of Z ij , we obtained the selection index for the four traits evaluated together. In the Graphic method evaluation, cultivars NA 7200 RR and CD 2737 RR presented the highest values for selection index Z. By the GGE biplot method, we verified that cultivar NA 7200 RR presented greater stability in both univariate evaluations, for grain yield, and for selection index Z.

  11. Yield and quality of pectins extractable from the peels of thai mango cultivars depending on fruit ripeness.

    PubMed

    Sirisakulwat, Suparat; Nagel, Andreas; Sruamsiri, Pittaya; Carle, Reinhold; Neidhart, Sybille

    2008-11-26

    Pectins, recovered from the peels of four mango ( Mangifera indica L.) cultivars by mimicking industrial techniques, were evaluated in terms of yield, composition, macromolecular properties, and technofunctional quality. Freeze-dried peels of mature-green fruits, after major mesocarp softening, and at full ripeness were extracted using hot acid. The pectins were precipitated in propan-2-ol and their crude yields quantified as alcohol-insoluble substance. Like apple pomace, the dried peels provided hardly acetylated (DAc < 6.3%) rapid-set to ultrarapid-set high-methoxyl pectins at starch-adjusted yields of 11-21 g/100 g. However, despite similar high molecular weight fractions and galacturonic acid/rhamnose ratios, their average molecular weight was markedly reduced by a characteristic, almost monodisperse fraction of 16000-19000. Expanded galactans, indicated by galactose/rhamnose ratios of 15-24 mol/mol, probably represented arabinogalactan side-chain fragments withstanding hot-acid extraction at pH 1.5 and 2.0, as implied by arabinose/galactose ratios of 8-15 and 33-56 mol/100 mol, respectively. Limited galacturonic acid contents made the mango peel pectins less valuable than commercial apple pectins with regard to gelling capacity and thickening properties. Whereas starch and matrix glycan fragments almost completely degraded during ripening, depolymerization of pectins and galactans was insignificant. Technofunctional properties, modulated by extraction at different pH values, were ascribed to structural differences influencing macromolecular entanglements.

  12. [Characteristics of phosphorus uptake and use efficiency of rice with high yield and high phosphorus use efficiency].

    PubMed

    Li, Li; Zhang, Xi-Zhou; Li, Tinx-Xuan; Yu, Hai-Ying; Ji, Lin; Chen, Guang-Deng

    2014-07-01

    A total of twenty seven middle maturing rice varieties as parent materials were divided into four types based on P use efficiency for grain yield in 2011 by field experiment with normal phosphorus (P) application. The rice variety with high yield and high P efficiency was identified by pot experiment with normal and low P applications, and the contribution rates of various P efficiencies to yield were investigated in 2012. There were significant genotype differences in yield and P efficiency of the test materials. GRLu17/AiTTP//Lu17_2 (QR20) was identified as a variety with high yield and high P efficiency, and its yields at the low and normal rates of P application were 1.96 and 1.92 times of that of Yuxiang B, respectively. The contribution rate of P accumulation to yield was greater than that of P grain production efficiency and P harvest index across field and pot experiments. The contribution rates of P accumulation and P grain production efficiency to yield were not significantly different under the normal P condition, whereas obvious differences were observed under the low P condition (66.5% and 26.6%). The minimal contribution to yield was P harvest index (11.8%). Under the normal P condition, the contribution rates of P accumulation to yield and P harvest index were the highest at the jointing-heading stage, which were 93.4% and 85.7%, respectively. In addition, the contribution rate of P accumulation to grain production efficiency was 41.8%. Under the low P condition, the maximal contribution rates of P accumulation to yield and grain production efficiency were observed at the tillering-jointing stage, which were 56.9% and 20.1% respectively. Furthermore, the contribution rate of P accumulation to P harvest index was 16.0%. The yield, P accumulation, and P harvest index of QR20 significantly increased under the normal P condition by 20.6%, 18.1% and 18.2% respectively compared with that in the low P condition. The rank of the contribution rates of P

  13. Tuber yield and quality characteristics of potatoes for off-season crops in a Mediterranean environment.

    PubMed

    Ierna, Anita

    2010-01-15

    There is little research on evaluating the compatibility of potatoes for double cropping in southern Italy. The aim of this investigation was to assess tuber yield and some qualitative traits of tubers such as skin colour, tuber dry matter content and tuber nitrate content, both in winter-spring and in summer-autumn crops, as influenced by genotype and harvest time. Yield, skin colour and dry matter content of tubers were higher in the winter-spring crop than in the summer-autumn crop, attributable to the advantageous lag time in spring between solar radiation and temperatures and the disadvantageous lag in autumn. Spunta and Arinda performed well within each crop season, whereas Ninfa showed an important yield loss in autumn. In both off-season crops, delaying tuber harvest until leaf senescence increased yield and improved quality attributes such as tuber dry matter content and skin colour, whereas nitrate contents significantly decreased in the winter-spring crop and increased in the summer-autumn crop. Ninfa showed less tendency than Arinda and Spunta to accumulate nitrate in tubers in both off-season crops. It might be advantageous to examine in further research which mechanisms sustain compatibility to the autumn and assess other quality characteristics for the fresh market in the contrasting climatic conditions of the two off-season crops. Copyright (c) 2009 Society of Chemical Industry.

  14. Yield and Economic Responses of Peanut to Crop Rotation Sequence

    USDA-ARS?s Scientific Manuscript database

    Proper crop rotation is essential to maintaining high peanut yield and quality. However, the economic considerations of maintaining or altering crop rotation sequences must incorporate the commodity prices, production costs, and yield responses of all crops in, or potentially in, the crop rotation ...

  15. Can novel management practice improve soil and environmental quality and sustain crop yield simultaneously?

    USDA-ARS?s Scientific Manuscript database

    Little is known about management practices that can simultaneously improve soil and environmental quality and sustain crop yields. The effect of a combination of tillage, crop rotation, and N fertilization on soil C and N, global warming potential (GWP), greenhouse gas intensity (GHGI), and malt bar...

  16. Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials.

    PubMed

    Huang, Yuan; Sutter, Eli; Shi, Norman N; Zheng, Jiabao; Yang, Tianzhong; Englund, Dirk; Gao, Hong-Jun; Sutter, Peter

    2015-11-24

    Mechanical exfoliation has been a key enabler of the exploration of the properties of two-dimensional materials, such as graphene, by providing routine access to high-quality material. The original exfoliation method, which remained largely unchanged during the past decade, provides relatively small flakes with moderate yield. Here, we report a modified approach for exfoliating thin monolayer and few-layer flakes from layered crystals. Our method introduces two process steps that enhance and homogenize the adhesion force between the outermost sheet in contact with a substrate: Prior to exfoliation, ambient adsorbates are effectively removed from the substrate by oxygen plasma cleaning, and an additional heat treatment maximizes the uniform contact area at the interface between the source crystal and the substrate. For graphene exfoliation, these simple process steps increased the yield and the area of the transferred flakes by more than 50 times compared to the established exfoliation methods. Raman and AFM characterization shows that the graphene flakes are of similar high quality as those obtained in previous reports. Graphene field-effect devices were fabricated and measured with back-gating and solution top-gating, yielding mobilities of ∼4000 and 12,000 cm(2)/(V s), respectively, and thus demonstrating excellent electrical properties. Experiments with other layered crystals, e.g., a bismuth strontium calcium copper oxide (BSCCO) superconductor, show enhancements in exfoliation yield and flake area similar to those for graphene, suggesting that our modified exfoliation method provides an effective way for producing large area, high-quality flakes of a wide range of 2D materials.

  17. High pressure intensification of cassava resistant starch (RS3) yields.

    PubMed

    Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan

    2015-08-15

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Stocking, growth, and yield of oak stands

    Treesearch

    Samuel F. Gingrich

    1971-01-01

    An appraisal of stocking in even-aged upland oak stands is a prerequisite for determining the cultural needs of a given stand. Most oak stands have sufficient stocking to utilize the site, but are deficient in high-quality trees. Thinning such stands offers a good opportunity to upgrade the relative quality of the growing stock and enhance the growth and yield...

  19. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.

    PubMed

    Wang, Shaokui; Li, Shan; Liu, Qian; Wu, Kun; Zhang, Jianqing; Wang, Shuansuo; Wang, Yi; Chen, Xiangbin; Zhang, Yi; Gao, Caixia; Wang, Feng; Huang, Haixiang; Fu, Xiangdong

    2015-08-01

    The deployment of heterosis in the form of hybrid rice varieties has boosted grain yield, but grain quality improvement still remains a challenge. Here we show that a quantitative trait locus for rice grain quality, qGW7, reflects allelic variation of GW7, a gene encoding a TONNEAU1-recruiting motif protein with similarity to C-terminal motifs of the human centrosomal protein CAP350. Upregulation of GW7 expression was correlated with the production of more slender grains, as a result of increased cell division in the longitudinal direction and decreased cell division in the transverse direction. OsSPL16 (GW8), an SBP-domain transcription factor that regulates grain width, bound directly to the GW7 promoter and repressed its expression. The presence of a semidominant GW7(TFA) allele from tropical japonica rice was associated with higher grain quality without the yield penalty imposed by the Basmati gw8 allele. Manipulation of the OsSPL16-GW7 module thus represents a new strategy to simultaneously improve rice yield and grain quality.

  20. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate

  1. [Interactive impact of water and nitrogen on yield, quality of watermelon and use of water and nitrogen in gravel-mulched field].

    PubMed

    Du, Shao-ping; Ma, Zhong-ming; Xue, Liang

    2015-12-01

    In order to develop the optimal coupling model of water and nitrogen of watermelon under limited irrigation in gravel-mulched field, a field experiment with split-plot design was conducted to study the effects of supplementary irrigation volume, nitrogen fertilization, and their interactions on the growth, yield, quality and water and nitrogen use efficiency of watermelon with 4 supplementary irrigation levels (W: 0, 35, 70, and 105 m³ · hm⁻²) in main plots and 3 nitrogen fertilization levels (N: 0, 120, and 200 kg N · hm⁻²) in sub-plots. The results showed that the photosynthetic rate, yield, and water and nitrogen use efficiency of watermelon increased with the increasing supplementary irrigation, but the nitrogen partial productivity and nitrogen use efficiency decreased with increasing nitrogen fertilization level. The photosynthetic rate and quality indicators increased with increasing nitrogen fertilization level as the nitrogen rate changed from 0 to 120 kg N · hm⁻², but no further significant increase as the nitrogen rate exceeded 120 kg · hm⁻². The interactive effects between water and nitrogen was significant for yield and water and nitrogen use efficiency of watermelon, supplementary irrigation volume was a key factor for the increase yield compared with the nitrogen fertilizer, and the yield reached the highest for the W₇₀N₂₀₀ and W₁₀₅ N₁₂₀ treatments, for which the yield increased by 42.4% and 40.4% compared to CK. Water use efficiency (WUE) was improved by supplementary irrigation and nitrogen rate, the WUE of all nitrogen fertilizer treatments were more than 26 kg · m⁻³ under supplemental irrigation levels 70 m³ · hm⁻² and 105 m³ · hm⁻². The nitrogen partial productivity and nitrogen use efficiency reached the highest in the treatment of W₁₀₅N₁₂₀. It was considered that under the experimental condition, 105 m³ · hm⁻² of supplementary irrigation plus 120 kg · hm⁻² of nitrogen

  2. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming.

    PubMed

    Usui, Yasuhiro; Sakai, Hidemitsu; Tokida, Takeshi; Nakamura, Hirofumi; Nakagawa, Hiroshi; Hasegawa, Toshihiro

    2016-03-01

    Rising air temperatures are projected to reduce rice yield and quality, whereas increasing atmospheric CO2 concentrations ([CO2 ]) can increase grain yield. For irrigated rice, ponded water is an important temperature environment, but few open-field evaluations are available on the combined effects of temperature and [CO2 ], which limits our ability to predict future rice production. We conducted free-air CO2 enrichment and soil and water warming experiments, for three growing seasons to determine the yield and quality response to elevated [CO2 ] (+200 μmol mol(-1) , E-[CO2 ]) and soil and water temperatures (+2 °C, E-T). E-[CO2 ] significantly increased biomass and grain yield by approximately 14% averaged over 3 years, mainly because of increased panicle and spikelet density. E-T significantly increased biomass but had no significant effect on the grain yield. E-T decreased days from transplanting to heading by approximately 1%, but days to the maximum tiller number (MTN) stage were reduced by approximately 8%, which limited the panicle density and therefore sink capacity. On the other hand, E-[CO2 ] increased days to the MTN stage by approximately 4%, leading to a greater number of tillers. Grain appearance quality was decreased by both treatments, but E-[CO2 ] showed a much larger effect than did E-T. The significant decrease in undamaged grains (UDG) by E-[CO2 ] was mainly the result of an increased percentage of white-base grains (WBSG), which were negatively correlated with grain protein content. A significant decrease in grain protein content by E-[CO2 ] accounted in part for the increased WBSG. The dependence of WBSG on grain protein content, however, was different among years; the slope and intercept of the relationship were positively correlated with a heat dose above 26 °C. Year-to-year variation in the response of grain appearance quality demonstrated that E-[CO2 ] and rising air temperatures synergistically reduce grain appearance quality of

  3. Genetics of heat tolerance for milk yield and quality in Holsteins.

    PubMed

    Santana, M L; Bignardi, A B; Pereira, R J; Stefani, G; El Faro, L

    2017-01-01

    Tropical and sub-tropical climates are characterized by high temperature and humidity, during at least part of the year. Consequently, heat stress is common in Holstein cattle and productive and reproductive losses are frequent. Our objectives were as follows: (1) to quantify losses in production and quality of milk due to heat stress; (2) to estimate genetic correlations within and between milk yield (MY) and milk quality traits; and (3) to evaluate the trends of genetic components of tolerance to heat stress in multiple lactations of Brazilian Holstein cows. Thus, nine analyses using two-trait random regression animal models were carried out to estimate variance components and genetic parameters over temperature-humidity index (THI) values for MY and milk quality traits (three lactations: MY×fat percentage (F%), MY×protein percentage (P%) and MY×somatic cell score (SCS)) of Brazilian Holstein cattle. It was demonstrated that the effects of heat stress can be harmful for traits related to milk production and milk quality of Holstein cattle even though most herds were maintained in a modified environment, for example, with fans and sprinklers. For MY, the effect of heat stress was more detrimental in advanced lactations (-0.22 to -0.52 kg/day per increase of 1 THI unit). In general, the mean heritability estimates were higher for lower THI values and longer days in milk for all traits. In contrast, the heritability estimates for SCS increased with increasing THI values in the second and third lactation. For each trait studied, lower genetic correlations (different from unity) were observed between opposite extremes of THI (THI 47 v. THI 80) and in advanced lactations. The genetic correlations between MY and milk quality trait varied across the THI scale and lactations. The genotype×environment interaction due to heat stress was more important for MY and SCS, particularly in advanced lactations, and can affect the genetic relationship between MY and milk quality

  4. Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent.

    PubMed

    Nasiri, H; Forouzandeh, M; Rasaee, M J; Rahbarizadeh, F

    2005-01-01

    Different approaches have been used to extract DNA from whole blood. In most of these methods enzymes (such as proteinase K and RNAse A) or toxic organic solvents (such as phenol or guanidine isothiocyanate) are used. Since these enzymes are expensive, and most of the materials that are used routinely are toxic, it is desirable to apply an efficient DNA extraction procedure that does not require the use of such materials. In this study, genomic DNA was extracted by the salting-out method, but instead of using an analytical-grade enzyme and chemical detergents, as normally used for DNA isolation, a common laundry powder was used. Different concentrations of the powder were tested, and proteins were precipitated by NaCl-saturated distilled water. Finally, DNA precipitation was performed with the use of 96% ethanol. From the results, we conclude that the optimum concentration of laundry powder for the highest yield and purity of isolated DNA is 30 mg/mL. The procedure was optimized, and a final protocol is suggested. Following the same protocol, DNA was extracted from 100 blood samples, and their amounts were found to be >50 microg/mL of whole blood. The integrity of the DNA fragments was confirmed by agarose gel electrophoresis. Furthermore, the extracted DNA was used as a template for PCR reaction. The results obtained from PCR showed that the final solutions of extracted DNA did not contain any inhibitory material for the enzyme used in the PCR reaction, and indicated that the isolated DNA was of good quality. These results show that this method is simple, fast, safe, and cost-effective, and can be used in medical laboratories and research centers. Copyright 2005 Wiley-Liss, Inc.

  5. Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters.

    PubMed

    Tripathi, Ruchika; Agrawal, S B

    2012-11-01

    Tropospheric ozone (O(3)) has become a serious threat to growth and yield of important agricultural crops over Asian regions including India. Effect of elevated O(3) (ambient+10ppb) was studied on Brassica campestris L. (cv. Sanjukta and Vardan) in open top chambers under natural field conditions. Eight hourly mean ambient O(3) concentration varied from 26.3ppb to 69.5ppb during the growth period. Plants under O(3) exposure showed reductions in photosynthetic rate, reproductive parameters, yield as well as seed and oil quality. Cultivar Sanjukta showed more reduction in photosynthetic characteristics, reproductive structures and seed and oil quality. However, total yield was more affected in Vardan. Exposure of O(3) increased the degree of unsaturation and level of PUFA, ω-6fatty acid, linolenic acid and erucic acid in oil indicating the deterioration of its quality. The study further confirmed that there is a correspondence between O(3) induced change in photosynthetic processes, reproductive development and yield and did not find any compensatory response in the final yield. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Effect of drying and co-matrix addition on the yield and quality of supercritical CO₂ extracted pumpkin (Cucurbita moschata Duch.) oil.

    PubMed

    Durante, Miriana; Lenucci, Marcello S; D'Amico, Leone; Piro, Gabriella; Mita, Giovanni

    2014-04-01

    In this work a process for obtaining high vitamin E and carotenoid yields by supercritical carbon dioxide (SC-CO₂) extraction from pumpkin (Cucurbita moschata Duch.) is described. The results show that the use of a vacuum oven-dried [residual moisture (∼8%)] and milled (70 mesh sieve) pumpkin flesh matrix increased SC-CO₂ extraction yields of total vitamin E and carotenoids of ∼12.0- and ∼8.5-fold, respectively, with respect to the use of a freeze-dried and milled flesh matrix. The addition of milled (35 mesh) pumpkin seeds as co-matrix (1:1, w/w) allowed a further ∼1.6-fold increase in carotenoid yield, besides to a valuable enrichment of the extracted oil in vitamin E (274 mg/100 g oil) and polyunsaturated fatty acids. These findings encourage further studies in order to scale up the process for possible industrial production of high quality bioactive ingredients from pumpkin useful in functional food or cosmeceutical formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus).

    PubMed

    Parthipan, Sivashanmugam; Selvaraju, Sellappan; Somashekar, Lakshminarayana; Kolte, Atul P; Arangasamy, Arunachalam; Ravindra, Janivara Parameswaraiah

    2015-08-01

    Sperm RNA can be used to understand the past spermatogenic process, future successful fertilization, and embryo development. To study the sperm RNA composition and function, isolation of good quality RNA with sufficient quantity is essential. The objective of this study was to assess the influence of sperm input concentrations and RNA isolation methods on RNA yield and quality in bull sperm. The fresh semen samples from bulls (n = 6) were snap-frozen in liquid nitrogen and stored at -80 °C. The sperm RNA was isolated using membrane-based methods combined with TRIzol (RNeasy+TRIzol and PureLink+TRIzol) and conventional methods (TRIzol, Double TRIzol, and RNAzol RT). Based on fluorometric quantification, combined methods resulted in significantly (P < 0.05) higher total RNA yields (800-900 ng/30-40 × 10(6)) as compared with other methods and yielded 20 to 30 fg of RNA/spermatozoon. The quality of RNA isolated by membrane-based methods was superior to that isolated by conventional methods. The sperm RNA was observed to be intact as well as fragmented (50-2000 bp). The study revealed that the membrane-based methods with a cocktail of lysis solution and an optimal input concentration of 30 to 40 million sperm were optimal for maximum recovery of RNA from bull spermatozoa. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Influence of Phenological Stages on Yield and Quality of Oregano (Origanum vulgare L.) Under the Agroclimatic Condition of Doon Valley (Uttarakhand)

    PubMed Central

    Chauhan, N. K.; Singh, S.; Haider, S. Z.; Lohani, H.

    2013-01-01

    A field experiment was conducted under the agroclimatic conditions of Doon valley, in order to determine the effects of phenological stages on herbage yield and quality of oil in oregano (Origanum vulgare L.). Plants were harvested in five phenological stages, i.e. early vegetative, late vegetative, flower initiation, full bloom, and fruit set stages. Results showed the significant effects of phenological stages on herbage, yield, and quality of oregano. Harvesting at full bloom stage showed better results in terms of herbage and oil yield. The quality of essential oil was evaluated using GC and GC/MS. Thymol content was rich in all the stages (46.90-62.26%) followed by γ-terpinene (1.11-11.75%) and p-cymene (3.11-5.32%). PMID:24302806

  9. High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine

    PubMed Central

    Telang, Nakul S; Kong, Caleb J; Verghese, Jenson; Gilliland III, Stanley E; Ahmad, Saeed; Dominey, Raymond N

    2018-01-01

    Numerous synthetic methods for the continuous preparation of fine chemicals and active pharmaceutical ingredients (API’s) have been reported in recent years resulting in a dramatic improvement in process efficiencies. Herein we report a highly efficient continuous synthesis of the antimalarial drug hydroxychloroquine (HCQ). Key improvements in the new process include the elimination of protecting groups with an overall yield improvement of 52% over the current commercial process. The continuous process employs a combination of packed bed reactors with continuous stirred tank reactors for the direct conversion of the starting materials to the product. This high-yielding, multigram-scale continuous synthesis provides an opportunity to achieve increase global access to hydroxychloroquine for treatment of malaria. PMID:29623120

  10. Milk yield, quality, and coagulation properties of 6 breeds of goats: Environmental and individual variability.

    PubMed

    Vacca, Giuseppe M; Stocco, Giorgia; Dettori, Maria L; Pira, Emanuela; Bittante, Giovanni; Pazzola, Michele

    2018-05-09

    Goat milk and cheese production is continuously increasing and milk composition and coagulation properties (MCP) are useful tools to predict cheesemaking aptitude. The present study was planned to investigate the extension of lactodynamographic analysis up to 60 min in goat milk, to measure the farm and individual factors, and to investigate differences among 6 goat breeds. Daily milk yield (dMY) was recorded and milk samples collected from 1,272 goats reared in 35 farms. Goats were of 6 different breeds: Saanen and Camosciata delle Alpi for the Alpine type, and Murciano-Granadina, Maltese, Sarda, and Sarda Primitiva for the Mediterranean type. Milk composition (fat, protein, lactose, pH; somatic cell score; logarithmic bacterial count) and MCP [rennet coagulation time (RCT, min), curd-firming time (k 20 , min), curd firmness at 30, 45, and 60 min after rennet addition (a 30 , a 45 , and a 60 , mm)] were recorded, and daily fat and protein yield (dFPY g/d) was calculated as the sum of fat and protein concentration multiplied by the dMY. Data were analyzed using different statistical models to measure the effects of farm, parity, stage of lactation and breed; lastly, the direct and the indirect effect of breed were quantified by comparing the variance of breed from models with or without the inclusion of linear regression of fat, protein, lactose, pH, bacterial, somatic cell counts, and dMY. Orthogonal contrasts were performed to compare least squares means. Almost all traits exhibited high variability, with coefficients of variation between 32 (for RCT) and 63% (for a 30 ). The proportion of variance regarding dMY, dFPY, and milk composition due to the farm was moderate, whereas for MCP it was low, except for a 60 , at 69%. Parity affected both yield and quality traits of milk, with least squares means of dMY and dFPY showing an increase and RCT and curd firmness traits a decrease from the first to the last parity class. All milk quality traits, excluding fat, were

  11. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice.

    PubMed

    Ashraf, Umair; Kanu, Adam S; Deng, Quanquan; Mo, Zhaowen; Pan, Shenggang; Tian, Hua; Tang, Xiangru

    2017-01-01

    Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly ( P < 0.05) reduced photosynthetic pigments (chlorophyll contents and carotenoids) and inducted oxidative stress with increased production of hydrogen peroxide (H 2 O 2 ), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while

  12. Recent developments in high-quality drying of vegetables, fruits, and aquatic products.

    PubMed

    Zhang, Min; Chen, Huizhi; Mujumdar, Arun S; Tang, Juming; Miao, Song; Wang, Yuchuan

    2017-04-13

    Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.

  13. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp.

    PubMed

    Eboibi, B E; Lewis, D M; Ashman, P J; Chinnasamy, S

    2014-10-01

    The biomass of halophytic microalga Tetraselmis sp. with 16%w/w solids was converted into biocrude by a hydrothermal liquefaction (HTL) process in a batch reactor at different temperatures (310, 330, 350 and 370°C) and reaction times (5, 15, 30, 45 and 60min). The biocrude yield, elemental composition, energy density and severity parameter obtained at various reaction conditions were used to predict the optimum condition for maximum recovery of biocrude with improved quality. This study clearly indicated that the operating condition for obtaining maximum biocrude yield and ideal quality biocrude for refining were different. A maximum biocrude yield of ∼65wt% ash free dry weight (AFDW) was obtained at 350°C and 5min, with a severity parameter and energy density of 5.21 and ∼35MJ/kg, respectively. The treatment with 45min reaction time recorded ∼62wt% (AFDW) yield of biocrude with and energy density of ∼39MJ/kg and higher severity parameter of 7.53. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Selection of process parameters for producing high quality defatted sesame flour at pilot scale.

    PubMed

    Manikantan, M R; Sharma, Rajiv; Yadav, D N; Gupta, R K

    2015-03-01

    The present work was undertaken to study the effect of pearling duration, soaking time, steaming duration and drying temperature on the quality of sesame seeds and mechanically extracted partially defatted sesame cake. On the basis of quality attributes i.e. high protein, low crude fibre, low residual oil and low oxalic acid, the optimum process parameters were selected. The combination of 20 min of pearling duration, 15 min of soaking, 15 min of steaming at 100 kPa pressure and drying at 50 °C yielded high quality partially defatted protein rich sesame flour as compared to untreated defatted sesame flour. The developed high quality partially defatted protein rich sesame flour may be used in various food applications as a vital ingredient to increase the nutritional significance of the prepared foodstuffs.

  15. Functional Gene Discovery and Characterization of Genes and Alleles Affecting Wood Biomass Yield and Quality in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busov, Victor

    Adoption of biofuels as economically and environmentally viable alternative to fossil fuels would require development of specialized bioenergy varieties. A major goal in the breeding of such varieties is the improvement of lignocellulosic biomass yield and quality. These are complex traits and understanding the underpinning molecular mechanism can assist and accelerate their improvement. This is particularly important for tree bioenergy crops like poplars (species and hybrids from the genus Populus), for which breeding progress is extremely slow due to long generation cycles. A variety of approaches have been already undertaken to better understand the molecular bases of biomass yield andmore » quality in poplar. An obvious void in these undertakings has been the application of mutagenesis. Mutagenesis has been instrumental in the discovery and characterization of many plant traits including such that affect biomass yield and quality. In this proposal we use activation tagging to discover genes that can significantly affect biomass associated traits directly in poplar, a premier bioenergy crop. We screened a population of 5,000 independent poplar activation tagging lines under greenhouse conditions for a battery of biomass yield traits. These same plants were then analyzed for changes in wood chemistry using pyMBMS. As a result of these screens we have identified nearly 800 mutants, which are significantly (P<0.05) different when compared to wild type. Of these majority (~700) are affected in one of ten different biomass yield traits and 100 in biomass quality traits (e.g., lignin, S/G ration and C6/C5 sugars). We successfully recovered the position of the tag in approximately 130 lines, showed activation in nearly half of them and performed recapitulation experiments with 20 genes prioritized by the significance of the phenotype. Recapitulation experiments are still ongoing for many of the genes but the results are encouraging. For example, we have shown

  16. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    NASA Astrophysics Data System (ADS)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  17. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches

    PubMed Central

    Kumar, Arvind; Dixit, Shalabh; Ram, T.; Yadaw, R. B.; Mishra, K. K.; Mandal, N. P.

    2014-01-01

    The increased occurrence and severity of drought stress have led to a high yield decline in rice in recent years in drought-affected areas. Drought research at the International Rice Research Institute (IRRI) over the past decade has concentrated on direct selection for grain yield under drought. This approach has led to the successful development and release of 17 high-yielding drought-tolerant rice varieties in South Asia, Southeast Asia, and Africa. In addition to this, 14 quantitative trait loci (QTLs) showing a large effect against high-yielding drought-susceptible popular varieties were identified using grain yield as a selection criterion. Six of these (qDTY 1.1, qDTY 2.2, qDTY 3.1, qDTY 3.2, qDTY 6.1, and qDTY 12.1) showed an effect against two or more high-yielding genetic backgrounds in both the lowland and upland ecosystem, indicating their usefulness in increasing the grain yield of rice under drought. The yield of popular rice varieties IR64 and Vandana has been successfully improved through a well-planned marker-assisted backcross breeding approach, and QTL introgression in several other popular varieties is in progress. The identification of large-effect QTLs for grain yield under drought and the higher yield increase under drought obtained through the use of these QTLs (which has not been reported in other cereals) indicate that rice, because of its continuous cultivation in two diverse ecosystems (upland, drought tolerant, and lowland, drought susceptible), has benefited from the existence of larger genetic variability than in other cereals. This can be successfully exploited using marker-assisted breeding. PMID:25205576

  18. Land agroecological quality assessment in conditions of high spatial soil cover variability at the Pereslavskoye Opolye.

    NASA Astrophysics Data System (ADS)

    Morev, Dmitriy; Vasenev, Ivan

    2015-04-01

    The essential spatial variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest soils has been further complicated by a specific land-use history and human impacts. For demand-driven land-use planning and decision making the quantitative analysis and agroecological interpretation of representative soil cover spatial variability is an important and challenging task that receives increasing attention from private companies, governmental and environmental bodies. Pereslavskoye Opolye is traditionally actively used in agriculture due to dominated high-quality cultivated soddy-podzoluvisols which are relatively reached in organic matter (especially for conditions of the North part at the European territory of Russia). However, the soil cover patterns are often very complicated even within the field that significantly influences on crop yield variability and have to be considered in farming system development and land agroecological quality evaluation. The detailed investigations of soil regimes and mapping of the winter rye yield have been carried in conditions of two representative fields with slopes sharply contrasted both in aspects and degrees. Rye biological productivity and weed infestation have been measured in elementary plots of 0.25 m2 with the following analysis the quality of the yield. In the same plot soil temperature and moisture have been measured by portable devices. Soil sampling was provided from three upper layers by drilling. The results of ray yield detailed mapping shown high differences both in average values and within-field variability on different slopes. In case of low-gradient slope (field 1) there is variability of ray yield from 39.4 to 44.8 dt/ha. In case of expressed slope (field 2) the same species of winter rye grown with the same technology has essentially lower yield and within-field variability from 20 to 29.6 dt/ha. The

  19. Mapping Crop Yield and Sow Date Using High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Royal, K.

    2015-12-01

    Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.

  20. Dry matter yields and quality of forages derived from grass species and organic production methods (year 111).

    PubMed

    Pholsen, S; Rodchum, P; Higgs, D E B

    2014-07-01

    This third year work was carried on at Khon Kaen University during the 2008-2009 to investigate dry matter yields of grass, grass plus legumes, grown on Korat soil series (Oxic Paleustults). The experiment consisted of twelve-treatment combinations of a 3x4 factorial arranged in a Randomized Complete Block Design (RCBD) with four replications. The results showed that Dry Matter Yields (DMY) of Ruzi and Guinea grass were similar with mean values of 6,585 and 6,130 kg ha(-1) whilst Napier gave the lowest (884 kg ha(-1)). With grass plus legume, grass species and production methods gave highly significant dry matter yields where Guinea and Ruzi gave dry matter yields of 7,165 and 7,181 kg ha(-1), respectively and Napier was the least (2,790 kg ha(-1)). The production methods with the use of cattle manure gave the highest DMY (grass alone) of 10,267 kg ha(-1) followed by Wynn and Verano with values of 6,064 and 3,623 kg ha(-1), respectively. Guinea plus cattle manure gave the highest DMY of 14,599 kg ha(-1) whilst Ruzi gave 12,977 kg ha(-1). Guinea plus Wynn gave DMY of 7,082 kg ha(-1). Ruzi plus Verano gave DMY of 6,501 kg ha(-1). Forage qualities of crude protein were highest with those grown with grass plus legumes. Some prospects in improving production were discussed.

  1. Organic production systems in northern highbush blueberry: I. Impact of planting method, cultivar, fertilizer, and mulch on yield and fruit quality from planting through maturity

    USDA-ARS?s Scientific Manuscript database

    A long-term trial was established to identify organic production systems for maximum yield and quality in highbush blueberry. Treatments included raised beds or flat ground; granular feather meal or fish solubles at low and high rates; sawdust, yard debris compost topped with sawdust, or weed mat; a...

  2. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality.

    PubMed

    Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey

    2018-05-28

    Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.

  3. Yield and quality responses of citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to compound fertilizers*

    PubMed Central

    Wang, Rui; Shi, Xue-gen; Wei, You-zhang; Yang, Xiao-e; Uoti, Juhani

    2006-01-01

    Experiments were carried out with citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to study the effects of compound fertilizers on their yields and quality. In the citrus experiment, application of compound fertilizers increased available P, K and Mg contents in soil but decreased alkali-hydrolyzable N contents in soil and N, P and K contents in leaves. In the tea experiment, application of compound fertilizers increased available P, K and Mg contents in soil and N, P, K and Mg contents in leaves but decreased alkali-hydrolyzable N in soil compared with the urea treatment. Application of compound fertilizers could improve the quality of citrus and tea, increase their yields and enhance their economical profits significantly. Compared with the control, application of compound fertilizers increased citrus yields by 6.31, 12.94 and 17.69 t/ha, and those of tea by 0.51, 0.86 and 1.30 t/ha, respectively. Correspondingly, profits were increased by 21.4% to 61.1% for citrus and by 10.0% to 15.7% for tea. Optimal rates of compound fertilizers were recommended for both crops. PMID:16909469

  4. Yield, quality and biochemical properties of various strawberry cultivars under water stress.

    PubMed

    Adak, Nafiye; Gubbuk, Hamide; Tetik, Nedim

    2018-01-01

    Although strawberry (Fragaria x ananassa Duch.) species are sensitive to abiotic stress conditions, some cultivars are known to be tolerant to different environmental conditions. We examined the response of different strawberry cultivars to water stress conditions in terms of yield, quality and biochemical features. The trial was conducted under two different irrigation regimes: in grow bags containing cocopeat (control, 30%; water stress, 15% drainage) with four different cultivars (Camarosa, Albion, Amiga and Rubygem). Fruit weight declined by 59.72% and the yield per unit area by 63.62% under water stress conditions as compared to control. Albion and Rubygem were found to be more tolerant and Amiga the most sensitive in terms of yield under stress conditions. Water stress increased all biochemical features in fruits such as total phenol, total anthocyanin, antioxidant activity and sugar contents. Among the cultivars, glucose and fructose was higher in Albion. Considering the rise in global warming, identification of resistant and tolerant cultivars to stress conditions are crucial for future breeding programmes. Our results showed that some of the fruit's physical features were affected negatively by stress conditions whereas many of the biochemical features such as total anthocyanin content, total phenolic content and antioxidant activity were positively modulated. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Methods for high yield production of terpenes

    DOEpatents

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  6. High throughput electrospinning of high-quality nanofibers via an aluminum disk spinneret

    NASA Astrophysics Data System (ADS)

    Zheng, Guokuo

    In this work, a simple and efficient needleless high throughput electrospinning process using an aluminum disk spinneret with 24 holes is described. Electrospun mats produced by this setup consisted of fine fibers (nano-sized) of the highest quality while the productivity (yield) was many times that obtained from conventional single-needle electrospinning. The goal was to produce scaled-up amounts of the same or better quality nanofibers under variable concentration, voltage, and the working distance than those produced with the single needle lab setting. The fiber mats produced were either polymer or ceramic (such as molybdenum trioxide nanofibers). Through experimentation the optimum process conditions were defined to be: 24 kilovolt, a distance to collector of 15cm. More diluted solutions resulted in smaller diameter fibers. Comparing the morphologies of the nanofibers of MoO3 produced by both the traditional and the high throughput set up it was found that they were very similar. Moreover, the nanofibers production rate is nearly 10 times than that of traditional needle electrospinning. Thus, the high throughput process has the potential to become an industrial nanomanufacturing process and the materials processed by it may be used as filtration devices, in tissue engineering, and as sensors.

  7. High-yield maize with large net energy yield and small global warming intensity

    PubMed Central

    Grassini, Patricio; Cassman, Kenneth G.

    2012-01-01

    Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684

  8. A quality assessment of the MARS crop yield forecasting system for the European Union

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  9. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites

    NASA Astrophysics Data System (ADS)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-10-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five

  10. High-Gum-Yielding Slash Pines Survive and Grow Well

    Treesearch

    S.V. Kossuth; W.J. Peters; C.R. Gansell

    1982-01-01

    Plantings in Georgia and Florida were established with slash pine seedlings of three genetic types: selections improved for high gum yield (IHGY), selections with improved growth and form (IGF), and commercial stock (CS). Under adverse environmental conditions in Florida, IHGY survived best at age 3, CS next best, and IGF poorest.Survival was more than twice as high in...

  11. Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. 'Santa Maria' in semi-arid conditions.

    PubMed

    Ikinci, Ali; Bolat, Ibrahim; Ercisli, Sezai; Kodad, Ossama

    2014-12-16

    Rootstocks play an essential role to determining orchard performance of fruit trees. Pyrus communis and Cydonia oblonga are widely used rootstocks for European pear cultivars. The lack of rootstocks adapted to different soil conditions and different grafted cultivars is widely acknowledged in pear culture. Cydonia rootstocks (clonal) and Pyrus rootstocks (seedling or clonal) have their advantages and disadvantages. In each case, site-specific environmental characteristics, specific cultivar response and production objectives must be considered before choosing the best rootstock. In this study, the influence of three Quince (BA 29, Quince A = MA, Quince C = MC) and a local European pear seedling rootstocks on the scion yield, some fruit quality characteristics and leaf macro (N, P, K, Ca and Mg) and micro element (Fe, Zn, Cu, Mn and B) content of 'Santa Maria' pear (Pyrus communis L.) were investigated. Trees on seedling rootstock had the highest annual yield, highest cumulative yield (kg tree(-1)), largest trunk cross-sectional area (TCSA), lowest yield efficiency and lowest cumulative yield (ton ha(-1)) in the 10(th) year after planting. The rootstocks had no significant effect on average fruit weight and fruit volume. Significantly higher fruit firmness was obtained on BA 29 and Quince A. The effect of rootstocks on the mineral element accumulation (N, K, Ca, Mg, Fe, Zn, Cu, Mn and B) was significant. Leaf analysis showed that rootstocks used had different mineral uptake efficiencies throughout the early season. The results showed that the rootstocks strongly affected fruit yield, fruit quality and leaf mineral element uptake of 'Santa Maria' pear cultivar. Pear seedling and BA 29 rootstock found to be more prominent in terms of several characteristics for 'Santa Maria' pear cultivar that is grown in highly calcareous soil in semi-arid climate conditions. We determined the highest N, P (although insignificant), K, Ca, Mg, Fe and Cu mineral element concentrations

  12. Automated Purification of Recombinant Proteins: Combining High-throughput with High Yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chiann Tso; Moore, Priscilla A.; Auberry, Deanna L.

    2006-05-01

    Protein crystallography, mapping protein interactions and other approaches of current functional genomics require not only purifying large numbers of proteins but also obtaining sufficient yield and homogeneity for downstream high-throughput applications. There is a need for the development of robust automated high-throughput protein expression and purification processes to meet these requirements. We developed and compared two alternative workflows for automated purification of recombinant proteins based on expression of bacterial genes in Escherichia coli: First - a filtration separation protocol based on expression of 800 ml E. coli cultures followed by filtration purification using Ni2+-NTATM Agarose (Qiagen). Second - a smallermore » scale magnetic separation method based on expression in 25 ml cultures of E.coli followed by 96-well purification on MagneHisTM Ni2+ Agarose (Promega). Both workflows provided comparable average yields of proteins about 8 ug of purified protein per unit of OD at 600 nm of bacterial culture. We discuss advantages and limitations of the automated workflows that can provide proteins more than 90 % pure in the range of 100 ug – 45 mg per purification run as well as strategies for optimization of these protocols.« less

  13. An evaluation of eco-friendly naturally coloured cottons regarding seed cotton yield, yield components and major lint quality traits under conditions of East Mediterranean region of Turkey.

    PubMed

    Efe, Lale; Killi, Fatih; Mustafayev, Sefer A

    2009-10-15

    In the study carried out in 2002-2003 in the East Mediterranean region of Turkey (in Kahramanmaras Province), four different naturally coloured cotton (Gossypium hirsutum L.) (dark brown, light brown, cream and green) lines from Azerbaijan and two white linted cotton varieties (Maras-92 and Sayar-314 (G. hirsutum L.)) of the region were used as material. The aim of this study was to determine seed cotton yield and yield components and major lint quality traits of investigated coloured cotton lines comprising white linted local standard cotton varieties. Field trials were established in randomized block design with four blocks. According to two year's results, it was determined that naturally coloured cottons were found similar to both white linted standard cotton varieties for sympodia number and seed cotton yield. For boll number per plant, except green cotton line all coloured cotton lines were similar to standard varieties or even some of them were better than standards. For ginning outturn, dark brown, cream and green cotton lines were found statistically similar to standard Maras-92. But all naturally coloured cotton lines had lower seed cotton weight per boll and generally lower fiber quality than white linted standard varieties. For fiber length and fiber strength cream cotton line was the best coloured cotton. And for fiber fineness only green cotton line was better than both standards. It can be said that naturally coloured cotton lines need to be improved especially for fiber quality characters in the East Mediterranean region of Turkey.

  14. The genetic control of milling yield, dough rheology and baking quality of wheat.

    PubMed

    Kuchel, H; Langridge, P; Mosionek, L; Williams, K; Jefferies, S P

    2006-05-01

    Improving the end-use quality of wheat is a key target for many breeding programmes. With the exception of the relationship between glutenin alleles and some dough rheological characters, knowledge concerning the genetic control of wheat quality traits is somewhat limited. A doubled haploid population produced from a cross between two Australian cultivars 'Trident' and 'Molineux' has been used to construct a linkage map based largely on microsatellite molecular makers. 'Molineux' is superior to 'Trident' for a number of milling, dough rheology and baking quality characteristics, although by international standards 'Trident' would still be regarded as possessing moderately good end-use quality. This population was therefore deemed useful for investigation of wheat end-use quality. A number of significant QTL identified for dough rheological traits mapped to HMW and LMW glutenin loci on chromosomes 1A and 1B. However, QTL associated with dough strength and loaf volume were also identified on chromosome 2A and a significant QTL associated with loaf volume and crumb quality was identified on chromosome 3A. A QTL for flour protein content and milling yield was identified on chromosome 6A and a QTL associated with flour colour reported previously on chromosome 7B was confirmed in this population. The detection of loci affecting dough strength, loaf volume and flour protein content may provide fresh opportunities for the application of marker-assisted selection to improve bread-making quality.

  15. Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals.

    PubMed

    Hassanzadeh, Salman; Aminlashgari, Nina; Hakkarainen, Minna

    2014-11-04

    Exceptionally high cellulose liquefaction yields, up to 87% as calculated from the amount of solid residue, were obtained under mild conditions by utilizing the synergistic effect of microwave radiation and acid catalysis. The effect of processing conditions on degradation products was fingerprinted by rapid laser desorption ionization-mass spectrometry (LDI-MS) method. The reaction was chemo-tunable, enabling production of glucose (Glc) or levulinic acid (LeA) at significantly high selectivity and yields, the relative molar yields being up to 50 and 69%, respectively. A turning point from pure depolymerization to glucose to further degradation to levulinic acid and formic acid was observed at approximately 50% liquefaction or above 140 °C. This was accompanied by the formation of small amounts of solid spherical carbonized residues. The reaction was monitored by multiple analytical techniques. The high yields were connected to the ability of the process to break the strong secondary interactions in cellulose. The developed method has great potential for future production of green platform chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Synthesis and characterization of poly (dihydroxybiphenyl borate) with high char yield for high-performance thermosetting resins

    NASA Astrophysics Data System (ADS)

    Wang, Shujuan; Xing, Xiaolong; Li, Jian; Jing, Xinli

    2018-01-01

    The objective of the current work is to synthesize novel boron-containing polymers with excellent thermal resistance, and reveal the structure and the reason for the high char yield. Thus, poly (dihydroxybiphenyl borate) (PDDB) with a more rigid molecular chain, was successfully synthesized using 4,4‧-dihydroxybiphenyl and boric acid. Structural characterizations of the prepared PDDB were performed via NMR, FTIR, XPS, and XRD analyses. The results reveal that PDDB consists of aromatic, Phsbnd Osbnd B and Bsbnd Osbnd B structures as well as a small number of boron hydroxyl and phenolic hydroxyl groups. PDDB shows good solubility in strong polar solvents, which is of great importance for the modification of thermosetting resins. TGA combined with DSC were employed to evaluate the thermal properties of PDDB, and increases in the glass transition temperature (Tg) and char yield were observed with increased boron content. Tg and char yield of PDDB (800 °C, nitrogen atmosphere) reached up to 219 °C and 66.5%, respectively. PDDB was extensively characterized during pyrolysis to reveal the high char yield of PDDB. As briefly discussed, the boron oxide and boron carbide that formed during pyrolysis play a crucial role in the high char yield of PDDB, which reduces the release of volatile carbon dioxide and carbon. This research suggests that PDDB has great potential as a novel modified agent for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  17. Development and Validation of a High-Quality Composite Real-World Mortality Endpoint.

    PubMed

    Curtis, Melissa D; Griffith, Sandra D; Tucker, Melisa; Taylor, Michael D; Capra, William B; Carrigan, Gillis; Holzman, Ben; Torres, Aracelis Z; You, Paul; Arnieri, Brandon; Abernethy, Amy P

    2018-05-14

    To create a high-quality electronic health record (EHR)-derived mortality dataset for retrospective and prospective real-world evidence generation. Oncology EHR data, supplemented with external commercial and US Social Security Death Index data, benchmarked to the National Death Index (NDI). We developed a recent, linkable, high-quality mortality variable amalgamated from multiple data sources to supplement EHR data, benchmarked against the highest completeness U.S. mortality data, the NDI. Data quality of the mortality variable version 2.0 is reported here. For advanced non-small-cell lung cancer, sensitivity of mortality information improved from 66 percent in EHR structured data to 91 percent in the composite dataset, with high date agreement compared to the NDI. For advanced melanoma, metastatic colorectal cancer, and metastatic breast cancer, sensitivity of the final variable was 85 to 88 percent. Kaplan-Meier survival analyses showed that improving mortality data completeness minimized overestimation of survival relative to NDI-based estimates. For EHR-derived data to yield reliable real-world evidence, it needs to be of known and sufficiently high quality. Considering the impact of mortality data completeness on survival endpoints, we highlight the importance of data quality assessment and advocate benchmarking to the NDI. © 2018 The Authors. Health Services Research published by Wiley Periodicals, Inc. on behalf of Health Research and Educational Trust.

  18. High-Quality TiS2 For Li/TiS2 Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Shen, David H.; Delgiannis, Fotios; Halpert, Gerald

    1992-01-01

    Modified process for synthesis of battery-grade titanium sulfide (TiS2) yields substantially improved material for Li/TiS2 electrochemical cells. Includes all-vapor-phase reaction between sulfur and titanium. Product less dense and more homogeneous, consists of smaller particles of higher crystalline quality, and purer. Cells have high cathode utilization and long cycle life performance. Expected to find applications in rechargeable lithium batteries for spacecraft, military equipment, telecommunication systems, automobiles, and consumer products.

  19. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study

    PubMed Central

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, NH4+-N, NO3--N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history. PMID:29209343

  20. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study.

    PubMed

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, [Formula: see text]-N, [Formula: see text]-N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history.

  1. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population.

    PubMed

    Yu, Jiwen; Zhang, Ke; Li, Shuaiyang; Yu, Shuxun; Zhai, Honghong; Wu, Man; Li, Xingli; Fan, Shuli; Song, Meizhen; Yang, Daigang; Li, Yunhai; Zhang, Jinfa

    2013-01-01

    Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65-25.27% of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12%) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.

  2. Effects of irrigation on sorghum forage yield and quality in the central sands region of Wisconsin

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to assess effects of irrigation on yield and quality of photoperiod sensitive (PS) and non-PS forage sorghum, sorghum-sudangrass, and sudangrass in comparison to corn in central Wisconsin. The study was a strip-plot design with a 5 x 8 factorial arrangement of treatments. Five ...

  3. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE PAGES

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...

    2016-12-01

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  4. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  5. A Modified Protocol for High-Quality RNA Extraction from Oleoresin-Producing Adult Pines.

    PubMed

    de Lima, Júlio César; Füller, Thanise Nogueira; de Costa, Fernanda; Rodrigues-Corrêa, Kelly C S; Fett-Neto, Arthur G

    2016-01-01

    RNA extraction resulting in good yields and quality is a fundamental step for the analyses of transcriptomes through high-throughput sequencing technologies, microarray, and also northern blots, RT-PCR, and RTqPCR. Even though many specific protocols designed for plants with high content of secondary metabolites have been developed, these are often expensive, time consuming, and not suitable for a wide range of tissues. Here we present a modification of the method previously described using the commercially available Concert™ Plant RNA Reagent (Invitrogen) buffer for field-grown adult pine trees with high oleoresin content.

  6. Supplementary effects of higher levels of various disaccharides on processing yield, quality properties and sensory attributes of Chinese - style pork jerky.

    PubMed

    Chen, Chih-Ming; Lin, Hsien-Tang

    2017-12-01

    This study evaluated the supplementary effect of higher concentrations of various disaccharides on processing yield, major physicochemical properties, and sensory attributes of Chinese-style pork jerky (CSPJ). CSPJ samples were prepared by marinating sliced ham (4 mm) with three dissaccharides, including sucrose, lactose, and maltose, at 0%, 15%, 18%, 21%, and 24%. Subsequently, the CSPJ samples were dried and roasted. The moisture content, water activity, crude protein, moisture-to-protein ratio, pH, processing yield, shear force, color, and sensory attributes of the CSPJ samples were evaluated. The quality characteristics of CSPJ samples prepared with sucrose were more acceptable. By contrast, CSPJ samples prepared with lactose showed the lowest scores. However, the processing yield and moisture content were the highest for CSPJ samples prepared with lactose, which may be associated with improved benefits for cost reduction. Furthermore, sucrose and lactose supplementation resulted in contrasting quality characteristics; for example, CSPJ samples with sucrose and maltose supplementation had higher sensory scores for color than samples with lactose supplementation. Additionally, most quality characteristics of CSPJ samples with sucrose supplementation contrasted with those of the samples with lactose supplementation; for example, the samples with sucrose supplementation had higher scores for sensory attributes than those with lactose supplementation. Sucrose supplementation up to 21% to 24% was associated with the highest overall acceptability scores (5.19 to 5.80), enhanced quality characteristics, increased processing yield, and reduced production cost.

  7. Effect of mechanical extraction parameters on the yield and quality of tobacco (Nicotiana tabacum L.) seed oil.

    PubMed

    Sannino, M; Del Piano, L; Abet, Massimo; Baiano, S; Crimaldi, M; Modestia, F; Raimo, F; Ricciardiello, G; Faugno, S

    2017-11-01

    The aim of this study was to investigate how the combination of extraction parameters, such as extraction temperature seeds preheating and screw rotation speed, influenced the yield and chemical quality of tobacco seed oil (TSO). For its peculiar properties, TSO can be used for several purposes, as raw material in the manufacturing of soap, paints, resins, lubricants, biofuels and also as edible oil. TSO was obtained using a mechanical screw press and the quality of the oil was evaluated by monitoring the free fatty acids (FFA), the peroxide value (PV), the spectroscopic indices K 232 , K 270 and ΔK and the fatty acid composition. The maximum extraction yield, expressed as percent of oil mechanically extracted respect to the oil content in the seeds, determined by solvent extraction, was obtained with the combination of the highest extraction temperature, the slowest screw rotation speed and seeds preheating. Under these conditions yield was 80.28 ± 0.33% (w/w), 25% higher than the lowest yield obtained among investigated conditions. The extraction temperature and seed preheating showed a significant effect on FFA, on spectroscopic indices K 232 , K 270 and ΔK values. The average values of these parameters slightly increased rising the temperature and in presence of preheating, the screw rotation speed did not affect the chemical characteristic tested. In the extraction conditions investigated no significant changes in PV and fatty acids composition of oil were observed.

  8. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil.

    PubMed

    Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan

    2012-08-01

    Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial

  9. Isolation of high-quality total RNA from leaves of Myrciaria dubia "CAMU CAMU".

    PubMed

    Gómez, Juan Carlos Castro; Reátegui, Alina Del Carmen Egoavil; Flores, Julián Torres; Saavedra, Roberson Ramírez; Ruiz, Marianela Cobos; Correa, Sixto Alfredo Imán

    2013-01-01

    Myrciaria dubia is a main source of vitamin C for people in the Amazon region. Molecular studies of M. dubia require high-quality total RNA from different tissues. So far, no protocols have been reported for total RNA isolation from leaves of this species. The objective of this research was to develop protocols for extracting high-quality total RNA from leaves of M. dubia. Total RNA was purified following two modified protocols developed for leaves of other species (by Zeng and Yang, and by Reid et al.) and one modified protocol developed for fruits of the studied species (by Silva). Quantity and quality of purified total RNA were assessed by spectrophotometric and electrophoretic analysis. Additionally, quality of total RNA was evaluated with reverse-transcription polymerase chain reaction (RT-PCR). With these three modified protocols we were able to isolate high-quality RNA (A260nm/A280nm >1.9 and A260nm/A230nm >2.0). Highest yield was produced with the Zeng and Yang modified protocol (384±46µg ARN/g fresh weight). Furthermore, electrophoretic analysis showed the integrity of isolated RNA and the absence of DNA. Another proof of the high quality of our purified RNA was the successful cDNA synthesis and amplification of a segment of the M. dubia actin 1 gene. We report three modified protocols for isolation total RNA from leaves of M. dubia. The modified protocols are easy, rapid, low in cost, and effective for high-quality and quantity total RNA isolation suitable for cDNA synthesis and polymerase chain reaction.

  10. Estimating bottomland hardwood growth and yield

    Treesearch

    1989-01-01

    Most bottomland hardwoods grow on very productive sites-site index 70 or more. A fully stocked immature stand (table 1, fig. 1) requires tending throughout its life. The goal is to attain a stand of approximately 50 high quality trees of commercial species per acre at maturity. Releasing these crop trees can result in the cumulative yield of 2,000-4,000 board feet per...

  11. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  12. Altered Tuber Yield in Genetically Modified High-Amylose and Oil Potato Lines Is Associated With Changed Whole-Plant Nitrogen Economy

    PubMed Central

    Pourazari, Fereshteh; Andersson, Mariette; Weih, Martin

    2018-01-01

    Breeding for improved crop quality traits can affect non-target traits related to growth and resource use, and these effects may vary in different cultivation conditions (e. g., greenhouse vs. field). The objectives of this study are to investigate the growth and whole-plant nitrogen (N) economy of two genetically modified (GM) potato lines compared to their non-GM parental varieties and when grown in different cultivation conditions. A high-amylose GM potato line and its parent were grown under field and greenhouse conditions for one growing season in Sweden; and a GM oil potato line and its parent were grown in greenhouse conditions only. Tuber yield, above ground biomass, N uptake efficiency and other plant N economy traits were assessed. In both cultivation conditions, the GM lines produced between 1.5 and two times more tubers as compared with their parents. In the greenhouse, fresh tuber yield and N uptake efficiency were unaffected by the genetic modifications, but the GM-lines produced less tuber biomass per plant-internal N compared to their parents. In the field, the fresh tuber yield was 40% greater in the high-amylose line as compared with its parent; the greater fresh tuber yield in the high-amylose GM line was accomplished by higher water allocation to the harvested tubers, and associated with increased N recovery from soil (+20%), N uptake efficiency (+53%), tuber N content (+20%), and N accumulation (+120%) compared with the non-GM parent. The cultivation conditions influenced the yield and N economy. For example, the final fresh above-ground plant biomass and N pool were considerably higher in the greenhouse conditions, whilst the tuber yield was higher in the field conditions. In conclusion, the genetic modification inducing high accumulation of amylose in potato tubers affected several non-target traits related to plant N economy, and increased the plant N uptake and accumulation efficiency of the field-grown plants. Due to strongly increased

  13. High-quality cardiopulmonary resuscitation.

    PubMed

    Nolan, Jerry P

    2014-06-01

    The quality of cardiopulmonary resuscitation (CPR) impacts on outcome after cardiac arrest. This review will explore the factors that contribute to high-quality CPR and the metrics that can be used to monitor performance. A recent consensus statement from North America defined five key components of high-quality CPR: minimizing interruptions in chest compressions, providing compressions of adequate rate and depth, avoiding leaning on the chest between compressions, and avoiding excessive ventilation. Studies have shown that real-time feedback devices improve the quality of CPR and, in one before-and-after study, outcome from out-of-hospital cardiac arrest. There is evidence for increasing survival rates following out-of-hospital cardiac arrest and this is associated with increasing rates of bystander CPR. The quality of CPR provided by healthcare professionals can be improved with real-time feedback devices. The components of high-quality CPR and the metrics that can be measured and fed back to healthcare professionals have been defined by expert consensus. In the future, real-time feedback based on the physiological responses to CPR may prove more effective.

  14. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and

  15. Seed-Specific Expression of OsDWF4, a Rate-Limiting Gene Involved in Brassinosteroids Biosynthesis, Improves Both Grain Yield and Quality in Rice.

    PubMed

    Li, Qian-Feng; Yu, Jia-Wen; Lu, Jun; Fei, Hong-Yuan; Luo, Ming; Cao, Bu-Wei; Huang, Li-Chun; Zhang, Chang-Quan; Liu, Qiao-Quan

    2018-04-18

    Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.

  16. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong

    2016-07-01

    High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

  17. The use of ion beam cleaning to obtain high quality cold welds with minimal deformation

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Moore, T. J.

    1978-01-01

    This paper describes a variation of cold welding which utilizes an ion beam to clean mating surfaces prior to joining in a vacuum environment. High quality solid state welds were produced with minimal deformation. Due to experimental fixture limitation in applying pressure work has been limited to a few low yield strength materials.

  18. Effect of body condition and season on yield and quality of in vitro produced bovine embryos.

    PubMed

    Chrenek, Peter; Kubovičová, Elena; Olexíková, Lucia; Makarevich, Alexander V; Toporcerová, Silvia; Ostró, Alexander

    2015-12-01

    The aim of our study was to examine the effects of cow's body condition score (BCS; scale 1-5) and season on the quality of bovine in vitro produced embryos. The proportion of good quality oocytes (Q1 and Q2) was higher (P < 0.05) in the BCS 2 (57.60%) and BCS 3 (60.90%) groups compared with the BCS 1 (43.60%) group. There were no statistical differences in embryo cleavage and blastocyst rate among the BCS groups. The highest total cell number (TCN, DAPI stain) of blastocysts (P < 0.05), recorded in BCS 1 (122.27 ± 6.90) in comparison with BCS 2 (101.8 ± 3.60) or BCS 3 (105.44 ± 3.70) groups, was related to higher dead cell (DCI, TUNEL) index in this group (7.07%) when compared with BCS 2 (6.54%) or BCS 3 (6.06%), respectively. The yield of good quality oocytes during spring was lower (P < 0.05) compared with the summer season. There were significant differences (P < 0.05) in maturation and cleavage rates between autumn and summer (73.42%, 76.2% vs. 85.0%, 41.8%, respectively). The highest (P < 0.01) blastocyst rate was noted during spring and summer months. Significant difference (P < 0.05) in the TCN among spring (99.38 ± 3.90), autumn (110.1 ± 4.58) or summer (108.96 ± 3.52) was observed. The highest proportion of embryos with the best (grade I) actin cytoskeleton (phalloidin-TRITC) quality was noted during the summer months. Our results indicate that body condition affects the initial quality of oocytes, but does not affect embryo cleavage, blastocyst rate and actin quality. This finding may suggest that development in vitro can mask the influence of BCS. The season affects yield and quality of blastocysts in the way that the autumn period is more favorable for embryo development.

  19. Estimating oak growth and yield

    Treesearch

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    Yields from upland oak stands vary widely from stand to stand due to differences in age, site quality, species composition, and stand structure. Cutting history and other past disturbances such as grazing or fire also affect yields.

  20. Predawn respiration rates during flowering are highly predictive of yield response in Gossypium hirsutum when yield variability is water-induced.

    PubMed

    Snider, John L; Chastain, Daryl R; Meeks, Calvin D; Collins, Guy D; Sorensen, Ronald B; Byrd, Seth A; Perry, Calvin D

    2015-07-01

    Respiratory carbon evolution by leaves under abiotic stress is implicated as a major limitation to crop productivity; however, respiration rates of fully expanded leaves are positively associated with plant growth rates. Given the substantial sensitivity of plant growth to drought, it was hypothesized that predawn respiration rates (RPD) would be (1) more sensitive to drought than photosynthetic processes and (2) highly predictive of water-induced yield variability in Gossypium hirsutum. Two studies (at Tifton and Camilla Georgia) addressed these hypotheses. At Tifton, drought was imposed beginning at the onset of flowering (first flower) and continuing for three weeks (peak bloom) followed by a recovery period, and predawn water potential (ΨPD), RPD, net photosynthesis (AN) and maximum quantum yield of photosystem II (Fv/Fm) were measured throughout the study period. At Camilla, plants were exposed to five different irrigation regimes throughout the growing season, and average ΨPD and RPD were determined between first flower and peak bloom for all treatments. For both sites, fiber yield was assessed at crop maturity. The relationships between ΨPD, RPD and yield were assessed via non-linear regression. It was concluded for field-grown G. hirsutum that (1) RPD is exceptionally sensitive to progressive drought (more so than AN or Fv/Fm) and (2) average RPD from first flower to peak bloom is highly predictive of water-induced yield variability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Laser heating challenges of high yield MagLIF targets

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Sefkow, Adam; Vesey, Roger

    2014-10-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept is predicted by numerical simulation to produce fusion yields of about 100 kJ, when driven by 25 MA from the existing Z accelerator [S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)] and much higher yields with future accelerators delivering higher currents [Slutz and Vesey PRL 108, 025003 (2012)]. The fuel must be heated before compression to obtain significant fusion yields due to the relatively slow implosion velocities (~ 100 km/s) of magnetically driven liners. Lasers provide a convenient means to accomplish this pre-compressional heating of the fusion fuel, but there are challenges. The laser must penetrate a foil covering the laser entrance hole and deposit 20-30 kJ within the ~1 cm length of the liner in fuel at 6-12 mg/cc. Such high densities could result in beam scattering due to refraction and laser plasma interactions. Numerical simulations of the laser heating process are presented, which indicate that energies as high as 30 kJ could be deposited in the fuel by using two laser pulses of different wavelengths. Simulations of this process will be presented as well of results for a MagLIF design for a potential new machine delivering 50 MA of current. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  2. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield.

    PubMed

    Ma, Zhiying; He, Shoupu; Wang, Xingfen; Sun, Junling; Zhang, Yan; Zhang, Guiyin; Wu, Liqiang; Li, Zhikun; Liu, Zhihao; Sun, Gaofei; Yan, Yuanyuan; Jia, Yinhua; Yang, Jun; Pan, Zhaoe; Gu, Qishen; Li, Xueyuan; Sun, Zhengwen; Dai, Panhong; Liu, Zhengwen; Gong, Wenfang; Wu, Jinhua; Wang, Mi; Liu, Hengwei; Feng, Keyun; Ke, Huifeng; Wang, Junduo; Lan, Hongyu; Wang, Guoning; Peng, Jun; Wang, Nan; Wang, Liru; Pang, Baoyin; Peng, Zhen; Li, Ruiqiang; Tian, Shilin; Du, Xiongming

    2018-05-07

    Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.

  3. Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration

    PubMed Central

    2011-01-01

    Background: New transbronchial needle aspiration (TBNA) technologies have been developed, but their clinical effectiveness and determinants of diagnostic yield have not been quantified. Prospective data are needed to determine risk-adjusted diagnostic yield. Methods: We prospectively enrolled patients undergoing TBNA of mediastinal lymph nodes in the American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education (AQuIRE) multicenter database and recorded clinical, procedural, and provider information. All clinical decisions, including type of TBNA used (conventional vs endobronchial ultrasound-guided), were made by the attending bronchoscopist. The primary outcome was obtaining a specific diagnosis. Results: We enrolled 891 patients at six hospitals. Most procedures (95%) were performed with ultrasound guidance. A specific diagnosis was made in 447 cases. Unadjusted diagnostic yields were 37% to 54% for different hospitals, with significant between-hospital heterogeneity (P = .0001). Diagnostic yield was associated with annual hospital TBNA volume (OR, 1.003; 95% CI, 1.000-1.006; P = .037), smoking (OR, 1.55; 95% CI, 1.02-2.34; P = .042), biopsy of more than two sites (OR, 0.57; 95% CI, 0.38-0.85; P = .015), lymph node size (reference > 1-2 cm, ≤ 1 cm: OR, 0.51; 95% CI, 0.34-0.77; P = .003; > 2-3 cm: OR, 2.49; 95% CI, 1.61-3.85; P < .001; and > 3 cm: OR, 3.61; 95% CI, 2.17-6.00; P < .001), and positive PET scan (OR, 3.12; 95% CI, 1.39-7.01; P = .018). Biopsy was performed on more and smaller nodes at high-volume hospitals (P < .0001). Conclusions: To our knowledge, this is the first bronchoscopy study of risk-adjusted diagnostic yields on a hospital-level basis. High-volume hospitals were associated with high diagnostic yields. This study also demonstrates the value of procedural registries as a quality improvement tool. A larger number and variety of participating hospitals is needed to verify these results and to further

  4. High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry

    DOE PAGES

    Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...

    2017-05-09

    Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less

  5. High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew

    Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less

  6. High yield neutron generators using the DD reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber,more » increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.« less

  7. Improving the Yield of Histological Sampling in Patients With Suspected Colorectal Cancer During Colonoscopy by Introducing a Colonoscopy Quality Assurance Program.

    PubMed

    Gado, Ahmed; Ebeid, Basel; Abdelmohsen, Aida; Axon, Anthony

    2011-08-01

    Masses discovered by clinical examination, imaging or endoscopic studies that are suspicious for malignancy typically require biopsy confirmation before treatment is initiated. Biopsy specimens may fail to yield a definitive diagnosis if the lesion is extensively ulcerated or otherwise necrotic and viable tumor tissue is not obtained on sampling. The diagnostic yield is improved when multiple biopsy samples (BSs) are taken. A colonoscopy quality-assurance program (CQAP) was instituted in 2003 in our institution. The aim of this study was to determine the effect of instituting a CQAP on the yield of histological sampling in patients with suspected colorectal cancer (CRC) during colonoscopy. Initial assessment of colonoscopy practice was performed in 2003. A total of five patients with suspected CRC during colonoscopy were documented in 2003. BSs confirmed CRC in three (60%) patients and were nondiagnostic in two (40%). A quality-improvement process was instituted which required a minimum six BSs with adequate size of the samples from any suspected CRC during colonoscopy. A total of 37 patients for the period 2004-2010 were prospectively assessed. The diagnosis of CRC was confirmed with histological examination of BSs obtained during colonoscopy in 63% of patients in 2004, 60% in 2005, 50% in 2006, 67% in 2007, 100% in 2008, 67% in 2009 and 100% in 2010. The yield of histological sampling increased significantly ( p <0.02) from 61% in 2004-2007 to 92% in 2008-2010. The implementation of a quality assurance and improvement program increased the yield of histological sampling in patients with suspected CRC during colonoscopy.

  8. Electrorheological fluid with an extraordinarily high yield stress

    NASA Astrophysics Data System (ADS)

    Zhang, Yuling; Lu, Kunquan; Rao, Guanghui; Tian, Yu; Zhang, Shaohua; Liang, Jingkui

    2002-02-01

    Surface modified complex strontium titanate microparticles are synthesized by means of a modified sol-gel technique. A suspension composed of these particles immersed in a silicone oil exhibits excellent electrorheological properties attractive to industry and technology applications: a yield stress as high as 27 kPa in an applied electric field of 3 kV/mm, a low leakage current, wide dynamic ranges in temperature and shear rate, and a long-term stability against sedimentation. In addition to the high dielectric constant of strontium titanate, surfactant and water-free character of the particles may be responsible for the dramatic improvement of the electrorheological properties of the suspension.

  9. Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse.

    PubMed

    Leyva, Rocío; Constán-Aguilar, Christian; Blasco, Begoña; Sánchez-Rodríguez, Eva; Romero, Luis; Soriano, Teresa; Ruíz, Juan M

    2014-01-15

    The quality of vegetables for fresh consumption is a complex issue. In this study the yield and quality of cherry tomato fruits were assessed under different environmental control conditions, namely in a screenhouse (S), in a screenhouse equipped with a fogging system (SF) and in a screenhouse with complements such as plastic sheeting to maintain the microclimate created by the fogging system (SFS), as well as under open field (OF) cultivation. Levels of vitamin C, carotenoids (lycopene, β-carotene and lutein), phenolic compounds (flavonoids and phenolic acids), sugars (fructose, glucose and sucrose), organic acids (citric acid and malic acid) and flavour indices were measured. The aim of the study was to determine how different environmental control technologies could influence production and quality traits in tomato cherry fruits cultivated in a Mediterranean area. The results showed that the fogging system treatment's decline in maximum vapour pressure deficit (by 0.7 kPa compared with OF cultivation), increase in mean fruit weight (by about 4 g per fruit) and low radiation and temperature values may exert a positive effect on lycopene accumulation. For the production and nutritional parameters measured, it is postulated that the fogging system treatment offers a better balance between production and nutritional quality. This treatment proved to be best in terms of productivity, vitamin C and lycopene contents and antioxidant capacity. © 2013 Society of Chemical Industry.

  10. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    PubMed

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Minimizing quality changes of cloudy apple juice: The use of kiwifruit puree and high pressure homogenization.

    PubMed

    Yi, Junjie; Kebede, Biniam; Kristiani, Kristiani; Grauwet, Tara; Van Loey, Ann; Hendrickx, Marc

    2018-05-30

    Cloud loss, enzymatic browning, and flavor changes are important quality defects of cloudy fruit juices determining consumer acceptability. The development of clean label options to overcome such quality problems is currently of high interest. Therefore, this study investigated the effect of kiwifruit puree (clean label ingredient) and high pressure homogenization on quality changes of cloudy apple juice using a multivariate approach. The use of kiwifruit puree addition and high pressure homogenization resulted in a juice with improved uniformity and cloud stability by reducing particle size and increasing viscosity and yield stress (p < 0.01). Furthermore, kiwifruit puree addition reduced enzymatic browning (ΔE ∗  < 3), due to the increased ascorbic acid and contributed to a more saturated and bright yellow color, a better taste balance, and a more fruity aroma of juice. This work demonstrates that clean label options to control quality degradation of cloudy fruit juice might offer new opportunities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Projecting crop yield in northern high latitude area.

    PubMed

    Matsumura, Kanichiro

    2014-01-01

    Changing climatic conditions on seasonal and longer time scales influence agricultural production. Improvement of soil and fertilizer is a strong factor in agricultural production, but agricultural production is influenced by climate conditions even in highly developed countries. It is valuable if fewer predictors make it possible to conduct future projections. Monthly temperature and precipitation, wintertime 500hPa geopotential height, and the previous year's yield are used as predictors to forecast spring wheat yield in advance. Canadian small agricultural divisions (SAD) are used for analysis. Each SAD is composed of a collection of Canadian Agricultural Regions (CAR) of similar weather and growing conditions. Spring wheat yields in each CAR are forecast from the following variables: (a) the previous year's yield, (b) earlier stages of the growing season's climate conditions and, (c) the previous year's wintertime northern hemisphere 500hPa geopotential height field. Arctic outflow events in the Okanagan Valley in Canada are associated with episodes of extremely low temperatures during wintertime. Principal component analysis (PCA) is applied for wintertime northern hemisphere 500hPa geopotential height anomalies. The spatial PCA mode1 is defined as Arctic Oscillation and it influences prevailing westerlies. The prevailing westerlies meanders and influences climatic conditions. The spatial similarity between wintertime top 5 Arctic outflow event year's composites of 500hPa geopotential height anomalies and mode 3's spatial pattern is found. Mode 3's spatial pattern looks like the Pacific/North American (PNA) pattern which describes the variation of atmospheric circulation pattern over the Pacific Ocean and North America. Climate conditions from April to June, May to July, mode 3's time coefficients, and previous year's yield are used for forecasting spring wheat yield in each SAD. Cross-validation procedure which generates eight sets of models for the eight

  13. Design of high-reliability low-cost amorphous silicon modules for high energy yield

    NASA Astrophysics Data System (ADS)

    Jansen, Kai W.; Varvar, Anthony; Twesme, Edward; Berens, Troy; Dhere, Neelkanth G.

    2008-08-01

    For PV modules to fulfill their intended purpose, they must generate sufficient economic return over their lifetime to justify their initial cost. Not only must modules be manufactured at a low cost/Wp with a high energy yield (kWh/kWp), they must also be designed to withstand the significant environmental stresses experienced throughout their 25+ year lifetime. Based on field experience, the most common factors affecting the lifetime energy yield of glass-based amorphous silicon (a-Si) modules have been identified; these include: 1) light-induced degradation; 2) moisture ingress and thin film corrosion; 3) transparent conductive oxide (TCO) delamination; and 4) glass breakage. The current approaches to mitigating the effect of these degradation mechanisms are discussed and the accelerated tests designed to simulate some of the field failures are described. In some cases, novel accelerated tests have been created to facilitate the development of improved manufacturing processes, including a unique test to screen for TCO delamination. Modules using the most reliable designs are tested in high voltage arrays at customer and internal test sites, as well as at independent laboratories. Data from tests at the Florida Solar Energy Center has shown that a-Si tandem modules can demonstrate an energy yield exceeding 1200 kWh/kWp/yr in a subtropical climate. In the same study, the test arrays demonstrated low long-term power loss over two years of data collection, after initial stabilization. The absolute power produced by the test arrays varied seasonally by approximately +/-7%, as expected.

  14. Simulated yields for managed northern hardwood stands

    Treesearch

    Dale S. Solomon; William B. Leak; William B. Leak

    1986-01-01

    Board-foot and cubic-foot yields developed with the forest growth model SlMTlM are presented for northern hardwood stands grown with and without management. SIMTIM has been modified to include more accurate growth rates by species, a new stocking chart, and yields that reflect species values and quality classes. Treatments range from no thinning to intensive quality...

  15. Water-quality response to a high-elevation wildfire in the Colorado Front Range

    USGS Publications Warehouse

    Mast, M. Alisa; Murphy, Sheila F.; Clow, David W.; Penn, Colin A.; Sexstone, Graham A.

    2016-01-01

    Water quality of the Big Thompson River in the Front Range of Colorado was studied for 2 years following a high-elevation wildfire that started in October 2012 and burned 15% of the watershed. A combination of fixed-interval sampling and continuous water-quality monitors was used to examine the timing and magnitude of water-quality changes caused by the wildfire. Prefire water quality was well characterized because the site has been monitored at least monthly since the early 2000s. Major ions and nitrate showed the largest changes in concentrations; major ion increases were greatest in the first postfire snowmelt period, but nitrate increases were greatest in the second snowmelt period. The delay in nitrate release until the second snowmelt season likely reflected a combination of factors including fire timing, hydrologic regime, and rates of nitrogen transformations. Despite the small size of the fire, annual yields of dissolved constituents from the watershed increased 20–52% in the first 2 years following the fire. Turbidity data from the continuous sensor indicated high-intensity summer rain storms had a much greater effect on sediment transport compared to snowmelt. High-frequency sensor data also revealed that weekly sampling missed the concentration peak during snowmelt and short-duration spikes during rain events, underscoring the challenge of characterizing postfire water-quality response with fixed-interval sampling.

  16. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

    PubMed

    Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2017-06-21

    The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to

  17. Effect of foliar application of micronutrients on the yield and quality of sweet orange (Citrus Sinensis L.).

    PubMed

    Tariq, M; Sharif, M; Shah, Z; Khan, R

    2007-06-01

    An experiment was designed to study the effect of foliar application of micronutrients on the yield, quality and leaf composition of sweet orange, Blood red variety at Shabazgari, Mardan. The experiment was laid out in a randomized complete block design in 2) factorial arrangement. Zinc, manganese and boron were applied as foliar spray at the rate of 0.4, 0.2 and 0.04 kg ha(-1), respectively in the presence of 1.56 kg N ha(-1) as urea and 0.4 kg surfactance ha(-1) (as wetting agent) in 400 L of water. The maximum fruit yield was obtained, when 0.4 kg Zn ha(-1) and 0.2 kg Mn ha(-1) was sprayed along with 1.56 kg N ha(-1) and 0.4 kg surfactance ha(-1) in 400 L of water. The minimum % peel was obtained with B alone and minimum % rag with Zn + Mn, maximum fruit size with Zn + B and maximum fruit volume with Zn + Mn. Similarly, % juice in sweet oranges was increased significantly by B alone, reducing sugar by Mn alone and vitamin C contents by Zn + B through foliar spray, suggested that each micronutrient had different role on the quality of citrus fruit. Foliar spray of Zn, Mn and B along with urea significantly increased the concentration of Zn and Mn in citrus leaves, while the concentration of B was not affected with foliar spray, perhaps due to dilution within the citrus tissues. Therefore, it is suggested that either Zn+Mn or Zn+B may be applied as foliar spray in combination with urea and surfactance for getting the maximum yield and improved quality of citrus fruit under prevailing conditions.

  18. On-line prediction of yield grade, longissimus muscle area, preliminary yield grade, adjusted preliminary yield grade, and marbling score using the MARC beef carcass image analysis system.

    PubMed

    Shackelford, S D; Wheeler, T L; Koohmaraie, M

    2003-01-01

    The present experiment was conducted to evaluate the ability of the U.S. Meat Animal Research Center's beef carcass image analysis system to predict calculated yield grade, longissimus muscle area, preliminary yield grade, adjusted preliminary yield grade, and marbling score under commercial beef processing conditions. In two commercial beef-processing facilities, image analysis was conducted on 800 carcasses on the beef-grading chain immediately after the conventional USDA beef quality and yield grades were applied. Carcasses were blocked by plant and observed calculated yield grade. The carcasses were then separated, with 400 carcasses assigned to a calibration data set that was used to develop regression equations, and the remaining 400 carcasses assigned to a prediction data set used to validate the regression equations. Prediction equations, which included image analysis variables and hot carcass weight, accounted for 90, 88, 90, 88, and 76% of the variation in calculated yield grade, longissimus muscle area, preliminary yield grade, adjusted preliminary yield grade, and marbling score, respectively, in the prediction data set. In comparison, the official USDA yield grade as applied by online graders accounted for 73% of the variation in calculated yield grade. The technology described herein could be used by the beef industry to more accurately determine beef yield grades; however, this system does not provide an accurate enough prediction of marbling score to be used without USDA grader interaction for USDA quality grading.

  19. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.

    PubMed

    Zhang, H X; Hodson, J N; Williams, J P; Blumwald, E

    2001-10-23

    Transgenic Brassica napus plants overexpressing AtNHX1, a vacuolar Na(+)/H(+) antiport from Arabidopsis thaliana, were able to grow, flower, and produce seeds in the presence of 200 mM sodium chloride. Although the transgenic plants grown in high salinity accumulated sodium up to 6% of their dry weight, growth of the these plants was only marginally affected by the high salt concentration. Moreover, seed yields and the seed oil quality were not affected by the high salinity of the soil. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils. Our findings, showing that the modification of a single trait significantly improved the salinity tolerance of this crop plant, suggest that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated.

  20. [Quality management is associated with high quality services in health care].

    PubMed

    Nielsen, Tenna Hassert; Riis, Allan; Mainz, Jan; Jensen, Anne-Louise Degn

    2013-12-09

    In these years, quality management has been the focus in order to meet high quality services for the patients in Danish health care. This article provides information on quality management and quality improvement and it evaluates its effectiveness in achieving better organizational structures, processes and results in Danish health-care organizations. Our findings generally support that quality management is associated with high quality services in health care.

  1. Measuring Institutional Quality in Head and Neck Surgery Using Hospital-Level Data: Negative Margin Rates and Neck Dissection Yield.

    PubMed

    Schoppy, David W; Rhoads, Kim F; Ma, Yifei; Chen, Michelle M; Nussenbaum, Brian; Orosco, Ryan K; Rosenthal, Eben L; Divi, Vasu

    2017-11-01

    Negative margins and lymph node yields (LNY) of 18 or more from neck dissections in patients with head and neck squamous cell carcinomas (HNSCC) have been associated with improved patient survival. It is unclear whether these metrics can be used to identify hospitals with improved outcomes. To determine whether 2 patient-level metrics would predict outcomes at the hospital level. A retrospective review of records from the National Cancer Database (NCDB) was used to identify patients who underwent primary surgery and concurrent neck dissection for HNSCC between 2004 and 2013. The percentage of patients at each hospital with negative margins on primary resection and an LNY 18 or more from a neck dissection was quantified. Cox proportional hazard models were used to define the association between hospital performance on these metrics and overall survival. Margin status and lymph node yield at hospital level. Overall survival (OS). We identified 1008 hospitals in the NCDB where 64 738 patients met inclusion criteria. Of the 64 738 participants, 45 170 (69.8%) were men and 19 568 (30.2%) were women. The mean SD age of included patients was 60.5 (12.0) years. Patients treated at hospitals attaining the combined metric of a 90% or higher negative margin rate and 80% or more of cases with LNYs of 18 or more experienced a significant reduction in mortality (hazard ratio [HR] 0.93; 95% CI, 0.89-0.98). This benefit in survival was independent of the patient-level improvement associated with negative margins (HR, 0.73; 95% CI, 0.71-0.76) and LNY of 18 or more (HR, 0.85; 95% CI, 0.83-0.88). Including these metrics in the model neutralized the association of traditional measures of hospital quality (volume and teaching status). Treatment at hospitals that attain a high rate of negative margins and LNY of 18 or more is associated with improved survival in patients undergoing surgery for HNSCC. These surgical outcome measures predicted outcomes independent of traditional

  2. High-quality digital color xerography

    NASA Astrophysics Data System (ADS)

    Takiguchi, Koichi

    1993-06-01

    Image noise, tone reproduction, color reproduction, fine line reproduction, and OHP performance are the most important characteristics for a high quality color copier. Technologies enabling such quality are use of fine toner, halftone algorithm to ensure good highlight reproduction, soft roll fuser with good release performance, smooth surface and high thermal conductivity, white and smooth paper, and selection of a coating material for the surface layer of the OHP sheets. These technologies are integrated in the Fuji Xerox `A- Color' product. Utilizing 7 micrometers color toner, `A-Color' can make very high quality color copies.

  3. Predicting lignin depolymerization yields from quantifiable properties using fractionated biorefinery lignins

    USDA-ARS?s Scientific Manuscript database

    Lignin depolymerization to aromatic monomers with high yields and selectivity is essential for the economic feasibility of many lignin-valorization strategies within integrated biorefining processes. Importantly, the quality and properties of the lignin source play an essential role in impacting the...

  4. Association mapping for yield and grain quality traits in rice (Oryza sativa L.)

    PubMed Central

    2010-01-01

    Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm. PMID:21637426

  5. Partitioning potential fish yields from the Great Lakes

    USGS Publications Warehouse

    Loftus, D.H.; Olver, C.H.; Brown, Edward H.; Colby, P.J.; Hartman, Wilbur L.; Schupp, D.H.

    1987-01-01

    We proposed and implemented procedures for partitioning future fish yields from the Great Lakes into taxonomic components. These projections are intended as guidelines for Great Lakes resource managers and scientists. Attainment of projected yields depends on restoration of stable fish communities containing some large piscivores that will use prey efficiently, continuation of control of the sea lamprey (Petromyzon marinus), and restoration of high-quality fish habitat. Because Great Lakes fish communities were harmonic before their collapse, we used their historic yield properties as part of the basis for projecting potential yields of rehabilitated communities. This use is qualified, however, because of possible inaccuracies in the wholly commercial yield data, the presence now of greatly expanded sport fisheries that affect yield composition and magnitude, and some possibly irreversible changes since the 1950s in the various fish communities themselves. We predict that total yields from Lakes Superior, Huron, and Ontario will be increased through rehabilitation, while those from Lakes Michigan and Erie will decline. Salmonines and coregonines will dominate future yields from the upper lakes. The Lake Erie fishery will continue to yield mostly rainbow smelt (Osmerus mordax), but the relative importance of percids, especially of walleye (Stizostedion vitreum vitreum) will increase. In Lake Ontario, yields of salmonines will be increased. Managers will have to apply the most rigorous management strictures to major predator species.

  6. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits.

    PubMed

    Fang, Lei; Wang, Qiong; Hu, Yan; Jia, Yinhua; Chen, Jiedan; Liu, Bingliang; Zhang, Zhiyuan; Guan, Xueying; Chen, Shuqi; Zhou, Baoliang; Mei, Gaofu; Sun, Junling; Pan, Zhaoe; He, Shoupu; Xiao, Songhua; Shi, Weijun; Gong, Wenfang; Liu, Jianguang; Ma, Jun; Cai, Caiping; Zhu, Xiefei; Guo, Wangzhen; Du, Xiongming; Zhang, Tianzhen

    2017-07-01

    Upland cotton (Gossypium hirsutum) is the most important natural fiber crop in the world. The overall genetic diversity among cultivated species of cotton and the genetic changes that occurred during their improvement are poorly understood. Here we report a comprehensive genomic assessment of modern improved upland cotton based on the genome-wide resequencing of 318 landraces and modern improved cultivars or lines. We detected more associated loci for lint yield than for fiber quality, which suggests that lint yield has stronger selection signatures than other traits. We found that two ethylene-pathway-related genes were associated with increased lint yield in improved cultivars. We evaluated the population frequency of each elite allele in historically released cultivar groups and found that 54.8% of the elite genome-wide association study (GWAS) alleles detected were transferred from three founder landraces: Deltapine 15, Stoneville 2B and Uganda Mian. Our results provide a genomic basis for improving cotton cultivars and for further evolutionary analysis of polyploid crops.

  7. High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL researchers obtained high concentration sugar syrups in enzymatic hydrolysis that are fermentable to ethanol and other advanced biofuels and intermediate products at high yields. The novel DMR process is simpler and bypasses all severe pretreatment methods, thus reducing the environmental impact. The results are unprecedented. Researchers achieved a high concentration of sugars (230g/L of monomeric sugar and 270 g/L total sugar) and this low toxicity, highly fermentable syrup yielded 86 g/L ethanol (> 90 percent conversion). In addition, the lignin streams from this process can readily be converted to jet or renewable diesel blendstocks through a hydrodeoxygenation step. Themore » NREL-developed, low severity DMR process may potentially replace higher severity chemical pretreatments and associated expensive reactors constructed of exotic alloys with a simpler process, using commercial-scale equipment commonly associated with the pulp and paper industry, to produce high concentration, low toxicity sugar streams and highly reactive lignin streams from non-food renewable biomass for biological and catalytic upgrading to advanced biofuels and chemicals. The simpler DMR process with black liquor recycling could reduce environmental and life-cycle impacts, and repurpose shuttered pulp and paper mills to help revitalize rural economies.« less

  8. Growth, yield and compositional characteristics of Jerusalem artichoke as it relates to biomass production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, M.D.; Chubey, B.B.; Dorrell, D.G.

    1980-01-01

    Jerusalem artichoke (Helianthus tuberosus L.) has shown excellent potential as a carbohydrate-rich crop. Initial investigations determined inulin and tuber yields; however, when additional studies showed that good quality pulp remained after inulin extraction and high forage yields per hectare were obtainable, the scope of investigation was broadened to assess utilization of the total plant. Plant growth, yield and compositional characteristics of Jerusalem artichoke as they relate to biomass production will be reported.

  9. Rehosting of Bacterial Chaperones for High-Quality Protein Production▿

    PubMed Central

    Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio

    2009-01-01

    Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142

  10. High-Yield Synthesis and Applications of Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vigderman, Leonid

    This work will describe research directed towards the synthesis of anisotropic gold nanoparticles as well as their functionalization and biological applications. The thesis will begin by describing a new technique for the high-yield synthesis of gold nanorods using hydroquinone as a reducing agent. This addresses important limitations of the traditional nanorod synthesis including low yield of gold ions conversion to metallic form and inability to produce rods with longitudinal surface plasmon peak above 850 nm. The use of hydroquinone was also found to improve the synthesis of gold nanowires via the nanorod-seed mediated procedure developed in our lab. The thesis will next present the synthesis of novel starfruitshaped nanorods, mesorods, and nanowires using a modified nanorod-seed mediated procedure. The starfruit particles displayed increased activity as surfaceenhanced Raman spectroscopy (SERS) substrates as compared to smooth structures. Next, a method for the functionalization of gold nanorods using a cationic thiol, 16-mercaptohexadecyltrimethylammonium bromide (MTAB), will be described. By using this thiol, we were able to demonstrate the complete removal of toxic surfactant from the nanorods and were also able to precisely quantify the grafting density of thiol molecules on the nanorod surface through a combination of several analytical techniques. Finally, this thesis will show that MTABfunctionalized nanorods are nontoxic and can be taken up in extremely high numbers into cancer cells. The thesis will conclude by describing the surprising uptake of larger mesorods and nanowires functionalized with MTAB into cells in high quantities.

  11. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct

  12. Development of high-yield influenza B virus vaccine viruses

    PubMed Central

    Ping, Jihui; Lopes, Tiago J. S.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-01-01

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six “internal” influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production. PMID:27930325

  13. Development of high-yield influenza B virus vaccine viruses.

    PubMed

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  14. Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks

    PubMed Central

    Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.

    2014-01-01

    Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145

  15. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress

    PubMed Central

    Sreenivasulu, Nese; Butardo, Vito M.; Misra, Gopal; Cuevas, Rosa Paula; Anacleto, Roslen; Kavi Kishor, Polavarpu B.

    2015-01-01

    To ensure rice food security, the target outputs of future rice breeding programmes should focus on developing climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramatically impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumulation and other storage biosynthetic pathways in the grain. This review highlights the knowledge gained through gene discovery via quantitative trait locus (QTL) cloning and structural–functional genomic strategies to reduce chalk, increase head rice yield, and develop stable lines with optimum grain quality in challenging environments. The newly discovered genes and the knowledge gained on the influence of specific alleles related to stability of grain quality attributes provide a robust platform for marker-assisted selection in breeding to design heat-tolerant rice varieties with superior grain quality. Using the chalkiness trait in rice as a case study, we demonstrate here that the emerging field of systems genetics can help fast-track the identification of novel alleles and gene targets that can be pyramided for the development of environmentally robust rice varieties that possess improved grain quality. PMID:25662847

  16. Comparative genetic analysis of lint yield and fiber quality among single, three-way, and double crosses in upland cotton

    USDA-ARS?s Scientific Manuscript database

    Decisions on the appropriate crossing systems to employ for genetic improvement of quantitative traits are critical in cotton breeding. Determination of genetic variance for lint yield and fiber quality in three different crossing schemes, i.e., single cross (SC), three-way cross (TWC), and double ...

  17. In situ earthworm breeding in orchards significantly improves the growth, quality and yield of papaya (Carica papaya L.)

    PubMed Central

    Xiang, Huimin; Guo, Lei; Zhao, Benliang

    2016-01-01

    The aim of this study was to compare the effects of four fertilizer applications—control (C), chemical fertilizer (F), compost (O), and in situ earthworm breeding (E)—on the growth, quality and yield of papaya (Carica papaya L.). In this study, 5 g plant−1 urea (CH4N2O, %N = 46.3%) and 100 g plant−1 microelement fertilizer was applied to each treatment. The fertilizer applications of these four treatments are different from each other. The results showed that the E treatment had the highest growth parameters over the whole growth period. At 127 days after transplantation, the order of plant heights from greatest to smallest was E > F > O > C, and the stem diameters were E > F > O > C, with significant differences between all treatments. Soluble-solid, sugar, vitamin C, and protein content significantly increased in the E treatment. In addition, the total acid and the electrical conductivity of the fruit significantly decreased in the E treatment. Fruit firmness clearly increased in the O treatment, and decreased in the F treatment. The fresh individual fruit weights, fruit numbers, and total yields were greatly improved in the F and E treatments, and the total yield of the E treatment was higher than that in the F treatment. In conclusion, the in situ earthworm breeding treatment performed better than conventional compost and chemical fertilizer treatments. Furthermore, in situ earthworm breeding may be a potential organic fertilizer application in orchards because it not only improves the fruit quality and yield but also reduces the amount of organic wastes from agriculture as a result of the activities of earthworms. PMID:27994969

  18. Alfalfa seed germination and yield ratio and alfalfa sprout microbial keeping quality following irradiation of seeds and sprouts.

    PubMed

    Rajkowski, K T; Thayer, D W

    2001-12-01

    Foods can be treated with gamma radiation, a nonthermal food process, to inactivate foodborne pathogens and fungi, to kill insects on or in fruits and vegetables, and to increase shelf life. Gamma irradiation is especially well suited for these treatments because of its ability to penetrate commercial pallets of foods. Irradiated fruits, vegetables, poultry, and hamburger have been received favorably by the public and are now available in supermarkets. The use of irradiation on fresh alfalfa sprouts was studied to determine its effect on keeping quality as related to aerobic microbial load. After an irradiation dose of 2 kGy, the total aerobic count decreased from 10(5-8) to 10(3-5) CFU/g, and the total coliform counts decreased from 10(5-8) to 10(3-0) CFU/g. The results showed that the sprouts maintained their structure after irradiation, and the keeping quality was extended to 21 days, which is an increase of 10 days from the usual shelf life. The effect of various doses of irradiation on alfalfa seeds as measured by percent germination and yield ratio (wt/wt) of sprouts was determined. There was little effect on the percent germination, but as the dose increased, the yield ratio of alfalfa sprouts decreased. As the length of growing time increased, so did the yield ratio of the lower dose irradiated seeds (1 to 2 kGy). The irradiation process can be used to increase the shelf life of alfalfa sprouts, and irradiating alfalfa seeds at doses up to 2 kGy does not unacceptably decrease the yield ratio for production of alfalfa sprouts.

  19. The impact of sulfate restriction on seed yield and quality of winter oilseed rape depends on the ability to remobilize sulfate from vegetative tissues to reproductive organs

    PubMed Central

    Girondé, Alexandra; Dubousset, Lucie; Trouverie, Jacques; Etienne, Philippe; Avice, Jean-Christophe

    2014-01-01

    Our current knowledge about sulfur (S) management by winter oilseed rape to satisfy the S demand of developing seeds is still scarce, particularly in relation to S restriction. Our goals were to determine the physiological processes related to S use efficiency that led to maintain the seed yield and quality when S limitation occurred at the bolting or early flowering stages. To address these questions, a pulse-chase 34SO2−4 labeling method was carried out in order to study the S fluxes from uptake and remobilization at the whole plant level. In response of S limitation at the bolting or early flowering stages, the leaves are the most important source organ for S remobilization during reproductive stages. By combining 34S-tracer with biochemical fractionation in order to separate sulfate from other S-compounds, it appeared that sulfate was the main form of S remobilized in leaves at reproductive stages and that tonoplastic SULTR4-type transporters were specifically involved in the sulfate remobilisation in case of low S availability. In response to S limitation at the bolting stage, the seed yield and quality were dramatically reduced compared to control plants. These data suggest that the increase of both S remobilization from source leaves and the root proliferation in order to maximize sulfate uptake capacities, were not sufficient to maintain the seed yield and quality. When S limitation occurred at the early flowering stage, oilseed rape can optimize the mobilization of sulfate reserves from vegetative organs (leaves and stem) to satisfy the demand of seeds and maintain the seed yield and quality. Our study also revealed that the stem may act as a transient storage organ for remobilized S coming from source leaves before its utilization by seeds. The physiological traits (S remobilization, root proliferation, transient S storage in stem) observed under S limitation could be used in breeding programs to select oilseed rape genotypes with high S use efficiency

  20. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiberamplifiers

    NASA Astrophysics Data System (ADS)

    Cheng, Ming-Yuan; Chang, Yu-Chung; Galvanauskas, Almantas; Mamidipudi, Pri; Changkakoti, Rupak; Gatchell, Peter

    2005-02-01

    We explored high-energy and high-peak-power pulse generation in large-core multimode fiber amplifiers, achieving what is to our knowledge the highest reported energies, up to 82 mJ for 500-ns pulses, 27 mJ for 50-ns pulses, and 2.4-MW peak power for 4-ns pulses at 1064 nm, using 200-µm-diameter and 0.062-N.A. core Yb-doped double-clad fiber amplifiers. The highly multimode nature of the fiber core was mitigated by use of a coiling-induced mode-filtering effect to yield a significant improvement in output-beam quality from M^2 = 25 from an uncoiled fiber to M^2 = 6.5 from a properly coiled fiber, with the corresponding reduction in number of propagating transverse modes from >or=200 to <or=20.

  1. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates.

    PubMed Central

    Barnes, W M

    1994-01-01

    A target length limitation to PCR amplification of DNA has been identified and addressed. Concomitantly, the base-pair fidelity, the ability to use PCR products as primers, and the maximum yield of target fragment were increased. These improvements were achieved by the combination of a high level of an exonuclease-free, N-terminal deletion mutant of Taq DNA polymerase, Klentaq1, with a very low level of a thermostable DNA polymerase exhibiting a 3'-exonuclease activity (Pfu, Vent, or Deep Vent). At least 35 kb can be amplified to high yields from 1 ng of lambda DNA template. Images PMID:8134376

  2. Long-term Effect of Pig Slurry Application on Soil Carbon Storage, Quality and Yield Sustainability in Murcia Region, Spain

    NASA Astrophysics Data System (ADS)

    Büyükkılıç Yanardaǧ, Asuman

    2013-04-01

    Sustainability of agriculture is now a major global concern, especially since the 1980s. Soil organic matter is very important in the proper functions of the soil, which is also a good indicator of soil quality. This is due to its influence on many of the chemical, physical, and biological processes that control the capacity of a soil to perform properly. Understanding of nutrient supply through organic matter mineralization in agricultural systems is essential for maintaining long-term quality and productivity. The composition of pig manure will have a profound impact on soil properties, quality and crop yield when used in agriculture. We studied the effects of pig slurry (PS) application as an organic fertilizer, trying to determine the optimum amount that can be added to the soil, and the effect on soil properties, quality, and productivity. We applied 3 different doses on silty loam soils: Single (D1), Double (D2), Triple (D3) and unfertilized plots (C) served as controls. Samples were collected at two different levels, surface (0-30 cm) and subsurface (30-60 cm). D1 application dose, which is the agronomic rate of N-requirement (170 kg N/ha/yr) (European Directive 91/676/CEE), is very appropriate in term of sustainable agriculture and also can improve physical, chemical and biological soil properties. Therefore that the long-term use of PS with low dose may necessarily enhance soil quality in the long term. There are many factors to be considered when attempting to assess the overall net impact of a management practice on productivity. Additions of pig manure to soils at agronomic rates (170 kg N ha-1 yr-1) to match crop nutrient requirements are expected to have a positive impact on soil productivity. Therefore, the benefits from the use of application depend on the management of PS, carbon and environmental quality. However, PS have high micronutrient contents, and for this reason the application of high doses can pollute soils and damage human, animal and

  3. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source

    PubMed Central

    Atwood, Robert C.; Bodey, Andrew J.; Price, Stephen W. T.; Basham, Mark; Drakopoulos, Michael

    2015-01-01

    Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an ‘orthogonal’ fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strategies to be optimized for users' purposes. In addition to the reconstruction algorithms themselves, it can include modules for identification of experimental problems, artefact correction, general image processing and data quality assessment. Savu is open source, open licensed and ‘facility-independent’: it can run on standard cluster infrastructure at any institution. PMID:25939626

  4. Climate change impacts on crop yield and quality with CO2 fertilization in China

    PubMed Central

    Erda, Lin; Wei, Xiong; Hui, Ju; Yinlong, Xu; Yue, Li; Liping, Bai; Liyong, Xie

    2005-01-01

    A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 °C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO2) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20–80 years. Interactions of CO2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO2 enrichment under field conditions consistently increases biomass and yields in the range of 5–15%, with CO2 concentration elevated to 550 ppm Levels of CO2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications. PMID:16433100

  5. Secondary electron emission yield from high aspect ratio carbon velvet surfaces

    NASA Astrophysics Data System (ADS)

    Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny

    2017-11-01

    The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvet samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. The results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.

  6. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Andrew G.; Crow, Susan; DeBeryshe, Barbara

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including:more » hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO 2, CH 4, and N 2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development Initiative. Renewable

  7. Assessing Sediment Yield and the Effect of Best Management Practices on Sediment Yield Reduction for Tutuila Island, American Samoa

    NASA Astrophysics Data System (ADS)

    Leta, O. T.; Dulai, H.; El-Kadi, A. I.

    2017-12-01

    Upland soil erosion and sedimentation are the main threats for riparian and coastal reef ecosystems in Pacific islands. Here, due to small size of the watersheds and steep slope, the residence time of rainfall runoff and its suspended load is short. Fagaalu bay, located on the island of Tutuila (American Samoa) has been identified as a priority watershed, due to degraded coral reef condition and reduction of stream water quality from heavy anthropogenic activity yielding high nutrients and sediment loads to the receiving water bodies. This study aimed to estimate the sediment yield to the Fagaalu stream and assess the impact of Best Management Practices (BMP) on sediment yield reduction. For this, the Soil and Water Assessment Tool (SWAT) model was applied, calibrated, and validated for both daily streamflow and sediment load simulation. The model also estimated the sediment yield contributions from existing land use types of Fagaalu and identified soil erosion prone areas for introducing BMP scenarios in the watershed. Then, three BMP scenarios, such as stone bund, retention pond, and filter strip were treated on bare (quarry area), agricultural, and shrub land use types. It was found that the bare land with quarry activity yielded the highest annual average sediment yield of 133 ton per hectare (t ha-1) followed by agriculture (26.1 t ha-1) while the lowest sediment yield of 0.2 t ha-1 was estimated for the forested part of the watershed. Additionally, the bare land area (2 ha) contributed approximately 65% (207 ha) of the watershed's sediment yield, which is 4.0 t ha-1. The latter signifies the high impact as well as contribution of anthropogenic activity on sediment yield. The use of different BMP scenarios generally reduced the sediment yield to the coastal reef of Fagaalu watershed. However, treating the quarry activity area with stone bund showed the highest sediment yield reduction as compared to the other two BMP scenarios. This study provides an estimate

  8. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress.

    PubMed

    Sreenivasulu, Nese; Butardo, Vito M; Misra, Gopal; Cuevas, Rosa Paula; Anacleto, Roslen; Kavi Kishor, Polavarpu B

    2015-04-01

    To ensure rice food security, the target outputs of future rice breeding programmes should focus on developing climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramatically impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumulation and other storage biosynthetic pathways in the grain. This review highlights the knowledge gained through gene discovery via quantitative trait locus (QTL) cloning and structural-functional genomic strategies to reduce chalk, increase head rice yield, and develop stable lines with optimum grain quality in challenging environments. The newly discovered genes and the knowledge gained on the influence of specific alleles related to stability of grain quality attributes provide a robust platform for marker-assisted selection in breeding to design heat-tolerant rice varieties with superior grain quality. Using the chalkiness trait in rice as a case study, we demonstrate here that the emerging field of systems genetics can help fast-track the identification of novel alleles and gene targets that can be pyramided for the development of environmentally robust rice varieties that possess improved grain quality. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Trade-offs between high yields and greenhouse gas emissions in irrigation wheat cropland in China

    NASA Astrophysics Data System (ADS)

    Cui, Z. L.; Wu, L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.

    2014-04-01

    Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the trade-off between high yields and GHG emissions in intensive agricultural production is not well understood. Here, we hypothesize that there exists a mechanistic relationship between wheat grain yield and GHG emission, and that could be transformed into better agronomic management. A total 33 sites of on-farm experiments were investigated to evaluate the relationship between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive winter wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. Compared to the CP system, grain yield was 39% (2352 kg ha-1) higher in the HY system, while GHG emissions increased by only 10%, and GHG emission intensity was reduced by 21%. The current intensive winter wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6050 kg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 26% (6077 kg ha-1, and 3555 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 39% with a simultaneous reduction in GHG emissions by 18% (8429 kg ha-1, and 3905 kg CO2 eq ha-1, respectively). In the future, we suggest moving the trade-off relationships and calculations from grain yield and GHG emissions to new measures of productivity and environmental protection using innovative management technologies.

  10. Variable sensitivity of US maize yield to high temperatures across developmental stages

    NASA Astrophysics Data System (ADS)

    Butler, E. E.; Huybers, P. J.

    2013-12-01

    The sensitivity of maize to high temperatures has been widely demonstrated. Furthermore, field work has indicated that reproductive development stages are particularly sensitive to stress, but this relationship has not been quantified across a wide geographic region. Here, the relationship between maize yield and temperature variations is examined as a function of developmental stage. US state-level data from the National Agriculture Statistics Service provide dates for six growing stages: planting, silking, doughing, dented, mature, and harvested. Temperatures that correspond to each developmental stage are then inferred from a network of weather station observations interpolated to the county level, and a multiple linear regression technique is employed to estimate the sensitivity of county yield outcomes to variations in growing-degree days and an analogous measure of high temperatures referred to as killing-degree days. Uncertainties in the transition times between county-level growth stages are accounted for. Results indicate that the silking and dented stages are generally the most sensitive to killing degree days, with silking the most sensitive stage in the US South and dented the most sensitive in the US North. These variable patterns of sensitivity aid in interpreting which weather events are of greatest significance to maize yields and provide some insight into how shifts in planting time or changes in developmental timing would influence the risks associated with exposure to high temperatures.

  11. Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol

    NASA Astrophysics Data System (ADS)

    Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.

    2017-04-01

    Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.

  12. Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity.

    PubMed

    Li, Xin-Gui; Li, Ang; Huang, Mei-Rong

    2008-01-01

    Chemical oxidative polymerization at 15 degrees C was used for the simple and productive synthesis of polyaniline (PAN) nanosticks. The effect of polymerization media on the yield, size, stability, and electrical conductivity of the PAN nanosticks was studied by changing the concentration and nature of the acid medium and oxidant and by introducing organic solvent. Molecular and supramolecular structure, size, and size distribution of the PAN nanosticks were characterized by UV/Vis and IR spectroscopy, X-ray diffraction, laser particle-size analysis, and transmission electron microscopy. Introduction of organic solvent is advantageous for enhancing the yield of PAN nanosticks but disadvantageous for formation of PAN nanosticks with small size and high conductivity. The concentration and nature of the acid medium have a major influence on the polymerization yield and conductivity of the nanosized PAN. The average diameter and length of PAN nanosticks produced with 2 M HNO(3) and 0.5 M H(2)SO(4) as acid media are about 40 and 300 nm, respectively. The PAN nanosticks obtained in an optimal medium (i.e., 2 M HNO(3)) exhibit the highest conductivity of 2.23 S cm(-1) and the highest yield of 80.7 %. A mechanism of formation of nanosticks instead of nanoparticles is proposed. Nanocomposite films of the PAN nanosticks with poly(vinyl alcohol) show a low percolation threshold of 0.2 wt %, at which the film retains almost the same transparency and strength as pure poly(vinyl alcohol) but 262 000 times the conductivity of pure poly(vinyl alcohol) film. The present synthesis of PAN nanosticks requires no external stabilizer and provides a facile and direct route for fabrication of PAN nanosticks with high yield, controllable size, intrinsic self-stability, strong redispersibility, high purity, and optimizable conductivity.

  13. Mixed models for selection of Jatropha progenies with high adaptability and yield stability in Brazilian regions.

    PubMed

    Teodoro, P E; Bhering, L L; Costa, R D; Rocha, R B; Laviola, B G

    2016-08-19

    The aim of this study was to estimate genetic parameters via mixed models and simultaneously to select Jatropha progenies grown in three regions of Brazil that meet high adaptability and stability. From a previous phenotypic selection, three progeny tests were installed in 2008 in the municipalities of Planaltina-DF (Midwest), Nova Porteirinha-MG (Southeast), and Pelotas-RS (South). We evaluated 18 families of half-sib in a randomized block design with three replications. Genetic parameters were estimated using restricted maximum likelihood/best linear unbiased prediction. Selection was based on the harmonic mean of the relative performance of genetic values method in three strategies considering: 1) performance in each environment (with interaction effect); 2) performance in each environment (with interaction effect); and 3) simultaneous selection for grain yield, stability and adaptability. Accuracy obtained (91%) reveals excellent experimental quality and consequently safety and credibility in the selection of superior progenies for grain yield. The gain with the selection of the best five progenies was more than 20%, regardless of the selection strategy. Thus, based on the three selection strategies used in this study, the progenies 4, 11, and 3 (selected in all environments and the mean environment and by adaptability and phenotypic stability methods) are the most suitable for growing in the three regions evaluated.

  14. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.

    PubMed

    Su, Jialei; Shen, Feng; Qiu, Mo; Qi, Xinhua

    2017-02-14

    Agricultural waste cow dung was used as feedstock for the production of a high value-added chemical levulinic acid (LA) in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg), mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH) pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  15. Zerodur polishing process for high surface quality and high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesar, A.; Fuchs, B.

    1992-08-01

    Zerodur is a glass-ceramic composite importance in applications where temperature instabilities influence optical and mechanical performance, such as in earthbound and spaceborne telescope mirror substrates. Polished Zerodur surfaces of high quality have been required for laser gyro mirrors. Polished surface quality of substrates affects performance of high reflection coatings. Thus, the interest in improving Zerodur polished surface quality has become more general. Beyond eliminating subsurface damage, high quality surfaces are produced by reducing the amount of hydrated material redeposited on the surface during polishing. With the proper control of polishing parameters, such surfaces exhibit roughnesses of

  16. Wafer scale fabrication of carbon nanotube thin film transistors with high yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Boyuan; Liang, Xuelei, E-mail: liangxl@pku.edu.cn, E-mail: ssxie@iphy.ac.cn; Yan, Qiuping

    Carbon nanotube thin film transistors (CNT-TFTs) are promising candidates for future high performance and low cost macro-electronics. However, most of the reported CNT-TFTs are fabricated in small quantities on a relatively small size substrate. The yield of large scale fabrication and the performance uniformity of devices on large size substrates should be improved before the CNT-TFTs reach real products. In this paper, 25 200 devices, with various geometries (channel width and channel length), were fabricated on 4-in. size ridged and flexible substrates. Almost 100% device yield were obtained on a rigid substrate with high out-put current (>8 μA/μm), high on/off current ratiomore » (>10{sup 5}), and high mobility (>30 cm{sup 2}/V·s). More importantly, uniform performance in 4-in. area was achieved, and the fabrication process can be scaled up. The results give us more confidence for the real application of the CNT-TFT technology in the near future.« less

  17. Impact of initial spacing on yield per acre and wood quality of unthinned loblolly pine at age 21

    Treesearch

    Alexander, III Clark; Richard F. Daniels; Lewis Jordan; Laurie Schimleck

    2010-01-01

    The market for southern pine first thinnings is soft. Thus, forest managers are planting at wider spacings, and using weed control and fertilization to grow chipping-saw and sawtimber trees in shorter rotations. A 21-year-old unthinned spacing study was sampled to determine the effect of initial spacing on wood quality and yield per acre of planted loblolly pine (

  18. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose.

    PubMed

    Li, Guangyi; Li, Ning; Wang, Zhiqiang; Li, Changzhi; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2012-10-01

    Hydroxyalkylation-alkylation (HAA) coupled with hydrodeoxygenation is a promising route for the synthesis of renewable high-quality diesel or jet fuel. In this work, a series of solid-acid catalysts were firstly used for HAA between lignocellulose-derived furan and carbonyl compounds. Among the investigated catalysts, Nafion-212 resin demonstrated the highest activity and stability. Owing to the high activity of the reactants and the advantage in industrial integration, the HAA of 2-methylfuran (2-MF) and furfural can be considered as a prospective route in future applications. Catalyst loading, reaction temperature, and time had evident effects on the HAA of 2-MF and furfural over Nafion-212 resin. Finally, the HAA product of 2-MF and furfural was hydrogenated over a Pd/C catalyst and hydrodeoxygenated over Pt-loaded solid-acid catalysts. Pt/zirconium phosphate (Pt/ZrP) was found to be the best catalyst for hydrodeoxygenation. Over the 4 % Pt/ZrP catalyst, a 94 % carbon yield of diesel and 75 % carbon yield of C15 hydrocarbons (with 6-butylundecane as the major component) was achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Yield, fruit quality traits and leaf nutrient concentration of sapodilla cv ‘Prolific’ grafted onto 16 rootstocks in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Research on sapodilla has been very limited. A field study was conducted to determine the yield potential, fruit quality traits, leaf nutrient composition and scion/rootstock compatibility of cultivar ‘Prolific’ grafted onto 16 sapodilla rootstocks. For this purpose cultivars ‘Adelaide’, ‘Arcilago’...

  20. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    USDA-ARS?s Scientific Manuscript database

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  1. High-yield production of herbicidal thaxtomins and analogs in a nonpathogenic Streptomyces strain.

    PubMed

    Jiang, Guangde; Zhang, Yucheng; Powell, Magan M; Zhang, Peilan; Zuo, Ran; Zhang, Yi; Kallifidas, Dimitrios; Tieu, Albert M; Luesch, Hendrik; Loria, Rosemary; Ding, Yousong

    2018-03-30

    Thaxtomins are virulence factors of most plant pathogenic Streptomyces strains. Due to their potent herbicidal activity, attractive environmental compatibility and inherent biodegradability, thaxtomins are key active ingredients of bioherbicides approved by the United States Environmental Protection Agency. However, the low yield of thaxtomins in native Streptomyces producers limits their wide agricultural applications. Here, we describe the high-yield production of thaxtomins in a heterologous host. The thaxtomin gene cluster from S. scabiei 87.22 was cloned and expressed in S. albus J1074 after chromosomal integration. The production of thaxtomins and nitro-tryptophan analogs were observed using LC-MS analysis. When culturing the engineered S. albus J1074 in the minimal medium TMDc, the yield of the most abundant and herbicidal analog, thaxtomin A, was 10 times higher than S. scabiei 87.22, and optimization of the medium resulted in the highest yield of thaxtomin analogs at about 222 mg/L. Further engineering of the thaxtomin biosynthetic gene cluster through gene deletion led to the production of multiple biosynthetic intermediates important to the chemical synthesis of new analogs. Additionally, the versatility of the thaxtomin biosynthetic system in S. albus J1074 was capitalized to produce one unnatural fluorinated analog 5-F-thaxtomin A, whose structure was elucidated by a combination of MS and 1D and 2D NMR analyses. Natural and unnatural thaxtomins demonstrated potent herbicidal activity in radish seedling assays. These results indicated that S. albus J1074 has the potential to produce thaxtomins and thereof with high yield, fostering their agricultural applications. IMPORTANCE Thaxtomins are agriculturally valuable herbicidal natural products but the productivity of native producers is limiting. Heterologous expression of thaxtomin gene cluster in S. albus J1074 resulted in the highest yield of thaxtomins ever reported, representing a significant leap

  2. Characterization of Novel Materials with Very Low Secondary Electron Emission Yield for Use in High-Power Microwave Devices

    NASA Astrophysics Data System (ADS)

    Svimonishvili, Tengiz; Zameroski, Nathan; Gilmore, Mark; Schamiloglu, Edl; Gaudet, John; Yan, Lincan

    2004-11-01

    Secondary Electron Emission (SEE) results from bombarding materials with electrons, atoms, or ions. The amount of secondary emission depends on factors such as bulk and surface properties of materials, energy of incident particles, and their angle of incidence. Total secondary electron emission yield, defined as the number of secondary electrons ejected per primary electron, is an important material parameter. Materials with high yield find use, for instance, in photomultiplier tubes, whereas materials with low yield, such as graphite, are used for SEE suppression in high-power microwave devices. The lower the SEE yield, the better the performance of high-power microwave devices (for example, gyrotrons). Employing a low-energy electron gun (energy range from 5 eV to 2000 eV), our work aims at characterizing and eventually identifying novel materials (with the lowest possible SEE yield) that will enhance operation and efficiency of high-power microwave devices.

  3. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.

    PubMed

    Logan, Bruce E; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V M; Sleutels, Tom H J A; Jeremiasse, Adriaan W; Rozendal, René A

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.

  4. Yield, fruit quality, contents and sensory quality of old apple varieties trained as slender spindle under organic and integrated cultivation conditions

    NASA Astrophysics Data System (ADS)

    Wurm, Lothar; Gössinger, Manfred; Wendelin, Silvia; Martina, Kieler; Thomas, Rühmer; Walter, Brandes; Kathrin, Sigl

    2015-04-01

    Between 2006 and 2013 the old apple varieties 'Ananas Reinette', 'llzer Rosenapfel', 'Kronprinz Rudolf', 'Steirischer Maschanzker', 'Goldparmäne', 'Roter Boskoop', 'Ribston Pepping', 'Steirische Schafnase', 'Winterbananenapfel', 'Lavanttaler Bananenapfel', 'Himbeerapfel' and 'Florianer Rosmarin' (from 2009 on also 'Roter Berlepsch', 'Cox Orange' and 'Kanada Reinette') were tested for their fresh market suitability at the experimental orchard Haschhof of the HBLA and BA für Wein- und Obstbau Klosterneuburg under organic and integrated cultivation (IP) conditions trained as slender spindle. In 2010 the effect of an organic and a combined "integrated-organic summer" plant protection strategie on fruit quality and pesticide residues was tested in addition. No pesticide residues were detected in fruits of both plant protection strategies, expect on fruits of "integrated-organic summer" Schafnase in 2010. At harvest 2010 the bio-variant showed a significantly higher percentage of fruits with skin defects. The losses due to parasitic diseases during storage were strongly depending on the cultivar, but hardly affected by the plant protection strategy in this year. Looking at the entire experimental period, most of the varieties in the organic plot showed a comparable fruiting performance as those in the IP plot. The best fruiting performances were found with 'Winterbananenapfel', 'Roter Boskoop' and 'Kronprinz Rudolf', while the cumulative yield of 'Florianer Rosmarin', 'Himbeerapfel' and 'Lavanttaler Bananenapfel' remained below average. With respect to external fruit quality and storability 'Winterbananenapfel', 'Steirischer Maschanzker', 'Roter Boskoop', 'Kronprinz Rudolf' and 'Ilzer Rosenapfel' showed comparatively good results. With 'Ananas Reinette' the significantly lowest total phenolics contents were determined. 'Kanada Reinette', 'Roter Boskoop' and 'Ananas Reinette' showed a high acidity. High contents of soluble solids were found with 'Goldparmäne', 'Roter

  5. Sputtering yields of carbon based materials under high particle flux with low energy

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.

    1995-04-01

    A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 ˜ 7 × 10 20/m 2 s at 50 ˜ 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 ˜ 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam.

  6. Secondary electron emission yield from high aspect ratio carbon velvet surfaces

    DOE PAGES

    Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny

    2017-11-01

    The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvetmore » samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. Furthermore, the results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.« less

  7. Impact of liquid fertilizers on plant growth, yield, fruit quality and fertigation management in an organic processing blackberry production system

    USDA-ARS?s Scientific Manuscript database

    The impact of organic fertilizer source on the growth, fruit quality, and yield of blackberry cultivars (‘Marion’ and ‘Black Diamond’) grown in machine-harvested, organic production systems for the processed market was evaluated from 2011-13. The planting was established in spring 2010 using approve...

  8. Construction high-yield candidate influenza vaccine viruses in Vero cells by reassortment.

    PubMed

    Yu, Wei; Yang, Fan; Yang, Jinghui; Ma, Lei; Cun, Yina; Song, Shaohui; Liao, Guoyang

    2016-11-01

    Usage of influenza vaccine is the best choice measure for preventing and conclusion of influenza virus infection. Although it has been used of chicken embryo to produce influenza vaccine, following with WHO recommended vaccine strain, there were uncontrollable factors and its deficiencies, specially, during an influenza pandemic in the world. The Vero cells are used for vaccine production of a few strains including influenza virus, because of its homology with human, recommended by WHO. However, as known most of the influenza viruses strains could not culture by Vero cells. It was used two high-yield influenza viruses adapted in Vero cells as donor viruses, such as A/Yunnan/1/2005Va (H3N2) and B/Yunnan/2/2005Va (B), to construct high-yield wild influenza virus in Vero cells under antibody selection pressure. After reassortment and passages, it obtained the new Vaccine strains with A/Tianjin/15/2009Va (H1N1), A/Fujian/196/2009Va (H3N2) and B/Chongqing/1384/2010Va (B), which was not only completely keeping their original antigenic (HA and NA), but also grown well in Vero cells with high-yield. All results of gene analysis and HA, HI shown that this reassortment method could be used to find new direction to product the influenza vaccine. J. Med. Virol. 88:1914-1921, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Breeding of a new potato variety 'Nagasaki Kogane' with high eating quality, high carotenoid content, and resistance to diseases and pests.

    PubMed

    Sakamoto, Yu; Mori, Kazuyuki; Matsuo, Yuuki; Mukojima, Nobuhiro; Watanabe, Wataru; Sobaru, Norio; Tamiya, Seiji; Nakao, Takashi; Hayashi, Kazuya; Watanuki, Hitomi; Nara, Kazuhiro; Yamazaki, Kaoru; Chaya, Masataka

    2017-06-01

    'Nagasaki Kogane' is a new potato variety bred from a cross between 'Saikai 35' as a female parent and 'Saikai 33' as a male. 'Saikai 35' is resistant to bacterial wilt, contains the H1 and Ry chc genes for resistance to the potato cyst nematode (PCN) and potato virus Y (PVY), respectively, and has high carotenoid content, while 'Saikai 33' has large and high-yielding tubers and is resistant to both bacterial wilt and PCN. The carotenoid content of 'Nagasaki Kogane' is higher than that of 'Dejima', a common double cropping variety. The taste quality of steamed 'Nagasaki Kogane' is comparable to that of 'Inca-no-mezame' tubers, which has high levels of carotenoid, and superior to 'Nishiyutaka', another popular double cropping variety. 'Nagasaki Kogane' is suitable for French fries, because its tuber has high starch content. The marketable yield of 'Nagasaki Kogane' was higher than that of 'Inca-no-mezame' in spring cropping, although it was lower than that of 'Nishiyutaka' in double cropping regions. 'Nagasaki Kogane' tubers are larger on average than 'Inca-no-mezame' tubers in spring cropping. Moreover, the 'Nagasaki Kogane' variety is resistant to PCN and PVY, and exhibits a high level of resistance to bacterial wilt.

  10. Polymorphisms in the ghrelin gene and their associations with milk yield and quality in water buffaloes.

    PubMed

    Gil, F M M; de Camargo, G M F; Pablos de Souza, F R; Cardoso, D F; Fonseca, P D S; Zetouni, L; Braz, C U; Aspilcueta-Borquis, R R; Tonhati, H

    2013-05-01

    Ghrelin is a gastrointestinal hormone that acts in releasing growth hormone and influences the body general metabolism. It has been proposed as a candidate gene for traits such as growth, carcass quality, and milk production of livestock because it influences feed intake. In this context, the aim of this study was to verify the existence of polymorphisms in the ghrelin gene and their associations with milk, fat and protein yield, and percentage in water buffaloes (Bubalus bubalis). A group of 240 animals was studied. Five primer pairs were used and 11 single nucleotide polymorphisms (SNP) were found in the ghrelin gene by sequencing. The animals were genotyped for 8 SNP by PCR-RFLP. The SNP g.960G>A and g.778C>T were associated with fat yield and the SNP g.905T>C was associated with fat yield and percentage and protein percentage. These SNP are located in intronic regions of DNA and may be in noncoding RNA sites or affect transcriptional efciency. The ghrelin gene in buffaloes influences milk fat and protein synthesis. The polymorphisms observed can be used as molecular markers to assist selection. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes.

    PubMed

    Monneveux, Philippe; Pastenes, Claudio; Reynolds, Matthew P

    2003-06-01

    Three high-yielding wheat genotypes (T. aestivum L., c.v. Siete Cerros, Seri and Bacanora, released in 1966, 1982 and 1988, respectively) were grown under irrigation in two high radiation, low relative humidity environments (Tlaltizapan and Ciudad Obregon CIMMYT experimental stations, Mexico). Gas exchange and fluorescence parameters were assessed on the flag leaf during the day. Carbon isotope discrimination (delta) was analysed in flag leaf at anthesis and in grain at maturity. In both environments, gas exchange and fluorescence parameters varied markedly with irradiance and temperature. Analysis of their respective variation indicated the occurrence of photo-respiration and photo-inhibition, particularly in Tlaltizapan, the warmest environment, and in Siete Cerros. In Ciudad Obregon (high-yielding environment) lower Ci (internal CO2 concentration) and delta La (carbon isotope discrimination of the leaf) suggested a higher intrinsic photosynthetic capacity in the variety Bacanora. Higher yield of this genotype was also associated with higher Fv'/Fo' (ratio of photochemical and non photochemical rate constants in the light) and Fm'/Fm (ratio of the non photochemical rate constants in the dark and light adapted state).

  12. Chicken manure enhanced yield and quality of field-grown kale and collard greens.

    PubMed

    Antonious, George F; Turley, Eric T; Hill, Regina R; Snyder, John C

    2014-01-01

    Organic matter and nutrients in municipal sewage sludge (SS) and chicken manure (CM) could be recycled and used for land farming to enhance fertility and physical properties of soils. Three soil management practices were used at Kentucky State University Research Farm, Franklin County, to study the impact of soil amendments on kale (Brassica oleracea cv. Winterbar) and collard (Brassica oleracea cv. Top Bunch) yields and quality. The three soil management practices were: (i) SS mixed with native soil at 15 t acre(-1), (ii) CM mixed with native soil at 15 t acre(-1), and (iii) no-mulch (NM) native soil for comparison purposes. At harvest, collard and kale green plants were graded according to USDA standards. Plants grown in CM and SS amended soil produced the greatest number of U.S. No. 1 grade of collard and kale greens compared to NM native soil. Across all treatments, concentrations of ascorbic acid and phenols were generally greater in kale than in collards. Overall, CM and SS enhanced total phenols and ascorbic acid contents of kale and collard compared to NM native soil. We investigated the chemical and physical properties of each of the three soil treatments that might explain variability among treatments and the impact of soil amendments on yield, phenols, and ascorbic acid contents of kale and collard green grown under this practice.

  13. Simulations of super-ellipse hohlraum targets as a path to high neutron yields

    NASA Astrophysics Data System (ADS)

    Milovich, Jose; Amendt, Peter; Storm, Erik; Robey, Harry; Haan, Steve; Landen, Otto; Meezan, Nathan; Lindl, John

    2017-10-01

    Recently neutron yields in excess of 1016 have been achieved at the National Ignition Facility (NIF) using a low-density gas fill hohlraum and a subscale high-density-carbon capsule. The laser power used was near the current maximum level allowed on the inner cones of the NIF laser. While more energy can be extracted from the laser to provide additional improvement on the neutron yield, a more efficient design is desired. A new effort has begun to investigate alternatives to the current cylinder-shaped hohlraum for driving larger capsules (1.1 mm outer radius). If these new hohlraums can preserve the implosion symmetry, the additional absorbed energy is expected to provide a path to high neutron yield and potential ignition. Super-ellipse hohlraums, a generalization of an earlier rugby hohlraum design, have the advantage of a larger waist diameter and reduced parasitic energy losses from the corners of cylindrical hohlraums while still being able to produce the required capsule drive at the current energy and power limits available at the NIF. We will present plausible designs of these hohlraums based on the Lamé mathematical construction, and discuss their prospects to reach high neutron gains. Prepared by LLNL under Contract DE-AC52-07NA27344.

  14. Improving yield and performance in ZnO thin-film transistors made using selective area deposition.

    PubMed

    Nelson, Shelby F; Ellinger, Carolyn R; Levy, David H

    2015-02-04

    We describe improvements in both yield and performance for thin-film transistors (TFTs) fabricated by spatial atomic layer deposition (SALD). These improvements are shown to be critical in forming high-quality devices using selective area deposition (SAD) as the patterning method. Selective area deposition occurs when the precursors for the deposition are prevented from reacting with some areas of the substrate surface. Controlling individual layer quality and the interfaces between layers is essential for obtaining good-quality thin-film transistors and capacitors. The integrity of the gate insulator layer is particularly critical, and we describe a method for forming a multilayer dielectric using an oxygen plasma treatment between layers that improves crossover yield. We also describe a method to achieve improved mobility at the important interface between the semiconductor and the gate insulator by, conversely, avoiding oxygen plasma treatment. Integration of the best designs results in wide design flexibility, transistors with mobility above 15 cm(2)/(V s), and good yield of circuits.

  15. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island,Water Year 2002

    USGS Publications Warehouse

    Breault, Robert F.

    2009-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamflow-gaging stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2002 (October 1, 2001 to September 30, 2002). Water-quality samples were also collected at 35 of 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2002 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2002. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 12.6 cubic feet per second (ft3/s) to the reservoir during WY 2002. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.14 to 8.1 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 534,000 kilograms (kg) of sodium and 851,000 kg of chloride to the Scituate Reservoir during WY 2002; sodium and chloride yields for the tributaries ranged from 2,900 to 40,200 kilograms per square mile (kg/mi2) and from 4,200 to 68,200 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 16.8 milligrams per

  16. The Safe Yield and Climatic Variability: Implications for Groundwater Management.

    PubMed

    Loáiciga, Hugo A

    2017-05-01

    Methods for calculating the safe yield are evaluated in this paper using a high-quality and long historical data set of groundwater recharge, discharge, extraction, and precipitation in a karst aquifer. Consideration is given to the role that climatic variability has on the determination of a climatically representative period with which to evaluate the safe yield. The methods employed to estimate the safe yield are consistent with its definition as a long-term average extraction rate that avoids adverse impacts on groundwater. The safe yield is a useful baseline for groundwater planning; yet, it is herein shown that it is not an operational rule that works well under all climatic conditions. This paper shows that due to the nature of dynamic groundwater processes it may be most appropriate to use an adaptive groundwater management strategy that links groundwater extraction rates to groundwater discharge rates, thus achieving a safe yield that represents an estimated long-term sustainable yield. An example of the calculation of the safe yield of the Edwards Aquifer (Texas) demonstrates that it is about one-half of the average annual recharge. © 2016, National Ground Water Association.

  17. Growth, carcass yield and meat quality attributes of Red Maasai sheep fed wheat straw-based diets.

    PubMed

    Safari, John G; Mushi, Daniel E; Mtenga, Louis A; Kifaro, George C; Eik, Lars O

    2011-01-01

    Thirty-two castrated Red Maasai sheep (12.7 kg initial body weight, aged 12-18 months), were used in an 84-day experiment to evaluate diets based on treated straw upon growth performance, carcass yield and meat quality. The animals were blocked by weight into four similar groups and randomly allotted into four dietary treatments, with eight individually fed animals per treatment. The dietary treatments were ad libitum untreated wheat straw (UTS), wheat straw treated with urea and lime (TS), straw and ad libitum hay (UTSH), and TS and ad libitum hay (TSH). In addition, each experimental animal received 220 g/day (on as fed basis) of a concentrate diet. Treatment of straw increased (P < 0.05) dry matter intake (42.3 vs. 33.7 g/kg W (75)/day), energy intake (4.6 vs. 3.7 MJ ME/d) and the average daily gain (40.7 vs. 23.1 g). Animals on TS produced heavier (P < 0.05) carcasses (6.6 vs. 5.4 kg) with superior conformation than animals on UTS. Percentage cooking loss was higher in carcasses from animals fed TS compared to those from other diets. Except M. longissimus dorsi and M. semitendinosus, tenderness of muscles was not affected by diet but ageing of meat improved (P < 0.001) tenderness. Overall, straw treatment increased carcass yields with limited effects on meat quality attributes.

  18. Very high CO2 reduces photosynthesis, dark respiration and yield in wheat

    NASA Technical Reports Server (NTRS)

    Reuveni, J.; Bugbee, B.

    1997-01-01

    Although terrestrial CO2 concentrations, [CO2] are not expected to reach 1000 micromoles mol-1 for many decades, CO2 levels in closed systems such as growth chambers and glasshouses, can easily exceed this concentration. CO2 levels in life support systems in space can exceed 10000 micromoles mol-1 (1%). Here we studied the effect of six CO2 concentrations, from ambient up to 10000 micromoles mol-1, on seed yield, growth and gas exchange of two wheat cultivars (USU-Apogee and Veery-l0). Elevating [CO2] from 350 to 1000 micromoles mol-1 increased seed yield (by 33%), vegetative biomass (by 25%) and number of heads m-2 (by 34%) of wheat plants. Elevation of [CO2] from 1000 to 10000 micromoles mol-1 decreased seed yield (by 37%), harvest index (by 14%), mass per seed (by 9%) and number of seeds per head (by 29%). This very high [CO2] had a negligible, non-significant effect on vegetative biomass, number of heads m-2 and seed mass per head. A sharp decrease in seed yield, harvest index and seeds per head occurred by elevating [CO2] from 1000 to 2600 micromoles mol-1. Further elevation of [CO2] from 2600 to 10000 micromoles mol-1 caused a further but smaller decrease. The effect of CO2 on both wheat cultivars was similar for all growth parameters. Similarly there were no differences in the response to high [CO2] between wheat grown hydroponically in growth chambers under fluorescent lights and those grown in soilless media in a glasshouse under sunlight and high pressure sodium lamps. There was no correlation between high [CO2] and ethylene production by flag leaves or by wheat heads. Therefore, the reduction in seed set in wheat plants is not mediated by ethylene. The photosynthetic rate of whole wheat plants was 8% lower and dark respiration of the wheat heads 25% lower when exposed to 2600 micromoles mol-1 CO2 compared to ambient [CO2]. It is concluded that the reduction in the seed set can be mainly explained by the reduction in the dark respiration in wheat heads

  19. Maximizing plant density affects broccoli yield and quality

    USDA-ARS?s Scientific Manuscript database

    Increased demand for fresh market bunch broccoli (Brassica oleracea L. var. italica) has led to increased production along the United States east coast. Maximizing broccoli yields is a primary concern for quickly expanding southeastern commercial markets. This broccoli plant density study was carr...

  20. High-quality compressive ghost imaging

    NASA Astrophysics Data System (ADS)

    Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun

    2018-04-01

    We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.

  1. Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process

    NASA Astrophysics Data System (ADS)

    He, Li; Song, Xuan

    2018-03-01

    In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.

  2. Crop Yield Predictions - High Resolution Statistical Model for Intra-season Forecasts Applied to Corn in the US

    NASA Astrophysics Data System (ADS)

    Cai, Y.

    2017-12-01

    Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.

  3. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fangye; Zhou, Jian; Ma, Lei

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process hasmore » been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.« less

  4. Effects of feeding ractopamine hydrochloride (Paylean) to physical and immunological castrates (Improvest) in a commercial setting on carcass cutting yields and loin quality.

    PubMed

    Lowe, B K; Gerlemann, G D; Carr, S N; Rincker, P J; Schroeder, A L; Petry, D B; McKeith, F K; Allee, G L; Dilger, A C

    2014-08-01

    Effects of feeding ractopamine (RAC; 5 mg/kg) to physically castrated (PC) and immunologically castrated (IC) pigs on carcass characteristics, cutting yields, and loin quality were evaluated using 285 carcasses. Male pigs were randomly assigned to sex treatments (PC and IC) at birth and fed the same nursery diets before allotment into 32 pens with 22 pigs per pen in a grow-finish barn. Pigs in the PC group were physically castrated at approximately 5 d of age, and pigs in the IC group were administered Improvest at 11 and 18 wk of age. Diet treatments (control or RAC) were initiated on study d 87. Pigs were marketed at 12 d (4.5 wk post-second Improvest dose), 19 d (5.5 wk post-second Improvest dose), and 33 d (7.5 wk post-second Improvest dose) following the start of final diet treatments. Three carcasses per pen were selected for evaluation of cutting yields and loin quality. Data were analyzed using PROC MIXED in SAS with fixed effects of sex, diet, market group, and their interaction; carcass (N = 285) was the experimental unit. Carcasses from RAC-fed pigs were heavier (P < 0.01) and had deeper (P = 0.02) loins than control-fed carcasses. Carcasses from IC pigs were similar (P = 0.22) in weight but had less (P < 0.01) fat and shallower (P = 0.02) loins when compared to PC carcasses. There were differences (P < 0.05) among market groups for carcass weights, fat depths, loin depths, and estimated carcass leanness. For cutting yields, RAC-fed carcasses had greater (P ≤ 0.03) bone-in lean and total carcass cutting yields than control-fed carcasses while there were no differences (P > 0.05) between RAC-fed and control-fed carcasses when evaluating LM color, marbling, firmness, pH, drip loss, and tenderness. Carcasses from IC pigs had greater (P < 0.05) boneless lean yields, bone-in lean yields, and total carcass cutting yields than PC carcasses. There were minimal differences (P < 0.05) in LM marbling, firmness, composition, and tenderness between PC and IC pigs

  5. Extraction of high-quality DNA from ethanol-preserved tropical plant tissues.

    PubMed

    Bressan, Eduardo A; Rossi, Mônica L; Gerald, Lee T S; Figueira, Antonio

    2014-04-24

    Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue.

  6. Extraction of high-quality DNA from ethanol-preserved tropical plant tissues

    PubMed Central

    2014-01-01

    Background Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. Results Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. Conclusions Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue. PMID:24761774

  7. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  8. High-resolution monitoring of stormwater quality in an urbanising catchment in the United Kingdom during the 2013/2014 winter storms

    NASA Astrophysics Data System (ADS)

    McGrane, S. J.; Hutchins, M. G.; Kjeldsen, T. R.; Miller, J. D.; Bussi, G.; Loewenthal, M.

    2015-12-01

    Urban areas are widely recognised as a key source of contaminants entering our freshwater systems, yet in spite of this, our understanding of stormwater quality dynamics remains limited. The development of in-situ, high-resolution monitoring equipment has revolutionised our capability to capture flow and water quality data at a sub-hourly resolution, enabling us to potentially enhance our understanding of hydrochemical variations from contrasting landscapes during storm events. During the winter of 2013/2014, the United Kingdom experienced a succession of intense storm events, where the south of the country experienced 200% of the average rainfall, resulting in widespread flooding across the Thames basin. We applied high-frequency (15 minute resolution) water quality monitoring across ten contrasting subcatchments (including rural, urban and mixed land-use catchments), seeking to classify the disparity in water quality conditions both within- and between events. Rural catchments increasingly behave like "urban" catchments as soils wet up and become increasingly responsive to subsequent events, however water quality response during the winter months remains limited. By contrast, increasingly urban catchments yield greater contaminant loads during events, and pre-event baseline chemistry highlights a resupply source in dense urban catchments. Wastewater treatment plants were shown to dominate baseline chemistry during low-flow events but also yield a considerable impact on stormwater outputs during peak-flow events, as hydraulic push results in the outflow of untreated solid wastes into the river system. Results are discussed in the context of water quality policy; urban growth scenarios and BMP for stormwater runoff in contrasting landscapes.

  9. Processable high-carbon-yielding polymer for micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Perpall, Mark W.; Zengin, Huseyin; Perera, K. Prasanna U.; Zhou, Wensheng; Shah, Hiren; Wu, Xinyu; Creager, Stephen E.; Smith, Dennis W., Jr.; Foulger, Stephen H.; Ballato, John M.

    2003-01-01

    Bis-ortho-Diynyl Arene (BODA) monomers polymerize to network polynapthalene by the thermally-driven Bergman cyclization and subsequent radical polymerization via oligomeric intermediates that can be melt or solution processed. Further heating of the network to 1000 °C affords a high-yield glassy carbon structure that retains the approximate size and dimensions of the polymer precursor. The higher carbon-yield for BODA networks (75- 80 % by mass) is significantly greater than that of traditional phenol-formaldehyde resins and other carbon precursor polymers leading to its greater dimensional stability. Phenyl terminated BODA derived polymers were fabricated using microprocessing such as the micromolding in capillaries (MIMIC) technique, direct microtransfer molding, and molding in quartz capillary tubes. Nano-scale fabrication using closed packed silica spheres as templates was demonstrated with an hydroxy-terminated monomer which exhibits greatly enhanced compatibility for silica surfaces. After pyrolysis to glassy carbon, the silica is chemically etched leaving an inverse carbon opal photonic crystal which is electrically conductive. The wavelength of light diffracted is a function of the average refractive index of the carbon/ filler composite, which can be modified for use as sensitive detector elements.

  10. Application of in situ ductal perfusion to facilitate isolation of high-quality RNA from mouse pancreas.

    PubMed

    Mullin, Anne E; Soukatcheva, Galina; Verchere, C Bruce; Chantler, Janet K

    2006-05-01

    A technique to isolate high-quality intact RNA from murine pancreas is described. This technique involves in situ ductal perfusion of the pancreas with an RNase inhibitor prior to removal of the organ for RNA extraction. In this way, the pancreatic RNases are inhibited in situ allowing good yields of intact RNA, suitable for studies on pancreatic gene transcription by real-time PCR or microarray analysis, to be obtained in a reliable way.

  11. High-wafer-yield, high-performance vertical cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Li, Gabriel S.; Yuen, Wupen; Lim, Sui F.; Chang-Hasnain, Constance J.

    1996-04-01

    Vertical cavity surface emitting lasers (VCSELs) with very low threshold current and voltage of 340 (mu) A and 1.5 V is achieved. The molecular beam epitaxially grown wafers are grown with a highly accurate, low cost and versatile pre-growth calibration technique. One- hundred percent VCSEL wafer yield is obtained. Low threshold current is achieved with a native oxide confined structure with excellent current confinement. Single transverse mode with stable, predetermined polarization direction up to 18 times threshold is also achieved, due to stable index guiding provided by the structure. This is the highest value reported to data for VCSELs. We have established that p-contact annealing in these devices is crucial for low voltage operation, contrary to the general belief. Uniform doping in the mirrors also appears not to be inferior to complicated doping engineering. With these design rules, very low threshold voltage VCSELs are achieved with very simple growth and fabrication steps.

  12. Effects of drought after pollination on grain yield and quality of fresh waxy maize.

    PubMed

    Lu, Dalei; Cai, Xuemei; Zhao, Junyu; Shen, Xin; Lu, Weiping

    2015-01-01

    Waxy maize is consumed as a vegetable when harvested at fresh stage (23-26 days after pollination) in China. Fresh waxy maize is normally grown under rain-fed conditions and suffers drought frequently during plant growth. The effect of drought on grain development of fresh waxy maize is not known. Two years of pot trials showed that drought decreased fresh grain number and weight, which consequently reduced fresh ear and grain yields, especially in Yunuo7. Moisture and starch contents in grains were not affected but protein content was increased under drought treatment in both varieties. Grain soluble sugar content response to drought was not affected in Suyunuo5 but was decreased in Yunuo7. Pasting and gelatinization temperatures, trough viscosity, final viscosity, setback viscosity, gelatinization enthalpy and springiness of grain were little affected by drought. Drought decreased peak viscosity, breakdown viscosity and adhesiveness (absolute value), whereas it increased hardness. The retrogradation percentage was increased in both varieties in both years. Drought after pollination decreased the fresh waxy maize yield. Grain quality was reduced through decreased peak viscosity and adhesiveness (absolute value), while its hardness and retrogradation percentage were increased, which might be due to the increased protein content. © 2014 Society of Chemical Industry.

  13. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    PubMed

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  14. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of 'b' fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater 'a' fraction, 'b' fraction, 'c' values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater

  15. Effect of two different treatments for reducing grape yield in Vitis vinifera cv Syrah on wine composition and quality: berry thinning versus cluster thinning.

    PubMed

    Gil, M; Esteruelas, M; González, E; Kontoudakis, N; Jiménez, J; Fort, F; Canals, J M; Hermosín-Gutiérrez, I; Zamora, F

    2013-05-22

    The influence of two treatments for reducing grape yield, cluster thinning and berry thinning, on red wine composition and quality were studied in a Vitis vinifera cv Syrah vineyard in AOC Penedès (Spain). Cluster thinning reduced grape yield per vine by around 40% whereas berry thinning only reduced it by around 20%. Cluster thinning grapes had higher soluble solids content than control grapes, and their resultant wines have greater anthocyanin and polysaccharide concentrations than the control wine. Wine obtained from berry thinning grapes had a higher total phenolic index, greater flavonol, proanthocyanidin, and polysaccharide concentrations, and lower titratable acidity than the control wine. Wines obtained from both treatments were sufficiently different from the control wine to be significantly distinguished by a trained panel in a triangular test. Even though both treatments seem to be effective at improving the quality of wine, berry thinning has the advantage because it has less impact on crop yield reduction.

  16. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP.

    PubMed

    Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I

    1997-03-01

    Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs).

  17. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP.

    PubMed Central

    Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I

    1997-01-01

    Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs). PMID:9023124

  18. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.

    PubMed

    Li, Shu; Steigerwald, Michael L; Brus, Louis E

    2009-05-26

    We use electric force microscopy (EFM) to study single nanocrystal photoionization in two classes of high-quality nanocrystals whose exciton luminescence quantum yields approach unity in solution. The CdSe/CdS/ZnS core/shell nanocrystals do not photoionize, while the CdSe/CdS nanocrystals do show substantial photoionization. This verifies the theoretical prediction that the ZnS shell confines the excited electron within the nanocrystal. Despite the high luminescence quantum yield, photoionization varies substantially among the CdSe/CdS nanocrystals. We have studied the nanocrystal photoionization with both UV (396 nm) and green (532 nm) light, and we have found that the magnitude of the charge due to photoionization per absorbed photon is greater for UV excitation than for green excitation. A fraction of the photoionization occurs directly via a "hot electron" process, using trap states that are either on the particle surface, within the ligand sphere, or within the silicon oxide layer. This must occur without relaxation to the thermalized, lowest-energy, emitting exciton. We discuss the occurrence of hot carrier processes that are common to photoionization, luminescence blinking, and the fast transient optical absorption that is associated with multiple exciton generation MEG studies.

  19. 31 CFR 356.21 - How are awards at the high yield or discount rate calculated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discount rate calculated? 356.21 Section 356.21 Money and Finance: Treasury Regulations Relating to Money... high yield or discount rate calculated? (a) Awards to submitters. We generally prorate bids at the highest accepted yield or discount rate under § 356.20(a)(2) of this part. For example, if 80.15% is the...

  20. High Quality Data for Grid Integration Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less

  1. High quantum-yield phosphors via quantum splitting and upconversion

    NASA Astrophysics Data System (ADS)

    Jeong, Joayoung

    The Gd3+ ion has been used to induce quantum splitting in luminescent materials by using cross-relaxation energy transfer (CRET). In Nd:LiGdF4, quantum splitting results from a two-step CRET between Gd3+ and Nd3+, first involving a transition 6G→6I on Gd3+ and an excitation within the 4f3 configuration of Nd3+ followed by a second CRET that brings Gd3+ to 6P7/2. The excited Nd3+ ion rapidly relaxes nonradiatively to the emitting 4F3/2. The excited Gd3+ ion then transfers its energy back to Nd3+, which gives rise to the second photon. The result is a quantum yield of 1.05 +/- 0.35 with emission in the NIR following excitation at 175 nm. GdF3:Pr3+, Eu 3+ also exhibits quantum splitting, but only at very low concentration of Pr3+ (0.3%) and Eu3+ (0.2%), resulting in a quantum yield of approximately 20% under 160-nm excitation. Host intrinsic emission via a self-trapped exciton (STE) was also examined as a means to sensitize Gd3+ emission. The material ScPO4:Gd 3+ exhibits a high absolute quantum yield of 0.9 +/- 0.2 under 170-nm excitation, demonstrating a potentially new and efficient pathway for exciting quantum splitting phosphors. Single crystals of the material GdZrF7 were grown, and its structure was established via single-crystal X-ray diffraction methods. Doped samples of GdZrF7:Yb3+, Er3+ exhibit bright up-conversion luminescence with light output that is up to twice that of a commercial material based on the host Gd2O2S. When doped with Eu3+, the fluoride also emits a nearly white color under vacuum ultraviolet excitation with an absolute quantum yield near 0.9. The new compound Gd4.67(SiO4)3S was synthesized and studied. The structure was established via single-crystal X-ray methods, and the luminescence of Tb3+ samples was investigated.

  2. A High-Resolution InDel (Insertion–Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea

    PubMed Central

    Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.

    2016-01-01

    Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major

  3. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    PubMed Central

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  4. Cooling treatment of olive paste during the oil processing: Impact on the yield and extra virgin olive oil quality.

    PubMed

    Veneziani, G; Esposto, S; Taticchi, A; Urbani, S; Selvaggini, R; Di Maio, I; Sordini, B; Servili, M

    2017-04-15

    In recent years, the temperature of processed olives in many olive-growing areas was often close to 30°C, due to the global warming and an early harvesting period. Consequently, the new trends in the extraction process have to include the opportunity to cool the olives or olive paste before processing to obtain high quality EVOO. A tubular thermal exchanger was used for a rapid cooling treatment (CT) of olive paste after crushing. The results did not show a significant difference in the oil yield or any modifications in the legal parameters. The cooling process determined a significant improvement of phenolic compounds in all the three Italian cultivar EVOOs analyzed, whereas the volatile compounds showed a variability largely affected by the genetic origin of the olives with C 6 aldehydes that seem to be more stable than C 6 alcohols and esters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Registration of cotton germplasm USDA MD 16-1 and USDA MD 16-2 with enhanced lint yield and fiber quality.

    USDA-ARS?s Scientific Manuscript database

    Upland cotton germplasm USDA MD 16-1 (Reg. No. __ and PI ___ ), and USDA MD 16-2 (Reg. No. ___ and PI___) (Gossypium hirsutum L.), have enhanced yield and good fiber quality. These germplasm lines were developed by the USDA-ARS, Stoneville, MS and released in 2017. Two crosses, MD 25-51 X MD 10-9-1 ...

  6. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana

    PubMed Central

    Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.

    2017-01-01

    Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean–maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers’ managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20–29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean

  7. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir Drainage Area, Rhode Island, water year 2015

    USGS Publications Warehouse

    Smith, Kirk P.

    2018-05-11

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91

  8. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per

  9. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2006

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter

  10. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter

  11. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2009

    USGS Publications Warehouse

    Breault, Robert F.; Smith, Kirk P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB), Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 13 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance and water temperature. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2009 (October 1, 2008, to September 30, 2009). Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 monitoring stations by the USGS during WY 2009 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2009. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 27 cubic feet per second (ft3/s) to the reservoir during WY 2009. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.50 to 17 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,400,000 kilograms (kg) of sodium and 2,200,000 kg of chloride to the Scituate Reservoir during WY 2009; sodium and chloride yields for the tributaries ranged from 10,000 to 64,000 kilograms per square mile (kg/mi2) and from 15,000 to 110,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the PWSB, the median of the median

  12. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter

  13. High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction.

    PubMed

    Lee, Seon-Hwa; Hong, Seung-Hye; Kim, Kyoung-Rok; Oh, Deok-Kun

    2017-08-01

    To produce tagatose from fructose with a high conversion rate and to establish a high-yield purification method of tagatose from the reaction mixture. Fructose at 1 M (180 g l -1 ) was converted to 0.8 M (144 g l -1 ) tagatose by a three-step enzymatic cascade reaction, involving hexokinase, plus ATP, fructose-1,6-biphosphate aldolase, phytase, over 16 h with a productivity of 9 g l -1 h -1 . No byproducts were detected. Tagatose was recrystallized from ethanol to a purity of 99.9% and a yield of 96.3%. Overall, tagatose at 99.9% purity was obtained from fructose with a yield of 77%. This is the first biotechnological production of tagatose from fructose and the first application of solvent recrystallization for the purification of rare sugars.

  14. Improved semen collection method for wild felids: urethral catheterization yields high sperm quality in African lions (Panthera leo).

    PubMed

    Lueders, I; Luther, I; Scheepers, G; van der Horst, G

    2012-08-01

    For wild and domestic felids, electroejaculation (EE) is the most common semen collection method. However, the equipment is expensive, there is a risk of urine contamination and animals usually show strong muscular contraction despite general anesthesia. Accordingly, we tested the feasibility of a different approach using urethral catheterization (UC) in seven African lions, previously described for domestic cats only. After general anesthesia with the α2-agonist medetomidine (which also stimulates semen release into the urethra) and ketamine, a transrectal ultrasound was performed to locate the prostate. A commercial dog urinary catheter (2.6 or 3.3 mm in diameter) was advanced approximately 30 cm into the urethra to allow semen collection into the lumen of the catheter by capillary forces. After retraction, sperm volumes between of 422.86 ± 296.07 μl yielded motility of 88.83 ± 13.27% (mean ± SD) with a mean sperm concentration of 1.94 × 10(9)/ml. Here we describe a simple, field friendly and effective method to attain highly concentrated semen samples with excellent motility in lions and potentially other wild felid species as an alternative to electroejaculation. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Creation of High-Yield Polyhydroxyalkanoates Engineered Strains by Low Energy Ion Implantation

    NASA Astrophysics Data System (ADS)

    Qian, Shiquan; Cheng, Ying; Zhu, Suwen; Cheng, Beijiu

    2008-12-01

    Polyhydroxyalkanoates (PHAs), as a candidate for biodegradable plastic materials, can be synthesized by numerous microorganisms. However, as its production cost is high in comparison with those of chemically synthesized plastics, a lot of research has been focused on the efficient production of PHAs using different methods. In the present study, the mutation effects of PHAs production in strain pCB4 were investigated with implantation of low energy ions. It was found that under the implantation conditions of 7.8 × 1014 N+/cm2 at 10 keV, a high-yield PHAs strain with high genetic stability was generated from many mutants. After optimizing its fermentation conditions, the biomass, PHAs concentration and PHAs content of pCBH4 reached 2.26 g/L, 1.81 g/L, and 80.08% respectively, whereas its wild type controls were about 1.24 g/L, 0.61 g/L, and 49.20%. Moreover, the main constituent of PHAs was identified as poly-3-hydroxybutyrates (PHB) in the mutant stain and the yield of this compound was increased up to 41.33% in contrast to that of 27.78% in the wild type strain.

  16. 36 CFR 910.31 - High architectural quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false High architectural quality... PENNSYLVANIA AVENUE DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.31 High architectural quality. Development must maintain a uniformly high standard of architecture, representative of...

  17. 36 CFR 910.31 - High architectural quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false High architectural quality... PENNSYLVANIA AVENUE DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.31 High architectural quality. Development must maintain a uniformly high standard of architecture, representative of...

  18. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    PubMed Central

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; Lovell, John T.; Moyers, Brook T.; Baraoidan, Marietta; Naredo, Maria Elizabeth B.; McNally, Kenneth L.; Poland, Jesse; Bush, Daniel R.; Leung, Hei; Leach, Jan E.; McKay, John K.

    2017-01-01

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution. PMID:28220807

  19. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase.

    PubMed

    Wang, Xiumei; Qin, Xiaoli; Li, Daoming; Yang, Bo; Wang, Yonghua

    2017-07-01

    This study reported a novel immobilized MAS1 lipase from marine Streptomyces sp. strain W007 for synthesizing high-yield biodiesel from waste cooking oils (WCO) with one-step addition of methanol in a solvent-free system. Immobilized MAS1 lipase was selected for the transesterification reactions with one-step addition of methanol due to its much more higher biodiesel yield (89.50%) when compared with the other three commercial immobilized lipases (<10%). The highest biodiesel yield (95.45%) was acquired with one-step addition of methanol under the optimized conditions. Moreover, it was observed that immobilized MAS1 lipase retained approximately 70% of its initial activity after being used for four batch cycles. Finally, the obtained biodiesel was further characterized using FT-IR, 1 H and 13 C NMR spectroscopy. These findings indicated that immobilized MAS1 lipase is a promising catalyst for biodiesel production from WCO with one-step addition of methanol under high methanol concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide.

    PubMed

    Azam, Andaleeb; Khan, Ikhtiar; Mahmood, Abid; Hameed, Abdul

    2013-10-01

    Future concentration of carbon dioxide in the atmosphere is very important due to its apparent economic and environmental impact in terms of climate change. However, a compressive assessment of its effect on the nutritional and chemical characteristics of food crops has yet to be established. In the present study the impact of elevated atmospheric CO2 on the yield, chemical composition and nutritional quality of three root vegetables, carrot (Daucus carota L. cv. T-1-111), radish (Raphanus sativus L. cv. Mino) and turnip (Brassica rapa L. cv. Grabe) has been investigated. The yield of carrot, radish and turnip increased by 69, 139 and 72%, respectively, when grown under elevated CO2 conditions. Among the proximate composition, protein, vitamin C and fat contents decreased significantly for all the vegetables while sugar and fibre contents were increased. Response of the vegetables to elevated CO2 , in terms of elemental composition, was different with a significant decrease in many important minerals. Elevated CO2 decreased the amount of majority of the fatty acids and amino acids in these vegetables. It was observed that elevated CO2 increased the yield of root vegetables but many important nutritional parameters including protein, vitamin C, minerals, essential fatty acids and amino acids were decreased. © 2013 Society of Chemical Industry.

  1. Efficient isolation method for high-quality genomic DNA from cicada exuviae.

    PubMed

    Nguyen, Hoa Quynh; Kim, Ye Inn; Borzée, Amaël; Jang, Yikweon

    2017-10-01

    In recent years, animal ethics issues have led researchers to explore nondestructive methods to access materials for genetic studies. Cicada exuviae are among those materials because they are cast skins that individuals left after molt and are easily collected. In this study, we aim to identify the most efficient extraction method to obtain high quantity and quality of DNA from cicada exuviae. We compared relative DNA yield and purity of six extraction protocols, including both manual protocols and available commercial kits, extracting from four different exoskeleton parts. Furthermore, amplification and sequencing of genomic DNA were evaluated in terms of availability of sequencing sequence at the expected genomic size. Both the choice of protocol and exuvia part significantly affected DNA yield and purity. Only samples that were extracted using the PowerSoil DNA Isolation kit generated gel bands of expected size as well as successful sequencing results. The failed attempts to extract DNA using other protocols could be partially explained by a low DNA yield from cicada exuviae and partly by contamination with humic acids that exist in the soil where cicada nymphs reside before emergence, as shown by spectroscopic measurements. Genomic DNA extracted from cicada exuviae could provide valuable information for species identification, allowing the investigation of genetic diversity across consecutive broods, or spatiotemporal variation among various populations. Consequently, we hope to provide a simple method to acquire pure genomic DNA applicable for multiple research purposes.

  2. Seismic Yield Estimates of UTTR Surface Explosions

    NASA Astrophysics Data System (ADS)

    Hayward, C.; Park, J.; Stump, B. W.

    2016-12-01

    Since 2007 the Utah Test and Training Range (UTTR) has used explosive demolition as a method to destroy excess solid rocket motors ranging in size from 19 tons to less than 2 tons. From 2007 to 2014, 20 high quality seismic stations within 180 km recorded most of the more than 200 demolitions. This provides an interesting dataset to examine seismic source scaling for surface explosions. Based upon observer records, shots were of 4 sizes, corresponding to the size of the rocket motors. Instrument corrections for the stations were quality controlled by examining the P-wave amplitudes of all magnitude 6.5-8 earthquakes from 30 to 90 degrees away. For each station recording, the instrument corrected RMS seismic amplitude in the first 10 seconds after the P-onset was calculated. Waveforms at any given station for all the observed explosions are nearly identical. The observed RMS amplitudes were fit to a model including a term for combined distance and station correction, a term for observed RMS amplitude, and an error term for the actual demolition size. The observed seismic yield relationship is RMS=k*Weight2/3 . Estimated yields for the largest shots vary by about 50% from the stated weights, with a nearly normal distribution.

  3. High char yield epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Delvigs, P.; Serafini, T. T.; Vanucci, R. D.

    1981-01-01

    Class of imide-amine curing agents preserves structural integrity, prevents fiber release, and is fully compatible with conventional epoxy resins; agents do not detract from composite properties while greatly reducing char yield. Materials utilizing curing are used in aerospace, automotive, and other structural components where deterioration must be minimized and fiber release avoided in event of fire.

  4. Climate Change Impacts on Sediment Yield in Headwaters of a High-latitude Region in China

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Xu, Y. J.; Wang, J., , Dr; Weihua, X.; Huang, Y.

    2017-12-01

    Climate change is expected to have strongest effects in higher latitude regions. Despite intensive research on possible hydrological responses to global warming in these regions, our knowledge of climate change on surface erosion and sediment yield in high-latitude headwaters is limited. In this study, we used the Soil and Water Assessment Tool (SWAT) to predict future runoff and sediment yield from the headwaters of a high-latitude river basin in China's far northeast. The SWAT model was first calibrated with historical discharge records and the model parameterization achieved satisfactory validation. The calibrated model was then applied to two greenhouse gas concentration trajectories, RCP4.5 and RCP8.5, for the period from 2020 to 2050 to estimate future runoff. Sediment yields for this period were predicted using a discharge-sediment load rating curve developed from field measurements in the past nine years. Our preliminary results show an increasing trend of sediment yield under both climate change scenarios, and that the increase is more pronounced in the summer and autumn months. Changes in precipitation and temperature seem to exert variable impacts on runoff and sediment yield at interannual and seasonal scales in these headwaters. These findings imply that the current river basin management in the region needs to be reviewed and improved in order to be effective under a changing climate.

  5. Creating a High-Touch Recruitment Event: Utilizing Faculty to Recruit and Yield Students

    ERIC Educational Resources Information Center

    Freed, Lindsey R.; Howell, Leanne L.

    2018-01-01

    The following article describes the planning and implementation of a university student recruitment event that produced a high (new) student yield. Detailed descriptions of how staff and faculty worked together to plan and implement this event are described.

  6. Studies of fission fragment yields via high-resolution γ-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.

    2018-03-01

    Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.

  7. Continuous high-yield production of vertically aligned carbon nanotubes on 2D and 3D substrates.

    PubMed

    Guzmán de Villoria, Roberto; Hart, A John; Wardle, Brian L

    2011-06-28

    Vertically aligned carbon nanotubes (VACNTs) have certain advantages over bulk CNT powders and randomly oriented CNT mats for applications in flexible electronic devices, filtration membranes, biosensors and multifunctional aerospace materials. Here, a machine and a process to synthesize VACNTs in a continuous manner are presented showing uniform growth on 2D and 3D substrates, including alumina fibers, silicon wafer pieces, and stainless steel foils. Aligned multiwalled carbon nanotubes (MWNT) are synthesized at substrate feed rates of up to 6.8 cm/min, and the CNTs reach up to 60 μm in length depending on residence time in the reactor. In addition to the aligned morphology indicative of high yield growth, transmission electron microscopy and Raman spectroscopy reveal that the CNTs are of comparable quality to CNTs grown via a similar batch process. A significant reduction in time, reaction products, gases, and energy is demonstrated relative to batch processing, paving the way for industrial production of VACNTs.

  8. Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage.

    PubMed

    Chen, Jianlin; Tang, Liang; Shi, Peihua; Yang, Baohua; Sun, Ting; Cao, Weixing; Zhu, Yan

    2017-03-01

    High temperature causes negative effects on grain yield and quality of rice (Oryza sativa L.). In this study, the effects of short-term high temperature (SHT) on grain quality and starch granules were investigated in two rice cultivars Nanjing 41 (NJ41, heat-sensitive) and Wuxiangjing 14 (WJ14, heat-tolerant) at post-anthesis stage (anthesis and early grain-filling stage). The results of rice quality analysis showed that chalky rate and chalkiness increased while brown rice rate, milled rice rate, and head rice rate decreased in two rice cultivars with the increase of high temperature and prolonged duration. Moreover, SHT stress reduced the accumulation of amylose as well as starch accumulation. The starch accumulation and eating quality were more sensitive to SHT than the appearance and milling quality. The starch structure data observed by scanning electron microscope further showed that the starch granules are arranged loosely and more single starch granules appeared after SHT treatment. The extent of change in rice quality and starch traits of WJ14 under SHT was lower than that of NJ41. The effects of SHT at anthesis stage were greater than that at grain-filling stage. Taken together, the results could help further understand the physiological and biochemical processes governing rice quality under high-temperature conditions.

  9. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    PubMed

    Okuno, Ayako; Hirano, Ko; Asano, Kenji; Takase, Wakana; Masuda, Reiko; Morinaka, Yoichi; Ueguchi-Tanaka, Miyako; Kitano, Hidemi; Matsuoka, Makoto

    2014-01-01

    Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA)-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA), and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  10. High-quality EuO thin films the easy way via topotactic transformation

    DOE PAGES

    Mairoser, Thomas; Mundy, Julia A.; Melville, Alexander; ...

    2015-07-16

    Epitaxy is widely employed to create highly oriented crystalline films. A less appreciated, but nonetheless powerful means of creating such films is via topotactic transformation, in which a chemical reaction transforms a single crystal of one phase into a single crystal of a different phase, which inherits its orientation from the original crystal. Topotactic reactions may be applied to epitactic films to substitute, add or remove ions to yield epitactic films of different phases. Here we exploit a topotactic reduction reaction to provide a non-ultra-high vacuum (UHV) means of growing highly oriented single crystalline thin films of the easily over-oxidizedmore » half-metallic semiconductor europium monoxide (EuO) with a perfection rivalling that of the best films of the same material grown by molecular-beam epitaxy or UHV pulsed-laser deposition. Lastly, as the technique only requires high-vacuum deposition equipment, it has the potential to drastically improve the accessibility of high-quality single crystalline films of EuO as well as other difficult-to-synthesize compounds.« less

  11. High-Yield Secretion of Multiple Client Proteins in Aspergillus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segato, F.; Damasio, A. R. L.; Goncalves, T. A.

    2012-07-15

    Production of pure and high-yield client proteins is an important technology that addresses the need for industrial applications of enzymes as well as scientific experiments in protein chemistry and crystallization. Fungi are utilized in industrial protein production because of their ability to secrete large quantities of proteins. In this study, we engineered a high-expression-secretion vector, pEXPYR that directs proteins towards the extracellular medium in two Aspergillii host strains, examine the effect of maltose-induced over-expression and protein secretion as well as time and pH-dependent protein stability in the medium. We describe five client proteins representing a core set of hemicellulose degradingmore » enzymes that accumulated up to 50-100 mg/L of protein. Using a recyclable genetic marker that allows serial insertion of multiple genes, simultaneous hyper-secretion of three client proteins in a single host strain was accomplished.« less

  12. Method for reproducibly preparing a low-melting high-carbon yield precursor

    DOEpatents

    Smith, Wesley E.; Napier, Jr., Bradley

    1978-01-01

    The present invention is directed to a method for preparing a reproducible synthetic carbon precursor by the autoclave polymerization of indene (C.sub.9 H.sub.8) at a temperature in the range of 470.degree.-485.degree. C, and at a pressure in the range of about 1000 to about 4300 psi. Volatiles in the resulting liquid indene polymer are removed by vacuum outgassing to form a solid carbon precursor characterized by having a relatively low melting temperature, high-carbon yield, and high reproducibility which provide for the fabrication of carbon and graphite composites having strict requirements for reproducible properties.

  13. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE PAGES

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; ...

    2017-02-21

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  14. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  15. Vulnerability of High-Quality Winegrowing to Climate Change in California

    NASA Astrophysics Data System (ADS)

    Cahill, K. N.; Field, C. B.; Matthews, M. A.; Lobell, D. B.

    2009-05-01

    We took an interdisciplinary approach to examine the climate sensitivity and adaptive capacity of both the ecological and social systems of winegrowing. In a three-year study, we used field, laboratory, modeling, and anthropological approaches to examine the vulnerability of the wine industry to climate change. We developed models of winegrape yields based on the effects of historical temperature and precipitation in California, and used these findings to project future yields under climate change. We examined the concentrations of phenolic compounds important to wine quality (anthocyanins and tannins) in Pinot noir grapes from across a range of mesoclimates. We found that increased concentrations of these phenolic compounds were correlated with cool temperatures in the fall the year before harvest, warm temperatures from budburst to bloom, and cool temperatures from bloom to veraison, and with lower light intensities in these highly sun-exposed vines. We also conducted interviews to examine the adaptation responses of winegrowers to environmental stresses. We found that growers undertake a wide variety of environmental management strategies in the vineyard, most of which are individual in nature, and either in response to an existing stress, or in anticipation of an imminent stress. Finally, we examined the potential adaptive capacity of the wine industry to climate change, based on its awareness of climate change, ability to react, and actual actions and barriers to action. We conclude that winegrowers have a fairly high adaptive capacity, but that successful adaptation in practice depends on including proactive and coordinated community responses, which are beginning to develop.

  16. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation.

    PubMed

    Ugwuanyi, J Obeta

    2008-05-01

    Bacillus spp. responsible for thermophilic aerobic digestion (TAD) of agricultural wastes were studied for their growth rate, yield and protein quality (amino acid profile) under conditions that approximate full-scale waste digestion as pointers to the capacity of TAD to achieve protein enrichment of wastes for reuse in animal feeding. Specific growth rates of the thermophiles varied with temperature and aeration rates. For Bacillus coagulans, the highest specific growth rate was 1.98 muh(-1); for Bacillus licheniformis 2.56 muh(-1) and for Bacillus stearothermophilus 2.63 muh(-1). Molar yield of B. stearothermophilus on glucose increased with temperature to a peak of 0.404 g g(-1) at 50 degrees C before declining. Peak concentration of overflow metabolite (acetate) increased from 10 mmol at 45 degrees C to 34 mmol at 65 degrees C before declining. Accumulation of biomass in all three isolates decreased with increase in temperature while protein content of biomass increased. Highest biomass protein (79%) was obtained in B. stearothermophilus at 70 degrees C. Content of most essential amino acids of the biomass improved with temperature. Amino acid profile of the biomass was comparable to or superior to the FAO standard for SCP intended for use in animal feeding. Culture condition (waste digestion condition) may be manipulated to optimize protein yield and quality of waste digested by TAD for recycling in animal feed.

  17. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  18. Fabrication of high quality cDNA microarray using a small amount of cDNA.

    PubMed

    Park, Chan Hee; Jeong, Ha Jin; Jung, Jae Jun; Lee, Gui Yeon; Kim, Sang-Chul; Kim, Tae Soo; Yang, Sang Hwa; Chung, Hyun Cheol; Rha, Sun Young

    2004-05-01

    DNA microarray technology has become an essential part of biological research. It enables the genome-scale analysis of gene expression in various types of model systems. Manufacturing high quality cDNA microarrays of microdeposition type depends on some key factors including a printing device, spotting pins, glass slides, spotting solution, and humidity during spotting. UsingEthe Microgrid II TAS model printing device, this study defined the optimal conditions for producing high density, high quality cDNA microarrays with the least amount of cDNA product. It was observed that aminosilane-modified slides were superior to other types of surface modified-slides. A humidity of 30+/-3% in a closed environment and the overnight drying of the spotted slides gave the best conditions for arraying. In addition, the cDNA dissolved in 30% DMSO gave the optimal conditions for spotting compared to the 1X ArrayIt, 3X SSC and 50% DMSO. Lastly, cDNA in the concentration range of 100-300 ng/ micro l was determined to be best for arraying and post-processing. Currently, the printing system in this study yields reproducible 9000 spots with a spot size 150 mm diameter, and a 200 nm spot spacing.

  19. Fertilizer recommendations for switchgrass: Quantifying economic effects on quality and yield

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a native, perennial warm season grass that is suited for biomass production for conversion to renewable fuels as well as feed production on marginal soils. Yield responses to macro nutrients of N, P and K, have shown N to be the major driver for capturing yield p...

  20. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves

    PubMed Central

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-01-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  1. Highly qualified does not equal high quality: A study of urban stakeholders' perceptions of quality in science teaching

    NASA Astrophysics Data System (ADS)

    Miranda, Rommel Joseph

    By employing qualitative methods, this study sought to determine the perceptions that urban stakeholders hold about what characteristics should distinguish a high school science teacher whom they would consider to demonstrate high quality in science teaching. A maximum variation sample of six science teachers, three school administrators, six parents and six students from a large urban public school district were interviewed using semi-structured, in-depth interview techniques. From these data, a list of observable characteristics which urban stakeholders hold as evidence of high quality in science teaching was generated. Observational techniques were utilized to determine the extent to which six urban high school science teachers, who meet the NCLB Act criteria for being "highly qualified", actually possessed the characteristics which these stakeholders hold as evidence of high quality in science teaching. Constant comparative analysis was used to analyze the data set. The findings suggest that urban stakeholders perceive that a high school science teacher who demonstrates high quality in science teaching should be knowledgeable about their subject matter, their student population, and should be resourceful; should possess an academic background in science and professional experience in science teaching; should exhibit professionalism, a passion for science and teaching, and a dedication to teaching and student learning; should be skillful in planning and preparing science lessons and in organizing the classroom, in presenting the subject matter to students, in conducting a variety of hands-on activities, and in managing a classroom; and should assess whether students complete class goals and objectives, and provide feedback about grades for students promptly. The findings further reveal that some of the urban high school science teachers who were deemed to be "highly qualified", as defined by the NCLB Act, engaged in practices that threatened quality in science

  2. Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests

    PubMed Central

    Sakamoto, Yu; Mori, Kazuyuki; Matsuo, Yuuki; Mukojima, Nobuhiro; Watanabe, Wataru; Sobaru, Norio; Tamiya, Seiji; Nakao, Takashi; Hayashi, Kazuya; Watanuki, Hitomi; Nara, Kazuhiro; Yamazaki, Kaoru; Chaya, Masataka

    2017-01-01

    ‘Nagasaki Kogane’ is a new potato variety bred from a cross between ‘Saikai 35’ as a female parent and ‘Saikai 33’ as a male. ‘Saikai 35’ is resistant to bacterial wilt, contains the H1 and Rychc genes for resistance to the potato cyst nematode (PCN) and potato virus Y (PVY), respectively, and has high carotenoid content, while ‘Saikai 33’ has large and high-yielding tubers and is resistant to both bacterial wilt and PCN. The carotenoid content of ‘Nagasaki Kogane’ is higher than that of ‘Dejima’, a common double cropping variety. The taste quality of steamed ‘Nagasaki Kogane’ is comparable to that of ‘Inca-no-mezame’ tubers, which has high levels of carotenoid, and superior to ‘Nishiyutaka’, another popular double cropping variety. ‘Nagasaki Kogane’ is suitable for French fries, because its tuber has high starch content. The marketable yield of ‘Nagasaki Kogane’ was higher than that of ‘Inca-no-mezame’ in spring cropping, although it was lower than that of ‘Nishiyutaka’ in double cropping regions. ‘Nagasaki Kogane’ tubers are larger on average than ‘Inca-no-mezame’ tubers in spring cropping. Moreover, the ‘Nagasaki Kogane’ variety is resistant to PCN and PVY, and exhibits a high level of resistance to bacterial wilt. PMID:28744186

  3. Laue Crystal Structure of Shewanella oneidensis Cytochrome c Nitrite Reductase from a High-yield Expression System

    PubMed Central

    Youngblut, Matthew; Judd, Evan T.; Srajer, Vukica; Sayyed, Bilal; Goelzer, Tyler; Elliott, Sean J.; Schmidt, Marius; Pacheco, A. Andrew

    2012-01-01

    The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR), and its characterization by a variety of methods, notably Laue crystallography, is reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein “Small Tetra-heme c” replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated ~20 mg crude ccNiR/L culture, compared with 0.5–1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for E. coli ccNiR, and is stable for over two weeks in pH 7 solution at 4° C. UV/Vis spectropotentiometric titrations and protein film voltammetry identified 5 independent 1-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the 5 reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed amongst the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good quality crystals, with which the 2.59 Å resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein). PMID:22382353

  4. Determining the Critical Dose Threshold of Electron-Induced Electron Yield for Minimally Charged Highly Insulating Materials

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan

    2006-03-01

    When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.

  5. Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions.

    PubMed

    Petrini, J; Iung, L H S; Rodriguez, M A P; Salvian, M; Pértille, F; Rovadoscki, G A; Cassoli, L D; Coutinho, L L; Machado, P F; Wiggans, G R; Mourão, G B

    2016-10-01

    Information about genetic parameters is essential for selection decisions and genetic evaluation. These estimates are population specific; however, there are few studies with dairy cattle populations reared under tropical and sub-tropical conditions. Thus, the aim was to obtain estimates of heritability and genetic correlations for milk yield and quality traits using pedigree and genomic information from a Holstein population maintained in a tropical environment. Phenotypic records (n = 36 457) of 4203 cows as well as the genotypes for 57 368 single nucleotide polymorphisms from 755 of these cows were used. Covariance components were estimated using the restricted maximum likelihood method under a mixed animal model, considering a pedigree-based relationship matrix or a combined pedigree-genomic matrix. High heritabilities (around 0.30) were estimated for lactose and protein content in milk whereas moderate values (between 0.19 and 0.26) were obtained for percentages of fat, saturated fatty acids and palmitic acid in milk. Genetic correlations ranging from -0.38 to -0.13 were determined between milk yield and composition traits. The smaller estimates compared to other similar studies can be due to poor environmental conditions, which may reduce genetic variability. These results highlight the importance in using genetic parameters estimated in the population under evaluation for selection decisions. © 2016 Blackwell Verlag GmbH.

  6. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    PubMed Central

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  7. High-yield exfoliation of tungsten disulphide nanosheets by rational mixing of low-boiling-point solvents

    NASA Astrophysics Data System (ADS)

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel

    2018-01-01

    Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.

  8. Potential of deficit irrigation, irrigation cut-offs, and crop thinning to maintain yield and fruit quality with less water in northern highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    Drought and mandatory water restrictions are limiting the availability of irrigation water in many important blueberry growing regions, including Oregon, Washington, and California. New strategies are needed to maintain yield and fruit quality with less water. Three potential options, including defi...

  9. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    USGS Publications Warehouse

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per

  10. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012

    USGS Publications Warehouse

    Smith, Kirk P.

    2014-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected

  11. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011

    USGS Publications Warehouse

    Smith, Kirk P.

    2013-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were

  12. Assuring quality in high-consequence engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, Marcey L.; Kolb, Rachel R.

    2014-03-01

    In high-consequence engineering organizations, such as Sandia, quality assurance may be heavily dependent on staff competency. Competency-dependent quality assurance models are at risk when the environment changes, as it has with increasing attrition rates, budget and schedule cuts, and competing program priorities. Risks in Sandia's competency-dependent culture can be mitigated through changes to hiring, training, and customer engagement approaches to manage people, partners, and products. Sandia's technical quality engineering organization has been able to mitigate corporate-level risks by driving changes that benefit all departments, and in doing so has assured Sandia's commitment to excellence in high-consequence engineering and national service.

  13. Impact of Lygus spp. (Hemiptera: Miridae) on damage, yield and quality of lesquerella (Physaria fendleri), a potential new oil-seed crop.

    PubMed

    Naranjo, Steven E; Ellsworth, Peter C; Dierig, David A

    2011-10-01

    Lesquerella, Physaria fendleri (A. Gray) S. Watson, is a mustard native to the western United States and is currently being developed as a commercial source of valuable hydroxy fatty acids that can be used in a number of industrial applications, including biolubricants, biofuel additives, motor oils, resins, waxes, nylons, plastics, corrosion inhibitors, cosmetics, and coatings. The plant is cultivated as a winter-spring annual and in the desert southwest it harbors large populations of arthropods, several of which could be significant pests once production expands. Lygus spp. (Hemiptera: Miridae) are common in lesquerella and are known pests of a number of agronomic and horticultural crops where they feed primarily on reproductive tissues. A 4-yr replicated plot study was undertaken to evaluate the probable impact of Lygus spp. on production of this potential new crop. Plant damage and subsequent seed yield and quality were examined relative to variable and representative densities of Lygus spp. (0.3-4.9 insects per sweep net) resulting from variable frequency and timing of insecticide applications. Increasing damage to various fruiting structures (flowers [0.9-13.9%], buds [1.2-7.1%], and seed pods [19.4-42.5%]) was significantly associated with increasing pest abundance, particularly the abundance of nymphs, in all years. This damage, however, did not consistently translate into reductions in seed yield (481-1,336 kg/ha), individual seed weight (0.5-0.7 g per 1,000 seed), or seed oil content (21.8-30.4%), and pest abundance generally explained relatively little of the variation in crop yield and quality. Negative effects on yield were not sensitive to the timing of pest damage (early versus late season) but were more pronounced during years when potential yields were lower due to weed competition and other agronomic factors. Results suggest that if the crop is established and managed in a more optimal fashion, Lygus spp. may not significantly limit yield

  14. Inferring genetic parameters on latent variables underlying milk yield and quality, protein composition, curd firmness and cheese-making traits in dairy cattle.

    PubMed

    Dadousis, C; Cipolat-Gotet, C; Bittante, G; Cecchinato, A

    2018-02-01

    We studied the genetics of cheese-related latent variables (factors; Fs) for application in dairy cattle breeding. In total, 26 traits, recorded in 1264 Brown Swiss cows, were analyzed through multivariate factor analysis (MFA). Traits analyzed were descriptors of milk quality and yield (including protein fractions) and measures of coagulation, curd firmness (CF), cheese yields (%CY) and nutrient recoveries in the curd (REC). A total of 10 Fs (mutual orthogonal with a varimax rotation) were obtained. To assess the practical use of the Fs into breeding, we inferred their genetic parameters using single and bivariate animal models under a Bayesian framework. Heritability estimates (intra-herd) varied between 0.11 and 0.72 (F3: Yield and F7: κ-β-CN, respectively). The Fs underlined basic characteristics of the cheese-making process, milk components and udder health, while retaining 74% of the original variability. The first two Fs were indicators of the CY percentage (F1: %CY) and the CF process (F2: CF t ), and presented similar heritability estimates: 0.268 and 0.295, respectively. The third factor was associated with the yield of milk and solids (F3: Yield) characterized by a low heritability (0.108) and the fourth with the cheese nitrogen (N) (F4: Cheese N) that conversely appeared to be characterized by a high heritability (0.618). Three Fs were associated with the proportion of the basic milk caseins on total milk protein (F5: as1-β-CN, F7: κ-β-CN, F8: as2-CN), also highly heritable (0.565, 0.723 and 0.397, respectively) and 1 factor with the phosphorylated form of the as1-CN (F9: as1-CN-Ph; 0.318). Moreover, 1 factor was linked to the whey protein α-LA (F10: α-LA; 0.147). An indicator factor of a cow's udder health (F6: Udder health) was also obtained and showed a moderate heritability (0.204). Although the Fs were phenotypically uncorrelated, considerable additive genetic correlations existed among them, with highest values observed between F10:

  15. Hardwood pallet cant quality and pallet part yields

    Treesearch

    Hal L. Mitchell; Marshall White; Philip Araman; Peter Hamner

    2005-01-01

    Raw materials are the largest cost component in pallet manufacturing. The primary raw material used to produce pallet parts are pallet cants. Therefore, pallet cant quality directly impacts pallet part processing and material costs. By knowing the quality of the cants being processed, pallet manufacturers can predict these costs and improve manufacturing efficiency....

  16. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.

    PubMed

    Munuera, J M; Paredes, J I; Villar-Rodil, S; Ayán-Varela, M; Martínez-Alonso, A; Tascón, J M D

    2016-02-07

    Electrolytic--usually referred to as electrochemical--exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (i.e., almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes.

  17. Electron-induced electron yields of uncharged insulating materials

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ryan Carl

    Presented here are electron-induced electron yield measurements from high-resistivity, high-yield materials to support a model for the yield of uncharged insulators. These measurements are made using a low-fluence, pulsed electron beam and charge neutralization to minimize charge accumulation. They show charging induced changes in the total yield, as much as 75%, even for incident electron fluences of <3 fC/mm2, when compared to an uncharged yield. The evolution of the yield as charge accumulates in the material is described in terms of electron recapture, based on the extended Chung and Everhart model of the electron emission spectrum and the dual dynamic layer model for internal charge distribution. This model is used to explain charge-induced total yield modification measured in high-yield ceramics, and to provide a method for determining electron yield of uncharged, highly insulating, high-yield materials. A sequence of materials with progressively greater charge susceptibility is presented. This series starts with low-yield Kapton derivative called CP1, then considers a moderate-yield material, Kapton HN, and ends with a high-yield ceramic, polycrystalline aluminum oxide. Applicability of conductivity (both radiation induced conductivity (RIC) and dark current conductivity) to the yield is addressed. Relevance of these results to spacecraft charging is also discussed.

  18. Epidemiology and impact of Fasciola hepatica exposure in high-yielding dairy herds

    PubMed Central

    Howell, Alison; Baylis, Matthew; Smith, Rob; Pinchbeck, Gina; Williams, Diana

    2015-01-01

    The liver fluke Fasciola hepatica is a trematode parasite with a worldwide distribution and is the cause of important production losses in the dairy industry. The aim of this observational study was to assess the prevalence of exposure to F. hepatica in a group of high yielding dairy herds, to determine the risk factors and investigate their associations with production and fertility parameters. Bulk milk tank samples from 606 herds that supply a single retailer with liquid milk were tested with an antibody ELISA for F. hepatica. Multivariable linear regression was used to investigate the effect of farm management and environmental risk factors on F. hepatica exposure. Higher rainfall, grazing boggy pasture, presence of beef cattle on farm, access to a stream or pond and smaller herd size were associated with an increased risk of exposure. Univariable regression was used to look for associations between fluke exposure and production-related variables including milk yield, composition, somatic cell count and calving index. Although causation cannot be assumed, a significant (p < 0.001) negative association was seen between F. hepatica exposure and estimated milk yield at the herd level, representing a 15% decrease in yield for an increase in F. hepatica exposure from the 25th to the 75th percentile. This remained significant when fertility, farm management and environmental factors were controlled for. No associations were found between F. hepatica exposure and any of the other production, disease or fertility variables. PMID:26093971

  19. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.

    PubMed

    Hassan, H; Lim, J K; Hameed, B H

    2016-12-01

    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Discussion on the application of high additional value of high purity and high quality direct reduced iron

    NASA Astrophysics Data System (ADS)

    Yue, Chongfeng; Bai, Lu; Hong, Yicheng; Xu, Lijun

    2018-03-01

    The high purity and high quality direct reduced iron(DRI) products which were produced by high grade and high quality iron powder, with a high grade and low impurity characteristics. This article introduced the application of high purity and high quality DRI in the fields of amorphous base material, atomized iron powder, powder superalloy, high purity and ultra-low carbon special metallurgy products, precision casting, super alloy and various iron-based alloys. It provides a reference for the high added value utilization of DRI.

  1. Simple, high-yield purification of xanthine oxidase from bovine milk.

    PubMed

    Ozer, N; Müftüoglu, M; Ataman, D; Ercan, A; Ogüs, I H

    1999-05-13

    Xanthine oxidase, a commercially important enzyme with a wide area of application, was extracted from fresh milk, without added preservatives, using toluene and heat. The short purification procedure, with high yield, consisted of extraction, ammonium sulfate fractionation, and DEAE-Sepharose (fast flow) column chromatography. Xanthine oxidase was eluted as a single activity peak from the column using a buffer gradient. The purification fold, specific activity and yield for the purified xanthine oxidase were 328, 10.161 U/mg and 69%, respectively. The enzyme was concentrated by ultrafiltration, although 31% of the activity was lost during concentration, no change in specific activity was observed. Activity and protein gave coincident staining bands on native polyacrylamide gels. The intensity and the number of bands were dependent on the oxidative state(s) of the enzyme; reduction by 2-mercaptoethanol decreased the intensity of the slow-moving bands and increased the intensity of the fastest-moving band. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two major bands (molecular masses of 152 and 131 kDa) were observed, accounting for > or = 95% of xanthine oxidase. Native- and SDS-PAGE showed that the purified xanthine oxidase becomes a heterodimer due to endogenous proteases.

  2. Assessing the Effect of Composting Cassava Peel Based Substrates on the Yield, Nutritional Quality, and Physical Characteristics of Pleurotus ostreatus (Jacq. ex Fr.) Kummer

    PubMed Central

    Kortei, N. K.; Dzogbefia, V. P.; Obodai, M.

    2014-01-01

    Cassava peel based substrate formulations as an alternative substrate were used to grow mushrooms. The effect of two compost heights, three composting periods on the mycelia growth, physical characteristics, yield, and nutritional qualities of Pleurotus ostreatus (Jacq. ex Fr.) Kummer was studied. Mean mycelia growth of 16.2 cm after a period of seven (7) weeks was the best for 1.5 m compost height. Cap diameter and stipe length differed significantly (P < 0.05) with the compost heights (0.8 m and 1.5 m). The yield on compost height of 1.5 m, composted for 5 days, differed significantly (P < 0.05) from that of 0.8 m and gave increasing yields as follows: cassava peels and manure, cassava peels only, cassava peels and corn cobs (1 : 1 ratio), and cassava peels and corn cobs (1 : 1 ratio) with chicken manure. Composting periods (3 and 7 days) gave varying yields depending on the compost height. Based on the findings an interaction of 1.5 m compost height and 5 days composting period on cassava peels and corncobs (1 : 1 ratio) with chicken manure produced the best results. The nutritional quality of the mushrooms also differed significantly (P < 0.05), indicating that cassava peels could be used as a possible substrate in cultivation of mushroom. PMID:25580299

  3. The impact of volunteer rice infestation on rice yield and grain quality

    USDA-ARS?s Scientific Manuscript database

    Volunteer rice (Oryza sativa L.) is a crop stand which emerges from shattered seeds of the previous crop. When present at sufficiently high levels, it can potentially affect the commercial market value of cultivated rice products, especially if it produces kernels with quality, uniformity, or size ...

  4. High yield cell-free production of integral membrane proteins without refolding or detergents.

    PubMed

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  5. The use of biodegradable mulch for tomato and broccoli production: Crop yield and quality, mulch deterioration, and growers' perceptions

    NASA Astrophysics Data System (ADS)

    Cowan, Jeremy Scott

    Biodegradable mulch may offer the benefits of polyethylene mulch for crop production with the added benefit of biodegradability. Four studies were carried out in Mount Vernon, WA to evaluate biodegradable mulch for tomato (Solanum lycopersicum L.) and broccoli (Brassica oleracea var. italica) production. The first study compared four biodegradable mulch treatments: BioAgri, BioTelo, WeedGuardPlus (cellulose product), and SB-PLA-10/11/12 (experimental, non-woven fabric), to polyethylene mulch and bare ground in high tunnels and in the open field for tomato yield and fruit quality over three growing seasons. Biodegradable plastic films produced yields and fruit quality comparable to polyethylene. Moreover, high tunnels increased total and marketable fruit weight five and eight times, respectively, compared to the open field. The second study quantified relationships among visual assessment parameters and mulch mechanical properties. Visual assessments and mechanical property tests of polyethylene, BioAgri, BioTelo, WeedGuardPlus, and SB-PLA-10/11/12, were made over three growing seasons. Regression analyses found the strongest relationship overall (r2 = 0.41) to be between the percent of initial breaking force in the machine direction and log 10 of percent visual deterioration. However, evaluating mulch products individually and increasing sample frequency are recommended for future research. The third study evaluated three biodegradable mulch products, BioAgri, Crown 1, and SB-PLA-11, after soil-incorporation. The average area of recovered mulch fragments decreased for all mulch products over time. The number of mulch fragments initially increased for all mulch products, with the greatest number of Crown 1 and BioAgri fragments recovered 132 and 299 days after incorporation, respectively. At 397 days after soil-incorporation, the total area of recovered fragments of Crown 1 and BioAgri was 0% and 34% of the theoretical maximum area, respectively. The fourth study

  6. Carcass yield and meat quality in broilers fed with canola meal.

    PubMed

    Gopinger, E; Xavier, E G; Lemes, J S; Moraes, P O; Elias, M C; Roll, V F B

    2014-01-01

    1. This study evaluated the effects of canola meal in broiler diets on carcass yield, carcass composition, and instrumental and sensory analyses of meat. 2. A total of 320 one-day-old Cobb broilers were used in a 35-d experiment using a completely randomised design with 5 concentrations of canola meal (0, 10, 20, 30 and 40%) as a dietary substitute for soya bean meal. 3. Polynomial regression at 5% significance was used to evaluate the effects of canola meal content. The following variables were measured: carcass yield, chemical composition of meat, and instrumental and sensorial analyses. 4. The results showed that carcass yield exhibited a quadratic effect that was crescent to the level of 18% of canola meal based on the weight of the leg and a quadratic increase at concentrations up to 8.4% of canola meal based on the weight of the chest. The yield of the chest exhibited a linear behaviour. 5. The chemical composition of leg meat, instrumental analysis of breast meat and sensory characteristics of the breast meat was not significantly affected by the inclusion of canola meal. The chemical composition of the breast meat exhibited an increased linear effect in terms of dry matter and ether extract and a decreased linear behaviour in terms of the ash content. 6. In conclusion, soya bean meal can be substituted with canola meal at concentrations up to 20% of the total diet without affecting carcass yield, composition of meat or the instrumental or sensory characteristics of the meat of broilers.

  7. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  8. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    PubMed

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. © 2013 CSIRO. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. [Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field].

    PubMed

    Wang, Dong; Yu, Zhenwen; Yu, Wenming; Shi, Yu; Zhou, Zhongxin

    2006-09-01

    The study showed that during the period from sowing to pre-wintering, the soil nitrate in high-yielding wheat field moved down to deeper layers, and accumulated in the layers below 140 cm. An application rate of 96-168 kg N x hm(-2) increased the nitrate content in 0-60 cm soil layer and the wheat grain yield and its protein content, and decreased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen. Applying 240 kg N x hm(-2) promoted the downward movement of soil nitrate and its accumulation in deeper layers, increased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen, had no significant effect on the protein content of wheat grain, but decreased the grain yield. The appropriate application rate of nitrogen on high-yielding wheat field was 132-204 kg N x hm(-2).

  10. Highly Integrated Quality Assurance – An Empirical Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake Kirkham; Amy Powell; Lucas Rich

    2011-02-01

    Highly Integrated Quality Assurance – An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission,more » the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this

  11. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning

    PubMed Central

    Erickson, Ariane E.; Edmondson, Dennis; Chang, Fei-Chien; Wood, Dave; Gong, Alex; Levengood, Sheeny Lan; Zhang, Miqin

    2016-01-01

    The inability to produce large quantities of nanofibers has been a primary obstacle in advancement and commercialization of electrospinning technologies, especially when aligned nanofibers are desired. Here, we present a high-throughput centrifugal electrospinning (HTP-CES) system capable of producing a large number of highly-aligned nanofiber samples with high-yield and tunable diameters. The versatility of the design was revealed when bead-less nanofibers were produced from copolymer chitosan/polycaprolactone (C-PCL) solutions despite variations in polymer blend composition or spinneret needle gauge. Compared to conventional electrospinning techniques, fibers spun with the HTP-CES not only exhibited superior alignment, but also better diameter uniformity. Nanofiber alignment was quantified using Fast Fourier Transform (FFT) analysis. In addition, a concave correlation between the needle diameter and resultant fiber diameter was identified. This system can be easily scaled up for industrial production of highly-aligned nanofibers with tunable diameters that can potentially meet the requirements for various engineering and biomedical applications. PMID:26428148

  12. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds.

    PubMed

    Bénard, Camille; Gautier, Hélène; Bourgaud, Frédéric; Grasselly, Dominique; Navez, Brigitte; Caris-Veyrat, Catherine; Weiss, Marie; Génard, Michel

    2009-05-27

    The objective of this study was to determine the impact of lowering nitrogen supply from 12 to 6 or 4 mM NO(3)(-) on tomato fruit yield and quality during the growing season. Lowering nitrogen supply had a low impact on fruit commercial yield (-7.5%), but it reduced plant vegetative growth and increased fruit dry matter content, improving consequently fruit quality. Fruit quality was improved due to lower acid (10-16%) and increased soluble sugar content (5-17%). The content of some phenolic compounds (rutin, a caffeic acid glycoside, and a caffeic acid derivate) and total ascorbic acid tended to be higher in fruit with the lowest nitrogen supply, but differences were significant in only a few cases (trusses). With regard to carotenoids, data did not show significant and univocal differences related to different levels of nitrogen supply. Thus, reducing nitrogen fertilization limited environmental pollution, on the one hand, and may improve, on the other hand, both growers' profits, by limiting nitrogen inputs, and fruit quality for consumers, by increasing tomato sugars content. It was concluded that primary and secondary metabolites could be affected as a result of a specific response to low nitrogen, combined with a lower degree of vegetative development, increasing fruit irradiance, and therefore modifying fruit composition.

  13. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2010

    USGS Publications Warehouse

    Smith, Kirk P.; Breault, Robert F.

    2011-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB), Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance and water temperature. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2010 (October 1, 2009, to September 30, 2010). Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 monitoring stations by the USGS during WY 2010 as part of a long sampling program; all stations are in the Scituate Reservoir drainage area. Waterquality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2010. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 39 cubic feet per second (ft3/s) to the reservoir during WY 2010. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.7 to 27 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2010; sodium and chloride yields for the tributaries ranged from 11,000 to 66,000 kilograms per square mile (kg/mi2) and from 18,000 to 110,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the PWSB, the median of the median chloride

  14. High-quality and -quantity DNA extraction from frozen archival blood clots for genotyping of single-nucleotide polymorphisms.

    PubMed

    Bank, Steffen; Nexø, Bjørn Andersen; Andersen, Vibeke; Vogel, Ulla; Andersen, Paal Skytt

    2013-06-01

    The recovery of biological samples for genetic epidemiological studies can be cumbersome. Blood clots are routinely collected for serological examinations. However, the extraction of DNA from blood clots can be difficult and often results in low yields. The aim was to compare the efficiency of commercial purification kits for extracting DNA from long-term frozen clotted blood. Serum tubes with clotted blood were stored at -20°C for 1 to 2.5 years before DNA extraction. DNA was extracted from 10 blood clot samples using PureGene (Qiagen) with and without glycogen, the QIAamp DNA Micro kit (Qiagen), and the Nucleospin 96 Blood kit (Macherey-Nagel). Furthermore, blood clots from 1055 inflammatory bowel disease patients were purified using the Maxwell 16 Blood purification kit (Promega). The DNA was extracted according to the manufacturers` instructions and real-time PCR and the A(260)/A(280) ratio were used to evaluate the quality of the extracted DNA. The highest DNA yield was obtained by the Maxwell 16 Blood purification kit (Promega) with a median of 4.90 μg (range 0.8-25 μg) pr 300 μL total blood. PureGene with glycogen (Qiagen) had the second highest yield with a median of 0.65 μg (range 0.5-2.6 μg) pr 300 μL total blood. The yield obtained by the different commercial kits varied considerably. Our work demonstrates that high-quality and -quantity DNA can be extracted with the Maxwell 16 Blood purification kit (Promega) from cryopreserved blood clots, even after prolonged storage. The recovered DNA served as a reliable PCR template for single-nucleotide polymorphism assays.

  15. High-frequency and high-quality silicon carbide optomechanical microresonators

    PubMed Central

    Lu, Xiyuan; Lee, Jonathan Y.; Lin, Qiang

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 1012 Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637

  16. Effect of a free-range raising system on growth performance, carcass yield, and meat quality of slow-growing chicken.

    PubMed

    Wang, K H; Shi, S R; Dou, T C; Sun, H J

    2009-10-01

    Experiments were conducted to evaluate the effect of free-range raising systems on growth performance, carcass yield, and meat quality of slow-growing chickens. Slow-growing female chickens, Gushi chickens, were selected as the experimental birds. Two hundred 1-d-old female chicks were raised in a pen for 35 d. On d 36, ninety healthy birds, with similar BW (353.7+/-32.1g), were selected and randomly assigned to 2 treatments (indoor treatment and free-range treatment, P>0.05). Each treatment was represented by 3 groups containing 15 birds (45 birds per treatment). During the indoor treatment, the chickens were raised in floor pens in a conventional poultry research house (7 birds/m2). In the free-range treatment, the chickens were housed in a similar indoor house (7 birds/m2); in addition, they also had a free-range grass paddock (1 bird/m2). All birds were provided with the same starter and finisher diets and were raised for 112 d. Results showed that the BW and weight gain of the chickens in the free-range treatment were much lower than that of the chickens in the indoor floor treatments (P<0.05). There was no effect of the free-range raising system on eviscerated carcass, breast, thigh, and wing yield (P>0.05). However, the abdominal fat yield and tibia strength (P<0.05) significantly declined. The nutrient composition (water, protein, and fat), water-holding capacity, shear force, and pH of the muscle were largely unaffected (P>0.05) by the free-range raising system. The data indicated that the free-range raising system could significantly reduce growth performance, abdominal fat, and tibia strength, but with no effect on carcass traits and meat quality in slow-growing chickens.

  17. Influence of calcium carbonate on extraction yield and quality of extra virgin oil from olive (Olea europaea L. cv. Coratina).

    PubMed

    Squeo, G; Silletti, R; Summo, C; Paradiso, V M; Pasqualone, A; Caponio, F

    2016-10-15

    The aim of the research was to evaluate the effect of calcium carbonate (1%, 2%, and 4% of addition) at two different particle sizes (2.7μm and 5.7μm), added at the beginning of the malaxation phase, on both the extraction yield and the quality of oil obtained from Coratina olives at different ripening index. The results showed that calcium carbonate significantly increased the extraction yield of olive oil, more than affecting chemical indices. In particular, for less ripened olives, 1-2% of larger particle size calcium carbonate addiction determined a significant increase of the extraction effectiveness, ranging from 4.0 to 4.9%, while more ripened olives required higher amounts of coadjuvant (2-4% when using the larger particle size and 4% when using the smaller one), with a significant increase of the extraction yield up to 5%. Moreover, an increase of pungent perception was observed in some cases when adding calcium carbonate to more ripened olives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Deficit irrigation and fertilization strategies to improve soil quality and alfalfa yield in arid and semi-arid areas of northern China.

    PubMed

    Jia, Qianmin; Kamran, Muhammad; Ali, Shahzad; Sun, Lefeng; Zhang, Peng; Ren, Xiaolong; Jia, Zhikuan

    2018-01-01

    In the arid and semi-arid areas of northern China, overexploitation of fertilizers and extensive irrigation with brackish groundwater have led to soil degradation and large areas of farmland have been abandoned. In order to improve the soil quality of abandoned farmland and make reasonable use of brackish groundwater, we conducted field trials in 2013 and 2014. In our study, we used three fertilization modes (CF, chemical fertilizer; OM, organic manure and chemical fertilizer; NF, no fertilizer) and three deficit irrigation levels (I 0 : 0 mm; I 75 : 75 mm; I 150 : 150 mm). The results showed that the activities of soil urease, alkaline phosphatase, invertase, catalase, and dehydrogenase in the OM treatment were significantly improved compared with those in the CF and NF treatments under the three deficit irrigation levels. Compared with NF, the OM treatment significantly increased soil organic carbon (SOC), water-soluble carbon (WSC), total nitrogen, microbial biomass carbon and nitrogen (MBC and MBN), and soil respiration rate, and significantly decreased soil C:N and MBC:MBN ratios and the metabolic quotient, thus improving the soil quality of abandoned farmland. Furthermore, the OM treatment increased alfalfa plant height, leaf area index, leaf chlorophyll content, and biomass yield. Under the CF and OM fertilization modes, the activities of urease and catalase in I 150 were significantly higher than those in I 0 , whereas irrigating without fertilizer did not significantly increase the activity of these two enzymes. Regardless of fertilization, alkaline phosphatase activity increased with an increase in irrigation amount, whereas invertase activity decreased. The results showed that deficit irrigation with brackish groundwater under the OM treatment can improve soil quality. Over the two years of the study, maximum SOC, total nitrogen, WSC, MBC, and MBN were observed under the OM-I 150 treatment, and the alfalfa biomass yield of this treatment was also

  19. Synthesis of High-Quality Biodiesel Using Feedstock and Catalyst Derived from Fish Wastes.

    PubMed

    Madhu, Devarapaga; Arora, Rajan; Sahani, Shalini; Singh, Veena; Sharma, Yogesh Chandra

    2017-03-15

    A low-cost and high-purity calcium oxide (CaO) was prepared from waste crab shells, which were extracted from the dead crabs, was used as an efficient solid base catalyst in the synthesis of biodiesel. Raw fish oil was extracted from waste parts of fish through mechanical expeller followed by solvent extraction. Physical as well as chemical properties of raw fish oil were studied, and its free fatty acid composition was analyzed with GC-MS. Stable and high-purity CaO was obtained when the material was calcined at 800 °C for 4 h. Prepared catalyst was characterized by XRD, FT-IR, and TGA/DTA. The surface structure of the catalyst was analyzed with SEM, and elemental composition was determined by EDX spectra. Esterification followed by transesterification reactions were conducted for the synthesis of biodiesel. The effect of cosolvent on biodiesel yield was studied in each experiment using different solvents such as toluene, diethyl ether, hexane, tetrahydrofuran, and acetone. High-quality and pure biodiesel was synthesized and characterized by 1 H NMR and FT-IR. Biodiesel yield was affected by parameters such as reaction temperature, reaction time, molar ratio (methanol:oil), and catalyst loading. Properties of synthesized biodiesel such as density, kinematic viscosity, and cloud point were determined according to ASTM standards. Reusability of prepared CaO catalyst was checked, and the catalyst was found to be stable up to five runs without significant loss of catalytic activity.

  20. Breeding cassava for higher yield

    USDA-ARS?s Scientific Manuscript database

    Cassava is a root crop grown for food and for starch production. Breeding progress is slowed by asexual production and high levels of heterozygosity. Germplasm resources are rich and accessible to breeders through genebanks worldwide. Breeding objectives include high root yield, yield stability, dis...

  1. [Highly quality-controlled radiation therapy].

    PubMed

    Shirato, Hiroki

    2005-04-01

    Advanced radiation therapy for intracranial disease has focused on set-up accuracy for the past 15 years. However, quality control in the prescribed dose is actually as important as the tumor set-up in radiation therapy. Because of the complexity of the three-dimensional radiation treatment planning system in recent years, the highly quality-controlled prescription of the dose has now been reappraised as the mainstream to improve the treatment outcome of radiation therapy for intracranial disease. The Japanese Committee for Quality Control of Radiation Therapy has developed fundamental requirements such as a QC committee in each hospital, a medical physicist, dosimetrists (QC members), and an external audit.

  2. Yield: it's now an entitlement

    NASA Astrophysics Data System (ADS)

    George, Bill

    1994-09-01

    Only a few years ago, the primary method of cost reduction and productivity improvement in the semiconductor industry was increasing manufacturing yields throughout the process. Many of the remarkable reliability improvements realized over the past decade have come about as a result of actions that were originally taken primarily to improve device yields. Obviously, the practice of productivity improvement through yield enhancement is limited to the attainment of 100% yield, at which point some other mechanism must be employed. Traditionally, new products have been introduced to manufacturing at a point of relative immaturity, and semiconductor producers have relied on the traditional `learning curve' method of yield improvement to attain profitable levels of manufacturing yield. Recently, results of a survey of several fabs by a group of University of California at Berkeley researchers in the Competitive Semiconductor Manufacturing Program indicate that most factories learn at about the same rate after startup, in terms of both line yield and defectivity. If this is indeed generally true, then the most competitive factor is the one that starts with the highest yield, and it is difficult to displace a leader once his lead has been established. The two observations made above carry enormous implications for the semiconductor development or manufacturing professional. First, one must achieve very high yields in order to even play the game. Second, the achievement of competitive yields over time in the life of a factory is determined even before the factory is opened, in the planning and development phase. Third, and perhaps most uncomfortable for those of us who have relied on yield improvement as a cost driver, the winners of the nineties will find new levers to drive costs down, having already gotten the benefit of very high yield. This paper looks at the question of how the winners will achieve the critical measures of success, high initial yield and utilization

  3. Advances of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process.

    PubMed

    Chaohe, Yang; Xiaobo, Chen; Jinhong, Zhang; Chunyi, Li; Honghong, Shan

    Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial units have been put into production and other four commercial units are under design and construction. The commercial data showed that taking paraffinic based Daqing (China) atmospheric residue as the feedstock, the propylene yield reached 20.31 wt%, the liquid products yield (the total yield of liquefied petroleum gas, gasoline, and diesel) was 82.66 wt%, and the total yield of dry gas and coke was 14.28 wt%. Moreover, the research octane number of gasoline could be up to 96.

  4. 36 CFR § 910.31 - High architectural quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true High architectural quality. Â... PENNSYLVANIA AVENUE DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.31 High architectural quality. Development must maintain a uniformly high standard of architecture, representative of...

  5. Future consequences of decreasing marginal production efficiency in the high-yielding dairy cow.

    PubMed

    Moallem, U

    2016-04-01

    The objectives were to examine the gross and marginal production efficiencies in high-yielding dairy cows and the future consequences on dairy industry profitability. Data from 2 experiments were used in across-treatments analysis (n=82 mid-lactation multiparous Israeli-Holstein dairy cows). Milk yields, body weights (BW), and dry matter intakes (DMI) were recorded daily. In both experiments, cows were fed a diet containing 16.5 to 16.6% crude protein and net energy for lactation (NEL) at 1.61 Mcal/kg of dry matter (DM). The means of milk yield, BW, DMI, NEL intake, and energy required for maintenance were calculated individually over the whole study, and used to calculate gross and marginal efficiencies. Data were analyzed in 2 ways: (1) simple correlation between variables; and (2) cows were divided into 3 subgroups, designated low, moderate, and high DMI (LDMI, MDMI, and HDMI), according to actual DMI per day: ≤ 26 kg (n=27); >26 through 28.2 kg (n=28); and >28.2 kg (n=27). The phenotypic Pearson correlations among variables were analyzed, and the GLM procedure was used to test differences between subgroups. The relationships between milk and fat-corrected milk yields and the corresponding gross efficiencies were positive, whereas BW and gross production efficiency were negatively correlated. The marginal production efficiency from DM and energy consumed decreased with increasing DMI. The difference between BW gain as predicted by the National Research Council model (2001) and the present measurements increased with increasing DMI (r=0.68). The average calculated energy balances were 1.38, 2.28, and 4.20 Mcal/d (standard error of the mean=0.64) in the LDMI, MDMI, and HDMI groups, respectively. The marginal efficiency for milk yields from DMI or energy consumed was highest in LDMI, intermediate in MDMI, and lowest in HDMI. The predicted BW gains for the whole study period were 22.9, 37.9, and 75.8 kg for the LDMI, MDMI, and HDMI groups, respectively. The

  6. High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    PubMed Central

    Zhang, Y.-H. Percival; Evans, Barbara R.; Mielenz, Jonathan R.; Hopkins, Robert C.; Adams, Michael W.W.

    2007-01-01

    Background The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. Methodology/Principal Findings Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C6H10O5 (l)+7 H2O (l)→12 H2 (g)+6 CO2 (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. Conclusions Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H2/glucose) of anaerobic fermentations. Significance The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H2), and a high energy-density carrier starch (14.8 H2-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy. PMID:17520015

  7. Development of plasma assisted thermal vapor deposition technique for high-quality thin film.

    PubMed

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10 -3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq -1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  8. Development of plasma assisted thermal vapor deposition technique for high-quality thin film

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq-1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  9. Physiological Mechanisms Underlying the High-Grain Yield and High-Nitrogen Use Efficiency of Elite Rice Varieties under a Low Rate of Nitrogen Application in China.

    PubMed

    Wu, Lilian; Yuan, Shen; Huang, Liying; Sun, Fan; Zhu, Guanglong; Li, Guohui; Fahad, Shah; Peng, Shaobing; Wang, Fei

    2016-01-01

    Selecting rice varieties with a high nitrogen (N) use efficiency (NUE) is the best approach to reduce N fertilizer application in rice production and is one of the objectives of the Green Super Rice (GSR) Project in China. However, the performance of elite candidate GSR varieties under low N supply remains unclear. In the present study, differences in the grain yield and NUE of 13 and 14 candidate varieties with two controls were determined at a N rate of 100 kg ha(-1) in field experiments in 2014 and 2015, respectively. The grain yield for all of the rice varieties ranged from 8.67 to 11.09 t ha(-1), except for a japonica rice variety YG29, which had a grain yield of 6.42 t ha(-1). HY549 and YY4949 produced the highest grain yield, reflecting a higher biomass production and harvest index in 2014 and 2015, respectively. Total N uptake at maturity (TNPM) ranged from 144 to 210 kg ha(-1), while the nitrogen use efficiency for grain production (NUEg) ranged from 35.2 to 62.0 kg kg(-1). Both TNPM and NUEg showed a significant quadratic correlation with grain yield, indicating that it is possible to obtain high grain yield and NUEg with the reduction of TNPM. The correlation between N-related parameters and yield-related traits suggests that promoting pre-heading growth could increase TNPM, while high biomass accumulation during the grain filling period and large panicles are important for a higher NUEg. In addition, there were significant and negative correlations between the NUEg and N concentrations in leaf, stem, and grain tissues at maturity. Further improvements in NUEg require a reduction in the stem N concentration but not the leaf N concentration. The daily grain yield was the only parameter that significantly and positively correlated with both TNPMand NUEg. This study determined variations in the grain yield and NUE of elite candidate GSR rice varieties and provided plant traits that could be used as selection criteria in breeding N-efficient rice varieties.

  10. Real-time transmission of full-motion echocardiography over a high-speed data network: impact of data rate and network quality of service.

    PubMed

    Main, M L; Foltz, D; Firstenberg, M S; Bobinsky, E; Bailey, D; Frantz, B; Pleva, D; Baldizzi, M; Meyers, D P; Jones, K; Spence, M C; Freeman, K; Morehead, A; Thomas, J D

    2000-08-01

    With high-resolution network transmission required for telemedicine, education, and guided-image acquisition, the impact of errors and transmission rates on image quality needs evaluation. We transmitted clinical echocardiograms from 2 National Aeronautics and Space Administration (NASA) research centers with the use of Motion Picture Expert Group-2 (MPEG-2) encoding and asynchronous transmission mode (ATM) network protocol over the NASA Research and Education Network. Data rates and network quality (cell losses [CLR], errors [CER], and delay variability [CVD]) were altered and image quality was judged. At speeds of 3 to 5 megabits per second (Mbps), digital images were superior to those on videotape; at 2 Mbps, images were equivalent. Increasing CLR caused occasional, brief pauses. Extreme CER and CDV increases still yielded high-quality images. Real-time echocardiographic acquisition, guidance, and transmission is feasible with the use of MPEG-2 and ATM with broadcast quality seen above 3 Mbps, even with severe network quality degradation. These techniques can be applied to telemedicine and used for planned echocardiography aboard the International Space Station.

  11. Real-time transmission of full-motion echocardiography over a high-speed data network: impact of data rate and network quality of service

    NASA Technical Reports Server (NTRS)

    Main, M. L.; Foltz, D.; Firstenberg, M. S.; Bobinsky, E.; Bailey, D.; Frantz, B.; Pleva, D.; Baldizzi, M.; Meyers, D. P.; Jones, K.; hide

    2000-01-01

    With high-resolution network transmission required for telemedicine, education, and guided-image acquisition, the impact of errors and transmission rates on image quality needs evaluation. METHODS: We transmitted clinical echocardiograms from 2 National Aeronautics and Space Administration (NASA) research centers with the use of Motion Picture Expert Group-2 (MPEG-2) encoding and asynchronous transmission mode (ATM) network protocol over the NASA Research and Education Network. Data rates and network quality (cell losses [CLR], errors [CER], and delay variability [CVD]) were altered and image quality was judged. RESULTS: At speeds of 3 to 5 megabits per second (Mbps), digital images were superior to those on videotape; at 2 Mbps, images were equivalent. Increasing CLR caused occasional, brief pauses. Extreme CER and CDV increases still yielded high-quality images. CONCLUSIONS: Real-time echocardiographic acquisition, guidance, and transmission is feasible with the use of MPEG-2 and ATM with broadcast quality seen above 3 Mbps, even with severe network quality degradation. These techniques can be applied to telemedicine and used for planned echocardiography aboard the International Space Station.

  12. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  13. The yield and quality of black rice varieties in different altitude

    NASA Astrophysics Data System (ADS)

    Purwanto, E.; Hidayati, W.; Nandariyah

    2018-03-01

    This study aims to determine the optimal environmental conditions and corresponding black rice varieties in order to produce high production and optimum quality rice. The study using nested design, first was location (2 levels: the highlands and lowland), second was varieties (3 levels: Cempo Ireng, IPB, and Gagak) the study was conducted from November 2015 until May 2016 in Karanglo and Gutanon village, Karanganyar. Anthocyanin analysis conducted in laboratory of Nutrition and Food, Faculty of Agriculture, Sebelas Maret University. Data were analyzed using analysis of variance and significant difference continued with DMRT (Duncan Multiple Range Test) level of 5%. Results showed that cultivation in highlands and use of diverse varieties showed different quantity of rice that can be seen on panicle length, and weight of grain crops. Improved quality of results showed same things, anthocyanin content and iron increased on black rice which cultivated in highlands.

  14. Effect of free-range days on a local chicken breed: growth performance, carcass yield, meat quality, and lymphoid organ index.

    PubMed

    Tong, H B; Wang, Q; Lu, J; Zou, J M; Chang, L L; Fu, S Y

    2014-08-01

    An experiment was conducted to evaluate the effect of free-range days on growth performance, carcass yield, meat quality, and lymphoid organ index of a local chicken breed. In total, 1,000 one-day-old male Suqin yellow chickens were raised for 21 d. On d 21, 720 birds with similar BW (536 ± 36 g) were selected and randomly assigned to free-range treatment at 21, 28, 35, and 42 d of age (assigned to free-range treatment for 21, 14, 7, and 0 d, respectively). Each treatment was represented by 5 replicates (pens) containing 36 birds (180 birds per treatment). All the birds were raised in indoor floor pens measuring 1.42 × 1.42 m (2 m(2), 18 birds/m(2)) in conventional poultry research houses before free-range treatment. In the free-range treatment, the chickens were raised in indoor floor houses measuring 3 × 5 m (15 m(2), 2.4 birds/m(2)). In addition, they also had an outdoor free-range paddock measuring 3 × 8 m (24 m(2), 1.5 birds/m(2)). The BW of birds after being assigned to free-range treatment for 7 d decreased significantly compared with that in the conventional treatment (P < 0.05). However, there was no effect of the free-range days on the BW at 42 d of age (P > 0.05). The daily weight gain, feed per gain, daily feed intake, and mortality from 21 to 42 d of age were unaffected by free-range days (P > 0.05). At 42 d of age, the breast yield increased linearly with increasing free-range days (P < 0.05), whereas the thigh, leg, thigh bone, and foot yields decreased linearly (P < 0.05). The lung yield showed a significant increasing and then decreasing quadratic response to increasing free-range days (P < 0.05). The water-holding capacity of the thigh muscle decreased linearly with increasing free-range days (P < 0.05), whereas there was no significant difference in the meat color, shear force, and muscle pH (P > 0.05). The absolute thymus weight and thymus:BW ratio showed a significant increasing and then decreasing quadratic response to increasing free

  15. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  16. Capsule symmetry sensitivity and hohlraum symmetry calculations for the z-pinch driven hohlraum high-yield concept

    NASA Astrophysics Data System (ADS)

    Vesey, Roger; Cuneo, M. E.; Hanson Porter, D. L., Jr.; Mehlhorn, T. A.; Ruggles, L. E.; Simpson, W. W.; Hammer, J. H.; Landen, O.

    2000-10-01

    Capsule radiation symmetry is a crucial issue in the design of the z-pinch driven hohlraum approach to high-yield inertial confinement fusion [1]. Capsule symmetry may be influenced by power imbalance of the two z-pinch x-ray sources, and by hohlraum effects (geometry, time-dependent albedo, wall motion). We have conducted two-dimensional radiation-hydrodynamics calculations to estimate the symmetry sensitivity of the 220 eV beryllium ablator capsule that nominally yields 400 MJ in this concept. These estimates then determine the symmetry requirements to be met by the hohlraum design (for even Legendre modes) and by the top-bottom pinch imbalance and mistiming (for odd Legendre modes). We have used a combination of 2- and 3-D radiosity ("viewfactor"), and 2-D radiation-hydrodynamics calculations to identify hohlraum geometries that meet these symmetry requirements for high-yield, and are testing these models against ongoing Z foam ball symmetry experiments. 1. J. H. Hammer et al., Phys. Plas. 6, 2129 (1999).

  17. Fast and inexpensive synthesis of pentacene with high yield using 6,13-pentacenequinone as precursor

    NASA Astrophysics Data System (ADS)

    Mota, María L.; Rodriguez, Bibiana; Carrillo, Amanda; Ambrosio, Roberto C.; Luque, Priscy A.; Mireles, Marcela; Vivaldo, Israel; Quevedo, Manuel A.

    2018-02-01

    Pentacene is an important semiconductor in the field of organic electronics. In this work is presented an alternative synthesis procedure to obtain pentacene from 6,13-pentacenequinone as a precursor. Synthesis of pentacene was performed in two reactions, Diels-Adler cycloaddition of 6,13-pentacenequinone followed by 6,13-pentacenequinone reduction to pentacene, employing LiAlH4 as reducing agent. The products were characterized by Fourier Transform Infrared Spectroscopy (FTIR), 1H-Nuclear Magnetic Resonance Spectroscopy (1H-NMR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Ultraviolet-Visible Spectroscopy (UV-VIS). In this work, 6,13-pentacenequinone was synthetized with a high yield (55%) using an alternative method. The optimization process resulted in an overall reduction of reaction time while exhibiting high yield. The method presented here provides an affordable pentacene synthesis route with high purity, which can be further applied for research and development of organic electronic applications.

  18. Standardization of milk using cold ultrafiltration retentates for the manufacture of Swiss cheese: effect of altering coagulation conditions on yield and cheese quality.

    PubMed

    Govindasamy-Lucey, S; Jaeggi, J J; Martinelli, C; Johnson, M E; Lucey, J A

    2011-06-01

    Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature=32.2°C (UFHT), low renneting temperature=28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT

  19. Computing wheat nitrogen requirements from grain yield and protein maps

    USDA-ARS?s Scientific Manuscript database

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful postharvest information for evaluating water or nitrogen (N)...

  20. Computing wheat nitrogen requirements from grain yield and protein maps

    USDA-ARS?s Scientific Manuscript database

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful post-harvest information for evaluating water or nitrogen (...

  1. Constituent concentrations, loads, and yields to Beaver Lake, Arkansas, water years 1999-2008

    USGS Publications Warehouse

    Bolyard, Susan E.; De Lanois, Jeanne L.; Green, W. Reed

    2010-01-01

    Beaver Lake is a large, deep-storage reservoir used as a drinking-water supply and considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the reservoir system. Water-quality samples were collected at three main inflows to Beaver Lake: the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Water-quality samples collected over the period represented different flow conditions (from low to high). Constituent concentrations, flow-weighted concentrations, loads, and yields from White River, Richland Creek, and War Eagle Creek to Beaver Lake for water years 1999-2008 were documented for this report. Constituents include total ammonia plus organic nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved orthophosphorus (soluble reactive phosphorus), total phosphorus, total nitrogen, dissolved organic carbon, total organic carbon, and suspended sediment. Linear regression models developed by computer program S-LOADEST were used to estimate loads for each constituent for the 10-year period at each station. Constituent yields and flow-weighted concentrations for each of the three stations were calculated for the study. Constituent concentrations and loads and yields varied with time and varied among the three tributaries contributing to Beaver Lake. These differences can result from differences in precipitation, land use, contributions of nutrients from point sources, and variations in basin size. Load and yield estimates varied yearly during the study period, water years 1999-2008, with the least nutrient and sediment load and yields generally occurring in water year 2006, and the greatest occurring in water year 2008, during a year with record amounts of precipitation. Flow-weighted concentrations of most constituents were greatest at War Eagle Creek near Hindsville

  2. High beam quality and high energy short-pulse laser with MOPA

    NASA Astrophysics Data System (ADS)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  3. Effects of different irrigation practices using treated wastewater on tomato yields, quality, water productivity, and soil and fruit mineral contents.

    PubMed

    Demir, Azize Dogan; Sahin, Ustun

    2017-11-01

    Wastewater use in agricultural irrigation is becoming a common practice in order to meet the rising water demands in arid and semi-arid regions. The study was conducted to determine the effects of the full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation practices using treated municipal wastewater (TWW) and freshwater (FW) on tomato yield, water use, fruit quality, and soil and fruit heavy metal concentrations. The TWW significantly increased marketable yield compared to the FW, as well as decreased water consumption. Therefore, water use efficiency (WUE) in the TWW was significantly higher than in the FW. Although the DI and the PRD practices caused less yields, these practices significantly increased WUE values due to less irrigation water applied. The water-yield linear relationships were statistically significant. TWW significantly increased titratable acidity and vitamin C contents. Reduced irrigation provided significantly lower titratable acidity, vitamin C, and lycopene contents. TWW increased the surface soil and fruit mineral contents in response to FW. Greater increases were observed under FI, and mineral contents declined with reduction in irrigation water. Heavy metal accumulation in soils was within safe limits. However, Cd and Pb contents in fruits exceeded standard limits given by FAO/WHO. Higher metal pollution index values determined for fruits also indicated that TWW application, especially under FI, might cause health risks in long term.

  4. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    PubMed

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Permanent-Magnet Microwave Ion Source For A Compact High-Yield Neutron Generator

    NASA Astrophysics Data System (ADS)

    Waldmann, O.; Ludewigt, B.

    2011-06-01

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5×1011 n/s for D-T and ˜1×1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60×6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  6. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    NASA Astrophysics Data System (ADS)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  7. Organic weed conrol and cover crop residue integration impacts on weed control, quality, and yield and economics in conservation tillage tomato - A case study

    USDA-ARS?s Scientific Manuscript database

    The increased use of conservation tillage in vegetable production requires more information be developed on the role of cover crops in weed control, tomato quality and yield. Three conservation-tillage systems utilizing crimson clover, brassica and cereal rye as winter cover crops were compared to ...

  8. Establishing a high yielding streptomyces-based cell-free protein synthesis system.

    PubMed

    Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C

    2017-06-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Acid soil infertility effects on peanut yields and yield components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blamey, F.P.C.

    1983-01-01

    The interpretation of soil amelioration experiments with peanuts is made difficult by the unpredictibility of the crop and by the many factors altered when ameliorating acid soils. The present study was conducted to investigate the effects of lime and gypsum applications on peanut kernel yield via the three first order yield components, pods per ha, kernels per pod, and kernel mass. On an acid medium sandy loam soil (typic Plinthustult), liming resulted in a highly significant kernel yield increase of 117% whereas gypsum applications were of no significant benefit. As indicated by path coefficient analysis, an increase in the numbermore » of pods per ha was markedly more important in increasing yield than an increase in either the number of kernels per pod or kernel mass. Furthermore, exch. Al was found to be particularly detrimental to pod number. It was postulated that poor peanut yields resulting from acid soil infertility were mainly due to the depressive effect of exch. Al on pod number. Exch. Ca appeared to play a secondary role by ameliorating the adverse effects of exch. Al.« less

  10. Effects of changes in soil properties derived from land levelling on grape quality and yield in the Priorat (Spain)

    NASA Astrophysics Data System (ADS)

    Concepción Ramos, Maria

    2017-04-01

    Soil characteristics together with topography and climate influence on the suitability of the environment for grapevine growing and wine production grapevine growth and fruit qualities. Thus, changes in soil properties derived from field works and agricultural activities may influence grape production and quality. This work focuses on the effects of land terracing on soil properties, and the changes in grape quality and production. The study was conducted in the Priorat region, where old vineyards planted in steep slopes have been adapted for the labour mechanization with the construction of terraces. Changes in soil properties, such as organic matter, infiltration, water retention capacity were analysed in both old and transformed vineyards. Grape yield, pH, acidity and the likely alcohol content were evaluated in a sample of 80 plots planted with Grenache and Carignan. The soil surface alterations produced by the terrace construction affected some hydrological properties, such as texture and bulk density, and they also gave rise to lower soil organic matter content (up to 40%), lower available water capacity (up to 25%)and hydraulic (up to 55%). For the evaluated varieties, there were differences in yield between both new and old vineyards: 2.18 vs 0.68 kg/vine for Carignan and 2.34 vs 1.64 kg/vine for Grenache. For Carignan, pH was on average lower in the new than in the old vineyards (3.46 vs. and 3.51) and higher differences were observed in the acidity (5.29 vs. 4.22). Similarly for Grenache, pH values were 3.3 vs 3.24 and acidity 5.18 vs 4.69. Smaller differences were found in the likely alcohol content although it was always higher in the old vineyards (14.5 and 14.9 for Carignan and Grenache, respectively) than in the new vineyards (13.7 and 14.5 for Carignan and Grenache, respectively).

  11. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.

    PubMed

    Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2013-02-01

    We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.

  12. Engineering of Corynebacterium glutamicum for High-Yield l-Valine Production under Oxygen Deprivation Conditions

    PubMed Central

    Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki

    2013-01-01

    We previously demonstrated efficient l-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the l-valine yield. Eliminating these by-products therefore was deemed key to improving the l-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and l-valine production dropped considerably due to the severely elevated intracellular NADH/NAD+ ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher l-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM l-valine at a yield of 88% mol mol of glucose−1 after 24 h under oxygen deprivation, a vastly improved yield over our previous best. PMID:23241971

  13. Quality of white cabbage yield and potential risk of ground water nitrogen pollution, as affected by nitrogen fertilisation and irrigation practices.

    PubMed

    Maršić, Nina Kacjan; Sturm, Martina; Zupanc, Vesna; Lojen, Sonja; Pintar, Marina

    2012-01-15

    The effect of different fertilisation (broadcast solid NPK application and fertigation with water-soluble fertiliser) and irrigation practices (sprinkler and drip irrigation) on yield, the nitrate content in cabbage (Brassica oleracea var. capitata L.) and the cabbage N uptake was detected, in order to assess the potential risk for N losses, by cultivation on sandy-loam soil. The N rate applied on the plots was 200 kg N ha(-1). The highest yield (93 t ha(-1)) and nitrate content (1256 mg kg(-1) DW) were found with treatments using broadcast fertilisation and sprinkler irrigation. On those plots the negative N balance (-30 kg N ha(-1)) was recorded, which comes mainly from the highest crop N uptake (234 kg N ha(-1)) indicating the lowest potential for N losses. In terms of yield quality and the potential risk for N losses, broadcast fertilisation combined with sprinkler irrigation proved to be the most effective combination among the tested practices under the given experimental conditions. The importance of adequate irrigation is also evident, namely in plots on which 50% drip irrigation was applied, the lowest yield was detected and according to the positive N balance, a higher potential for N losses is expected. Copyright © 2011 Society of Chemical Industry.

  14. Effect of sulphur and phosphorus on yield, quality and nutrient status of pigeonpea (Cajanus cajan).

    PubMed

    Deshbhratar, P B; Singh, P K; Jambhulkar, A P; Ramteke, D S

    2010-11-01

    A field experiment was conducted to study the impact of Sulphur(S) and Phosphorus (P) on yield, nutrient status of soil and their contents in pigeonpea (Cajanus cajan) during the year 2008-2009. Seven treatments were studied in Factorial Randomized Block Design with three replications. The treatment combinations were derived from three levels of sulphur (0, 20 and 40 kg S ha(-1)) and four levels of phosphorus (0, 25, 50 and 75 kg ha(-1)). The experimental soil was medium black, slightly calcareous, clay in texture and slightly alkaline in reaction. The results indicated a significant increase in grain yield (14.81 q ha(-1)) and straw yield (41.26 q ha(-1)) of pigeonpea after 20 kg S ha(-1) and 50 kg P2O5 ha(-1) treatment with common dose of nitrogen @ 30 kg ha(-1). The increase in grain and straw yield was 102.77 and 52.87% as compare to higher over control. Maximum number of pods plant(-1), maximum number of grains pod and test weight by this treatment was also observed as compared to control. Application of S and P improved soil fertility status and S alone did not influence P availability. Hence, in order to maintain the fertility status of the soil at high level, combine application of 20 kg S ha(-1) with 50 kg P2O5 ha(-1) is essential. The residual fertility status of soil is advocated for rainfed pigeonpea crop grown on vertisol in Vidarbha region.

  15. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  16. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  17. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  18. Development of high-average-power DPSSL with high beam quality

    NASA Astrophysics Data System (ADS)

    Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki

    2000-08-01

    The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.

  19. Sources of nitrate yields in the Mississippi River Basin.

    PubMed

    David, Mark B; Drinkwater, Laurie E; McIsaac, Gregory F

    2010-01-01

    Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by rivers. The average fraction of annual riverine nitrate N export/NNI ranged from 0.05 for the lower Mississippi subbasin to 0.3 for the upper Mississippi River basin and as high as 1.4 (4.2 in a wet year) for the Embarras River watershed, a mostly tile-drained basin. Intensive corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] watersheds on Mollisols had low NNI values and when combined with riverine N losses suggest a net depletion of soil organic N. We used county-level data to develop a nonlinear model ofN inputs and landscape factors that were related to winter-spring riverine nitrate yields for 153 watersheds within the basin. We found that river runoff times fertilizer N input was the major predictive term, explaining 76% of the variation in the model. Fertilizer inputs were highly correlated with fraction of land area in row crops. Tile drainage explained 17% of the spatial variation in winter-spring nitrate yield, whereas human consumption of N (i.e., sewage effluent) accounted for 7%. Net N inputs were not a good predictor of riverine nitrate N yields, nor were other N balances. We used this model to predict the expected nitrate N yield from each county in the Mississippi River basin; the greatest nitrate N yields corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This analysis can be used to guide decisions about where efforts to reduce nitrate N losses can be most effectively targeted to improve local water quality and reduce export to the Gulf of Mexico.

  20. Thermic conversion of benzene into 6-phenylfulvene with high yield mediated by GaP nanocrystals.

    PubMed

    Gao, Shanmin; Lu, Jun; Zhao, Yan; Chen, Nan; Xie, Yi

    2002-12-07

    With GaP nanocrystals being used in a close reaction system, 6-phenylfulvene is successfully obtained via a high yield thermic conversion from benzene, which provides the possibility of applying nanocrystals to mediate organic reactions.

  1. Tropospheric ozone pollution in India: effects on crop yield and product quality.

    PubMed

    Singh, Aditya Abha; Agrawal, S B

    2017-02-01

    Ozone (O 3 ) in troposphere is the most critical secondary air pollutant, and being phytotoxic causes substantial losses to agricultural productivity. Its increasing concentration in India particularly in Indo-Gangetic plains is an issue of major concern as it is posing a threat to agriculture. In view of the issue of rising surface level of O 3 in India, the aim of this compilation is to present the past and the prevailing concentrations of O 3 and its important precursor (oxides of nitrogen) over the Indian region. The resulting magnitude of reductions in crop productivity as well as alteration in the quality of the product attributable to tropospheric O 3 has also been taken up. Studies in relation to yield measurements have been conducted predominantly in open top chambers (OTCs) and also assessed by using antiozonant ethylene diurea (EDU). There is a substantial spatial difference in O 3 distribution at different places displaying variable O 3 concentrations due to seasonal and geographical variations. This review further recognizes the major information lacuna and also highlights future perspectives to get the grips with rising trend of ground level O 3 pollution and also to formulate the policies to check the emissions of O 3 precursors in India.

  2. Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water

    NASA Astrophysics Data System (ADS)

    Sterniczuk, Marcin; Yakabuskie, Pamela A.; Wren, J. Clara; Jacob, Jasmine A.; Bartels, David M.

    2016-04-01

    Low Linear Energy Transfer (LET) radiolysis escape yields (G values) are reported for the sum (G(radH)+G(e-)aq) and for G(H2) in subcritical water up to 350 °C. The scavenger system 1-10 mM acetate/0.001 M hydroxide/0.00048 M N2O was used with simultaneous mass spectroscopic detection of H2 and N2 product. Temperature-dependent measurements were carried out with 2.5 MeV electrons from a van de Graaff accelerator, while room temperature calibration measurements were done with a 60Co gamma source. The concentrations and dose range were carefully chosen so that initial spur chemistry is not perturbed and the N2 product yield corresponds to those reducing radicals that escape recombination in pure water. In comparison with a recent review recommendation of Elliot and Bartels (AECL report 153-127160-450-001, 2009), the measured reducing radical yield is seven percent smaller at room temperature but in fairly good agreement above 150 °C. The H2 escape yield is in good agreement throughout the temperature range with several previous studies that used much larger radical scavenging rates. Previous analysis of earlier high temperature measurements of Gesc(radOH) is shown to be flawed, although the actual G values may be nearly correct. The methodology used in the present report greatly reduces the range of possible error and puts the high temperature escape yields for low-LET radiation on a much firmer quantitative foundation than was previously available.

  3. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  4. Developing an automated database for monitoring ultrasound- and computed tomography-guided procedure complications and diagnostic yield.

    PubMed

    Itri, Jason N; Jones, Lisa P; Kim, Woojin; Boonn, William W; Kolansky, Ana S; Hilton, Susan; Zafar, Hanna M

    2014-04-01

    Monitoring complications and diagnostic yield for image-guided procedures is an important component of maintaining high quality patient care promoted by professional societies in radiology and accreditation organizations such as the American College of Radiology (ACR) and Joint Commission. These outcome metrics can be used as part of a comprehensive quality assurance/quality improvement program to reduce variation in clinical practice, provide opportunities to engage in practice quality improvement, and contribute to developing national benchmarks and standards. The purpose of this article is to describe the development and successful implementation of an automated web-based software application to monitor procedural outcomes for US- and CT-guided procedures in an academic radiology department. The open source tools PHP: Hypertext Preprocessor (PHP) and MySQL were used to extract relevant procedural information from the Radiology Information System (RIS), auto-populate the procedure log database, and develop a user interface that generates real-time reports of complication rates and diagnostic yield by site and by operator. Utilizing structured radiology report templates resulted in significantly improved accuracy of information auto-populated from radiology reports, as well as greater compliance with manual data entry. An automated web-based procedure log database is an effective tool to reliably track complication rates and diagnostic yield for US- and CT-guided procedures performed in a radiology department.

  5. A high yield neutron target for cancer therapy

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    A rotating target was developed that has the potential for providing an initial yield of 10 to the 13th power neutrons per second by the T(d,n)He-4 reaction, and a useable lifetime in excess of 600 hours. This yield and lifetime are indicated for a 300 Kv and 30 mA deuteron accelerator and a 30 microns thick titanium tritide film formed of the stoichiometric compound TiT2. The potential for extended lifetime is made possible by incorporating a sputtering electrode that permits use of titanium tritide thicknesses much greater than the deuteron range. The electrode is used to remove in situ depleted titanium layers to expose fresh tritide beneath. The utilization of the rotating target as a source of fast neutrons for cancer therapy is discussed.

  6. High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures

    DOE PAGES

    Nocua, José E.; Piazza, Fabrice; Weiner, Brad R.; ...

    2009-01-01

    Boron nimore » tride (BN) nanostructures are structural analogues of carbon nanostructures but have completely different bonding character and structural defects. They are chemically inert, electrically insulating, and potentially important in mechanical applications that include the strengthening of light structural materials. These applications require the reliable production of bulk amounts of pure BN nanostructures in order to be able to reinforce large quantities of structural materials, hence the need for the development of high-yield synthesis methods of pure BN nanostructures. Using borazine ( B 3 N 3 H 6 ) as chemical precursor and the hot-filament chemical vapor deposition (HFCVD) technique, pure BN nanostructures with cross-sectional sizes ranging between 20 and 50 nm were obtained, including nanoparticles and nanofibers. Their crystalline structure was characterized by (XRD), their morphology and nanostructure was examined by (SEM) and (TEM), while their chemical composition was studied by (EDS), (FTIR), (EELS), and (XPS). Taken altogether, the results indicate that all the material obtained is stoichiometric nanostructured BN with hexagonal and rhombohedral crystalline structure.« less

  7. High quality factor, fully switchable terahertz superconducting metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalari, G., E-mail: scalari@phys.ethz.ch; Maissen, C.; Faist, J.

    2014-12-29

    We present a complementary THz metasurface realised with Niobium thin film which displays a quality factor Q = 54 and a fully switchable behaviour as a function of the temperature. The switching behaviour and the high quality factor are due to a careful design of the metasurface aimed at maximising the ohmic losses when the Nb is above the critical temperature and minimising the radiative coupling. The superconductor allows the operation of the cavity with high Q and the use of inductive elements with a high aspect ratio. Comparison with three dimensional finite element simulations highlights the crucial role of the inductivemore » elements and of the kinetic inductance of the Cooper pairs in achieving the high quality factor and the high field enhancement.« less

  8. Interactive effect of supplemental ultraviolet B and elevated ozone on seed yield and oil quality of two cultivars of linseed (Linum usitatissimum L.) carried out in open top chambers.

    PubMed

    Tripathi, Ruchika; Agrawal, Shashi B

    2013-03-30

    Current scenarios of global climate change predict a significant increase in ultraviolet B (UV-B) and tropospheric ozone (O₃) in the near future. Both UV-B and O₃ can have detrimental effects on the productivity and yield quality of important agricultural crops. The present study was conducted to investigate the individual and interactive effects of supplemental UV-B (sUV-B) (ambient + 7.2 kJ m⁻² day⁻¹) and O₃ (ambient + 10 ppb) on the yield and oil quality of two cultivars of linseed (Linum usitatissimum L.). The mean monthly ambient O₃ concentration varied from 27.7 to 59.0 ppb during the experimental period. O₃ affected fruit formation, while sUV-B was mainly responsible for ovule abortion. Seed sugar and protein contents showed maximum reduction in O₃-treated plants, while mineral nutrient levels were most affected by sUV-B + O₃ treatment. Rancid oil of low nutritional quality and containing long-chain fatty acids was favoured along with a decrease in oil content. sUV-B and O₃ individually as well as in combination caused deterioration of the yield and quality of oil and seeds of linseed. However, the individual effect of O₃ was more damaging than the effect of sUV-B or sUV-B + O₃, and cultivar T-397 performed better than Padmini. © 2012 Society of Chemical Industry.

  9. Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment.

    PubMed

    Visioli, Giovanna; Bonas, Urbana; Dal Cortivo, Cristian; Pasini, Gabriella; Marmiroli, Nelson; Mosca, Giuliano; Vamerali, Teofilo

    2018-04-01

    With the increasing demand for high-quality foodstuffs and concern for environmental sustainability, late-season nitrogen (N) foliar fertilization of common wheat is now an important and widespread practice. This study investigated the effects of late-season foliar versus soil N fertilization on yield and protein content of four varieties of durum wheat, Aureo, Ariosto, Biensur and Liberdur, in a three-year field trial in northern Italy. Variations in low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that N applied to the canopy did not improve protein rate compared with N application to the soil (general mean 138 mg g -1 ), but moderately increased productivity in the high-yielding varieties Liberdur and Biensur (three-year means 7.23 vs 7.13 and 7.53 vs 7.09 t ha -1 respectively). Technological quality was mainly related to variety choice, Aureo and Ariosto having higher protein rates and glutenin/gliadin ratios. Also found was a strong 'variety × N application method' interaction in the proportions of protein subunits within each class, particularly LMW-GS and gliadins. A promising result was the higher N uptake efficiency, although as apparent balance, combined with higher HMW/LMW-GS ratio in var. Biensur. Late-season foliar N fertilization allows N fertilizer saving, potentially providing environmental benefits in the rainy climate of the northern Mediterranean area, and also leads to variety-dependent up-regulation of essential LMW-GS and gliadins. Variety choice is a key factor in obtaining high technological quality, although it is currently associated with modest grain yield. This study provides evidence of high quality in the specific high-yielding variety Biensur, suggesting its potential as a mono-varietal semolina for pasta production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Land Use, Yield and Quality Changes of Minor Field Crops: Is There Superseded Potential to Be Reinvented in Northern Europe?

    PubMed

    Peltonen-Sainio, Pirjo; Jauhiainen, Lauri; Lehtonen, Heikki

    2016-01-01

    Diversification of agriculture was one of the strengthened aims of the greening payment of European Agricultural Policy (CAP) as diversification provides numerous ecosystems services compared to cereal-intensive crop rotations. This study focuses on current minor crops in Finland that have potential for expanded production and considers changes in their cropping areas, yield trends, breeding gains, roles in crop rotations and potential for improving resilience. Long-term datasets of Natural Resources Institute Finland and farmers' land use data from the Agency of Rural Affairs were used to analyze the above-mentioned trends and changes. The role of minor crops in rotations declined when early and late CAP periods were compared and that of cereal monocultures strengthened. Genetic yield potentials of minor crops have increased as also genetic improvements in quality traits, although some typical trade-offs with improved yields have also appeared. However, the gap between potential and attained yields has expanded, depending on the minor crop, as national yield trends have either stagnated or declined. When comparing genetic improvements of minor crops to those of the emerging major crop, spring wheat, breeding achievements in minor crops were lower. It was evident that the current agricultural policies in the prevailing market and the price environment have not encouraged cultivation of minor crops but further strengthened the role of cereal monocultures. We suggest optimization of agricultural land use, which is a core element of sustainable intensification, as a future means to couple long-term environmental sustainability with better success in economic profitability and social acceptability. This calls for development of effective policy instruments to support farmer's diversification actions.

  11. Land Use, Yield and Quality Changes of Minor Field Crops: Is There Superseded Potential to Be Reinvented in Northern Europe?

    PubMed Central

    Peltonen-Sainio, Pirjo; Jauhiainen, Lauri; Lehtonen, Heikki

    2016-01-01

    Diversification of agriculture was one of the strengthened aims of the greening payment of European Agricultural Policy (CAP) as diversification provides numerous ecosystems services compared to cereal-intensive crop rotations. This study focuses on current minor crops in Finland that have potential for expanded production and considers changes in their cropping areas, yield trends, breeding gains, roles in crop rotations and potential for improving resilience. Long-term datasets of Natural Resources Institute Finland and farmers’ land use data from the Agency of Rural Affairs were used to analyze the above-mentioned trends and changes. The role of minor crops in rotations declined when early and late CAP periods were compared and that of cereal monocultures strengthened. Genetic yield potentials of minor crops have increased as also genetic improvements in quality traits, although some typical trade-offs with improved yields have also appeared. However, the gap between potential and attained yields has expanded, depending on the minor crop, as national yield trends have either stagnated or declined. When comparing genetic improvements of minor crops to those of the emerging major crop, spring wheat, breeding achievements in minor crops were lower. It was evident that the current agricultural policies in the prevailing market and the price environment have not encouraged cultivation of minor crops but further strengthened the role of cereal monocultures. We suggest optimization of agricultural land use, which is a core element of sustainable intensification, as a future means to couple long-term environmental sustainability with better success in economic profitability and social acceptability. This calls for development of effective policy instruments to support farmer’s diversification actions. PMID:27870865

  12. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum.

    PubMed

    Tian, Liang; Papanek, Beth; Olson, Daniel G; Rydzak, Thomas; Holwerda, Evert K; Zheng, Tianyong; Zhou, Jilai; Maloney, Marybeth; Jiang, Nannan; Giannone, Richard J; Hettich, Robert L; Guss, Adam M; Lynd, Lee R

    2016-01-01

    Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. Fuels from cellulosic biomass are particularly promising, but would benefit from lower processing costs. Clostridium thermocellum can rapidly solubilize and ferment cellulosic biomass, making it a promising candidate microorganism for consolidated bioprocessing for biofuel production, but increases in product yield and titer are still needed. Here, we started with an engineered C. thermocellum strain where the central metabolic pathways to products other than ethanol had been deleted. After two stages of adaptive evolution, an evolved strain was selected with improved yield and titer. On chemically defined medium with crystalline cellulose as substrate, the evolved strain produced 22.4 ± 1.4 g/L ethanol from 60 g/L cellulose. The resulting yield was about 0.39 gETOH/gGluc eq, which is 75 % of the maximum theoretical yield. Genome resequencing, proteomics, and biochemical analysis were used to examine differences between the original and evolved strains. A two step selection method successfully improved the ethanol yield and the titer. This evolved strain has the highest ethanol yield and titer reported to date for C. thermocellum, and is an important step in the development of this microbe for industrial applications.

  13. Cyberbullying Prevalence among United States Middle and High School Aged Adolescents: A Systematic Review and Quality Assessment

    PubMed Central

    Selkie, Ellen M.; Fales, Jessica L.; Moreno, Megan A.

    2015-01-01

    Background Cyberbullying has established links to physical and mental health problems including depression, suicidality, substance use, and somatic symptoms. Quality reporting of cyberbullying prevalence is essential to guide evidence-based policy and prevention priorities. The purpose of this systematic review was to investigate study quality and reported prevalence among cyberbullying research studies conducted in populations of US adolescents of middle and high school age. Methods Searches of peer-reviewed literature published through June 2015 for “cyberbullying” and related terms were conducted using PubMed, PsycINFO, CINAHL Plus, and Web of Science. Included manuscripts reported cyberbullying prevalence in general populations of U.S. adolescents between the ages of 10 and 19. Using a review tool based on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement, reviewers independently scored study quality on study methods, results reporting, and reported prevalence. Results Search results yielded 1,447 manuscripts; 81 manuscripts representing 58 unique studies were identified as meeting inclusion criteria. Quality scores ranged between 12 and 37 total points out of a possible 42 points (M = 26.7, SD = 4.6). Prevalence rates of cyberbullying ranged as follows: perpetration, 1% to 41%; victimization, 3% to 72%; and overlapping perpetration and victimization, 2.3% to 16.7%. Conclusions Literature on cyberbullying in US middle and high school aged students is robust in quantity but inconsistent in quality and reported prevalence. Consistent definitions and evidence-based measurement tools are needed. PMID:26576821

  14. High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate.

    PubMed

    Zhang, Min; Gu, Lei; Cheng, Chao; Zhu, Junru; Wu, Hao; Ma, Jiangfeng; Dong, Weiliang; Kong, Xiangping; Jiang, Min; Ouyang, Pingkai

    2017-08-01

    Chicory is an agricultural plant with considerable potential as a carbohydrate substrate for low-cost production of biochemicals. In this work, the production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate was investigated. The bioconversion process initially suffered from the leakage of fructose to the phosphoketolase pathway, resulting in a low mannitol yield. When inulin hydrolysate was supplemented with glucose as a substrate for mannitol production in combination with aeration induction and nicotinic acid induced redox modulation strategies, the mannitol yield greatly improved. Under these conditions, significant improvement in the glucose consumption rate, intracellular NADH levels and mannitol dehydrogenase specific activity were observed, with mannitol production increasing from 64.6 to 88.1 g/L and overall yield increase from 0.69 to 0.94 g/g. This work demonstrated an efficient method for the production of mannitol from inulin hydrolysate with a high overall yield.

  15. Cyberbullying Prevalence Among US Middle and High School-Aged Adolescents: A Systematic Review and Quality Assessment.

    PubMed

    Selkie, Ellen M; Fales, Jessica L; Moreno, Megan A

    2016-02-01

    Cyberbullying (CB) has established links to physical and mental health problems including depression, suicidality, substance use, and somatic symptoms. Quality reporting of CB prevalence is essential to guide evidence-based policy and prevention priorities. The purpose of this systematic review was to investigate study quality and reported prevalence among CB research studies conducted in populations of US adolescents of middle and high school age. Searches of peer-reviewed literature published through June 2015 for "CB" and related terms were conducted using PubMed, PsycINFO, CINAHL Plus, and Web of Science. Included manuscripts reported CB prevalence in general populations of US adolescents between the ages of 10 and 19 years. Using a review tool based on the Strengthening the Reporting of Observational Studies in Epidemiology statement, reviewers independently scored study quality on study methods, results reporting, and reported prevalence. Search results yielded 1,447 manuscripts; 81 manuscripts representing 58 unique studies were identified as meeting inclusion criteria. Quality scores ranged between 12 and 37 total points of a possible 42 points (mean = 26.7, standard deviation = 4.6). Prevalence rates of CB ranged as follows: Perpetration, 1%-41%; victimization, 3%-72%; and overlapping perpetration and victimization, 2.3%-16.7%. Literature on CB in US middle and high school-aged students is robust in quantity but inconsistent in quality and reported prevalence. Consistent definitions and evidence-based measurement tools are needed. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  16. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    PubMed

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  17. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    PubMed

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Seedless Synthesis of Monodispersed Gold Nanorods with Remarkably High Yield: Synergistic Effect of Template Modification and Growth Kinetics Regulation.

    PubMed

    Liu, Kang; Bu, Yanru; Zheng, Yuanhui; Jiang, Xuchuan; Yu, Aibing; Wang, Huanting

    2017-03-08

    Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Unexpected high yields of carbonyl and peroxide products of aqueous isoprene ozonolysis and implications

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Huang, D.; Zhang, X.; Zhao, Y.; Chen, Z. M.

    2012-03-01

    The aqueous phase reaction of volatile organic compounds (VOCs) has not been considered in most analyses of atmospheric chemical processes. However, some experimental evidence has shown that, compared to the corresponding gas phase reaction, the aqueous chemical processes of VOCs in the bulk solutions and surfaces of ambient wet particles (cloud, fog, and wet aerosols) may potentially contribute to the products and formation of secondary organic aerosol (SOA). In the present study, we performed a laboratory experiment of the aqueous ozonolysis of isoprene at different pHs (3-7) and temperatures (4-25 °C). We detected three important kinds of products, including carbonyl compounds, peroxide compounds, and organic acids. Our results showed that the molar yields of these products were nearly independent of the investigated pHs and temperatures. These products included (1) carbonyls: 56.7 ± 6.7% formaldehyde, 42.8 ± 2.5% methacrolein (MAC), and 57.7 ± 3.4% methyl vinyl ketone (MVK); (2) peroxides: 53.4 ± 4.1% hydrogen peroxide (H2O2) and 15.1 ± 3.1% hydroxylmethyl hydroperoxide (HMHP); and (3) organic acids: undetectable (< 1% estimated by the detection limit). Based on the amounts of products formed and the isoprene consumed, the total carbon yield was estimated to be 95 ± 4%. This implied that most of the products in the reaction system were detected. Of note, the combined yields of both MAC + MVK and H2O2 + HMHP in the aqueous isoprene ozonolysis were much higher than those observed in the corresponding gas phase reaction. We suggested that these unexpected high yields of carbonyls and peroxides were related to the greater capability of condensed water, compared to water vapor, to stabilize energy-rich Criegee radicals. This aqueous ozonolysis of isoprene (and possibly other biogenic VOCs) could potentially occur on the surfaces of ambient wet particles and plants. Moreover, the high-yield carbonyl and peroxide products might provide a considerable source of

  20. Inequality in Preschool Quality? Community-Level Disparities in Access to High-Quality Learning Environments

    ERIC Educational Resources Information Center

    Bassok, Daphna; Galdo, Eva

    2016-01-01

    In recent years, unequal access to high-quality preschool has emerged as a growing public policy concern. Because of data limitations, it is notoriously difficult to measure disparities in access to early learning opportunities across communities and particularly challenging to quantify gaps in access to "high-quality" programs. Research…

  1. Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water

    USDA-ARS?s Scientific Manuscript database

    Irrigation with high salinity water influences plant growth, production of photosynthetic pigments and total phenols, leading to reduction in crop yield and quality. Foliar application of macro- and/or micro-nutrients can, to some extent, mitigate negative effects of high salinity irrigation water o...

  2. Growth, yield and tuber quality of Solanum tuberosum L. under supplemental ultraviolet-B radiation at different NPK levels.

    PubMed

    Singh, S; Kumari, R; Agrawal, M; Agrawal, S B

    2011-05-01

    In many areas, decreases in the stratospheric ozone layer have resulted in an increase in ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth's surface. The present study was conducted to evaluate the interactive effects of supplemental UV-B (sUV-B) and mineral nutrients on a tuber crop, potato (Solanum tuberosum L. var Kufri Badshah), under natural field conditions in a dry tropical environment. The nutrient treatments were the recommended dose of NPK (F(o)), 1.5 times the recommended dose of NPK (F(1)), 1.5 times the recommended dose of N (F(2)) and 1.5 times the recommended dose of K (F(3)). The response of potato plants to sUV-B varied with nutrient treatment and concentration. sUV-B adversely affected growth, yield and quality of tubers, causing an increase in reducing sugars in the tubers and thus reducing the economic value. Growth and fresh weight of tubers was maximal with sUV-B at 1.5 times recommended NPK, but the dry weight of tubers were highest with the recommended NPK dose. Reducing sugar content was lower in potato plants treated with sUV-B and the recommended NPK than with sUV-B and 1.5 times the recommended NPK. This study thus clearly shows that growing potato with 1.5 times the recommended NPK or 1.5 times the recommended dose of N/K does not alleviate the sUV-B induced changes in yield and quality of tubers compared to the recommended NPK dose. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Picker vs. stripper harvesting in the Texas High Plains: Agronomic implications

    USDA-ARS?s Scientific Manuscript database

    Many changes have occurred during the last decade in the Texas High Plains which have resulted in increased cotton yields and improved fiber quality. The main factors associated with both higher lint yield and quality include a shift in varieties planted, with virtually no "storm-proof stripper type...

  4. Development of a New Class of Scintillating Fibres with Very Short Decay Time and High Light Yield

    NASA Astrophysics Data System (ADS)

    Borshchev, O.; Cavalcante, A. B. R.; Gavardi, L.; Gruber, L.; Joram, C.; Ponomarenko, S.; Shinji, O.; Surin, N.

    2017-05-01

    We present first studies of a new class of scintillating fibres which are characterised by very short decay times and high light yield. The fibres are based on a novel type of luminophores admixed to a polystyrene core matrix. These so-called Nanostructured Organosilicon Luminophores (NOL) have high photoluminescense quantum yield and decay times just above 1 ns. A blue and a green emitting prototype fibre with 250 μm diameter were produced and characterised in terms of attenuation length, ionisation light yield, decay time and tolerance to x-ray irradiation. The well-established Kuraray SCSF-78 and SCSF-3HF fibres were taken as references. Even though the two prototype fibres mark just an intermediate step in an ongoing development, their performance is already on a competitive level. In particular, their decay time constants are about a factor of two shorter than the fastest known fibres, which makes them promising candidates for time critical applications.

  5. Low-quality birds do not display high-quality signals: The cysteine-pheomelanin mechanism of honesty

    PubMed Central

    Galván, Ismael; Wakamatsu, Kazumasa; Camarero, Pablo R; Mateo, Rafael; Alonso-Alvarez, Carlos

    2015-01-01

    The mechanisms that make that the costs of producing high-quality signals are unaffordable to low-quality signalers are a current issue in animal communication. The size of the melanin-based bib of male house sparrows Passer domesticus honestly signals quality. We induced the development of new bibs while treating males with buthionine-sulfoximine (BSO), a substance that depletes the levels of the antioxidant glutathione (GSH) and the amino acid cysteine, two elements that switch melanogenesis from eumelanin to pheomelanin. Final bib size is negatively related to pheomelanin levels in the bib feathers. BSO reduced cysteine and GSH levels in all birds, but improved phenotypes (bibs larger than controls) were only expressed by high-quality birds (BSO birds with largest bibs initially). Negative associations between final bib size and cysteine levels in erythrocytes, and between pheomelanin and cysteine levels, were observed in high-quality birds only. These findings suggest that a mechanism uncoupling pheomelanin and cysteine levels may have evolved in low-quality birds to avoid producing bibs of size not corresponding to their quality and greater relative costs. Indeed, greater oxidative stress in cells was not observed in low-quality birds. This may represent the first mechanism maintaining signal honesty without producing greater relative costs on low-quality signalers. PMID:25330349

  6. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows.

    PubMed

    Bobbo, T; Ruegg, P L; Stocco, G; Fiore, E; Gianesella, M; Morgante, M; Pasotto, D; Bittante, G; Cecchinato, A

    2017-06-01

    The aim of this study was to investigate associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits. Forty-one multibreed herds were selected for the study, and composite milk samples were collected from 1,508 cows belonging to 3 specialized dairy breeds (Holstein Friesian, Brown Swiss, and Jersey) and 3 dual-purpose breeds of Alpine origin (Simmental, Rendena, and Grey Alpine). Milk composition [i.e., fat, protein, casein, lactose, pH, urea, and somatic cell count (SCC)] was analyzed, and separation of protein fractions was performed by reversed-phase high performance liquid chromatography. Eleven coagulation traits were measured: 5 traditional milk coagulation properties [time from rennet addition to milk gelation (RCT, min), curd-firming rate as the time to a curd firmness (CF) of 20 mm (k 20 , min), and CF at 30, 45, and 60 min from rennet addition (a 30 , a 45 , and a 60 , mm)], and 6 new curd firming and syneresis traits [potential asymptotical CF at an infinite time (CF P , mm), curd-firming instant rate constant (k CF , % × min -1 ), curd syneresis instant rate constant (k SR , % × min -1 ), modeled RCT (RCT eq , min), maximum CF value (CF max, mm), and time at CF max (t max , min)]. We also measured 3 cheese yield traits, expressing the weights of total fresh curd (%CY CURD ), dry matter (%CY SOLIDS ), and water (%CY WATER ) in the curd as percentages of the weight of the processed milk, and 4 nutrient recovery traits (REC PROTEIN , REC FAT , REC SOLIDS , and REC ENERGY ), representing the percentage ratio between each nutrient in the curd and milk. Milk samples with SCC > 100,000 cells/mL were subjected to bacteriological examination. All samples were divided into 7 clusters of udder health (UH) status: healthy (cows with milk SCC < 100,000 cells/mL and uncultured); culture-negative samples with low, medium, or high SCC; and culture-positive samples divided into contagious

  7. Production of High Quality Die Steels from Large ESR Slab Ingots

    NASA Astrophysics Data System (ADS)

    Geng, Xin; Jiang, Zhou-hua; Li, Hua-bing; Liu, Fu-bin; Li, Xing

    With the rapid development of manufacture industry in China, die steels are in great need of large slab ingot of high quality and large tonnage, such as P20, WSM718R and so on. Solidification structure and size of large slab ingots produced with conventional methods are not satisfied. However, large slab ingots manufactured by ESR process have a good solidification structure and enough section size. In the present research, the new slab ESR process was used to produce the die steels large slab ingots with the maximum size of 980×2000×3200mm. The compact and sound ingot can be manufactured by the slab ESR process. The ultra-heavy plates with the maximum thickness of 410 mm can be obtained after rolling the 49 tons ingots. Due to reducing the cogging and forging process, the ESR for large slab ingots process can increase greatly the yield and production efficiency, and evidently cut off product costs.

  8. Nutrient database improvement project: the influence of USDA quality and yield grade on the separable components and proximate composition of raw and cooked retail cuts from the beef chuck.

    PubMed

    West, S E; Harris, K B; Haneklaus, A N; Savell, J W; Thompson, L D; Brooks, J C; Pool, J K; Luna, A M; Engle, T E; Schutz, J S; Woerner, D R; Arcibeque, S L; Belk, K E; Douglass, L; Leheska, J M; McNeill, S; Howe, J C; Holden, J M; Duvall, M; Patterson, K

    2014-08-01

    This study was designed to provide updated information on the separable components, cooking yields, and proximate composition of retail cuts from the beef chuck. Additionally, the impact the United States Department of Agriculture (USDA) Quality and Yield Grade may have on such factors was investigated. Ultimately, these data will be used in the USDA - Nutrient Data Laboratory's (NDL) National Nutrient Database for Standard Reference (SR). To represent the current United States beef supply, seventy-two carcasses were selected from six regions of the country based on USDA Yield Grade, USDA Quality Grade, gender, and genetic type. Whole beef chuck primals from selected carcasses were shipped to three university laboratories for subsequent retail cut fabrication, raw and cooked cut dissection, and proximate analyses. The incorporation of these data into the SR will improve dietary education, product labeling, and other applications both domestically and abroad, thus emphasizing the importance of accurate and relevant beef nutrient data. Copyright © 2014. Published by Elsevier Ltd.

  9. Emblems of Quality in Higher Education. Developing and Sustaining High-Quality Programs.

    ERIC Educational Resources Information Center

    Haworth, Jennifer Grant; Conrad, Clifton F.

    This book proposes an "engagement" theory of program quality to evaluate and improve higher education programs at all degree levels. Based on interviews with 781 participants in a national study of Masters degree programs, it focuses on the interactive roles of students, faculty, and administrators in developing high-quality programs…

  10. Temperature determines size and direction of effects of elevated CO2 and nitrogen form on yield quantity and quality of Chinese cabbage.

    PubMed

    Reich, M; van den Meerakker, A N; Parmar, S; Hawkesford, M J; De Kok, L J

    2016-01-01

    Rising atmospheric CO2 concentrations (e[CO2 ]) are presumed to have a significant impact on plant growth and yield and also on mineral nutrient composition, and therefore, on nutritional quality of crops and vegetables. To assess the relevance of these effects in future agroecosystems it is important to understand how e[CO2 ] interacts with other environmental factors. In the present study, we examined the interactive effects of e[CO2 ] with temperature and the form in which nitrogen is supplied (nitrate or ammonium nitrate) on growth, amino acid content and mineral nutrient composition of Chinese cabbage (Brassica pekinensis Rupr.), a crop characterised by its high nutritional value and increasing relevance for human nutrition in many developing countries. Higher temperature, ammonium nitrate and e[CO2 ] had a positive impact on net photosynthesis and growth. A stimulating effect of e[CO2 ] on growth was only observed if the temperature was high (21/18 °C, day/night), and an interaction of e[CO2 ] with N form was only observed if the temperature was ambient (15/12 °C, day/night). Mineral nutrient composition was affected in a complex manner by all three factors and their interaction. These results demonstrate how much the effect of e[CO2 ] on mineral quality of crops depends on other environmental factors. Changes in temperature, adapting N fertilisation and the oxidation state of N have the potential to counteract the mineral depletion caused by e[CO2 ]. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Milk yield and composition, nutrition, body conformation traits, body condition scores, fertility and diseases in high-yielding dairy cows--Part 1.

    PubMed

    Aeberhard, K; Bruckmaier, R M; Kuepfer, U; Blum, J W

    2001-03-01

    Twenty-nine pairs of high-yielding dairy cows (HC; > or = 45 kg/day reached at least once during lactation) and corresponding control cows (CC; with milk yields representing the average yield of the herds) were examined on 29 Swiss farms from March 1995 to September 1996. The hypotheses were tested that there are differences in feed intake, body-conformation traits, body weight (BW), body condition score (BCS), fertility status and disease incidence between HC and CC cows. Cows were studied 2 weeks before and at 5, 9, 13, 17 and 40 weeks post-partum. HC cows produced more energy-corrected milk (ECM) than CC cows (10,670 +/- 321 kg in 293 +/- 5 days and 8385 +/- 283 kg in 294 +/- 4 days, respectively; P < or = 0.001) and yields in the first 100 days of lactation were greater in HC than in CC cows (46.2 +/- 1.1 and 36.2 +/- 1.0 kg ECM/day, respectively; P < or = 0.001). Concentrate intake was greater (P < or = 0.05) in HC than in CC cows (7.6 +/- 0.5 and 5.7 +/- 0.5 kg/day, respectively) and dry matter intakes (measured in week 5 of lactation over 3 days on six farms) were greater in HC than in CC cows (24.0 +/- 1.1 and 20.3 +/- 1.1 kg/day, respectively; P < or = 0.001). HC cows were taller than CC cows (wither heights 143.3 +/- 0.8 and 140.1 +/- 0.8 cm, respectively; P < or = 0.01). Although BW in HC cows was greater than in CC cows throughout the study, differences and decreases of BW during lactation were not significant. BCS at the end of pregnancy and decrements during lactation were similar in HC and CC cows. Fertility parameters were similar in HC and CC cows. Incidences of mastitis, claw and feet problems, hypocalcemia/downer cow syndrome, ovarian cysts and abortions were similar in HC and CC cows, but there were more indigestion problems in HC than in CC cows.

  12. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

    PubMed

    Liu, Feng; Zhang, Yaohong; Ding, Chao; Kobayashi, Syuusuke; Izuishi, Takuya; Nakazawa, Naoki; Toyoda, Taro; Ohta, Tsuyoshi; Hayase, Shuzi; Minemoto, Takashi; Yoshino, Kenji; Dai, Songyuan; Shen, Qing

    2017-10-24

    Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI 3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI 2 (TOP-PbI 2 ) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI 3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

  13. Growth and yield models for central hardwoods

    Treesearch

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    Over the last 20 years computers have become an efficient tool to estimate growth and yield. Computerized yield estimates vary from simple approximation or interpolation of traditional normal yield tables to highly sophisticated programs that simulate the growth and yield of each individual tree.

  14. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders.

    PubMed

    Lao, Fei; Giusti, M Monica

    2017-07-15

    Spray drying is an economic technique to produce anthocyanin-based colorants. High pigments yields with minimum color degradation are desirable to maximize quality and profits. This study evaluated the impacts of purple corncob (PCC) anthocyanin extraction matrices (hot water, 40% ethanol, C18 purified), drying inlet temperature (130, 150, 170°C) and amount of carrier (2%, 5%, 10% maltodextrin) on the yields and quality of PCC anthocyanin powders. Monomeric and polymeric anthocyanins, color properties (CIELch, haze), and pigments composition before and after spray drying were determined. The yield and final color quality of spray dried PCC anthocyanins were affected (p<0.05) by all parameters evaluated. The pigment matrix, inlet temperature, and carrier amount had biggest impacts on product water solubility, pigments degradation and yield, respectively. The optimal combination of hot water extracts spray dried with 5% maltodextrin at 150°C gave the highest pigment yield (∼90%) with good solubility with the least color loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables

    PubMed Central

    Fiorentino, Nunzio; Ventorino, Valeria; Woo, Sheridan L.; Pepe, Olimpia; De Rosa, Armando; Gioia, Laura; Romano, Ida; Lombardi, Nadia; Napolitano, Mauro; Colla, Giuseppe; Rouphael, Youssef

    2018-01-01

    Microbial inoculants such as Trichoderma-based products are receiving great interest among researchers and agricultural producers for their potential to improve crop productivity, nutritional quality as well as resistance to plant pathogens/pests and numerous environmental stresses. Two greenhouse experiments were conducted to assess the effects of Trichoderma-based biostimulants under suboptimal, optimal and supraoptimal levels of nitrogen (N) fertilization in two leafy vegetables: Iceberg lettuce (Lactuca sativa L.) and rocket (Eruca sativa Mill.). The yield, nutritional characteristics, N uptake and mineral composition were analyzed for each vegetable crop after inoculation with Trichoderma strains T. virens (GV41) or T. harzianum (T22), and results were compared to non-inoculated plants. In addition, the effect of the Trichoderma-based biostimulants on microbes associated with the rhizosphere in terms of prokaryotic and eukaryotic composition and concentration using DGGE was also evaluated. Trichoderma-based biostimulants, in particular GV41, positively increased lettuce and rocket yield in the unfertilized plots. The highest marketable lettuce fresh yield was recorded with either of the biostimulant inoculations when plants were supplied with optimal levels of N. The inoculation of rocket with GV41, and to a lesser degree with T22, elicited an increase in total ascorbic acid under both optimal and high N conditions. T. virens GV41 increased N-use efficiency of lettuce, and favored the uptake of native N present in the soil of both lettuce and rocket. The positive effect of biostimulants on nutrient uptake and crop growth was species-dependent, being more marked with lettuce. The best biostimulation effects from the Trichoderma treatments were observed in both crops when grown under low N availability. The Trichoderma inoculation strongly influenced the composition of eukaryotic populations in the rhizosphere, in particularly exerting different effects with low

  16. Experimental verification of beam quality in high-contrast imaging with orthogonal bremsstrahlung photon beams.

    PubMed

    Sarfehnia, Arman; Jabbari, Keyvan; Seuntjens, Jan; Podgorsak, Ervin B

    2007-07-01

    Since taken with megavoltage, forward-directed bremsstrahlung beams, the image quality of current portal images is inferior to that of diagnostic quality images produced by kilovoltage beams. In this paper, the beam quality of orthogonal bremsstrahlung beams defined as the 90 degrees component of the bremsstrahlung distribution produced from megavoltage electron pencil beams striking various targets is presented, and the suitability of their use for improved radiotherapy imaging is evaluated. A 10 MeV electron beam emerging through the research port of a Varian Clinac-18 linac was made to strike targets of carbon, aluminum, and copper. PDD and attenuation measurements of both the forward and orthogonal beams were carried out, and the results were also used to estimate the effective and mean energy of the beams. The mean energy of a spectrum produced by a carbon target dropped by 83% from 1296 keV in the forward direction to 217 keV in the orthogonal direction, while for an aluminum target it dropped by 77% to 412 keV, and for a copper target by 65% to 793 keV. An in-depth Monte Carlo study of photon yield and electron contamination was also performed. Photon yield and effective energy are lower for orthogonal beams than for forward beams, and the differences are more pronounced for targets of lower atomic number. Using their relatively low effective energy, orthogonal bremsstrahlung beams produced by megavoltage electrons striking low atomic number targets yield images with a higher contrast in comparison with forward bremsstrahlung beams.

  17. Hot spots of wheat yield decline with rising temperatures.

    PubMed

    Asseng, Senthold; Cammarano, Davide; Basso, Bruno; Chung, Uran; Alderman, Phillip D; Sonder, Kai; Reynolds, Matthew; Lobell, David B

    2017-06-01

    Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production. © 2016 John Wiley & Sons Ltd.

  18. Use of Peroxyacetic Acid as Green Chemical on Yield and Sensorial Quality in Watercress (Nasturtium officinale R. Br.) Under Soilless Culture

    PubMed Central

    Carrasco, Gilda; Moggia, Claudia; Osses, Ingrid Jennifer; Álvaro, Juan Eugenio; Urrestarazu, Miguel

    2011-01-01

    The goal of this research was to evaluate the effect of different doses of peroxyacetic acid on the productivity of watercress (Nasturtium officinale R. Br.) cultivated hydroponically using a constant nutritive solution. Green chemistry in protected horticulture seeks compatibility with the environment through the creation of biodegradable byproducts. In hydroponics, appropriate doses of peroxyacetic mixtures deliver these byproducts while also oxygenating the roots. Watercress producers who recirculate the nutritive solution can use these mixtures in order to increase oxygenation in the hydroponic system. The experiment took place between August and December 2009, beginning with the planting of the watercress seeds and concluding with the completion of the sensory panels. A completely random design was used, including three treatments and four repetitions, with applications of 0, 20 and 40 mg L−1 of the peroxyacetic mixture. Measured variables were growth (plant height, leaf length and stem diameter), yield (weight per plant and dry matter) and organoleptic quality (color and sensory panel). The application of 40 mg L−1 of the peroxyacetic mixture had a greater effect on the growth and development of the plants, which reached an average height of 29.3 cm, stem diameter of 3.3 mm and leaf length of 7.6 cm, whereas the control group reached an average height of only 20.2 cm, stem diameter of 1.9 mm and leaf length of 5.7 cm. The application of the peroxyacetic mixtures resulted in an improvement in growth parameters as well as in yield. Individual weights achieved using the 40 mg L−1 dose were 1.3 g plant−1 in the control group and 3.4 g plant−1 in the experimental group (62% yield increase). Sensory analysis revealed no differences in organoleptic quality. PMID:22272143

  19. Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C.

    PubMed

    Navarro, Pilar; Savoie, Jean-Michel

    2015-01-01

    To cultivate the button mushroom Agaricus bisporus in warm countries or during summer in temperate countries, while saving energy, is a challenge that could be addressed by using the biological diversity of the species. The objective was to evaluate the yield potential of eight wild strains previously selected in small scale experiments for their ability to produce mature fruiting bodies at 25°C and above. Culture units of 8 kg of compost were used. The yield expressed as weight or number per surface unit and earliness of fruiting were recorded during cultivation in climatic rooms at 17, 25 or 30°C. Only strains of A. bisporus var. burnettii were able to fruit at 30°C. At 25°C they produced the highest yields (27 kg m(-2)) and had best earliness. The yields at 25°C for the strains of A. bisporus var. bisporus ranged from 12 to 16 kg m(-2). The yield ratios 25°C/17°C ranged from 0.8 to 1.2. The variety burnettii originated in the Sonoran Desert in California showed adaptation for quickly producing fruiting bodies at high temperature when humidity conditions were favorable. Strains of the variety bisporus showed interesting potentials for their ability to produce mature fruiting bodies at higher temperature than present cultivars and might be used in breeding programs. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  20. Identifying suitable substrates for high-quality graphene-based heterostructures

    NASA Astrophysics Data System (ADS)

    Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C.

    2017-06-01

    We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.

  1. Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections.

    PubMed

    Qin, Hongde; Chen, Min; Yi, Xianda; Bie, Shu; Zhang, Cheng; Zhang, Youchang; Lan, Jiayang; Meng, Yanyan; Yuan, Youlu; Jiao, Chunhai

    2015-01-01

    Detecting QTLs (quantitative trait loci) that enhance cotton yield and fiber quality traits and accelerate breeding has been the focus of many cotton breeders. In the present study, 359 SSR (simple sequence repeat) markers were used for the association mapping of 241 Upland cotton collections. A total of 333 markers, representing 733 polymorphic loci, were detected. The average linkage disequilibrium (LD) decay distances were 8.58 cM (r2 > 0.1) and 5.76 cM (r2 > 0.2). 241 collections were arranged into two subgroups using STRUCTURE software. Mixed linear modeling (MLM) methods (with population structure (Q) and relative kinship matrix (K)) were applied to analyze four phenotypic datasets obtained from four environments (two different locations and two years). Forty-six markers associated with the number of bolls per plant (NB), boll weight (BW), lint percentage (LP), fiber length (FL), fiber strength (FS) and fiber micornaire value (FM) were repeatedly detected in at least two environments. Of 46 associated markers, 32 were identified as new association markers, and 14 had been previously reported in the literature. Nine association markers were near QTLs (at a distance of less than 1-2 LD decay on the reference map) that had been previously described. These results provide new useful markers for marker-assisted selection in breeding programs and new insights for understanding the genetic basis of Upland cotton yields and fiber quality traits at the whole-genome level.

  2. Promoting High-Quality Family Child Care: A Policy Perspective for Quality 2000.

    ERIC Educational Resources Information Center

    Modigliani, Kathy

    Although family child care has the potential to offer young children individual attention and customized, educational programs to help them thrive, the quality of these programs is dependent upon a workforce that is at the bottom of the occupational status and pay hierarchy. This report examines ways to promote high quality in family child care…

  3. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    NASA Astrophysics Data System (ADS)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2005-01-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  4. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    NASA Astrophysics Data System (ADS)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2004-12-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  5. High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize (Zea mays) Using the Genotyping-by-Sequencing (GBS) Technology

    PubMed Central

    Su, Chengfu; Wang, Wei; Gong, Shunliang; Zuo, Jinghui; Li, Shujiang; Xu, Shizhong

    2017-01-01

    Increasing grain yield is the ultimate goal for maize breeding. High resolution quantitative trait loci (QTL) mapping can help us understand the molecular basis of phenotypic variation of yield and thus facilitate marker assisted breeding. The aim of this study is to use genotyping-by-sequencing (GBS) for large-scale SNP discovery and simultaneous genotyping of all F2 individuals from a cross between two varieties of maize that are in clear contrast in yield and related traits. A set of 199 F2 progeny derived from the cross of varieties SG-5 and SG-7 were generated and genotyped by GBS. A total of 1,046,524,604 reads with an average of 5,258,918 reads per F2 individual were generated. This number of reads represents an approximately 0.36-fold coverage of the maize reference genome Zea_mays.AGPv3.29 for each F2 individual. A total of 68,882 raw SNPs were discovered in the F2 population, which, after stringent filtering, led to a total of 29,927 high quality SNPs. Comparative analysis using these physically mapped marker loci revealed a higher degree of synteny with the reference genome. The SNP genotype data were utilized to construct an intra-specific genetic linkage map of maize consisting of 3,305 bins on 10 linkage groups spanning 2,236.66 cM at an average distance of 0.68 cM between consecutive markers. From this map, we identified 28 QTLs associated with yield traits (100-kernel weight, ear length, ear diameter, cob diameter, kernel row number, corn grains per row, ear weight, and grain weight per plant) using the composite interval mapping (CIM) method and 29 QTLs using the least absolute shrinkage selection operator (LASSO) method. QTLs identified by the CIM method account for 6.4% to 19.7% of the phenotypic variation. Small intervals of three QTLs (qCGR-1, qKW-2, and qGWP-4) contain several genes, including one gene (GRMZM2G139872) encoding the F-box protein, three genes (GRMZM2G180811, GRMZM5G828139, and GRMZM5G873194) encoding the WD40-repeat protein, and

  6. Yield determination and water-use effenciency of wheat under water-limited conditions in the U.S. southern high plains

    USDA-ARS?s Scientific Manuscript database

    Drought is the most important stress for reducing wheat (Triticum aestivum L.) yield and water-use efficiency (WUE) on the U.S. Southern High Plains. Adoption of cultivars with higher yield and WUE under drought conditions is critical in the area. The objective of this study was to investigate the p...

  7. Yield determination and water use efficiency of wheat under water-limited conditions in the U.S. Southern High Plains.

    USDA-ARS?s Scientific Manuscript database

    Drought is the most important stress for reducing wheat (Triticum aestivum L.) yield and water use efficiency (WUE) in the U.S. Southern High Plains (SHP). Adoption of cultivars with higher yield and WUE under drought conditions in critical in the area. The objective of this study was to investiga...

  8. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages.

    PubMed

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-12

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha -1 (B1), soil application of 2 kg B ha -1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results

  9. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages

    NASA Astrophysics Data System (ADS)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-01

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest

  10. Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation.

    PubMed

    Shen, Min; Jun Kang, Yi; Li Wang, Huan; Sheng Zhang, Xiang; Xin Zhao, Qing

    2012-01-01

    To determine the effects of three PGPRs on plant growth, yield, and quality of tomato under simulated seawater irrigation, a two consecutive seasons' field experiment was conducted in Yancheng Teachers University plot from April to June and August to October, 2011. The results showed that Erwinia persicinus RA2 containing ACC deaminase exhibited the best ability compared with Bacillus pumilus WP8 and Pseudomonas putida RBP1 which had no ACC deaminase activity to enhance marketable yields of fresh and dried fruits in tomato under simulated seawater irrigation especially under HS condition. B. pumilus WP8 had significant effects on improving tomato fruit quality under the conditions of irrigating with 1.0% NaCl solution (MS) and with 2.0% NaCl solution (HS). Na(+) contents were generally accumulated much more in tomato plant mid-shoot leaves than in fruits whatever the salt concentration. More sodium accumulation in leaves of E. persicinus RA2 and B. pumilus WP8 treatments under HS condition were found than in control. E. persicinus RA2 and B. pumilus WP8 can promote tomato growth, improve fruit quality more firmly than P. putida RBP1 during two consecutive seasons. Our study suggested that E. persicinus RA2 and B. pumilus WP8 are considered to be promising PGPR strains which are suited for application in salt marsh planting, ACC deaminase activity was not unique index on screening for PGPRs with the aim of salt stress tolerance, and plant growth promoting activities may be relevant to different growth indices and different stress conditions.

  11. Design of monoalcohol - Copolymer system for high quality silver nanowires.

    PubMed

    Sugiyama, Shintaro; Yokoyama, Shun; Cuya Huaman, Jhon L; Ida, Shohei; Matsumoto, Takatoshi; Kodama, Daisuke; Sato, Kimitaka; Miyamura, Hiroshi; Hirokawa, Yoshitsugu; Balachandran, Jeyadevan

    2018-05-14

    Research to improve the dimensional properties of silver nanowires (Ag NWs) for transparent conductive film (TCF) applications are being carried out intensively. However, the protocol for the designed synthesis of high-quality Ag NWs is yet to be developed due to the inadequacy of knowledge on the role of parameters. Here, we attempt to elucidate the role played by the parameters and propose a monoalcohol-copolymer based system for the designed synthesis of Ag NWs superior in quality to the one synthesized using conventional ethylene glycol (EG)-polyvinylpyrrolidone (PVP) system. The key findings of the study are as follows: (1) the solubility of Ag source and the partially formed AgCl particles in monoalcohols was found to play an important role not only in the reduction to metallic Ag but also on the uniaxial growth, (2) the adsorption of capping agents on Ag NWs was carried through O and N atoms in the base molecule and their binding energies indicated that the strength is the key parameter to obtain Ag NWs with high aspect ratio, (3) the properties of nanowire could be enhanced through copolymerization of VP and base molecules that have O- and N-based ligands, and (4) the influence of copolymerization on the physical and chemical properties of the surface active agent has been theoretically and experimentally verified. Consequently, we succeeded in the development of a new technique to synthesize high yield of Ag NWs with improved aspect ratio than EG-PVP system by using benzyl alcohol as reducing solvent and N-vinylpyrrolidone/N,N-diethylaminoethyl metacrylate copolymer as a capping agent. The optical transmittance and electrical resistivity of TCFs prepared using the Ag NWs with an average diameter of 43 nm, and an average length of 13 μm were 98.6% and R: 49.1 Ω/□, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit.

    PubMed

    Rahman, Mosaddiqur; Sabir, Abdullah As; Mukta, Julakha Akter; Khan, Md Mohibul Alam; Mohi-Ud-Din, Mohammed; Miah, Md Giashuddin; Rahman, Mahfuzur; Islam, M Tofazzal

    2018-02-06

    Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals. This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. Interestingly, the fruits from plants inoculated with the isolates BChi1 and BRRh-4 had significantly higher contents of phenolics, carotenoids, flavonoids and anthocyanins over non-treated control. Total antioxidant activities were also significantly higher (p < 0.05) in fruits of strawberry plants treated with both probiotic bacteria. To the best of our knowledge, this is the first report of significant improvement of both yield and quality of strawberry fruits by the application of plant probiotic bacteria BChi1 and BRRh-4 in a field condition. Further study is needed to elucidate underlying mechanism of growth and quality improvement of strawberry fruits by probiotic bacteria.

  13. Characteristics of High-Quality Teachers

    ERIC Educational Resources Information Center

    Jones, Jason E.; Gulek, James C.

    2010-01-01

    The purpose of this study was to examine the characteristics of high-quality teachers who used a structured mathematics program for teaching, namely the Math Achievement Program (MAP[superscript 2]D), which demonstrated significant gains on student achievement as measured by California's Standards Test (CST) in mathematics. Specifically, the…

  14. A High-Yield Synthesis of Chalcopyrite CuIn S 2 Nanoparticles with Exceptional Size Control

    DOE PAGES

    Sun, Chivin; Gardner, Joseph S.; Shurdha, Endrit; ...

    2009-01-01

    We repormore » t high-yield and efficient size-controlled syntheses of Chalcopyrite CuIn S 2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100 ° C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100 ° C to 200 ° C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1 H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuIn S 2 nanoparticles.« less

  15. Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator

    NASA Astrophysics Data System (ADS)

    Lindsey, Adam C.; Zhuravleva, Mariya; Stand, Luis; Wu, Yuntao; Melcher, Charles L.

    2015-10-01

    The presented study reports on the spectroscopic characteristics of a new high performance scintillation material KCaI3:Eu. The growth of ∅ 17 mm boules using the Bridgman-Stockbarger method in fused silica ampoules is demonstrated to produce yellow tinted, yet transparent single crystals suitable for use in spectroscopic applications due to very promising performance. Scintillation light yield of 72,000 ± 3000 ph/MeV and energy resolution of 3% (FWHM) at 662 keV and 6.1% at 122 keV was obtained from small single crystals of approximately 15 mm3. For a much larger 3.8 cm3 detector, 4.4% and 7.3% for the same energy. Proportionality of the scintillation response to the energy of ionizing radiation is within 96% of the ideal response over an energy range of 14-662 keV. The high light yield and energy resolution of KCaI3:Eu make it suitable for potential use in domestic security applications requiring radionuclide identification.

  16. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process

    PubMed Central

    LeProust, Emily M.; Peck, Bill J.; Spirin, Konstantin; McCuen, Heather Brummel; Moore, Bridget; Namsaraev, Eugeni; Caruthers, Marvin H.

    2010-01-01

    We have achieved the ability to synthesize thousands of unique, long oligonucleotides (150mers) in fmol amounts using parallel synthesis of DNA on microarrays. The sequence accuracy of the oligonucleotides in such large-scale syntheses has been limited by the yields and side reactions of the DNA synthesis process used. While there has been significant demand for libraries of long oligos (150mer and more), the yields in conventional DNA synthesis and the associated side reactions have previously limited the availability of oligonucleotide pools to lengths <100 nt. Using novel array based depurination assays, we show that the depurination side reaction is the limiting factor for the synthesis of libraries of long oligonucleotides on Agilent Technologies’ SurePrint® DNA microarray platform. We also demonstrate how depurination can be controlled and reduced by a novel detritylation process to enable the synthesis of high quality, long (150mer) oligonucleotide libraries and we report the characterization of synthesis efficiency for such libraries. Oligonucleotide libraries prepared with this method have changed the economics and availability of several existing applications (e.g. targeted resequencing, preparation of shRNA libraries, site-directed mutagenesis), and have the potential to enable even more novel applications (e.g. high-complexity synthetic biology). PMID:20308161

  17. Evaluation of wheat growth, morphological characteristics, biomass yield and quality in Lunar Palace-1, plant factory, green house and field systems

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Shao, Lingzhi; Fu, Yuming; Wang, Minjuan; Xie, Beizhen; Yu, Juan; Liu, Hong

    2015-06-01

    Wheat (Triticum aestivum L.) is one of the most important agricultural crops in both space such as Bioregenerative Life Support Systems (BLSS) and urban agriculture fields, and its cultivation is affected by several environmental factors. The objective of this study was to investigate the influences of different environmental conditions (BLSS, plant factory, green house and field) on the wheat growth, thousand kernel weight (TKW), harvest index (HI), biomass yield and quality during their life cycle. The results showed that plant height partially influenced by the interaction effects with environment, and this influence decreased gradually with the plant development. It was found that there was no significant difference between the BLSS and plant factory treatments on yields per square, but the yield of green house and field treatments were both lower. TKW and HI in BLSS and plant factory were larger than those in the green house and field. However, grain protein concentration can be inversely correlated with grain yield. Grain protein concentrations decreased under elevate CO2 condition and the magnitude of the reductions depended on the prevailing environmental condition. Conditional interaction effects with environment also influenced the components of straw during the mature stage. It indicated that CO2 enriched environment to some extent was better for inedible biomass degradation and had a significant effect on "source-sink flow" at grain filling stage, which was more beneficial to recycle substances in the processes of the environment regeneration.

  18. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate.

    PubMed

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.

  19. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    PubMed Central

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  20. The Equitable Distribution of High-Quality Teachers

    ERIC Educational Resources Information Center

    Bumgardner, Stan

    2010-01-01

    A new report by the National Comprehensive Center for Teacher Quality (TQ Center) highlights efforts across the nation to address a key point in the No Child Left Behind law and the American Recovery and Reinvestment Act (ARRA)--the equitable distribution of high-quality teachers across all schools. Research consistently has pointed to effective…

  1. Influence of phosphorus management on melon (Cucumis melo L.) fruit quality.

    PubMed

    Martuscelli, Maria; Di Mattia, Carla; Stagnari, Fabio; Speca, Stefano; Pisante, Michele; Mastrocola, Dino

    2016-06-01

    At harvest time, melon quality is related to internal and external parameters, which are very important for consumer attractiveness and marketable yield. Several agronomic factors can affect the quality of melon fruits and among them mineral availability may play a significant role. Therefore the aim of the work was to investigate the effect of phosphorus fertigation on melon fruit (Cucumis melo L.) qualitative characteristics, such as fruit size and yield, pulp colour and firmness, aroma and taste, as well as the accumulation of bioactive antioxidant compounds, namely phenols and carotenoids, and their antiradical properties. Results allowed us to extrapolate the optimal P doses to be used for melon fertigation, to achieve high yield and fruit quality characteristics. Modelling the optimal P dose allowed us to maximize yield and resulted in around 257 kg P2 O5 ha(-1) , even if the quality indices relating to carotenoid content, texture and colour of the melon flesh were not significantly different between samples fertigated with the two highest levels tested. It can be assumed that the level of 200 kg P2 O5 ha(-1) would be a good compromise between optimization of agronomic performance and melon fruit quality. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. A decade of precision agriculture impacts on grain yield and yield variation

    USDA-ARS?s Scientific Manuscript database

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century, including simultaneously improving crop yields and reducing environmental impacts. Although the potential is high, few studies have do...

  3. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    PubMed

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae.

    PubMed

    Keymer, Philip; Ruffell, Ian; Pratt, Steven; Lant, Paul

    2013-03-01

    Anaerobic digestion of algal biomass will be an essential component of algal biofuel production systems, yet the methane yield from digestion of algae is typically much lower than the theoretical potential. In this work, high pressure thermal hydrolysis (HPTH) is shown to enhance methane yield during algae digestion. HPTH pre-treatment was applied to both raw algae and algal residue resulting from lipid extraction. HPTH and even the lipid extraction process itself increased methane yield, by 81% and 33% respectively; in combination they increased yield by 110% over that of the raw algae (18L CH4 gVS(-1) substrate). HPTH had little effect on the rate of anaerobic digestion, however lipid extraction enhanced it by 33% over that for raw algae (0.21day(-1)). Digestion resulted in solubilisation of nitrogen (and phosphorous to a lesser degree) in all cases, showing that there is potential for nutrient recycling for algal growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Nutrient database improvement project: the influence of U.S.D.A. Quality and Yield Grade on the separable components and proximate composition of raw and cooked retail cuts from the beef rib and plate.

    PubMed

    Martin, J N; Brooks, J C; Thompson, L D; Savell, J W; Harris, K B; May, L L; Haneklaus, A N; Schutz, J L; Belk, K E; Engle, T; Woerner, D R; Legako, J F; Luna, A M; Douglass, L W; Douglass, S E; Howe, J; Duvall, M; Patterson, K Y; Leheska, J L

    2013-11-01

    Beef nutrition is important to the worldwide beef industry. The objective of this study was to analyze proximate composition of eight beef rib and plate cuts to update the USDA National Nutrient Database for Standard Reference (SR). Furthermore, this study aimed to determine the influence of USDA Quality Grade on the separable components and proximate composition of the examined retail cuts. Carcasses (n=72) representing a composite of Yield Grade, Quality Grade, gender and genetic type were identified from six regions across the U.S. Beef plates and ribs (IMPS #109 and 121C and D) were collected from the selected carcasses and shipped to three university meat laboratories for storage, retail fabrication, cooking, and dissection and analysis of proximate composition. These data provide updated information regarding the nutrient content of beef and emphasize the influence of common classification systems (Yield Grade and Quality Grade) on the separable components, cooking yield, and proximate composition of retail beef cuts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Estes, L. D.; Vergopolan, N.

    2017-12-01

    Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water

  7. Exotic Grass Yields Under Southern Pines

    Treesearch

    H.A. Pearson

    1975-01-01

    Kentucky 31 and Kenwell tall fescue, Pensacola bahia, and Brunswick grasses yielded nea,rly three times more forage under an established pine stand than native grasses 7 years after seeding. Introducing exotic grasses did not significantly increase total grass production but did enhance range quality since the cool-season grasses are green during winter and are higher...

  8. Development of Prior Image-based, High-Quality, Low-Dose Kilovoltage Cone Beam CT for Use in Adaptive Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2012-05-01

    employs kilovoltage (KV) cone- beam CT (CBCT) for guiding treatment. High quality CBCT images are important in achieving improved treatment effect...necessary for achieving successful adaptive RT. Kilovoltage cone-beam CT (CBCT) has shown its capability of yielding such images to guide the prostate cancer...study of low-dose intra-operative cone-beam CT for image- guided surgery,” Proc. SPIE, 7961, 79615P, 2011 10. X. Han, E. Pearson, J. Bian, S. Cho, E. Y

  9. Comparison of carcass yields and meat quality between Baicheng-You chickens and Arbor Acres broilers.

    PubMed

    Sarsenbek, A; Wang, T; Zhao, J K; Jiang, W

    2013-10-01

    This study examined carcass yields and meat quality traits between Baicheng-You (BCY) chickens and Arbor Acres (AA) broilers. Thirty birds for each strain were selected and slaughtered at market ages of 49 d for AA broilers and 120 d for BCY. The results showed that BCY chickens had lower dressing (2.99%), semi-evisceration (5.10%), breast muscle (5.80%), and abdominal fat (1.55%) than those for AA broilers (P < 0.05). However, the leg muscle (%) of BCY chickens was greater (3.14%) than that of AA broilers (P < 0.05). The meat pH45min and pH24h value variations of these 2 breeds were within the normal range (5.53-6.70). The meat color density (optical density, OD) of thigh muscle was darker than breast muscles in both strains (P < 0.05). The cooking loss (%) of breast and thigh muscles of BCY chickens (18.81 and 20.20%, respectively) was also significantly lower (P < 0.05) than that of same muscles of AA broilers (26.41 and 27.33%, respectively). The shear force of breast meat in both breeds was lower (P < 0.05) than that of their thigh meat. The moisture of breast muscle of BCY chickens (72.93%) was lower (P < 0.05) than breast muscles of AA broilers (74.43%). The CP content of breast muscles was greater (P < 0.05) than its thigh muscles of same strain, but it had no significant (P > 0.05) difference of CP content in the same muscles of the 2 strains. The intramuscular fat (IMF) content was greater (P < 0.05) in thigh muscles of BCY chickens (6.80%) than those of AA broilers (4.28%), and inosine-5'-monophosphate (IMP) content was greater (P < 0.05) in breast and thigh muscles of BCY chickens (IMP: 3.79 and 1.47 mg/g) than same muscles in AA broilers (1.42 and 0.47 mg/g). In this study, muscle from 120-d-old BCY chickens was judged to have better quality traits with regard to cooking loss, drip loss, contents of IMF, and IMP compared with meat from 42-d-old AA broilers. At the same time, greater carcass yields, greater thigh pH24, and lower IMF content were

  10. Dimension yields from short logs of low-quality hardwood trees.

    Treesearch

    Howard N. Rosen; Harold A. Stewart; David J. Polak

    1980-01-01

    Charts are presented for determining yields of 4/4 dimension cuttings from short hardwood logs of aspen, soft maple, black cherry, yellow-poplar, and black walnut for several cutting grades and bolt sizes. Cost comparisons of short log and standard grade mixes show sizes. Cost comparisons of short log and standard grade mixes show the estimated least expensive...

  11. High quality factor single-crystal diamond mechanical resonators

    NASA Astrophysics Data System (ADS)

    Ovartchaiyapong, P.; Pascal, L. M. A.; Myers, B. A.; Lauria, P.; Bleszynski Jayich, A. C.

    2012-10-01

    Single-crystal diamond is a promising material for microelectromechanical systems (MEMs) because of its low mechanical loss, compatibility with extreme environments, and built-in interface to high-quality spin centers. But its use has been limited by challenges in processing and growth. We demonstrate a wafer bonding-based technique to form diamond on insulator, from which we make single-crystal diamond micromechanical resonators with mechanical quality factors as high as 338 000 at room temperature. Variable temperature measurements down to 10 K reveal a nonmonotonic dependence of quality factor on temperature. These resonators enable integration of single-crystal diamond into MEMs technology for classical and quantum applications.

  12. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    PubMed Central

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  13. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply.

    PubMed

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C; Yang, Ru-Ping; Siddique, Kadambot H M; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [ Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg -1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  14. High yield growth of patterned vertically aligned carbon nanotubes using inkjet-printed catalyst.

    PubMed

    Beard, James D; Stringer, Jonathan; Ghita, Oana R; Smith, Patrick J

    2013-10-09

    This study reports on the fabrication of vertically aligned carbon nanotubes localized at specific sites on a growth substrate by deposition of a nanoparticle suspension using inkjet printing. Carbon nanotubes were grown with high yield as vertically aligned forests to a length of approximately 400 μm. The use of inkjet printing for catalyst fabrication considerably improves the production rate of vertically aligned patterned nanotube forests compared with conventional patterning techniques, for example, electron beam lithography or photolithography.

  15. Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield

    NASA Astrophysics Data System (ADS)

    Suarez, L. A.; Apan, A.; Werth, J.

    2016-10-01

    Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.

  16. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum

    DOE PAGES

    Tian, Liang; Papanek, Beth; Olson, Daniel G.; ...

    2016-06-02

    Background Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. Fuels from cellulosic biomass are particularly promising, but would benefit from lower processing costs. Clostridium thermocellum can rapidly solubilize and ferment cellulosic biomass, making it a promising candidate microorganism for consolidated bioprocessing for biofuel production, but increases in product yield and titer are still needed. Results We started with an engineered C. thermocellum strain where the central metabolic pathways to products other than ethanol had been deleted. After two stages of adaptive evolution, an evolved strain was selected with improved yieldmore » and titer. On chemically defined medium with crystalline cellulose as substrate, the evolved strain produced 22.4 ± 1.4 g/L ethanol from 60 g/L cellulose. Moreover, the resulting yield was about 0.39 gETOH/gGluc eq, which is 75 % of the maximum theoretical yield. Genome resequencing, proteomics, and biochemical analysis were used to examine differences between the original and evolved strains. Conclusions A two step selection method successfully improved the ethanol yield and the titer. Finaly, this evolved strain has the highest ethanol yield and titer reported to date for C. thermocellum, and is an important step in the development of this microbe for industrial applications.« less

  17. Dakota Diamond: An exceptionally high yielding, cold chipping potato cultivar with long-term storage potential

    USDA-ARS?s Scientific Manuscript database

    Dakota Diamond (ND5822C-7) is a medium to late maturing cultivar with uniformly sized tubers and very high yield potential. It resulted from the cross of ND4103-2 and “Dakota Pearl”. Dakota Diamond is comprised of approximately 23.3% wild potato species germplasm. It combines the characteristics ...

  18. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia).

    PubMed

    Kole, Chittaranjan; Kole, Phullara; Randunu, K Manoj; Choudhary, Poonam; Podila, Ramakrishna; Ke, Pu Chun; Rao, Apparao M; Marcus, Richard K

    2013-04-26

    Recent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits. We confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake. While our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues.

  19. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia)

    PubMed Central

    2013-01-01

    Background Recent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits. Results We confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake. Conclusions While our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues. PMID:23622112

  20. The importance of site quality

    Treesearch

    David L. Graney

    1989-01-01

    Yield and quality of central hardwoods depend greatly on the site. So, first off you should determine the site quality of your land for a variety of tree species. This information will allow you to compare yield and value so you can favor the species best suited for each site. Knowing site quality will help you determine what levels of management intensity and...