Sample records for yku inhibit nucleolytic

  1. RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts

    PubMed Central

    Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent

    2012-01-01

    In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends. PMID:22354040

  2. RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts.

    PubMed

    Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent

    2012-04-18

    In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.

  3. Segregating YKU80 and TLC1 alleles underlying natural variation in telomere properties in wild yeast.

    PubMed

    Liti, Gianni; Haricharan, Svasti; Cubillos, Francisco A; Tierney, Anna L; Sharp, Sarah; Bertuch, Alison A; Parts, Leopold; Bailes, Elizabeth; Louis, Edward J

    2009-09-01

    In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres.

  4. Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast

    PubMed Central

    Liti, Gianni; Haricharan, Svasti; Cubillos, Francisco A.; Tierney, Anna L.; Sharp, Sarah; Bertuch, Alison A.; Parts, Leopold; Bailes, Elizabeth; Louis, Edward J.

    2009-01-01

    In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres. PMID:19763176

  5. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation.

    PubMed

    Lian, Hui-Yong; Robertson, E Douglas; Hiraga, Shin-ichiro; Alvino, Gina M; Collingwood, David; McCune, Heather J; Sridhar, Akila; Brewer, Bonita J; Raghuraman, M K; Donaldson, Anne D

    2011-05-15

    DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length-mediated control of replication timing requires the TG(1-3) repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG(1-3) tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG(1-3) repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.

  6. [Cytochemical localization and properties of selected nucleolytic enzymes].

    PubMed

    Sierakowska, Halina

    2015-01-01

    In the article there are shortly outlined studies on cytochemical localization of selected nucleolytic enzymes carried out between 1957-1986 by David Shugar and his coworkers. The histochemical localization of several nucleolytic enzymes in animal and plant tissues was determined by synthesis of specific substrates, alpha-naphthyl esters of 5'- and 3'-nucleotides and their derivatives. In rat tissues phosphodiesterase I was localized in the plasma membrane whereas phosphodiesterase II in the lizosomes, reflecting their physiological roles. The localization of pancreatic type ribonuclease in animal tissues was determined, indicating its role in extracellular digestion. Plant nucleotide pyrophosphatase was localized in several tissues, purified to near homogeneity from potato tubers and its properties and substrate specificity were determined. Application of this enzyme for removal of m7GMP from the "cap" of eukaryotic mRNA allowed to elucidate the role of "cap" in mRNA binding to ribosomes in the process of translation. Furthermore, cyclic nucleotide phosphodiesterase was isolated from potato tubers and its physicochemical properties, oligomeric structure and substrate specificity were elucidated.

  7. An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis.

    PubMed

    Rueff, Anne-Stéphanie; Chastanet, Arnaud; Domínguez-Escobar, Julia; Yao, Zhizhong; Yates, James; Prejean, Maria-Victoria; Delumeau, Olivier; Noirot, Philippe; Wedlich-Söldner, Roland; Filipe, Sergio R; Carballido-López, Rut

    2014-01-01

    MreB proteins play a major role during morphogenesis of rod-shaped bacteria by organizing biosynthesis of the peptidoglycan cell wall. However, the mechanisms underlying this process are not well understood. In Bacillus subtilis, membrane-associated MreB polymers have been shown to be associated to elongation-specific complexes containing transmembrane morphogenetic factors and extracellular cell wall assembly proteins. We have now found that an early intracellular step of cell wall synthesis is also associated to MreB. We show that the previously uncharacterized protein YkuR (renamed DapI) is required for synthesis of meso-diaminopimelate (m-DAP), an essential constituent of the peptidoglycan precursor, and that it physically interacts with MreB. Highly inclined laminated optical sheet microscopy revealed that YkuR forms uniformly distributed foci that exhibit fast motion in the cytoplasm, and are not detected in cells lacking MreB. We propose a model in which soluble MreB organizes intracellular steps of peptidoglycan synthesis in the cytoplasm to feed the membrane-associated cell wall synthesizing machineries. © 2013 John Wiley & Sons Ltd.

  8. Direct DNA binding by Brca1.

    PubMed

    Paull, T T; Cortez, D; Bowers, B; Elledge, S J; Gellert, M

    2001-05-22

    The tumor suppressor Brca1 plays an important role in protecting mammalian cells against genomic instability, but little is known about its modes of action. In this work we demonstrate that recombinant human Brca1 protein binds strongly to DNA, an activity conferred by a domain in the center of the Brca1 polypeptide. As a result of this binding, Brca1 inhibits the nucleolytic activities of the Mre11/Rad50/Nbs1 complex, an enzyme implicated in numerous aspects of double-strand break repair. Brca1 displays a preference for branched DNA structures and forms protein-DNA complexes cooperatively between multiple DNA strands, but without DNA sequence specificity. This fundamental property of Brca1 may be an important part of its role in DNA repair and transcription.

  9. Synthesis of 2',4'-propylene-bridged (carba-ENA) thymidine and its analogues: the engineering of electrostatic and steric effects at the bottom of the minor groove for nuclease and thermodynamic stabilities and elicitation of RNase H.

    PubMed

    Liu, Yi; Xu, Jianfeng; Karimiahmadabadi, Mansoureh; Zhou, Chuanzheng; Chattopadhyaya, Jyoti

    2010-11-05

    2',4'-Propylene-bridged thymidine (carba-ENA-T) and five 8'-Me/NH(2)/OH modified carba-ENA-T analogues have been prepared through intramolecular radical addition to C═N of the tethered oxime-ether. These carba-ENA nucleosides have been subsequently incorporated into 15mer oligodeoxynucleotides (AON), and their affinity toward cDNA and RNA, nuclease resistance, and RNase H recruitment capability have been investigated in comparison with those of the native and ENA counterparts. These carba-ENAs modified AONs are highly RNA-selective since all of them led to slight thermal stabilization effect for the AON:RNA duplex, but quite large destabilization effect for the AON:DNA duplex. It was found that different C8' substituents (at the bottom of the minor groove) on carba-ENA-T only led to rather small variation of thermal stability of the AON:RNA duplexes. We, however, observed that the parent carba-ENA-T modified AONs exhibited higher nucleolytic stability than those of the ENA-T modified counterparts. The nucleolytic stability of carba-ENA-T modified AONs can be further modulated by C8' substituent to variable extents depending on not only the chemical nature but also the stereochemical orientation of the C8' substituents: Thus, (1) 8'S-Me on carba-ENA increases the nucleolytic stability but 8'R-Me leads to a decreased effect; (2) 8'R-OH on carba-ENA had little, if any, effect on nuclease resistance but 8'S-OH resulted in significantly decreased nucleolytic stability; and (3) 8'-NH(2) substituted carba-ENA leads to obvious loss in the nuclease resistance. The RNA strand in all of the carba-ENA derivatives modified AON:RNA hybrid duplexes can be digested by RNase H1 with high efficiency, even at twice the rate of those of the native and ENA modified counterpart.

  10. The Fanconi anemia pathway promotes replication-dependent DNA interstrand crosslink repair

    PubMed Central

    Knipscheer, Puck; Räschle, Markus; Smogorzewska, Agata; Enoiu, Milica; Ho, The Vinh; Schärer, Orlando D.; Elledge, Stephen J.; Walter, Johannes C.

    2010-01-01

    Fanconi anemia is a human cancer predisposition syndrome caused by mutations in thirteen Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand crosslinks (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. We make use of a cell-free system to show that the FANCI-FANCD2 complex is required for replication-dependent ICL repair. Removal of FANCD2 from extracts inhibits nucleolytic incisions near the ICL as well as translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised. PMID:19965384

  11. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair.

    PubMed

    Knipscheer, Puck; Räschle, Markus; Smogorzewska, Agata; Enoiu, Milica; Ho, The Vinh; Schärer, Orlando D; Elledge, Stephen J; Walter, Johannes C

    2009-12-18

    Fanconi anemia is a human cancer predisposition syndrome caused by mutations in 13 Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand cross-links (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. Using a cell-free system, we showed that FANCI-FANCD2 is required for replication-coupled ICL repair in S phase. Removal of FANCD2 from extracts inhibits both nucleolytic incisions near the ICL and translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S-phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised.

  12. Identification of Telomerase Components and Telomerase Regulating Factors in Yeast

    DTIC Science & Technology

    1998-07-01

    subunit of telomerase in S. cerevisiae is encoded by TLCJ (7). Recently , through sequence comparison with the telomerase catalytic 6 subunit from Euplotes...length maintenance has been unclear, although very recent data has shown that Ku80p can be found specifically associated with telomeric DNA in vivo...chromatin structure. It has been recently observed that loss of either YKU80 or HDF1 results in altered telomere end structure, such that there appears to

  13. Attenuation of Phosphate Starvation Responses by Phosphite in Arabidopsis1

    PubMed Central

    Ticconi, Carla A.; Delatorre, Carla A.; Abel, Steffen

    2001-01-01

    When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mm) and nucleic acid-containing (2 mm phosphorus) media at concentrations higher than 2.5 mm. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus. PMID:11706178

  14. Stepwise synthesis of oligonucleotides. XXII. The synthesis of Tpsi-loop fragments of yeast tRNAIVal and their analogs.

    PubMed Central

    Zhenodarova, S M; Klyagina, V P; Smolyaninova, O A; Khabarova, M I; Antonovich, E G; Prokof'yev, M A

    1977-01-01

    The method of the combined use of nucleolytic enzymes was used for the synthesis of Tpsi-loop fragments of yeast valine tRNA and their analogs. Dinucleoside monophosphates, trinucleoside diphosphates and tetranucleoside triphosphates having the sequences of fragments 54-57 and 59-62 or their analogs were synthesized. PMID:896487

  15. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2006-01-01

    PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed. PMID:16613587

  16. Constitutive role of the Fanconi anemia D2 gene in the replication stress response.

    PubMed

    Tian, Yanyan; Shen, Xi; Wang, Rui; Klages-Mundt, Naeh L; Lynn, Erica J; Martin, Sara K; Ye, Yin; Gao, Min; Chen, Junjie; Schlacher, Katharina; Li, Lei

    2017-12-08

    In response to DNA cross-linking damage, the Fanconi anemia (FA) core complex activates the FA pathway by monoubiquitinating Fanconi anemia complementation group D2 (FANCD2) for the initiation of the nucleolytic processing of the DNA cross-links and stabilization of stalled replication forks. Given that all the classic FA proteins coordinately monoubiquitinate FANCD2, it is unclear why losses of individual classic FA genes yield varying cellular sensitivities to cross-linking damage. To address this question, we generated cellular knock-out models of FA core complex components and FANCD2 and found that FANCD2-null mutants display higher levels of spontaneous chromosomal damage and hypersensitivity to replication-blocking lesions than Fanconi anemia complementation group L (FANCL)-null mutants, suggesting that FANCD2 provides a basal level of DNA protection countering endogenous lesions in the absence of monoubiquitination. FANCD2's ubiquitination-independent function is likely involved in optimized recruitment of nucleolytic activities for the processing and protection of stressed replication forks. Our results reveal that FANCD2 has a ubiquitination-independent role in countering endogenous levels of replication stress, a function that is critical for the maintenance of genomic stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Factors affecting nucleolytic efficiency of some ternary metal complexes with DNA binding and recognition domains. Crystal and molecular structure of Zn(phen)(edda).

    PubMed

    Seng, Hoi-Ling; Ong, Han-Kiat Alan; Rahman, Raja Noor Zaliha Raja Abd; Yamin, Bohari M; Tiekink, Edward R T; Tan, Kong Wai; Maah, Mohd Jamil; Caracelli, Ignez; Ng, Chew Hee

    2008-11-01

    The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.

  18. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Letavayová, Lucia; Marková, Eva; Hermanská, Katarína; Vlcková, Viera; Vlasáková, Danusa; Chovanec, Miroslav; Brozmanová, Jela

    2006-05-10

    Oxidative damage to DNA seems to be an important factor in developing many human diseases including cancer. It involves base and sugar damage, base-free sites, DNA-protein cross-links and DNA single-strand (SSB) and double-strand (DSB) breaks. Oxidative DSB can be formed in various ways such as their direct induction by the drug or their generation either through attempted and aborted repair of primary DNA lesions or through DNA replication-dependent conversion of SSB. In general, two main pathways are responsible for repairing DSB, homologous recombination (HR) and non-homologous end-joining (NHEJ), with both of them being potential candidates for the repair of oxidative DSB. We have examined relative contribution of HR and NHEJ to cellular response after oxidative stress in Saccharomyces cerevisiae. Therefore, cell survival, mutagenesis and DSB induction and repair in the rad52, yku70 and rad52 yku70 mutants after hydrogen peroxide (H(2)O(2)), menadione (MD) or bleomycin (BLM) exposure were compared to those obtained for the corresponding wild type. We show that MD exposure does not lead to observable DSB induction in yeast, suggesting that the toxic effects of this agent are mediated by other types of DNA damage. Although H(2)O(2) treatment generates some DSB, their yield is relatively low and hence DSB may only partially be responsible for toxicity of H(2)O(2), particularly at high doses of the agent. On the other hand, the basis of the BLM toxicity resides primarily in DSB induction. Both HR and NHEJ act on BLM-induced DSB, although their relative participation in the process is not equal. Based on our results we suggest that the complexity and/or the quality of the BLM-induced DSB might represent an obstacle for the NHEJ pathway.

  19. Apoptosis-inducing and apoptosis-preventing functions of poliovirus.

    PubMed Central

    Tolskaya, E A; Romanova, L I; Kolesnikova, M S; Ivannikova, T A; Smirnova, E A; Raikhlin, N T; Agol, V I

    1995-01-01

    Data showing that an apoptotic reaction (the exit into the cytoplasm and nucleolytic internucleosomal degradation of chromosomal DNA, compaction and fragmentation of chromatin, cellular shrinkage, and cytoplasmic blebbing) developed in a subline of HeLa-S3 cells upon nonpermissive poliovirus infection with either a guanidine-sensitive poliovirus in the presence of guanidine, a guanidine-dependent mutant in the absence of guanidine, or certain temperature-sensitive mutants at a restrictive temperature are presented. Essentially, no apoptotic reaction occurred upon permissive infection of these cells. Both permissive and nonpermissive infections resulted in the inhibition of host protein synthesis. Actinomycin D or cycloheximide also elicited a rapid apoptotic reaction in uninfected cells. However, preinfection or coinfection with poliovirus prevented the apoptotic response to the addition of actinomycin D, and preinfection blocked cycloheximide-induced apoptosis as well. These data fit a model in which the cells used are prepared to develop apoptosis, with their viability due to the presence of certain short-lived mRNA and protein species. Poliovirus infection turns on two oppositely directed sets of reactions. On the one hand, the balance is driven toward apoptosis, probably via the shutoff of host macromolecular synthesis. On the other hand, viral protein exhibits antiapoptotic activity, thereby preventing premature cell death. To our knowledge, this is the first description of an antiapoptotic function for an RNA virus. PMID:7529330

  20. RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA.

    PubMed

    Manfrini, Nicola; Trovesi, Camilla; Wery, Maxime; Martina, Marina; Cesena, Daniele; Descrimes, Marc; Morillon, Antonin; d'Adda di Fagagna, Fabrizio; Longhese, Maria Pia

    2015-02-01

    Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability. © 2014 The Authors.

  1. Spatially confined polymer chains: implications of chromatin fibre flexibility and peripheral anchoring on telomere telomere interaction

    NASA Astrophysics Data System (ADS)

    Gehlen, L. R.; Rosa, A.; Klenin, K.; Langowski, J.; Gasser, S. M.; Bystricky, K.

    2006-04-01

    We simulate the extension of spatially confined chromatin fibres modelled as polymer chains and examine the effect of the flexibility of the fibre and its degree of freedom. The developed formalism was used to analyse experimental data of telomere-telomere distances in living yeast cells in the absence of confining factors as identified by the proteins Sir4 and yKu70. Our analysis indicates that intrinsic properties of the chromatin fibre, in particular its elastic properties and flexibility, can influence the juxtaposition of the telomeric ends of chromosomes. However, measurements in intact yeast cells showed that the telomeres of chromosomes 3 and 6 come even closer together than the parameters of constraint imposed on the simulations would predict. This juxtaposition was specific to telomeres on one contiguous chromosome and overrode a tendency for separation that is imposed by anchoring.

  2. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.

    PubMed

    Smith, Brian A; Gupta, Neha; Denny, Kevin; Culver, Gloria M

    2018-06-08

    Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Expanded RNA-binding activities of mammalian Argonaute 2

    PubMed Central

    Tan, Grace S.; Garchow, Barry G.; Liu, Xuhang; Yeung, Jennifer; Morris, John P.; Cuellar, Trinna L.; McManus, Michael T.; Kiriakidou, Marianthi

    2009-01-01

    Mammalian Argonaute 2 (Ago2) protein associates with microRNAs (miRNAs) or small interfering RNAs (siRNAs) forming RNA-induced silencing complexes (RISCs/miRNPs). In the present work, we characterize the RNA-binding and nucleolytic activity of recombinant mouse Ago2. Our studies show that recombinant mouse Ago2 binds efficiently to miRNAs forming active RISC. Surprisingly, we find that recombinant mouse Ago2 forms active RISC using pre-miRNAs or long unstructured single stranded RNAs as guides. Furthermore, we demonstrate that, in vivo, endogenous human Ago2 binds directly to pre-miRNAs independently of Dicer, and that Ago2:pre-miRNA complexes are found both in the cytoplasm and in the nucleus of human cells. PMID:19808937

  4. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi

    2014-10-15

    Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domainmore » playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.« less

  5. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    PubMed Central

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel MA; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin AM; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-01-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication, and protect, repair and restart damaged forks. Here we identify DONSON as a novel fork protection factor, and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilises forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATR-dependent signalling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity, and potentiating chromosomal instability. Hypomorphic mutations substantially reduce DONSON protein levels and impair fork stability in patient cells, consistent with defective DNA replication underlying the disease phenotype. In summary, we identify mutations in DONSON as a common cause of microcephalic dwarfism, and establish DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability. PMID:28191891

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weina; Hellinga, Homme W.; Beese, Lorena S.

    Even though high-fidelity polymerases copy DNA with remarkable accuracy, some base-pair mismatches are incorporated at low frequency, leading to spontaneous mutagenesis. Using high-resolution X-ray crystallographic analysis of a DNA polymerase that catalyzes replication in crystals, we observe that a C {center_dot} A mismatch can mimic the shape of cognate base pairs at the site of incorporation. This shape mimicry enables the mismatch to evade the error detection mechanisms of the polymerase, which would normally either prevent mismatch incorporation or promote its nucleolytic excision. Movement of a single proton on one of the mismatched bases alters the hydrogen-bonding pattern such thatmore » a base pair forms with an overall shape that is virtually indistinguishable from a canonical, Watson-Crick base pair in double-stranded DNA. These observations provide structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis, a long-standing concept that has been difficult to demonstrate directly.« less

  7. An Overview of the Molecular Mechanisms of Recombinational DNA Repair

    PubMed Central

    Kowalczykowski, Stephen C.

    2015-01-01

    Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution. PMID:26525148

  8. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5′-DNA end

    PubMed Central

    Sato, Koichi; Shimomuki, Mayo; Katsuki, Yoko; Takahashi, Daisuke; Kobayashi, Wataru; Ishiai, Masamichi; Miyoshi, Hiroyuki; Takata, Minoru; Kurumizaka, Hitoshi

    2016-01-01

    The FANCI-FANCD2 (I-D) complex is considered to work with RAD51 to protect the damaged DNA in the stalled replication fork. However, the means by which this DNA protection is accomplished have remained elusive. In the present study, we found that the I-D complex directly binds to RAD51, and stabilizes the RAD51-DNA filament. Unexpectedly, the DNA binding activity of FANCI, but not FANCD2, is explicitly required for the I-D complex-mediated RAD51-DNA filament stabilization. The RAD51 filament stabilized by the I-D complex actually protects the DNA end from nucleolytic degradation by an FA-associated nuclease, FAN1. This DNA end protection is not observed with the RAD51 mutant from FANCR patient cells. These results clearly answer the currently enigmatic question of how RAD51 functions with the I-D complex to prevent genomic instability at the stalled replication fork. PMID:27694619

  9. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism.

    PubMed

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel M A; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin A M; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-04-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.

  10. Crystal structure of MboIIA methyltransferase.

    PubMed

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  11. Duplex and triplex formation of mixed pyrimidine oligonucleotides with stacking of phenyl-triazole moieties in the major groove.

    PubMed

    Andersen, Nicolai Krog; Døssing, Holger; Jensen, Frank; Vester, Birte; Nielsen, Poul

    2011-08-05

    5-(1-Phenyl-1,2,3-triazol-4-yl)-2'-deoxycytidine was synthesized from a modified CuAAC protocol and incorporated into mixed pyrimidine oligonucleotide sequences together with the corresponding 5-(1-phenyl-1,2,3-triazol-4-yl)-2'-deoxyuridine. With consecutive incorporations of the two modified nucleosides, improved duplex formation with a complementary RNA and improved triplex formation with a complementary DNA duplex were observed. The improvement is due to π-π stacking of the phenyl-triazole moieties in the major groove. The strongest stacking and most pronounced positive influence on thermal stability was found in between the uridine analogues or with the cytidine analogue placed in the 3' direction to the uridine analogue. Modeling indicated a different orientation of the phenyl-triazole moieties in the major groove to account for the difference between the two nucleotides. The modified oligonucleotides were all found to be significantly stabilized toward nucleolytic degration.

  12. Nuclear matrix - structure, function and pathogenesis.

    PubMed

    Wasąg, Piotr; Lenartowski, Robert

    2016-12-20

    The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.

  13. Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks.

    PubMed

    Leland, Bryan A; Chen, Angela C; Zhao, Amy Y; Wharton, Robert C; King, Megan C

    2018-04-26

    Poly(ADP ribose) polymerase inhibitors (PARPi) target cancer cells deficient in homology-directed repair of DNA double-strand breaks (DSBs). In preclinical models, PARPi resistance is tied to altered nucleolytic processing (resection) at the 5' ends of a DSB. For example, loss of either 53BP1 or Rev7/MAD2L2/FANCV derepresses resection to drive PARPi resistance, although the mechanisms are poorly understood. Long-range resection can be catalyzed by two machineries: the exonuclease Exo1, or the combination of a RecQ helicase and Dna2. Here, we develop a single-cell microscopy assay that allows the distinct phases and machineries of resection to be interrogated simultaneously in living S. pombe cells. Using this assay, we find that the 53BP1 orthologue and Rev7 specifically repress long-range resection through the RecQ helicase-dependent pathway, thereby preventing hyper-resection. These results suggest that 'rewiring' of BRCA1-deficient cells to employ an Exo1-independent hyper-resection pathway is a driver of PARPi resistance. © 2018, Leland et al.

  14. Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

    PubMed

    Rzechorzek, Neil J; Blackwood, John K; Bray, Sian M; Maman, Joseph D; Pellegrini, Luca; Robinson, Nicholas P

    2014-11-25

    The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.

  15. SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres

    PubMed Central

    Wan, Bingbing; Yin, Jinhu; Horvath, Kent; Sarkar, Jaya; Chen, Yong; Wu, Jian; Wan, Ke; Lu, Jian; Gu, Peili; Yu, Eun Young; Lue, Neal F.; Chang, Sandy

    2014-01-01

    Summary SLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown. Here, we report the crystal structure of the TRF2-binding motif of SLX4 (SLX4TBM) in complex with the TRFH domain of TRF2 (TRF2TRFH) and map the interactions of SLX4 with endonucleases SLX1, XPF, and MUS81. TRF2 recognizes a unique HxLxP motif on SLX4 via the peptide-binding site in its TRFH domain. Telomeric localization of SLX4 and associated nucleases depend on the SLX4-endonuclease and SLX4-TRF2 interactions and the protein levels of SLX4 and TRF2. SLX4 assembles an endonuclease toolkit that negatively regulates telomere length via SLX1-catalyzed nucleolytic resolution of telomere DNA structures. We propose that the SLX4-TRF2 complex serves as a double-layer scaffold bridging multiple endonucleases with telomeres for recombination-based telomere maintenance. PMID:24012755

  16. Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair

    DOE PAGES

    Andres, Sara N.; Appel, C. Denise; Westmoreland, James W.; ...

    2015-01-12

    Ctp1 (also known as CtIP or Sae2) collaborates with Mre11-Rad50-Nbs1 to initiate repair of DNA double-strand breaks (DSBs), but its functions remain enigmatic. In this paper, we report that tetrameric Schizosaccharomyces pombe Ctp1 contains multivalent DNA-binding and DNA-bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer, we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal 'RHR' DNA-interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA-bridging activity in vitro, and both the THDD and RHR are required for efficientmore » DSB repair in S. pombe. Finally, our results establish non-nucleolytic roles of Ctp1 in binding and coordination of DSB-repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CtIP-linked Seckel and Jawad syndromes.« less

  17. Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection

    PubMed Central

    Bantele, Susanne CS; Ferreira, Pedro; Gritenaite, Dalia; Boos, Dominik; Pfander, Boris

    2017-01-01

    DNA double strand breaks (DSBs) can be repaired by either recombination-based or direct ligation-based mechanisms. Pathway choice is made at the level of DNA end resection, a nucleolytic processing step, which primes DSBs for repair by recombination. Resection is thus under cell cycle control, but additionally regulated by chromatin and nucleosome remodellers. Here, we show that both layers of control converge in the regulation of resection by the evolutionarily conserved Fun30/SMARCAD1 remodeller. Budding yeast Fun30 and human SMARCAD1 are cell cycle-regulated by interaction with the DSB-localized scaffold protein Dpb11/TOPBP1, respectively. In yeast, this protein assembly additionally comprises the 9-1-1 damage sensor, is involved in localizing Fun30 to damaged chromatin, and thus is required for efficient long-range resection of DSBs. Notably, artificial targeting of Fun30 to DSBs is sufficient to bypass the cell cycle regulation of long-range resection, indicating that chromatin remodelling during resection is underlying DSB repair pathway choice. DOI: http://dx.doi.org/10.7554/eLife.21687.001 PMID:28063255

  18. Crystal structure of MboIIA methyltransferase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipiuk, J.; Walsh, M. A.; Joachimiak, A.

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules inmore » the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.« less

  19. Cdc13 N-Terminal Dimerization DNA Binding and Telomere Length Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Mitchell; J Smith; M Mason

    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that ismore » directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.« less

  20. Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis.

    PubMed

    Pi, Hualiang; Helmann, John D

    2017-11-28

    Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis Here we utilized FrvA, a high-affinity Fe 2+ efflux transporter from Listeria monocytogenes , as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron ( efeUOB ), ferric citrate ( fecCDEF ), and petrobactin ( fpbNOPQ ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin ( dhbACEBF ) and turns on bacillibactin ( feuABC ) and hydroxamate siderophore ( fhuBCGD ) uptake systems to scavenge iron from the environment and flavodoxins ( ykuNOP ) to replace ferredoxins. Third, as iron levels decline further, an "iron-sparing" response ( fsrA , fbpAB , and fbpC ) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the "late"-induced genes.

  1. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site.

    PubMed

    Hatoum-Aslan, Asma; Maniv, Inbal; Marraffini, Luciano A

    2011-12-27

    Precise RNA processing is fundamental to all small RNA-mediated interference pathways. In prokaryotes, clustered, regularly interspaced, short palindromic repeats (CRISPR) loci encode small CRISPR RNAs (crRNAs) that protect against invasive genetic elements by antisense targeting. CRISPR loci are transcribed as a long precursor that is cleaved within repeat sequences by CRISPR-associated (Cas) proteins. In many organisms, this primary processing generates crRNA intermediates that are subject to additional nucleolytic trimming to render mature crRNAs of specific lengths. The molecular mechanisms underlying this maturation event remain poorly understood. Here, we defined the genetic requirements for crRNA primary processing and maturation in Staphylococcus epidermidis. We show that changes in the position of the primary processing site result in extended or diminished maturation to generate mature crRNAs of constant length. These results indicate that crRNA maturation occurs by a ruler mechanism anchored at the primary processing site. We also show that maturation is mediated by specific cas genes distinct from those genes involved in primary processing, showing that this event is directed by CRISPR/Cas loci.

  2. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sakthivel, A.; Pravin, N.

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 102 to 105 indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  3. Protospacer Adjacent Motif (PAM)-Distal Sequences Engage CRISPR Cas9 DNA Target Cleavage

    PubMed Central

    Ethier, Sylvain; Schmeing, T. Martin; Dostie, Josée; Pelletier, Jerry

    2014-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme Cas9 is an RNA-guided nuclease that has been widely adapted for genome editing in eukaryotic cells. However, the in vivo target specificity of Cas9 is poorly understood and most studies rely on in silico predictions to define the potential off-target editing spectrum. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq), we delineate the genome-wide binding panorama of catalytically inactive Cas9 directed by two different single guide (sg) RNAs targeting the Trp53 locus. Cas9:sgRNA complexes are able to load onto multiple sites with short seed regions adjacent to 5′NGG3′ protospacer adjacent motifs (PAM). Yet among 43 ChIP-seq sites harboring seed regions analyzed for mutational status, we find editing only at the intended on-target locus and one off-target site. In vitro analysis of target site recognition revealed that interactions between the 5′ end of the guide and PAM-distal target sequences are necessary to efficiently engage Cas9 nucleolytic activity, providing an explanation for why off-target editing is significantly lower than expected from ChIP-seq data. PMID:25275497

  4. Multiple roles for Saccharomyces cerevisiae histone H2A in telomere position effect, Spt phenotypes and double-strand-break repair.

    PubMed Central

    Wyatt, Holly R; Liaw, Hungjiun; Green, George R; Lustig, Arthur J

    2003-01-01

    Telomere position effects on transcription (TPE, or telomeric silencing) are nucleated by association of nonhistone silencing factors with the telomere and propagated in subtelomeric regions through association of silencing factors with the specifically modified histones H3 and H4. However, the function of histone H2A in TPE is unknown. We found that deletion of either the amino or the carboxyltails of H2A substantially reduces TPE. We identified four H2A modification sites necessary for wild-type efficiency of TPE. These "hta1tpe" alleles also act as suppressors of a delta insertion allele of LYS2, suggesting shared elements of chromatin structure at both loci. Interestingly, we observed combinatorial effects of allele pairs, suggesting both interdependent acetylation and deacetylation events in the amino-terminal tail and a regulatory circuit between multiple phosphorylated residues in the carboxyl-terminal tail. Decreases in silencing and viability are observed in most hta1tpe alleles after treatment with low and high concentrations, respectively, of bleomycin, which forms double-strand breaks (DSBs). In the absence of the DSB and telomere-binding protein yKu70, the bleomycin sensitivity of hta1tpe alleles is further enhanced. We also provide data suggesting the presence of a yKu-dependent histone H2A function in TPE. These data indicate that the amino- and carboxyl-terminal tails of H2A are essential for wild-type levels of yKu-mediated TPE and DSB repair. PMID:12750320

  5. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  6. Replication fork reversal triggers fork degradation in BRCA2-defective cells.

    PubMed

    Mijic, Sofija; Zellweger, Ralph; Chappidi, Nagaraja; Berti, Matteo; Jacobs, Kurt; Mutreja, Karun; Ursich, Sebastian; Ray Chaudhuri, Arnab; Nussenzweig, Andre; Janscak, Pavel; Lopes, Massimo

    2017-10-16

    Besides its role in homologous recombination, the tumor suppressor BRCA2 protects stalled replication forks from nucleolytic degradation. Defective fork stability contributes to chemotherapeutic sensitivity of BRCA2-defective tumors by yet-elusive mechanisms. Using DNA fiber spreading and direct visualization of replication intermediates, we report that reversed replication forks are entry points for fork degradation in BRCA2-defective cells. Besides MRE11 and PTIP, we show that RAD52 promotes stalled fork degradation and chromosomal breakage in BRCA2-defective cells. Inactivation of these factors restores reversed fork frequency and chromosome integrity in BRCA2-defective cells. Conversely, impairing fork reversal prevents fork degradation, but increases chromosomal breakage, uncoupling fork protection, and chromosome stability. We propose that BRCA2 is dispensable for RAD51-mediated fork reversal, but assembles stable RAD51 nucleofilaments on regressed arms, to protect them from degradation. Our data uncover the physiopathological relevance of fork reversal and illuminate a complex interplay of homologous recombination factors in fork remodeling and stability.BRCA2 is involved in both homologous recombination (HR) and the protection of stalled replication forks from degradation. Here the authors reveal how HR factors cooperate in fork remodeling, showing that BRCA2 supports RAD51 loading on the regressed arms of reversed replication forks to protect them from degradation.

  7. An analytical platform for mass spectrometry-based identification and chemical analysis of RNA in ribonucleoprotein complexes.

    PubMed

    Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Masaki, Shunpei; Nakayama, Hiroshi; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-11-01

    We describe here a mass spectrometry (MS)-based analytical platform of RNA, which combines direct nano-flow reversed-phase liquid chromatography (RPLC) on a spray tip column and a high-resolution LTQ-Orbitrap mass spectrometer. Operating RPLC under a very low flow rate with volatile solvents and MS in the negative mode, we could estimate highly accurate mass values sufficient to predict the nucleotide composition of a approximately 21-nucleotide small interfering RNA, detect post-transcriptional modifications in yeast tRNA, and perform collision-induced dissociation/tandem MS-based structural analysis of nucleolytic fragments of RNA at a sub-femtomole level. Importantly, the method allowed the identification and chemical analysis of small RNAs in ribonucleoprotein (RNP) complex, such as the pre-spliceosomal RNP complex, which was pulled down from cultured cells with a tagged protein cofactor as bait. We have recently developed a unique genome-oriented database search engine, Ariadne, which allows tandem MS-based identification of RNAs in biological samples. Thus, the method presented here has broad potential for automated analysis of RNA; it complements conventional molecular biology-based techniques and is particularly suited for simultaneous analysis of the composition, structure, interaction, and dynamics of RNA and protein components in various cellular RNP complexes.

  8. Dna2 initiates resection at clean DNA double-strand breaks

    PubMed Central

    Paudyal, Sharad C.; Li, Shan; Yan, Hong; Hunter, Tony

    2017-01-01

    Abstract Nucleolytic resection of DNA double-strand breaks (DSBs) is essential for both checkpoint activation and homology-mediated repair; however, the precise mechanism of resection, especially the initiation step, remains incompletely understood. Resection of blocked ends with protein or chemical adducts is believed to be initiated by the MRN complex in conjunction with CtIP through internal cleavage of the 5′ strand DNA. However, it is not clear whether resection of clean DSBs with free ends is also initiated by the same mechanism. Using the Xenopus nuclear extract system, here we show that the Dna2 nuclease directly initiates the resection of clean DSBs by cleaving the 5′ strand DNA ∼10–20 nucleotides away from the ends. In the absence of Dna2, MRN together with CtIP mediate an alternative resection initiation pathway where the nuclease activity of MRN apparently directly cleaves the 5′ strand DNA at more distal sites. MRN also facilitates resection initiation by promoting the recruitment of Dna2 and CtIP to the DNA substrate. The ssDNA-binding protein RPA promotes both Dna2- and CtIP–MRN-dependent resection initiation, but a RPA mutant can distinguish between these pathways. Our results strongly suggest that resection of blocked and clean DSBs is initiated via distinct mechanisms. PMID:28981724

  9. The mating type-like loci of Candida glabrata.

    PubMed

    Yáñez-Carrillo, Patricia; Robledo-Márquez, Karina A; Ramírez-Zavaleta, Candy Y; De Las Peñas, Alejandro; Castaño, Irene

    2014-01-01

    Candida glabrata, a haploid and opportunistic fungal pathogen that has not known sexual cycle, has conserved the majority of the genes required for mating and cell type identity. The C. glabrata genome contains three mating-type-like loci called MTL1, MTL2 and MTL3. The three loci encode putative transcription factors, a1, α1 and α2 that regulate cell type identity and sexual reproduction in other fungi like the closely related Saccharomyces cerevisiae. MTL1 can contain either a or α information. MTL2, which contains a information and MTL3 with α information, are relatively close to two telomeres. MTL1 and MTL2 are transcriptionally active, while MTL3 is subject to an incomplete silencing nucleated at the telomere that depends on the silencing proteins Sir2, Sir3, Sir4, yKu70/80, Rif1, Rap1 and Sum1. C. glabrata does not seem to maintain cell type identity, as cell type-specific genes are expressed regardless of the type (or even absence) of mating information. These data highlight important differences in the control of mating and cell type identity between the non-pathogenic yeast S. cerevisiae and C. glabrata, which might explain the absence of a sexual cycle in C. glabrata. The fact that C. glabrata has conserved the vast majority of the genes involved in mating might suggest that some of these genes perhaps have been rewired to control other processes important for the survival inside the host as a commensal or as a human pathogen. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  10. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    PubMed Central

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  11. Ariadne: a database search engine for identification and chemical analysis of RNA using tandem mass spectrometry data.

    PubMed

    Nakayama, Hiroshi; Akiyama, Misaki; Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-04-01

    We present here a method to correlate tandem mass spectra of sample RNA nucleolytic fragments with an RNA nucleotide sequence in a DNA/RNA sequence database, thereby allowing tandem mass spectrometry (MS/MS)-based identification of RNA in biological samples. Ariadne, a unique web-based database search engine, identifies RNA by two probability-based evaluation steps of MS/MS data. In the first step, the software evaluates the matches between the masses of product ions generated by MS/MS of an RNase digest of sample RNA and those calculated from a candidate nucleotide sequence in a DNA/RNA sequence database, which then predicts the nucleotide sequences of these RNase fragments. In the second step, the candidate sequences are mapped for all RNA entries in the database, and each entry is scored for a function of occurrences of the candidate sequences to identify a particular RNA. Ariadne can also predict post-transcriptional modifications of RNA, such as methylation of nucleotide bases and/or ribose, by estimating mass shifts from the theoretical mass values. The method was validated with MS/MS data of RNase T1 digests of in vitro transcripts. It was applied successfully to identify an unknown RNA component in a tRNA mixture and to analyze post-transcriptional modification in yeast tRNA(Phe-1).

  12. Functional Specificity of Extracellular Nucleases of Shewanella oneidensis MR-1

    PubMed Central

    Heun, Magnus; Binnenkade, Lucas; Kreienbaum, Maximilian

    2012-01-01

    Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg2+ or Mn2+) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. PMID:22492434

  13. Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region.

    PubMed Central

    Gaynor, R; Soultanakis, E; Kuwabara, M; Garcia, J; Sigman, D S

    1989-01-01

    The transactivator protein, tat, encoded by the human immunodeficiency virus is a key regulator of viral transcription. Activation by the tat protein requires sequences downstream of the transcription initiation site called the transactivating region (TAR). RNA derived from the TAR is capable of forming a stable stem-loop structure and the maintenance of both the stem structure and the loop sequences located between +19 and +44 is required for complete in vivo activation by tat. Gel retardation assays with RNA from both wild-type and mutant TAR constructs generated in vitro with SP6 polymerase indicated specific binding of HeLa nuclear proteins to the TAR. To characterize this RNA-protein interaction, a method of chemical "imprinting" has been developed using photoactivated uranyl acetate as the nucleolytic agent. This reagent nicks RNA under physiological conditions at all four nucleotides in a reaction that is independent of sequence and secondary structure. Specific interaction of cellular proteins with TAR RNA could be detected by enhanced cleavages or imprints surrounding the loop region. Mutations that either disrupted stem base-pairing or extensively changed the primary sequence resulted in alterations in the cleavage pattern of the TAR RNA. Structural features of the TAR RNA stem-loop essential for tat activation are also required for specific binding of the HeLa cell nuclear protein. Images PMID:2544877

  14. Interplay between Ku and Replication Protein A in the Restriction of Exo1-mediated DNA Break End Resection*

    PubMed Central

    Krasner, Danielle S.; Daley, James M.; Sung, Patrick; Niu, Hengyao

    2015-01-01

    DNA double-strand breaks can be eliminated via non-homologous end joining or homologous recombination. Non-homologous end joining is initiated by the association of Ku with DNA ends. In contrast, homologous recombination entails nucleolytic resection of the 5′-strands, forming 3′-ssDNA tails that become coated with replication protein A (RPA). Ku restricts end access by the resection nuclease Exo1. It is unclear how partial resection might affect Ku engagement and Exo1 restriction. Here, we addressed these questions in a reconstituted system with yeast proteins. With blunt-ended DNA, Ku protected against Exo1 in a manner that required its DNA end-binding activity. Despite binding poorly to ssDNA, Ku could nonetheless engage a 5′-recessed DNA end with a 40-nucleotide (nt) ssDNA overhang, where it localized to the ssDNA-dsDNA junction and efficiently blocked resection by Exo1. Interestingly, RPA could exclude Ku from a partially resected structure with a 22-nt ssDNA tail and thus restored processing by Exo1. However, at a 40-nt tail, Ku remained stably associated at the ssDNA-dsDNA junction, and RPA simultaneously engaged the ssDNA region. We discuss a model in which the dynamic equilibrium between Ku and RPA binding to a partially resected DNA end influences the timing and efficiency of the resection process. PMID:26067273

  15. The tolerance to exchanges of the Watson–Crick base pair in the hammerhead ribozyme core is determined by surrounding elements

    PubMed Central

    Przybilski, Rita; Hammann, Christian

    2007-01-01

    Tertiary interacting elements are important features of functional RNA molecules, for example, in all small nucleolytic ribozymes. The recent crystal structure of a tertiary stabilized type I hammerhead ribozyme revealed a conventional Watson–Crick base pair in the catalytic core, formed between nucleotides C3 and G8. We show that any Watson–Crick base pair between these positions retains cleavage competence in two type III ribozymes. In the Arabidopsis thaliana sequence, only moderate differences in cleavage rates are observed for the different base pairs, while the peach latent mosaic viroid (PLMVd) ribozyme exhibits a preference for a pyrimidine at position 3 and a purine at position 8. To understand these differences, we created a series of chimeric ribozymes in which we swapped sequence elements that surround the catalytic core. The kinetic characterization of the resulting ribozymes revealed that the tertiary interacting loop sequences of the PLMVd ribozyme are sufficient to induce the preference for Y3–R8 base pairs in the A. thaliana hammerhead ribozyme. In contrast to this, only when the entire stem–loops I and II of the A. thaliana sequences are grafted on the PLMVd ribozyme is any Watson–Crick base pair similarly tolerated. The data provide evidence for a complex interplay of secondary and tertiary structure elements that lead, mediated by long-range effects, to an individual modulation of the local structure in the catalytic core of different hammerhead ribozymes. PMID:17666711

  16. Microbiota and Metatranscriptome Changes Accompanying the Onset of Gingivitis

    PubMed Central

    2018-01-01

    ABSTRACT Over half of adults experience gingivitis, a mild yet treatable form of periodontal disease caused by the overgrowth of oral microbes. Left untreated, gingivitis can progress to a more severe and irreversible disease, most commonly chronic periodontitis. While periodontal diseases are associated with a shift in the oral microbiota composition, it remains unclear how this shift impacts microbiota function early in disease progression. Here, we analyzed the transition from health to gingivitis through both 16S v4-v5 rRNA amplicon and metatranscriptome sequencing of subgingival plaque samples from individuals undergoing an experimental gingivitis treatment. Beta-diversity analysis of 16S rRNA reveals that samples cluster based on disease severity and patient but not by oral hygiene status. Significant shifts in the abundance of several genera occurred during disease transition, suggesting a dysbiosis due to development of gingivitis. Comparing taxonomic abundance with transcriptomic activity revealed concordance of bacterial diversity composition between the two quantification assays in samples originating from both healthy and diseased teeth. Metatranscriptome sequencing analysis indicates that during the early stages of transition to gingivitis, a number of virulence-related transcripts were significantly differentially expressed in individual and across pooled patient samples. Upregulated genes include those involved in proteolytic and nucleolytic processes, while expression levels of those involved in surface structure assembly and other general virulence functions leading to colonization or adaptation within the host are more dynamic. These findings help characterize the transition from health to periodontal disease and identify genes associated with early disease. PMID:29666288

  17. The Aeromonas caviae AHA0618 gene modulates cell length and influences swimming and swarming motility

    PubMed Central

    Lowry, Rebecca C; Parker, Jennifer L; Kumbhar, Ramhari; Mesnage, Stephane; Shaw, Jonathan G; Stafford, Graham P

    2015-01-01

    Aeromonas caviae is motile via a polar flagellum in liquid culture, with a lateral flagella system used for swarming on solid surfaces. The polar flagellum also has a role in cellular adherence and biofilm formation. The two subunits of the polar flagellum, FlaA and FlaB, are posttranslationally modified by O-linked glycosylation with pseudaminic acid on 6–8 serine and threonine residues within the central region of these proteins. This modification is essential for the formation of the flagellum. Aeromonas caviae possesses the simplest set of genes required for bacterial glycosylation currently known, with the putative glycosyltransferase, Maf1, being described recently. Here, we investigated the role of the AHA0618 gene, which shares homology (37% at the amino acid level) with the central region of a putative deglycosylation enzyme (HP0518) from the human pathogen Helicobacter pylori, which also glycosylates its flagellin and is proposed to be part of a flagellin deglycosylation pathway. Phenotypic analysis of an AHA0618 A. caviae mutant revealed increased swimming and swarming motility compared to the wild-type strain but without any detectable effects on the glycosylation status of the polar flagellins when analyzed by western blot analysis or mass spectroscopy. Bioinformatic analysis of the protein AHA0618, demonstrated homology to a family of l,d-transpeptidases involved in cell wall biology and peptidoglycan cross-linking (YkuD-like). Scanning electron microscopy (SEM) and fluorescence microscopy analysis of the wild-type and AHA0618-mutant A. caviae strains revealed the mutant to be subtly but significantly shorter than wild-type cells; a phenomenon that could be recovered when either AHA0618 or H. pylori HP0518 were introduced. We can therefore conclude that AHA0618 does not affect A. caviae behavior by altering polar flagellin glycosylation levels but is likely to have a role in peptidoglycan processing at the bacterial cell wall, consequently altering cell length and hence influencing motility. PMID:25515520

  18. APE2 Zf-GRF facilitates 3'-5' resection of DNA damage following oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Berman, Zachary; Mueller, Geoffrey A.

    The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3'-5' nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structuremore » and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3'-5' exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.« less

  19. Unifying the DNA End-processing Roles of the Artemis Nuclease

    PubMed Central

    Chang, Howard H. Y.; Watanabe, Go; Lieber, Michael R.

    2015-01-01

    Artemis is a member of the metallo-β-lactamase protein family of nucleases. It is essential in vertebrates because, during V(D)J recombination, the RAG complex generates hairpins when it creates the double strand breaks at V, D, and J segments, and Artemis is required to open the hairpins so that they can be joined. Artemis is a diverse endo- and exonuclease, and creating a unified model for its wide range of nuclease properties has been challenging. Here we show that Artemis resects iteratively into blunt DNA ends with an efficiency that reflects the AT-richness of the DNA end. GC-rich ends are not cut by Artemis alone because of a requirement for DNA end breathing (and confirmed using fixed pseudo-Y structures). All DNA ends are cut when both the DNA-dependent protein kinase catalytic subunit and Ku accompany Artemis but not when Ku is omitted. These are the first biochemical data demonstrating a Ku dependence of Artemis action on DNA ends of any configuration. The action of Artemis at blunt DNA ends is slower than at overhangs, consistent with a requirement for a slow DNA end breathing step preceding the cut. The AT sequence dependence, the order of strand cutting, the length of the cuts, and the Ku-dependence of Artemis action at blunt ends can be reconciled with the other nucleolytic properties of both Artemis and Artemis·DNA-PKcs in a model incorporating DNA end breathing of blunt ends to form transient single to double strand boundaries that have structural similarities to hairpins and fixed 5′ and 3′ overhangs. PMID:26276388

  20. XRN1 Is a Species-Specific Virus Restriction Factor in Yeasts

    PubMed Central

    Rowley, Paul A.; Ho, Brandon; Bushong, Sarah; Johnson, Arlen; Sawyer, Sara L.

    2016-01-01

    In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. We find a highly refined, species-specific relationship between Xrn1p and the “L-A” totiviruses of different Saccharomyces yeast species. We show that the gene XRN1 has evolved rapidly under positive natural selection in Saccharomyces yeast, resulting in high levels of Xrn1p protein sequence divergence from one yeast species to the next. We also show that these sequence differences translate to differential interactions with the L-A virus, where Xrn1p from S. cerevisiae is most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii is most efficient at controlling the L-A-like virus that we have discovered within S. kudriavzevii. All Xrn1p orthologs are equivalent in their interaction with another virus-like parasite, the Ty1 retrotransposon. Thus, Xrn1p appears to co-evolve with totiviruses to maintain its potent antiviral activity and limit viral propagation in Saccharomyces yeasts. We demonstrate that Xrn1p physically interacts with the Gag protein encoded by the L-A virus, suggesting a host-virus interaction that is more complicated than just Xrn1p-mediated nucleolytic digestion of viral RNAs. PMID:27711183

  1. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction

    PubMed Central

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L.

    2016-01-01

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn2+ specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH–rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction. PMID:26398724

  2. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis

    PubMed Central

    Ipsaro, Jonathan J.; Haase, Astrid D.; Knott, Simon R.; Joshua-Tor, Leemor; Hannon, Gregory J.

    2012-01-01

    PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism that provides an essential protection for germ cell genomes against the activity of mobile genetic elements1. piRNA populations comprise a molecular definition of transposons that permits them to be distinguished from host genes and selectively silenced. piRNAs can be generated in two distinct ways. Primary piRNAs emanate from discrete genomic loci, termed piRNA clusters, and appear to be derived from long, single-stranded precursors2. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are likely formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner1,3. Secondary piRNAs arise during the adaptive ping-pong cycle, with their 5' termini being formed by the activity of PIWIs themselves2,4. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Zucchini, is a member of the phospholipase D family of phosphodiesterases, which includes both phospholipases and nucleases5–7. We have produced a dimeric, soluble fragment of the mouse Zucchini homolog (mZuc/PLD6) and have shown that it possesses single strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to PLD-family nucleases than to phospholipases. Considered together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs. PMID:23064227

  3. Consequences of acute oxidative stress in Leishmania amazonensis: From telomere shortening to the selection of the fittest parasites.

    PubMed

    da Silva, Marcelo Santos; Segatto, Marcela; Pavani, Raphael Souza; Gutierrez-Rodrigues, Fernanda; Bispo, Vanderson da Silva; de Medeiros, Marisa Helena Gennari; Calado, Rodrigo Tocantins; Elias, Maria Carolina; Cano, Maria Isabel Nogueira

    2017-01-01

    Leishmaniasis is a spectrum of diseases caused by parasites of the genus Leishmania that affects millions of people around the world. During infection, the parasites use different strategies to survive the host's defenses, including overcoming exposure to reactive oxidant species (ROS), responsible for causing damage to lipids, proteins and DNA. This damage especially affects telomeres, which frequently results in genome instability, senescence and cell death. Telomeres are the physical ends of the chromosomes composed of repetitive DNA coupled with proteins, whose function is to protect the chromosomes termini and avoid end-fusion and nucleolytic degradation. In this work, we induced acute oxidative stress in promastigote forms of Leishmania amazonensis by treating parasites with 2mM hydrogen peroxide (H 2 O 2 ) for 1h, which was able to increase intracellular ROS levels. In addition, oxidative stress induced DNA damage, as confirmed by 8-oxodGuo quantification and TUNEL assays and the dissociation of LaRPA-1 from the 3' G-overhang, leading to telomere shortening. Moreover, LaRPA-1 was observed to interact with newly formed C-rich single-stranded telomeric DNA, probably as a consequence of the DNA damage response. Nonetheless, acute oxidative stress caused the death of some of the L. amazonensis population and induced cell cycle arrest at the G2/M phase in survivor parasites, which were able to continue proliferating and replicating DNA and became more resistant to oxidative stress. Taken together, these results suggest that adaptation occurs through the selection of the fittest parasites in terms of repairing oxidative DNA damage at telomeres and maintaining genome stability in a stressful environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Recognition and repair of chemically heterogeneous structures at DNA ends

    PubMed Central

    Andres, Sara N.; Schellenberg, Matthew J.; Wallace, Bret D.; Tumbale, Percy; Williams, R. Scott

    2014-01-01

    Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not “clean”. Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini. PMID:25111769

  5. The A12.2 Subunit Is an Intrinsic Destabilizer of the RNA Polymerase I Elongation Complex.

    PubMed

    Appling, Francis D; Scull, Catherine E; Lucius, Aaron L; Schneider, David A

    2018-06-05

    Despite sharing a highly conserved core architecture with their prokaryotic counterparts, eukaryotic multisubunit RNA polymerases (Pols) have undergone structural divergence and biological specialization. Interesting examples of structural divergence are the A12.2 and C11 subunits of Pols I and III, respectively. Whereas all known cellular Pols possess cognate protein factors that stimulate cleavage of the nascent RNA, Pols I and III have incorporated their cleavage factors as bona fide subunits. Although it is not yet clear why these polymerases have incorporated their cleavage factors as subunits, a picture is emerging that identifies roles for these subunits beyond providing nucleolytic activity. Specifically, it appears that both A12.2 and C11 are required for efficient termination of transcription by Pols I and III. Given that termination involves destabilization of the elongation complex (EC), we tested whether A12.2 influences stability of the Pol I EC. Using, to our knowledge, a novel assay to measure EC dissociation kinetics, we have determined that A12.2 is an intrinsic destabilizer of the Pol I EC. In addition, the salt concentration dependence of Pol I EC dissociation kinetics suggests that A12.2 alters electrostatic interactions within the EC. Importantly, these data present a mechanistic basis for the requirement of A12.2 in Pol I termination. Combined with recent work demonstrating the direct involvement of A12.2 in Pol I nucleotide incorporation, this study further supports the concept that A12.2 cannot be viewed solely as a cleavage factor. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures.

    PubMed

    Ahmadi, Yasaman; De Llano, Elisa; Barišić, Ivan

    2018-04-26

    DNA nanostructures hold immense potential to be used for biological and medical applications. However, they are extremely vulnerable towards salt depletion and nucleases, which are common under physiological conditions. In this contribution, we used chitosan and linear polyethyleneimine for coating and long-term stabilization of several three-dimensional DNA origami nanostructures. The impact of the degree of polymerization and the charge density of the polymer together with the N/P charge ratio (ratio of the amines in polycations to the phosphates in DNA) on the stability of encapsulated DNA origami nanostructures in the presence of nucleases and in low-salt media was examined. The polycation shells were compatible with enzyme- and aptamer-based functionalization of the DNA nanostructures. Additionally, we showed that despite being highly vulnerable to salt depletion and nucleolytic digestion, self-assembled DNA nanostructures are stable in cell culture media up to a week. This was contrary to unassembled DNA scaffolds that degraded in one hour, showing that placing DNA strands into a spatially designed configuration crucially affect the structural integrity. The stability of naked DNA nanostructures in cell culture was shown to be mediated by growth media. DNA origami nanostructures kept in growth media were significantly more resistant towards low-salt denaturation, DNase I and serum-mediated digestion than when in a conventional buffer. Moreover, we confirmed that DNA origami nanostructures remain not only structurally intact but also fully functional after exposure to cell media. Agarose gel electrophoresis and negative stain transmission electron microscopy analysis revealed the hybridization of DNA origami nanostructures to their targets in the presence of serum proteins and nucleases. The structural integrity and functionality of DNA nanostructures in physiological fluids validate their use particularly for short-time biological applications in which the shape and structural details of DNA nanodevices are functionally critical.

  7. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction.

    PubMed

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L

    2015-10-20

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn(2+) specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH-rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction.

  8. σI from Bacillus subtilis: Impact on Gene Expression and Characterization of σI-dependent Transcription that Requires New Types of Promoters with Extended -35 and -10 Elements.

    PubMed

    Ramaniuk, Olga; Převorovský, Martin; Pospíšil, Jiří; Vítovská, Dragana; Kofroňová, Olga; Benada, Oldřich; Schwarz, Marek; Šanderová, Hana; Hnilicová, Jarmila; Krásný, Libor

    2018-06-18

    σ I from Bacillus subtilis is a σ factor associating with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here we provide a comprehensive characterization of this transcriptional regulator. By RNA-seq of wt and σ I -null strains at 37°C and 52°C we identified ∼130 genes affected by the absence of σ I Further analysis revealed that the majority of these genes were affected by σ I indirectly. The σ I regulon, i.e., the genes directly regulated by σ I , consists of 16 genes of which eight (the dhb and yku operons) are involved in iron metabolism. The involvement of σ I in iron metabolism was confirmed phenotypically. Next, we set up an in vitro transcription system and defined and experimentally validated the promoter sequence logo that, in addition to -35 and -10 regions, also contains extended -35 and -10 motifs. Thus, σ I -dependent promoters are relatively information-rich in comparison with most other promoters. In summary, this study supplies information about the least explored σ factor from the industrially important model organism B. subtilis Importance In bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons ( i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σ I regulon from the industrially important model Gram-positive bacterium - Bacillus subtilis We reveal that σ I affects expression of ∼ 130 genes, of which 16 are directly regulated by σ I , including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σ I -dependent transcription. This study thus provides a comprehensive view on this underexplored component of the B. subtilis transcription machinery. Copyright © 2018 American Society for Microbiology.

  9. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.

    PubMed

    Ye, Yanfang; Kirkham-McCarthy, Lucy; Lahue, Robert S

    2016-07-01

    Trinucleotide repeats (TNRs) are tandem arrays of three nucleotides that can expand in length to cause at least 17 inherited human diseases. Somatic expansions in patients can occur in differentiated tissues where DNA replication is limited and cannot be a primary source of somatic mutation. Instead, mouse models of TNR diseases have shown that both inherited and somatic expansions can be suppressed by the loss of certain DNA repair factors. It is generally believed that these repair factors cause misprocessing of TNRs, leading to expansions. Here we extend this idea to show that the Mre11-Rad50-Xrs2 (MRX) complex of Saccharomyces cerevisiae is a causative factor in expansions of short TNRs. Mutations that eliminate MRX subunits led to significant suppression of expansions whereas mutations that inactivate Rad51 had only a minor effect. Coupled with previous evidence, this suggests that MRX drives expansions of short TNRs through a process distinct from homologous recombination. The nuclease function of Mre11 was dispensable for expansions, suggesting that expansions do not occur by Mre11-dependent nucleolytic processing of the TNR. Epistasis between MRX and post-replication repair (PRR) was tested. PRR protects against expansions, so a rad5 mutant gave a high expansion rate. In contrast, the mre11 rad5 double mutant gave a suppressed expansion rate, indistinguishable from the mre11 single mutant. This suggests that MRX creates a TNR substrate for PRR. Protein acetylation was also tested as a mechanism regulating MRX activity in expansions. Six acetylation sites were identified in Rad50. Mutation of all six lysine residues to arginine gave partial bypass of a sin3 HDAC mutant, suggesting that Rad50 acetylation is functionally important for Sin3-mediated expansions. Overall we conclude that yeast MRX helps drive expansions of short TNRs by a mechanism distinct from its role in homologous recombination and independent of the nuclease function of Mre11. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Multidimensional analysis of intracellular bacteriophage T7 DNA: effects of amber mutations in genes 3 and 19.

    PubMed Central

    Serwer, P; Watson, R H; Hayes, S J

    1987-01-01

    By use of rate-zonal centrifugation, followed by either one- or two-dimensional agarose gel electrophoresis, the forms of intracellular bacteriophage T7 DNA produced by replication, recombination, and packaging have been analyzed. Previous studies had shown that at least some intracellular DNA with sedimentation coefficients between 32S (the S value of mature T7 DNA) and 100S is concatemeric, i.e., linear and longer than mature T7 DNA. The analysis presented here confirmed that most of this DNA is linear, but also revealed a significant amount of circular DNA. The data suggest that these circles are produced during DNA packaging. It is proposed that circles are produced after a capsid has bound two sequential genomes in a concatemer. The size distribution of the linear, concatemeric DNA had peaks at the positions of dimeric and trimeric concatemers. Restriction endonuclease analysis revealed that most of the mature T7 DNA subunits of concatemers were joined left end to right end. However, these data also suggest that a comparatively small amount of left-end to left-end joining occurs, possibly by blunt-end ligation. A replicating form of T7 DNA that had an S value greater than 100 (100S+ DNA) was also found to contain concatemers. However, some of the 100S+ DNA, probably the most branched component, remained associated with the origin after agarose gel electrophoresis. It has been found that T7 protein 19, known to be required for DNA packaging, was also required to prevent loss, probably by nucleolytic degradation, of the right end of all forms of intracellular T7 DNA. T7 gene 3 endonuclease, whose activity is required for both recombination of T7 DNA and degradation of host DNA, was required for the formation of the 32S to 100S molecules that behaved as concatemers during gel electrophoresis. In the absence of gene 3 endonuclease, the primary accumulation product was origin-associated 100S+ DNA with properties that suggest the accumulation of branches, primarily at the left end of mature DNA subunits within the 100S+ DNA. Images PMID:2822958

  11. Microbiota and Metatranscriptome Changes Accompanying the Onset of Gingivitis.

    PubMed

    Nowicki, Emily M; Shroff, Raghav; Singleton, Jacqueline A; Renaud, Diane E; Wallace, Debra; Drury, Julie; Zirnheld, Jolene; Colleti, Brock; Ellington, Andrew D; Lamont, Richard J; Scott, David A; Whiteley, Marvin

    2018-04-17

    Over half of adults experience gingivitis, a mild yet treatable form of periodontal disease caused by the overgrowth of oral microbes. Left untreated, gingivitis can progress to a more severe and irreversible disease, most commonly chronic periodontitis. While periodontal diseases are associated with a shift in the oral microbiota composition, it remains unclear how this shift impacts microbiota function early in disease progression. Here, we analyzed the transition from health to gingivitis through both 16S v4-v5 rRNA amplicon and metatranscriptome sequencing of subgingival plaque samples from individuals undergoing an experimental gingivitis treatment. Beta-diversity analysis of 16S rRNA reveals that samples cluster based on disease severity and patient but not by oral hygiene status. Significant shifts in the abundance of several genera occurred during disease transition, suggesting a dysbiosis due to development of gingivitis. Comparing taxonomic abundance with transcriptomic activity revealed concordance of bacterial diversity composition between the two quantification assays in samples originating from both healthy and diseased teeth. Metatranscriptome sequencing analysis indicates that during the early stages of transition to gingivitis, a number of virulence-related transcripts were significantly differentially expressed in individual and across pooled patient samples. Upregulated genes include those involved in proteolytic and nucleolytic processes, while expression levels of those involved in surface structure assembly and other general virulence functions leading to colonization or adaptation within the host are more dynamic. These findings help characterize the transition from health to periodontal disease and identify genes associated with early disease. IMPORTANCE Although more than 50% of adults have some form of periodontal disease, there remains a significant gap in our understanding of its underlying cause. We initiated this study in order to better characterize the progression from oral health to disease. We first analyzed changes in the abundances of specific microorganisms in dental plaque collected from teeth during health and gingivitis, the mildest form of periodontal disease. We found that the clinical score of disease and patient from whom the sample originated but not tooth brushing are significantly correlated with microbial community composition. While a number of virulence-related gene transcripts are differentially expressed in gingivitis samples relative to health, not all are increased, suggesting that the overall activity of the microbiota is dynamic during disease transition. Better understanding of which microbes are present and their function during early periodontal disease can potentially lead to more targeted prophylactic approaches to prevent disease progression. Copyright © 2018 Nowicki et al.

  12. N2 and P3 modulation during partial inhibition in a modified go/nogo task.

    PubMed

    Nguyen, An T; Moyle, Jonson J; Fox, Allison M

    2016-09-01

    The neural response following the partial inhibition of responses can provide insight into the processes underlying response inhibition. We examined the N2 and P3 on trials where participants correctly responded to go stimuli, successfully inhibited their response to nogo stimuli, and nogo trials where they initiated but did not complete their response (partial inhibitions) in an adult sample (N=24, M(age)=21.17, SD(age)=3.52). An enhanced and delayed N2 was observed on partially inhibited compared to successfully inhibited nogo trials. Further analysis showed that this modulation was error-related. An enhanced central P3 was observed following successful inhibitions compared to correct go trials, but not following partial inhibitions. The results suggest that the central P3 enhancement is specific to the complete and successful inhibition of responses. Therefore, the absence of a central P3 on partial inhibitions could reflect insufficient inhibition or a monitored failure in inhibiting the response. Although, our findings provide support for the role of P3 in response inhibition, it raises questions about the processes involved in the subsequent inhibition or correction of the erroneous response. Further research examining the neural response following both partial and unsuccessful inhibitions could provide insight regarding these processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Executive and motivational inhibition: associations with self-report measures related to inhibition.

    PubMed

    Shuster, Jill; Toplak, Maggie E

    2009-06-01

    Inhibition involves the withholding or suppressing of attention or responses to irrelevant or distracting stimuli. We examined the relationship between five experimental tasks of inhibition, represented by two measures of executive, intentional control inhibition and three measures of motivational inhibition characterized by bottom-up interruption of affective and reward/punishment sensitive mechanisms. Associations between these experimental tasks with three self-report measures related to inhibition were also examined. Correlational analyses indicated a small but significant association between the measures in the executive domain (stop task and Stroop task), but a lack of associations between the measures in the motivational domain (emotional Stroop task, a card playing task involving rewards and punishments, and a gambling task). Both measures of executive and motivational inhibition entered as significant predictors on the self-report measures related to inhibition in simultaneous regression analyses, but not consistently in the expected direction. The results suggest that inhibition is not a unitary construct, and demonstrate an association between experimental measures of inhibition and self-report measures related to inhibition.

  14. Inhibition by somatostatin (growth-hormone release-inhibiting hormone, GH-RIH) of gastric acid and pepsin and G-cell release of gastrin.

    PubMed Central

    Barros D'sa, A A; Bloom, S R; Baron, J H

    1978-01-01

    Somatostatin (cyclic growth-hormone release-inhibiting hormone--GH-RIH) was infused into dogs with gastric fistulae. Somatostatin inhibited gastric acid response to four gastric stimulants--insulin, food, histamine, and pentagastrin. Histamine- and pentagastrin-stimulated pepsins were inhibited similarly to inhibition of acid. Somatostatin inhibited the gastrin response to insulin and food. PMID:348581

  15. The Role of Test Context in Latent Inhibition of Conditioned Inhibition: Part of a Search for General Principles of Associative Interference

    PubMed Central

    Miguez, Gonzalo; Soares, Julia S.; Miller, Ralph R.

    2015-01-01

    Two lick-suppression experiments with rats assessed interference with behavior indicative of conditioned inhibition by a latent inhibition treatment as a function of test context. We asked what effect the test context has, given identical latent inhibition treatment in Phase 1 and identical conditioned inhibition training in Phase 2. In Experiment 1, an AAA vs. AAB context-shift design determined that latent inhibition treatment in Phase 1 attenuated behavior indicative of conditioned inhibition training administered in Phase 2 regardless of the test context, which could reflect a failure to either acquire or express conditioned inhibition. In Experiment 2, an ABA vs. ABB design found that test performance in Contexts A and B reflected the treatments that had been administered in those contexts (i.e., conditioned inhibition was observed in Context B but not A), which could reflect either context specificity of latent inhibition or context specificity of conditioned inhibition. In either case, latent inhibition of conditioned inhibition training in at least some situations was seen to reflect an expression deficit rather than an acquisition deficit. These data, in conjunction with prior reports, suggest that latent inhibition is relatively specific to the context in which it was administered, whereas conditioned inhibition is specific to its training context only when it is the second learned relationship concerning the target cue. These experiments are part of a larger effort to delineate control by the test context of two-phase associative interference as a function of the nature of target training and the nature of interference training. PMID:25875792

  16. The role of test context in latent inhibition of conditioned inhibition: Part of a search for general principles of associative interference.

    PubMed

    Miguez, Gonzalo; Soares, Julia S; Miller, Ralph R

    2015-09-01

    In two lick suppression experiments with rats, we assessed interference with behavior indicative of conditioned inhibition by a latent inhibition treatment as a function of test context. We asked what effect the test context has, given identical latent inhibition treatments in Phase 1 and identical conditioned inhibition trainings in Phase 2. In Experiment 1, an AAA versus AAB context-shift design determined that the latent inhibition treatment in Phase 1 attenuated behavior indicative of the conditioned inhibition training administered in Phase 2, regardless of the test context, which could reflect a failure to either acquire or express conditioned inhibition. In Experiment 2, an ABA versus ABB design showed that test performance in Contexts A and B reflected the treatments that had been administered in those contexts (i.e., conditioned inhibition was observed in Context B but not A), which could reflect either the context specificity of either latent inhibition or conditioned inhibition. In either case, latent inhibition of conditioned inhibition training in at least some situations was seen to reflect an expression deficit rather than an acquisition deficit. These data, in conjunction with prior reports, suggest that latent inhibition is relatively specific to the context in which it was administered, whereas conditioned inhibition is specific to its training context only when it is the second-learned relationship concerning the target cue. These experiments are part of a larger effort to delineate control by the test context of two-phase associative interference, as a function of the nature of target training and the nature of interference training.

  17. Behavioral inhibition and obsessive-compulsive disorder.

    PubMed

    Coles, Meredith E; Schofield, Casey A; Pietrefesa, Ashley S

    2006-01-01

    Behavioral inhibition is frequently cited as a vulnerability factor for development of anxiety. However, few studies have examined the unique relationship between behavioral inhibition and obsessive-compulsive disorder (OCD). Therefore, the current study addressed the relationship between behavioral inhibition and OCD in a number of ways. In a large unselected student sample, frequency of current OC symptoms was significantly correlated with retrospective self-reports of total levels of childhood behavioral inhibition. In addition, frequency of current OC symptoms was also significantly correlated with both social and nonsocial components of behavioral inhibition. Further, there was evidence for a unique relationship between behavioral inhibition and OC symptoms beyond the relationship of behavioral inhibition and social anxiety. In addition, results showed that reports of childhood levels of behavioral inhibition significantly predicted levels of OCD symptoms in adulthood. Finally, preliminary evidence suggested that behavioral inhibition may be more strongly associated with some types of OC symptoms than others, and that overprotective parenting may moderate the impact of behavioral inhibition on OC symptoms. The current findings suggest the utility of additional research examining the role of behavioral inhibition in the etiology of OCD.

  18. Inhibition, interference, and conflict in task switching.

    PubMed

    Costa, Russell E; Friedrich, Frances J

    2012-12-01

    The role of inhibition in the task-switching process has received increased empirical and theoretical attention in the literature on cognitive control. Many accounts have suggested that inhibition occurs when a conflict must be resolved-for example, when a target stimulus contains features of more than one task. In the two experiments reported here, we used variants of backward inhibition, or N - 2 repetition, designs to examine (1) whether inhibition occurs in the absence of conflict at the stimulus or response level, (2) when in the task-switching process such inhibition may occur, and (3) the potential consequences of inhibition. In Experiment 1, we demonstrate that neither stimulus- nor response-level conflict is necessary for inhibition to occur, while the results of Experiment 2 suggest that inhibition may be associated with a reduction of proactive interference (PI) from a previously performed task. Evidence of inhibition and the reduction of PI both occurred at the task-set level. However, inhibition of specific stimulus values can also occur, but this is clearly separable from task-set inhibition. Both experiments also provided evidence that task-set inhibition can be applied at the time of the new task cue, as opposed to at the onset of the target or at the response stage of the trial. Taken together, the results from these experiments provide insight into when and where in the task-switching process inhibition may occur, as well as into the potential functional benefits that inhibition of task sets may provide.

  19. MicroRNA expression profile and functional analysis reveal their roles in contact inhibition and its disruption switch of rat vascular smooth muscle cells.

    PubMed

    Sun, Ye-Ying; Qin, Shan-Shan; Cheng, Yun-Hui; Wang, Chao-Yun; Liu, Xiao-Jun; Liu, Ying; Zhang, Xiu-Li; Zhang, Wendy; Zhan, Jia-Xin; Shao, Shuai; Bian, Wei-Hua; Luo, Bi-Hui; Lu, Dong-Feng; Yang, Jian; Wang, Chun-Hua; Zhang, Chun-Xiang

    2018-05-01

    Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.

  20. Expressive inhibition following interpersonal trauma: an analysis of reported function.

    PubMed

    Clapp, Joshua D; Jones, Judiann M; Jaconis, Maryanne; Olsen, Shira A; Woodward, Matthew J; Beck, J Gayle

    2014-03-01

    Existing research indicates veterans with posttraumatic stress disorder (PTSD) may deliberately inhibit the expression of emotion. However, the degree to which inhibition generalizes to other trauma populations and the specific reasons survivors with PTSD inhibit expression remains unclear. The present study looked to evaluate expressive inhibition among survivors of intimate partner violence (N = 74), to determine reasons for inhibition in this population, and to examine whether any justifications for inhibition are unique to individuals with PTSD. The frequency and intensity of inhibition scores were similar to those noted in previous research although no differences were observed across women with and without PTSD. Self-reported justifications for inhibition indicated five general themes: Concern for others, Mistrust/fear of exploitation, Perception of others as indifferent/uncaring, Control/Experiential avoidance, and Situation-specific inhibition. Only mistrust/exploitation motives were uniquely associated with PTSD. Whereas expressive inhibition may be elevated within help-seeking samples, individuals who develop PTSD appear to hold unique reasons for restricting emotional expression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. "Don׳t" versus "won׳t": principles, mechanisms, and intention in action inhibition.

    PubMed

    Ridderinkhof, K Richard; van den Wildenberg, Wery P M; Brass, Marcel

    2014-12-01

    The aim of the present review is to provide a theoretical analysis of the role of intentions in inhibition. We will first outline four dimensions along which inhibition can be categorized: intentionality, timing, specificity, and the nature of the to-be-inhibited action. Next, we relate the concept of inhibition to theories of intentional action. In particular, we integrate ideomotor theory with motor control theories that involve predictive forward modeling of the consequences of one׳s action, and evaluate how the dimensional classification of inhibition fits into such an integrative approach. Furthermore, we will outline testable predictions that derive from this novel hypothesis of ideomotor inhibition. We then discuss the viability of the ideomotor inhibition hypothesis and our classification in view of the available evidence on the neural mechanisms of action inhibition, indicating that sensorimotor and ideomotor inhibition engages largely overlapping networks with additional recruitment of dFMC for ideomotor inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Expressive Inhibition Following Interpersonal Trauma: An Analysis of Reported Function

    PubMed Central

    Clapp, Joshua D.; Jones, Judiann M.; Jaconis, Maryanne; Olsen, Shira A.; Woodward, Matthew J.; Beck, J. Gayle

    2014-01-01

    Existing research indicates veterans with PTSD may deliberately inhibit the expression of emotion. However, the degree to which inhibition generalizes to other trauma populations and the specific reasons survivors with PTSD inhibit expression remains unclear. The present study looked to evaluate expressive inhibition among survivors of intimate partner violence (N = 74), to determine reasons for inhibition in this population, and to examine whether any justifications for inhibition are unique to individuals with PTSD. The frequency and intensity of inhibition scores were similar to those noted in previous research although no differences were observed across women with and without PTSD. Self-reported justifications for inhibition indicated five general themes: Concern for others, Mistrust/fear of exploitation, Perception of others as indifferent/uncaring, Control/Experiential avoidance, and Situation-specific inhibition. Only mistrust/exploitation motives were uniquely associated with PTSD. Whereas expressive inhibition may be elevated within help-seeking samples, individuals who develop PTSD appear to hold unique reasons for restricting emotional expression. PMID:24507632

  3. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts.

    PubMed

    Rahimzadeh, Mahsa; Jahanshahi, Samaneh; Moein, Soheila; Moein, Mahmood Reza

    2014-06-01

    One strategy for the treatment of diabetes is inhibition of pancreatic α- amylase. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Urtica dioica and Juglans regia Linn were tested for α-amylase inhibition. Different concentrations of leaf aqueous extracts were incubated with enzyme substrate solution and the activity of enzyme was measured. For determination of the type of inhibition, Dixon plot was depicted. Acarbose was used as the standard inhibitor. Both plant extracts showed time and concentration dependent inhibition of α-amylase. 60% inhibition was seen with 2 mg/ml of U. dioica and 0.4 mg/ml of J. regia aqueous extract. Dixon plots revealed the type of α-amylase inhibition by these two extracts as competitive inhibition. Determination of the type of α-amylase inhibition by these plant extracts could provide by successful use of plant chemicals as drug targets.

  4. Anxiety and retrieval inhibition: support for an enhanced inhibition account.

    PubMed

    Nuñez, Mia; Gregory, Josh; Zinbarg, Richard E

    2017-02-01

    Retrieval inhibition of negative associations is important for exposure therapy for anxiety, but the relationship between memory inhibition and anxiety is not well understood-anxiety could either be associated with enhanced or deficient inhibition. The present study tested these two competing hypotheses by measuring retrieval inhibition of negative stimuli by related neutral stimuli. Non-clinically anxious undergraduates completed measures of trait and state anxiety and completed a retrieval induced forgetting task. Adaptive forgetting varied with state anxiety. Low levels of state anxiety were associated with no evidence for retrieval inhibition for either threatening or non-threatening categories. Participants in the middle tertile of state anxiety scores exhibited retrieval inhibition for non-threatening categories but not for threatening categories. Participants in the highest tertile of state anxiety, however, exhibited retrieval inhibition for both threatening and non-threatening categories with the magnitude of retrieval inhibition being greater for threatening than non-threatening categories. The data are in line with the avoidance aspect of the vigilance-avoidance theory of anxiety and inhibition. Implications for cognitive behavioural therapy practices are discussed.

  5. Inhibition of ATPase activity in rat synaptic plasma membranes by simultaneous exposure to metals.

    PubMed

    Carfagna, M A; Ponsler, G D; Muhoberac, B B

    1996-03-08

    Inhibition of Na+/K+-ATPase and Mg2+-ATPase activities by in vitro exposure to Cd2+, Pb2+ and Mn2+ was investigated in rat brain synaptic plasma membranes (SPMs). Cd2+ and Pb2+ produced a larger maximal inhibition of Na+/K+-ATPase than of Mg2+-ATPase activity. Metal concentrations causing 50% inhibition of Na+/K+-ATPase activity (IC50 values) were Cd2+ (0.6 microM) < Pb2+ (2.1 microM) < Mn2+ (approximately 3 mM), and the former two metals were substantially more potent in inhibiting SPM versus synaptosomal Na+/K+-ATPase. Dixon plots of SPM data indicated that equilibrium binding of metals occurs at sites causing enzyme inhibition. In addition, IC50 values for SPM K+-dependent p-nitrophenylphosphatase inhibition followed the same order and were Cd2+ (0.4 microM) < Pb2+ (1.2 microM) < Mn2+ (300 microM). Simultaneous exposure to the combinations Cd2+/Mn2+ or Pb2+/Mn2+ inhibited SPM Na+/K+-ATPase activity synergistically (i.e., greater than the sum of the metal-induced inhibitions assayed separately), while Cd2+/Pb2+ caused additive inhibition. Simultaneous exposure to Cd2+/Pb2+ antagonistically inhibited Mg2+-ATPase activity while Cd2+/Mn2+ or Pb2+/Mn2+ additively inhibited Mg2+-ATPase activity at low Mn2+ concentrations, but inhibited antagonistically at higher concentrations. The similar IC50 values for Cd2+ and Pb2+ versus Mn2+ inhibition of Na+/K+-ATPase and the pattern of inhibition/activation upon exposure to two metals simultaneously support similar modes of interaction of Cd2+ and Pb2+ with this enzyme, in agreement with their chemical reactivities.

  6. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    PubMed

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-09-18

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.

  7. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts

    PubMed Central

    Rahimzadeh, Mahsa; Jahanshahi, Samaneh; Moein, Soheila; Moein, Mahmood Reza

    2014-01-01

    Objective(s): One strategy for the treatment of diabetes is inhibition of pancreatic α- amylase. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Materials and Methods: Urtica dioica and Juglans regia Linn were tested for α-amylase inhibition. Different concentrations of leaf aqueous extracts were incubated with enzyme substrate solution and the activity of enzyme was measured. For determination of the type of inhibition, Dixon plot was depicted. Acarbose was used as the standard inhibitor. Results: Both plant extracts showed time and concentration dependent inhibition of α-amylase. 60% inhibition was seen with 2 mg/ml of U. dioica and 0.4 mg/ml of J. regia aqueous extract. Dixon plots revealed the type of α-amylase inhibition by these two extracts as competitive inhibition. Conclusion: Determination of the type of α-amylase inhibition by these plant extracts could provide by successful use of plant chemicals as drug targets. PMID:25140210

  8. Cognitive inhibition in students with and without dyslexia and dyscalculia.

    PubMed

    Wang, Li-Chih; Tasi, Hung-Ju; Yang, Hsien-Ming

    2012-01-01

    The present study presents a comparison of the cognitive inhibition abilities of dyslexic, dyscalculic, and control students. The participants were 45 dyslexic students, 45 dyscalculic students, and 45 age-, gender-, and IQ-matched control students. The major evaluation tools included six cognitive inhibition tasks which were restructured during principal component analysis into three categories: graph inhibition, number inhibition, and word inhibition. Comparisons of the 3 groups of students revealed that in graph inhibition, dyscalculic students performed worst of the 3 groups, with dyslexic students also performing worse than control students in this category. For number inhibition, the control students' performances were equal to those of dyslexic students, with both groups performing better than dyscalculic students. For word inhibition, control students' performances were equal to those of dyscalculic students; both groups had shorter response times and lower incorrect rates than dyslexic students. These results suggest the complexity of the different cognitive inhibition abilities displayed by dyslexic, dyscalculic, and control students. However, some regular patterns occurred. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability.

    PubMed

    Rey-Mermet, Alodie; Gade, Miriam; Oberauer, Klaus

    2018-04-01

    Inhibition is often conceptualized as a unitary construct reflecting the ability to ignore and suppress irrelevant information. At the same time, it has been subdivided into inhibition of prepotent responses (i.e., the ability to stop dominant responses) and resistance to distracter interference (i.e., the ability to ignore distracting information). The present study investigated the unity and diversity of inhibition as a psychometric construct, and tested the hypothesis of an inhibition deficit in older age. We measured inhibition in young and old adults with 11 established laboratory tasks: antisaccade, stop-signal, color Stroop, number Stroop, arrow flanker, letter flanker, Simon, global-local, positive and negative compatibility tasks, and n-2 repetition costs in task switching. In both age groups, the inhibition measures from individual tasks had good reliabilities, but correlated only weakly among each other. Structural equation modeling identified a 2-factor model with factors for inhibition of prepotent responses and resistance to distracter interference. Older adults scored worse in the inhibition of prepotent response, but better in the resistance to distracter interference. However, the model had low explanatory power. Together, these findings call into question inhibition as a psychometric construct and the hypothesis of an inhibition deficit in older age. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. DIFFERENTIAL PROFILES OF CHOLINESTERASE INHIBITION AND NEUROBEHAVIORAL EFFECTS IN RATS EXPOSED TO FENAMIPHOS AND PROFENOPHOS.

    EPA Science Inventory

    The relationship between cholinesterase (ChE) inhibition and neurobehavioral changes was examined using two ChE-inhibiting organophosphorus pesticides, fenamiphos and profenophos. Both pesticides inhibit blood ChE, yet brain ChE is relatively spared (little to no inhibition up t...

  11. Genetic separation of phototropism from blue light inhibition of hypocotyl elongation on Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liscum, E.; Young, J.C.; Hangarter, R.P.

    1991-05-01

    Phototropism and inhibition of stem elongation occur in response to blue light-induced inhibition of cell elongation. However, phototropism is a low fluence response and inhibition of hypocotyl elongation is a high irradiance response. The authors have isolated several mutant lines of Arabidopsis which lack blue light-induced inhibition of hypocotyl elongation but retain normal phototropic functions. In addition, a mutant line which completely lacks the phototropic response retains normal blue light-induced inhibition of hypocotyl elongation. F1 progeny of crosses between these two mutant classes exhibited wild-type phototropism and inhibition of hypocotyl elongation in response to blue light stimuli. In the F2more » generation, one in sixteen seedlings were double mutants lacking both phototropism and blue light-induced hypocotyl growth inhibition. These studies conclusively show that blue light-induced phototropism and hypocotyl growth inhibition function through genetically distinct signal transduction or response systems.« less

  12. Frontal white matter damage impairs response inhibition in children following traumatic brain injury.

    PubMed

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-05-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition.

  13. Semantic processing and response inhibition.

    PubMed

    Chiang, Hsueh-Sheng; Motes, Michael A; Mudar, Raksha A; Rao, Neena K; Mansinghani, Sethesh; Brier, Matthew R; Maguire, Mandy J; Kraut, Michael A; Hart, John

    2013-11-13

    The present study examined functional MRI (fMRI) BOLD signal changes in response to object categorization during response selection and inhibition. Young adults (N=16) completed a Go/NoGo task with varying object categorization requirements while fMRI data were recorded. Response inhibition elicited increased signal change in various brain regions, including medial frontal areas, compared with response selection. BOLD signal in an area within the right angular gyrus was increased when higher-order categorization was mandated. In addition, signal change during response inhibition varied with categorization requirements in the left inferior temporal gyrus (lIT). lIT-mediated response inhibition when inhibiting the response only required lower-order categorization, but lIT mediated both response selection and inhibition when selecting and inhibiting the response required higher-order categorization. The findings characterized mechanisms mediating response inhibition associated with semantic object categorization in the 'what' visual object memory system.

  14. Inhibition in motor imagery: a novel action mode switching paradigm.

    PubMed

    Rieger, Martina; Dahm, Stephan F; Koch, Iring

    2017-04-01

    Motor imagery requires that actual movements are prevented (i.e., inhibited) from execution. To investigate at what level inhibition takes place in motor imagery, we developed a novel action mode switching paradigm. Participants imagined (indicating only start and end) and executed movements from start buttons to target buttons, and we analyzed trial sequence effects. Trial sequences depended on current action mode (imagination or execution), previous action mode (pure blocks/same mode, mixed blocks/same mode, or mixed blocks/other mode), and movement sequence (action repetition, hand repetition, or hand alternation). Results provided evidence for global inhibition (indicated by switch benefits in execution-imagination (E-I)-sequences in comparison to I-I-sequences), effector-specific inhibition (indicated by hand repetition costs after an imagination trial), and target inhibition (indicated by target repetition benefits in I-I-sequences). No evidence for subthreshold motor activation or action-specific inhibition (inhibition of the movement of an effector to a specific target) was obtained. Two (global inhibition and effector-specific inhibition) of the three observed mechanisms are active inhibition mechanisms. In conclusion, motor imagery is not simply a weaker form of execution, which often is implied in views focusing on similarities between imagination and execution.

  15. Reinforcement and Stimulant Medication Ameliorate Deficient Response Inhibition in Children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Rosch, Keri S; Fosco, Whitney D; Pelham, William E; Waxmonsky, James G; Bubnik, Michelle G; Hawk, Larry W

    2016-02-01

    This study examined the degree to which reinforcement, stimulant medication, and their combination impact response inhibition in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Across three studies, participants with ADHD (n = 111, 25 girls) and typically-developing (TD) controls (n = 33, 6 girls) completed a standard version of the stop signal task (SST) and/or a reinforcement-manipulation SST with performance-contingent points. In two of these studies, these tasks were performed under placebo or 0.3 and 0.6 mg/kg methylphenidate (MPH) conditions. Cross-study comparisons were conducted to test hypotheses regarding the separate and combined effects of reinforcement and methylphenidate on response inhibition among children with ADHD relative to TD controls. Baseline response inhibition was worse among children with ADHD compared to controls. MPH produced dose-related improvements in response inhibition in children with ADHD; compared to non-medicated TD controls, 0.3 mg/kg MPH normalized deficient response inhibition, and 0.6 mg/kg MPH resulted in better inhibition in children with ADHD. Reinforcement improved response inhibition to a greater extent for children with ADHD than for TD children, normalizing response inhibition. The combination of MPH and reinforcement improved response inhibition among children with ADHD compared to reinforcement alone and MPH alone, also resulting in normalization of response inhibition despite repeated task exposure. Deficient response inhibition commonly observed in children with ADHD is significantly improved with MPH and/or reinforcement, normalizing inhibition relative to TD children tested under standard conditions.

  16. Reinforcement and stimulant medication ameliorate deficient response inhibition in children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Rosch, Keri S.; Fosco, Whitney D.; Pelham, William E.; Waxmonsky, James G.; Bubnik, Michelle G.; Hawk, Larry W.

    2015-01-01

    This study examined the degree to which reinforcement, stimulant medication, and their combination impact response inhibition in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Across three studies, participants with ADHD (n=111, 25 girls) and typically-developing (TD) controls (n=33, 6 girls) completed a standard version of the stop signal task (SST) and/or a reinforcement-manipulation SST with performance-contingent points. In two of these studies, these tasks were performed under placebo or 0.3 and 0.6 mg/kg methylphenidate (MPH) conditions. Cross-study comparisons were conducted to test hypotheses regarding the separate and combined effects of reinforcement and methylphenidate on response inhibition among children with ADHD relative to TD controls. Baseline response inhibition was worse among children with ADHD compared to controls. MPH produced dose-related improvements in response inhibition in children with ADHD; compared to non-medicated TD controls, 0.3 mg/kg MPH normalized deficient response inhibition, and 0.6 mg/kg MPH resulted in better inhibition in children with ADHD. Reinforcement improved response inhibition to a greater extent for children with ADHD than for TD children, normalizing response inhibition. The combination of MPH and reinforcement improved response inhibition among children with ADHD compared to reinforcement alone and MPH alone, also resulting in normalization of response inhibition despite repeated task exposure. Deficient response inhibition commonly observed in children with ADHD is significantly improved with MPH and/or reinforcement, normalizing inhibition relative to TD children tested under standard conditions. PMID:25985978

  17. Kinetic evidence for the interactive inhibition of laccase from Trametes versicolor by pH and chloride.

    PubMed

    Raseda, Nasrin; Hong, Soonho; Kwon, O Yul; Ryu, Keungarp

    2014-12-28

    The interactive inhibitory effects of pH and chloride on the catalysis of laccase from Trametes versicolor were investigated by studying the alteration of inhibition characteristics of sodium chloride at different pHs for the oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid). At pH 3.0, the addition of sodium chloride (50 mM) brought about a 40-fold increase in Km(app) and a 4-fold decrease in Vmax(app). As the pH increased to 7.0, the inhibitory effects of sodium chloride became significantly weakened. The mixed-inhibition mechanism was successfully used to quantitatively estimate the competitive and uncompetitive inhibition strengths by chloride at two different pHs (pH 3.0 and 6.0). At pH 3.0, the competitive inhibition constant, Ki, was 0.35 mM, whereas the uncompetitive inhibition constant, Ki', was 18.1 mM, indicating that the major cause of the laccase inhibition by chloride is due to the competitive inhibition step. At a higher pH of 6.0, where the inhibition of the laccase by hydroxide ions takes effect, the inhibition of the laccase by chloride diminished to a great extent, showing increased values of both the competitive inhibition constant (Ki= 23.7 mM) and uncompetitive inhibition constant (Ki' = 324 mM). These kinetic results evidenced that the hydroxide anion and chloride share a common mechanism to inhibit the laccase activity.

  18. Tamoxifen inhibits macrophage FABP4 expression through the combined effects of the GR and PPARγ pathways.

    PubMed

    Jiang, Meixiu; Zhang, Ling; Ma, Xingzhe; Hu, Wenquan; Chen, Yuanli; Yu, Miao; Wang, Qixue; Li, Xiaoju; Yin, Zhinan; Zhu, Yan; Gao, Xiumei; Hajjar, David P; Duan, Yajun; Han, Jihong

    2013-09-15

    Macrophage adipocyte fatty acid-binding protein (FABP4) plays an important role in foam cell formation and development of atherosclerosis. Tamoxifen inhibits this disease process. In the present study, we determined whether the anti-atherogenic property of tamoxifen was related to its inhibition of macrophage FABP4 expression. We initially observed that tamoxifen inhibited macrophage/foam cell formation, but the inhibition was attenuated when FABP4 expression was selectively inhibited by siRNA.We then observed that tamoxifen and 4-hydroxytamoxifen inhibited FABP4 protein expression in primary macrophages isolated from both the male and female wild-type mice, suggesting that the inhibition is sex-independent. Tamoxifen and 4-hydroxytamoxifen inhibited macrophage FABP4 protein expression induced either by activation of GR (glucocorticoid receptor) or PPARγ (peroxisome-proliferator-activated receptor γ). Associated with the decreased protein expression, Fabp4 mRNA expression and promoter activity were also inhibited by tamoxifen and 4-hydroxytamoxifen, indicating transcriptional regulation. Analysis of promoter activity and EMSA/ChIP assays indicated that tamoxifen and 4-hydroxytamoxifen activated the nGRE (negative glucocorticoid regulatory element), but inhibited the PPRE (PPARγ regulatory element) in the Fabp4 gene. In vivo, administration of tamoxifen to ApoE (apolipoprotein E)-deficient (apoE-/-) mice on a high-fat diet decreased FABP4 expression in macrophages and adipose tissues as well as circulating FABP4 levels. Tamoxifen also inhibited FABP4 protein expression by human blood monocyte-derived macrophages. Taken together, the results of the present study show that tamoxifen inhibited FABP4 expression through the combined effects of GR and PPARγ signalling pathways. Our findings suggest that the inhibition of macrophage FABP4 expression can be attributed to the antiatherogenic properties of tamoxifen.

  19. Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans

    PubMed Central

    Crockett, Molly J.; Clark, Luke; Robbins, Trevor W.

    2009-01-01

    The neuromodulator serotonin has been implicated in a large number of affective and executive functions, but its precise contribution to motivation remains unclear. One influential hypothesis has implicated serotonin in aversive processing; another has proposed a more general role for serotonin in behavioral inhibition. Since behavioral inhibition is a pre-potent reaction to aversive outcomes, it has been a challenge to reconcile these two accounts. Here, we show that serotonin is critical for punishment-induced inhibition, but not overall motor response inhibition or reporting aversive outcomes. We used acute tryptophan depletion to temporarily lower brain serotonin in healthy human volunteers as they completed a novel task designed to obtain separate measures of motor response inhibition, punishment-induced inhibition, and sensitivity to aversive outcomes. Following a placebo treatment, participants were slower to respond under punishment conditions, compared to reward conditions. Tryptophan depletion abolished this punishment-induced inhibition, without affecting overall motor response inhibition or the ability to adjust response bias in line with punishment contingencies. The magnitude of reduction in punishment-induced inhibition depended on the degree to which tryptophan depletion reduced plasma tryptophan levels. These findings extend and clarify previous research on the role of serotonin in aversive processing and behavioral inhibition, and fit with current theorizing on serotonin's involvement in predicting aversive outcomes. PMID:19776285

  20. Inhibition in Autism: Children with Autism Have Difficulty Inhibiting Irrelevant Distractors but Not Prepotent Responses

    ERIC Educational Resources Information Center

    Adams, Nena C.; Jarrold, Christopher

    2012-01-01

    Resistance to distractor inhibition tasks have previously revealed impairments in children with autism. However, on the classic Stroop task and other prepotent response tasks, children with autism show intact inhibition. These data may reflect a distinction between prepotent response and resistance to distractor inhibition. The current study…

  1. Contingent involuntary motoric inhibition: the involuntary inhibition of a motor response contingent on top-down goals.

    PubMed

    Anderson, Brian A; Folk, Charles L

    2012-12-01

    Effective motor control involves both the execution of appropriate responses and the inhibition of inappropriate responses that are evoked by response-associated stimuli. The inhibition of a motor response has traditionally been characterized as either a voluntary act of cognitive control or a low-level perceptual bias arising from processes such as inhibition of return and priming. Involuntary effects of top-down goals on motoric inhibition have been reported, but involve the perseveration of an inhibitory strategy. It is unknown whether the inhibition of a motor response can be selectively triggered by a goal-relevant stimulus, reflecting the automatic activation of a top-down inhibitory strategy. Here we show that irrelevant flankers that share the color of a no-go target elicit the inhibition of their associated motor response while other-colored flankers do not, even when participants have sufficient time to prepare for the upcoming target while ignoring the flankers. Our results demonstrate contingent involuntary motoric inhibition: motoric inhibition can be automatically triggered by a stimulus based on top-down goals.

  2. The relationship between the pharmacokinetics, cholinesterase inhibition and facilitation of twitch tension of the quaternary ammonium anticholinesterase drugs, neostigmine, pyridostigmine, edrophonium and 3-hydroxyphenyltrimethylammonium.

    PubMed Central

    Barber, H. E.; Calvey, T. N.; Muir, K. T.

    1979-01-01

    1 The relationship between the concentration of drug in plasma, the inhibition of erythrocyte acetylcholinesterase and the facilitation of neuromuscular transmission has been studied in the rat after the administration of neostigmine, pyridostigmine, edrophonium and 3-hydroxyphenyltrimethyl-ammonium (3-OH PTMA). 2 After the administration of neostigmine or pyridostigmine, acetylcholinesterase activity recovered only slowly due to the covalent nature of the inhibition. In contrast, recovery from the reversible inhibition caused by edrophonium or 3-OH PTMA was rapid and showed a direct relationship to the plasma concentration of these drugs. 3 There was a statistically significant linear correlation between the logarithm of the plasma concentration of the drugs and the increase in the tibialis twitch tension. 4 The relationship between the inhibition of acetylcholinesterase and the facilitation of neuromuscular transmission was complex. When the enzyme was less than 85% inhibited no facilitation occurred. Between 85% and 98% inhibition, facilitation was linearly related to enzyme inhibition. Above 98% inhibition, facilitation was unrelated to inhibition of the enzyme. PMID:223706

  3. Study of efficacy of reactivator HI 6 in reactivation of immobilized acetylcholinesterase, inhibited by organophosphorus chemical warfare agents of the "G" series.

    PubMed

    Hoskovcová, Monika; Halámek, Emil; Kobliha, Zbynĕk

    2009-01-01

    Reactivation with bis quaternary aldoxime HI-6, chemical formula 1-(2-hydroxyamino-methylpyridinium)-3-(4-carbamoylpyridinium)-2-oxapropane dichloride of immobilized enzyme acetylcholinesterase inhibited by nerve agent type "G" was studied. This aldoxime is effective in reactivation of sarin-inhibited acetylcholinesterase. Substantially lower reactivation potency was observed with cyclosarin-inhibited enzyme and almost no effect was found for that acetylcholinesterase is the enzyme complex. HI 6 is completely ineffective towards the soman-inhibited enzyme: After a 2-minute inhibition of the enzyme with soman no ability to define reactivator the inhibited enzymes and complexes.

  4. Tangeretin inhibits extracellular-signal-regulated kinase (ERK) phosphorylation.

    PubMed

    Van Slambrouck, Séverine; Parmar, Virinder S; Sharma, Sunil K; De Bondt, Bart; Foré, Fleur; Coopman, Peter; Vanhoecke, Barbara W; Boterberg, Tom; Depypere, Herman T; Leclercq, Guy; Bracke, Marc E

    2005-03-14

    Tangeretin is a methoxyflavone from citrus fruits, which inhibits growth of human mammary cancer cells and cytolysis by natural killer cells. Attempting to unravel the flavonoid's action mechanism, we found that it inhibited extracellular-signal-regulated kinases 1/2 (ERK1/2) phosphorylation in a dose- and time-dependent way. In human T47D mammary cancer cells this inhibition was optimally observed after priming with estradiol. The spectrum of the intracellular signalling kinase inhibition was narrow and comparison of structural congeners showed that inhibition of ERK phosphorylation was not unique for tangeretin. Our data add tangeretin to the list of small kinase inhibitors with a restricted intracellular inhibition profile.

  5. Withholding and canceling a response in ADHD adolescents

    PubMed Central

    Bhaijiwala, Mehereen; Chevrier, Andre; Schachar, Russell

    2014-01-01

    Background Deficient response inhibition in situations involving a trade-off between response execution and response stopping is a hallmark of attention deficit hyperactive disorder (ADHD). There are two key components of response inhibition; reactive inhibition where one attempts to cancel an ongoing response and prospective inhibition is when one withholds a response pending a signal to stop. Prospective inhibition comes into play prior to the presentation of the stop signal and reactive inhibition follows the presentation of a signal to stop a particular action. The aim of this study is to investigate the neural activity evoked by prospective and reactive inhibition in adolescents with and without ADHD. Methods Twelve adolescents with ADHD and 12 age-matched healthy controls (age range 9–18) were imaged while performing the stop signal task (SST). Results Reactive inhibition activated right inferior frontal gyrus (IFG) in both groups. ADHD subjects activated IFG bilaterally. In controls, prospective inhibition invoked preactivation of the same part of right IFG that activated during reactive inhibition. In ADHD subjects, prospective inhibition was associated with deactivation in this region. Controls also deactivated the medial prefrontal cortex (MPFC) during prospective inhibition, whereas ADHD subjects activated the same area. Discussion This pattern of activity changes in the same structures, but in opposite directions, was also evident across all phases of the task in various task-specific areas like the superior and middle temporal gyrus and other frontal areas. Conclusion Differences between ADHD and control participants in task-specific and default mode structures (IFG and MPFC) were evident during prospective, but not during reactive inhibition. PMID:25328838

  6. Differences between endogenous and exogenous emotion inhibition in the human brain.

    PubMed

    Kühn, Simone; Haggard, Patrick; Brass, Marcel

    2014-05-01

    The regulation of emotions is an integral part of our mental health. It has only recently been investigated using brain imaging techniques. In most studies, participants are instructed by a cue to inhibit a specific emotional reaction. The aim of the present study was to investigate the alternative situation where a person decides to inhibit an emotion as an act of endogenous self-control. Healthy participants viewed highly arousing pictures with negative valence. In the endogenous condition, participants could freely choose on each trial to inhibit or feel the emotions elicited by the picture. In an exogenous condition, a visual cue instructed them to either feel or inhibit the emotion elicited by the picture. Participants' subjective ratings of intensity of experienced emotion showed an interaction effect between source of control (endogenous/exogenous) and feel/inhibit based on a stronger modulation between feel and inhibition for the endogenous compared to the exogenous condition. Endogenous inhibition of emotions was associated with dorso-medial prefrontal cortex activation, whereas exogenous inhibition was found associated with lateral prefrontal cortex activation. Thus, the brain regions for both endogenous and exogenous inhibition of emotion are highly similar to those for inhibition of motor actions in Brass and Haggard (J Neurosci 27:9141-9145, 2007), Kühn et al. (Hum Brain Mapp 30:2834-2843, 2009). Functional connectivity analyses showed that dorsofrontomedial cortex exerts greater control onto pre-supplementary motor area during endogenous inhibition compared to endogenous feel. This functional dissociation between an endogenous, fronto-medial and an exogenous, fronto-lateral inhibition centre has important implications for our understanding of emotion regulation in health and psychopathology.

  7. Impaired right inferior frontal gyrus response to contextual cues in male veterans with PTSD during response inhibition.

    PubMed

    van Rooij, Sanne J H; Rademaker, Arthur R; Kennis, Mitzy; Vink, Matthijs; Kahn, René S; Geuze, Elbert

    2014-09-01

    Posttraumatic stress disorder (PTSD) is often associated with impaired fear inhibition and decreased safety cue processing; however, studies capturing the cognitive aspect of inhibition and contextual cue processing are limited. In this fMRI study, the role of contextual cues in response inhibition was investigated. Male medication-naive war veterans with PTSD, male control veterans (combat controls) and healthy nonmilitary men (healthy controls) underwent fMRI while performing the stop-signal anticipation task (SSAT). The SSAT evokes 2 forms of response inhibition: reactive inhibition (outright stopping) and proactive inhibition (anticipation of stopping based on contextual cues). We enrolled 28 veterans with PTSD, 26 combat controls and 25 healthy controls in our study. Reduced reactive inhibition was observed in all veterans, both with and without PTSD, but not in nonmilitary controls, whereas decreased inhibition of the left pre/postcentral gyrus appeared to be specifically associated with PTSD. Impaired behavioural proactive inhibition was also specific to PTSD. Furthermore, the PTSD group showed a reduced right inferior frontal gyrus response during proactive inhibition compared with the combat control group. Most patients with PTSD had comorbid psychiatric disorders, but such comorbidity is common in patients with PTSD. Also, the education level (estimate of intelligence) of participants, but not of their parents, differed among the groups. Our findings of reduced proactive inhibition imply that patients with PTSD show reduced contextual cue processing. These results complement previous findings on fear inhibition and demonstrate that contextual cue processing in patients with PTSD is also reduced during cognitive processes, indicating a more general deficit.

  8. Species-Associated Differences in the Inhibition of Propofol Glucuronidation by Magnolol

    PubMed Central

    Yang, Lu; Zhu, Liangliang; Ge, Guangbo; Xiao, Ling; Wu, Yan; Liang, Sicheng; Cao, Yunfeng; Yang, Ling; Wang, Dong

    2014-01-01

    Magnolol, a major active constituent in herbal medicine, potently inhibits propofol glucuronidation in human liver microsomes, with inhibition constants in the nanomolar range. This study was conducted to investigate magnolol-induced inhibition of propofol glucuronidation in liver microsomes from Swiss–Hauschka mice, Sprague–Dawley rats, Chinese Bama pigs, and cynomolgus macaques. Results indicated that magnolol (10 μM) inhibited propofol glucuronidation in liver microsomes from Bama pigs and cynomolgus macaques but not in those from mice or rats. Data from liver microsomes from Bama pigs indicated a competitive inhibition mechanism, with a Ki of 1.7 μM. In contrast to that of pig liver microsomes, the inhibition of microsomes from cynomolgus macaques followed a noncompetitive mechanism, with a Ki of 3.4 μM. In summary, this study indicates that magnolol-induced inhibition of propofol glucuronidation varies substantially among species, and the Ki values determined by using liver microsomes from various experimental animal species far exceed that for human liver microsomes. The inhibition of propofol glucuronidation by magnolol in liver microsomes from all animal species tested was significantly lower than the inhibition previously demonstrated in human liver microsomes. Hepatic microsomes from Swiss–Hauschka mice, Sprague–Dawley rats, Chinese Bama pigs, and cynomolgus macaques are not effective models of the inhibition of glucuronidation induced by magnolol in humans. PMID:25199099

  9. Species-associated differences in the inhibition of propofol glucuronidation by magnolol.

    PubMed

    Yang, Lu; Zhu, Liangliang; Ge, Guangbo; Xiao, Ling; Wu, Yan; Liang, Sicheng; Cao, Yunfeng; Yang, Ling; Wang, Dong

    2014-07-01

    Magnolol, a major active constituent in herbal medicine, potently inhibits propofol glucuronidation in human liver microsomes, with inhibition constants in the nanomolar range. This study was conducted to investigate magnolol-induced inhibition of propofol glucuronidation in liver microsomes from Swiss-Hauschka mice, Sprague-Dawley rats, Chinese Bama pigs, and cynomolgus macaques. Results indicated that magnolol (10 μM) inhibited propofol glucuronidation in liver microsomes from Bama pigs and cynomolgus macaques but not in those from mice or rats. Data from liver microsomes from Bama pigs indicated a competitive inhibition mechanism, with a Ki of 1.7 μM. In contrast to that of pig liver microsomes, the inhibition of microsomes from cynomolgus macaques followed a noncompetitive mechanism, with a Ki of 3.4 μM. In summary, this study indicates that magnolol-induced inhibition of propofol glucuronidation varies substantially among species, and the Ki values determined by using liver microsomes from various experimental animal species far exceed that for human liver microsomes. The inhibition of propofol glucuronidation by magnolol in liver microsomes from all animal species tested was significantly lower than the inhibition previously demonstrated in human liver microsomes. Hepatic microsomes from Swiss-Hauschka mice, Sprague-Dawley rats, Chinese Bama pigs, and cynomolgus macaques are not effective models of the inhibition of glucuronidation induced by magnolol in humans.

  10. Comparison of Alcohol Impairment of Behavioral and Attentional Inhibition

    PubMed Central

    Weafer, Jessica; Fillmore, Mark T.

    2012-01-01

    Background Despite the wealth of studies demonstrating the impairing effects of alcohol on behavioral inhibition, less is known regarding effects of the drug on attentional inhibition (i.e., the ability to ignore distracting stimuli in the environment in order to focus attention on relevant information). The current study examined alcohol impairment of both behavioral and attentional inhibition, as well as potential associations between the two mechanisms of inhibitory control. Methods Men (n = 27) and women (n = 21) performed a measure of behavioral inhibition (cued go/no-go task) and a measure of attentional inhibition (delayed ocular return task) following three doses of alcohol: 0.65 g/kg, 0.45 g/kg, and 0.0 g/kg (placebo). Results Alcohol impaired both behavioral and attentional inhibition relative to placebo; however, correlational analyses revealed no associations between measures of behavioral and attentional inhibition following any dose. Additionally, men committed more inhibitory failures on the behavioral inhibition task, whereas women committed more inhibitory failures on the attentional inhibition task. Conclusions These findings suggest that behavioral and attentional inhibition are equally sensitive to the impairing effects of alcohol, yet represent distinct components of inhibitory control. Additionally, the observed gender differences in control of behavior and attention could have important implications regarding negative consequences associated with alcohol-induced disinhibition in men and women. PMID:22673197

  11. Src inhibitor reduces permeability without disturbing vascularization and prevents bone destruction in steroid-associated osteonecrotic lesions in rabbits.

    PubMed

    He, Yi-Xin; Liu, Jin; Guo, Baosheng; Wang, Yi-Xiang; Pan, Xiaohua; Li, Defang; Tang, Tao; Chen, Yang; Peng, Songlin; Bian, Zhaoxiang; Liang, Zicai; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge

    2015-03-09

    To examine the therapeutic effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and bone destruction within steroid-associated osteonecrotic lesions in rabbits. Rabbits with high risk for progress to destructive repair in steroid-associated osteonecrosis were selected according to our published protocol. The selected rabbits were systemically administrated with either Anti-VEGF antibody (Anti-VEGF Group) or Src inhibitor (Src-Inhibition Group) or VEGF (VEGF-Supplement Group) or a combination of VEGF and Src inhibitor (Supplement &Inhibition Group) or control vehicle (Control Group) for 4 weeks. At 0, 2 and 4 weeks after administration, in vivo dynamic MRI, micro-CT based-angiography, histomorphometry and immunoblotting were employed to evaluate the vascular and skeletal events in different groups. The incidence of the destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group was all significantly lower than that in the Control Group. The angiogenesis was promoted in VEGF-Supplement Group, Src-Inhibition Group and Supplement &Inhibition Group, while the hyperpermeability was inhibited in Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group. The trabecular structure was improved in Src-Inhibition Group and Supplement &Inhibition Group. Src inhibitor could reduce permeability without disturbing vascularization and prevent destructive repair in steroid-associated osteonecrosis.

  12. Developmental consequences of behavioral inhibition: a model in rhesus monkeys (Macaca mulatta).

    PubMed

    Chun, Katie; Capitanio, John P

    2016-11-01

    In children, behavioral inhibition is characterized by a disposition to withdraw in the presence of strangers and novel situations. Later in life, behavioral inhibition can result in an increased risk for anxiety and depression and a decrease in social behavior. We selected rhesus monkeys that, during infancy, showed evidence of behavioral inhibition in response to separation, and contrasted them with non-inhibited peers. To understand the development of behavioral inhibition at juvenile age, we collected behavioral data in response to relocation; in response to a human intruder challenge; and in naturalistic outdoor field corrals. At 4 years of age (young adulthood), we again collected behavioral data in the outdoor field corrals to understand the adult social consequences of behavioral inhibition. We also included sex, dominance rank, and number of available kin in our analyses. Finally, to understand the consistency in behavior in behaviorally inhibited animals, we conducted exploratory analyses contrasting behaviorally inhibited animals that showed high vs. low durations of non-social behaviors as adults. At juvenile age, behaviorally inhibited animals continued to show behavioral differences in the novel testing room and during the human intruder challenge, generally showing evidence of greater anxiety and emotionality compared to non-inhibited controls. In their outdoor corrals, behaviorally inhibited juveniles spent more time alone and less time in proximity and grooming with mother and other adult females. In young adulthood, we found that behavioral inhibition was not related to time spent alone. We did find that duration of time alone in adulthood was related to time alone exhibited as juveniles; sex, dominance rank, or the number of kin were not influential in adult non-social duration, either as main effects or as moderators. Finally, exploratory analyses revealed that behaviorally inhibited females that were more sociable (less time spent alone) as adults had spent more time grooming as juveniles, suggesting that high-quality social interaction at a young age might mitigate the social consequences of behavioral inhibition. Overall, we believe that the many similarities with the human data that we found suggest that this monkey model of naturally occurring behavioral inhibition can be valuable for understanding social development. © 2015 John Wiley & Sons Ltd.

  13. Nonspecific Inhibition of the Motor System during Response Preparation

    PubMed Central

    Sias, Ana; Labruna, Ludovica; Ivry, Richard B.

    2015-01-01

    Motor system excitability is transiently inhibited during the preparation of responses. Previous studies have attributed this inhibition to the operation of two mechanisms, one hypothesized to help resolve competition between alternative response options, and the other to prevent premature response initiation. By this view, inhibition should be restricted to task-relevant muscles. Although this prediction is supported in one previous study (Duque et al., 2010), studies of stopping ongoing actions suggest that some forms of motor inhibition may be widespread (Badry et al., 2009). This motivated us to conduct a series of transcranial magnetic stimulation (TMS) experiments to examine in detail the specificity of preparatory inhibition in humans. Motor-evoked potentials were inhibited in task-irrelevant muscles during response preparation, even when the muscles were contralateral and not homologous to the responding effector. Inhibition was also observed in both choice and simple response task conditions, with and without a preparatory interval. Control experiments ruled out that this inhibition is due to expectancy of TMS or a possible need to cancel the prepared response. These findings suggest that motor inhibition during response preparation broadly influences the motor system and likely reflects a process that occurs whenever a response is selected. We propose a reinterpretation of the functional significance of preparatory inhibition, one by which inhibition reduces noise to enhance signal processing and modulates the gain of a selected response. SIGNIFICANCE STATEMENT Motor preparation entails the recruitment of excitatory and inhibitory neural mechanisms. The current experiments address the specificity of inhibitory mechanisms, asking whether preparatory inhibition affects task-irrelevant muscles. Participants prepared a finger movement to be executed at the end of a short delay period. Transcranial magnetic stimulation over primary motor cortex provided an assay of corticospinal excitability. Consistent with earlier work, the agonist muscle for the forthcoming response was inhibited during the preparatory period. Moreover, this inhibition was evident in task-irrelevant muscles, although the magnitude of inhibition depended on whether the response was fixed or involved a choice. These results implicate a broadly tuned inhibitory mechanism that facilitates response preparation, perhaps by lowering background activity before response initiation. PMID:26224853

  14. Sparse Coding and Lateral Inhibition Arising from Balanced and Unbalanced Dendrodendritic Excitation and Inhibition

    PubMed Central

    Migliore, Michele; Hines, Michael L.; Shepherd, Gordon M.

    2014-01-01

    The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral–granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb. PMID:25297097

  15. The precarious couple effect: verbally inhibited men + critical, disinhibited women = bad chemistry.

    PubMed

    Swann, William B; Rentfrow, Peter J; Gosling, Samuel D

    2003-12-01

    When critical, verbally disinhibited women are paired with verbally inhibited men, relationship quality suffers, rendering the relationship precarious. This effect theoretically emerges when (a). verbally disinhibited women pair with relatively inhibited men (man-more-inhibited couples) and (b). the disinhibition of women in man-more-inhibited couples amplifies women's criticalness and alienates men. Three studies (Ns=437, 300, and 564) provided evidence that relationship quality suffered in man-more-inhibited couples; a 4th study (N=168) showed that the criticalness of women in man-more-inhibited couples did indeed undermine relationship quality. Implications for understanding the impact of gender expectations on relationships and for integrating behavioral and personological approaches to close relationships are discussed.

  16. The role of (dis)inhibition in creativity: decreased inhibition improves idea generation.

    PubMed

    Radel, Rémi; Davranche, Karen; Fournier, Marion; Dietrich, Arne

    2015-01-01

    There is now a large body of evidence showing that many different conditions related to impaired fronto-executive functioning are associated with the enhancement of some types of creativity. In this paper, we pursue the possibility that the central mechanism associated with this effect might be a reduced capacity to exert inhibition. We tested this hypothesis by exhausting the inhibition efficiency through prolonged and intensive practice of either the Simon or the Eriksen Flanker task. Performance on another inhibition task indicated that only the cognitive resources for inhibition of participants facing high inhibition demands were impaired. Subsequent creativity tests revealed that exposure to high inhibition demands led to enhanced fluency in a divergent thinking task (Alternate Uses Task), but no such changes occurred in a convergent task (Remote Associate Task; studies 1a and 1b). The same manipulation also led to a hyper-priming effect for weakly related primes in a Lexical Decision Task (Study 2). Together, these findings suggest that inhibition selectively affects some types of creative processes and that, when resources for inhibition are lacking, the frequency and the originality of ideas was facilitated. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Kindergarteners’ Self-Reported Social Inhibition and Observed Social Reticence: Moderation by Adult-Reported Social Inhibition and Social Anxiety Disorder Symptoms

    PubMed Central

    Kiel, Elizabeth J.; Buss, Kristin A.; Molitor, Joseph G.

    2014-01-01

    Prevention of later anxiety problems would best be accomplished by identifying at-risk children early in development. For example, children who develop Social Anxiety Disorder (SAD) may show social withdrawal in the form of social inhibition (i.e., shyness with unfamiliar adults and peers) at school entry. Although the use of children’s perceptions of their own social inhibition would provide insight into early risk, the utility of young children’s self-reports remains unclear. The current study examined whether children deemed more extreme on social inhibition or social anxiety by adult report provided self-report of social inhibition that related to observed social reticence in the laboratory. Participants included 85 kindergarten children (36 female, 49 male), their parents, and their teachers. Moderation analyses revealed that children’s self-reported social inhibition related significantly to observed social reticence under the conditions of high parent-reported social inhibition, high teacher-reported social inhibition, and high SAD symptoms. These results suggest that the most inhibited children are aware of their behavior and can report it in a meaningfully way as young as kindergarten age. PMID:25113397

  18. The Role of Inhibition in Age-related Off-Topic Verbosity: Not Access but Deletion and Restraint Functions.

    PubMed

    Yin, Shufei; Peng, Huamao

    2016-01-01

    The speech of older adults is commonly described as verbose and off-topic, which is thought to influence their social communication. This study investigated the role of inhibition in age-related off-topic verbosity (OTV). Inhibition consists of three functions: access, deletion, and restraint. The access function is responsible for preventing irrelevant information from accessing the attention center (pre-mechanism of inhibition); The deletion function is responsible for deleting previously relevant but currently irrelevant information from working memory, and the restraint function is responsible for restraining strong but inappropriate responses (post-mechanisms of inhibition). A referential communication task was used to determine whether OTV was influenced by the pre-mechanism of inhibition. A self-involved event interview task was used to investigate the effect of the post-mechanisms of inhibition on OTV. Results showed that the OTV of the elderly participants was associated with an age-related decline in the post-mechanisms of inhibition, while the OTV exhibited by young adults was most likely due to deficits in the pre-mechanism function of inhibition. This research contributed to fill gaps in the existing knowledge about the potential relationship between specific functions of inhibition and age-related OTV.

  19. Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470).

    PubMed Central

    Kusaka, M.; Sudo, K.; Matsutani, E.; Kozai, Y.; Marui, S.; Fujita, T.; Ingber, D.; Folkman, J.

    1994-01-01

    Recently, we reported the anti-angiogenic action along with anti-tumour activity of TNP-470 (AGM-1470). In this study, the effect of TNP-470 on the growth of human umbilical vein endothelial (HUVE) cells was examined. TNP-470 inhibited the growth of HUVE cells in a biphasic manner. The inhibition was cytostatic in the first phase (complete inhibition at 300 pg ml-1 to 3 micrograms ml-1 with an IC50 of 15 pg ml-1) and cytotoxic in the second phase (> or = 30 micrograms ml-1). The cytostatic inhibition of HUVE cell growth by TNP-470 was durable after washing out TNP-470 in culture. Incorporation of thymidine but not uridine and leucine by HUVE cells was inhibited in the first phase, while that of all three compounds was inhibited in the second phase. Human and rat endothelial cells among various types of cells were the most sensitive to the cytostatic inhibition, while differences in the cytotoxic inhibition were minimal. These results suggest that TNP-470 exerts its specific anti-angiogenic action by inhibiting cytostatically growth of endothelial cells in a relatively specific manner. PMID:8297716

  20. Evidence Inhibition Responds Reactively to the Salience of Distracting Information during Focused Attention

    PubMed Central

    Wyatt, Natalie; Machado, Liana

    2013-01-01

    Along with target amplification, distractor inhibition is regarded as a major contributor to selective attention. Some theories suggest that the strength of inhibitory processing is proportional to the salience of the distractor (i.e., inhibition reacts to the distractor intensity). Other theories suggest that the strength of inhibitory processing does not depend on the salience of the distractor (i.e., inhibition does not react to the distractor intensity). The present study aimed to elucidate the relationship between the intensity of a distractor and its subsequent inhibition during focused attention. A flanker task with a variable distractor-target stimulus-onset asynchrony (SOA) was used to measure both distractor interference and distractor inhibition. We manipulated the intensity of the distractor in two separate ways, by varying its distance from the target (Experiment 1) and by varying its brightness (Experiment 2). The results indicate that more intense distractors were associated with both increased interference and stronger distractor inhibition. The latter outcome provides novel support for the reactive inhibition hypothesis, which posits that inhibition reacts to the strength of distractor input, such that more salient distractors elicit stronger inhibition. PMID:23646147

  1. A speculated cause of respiratory inhibition in infants.

    PubMed

    Minowa, Hideki; Arai, Ikuyo; Yasuhara, Hajime; Ebisu, Reiko; Ohgitani, Ayako

    2018-10-01

    In our previous studies, we documented that threatened premature labor and asymmetrical intrauterine growth restriction were risk factors for respiratory inhibition. The goal of this study was to determine the cause of respiratory inhibition by considering perinatal risk factors. We examined 1497 infants with a gestational age of 36 weeks or greater. All infants were monitored using pulse oximetry and examined via cranial sonography. Respiratory inhibition was defined as severe hypoxemia caused by respiratory inhibition immediately after crying or gastroesophageal reflux or as a respiratory pause during feeding. We examined the relationships between respiratory inhibition and perinatal factors and speculated on the cause of respiratory inhibition. The median gestational age, birth weight, Apgar score at 1 min, and Apgar score at 5 min of the subjects were 38.9 weeks, 2930 g, 8.0 points, and 9.0 points, respectively. Respiratory inhibition was observed in 422 infants. Lateral ventricle enlargement and increased echogenicity in the ganglionic eminence were observed in 417 and 516 infants, respectively. Respiratory inhibition was significantly correlated with shorter gestational periods, twin pregnancies, lateral ventricle enlargement, and increased echogenicity in the ganglionic eminence. We speculate that umbilical cord compression is a major cause of respiratory inhibition.

  2. Optimization of in vitro inhibition of HT-29 colon cancer cell cultures by Solanum tuberosum L. extracts.

    PubMed

    Zuber, T; Holm, D; Byrne, P; Ducreux, L; Taylor, M; Kaiser, M; Stushnoff, C

    2015-01-01

    Secondary metabolites in potato have been reported to possess bioactive properties, including growth inhibition of cancer cells. Because potatoes are widely consumed globally, potential health benefits may have broad application. Thus we investigated growth inhibition of HT-29 colon cancer cell cultures by extracts from 13 diverse genetic breeding clones. Extracts from three pigmented selections (CO97226-2R/R, CO97216-1P/P, CO04058-3RW/RW) inhibited growth of in vitro HT-29 cell cultures more effectively than other clones tested. While inhibition was highest from pigmented selections and pigmented tuber tissue sectors, not all pigmented breeding lines tested had appreciable inhibitory properties. Thus, inhibition was not uniquely linked to pigmentation. Immature tubers had the highest inhibitory properties, and in most cases mature tubers retained very low inhibition properties. Flowers and skins inhibited strongly at lower extract concentrations. An extract consisting of 7.2 mg mL⁻¹ cell culture medium was the lowest effective concentration. While raw tuber extracts inhibited most effectively, a few clones at higher concentrations retained inhibition after cooking. Heated whole tubers retained higher inhibition than heated aqueous extracts. While all aqueous extracts from the two tuber selections (CO97216-1P/P and CO97226-2R/R) inhibited HT-29 cell cultures, inhibition was significantly enhanced in purple pigmented tubers of CO97216-1P/P prepared cryogenically as liquid nitrogen powders compared to extracts from freeze dried samples. Upregulation of caspase-3 protease activity, indicative of apoptosis, was highest among the most inhibitory clone samples. The unique sectorial red pigment expressing selection (CO04058-3RW/RW) provided a model system that isolated expression in pigmented sectors, and thus eliminated developmental, environmental and genetic confounding.

  3. GPM Timeline Inhibits For IT Processing

    NASA Technical Reports Server (NTRS)

    Dion, Shirley K.

    2014-01-01

    The Safety Inhibit Timeline Tool was created as one approach to capturing and understanding inhibits and controls from IT through launch. Global Precipitation Measurement (GPM) Mission, which launched from Japan in March 2014, was a joint mission under a partnership between the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM was one of the first NASA Goddard in-house programs that extensively used software controls. Using this tool during the GPM buildup allowed a thorough review of inhibit and safety critical software design for hazardous subsystems such as the high gain antenna boom, solar array, and instrument deployments, transmitter turn-on, propulsion system release, and instrument radar turn-on. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As a result of this process, a new tool safety inhibit timeline was created for management of inhibits and their controls during spacecraft buildup and testing during IT at GSFC and at the launch range in Japan. The Safety Inhibit Timeline Tool was a pathfinder approach for reviewing software that controls the electrical inhibits. The Safety Inhibit Timeline Tool strengthens the Safety Analysts understanding of the removal of inhibits during the IT process with safety critical software. With this tool, the Safety Analyst can confirm proper safe configuration of a spacecraft during each IT test, track inhibit and software configuration changes, and assess software criticality. In addition to understanding inhibits and controls during IT, the tool allows the Safety Analyst to better communicate to engineers and management the changes in inhibit states with each phase of hardware and software testing and the impact of safety risks. Lessons learned from participating in the GPM campaign at NASA and JAXA will be discussed during this session.

  4. Multiple Mechanisms of Zinc-Mediated Inhibition for the Apoptotic Caspases-3, -6, -7, and -8.

    PubMed

    Eron, Scott J; MacPherson, Derek J; Dagbay, Kevin B; Hardy, Jeanne A

    2018-05-18

    Zinc is emerging as a widely used and important biological regulatory signal. Cellular zinc levels are tightly regulated by a complex array of zinc importers and exporters to control processes such as apoptotic cell death. While caspase inhibition by zinc has been reported previously, the reported inhibition constants were too weak to suggest a critical biological role for zinc-mediated inhibition. In this work, we have adopted a method of assessing available zinc. This allowed assessment of accurate inhibition constants for apoptotic caspases, caspase-3, -6, -7, and -8. Each of these caspases are inhibited by zinc at intracellular levels but with widely differing inhibition constants and different zinc binding stoichiometries. Caspase-3, -6, and -8 appear to be constitutively inhibited by typical zinc levels, and this inhibition must be lifted to allow activation. The inhibition constant for caspase-7 (76 nM) is much weaker than for the other apoptotic caspases (2.6-6.9 nM) suggesting that caspase-7 is not inactivated by normal zinc concentrations but can be inhibited under conditions of zinc stress. Caspase-3, -7, and -8 were found to bind three, one, and two zincs, respectively. In each of these caspases, zinc was present in the active site, in contrast to caspase-6, which binds one zinc allosterically. The most notable new mechanism to emerge from this work is for zinc-mediated inhibition of caspase-8. Zinc binds caspase-8 directly at the active site and at a second site. Zinc binding inhibits formation of the caspase-8 dimer, the activated form of the enzyme. Together these findings suggest that zinc plays a critical role in regulation of apoptosis by direct inactivation of caspases, in a manner that is unique for each caspase.

  5. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABAB receptors, but not α2 adrenergic receptors

    PubMed Central

    Zhang, Guohua; Chen, Wenling; Marvizón, Juan Carlos G.

    2010-01-01

    GABAB, μ-opioid, and adrenergic α2 receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABAB receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABAB agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α2 adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABAB receptors, but not by α2 receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels. PMID:20726886

  6. Impaired right inferior frontal gyrus response to contextual cues in male veterans with PTSD during response inhibition

    PubMed Central

    van Rooij, Sanne J.H.; Rademaker, Arthur R.; Kennis, Mitzy; Vink, Matthijs; Kahn, René S.; Geuze, Elbert

    2014-01-01

    Background Posttraumatic stress disorder (PTSD) is often associated with impaired fear inhibition and decreased safety cue processing; however, studies capturing the cognitive aspect of inhibition and contextual cue processing are limited. In this fMRI study, the role of contextual cues in response inhibition was investigated. Methods Male medication-naive war veterans with PTSD, male control veterans (combat controls) and healthy nonmilitary men (healthy controls) underwent fMRI while performing the stop-signal anticipation task (SSAT). The SSAT evokes 2 forms of response inhibition: reactive inhibition (outright stopping) and proactive inhibition (anticipation of stopping based on contextual cues). Results We enrolled 28 veterans with PTSD, 26 combat controls and 25 healthy controls in our study. Reduced reactive inhibition was observed in all veterans, both with and without PTSD, but not in nonmilitary controls, whereas decreased inhibition of the left pre/postcentral gyrus appeared to be specifically associated with PTSD. Impaired behavioural proactive inhibition was also specific to PTSD. Furthermore, the PTSD group showed a reduced right inferior frontal gyrus response during proactive inhibition compared with the combat control group. Limitations Most patients with PTSD had comorbid psychiatric disorders, but such comorbidity is common in patients with PTSD. Also, the education level (estimate of intelligence) of participants, but not of their parents, differed among the groups. Conclusion Our findings of reduced proactive inhibition imply that patients with PTSD show reduced contextual cue processing. These results complement previous findings on fear inhibition and demonstrate that contextual cue processing in patients with PTSD is also reduced during cognitive processes, indicating a more general deficit. PMID:24886789

  7. Advance in dietary polyphenols as aldose reductases inhibitors: structure-activity relationship aspect.

    PubMed

    Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing

    2015-01-01

    The dietary polyphenols as aldose reductases inhibitors (ARIs) have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of dietary polyphenols inhibiting aldose reductases (AR). The molecular structures influence the inhibition of the following: (1) The methylation and methoxylation of the hydroxyl group at C3, C3', and C4' of flavonoids decreased or little affected the inhibitory potency. However, the methylation and methoxylation of the hydroxyl group at C5, C6, and C8 significantly enhanced the inhibition. Moreover, the methylation and methoxylation of C7-OH influence the inhibitory activity depending on the substitutes on rings A and B of flavonoids. (2) The glycosylation on 3-OH of flavonoids significantly increased or little affected the inhibition. However, the glycosylation on 7-OH and 4'-OH of flavonoids significantly decreased the inhibition. (3) The hydroxylation on A-ring of flavones and isoflavones, especially at positions 5 and 7, significantly improved the inhibition and the hydroxylation on C3' and C4' of B-ring of flavonoids remarkably enhanced the inhibition; however, the hydroxylation on the ring C of flavones significantly weakened the inhibition. (4) The hydrogenation of the C2=C3 double bond of flavones reduced the inhibition. (5) The hydrogenation of α=β double bond of stilbenes hardly affected the inhibition and the hydroxylation on C3' of stilbenes decreased the inhibition. Moreover, the methylation of the hydroxyl group of stilbenes obviously reduced the activity. (6) The hydroxylation on C4 of chalcone significantly increased the inhibition and the methylation on C4 of chalcone remarkably weakened the inhibition.

  8. Iminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases--Not Glycolipid Processing Enzymes.

    PubMed

    Sayce, Andrew C; Alonzi, Dominic S; Killingbeck, Sarah S; Tyrrell, Beatrice E; Hill, Michelle L; Caputo, Alessandro T; Iwaki, Ren; Kinami, Kyoko; Ide, Daisuke; Kiappes, J L; Beatty, P Robert; Kato, Atsushi; Harris, Eva; Dwek, Raymond A; Miller, Joanna L; Zitzmann, Nicole

    2016-03-01

    It has long been thought that iminosugar antiviral activity is a function of inhibition of endoplasmic reticulum-resident α-glucosidases, and on this basis, many iminosugars have been investigated as therapeutic agents for treatment of infection by a diverse spectrum of viruses, including dengue virus (DENV). However, iminosugars are glycomimetics possessing a nitrogen atom in place of the endocyclic oxygen atom, and the ubiquity of glycans in host metabolism suggests that multiple pathways can be targeted via iminosugar treatment. Successful treatment of patients with glycolipid processing defects using iminosugars highlights the clinical exploitation of iminosugar inhibition of enzymes other than ER α-glucosidases. Evidence correlating antiviral activity with successful inhibition of ER glucosidases together with the exclusion of alternative mechanisms of action of iminosugars in the context of DENV infection is limited. Celgosivir, a bicyclic iminosugar evaluated in phase Ib clinical trials as a therapeutic for the treatment of DENV infection, was confirmed to be antiviral in a lethal mouse model of antibody-enhanced DENV infection. In this study we provide the first evidence of the antiviral activity of celgosivir in primary human macrophages in vitro, in which it inhibits DENV secretion with an EC50 of 5 μM. We further demonstrate that monocyclic glucose-mimicking iminosugars inhibit isolated glycoprotein and glycolipid processing enzymes and that this inhibition also occurs in primary cells treated with these drugs. By comparison to bicyclic glucose-mimicking iminosugars which inhibit glycoprotein processing but do not inhibit glycolipid processing and galactose-mimicking iminosugars which do not inhibit glycoprotein processing but do inhibit glycolipid processing, we demonstrate that inhibition of endoplasmic reticulum-resident α-glucosidases, not glycolipid processing, is responsible for iminosugar antiviral activity against DENV. Our data suggest that inhibition of ER α-glucosidases prevents release of virus and is the primary antiviral mechanism of action of iminosugars against DENV.

  9. Brain stem stimulation and the acetylcholine-evoked inhibition of neurones in the feline nucleus reticularis thalami

    PubMed Central

    Dingledine, Raymond; Kelly, J. S.

    1977-01-01

    1. In cats anaesthetized with halothane and nitrous oxide, the responses to iontophoretically applied acetylcholine (ACh) and to high-frequency stimulation of the mid-brain reticular formation (MRF) were tested on spontaneously active neurones in the nucleus reticularis thalami and underlying ventrobasal complex. 2. The initial response to MRF stimulation of 90% of the ACh-inhibited neurones found in the region of the dorsolateral nucleus reticularis was an inhibition. Conversely, the initial response of 82% of the ACh-excited neurones in the ventrobasal complex was an excitation. Neurones in the rostral pole of the nucleus reticularis were inhibited by both ACh and RMF stimulation. 3. The mean latency (and s.e. of mean) for the MRF-evoked inhibition was 13·7 ± 3·2 ms (n = 42) and that for the MRF-evoked excitation, 44.1 ± 4.2 ms (n = 35). 4. The ACh-evoked inhibitions were blocked by iontophoretic atropine, in doses that did not block amino acid-evoked inhibition. In twenty-four ACh-inhibited neurones the effect of iontophoretic atropine was tested on MRF-evoked inhibition. In all twenty-four neurones atropine had no effect on the early phase of MRF-evoked inhibition but weakly antagonized the late phase of inhibition in nine of fourteen neurones. 5. Interspike-interval histograms showed that the firing pattern of neurones in the nucleus reticularis was characterized by periods of prolonged, high-frequency bursting. Both the ACh-evoked inhibitions and the late phase of MRF-evoked inhibitions were accompanied by an increased burst activity. In contrast, iontophoretic atropine tended to suppress burst activity. 6. The possibility is discussed that electrical stimulation of the MRF activates an inhibitory cholinergic projection to the nucleus reticularis. Since neurones of the nucleus reticularis have been shown to inhibit thalamic relay cells, activation of this inhibitory pathway may play a role in MRF-evoked facilitation of thalamo-cortical relay transmission and the associated electrocortical desynchronization. PMID:915830

  10. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK.

    PubMed

    Zhou, Hongyu; Shang, Chaowei; Wang, Min; Shen, Tao; Kong, Lingmei; Yu, Chunlei; Ye, Zhennan; Luo, Yan; Liu, Lei; Li, Yan; Huang, Shile

    2016-09-15

    Ciclopirox olamine (CPX), an off-patent antifungal agent, has recently been identified as a potential anticancer agent. The mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation and survival. Little is known about whether and how CPX executes its anticancer action by inhibiting mTOR. Here we show that CPX inhibited the phosphorylation of p70 S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), two downstream effector molecules of mTOR complex 1 (mTORC1), in a spectrum of human tumor cells, indicating that CPX inhibits mTORC1 signaling. Using rhabdomyosarcoma cells as an experimental model, we found that expression of constitutively active mTOR (E2419K) conferred resistance to CPX inhibition of cell proliferation, suggesting that CPX inhibition of mTORC1 contributed to its anticancer effect. In line with this, treatment with CPX inhibited tumor growth and concurrently suppressed mTORC1 signaling in RD xenografts. Mechanistically, CPX inhibition of mTORC1 was neither via inhibition of IGF-I receptor or phosphoinositide 3-kinase (PI3K), nor by activation of phosphatase and tensin homolog (PTEN). Instead, CPX inhibition of mTORC1 was attributed to activation of AMP-activated protein kinase (AMPK)-tuberous sclerosis complexes (TSC)/raptor pathways. This is supported by the findings that CPX activated AMPK; inhibition of AMPK with Compound C or ectopic expression of dominant negative AMPKα partially prevented CPX from inhibiting mTORC1; silencing TSC2 attenuated CPX inhibition of mTORC1; and CPX also increased AMPK-mediated phosphorylation of raptor (S792). Therefore, the results indicate that CPX exerts the anticancer effect by activating AMPK, resulting in inhibition of mTORC1 signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. PTEN-mediated ERK1/2 inhibition and paradoxical cellular proliferation following Pnck overexpression

    PubMed Central

    Deb, Tushar B; Barndt, Robert J; Zuo, Annie H; Sengupta, Surojeet; Coticchia, Christine M; Johnson, Michael D

    2014-01-01

    Pregnancy upregulated non-ubiquitous calmodulin kinase (Pnck), a novel calmodulin kinase, is significantly overexpressed in breast and renal cancers. We present evidence that at high cell density, overexpression of Pnck in HEK 293 cells inhibits serum-induced extracellular signal-regulated kinase (ERK1/ERK2) activation. ERK1/2 inhibition is calcium-dependent and Pnck kinase activity is required for ERK1/2 inhibition, since expression of a kinase-dead (K44A) and a catalytic loop phosphorylation mutant (T171A) Pnck protein is unable to inhibit ERK 1/2 activity. Ras is constitutively active at high cell density, and Pnck does not alter Ras activation, suggesting that Pnck inhibition of ERK1/2 activity is independent of Ras activity. Pnck inhibition of serum-induced ERK1/2 activity is lost in cells in which phosphatase and tensin homolog (PTEN) is suppressed, suggesting that Pnck inhibition of ERK1/2 activity is mediated by PTEN. Overexpression of protein phosphatase-active but lipid phosphatase-dead PTEN protein inhibits ERK1/2 activity in control cells and enhances Pnck-mediated ERK1/2 inhibition, suggesting that Pnck increases availability of protein phosphatase active PTEN for ERK1/2 inhibition. Pnck is a stress-responsive kinase; however, serum-induced p38 MAP kinase activity is also downregulated by Pnck in a Pnck kinase- and PTEN-dependent manner, similar to ERK1/2 inhibition. Pnck overexpression increases proliferation, which is inhibited by PTEN knockdown, implying that PTEN acts as a paradoxical promoter of proliferation in ERK1/2 and p38 MAP kinase phosphorylation-inhibited, Pnck-overexpressing cells. Overall, these data reveal a novel function of Pnck in the regulation of ERK1/2 and p38 MAP kinase activity and cell proliferation, which is mediated by paradoxical PTEN functions. The possible biological implications of these data are discussed. PMID:24552815

  12. Influence of Food Microorganisms on Staphylococcal Growth and Enterotoxin Production in Meat

    PubMed Central

    McCoy, D. W.; Faber, J. E.

    1966-01-01

    Forty-four microorganisms were studied for their influence on staphylococcal growth and enterotoxin production. Inhibition was found to be more common than stimulation. Two types of inhibition were observed: inhibition of staphylococcal growth, and inhibition of enterotoxin formation with no apparent effect on growth. By use of a plate test, 12 of the 44 food microorganisms were found to inhibit staphylococcal growth at 35 C. Of the 12, 3 also inhibited growth at 25 C. No significant differences in inhibition were observed with the 15 strains of enterotoxigenic staphylococci. In meat slurries, inhibition of staphylococcal growth was found to be greater at 25 C than at 35 C. Results on inhibition obtained from the plate test could not be correlated with the effect of the organisms in slurries. Environmental conditions were found to affect markedly the influence of food microorganisms on staphylococci. Of the 44 food microorganisms studied, only Bacillus cereus was observed to stimulate significantly staphylococcal growth and enterotoxin formation. Stimulation was more pronounced with Staphylococcus aureus 196E than with other strains of enterotoxigenic staphylococci. Bacillus megaterium and Brevibacterium linens were inhibited by staphylococci. These organisms were completely inhibited when inoculated in mixed cultures with staphylococci. In pure cultures, good staphylococcal growth was found to be accompanied by enterotoxin production; however, in the presence of food microorganisms, good staphylococcal growth occurred without the formation of detectable levels of enterotoxin A. PMID:5970822

  13. Comparison of alcohol impairment of behavioral and attentional inhibition.

    PubMed

    Weafer, Jessica; Fillmore, Mark T

    2012-11-01

    Despite the wealth of studies demonstrating the impairing effects of alcohol on behavioral inhibition, less is known regarding effects of the drug on attentional inhibition (i.e., the ability to ignore distracting stimuli in the environment in order to focus attention on relevant information). The current study examined alcohol impairment of both behavioral and attentional inhibition, as well as potential associations between the two mechanisms of inhibitory control. Men (n=27) and women (n=21) performed a measure of behavioral inhibition (cued go/no-go task) and a measure of attentional inhibition (delayed ocular return task) following three doses of alcohol: 0.65 g/kg, 0.45 g/kg, and 0.0 g/kg (placebo). Alcohol impaired both behavioral and attentional inhibition relative to placebo; however, correlational analyses revealed no associations between measures of behavioral and attentional inhibition following any dose. Additionally, men committed more inhibitory failures on the behavioral inhibition task, whereas women committed more inhibitory failures on the attentional inhibition task. These findings suggest that behavioral and attentional inhibition are equally sensitive to the impairing effects of alcohol, yet represent distinct components of inhibitory control. Additionally, the observed gender differences in control of behavior and attention could have important implications regarding negative consequences associated with alcohol-induced disinhibition in men and women. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Cognitive Control Reflects Context Monitoring, Not Motoric Stopping, in Response Inhibition

    PubMed Central

    Chatham, Christopher H.; Claus, Eric D.; Kim, Albert; Curran, Tim; Banich, Marie T.; Munakata, Yuko

    2012-01-01

    The inhibition of unwanted behaviors is considered an effortful and controlled ability. However, inhibition also requires the detection of contexts indicating that old behaviors may be inappropriate – in other words, inhibition requires the ability to monitor context in the service of goals, which we refer to as context-monitoring. Using behavioral, neuroimaging, electrophysiological and computational approaches, we tested whether motoric stopping per se is the cognitively-controlled process supporting response inhibition, or whether context-monitoring may fill this role. Our results demonstrate that inhibition does not require control mechanisms beyond those involved in context-monitoring, and that such control mechanisms are the same regardless of stopping demands. These results challenge dominant accounts of inhibitory control, which posit that motoric stopping is the cognitively-controlled process of response inhibition, and clarify emerging debates on the frontal substrates of response inhibition by replacing the centrality of controlled mechanisms for motoric stopping with context-monitoring. PMID:22384038

  15. Self-regulation, ego depletion, and inhibition.

    PubMed

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates.

    PubMed

    Vida, Imre; Bartos, Marlene; Jonas, Peter

    2006-01-05

    Networks of GABAergic neurons are key elements in the generation of gamma oscillations in the brain. Computational studies suggested that the emergence of coherent oscillations requires hyperpolarizing inhibition. Here, we show that GABA(A) receptor-mediated inhibition in mature interneurons of the hippocampal dentate gyrus is shunting rather than hyperpolarizing. Unexpectedly, when shunting inhibition is incorporated into a structured interneuron network model with fast and strong synapses, coherent oscillations emerge. In comparison to hyperpolarizing inhibition, networks with shunting inhibition show several advantages. First, oscillations are generated with smaller tonic excitatory drive. Second, network frequencies are tuned to the gamma band. Finally, robustness against heterogeneity in the excitatory drive is markedly improved. In single interneurons, shunting inhibition shortens the interspike interval for low levels of drive but prolongs it for high levels, leading to homogenization of neuronal firing rates. Thus, shunting inhibition may confer increased robustness to gamma oscillations in the brain.

  17. Novel Fungitoxicity Assays for Inhibition of Germination-Associated Adhesion of Botrytis cinerea and Puccinia recondita Spores

    PubMed Central

    Slawecki, Richard A.; Ryan, Eileen P.; Young, David H.

    2002-01-01

    Botrytis cinerea and Puccinia recondita spores adhere strongly to polystyrene microtiter plates coincident with germination. We developed assays for inhibition of spore adhesion in 96-well microtiter plates by using sulforhodamine B staining to quantify the adherent spores. In both organisms, fungicides that inhibited germination strongly inhibited spore adhesion, with 50% effective concentrations (EC50s) comparable to those for inhibition of germination. In contrast, fungicides that acted after germination in B. cinerea inhibited spore adhesion to microtiter plates only at concentrations much higher than their EC50s for inhibition of mycelial growth. Similarly, in P. recondita the ergosterol biosynthesis inhibitors myclobutanil and fenbuconazole acted after germination and did not inhibit spore adhesion. The assays provide a rapid, high-throughput alternative to traditional spore germination assays and may be applicable to other fungi. PMID:11823196

  18. Peer Exclusion Is Linked to Inhibition with Familiar but Not Unfamiliar Peers at Two Years of Age

    ERIC Educational Resources Information Center

    Gazelle, Heidi; Faldowski, Richard A.

    2014-01-01

    This study examined the extent that inhibition among familiar peers was related to inhibition among unfamiliar peers versus exclusion by familiar peers at 2?years of age. Peer inhibition at 2?years of age was assessed by both mothers and teachers on versions of the Behavioral Inhibition Questionnaire and the Preschool Play Behavior Scale (N?=?141…

  19. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP.

    PubMed

    Baritaki, Stavroula; Huerta-Yepez, Sara; Sahakyan, Anna; Karagiannides, Iordanis; Bakirtzi, Kyriaki; Jazirehi, Ali; Bonavida, Benjamin

    2010-12-15

    The role of nitric oxide (NO) in cancer has been controversial and is based on the levels of NO and the responsiveness of the tumor type. It remains unclear whether NO can inhibit the epithelial to mesenchymal transition (EMT) in cancer cells. EMT induction is mediated, in part, by the constitutive activation of the metastasis-inducer transcription factor, Snail and EMT can be inhibited by the metastasis-suppressor Raf-1 kinase inhibitor protein (RKIP) and E-cadherin. Snail is transcriptionally regulated by NF-κB and in turn, Snail represses RKIP transcription. Hence, we hypothesized that high levels of NO, that inhibit NF-κB activity, may also inhibit Snail and induce RKIP and leading to inhibition of EMT. We show that treatment of human prostate metastatic cell lines with the NO donor, DETANONOate, inhibits EMT and reverses both the mesenchymal phenotype and the cell invasive properties. Further, treatment with DETANONOate inhibits Snail expression and DNA-binding activity in parallel with the upregulation of RKIP and E-cadherin protein levels. The pivotal roles of Snail inhibition and RKIP induction in DETANONOate-mediated inhibition of EMT were corroborated by both Snail silencing by siRNA and by ectopic expression of RKIP. The in vitro findings were validated in vivo in mice bearing PC-3 xenografts and treated with DETANONOate. The present findings show, for the first time, the novel role of high subtoxic concentrations of NO in the inhibition of EMT. Thus, NO donors may exert therapeutic activities in the reversal of EMT and metastasis.

  20. Social inhibition modulates the effect of negative emotions on cardiac prognosis following percutaneous coronary intervention in the drug-eluting stent era.

    PubMed

    Denollet, Johan; Pedersen, Susanne S; Ong, Andrew T L; Erdman, Ruud A M; Serruys, Patrick W; van Domburg, Ron T

    2006-01-01

    Negative emotions have an adverse effect on cardiac prognosis. We investigated whether social inhibition (inhibited self-expression in social interaction) modulates the effect of negative emotions on clinical outcome following percutaneous coronary intervention (PCI). Eight hundred and seventy-five consecutive patients from the RESEARCH registry (Erasmus Medical Centre, Rotterdam) completed depression, anxiety, negativity (negative emotions in general), and social inhibition scales 6 months following PCI. The endpoint was major adverse cardiac event (MACE-death, myocardial infarction, coronary artery bypass graft (CABG), or PCI) at 9 months following assessment. There were 100 MACE; patients who were high in both negativity and inhibition were at increased risk of MACE (38/254=15%) when compared with high negativity/low inhibition patients (13/136=10%; P=0.018). Depression (P=0.23) or anxiety (P=0.63) did not explain away this moderating effect of inhibition. High negativity/high inhibition (HR=1.92, 95%CI 1.22-3.01, P=0.005) and previous CABG (HR=1.90, 95%CI 1.04-3.47, P=0.038) were independent predictors of MACE. Patients with high negativity but low inhibition were not at increased risk (P=0.76). High negativity/high inhibition also independently predicted death/MI (n=20) as a more specific endpoint (HR=5.85, P=0.001). The interaction effect of social inhibition and negative emotions, rather than negative emotions per se, predicted poor clinical outcome following PCI. Social inhibition should not be overlooked as a modulating factor.

  1. Inhibition of return in the archer fish.

    PubMed

    Gabay, Shai; Leibovich, Tali; Ben-Simon, Avi; Henik, Avishai; Segev, Ronen

    2013-01-01

    Inhibition of return is the inhibitory tagging of recently attended locations or objects. It was previously suggested that inhibition of return is a foraging facilitator in visual search. Inhibition of return was first discovered in humans and was demonstrated also in monkeys, yet it has never been demonstrated in non-primates. Here we report the presence of inhibition of return in the archer fish, which shoots down prey on overhanging vegetation, using squirts of water spouted from its mouth. Moreover, we find similar attentional effects for fish as for human participants. Our results show that the generation of inhibition of return does not require a fully developed cortex and strengthen the view that inhibition of return functions as a foraging facilitator.

  2. Reversal of androgen inhibition of estrogen-activated sexual behavior by cholinergic agents.

    PubMed

    Dohanich, G P; Cada, D A

    1989-12-01

    Androgens have been found to inhibit lordosis activated by estrogen treatment of ovariectomized female rats. In the present experiments, dihydrotestosterone propionate (200 micrograms for 3 days) inhibited the incidence of lordosis in ovariectomized females treated with estradiol benzoate (1 microgram for 3 days). This inhibition of lordosis was reversed 15 min after bilateral intraventricular infusion of physostigmine (10 micrograms/cannula), an acetylcholinesterase inhibitor, or carbachol (0.5 microgram/cannula), a cholinergic receptor agonist. This reversal of inhibition appears to be mediated by cholinergic muscarinic receptors since pretreatment with scopolamine (4 mg/kg, ip), a muscarinic receptor blocker, prevented the reversal of androgen inhibition by physostigmine. These results indicate that androgens may inhibit estrogen-activated lordosis through interference with central cholinergic muscarinic mechanisms.

  3. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhong-Ze; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employedmore » as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg{sub 3} was selected as an example, and the inhibition kinetic type and parameters (K{sub i}) were determined. Rg{sub 3} competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K{sub i} values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg{sub 3} (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg{sub 3}, the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure-dependent inhibition of ginsenoside towards UDP-glucuronosyltransferases. ► Rg{sub 3}′ inhibition towards UGT isoforms can induce in vivo drug–drug interaction. ► Broadening knowledge on ginsenosides' inhibition towards drug-metabolizing enzymes.« less

  4. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity.

    PubMed

    Thupari, J N; Pinn, M L; Kuhajda, F P

    2001-07-13

    Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy. Copyright 2001 Academic Press.

  5. Formation of distinct inclusion bodies by inhibition of ubiquitin-proteasome and autophagy-lysosome pathways.

    PubMed

    Lee, Junho; Yang, Kyu-Hwan; Joe, Cheol O; Kang, Seok-Seong

    2011-01-14

    Accumulation of misfolded proteins is caused by the impairment of protein quality control systems, such as ubiquitin-proteasome pathway (UPP) and autophagy-lysosome pathway (ALP). In this study, the formation of inclusion bodies was examined after the blockade of UPP and/or ALP in A549 cells. UPP inhibition induced a single and large inclusion body localized in microtubule-organizing center. Interestingly, however, ALP inhibition generated dispersed small inclusion bodies in the cytoplasm. Tuberous sclerosis complex 2 was selectively accumulated in the inclusion bodies of UPP-inhibited cells, but not those of ALP-inhibited cells. Blockade of transcription and translation entirely inhibited the formation of inclusion body induced by UPP inhibition, but partially by ALP inhibition. Moreover, the simultaneous inhibition of two protein catabolic pathways independently developed two distinct inclusion bodies within a single cell. These findings clearly demonstrated that dysfunction of each catabolic pathway induced formation and accumulation of unique inclusion bodies on the basis of morphology, localization and formation process in A549 cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Cantharidin biosynthesis in a blister beetle: inhibition by 6-fluoromevalonate causes chemical disarmament.

    PubMed

    Carrel, J E; Doom, J P; McCormick, J P

    1986-07-15

    Biosynthesis of cantharidin in a blister beetle, Lytta polita, is effectively inhibited by 6-fluoromevalonate. Inhibition is attributed specifically to the fluorine substituent. Biochemical inhibition has not been demonstrated previously for an arthropod's defensive substance.

  7. The Role of Inhibition in Age-related Off-Topic Verbosity: Not Access but Deletion and Restraint Functions

    PubMed Central

    Yin, Shufei; Peng, Huamao

    2016-01-01

    The speech of older adults is commonly described as verbose and off-topic, which is thought to influence their social communication. This study investigated the role of inhibition in age-related off-topic verbosity (OTV). Inhibition consists of three functions: access, deletion, and restraint. The access function is responsible for preventing irrelevant information from accessing the attention center (pre-mechanism of inhibition); The deletion function is responsible for deleting previously relevant but currently irrelevant information from working memory, and the restraint function is responsible for restraining strong but inappropriate responses (post-mechanisms of inhibition). A referential communication task was used to determine whether OTV was influenced by the pre-mechanism of inhibition. A self-involved event interview task was used to investigate the effect of the post-mechanisms of inhibition on OTV. Results showed that the OTV of the elderly participants was associated with an age-related decline in the post-mechanisms of inhibition, while the OTV exhibited by young adults was most likely due to deficits in the pre-mechanism function of inhibition. This research contributed to fill gaps in the existing knowledge about the potential relationship between specific functions of inhibition and age-related OTV. PMID:27199793

  8. Endogenous Inhibition of Somatic Pain is Impaired in Girls with Irritable Bowel Syndrome Compared with Healthy Girls

    PubMed Central

    Williams, Amy E.; Heitkemper, Margaret; Self, Mariella M.; Czyzewski, Danita I.; Shulman, Robert J.

    2013-01-01

    Endogenous pain-inhibition is often deficient in adults with chronic pain conditions including irritable bowel syndrome (IBS). It is unclear whether deficiencies in pain-inhibition are present in young children with IBS. The present study compared endogenous pain-inhibition, somatic pain threshold, and psychosocial distress in young girls with IBS versus controls. Girls with IBS did not show significant endogenous pain-inhibition of heat pain-threshold during a cold-pressor task in contrast to controls who had significant pain-inhibition. Girls with IBS did not differ from peers on measures of somatic pain but had more symptoms of depression, somatization, and anxiety than controls. When psychological variables were included as covariates the difference in pain-inhibition was no longer significant, although poor achieved power limits interpretation of these results. Higher-order cognitive processes including psychological variables may be contributing to observed pain-inhibition. In girls with IBS, pain-inhibition was positively related to the number of days without a bowel movement. To our knowledge, this is the first study to demonstrate deficiencies of endogenous pain-inhibition in young children with IBS. Findings have implications for better understanding of onset and maintenance of IBS and other chronic pain conditions. PMID:23685184

  9. Cortical inhibition within motor and frontal regions in alcohol dependence post-detoxification: A pilot TMS-EEG study.

    PubMed

    Naim-Feil, Jodie; Bradshaw, John L; Rogasch, Nigel C; Daskalakis, Zafiris J; Sheppard, Dianne M; Lubman, Dan I; Fitzgerald, Paul B

    2016-10-01

    Preclinical studies suggest that cortical alterations within the prefrontal cortex (PFC) are critical to the pathophysiology of alcohol dependence. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows direct assessment of cortical excitability and inhibition within the PFC of human subjects. We report the first application of TMS-EEG to measure these indices within the PFC of alcohol-dependent (ALD) patients post-detoxification. Cortical inhibition was assessed in 12 ALD patients and 14 healthy controls through single and paired-pulse TMS paradigms. Long-interval cortical inhibition indexed cortical inhibition in the PFC. In the motor cortex (MC), short- interval intracortical inhibition and cortical silent period determined inhibition, while intracortical facilitation measured facilitation, resting and active motor threshold indexed cortical excitability. ALD patients demonstrated altered cortical inhibition across the bilateral frontal cortices relative to controls. There was evidence of altered cortical excitability in ALD patients; however, no significant differences in MC inhibition. Our study provides first direct evidence of reduced cortical inhibition in the PFC of ALD patients post-detoxification. Altered cortical excitability in the MC may reflect hyper-excitability within the cortex associated with chronic alcohol consumption. These findings provide initial neurophysiological evidence of disrupted cortical excitability within the PFC of ALD patients.

  10. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Yun; Zhou, Lin; Xie, Haiyang

    2015-06-05

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between themore » two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression.« less

  11. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  12. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer

    PubMed Central

    Baritaki, Stavroula; Huerta-Yepez, Sara; Sahakyan, Anna; Karagiannides, Iordanis; Bakirtzi, Kyriaki; Jazirehi, Ali R

    2010-01-01

    The role of nitric oxide (NO) in cancer has been controversial and is based on the levels of NO and the responsiveness of the tumor type. It remains unclear whether NO can inhibit the epithelial to mesenchymal transition (EMT) in cancer cells. EMT induction is mediated, in part, by the constitutive activation of the metastasis-inducer transcription factor, Snail and EMT can be inhibited by the metastasis-suppressors Raf-1 kinase inhibitor protein (RKIP) and E-cadherin. Snail is transcriptionally regulated by NFκB and in turn, Snail represses RKIP transcription. Hence, we hypothesized that high levels of NO, that inhibit NFκB activity, may also inhibit Snail, induce RKIP and leading to inhibition of EMT. We show that treatment of human prostate metastatic cell lines with the NO donor, DETANONOate, inhibits EMT and reverses both the mesenchymal phenotype and the cell invasive properties. Further, treatment with DETANONOate inhibits Snail expression and DNA-binding activity in parallel with the upregulation of RKIP and E-cadherin protein levels. The pivotal roles of Snail inhibition and RKIP induction in DETANONOate-mediated inhibition of EMT were corroborated by both Snail silencing by siRNA and by ectopic expression of RKIP. The in vitro findings were validated in vivo in mice bearing PC-3 xenografts treated with DETANONOate. The present findings show, for the first time, the novel role of high, yet, subtoxic concentrations of NO in the inhibition of EMT. Thus, NO donors may exert therapeutic activities in the reversal of EMT and metastasis. PMID:21150329

  13. Brief report: Response inhibition and processing speed in children with motor difficulties and developmental coordination disorder.

    PubMed

    Bernardi, Marialivia; Leonard, Hayley C; Hill, Elisabeth L; Henry, Lucy A

    2016-01-01

    A previous study reported that children with poor motor skills, classified as having motor difficulties (MD) or Developmental Coordination Disorder (DCD), produced more errors in a motor response inhibition task compared to typically developing (TD) children but did not differ in verbal inhibition errors. The present study investigated whether these groups differed in the length of time they took to respond in order to achieve these levels of accuracy, and whether any differences in response speed could be explained by generally slow information processing in children with poor motor skills. Timing data from the Verbal Inhibition Motor Inhibition test were analyzed to identify differences in performance between the groups on verbal and motor inhibition, as well as on processing speed measures from standardized batteries. Although children with MD and DCD produced more errors in the motor inhibition task than TD children, the current analyses found that they did not take longer to complete the task. Children with DCD were slower at inhibiting verbal responses than TD children, while the MD group seemed to perform at an intermediate level between the other groups in terms of verbal inhibition speed. Slow processing speed did not account for these group differences. Results extended previous research into response inhibition in children with poor motor skills by explicitly comparing motor and verbal responses, and suggesting that slow performance, even when accurate, may be attributable to an inefficient way of inhibiting responses, rather than slow information processing speed per se.

  14. Temporal Dynamics of Proactive and Reactive Motor Inhibition

    PubMed Central

    Liebrand, Matthias; Pein, Inga; Tzvi, Elinor; Krämer, Ulrike M.

    2017-01-01

    Proactive motor inhibition refers to endogenous preparatory mechanisms facilitating action inhibition, whereas reactive motor inhibition is considered to be a sudden stopping process triggered by external signals. Previous studies were inconclusive about the temporal dynamics of involved neurocognitive processes during proactive and reactive motor control. Using electroencephalography (EEG), we investigated the time-course of proactive and reactive inhibition, measuring event-related oscillations and event-related potentials (ERPs). Participants performed in a cued go/nogo paradigm with cues indicating whether the motor response might or might not have to be inhibited. Based on the dual mechanisms of control (DMC) framework by Braver, we investigated the role of attentional effects, motor preparation in the sensorimotor cortex and prefrontal cognitive control mechanisms, separating effects before and after target onset. In the cue-target interval, proactive motor inhibition was associated with increased attention, reflected in reduced visual alpha power and an increased contingent negative variation (CNV). At the same time, motor inhibition was modulated by reduced sensorimotor beta power. After target onset, proactive inhibition resulted in an increased N1, indicating allocation of attention towards relevant stimuli, increased prefrontal beta power and a modulation of sensorimotor mu activity. As in previous studies, reactive stopping of motor actions was associated with increased prefrontal beta power and increased sensorimotor beta activity. The results stress the relevance of attentional mechanisms for proactive inhibition and speak for different neurocognitive mechanisms being involved in the early preparation for and in later implementation of motor inhibition. PMID:28496405

  15. Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase

    USDA-ARS?s Scientific Manuscript database

    End-product inhibition by cellobiose and glucose is a rate-limiting factor in cellulose hydrolysis by cellulases. While cellobiose and glucose inhibition have been extensively investigated, cellobionate inhibition has been minimally studied despite the discovery that accessory proteins such as cello...

  16. Overcoming PCR Inhibition During DNA-Based Gut Content Analysis of Ants.

    PubMed

    Penn, Hannah J; Chapman, Eric G; Harwood, James D

    2016-10-01

    Generalist predators play an important role in many terrestrial systems, especially within agricultural settings, and ants (Hymenoptera: Formicidae) often constitute important linkages of these food webs, as they are abundant and influential in these ecosystems. Molecular gut content analysis provides a means of delineating food web linkages of ants based on the presence of prey DNA within their guts. Although this method can provide insight, its use on ants has been limited, potentially due to inhibition when amplifying gut content DNA. We designed a series of experiments to determine those ant organs responsible for inhibition and identified variation in inhibition among three species (Tetramorium caespitum (L.), Solenopsis invicta Buren, and Camponotus floridanus (Buckley)). No body segment, other than the gaster, caused significant inhibition. Following dissection, we determined that within the gaster, the digestive tract and crop cause significant levels of inhibition. We found significant differences in the frequency of inhibition between the three species tested, with inhibition most evident in T. caespitum The most effective method to prevent inhibition before DNA extraction was to exude crop contents and crop structures onto UV-sterilized tissue. However, if extracted samples exhibit inhibition, addition of bovine serum albumin to PCR reagents will overcome this problem. These methods will circumvent gut content inhibition within selected species of ants, thereby allowing more detailed and reliable studies of ant food webs. As little is known about the prevalence of this inhibition in other species, it is recommended that the protocols in this study are used until otherwise shown to be unnecessary. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Angiotensin-converting enzyme and matrix metalloproteinase inhibition with developing heart failure: comparative effects on left ventricular function and geometry

    NASA Technical Reports Server (NTRS)

    McElmurray, J. H. 3rd; Mukherjee, R.; New, R. B.; Sampson, A. C.; King, M. K.; Hendrick, J. W.; Goldberg, A.; Peterson, T. J.; Hallak, H.; Zile, M. R.; hide

    1999-01-01

    The progression of congestive heart failure (CHF) is left ventricular (LV) myocardial remodeling. The matrix metalloproteinases (MMPs) contribute to tissue remodeling and therefore MMP inhibition may serve as a useful therapeutic target in CHF. Angiotensin converting enzyme (ACE) inhibition favorably affects LV myocardial remodeling in CHF. This study examined the effects of specific MMP inhibition, ACE inhibition, and combined treatment on LV systolic and diastolic function in a model of CHF. Pigs were randomly assigned to five groups: 1) rapid atrial pacing (240 beats/min) for 3 weeks (n = 8); 2) ACE inhibition (fosinopril, 2.5 mg/kg b.i.d. orally) and rapid pacing (n = 8); 3) MMP inhibition (PD166793 2 mg/kg/day p.o.) and rapid pacing (n = 8); 4) combined ACE and MMP inhibition (2.5 mg/kg b.i.d. and 2 mg/kg/day, respectively) and rapid pacing (n = 8); and 5) controls (n = 9). LV peak wall stress increased by 2-fold with rapid pacing and was reduced in all treatment groups. LV fractional shortening fell by nearly 2-fold with rapid pacing and increased in all treatment groups. The circumferential fiber shortening-systolic stress relation was reduced with rapid pacing and increased in the ACE inhibition and combination groups. LV myocardial stiffness constant was unchanged in the rapid pacing group, increased nearly 2-fold in the MMP inhibition group, and was normalized in the ACE inhibition and combination treatment groups. Increased MMP activation contributes to the LV dilation and increased wall stress with pacing CHF and a contributory downstream mechanism of ACE inhibition is an effect on MMP activity.

  18. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xiaopeng; Du, Jie; Hua, Song

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly,more » combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.« less

  19. The effect of acute angiotensin-converting enzyme and neutral endopeptidase 24.11 inhibition on plasma extravasation in the rat.

    PubMed

    Sulpizio, Anthony C; Pullen, Mark A; Edwards, Richard M; Brooks, David P

    2004-06-01

    The effect of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP) inhibition on microvascular plasma leakage (extravasation) was evaluated in a rat model. Progressive inhibition of ACE using captopril caused increased extravasation when lung ACE was inhibited by >55%. In contrast, the selective inhibition of renal NEP by >90% using ecadotril did not increase extravasation. In NEP-inhibited rats, extravasation produced by the ACE inhibitors captopril and lisinopril was markedly enhanced. The dual ACE and NEP inhibitor omapatrilat, at oral doses of 0.03, 0.1, and 0.3 mg/kg, selectively inhibited lung ACE by 19, 61, and 76%, respectively, and did not cause significant extravasation. Doses of 1 and 10 mg/kg omapatrilat, which produced >90% inhibition of ACE and also inhibited renal NEP by 54 and 78%, respectively, significantly increased extravasation. In this model, bradykinin and substance P produced extravasation that could be abolished by the bradykinin 2 (B2) receptor antagonist Hoe 140 (icatibant) or the neurokinin1 (NK1) antagonist CP99994 [(+)-(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine], respectively. Bradykinin induced extravasation was also partially ( approximately 40%) inhibited by CP99994, indicating that a portion of the response involves B2 receptor-mediated release of substance P. In conclusion, this study is the first to relate the degree of ACE and/or NEP inhibition to extravasation liability in the rat model. Our data clearly demonstrate that ACE inhibitor-induced plasma extravasation is enhanced by concomitant inhibition of NEP. In addition, this study provides further evidence for the role for B2 and NK1 receptors in mediating plasma extravasation in the rat.

  20. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com; Sun, Dong-Xue; Cao, Yun-Feng

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for themore » compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.« less

  1. Altered cortical processing of motor inhibition in schizophrenia.

    PubMed

    Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle

    2016-12-01

    Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr; Basaranlar, Goksun; Unal, Mustafa

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK,more » CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.« less

  3. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    PubMed

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis. Copyright © 2015 the American Physiological Society.

  4. On the role of endogenous G-protein βγ subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones

    PubMed Central

    Delmas, Patrick; Brown, David A; Dayrell, Mariza; Abogadie, Fe C; Caulfield, Malcolm P; Buckley, Noel J

    1998-01-01

    Using whole-cell and perforated-patch recordings, we have examined the part played by endogenous G-protein βγ subunits in neurotransmitter-mediated inhibition of N-type Ca2+ channel current ICa) in dissociated rat superior cervical sympathetic neurones. Expression of the C-terminus domain of β-adrenergic receptor kinase 1 (βARK1), which contains the consensus motif (QXXER) for binding Gβγ, reduced the fast (pertussis toxin (PTX)-sensitive) and voltage-dependent inhibition of ICa by noradrenaline and somatostatin, but not the slow (PTX-insensitive) and voltage-independent inhibition induced by angiotensin II. βARK1 peptide reduced GTP-γ-S-induced voltage-dependent and PTX-sensitive inhibition of ICa but not GTP-γ-S-mediated voltage-independent inhibition. Overexpression of Gβ1γ2, which mimicked the voltage-dependent inhibition by reducing ICa density and enhancing basal facilitation, occluded the voltage-dependent noradrenaline- and somatostatin-mediated inhibitions but not the inhibition mediated by angiotensin II. Co-expression of the C-terminus of βARK1 with β1 and γ2 subunits prevented the effects of Gβγ dimers on basal Ca2+ channel behaviour in a manner consistent with the sequestering of Gβγ. The expression of the C-terminus of βARK1 slowed down reinhibition kinetics of ICa following conditioning depolarizations and induced long-lasting facilitation by cumulatively sequestering βγ subunits. Our findings identify endogenous Gβγ as the mediator of the voltage-dependent, PTX-sensitive inhibition of ICa induced by both noradrenaline and somatostatin but not the voltage-independent, PTX-insensitive inhibition by angiotensin II. They also support the view that voltage-dependent inhibition results from a direct Gβγ-Ca2+ channel interaction. PMID:9490860

  5. Paraoxonase 1 activity in subchronic low-level inorganic arsenic exposure through drinking water.

    PubMed

    Afolabi, Olusegun K; Wusu, Adedoja D; Ogunrinola, Olufunmilayo O; Abam, Esther O; Babayemi, David O; Dosumu, Oluwatosin A; Onunkwor, Okechukwu B; Balogun, Elizabeth A; Odukoya, Olusegun O; Ademuyiwa, Oladipo

    2016-02-01

    Epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. While the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic, epidemiological studies indicate a role for paraoxonase 1 (PON1) in cardiovascular diseases. To investigate the association between inorganic arsenic exposure and cardiovascular diseases, rats were exposed to sodium arsenite (trivalent; 50, 100, and 150 ppm As) and sodium arsenate (pentavalent; 100, 150, and 200 ppm As) in their drinking water for 12 weeks. PON1 activity towards paraoxon (PONase) and phenylacetate (AREase) in plasma, lipoproteins, hepatic, and brain microsomal fractions were determined. Inhibition of PONase and AREase in plasma and HDL characterized the effects of the two arsenicals. While the trivalent arsenite inhibited PONase by 33% (plasma) and 46% (HDL), respectively, the pentavalent arsenate inhibited the enzyme by 41 and 34%, respectively. AREase activity was inhibited by 52 and 48% by arsenite, whereas the inhibition amounted to 72 and 67%, respectively by arsenate. The pattern of inhibition in plasma and HDL indicates that arsenite induced a dose-dependent inhibition of PONase whereas arsenate induced a dose-dependent inhibition of AREase. In the VLDL + LDL, arsenate inhibited PONase and AREase while arsenite inhibited PONase. In the hepatic and brain microsomal fractions, only the PONase enzyme was inhibited by the two arsenicals. The inhibition was more pronounced in the hepatic microsomes where a 70% inhibition was observed at the highest dose of pentavalent arsenic. Microsomal cholesterol was increased by the two arsenicals resulting in increased cholesterol/phospholipid ratios. Our findings indicate that decreased PON1 activity observed in arsenic exposure may be an incipient biochemical event in the cardiovascular effects of arsenic. Modulation of PON1 activity by arsenic may also be mediated through changes in membrane fluidity brought about by changes in the concentration of cholesterol in the microsomes. © 2014 Wiley Periodicals, Inc.

  6. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABA(B) receptors, but not α2 adrenergic receptors.

    PubMed

    Zhang, Guohua; Chen, Wenling; Marvizón, Juan Carlos G

    2010-09-01

    GABA(B) , μ-opioid and adrenergic α(2) receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABA(B) receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high-frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABA(B) agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low-frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α(2) adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low-frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABA(B) receptors, but not by α(2) receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. No claim to original US government works.

  7. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates.

    PubMed

    Quetscher, Clara; Yildiz, Ali; Dharmadhikari, Shalmali; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Dydak, Ulrike; Beste, Christian

    2015-11-01

    Response inhibition processes are important for performance monitoring and are mediated via a network constituted by different cortical areas and basal ganglia nuclei. At the basal ganglia level, striatal GABAergic medium spiny neurons are known to be important for response selection, but the importance of the striatal GABAergic system for response inhibition processes remains elusive. Using a novel combination of behavior al, EEG and magnetic resonance spectroscopy (MRS) data, we examine the relevance of the striatal GABAergic system for response inhibition processes. The study shows that striatal GABA levels modulate the efficacy of response inhibition processes. Higher striatal GABA levels were related to better response inhibition performance. We show that striatal GABA modulate specific subprocesses of response inhibition related to pre-motor inhibitory processes through the modulation of neuronal synchronization processes. To our knowledge, this is the first study providing direct evidence for the relevance of the striatal GABAergic system for response inhibition functions and their cortical electrophysiological correlates in humans.

  8. Inhibitors of Proton Pumping

    PubMed Central

    Bisson, Mary A.

    1986-01-01

    Reported inhibitors of the Characean plasmalemma proton pump were tested for their ability to inhibit the passive H+ conductance which develops in Chara corallina Klein ex Willd. at high pH. Diethylstilbestrol inhibits the proton pump and the passive H+ conductance with about the same time course, at concentrations that have no effect on cytoplasmic streaming. N-Ethylmaleimide, a sulfhydryl reagent which is small and relatively nonpolar, also inhibits both pumping and passive conductance of H+. However, it also inhibits cytoplasmic streaming with about the same time course, and therefore could not be considered a specific ATPase inhibitor. p-Chloromercuribenzene sulfonate (PCMBS), a sulfhydryl reagent which is large and charged and hence less able to penetrate the membrane, does not inhibit pumping or conductance at low concentration. At high concentration, PCMBS sometimes inhibits pumping without affecting H+ conductance, but since streaming is also inhibited, the effect on the pump cannot be said to be specific. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, a water soluble carbodiimide, weakly inhibits both pump and conductance, apparently specifically. PMID:16664807

  9. Fear inhibition in high trait anxiety.

    PubMed

    Kindt, Merel; Soeter, Marieke

    2014-01-01

    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  10. Lenalidomide, an anti-tumor drug, regulates retinal endothelial cell function: Implication for treating ocular neovascular disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ling-Feng; Yao, Jin; Wang, Xiao-Qun

    Ocular angiogenesis is an important pathologic character of several ocular diseases, such as retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration (AMD). Inhibition of ocular angiogenesis has great therapeutic value for treating these dieses. Here we show that lenalidomide, an anti-tumor drug, has great anti-angiogenic potential in ocular diseases. Lenalidomide inhibits retinal endothelial cell viability in normal and pathological condition, and inhibits VEGF-induced endothelial cell migration and tube formation in vitro. Moreover, lenalidomide inhibits ocular angiogenesis in vivo through the reduction of angiogenesis- and inflammation-related protein expression. Collectively, lenalidomide is a promising drug for treating ocular angiogenesis through its anti-proliferative andmore » anti-inflammatory property. - Highlights: • Lenalidomide inhibits retinal endothelial cell viability in vitro. • Lenalidomide inhibits retinal endothelial cell migration and tube formation. • Lenalidomide inhibits pathological ocular angiogenesis in vivo. • Lenalidomide inhibits angiogenesis- and inflammation-related protein expression.« less

  11. Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates.

    PubMed

    Birowosuto, M D; Zhang, G; Yokoo, A; Takiguchi, M; Notomi, M

    2014-05-19

    We investigate the inhibited spontaneous emission of telecom-band InAs quantum disks (Qdisks) in InP nanowires (NWs). We have evaluated how the inhibition is affected by different disk diameter and thickness. We also compared the inhibition in standing InP NWs and those NWs laying on silica (SiO(2)), and silicon (Si) substrates. We found that the inhibition is altered when we put the NW on the high-refractive-index materials of Si. Experimentally, the inhibition factor ζ of the Qdisk emission at 1,500 nm decreases from 4.6 to 2.5 for NW on SiO(2) and Si substrates, respectively. Those inhibitions are even much smaller than that of 6.4 of the standing NW. The inhibition factors well agree with those calculated from the coupling of the Qdisk to the fundamental guided mode and the continuum of radiative modes. Our observation can be useful for the integration of the NW as light sources in the photonic nanodevices.

  12. Heavy drinking is associated with deficient response inhibition in women but not in men.

    PubMed

    Nederkoorn, Chantal; Baltus, Marcus; Guerrieri, Ramona; Wiers, Reinout W

    2009-09-01

    Poor response inhibition has been associated with a wide range of problem behaviours, including addictive behaviours, and could represent a general vulnerability factor. Standard tests of response inhibition have used neutral stimuli. Here we tested whether a deficit in response inhibition in heavy drinkers would be stronger for stimuli related to their problem (alcohol) or not. Response inhibition was assessed with a stop signal task, using four classes of pictures: alcohol-related, soft drinks, erotic (control appetitive categories) and neutral pictures. Participants were 32 heavy and 32 light drinkers. An equal amount of men and women were tested in both drinking groups, in view of recent studies reporting that response disinhibition may be most pronounced in heavy drinking women. Main results were first that no domain-specific differences in response inhibition were found in both groups. Second, heavy drinking females showed stronger response inhibition deficits than other groups. Results are discussed in light of a possible gender difference in response inhibition as a risk factor for addictive behaviours.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyeon Ho; Lee, Youngae; Laboratory of Cutaneous Aging Research, Department of Dermatology, Clinical Research Institutes, Seoul National University Hospital, 28 Yongon-dong, Jongno-gu, Seoul 110-744

    Eicosapentaenoic acid (EPA) is an omega-3 ({omega}-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-{kappa}B activation induced by tumor necrosis factor (TNF)-{alpha} or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-{alpha}-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-{alpha} induced MMP-9 expression by NF-{kappa}B-dependent pathway. Pretreatment of EPA inhibited TNF-{alpha}-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect I{kappa}B-{alpha} phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-{kappa}B.more » EPA inhibited TNF-{alpha}-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKK{alpha}-dependent event. Taken together, we demonstrate that EPA inhibits TNF-{alpha}-induced MMP-9 expression through inhibition of p38 and Akt activation.« less

  14. PIP₂ hydrolysis is responsible for voltage independent inhibition of CaV2.2 channels in sympathetic neurons.

    PubMed

    Vivas, Oscar; Castro, Hector; Arenas, Isabel; Elías-Viñas, David; García, David E

    2013-03-08

    GPCRs regulate Ca(V)2.2 channels through both voltage dependent and independent inhibition pathways. The aim of the present work was to assess the phosphatidylinositol-4,5-bisphosphate (PIP2) as the molecule underlying the voltage independent inhibition of Ca(V)2.2 channels in SCG neurons. We used a double pulse protocol to study the voltage independent inhibition and changed the PIP(2) concentration by means of blocking the enzyme PLC, filling the cell with a PIP(2) analogue and preventing the PIP(2) resynthesis with wortmannin. We found that voltage independent inhibition requires the activation of PLC and can be hampered by internal dialysis of exogenous PIP(2). In addition, the recovery from voltage independent inhibition is blocked by inhibition of the enzymes involved in the resynthesis of PIP(2). These results support that the hydrolysis of PIP(2) is responsible for the voltage independent inhibition of Ca(V)2.2 channels. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Time-dependent slowly-reversible inhibition of monoamine oxidase A by N-substituted 1,2,3,6-tetrahydropyridines.

    PubMed

    Wichitnithad, Wisut; O'Callaghan, James P; Miller, Diane B; Train, Brian C; Callery, Patrick S

    2011-12-15

    A novel class of N-substituted tetrahydropyridine derivatives was found to have multiple kinetic mechanisms of monoamine oxidase A inhibition. Eleven structurally similar tetrahydropyridine derivatives were synthesized and evaluated as inhibitors of MAO-A and MAO-B. The most potent MAO-A inhibitor in the series, 2,4-dichlorophenoxypropyl analog 12, displayed time-dependent mixed noncompetitive inhibition. The inhibition was reversed by dialysis, indicating reversible enzyme inhibition. Evidence that the slow-binding inhibition of MAO-A with 12 involves a covalent bond was gained from stabilizing a covalent reversible intermediate product by reduction with sodium borohydride. The reduced enzyme complex was not reversible by dialysis. The results are consistent with slowly reversible, mechanism-based inhibition. Two tetrahydropyridine analogs that selectively inhibited MAO-A were characterized by kinetic mechanisms differing from the kinetic mechanism of 12. As reversible inhibitors of MAO-A, tetrahydropyridine analogs are at low risk of having an adverse effect of tyramine-induced hypertension. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Amiloride inhibits the initiation of Coxsackievirus and poliovirus RNA replication by inhibiting VPg uridylylation.

    PubMed

    Ogram, Sushma A; Boone, Christopher D; McKenna, Robert; Flanegan, James B

    2014-09-01

    The mechanism of amiloride inhibition of Coxsackievirus B3 (CVB3) and poliovirus type 1 (PV1) RNA replication was investigated using membrane-associated RNA replication complexes. Amiloride was shown to inhibit viral RNA replication and VPgpUpU synthesis. However, the drug had no effect on polymerase elongation activity during either (-) strand or (+) strand synthesis. These findings indicated that amiloride inhibited the initiation of RNA synthesis by inhibiting VPg uridylylation. In addition, in silico binding studies showed that amiloride docks in the VPg binding site on the back of the viral RNA polymerase, 3D(pol). Since VPg binding at this site on PV1 3D(pol) was previously shown to be required for VPg uridylylation, our results suggest that amiloride inhibits VPg binding to 3D(pol). In summary, our findings are consistent with a model in which amiloride inhibits VPgpUpU synthesis and viral RNA replication by competing with VPg for binding to 3D(pol). Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Inhibition-of-return at multiple locations in visual space.

    PubMed

    Wright, R D; Richard, C M

    1996-09-01

    Inhibition-of-return is thought to be a visual search phenomenon characterized by delayed responses to targets presented at recently cued or recently fixated locations. We studied this inhibition effect following the simultaneous presentation of multiple location cues. The results indicated that response inhibition can be associated with as many as four locations at the same time. This suggests that a purely oculomotor account of inhibition-of-return is oversimplified. In short, although oculomotor processes appear to play a role in inhibition-of-return they may not tell the whole story about how it occurs because we can only program and execute eye movements to one location at a time.

  19. D2 dopamine receptor activation inhibits basal and forskolin-evoked acetylcholine release from dissociated striatal cholinergic interneurons.

    PubMed

    Login, I S

    1997-02-21

    We tested whether D2 ligands inhibit basal and forskolin-stimulated [3H]ACh release from dissociated striata, as opposed to striatal slices. Quinpirole inhibited both basal (40% maximal inhibition; IC50 approximately 50 nM) and 10 microM forskolin-stimulated release (80% inhibition; IC50 approximately 25 nM quinpirole) and both actions were blocked by a D2 antagonist. Vesamicol prevented the quinpirole and forskolin actions. The ability of D2 agonists to inhibit basal and cyclase-stimulated acetylcholine release emanating from vesamicol-sensitive vesicles appears to be tonically suppressed by inhibitory elements within striatal circuitry.

  20. Aminophylline preferentially inhibits chloroethylclonidine-insensitive alpha-adrenoceptor-mediated contractions in rat aorta.

    PubMed

    Duarte, J; Pérez-Vizcaíno, F; Zarzuelo, A; Jiménez, J; Tamargo, J

    1993-11-01

    1. In rat thoracic aortae, contractions induced by methoxamine were inhibited by chloroethylclonidine, whereas oxymetazoline-induced contractions, which were more dependent on Ca(2+)-entry, were insensitive to chloroethylclonidine. 2. Aminophylline inhibited the contractions and 45Ca(2+)-uptake induced by both methoxamine and oxymetazoline. However, oxymetazoline-induced contractions were more sensitive to inhibition by aminophylline and D600. 3. Thus, the partial selectivity of aminophylline for the chloroethylclonidine-resistant, highly dependent on extracellular Ca2+, oxymetazoline-mediated responses may be explained by a preferential inhibition of agonist-induced Ca2+ entry as compared to inhibition of other transduction pathways.

  1. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    NASA Technical Reports Server (NTRS)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  2. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species.

    PubMed

    Rella, Antonella; Yang, Mo Wei; Gruber, Jordon; Montagna, Maria Teresa; Luberto, Chiara; Zhang, Yong-Mei; Del Poeta, Maurizio

    2012-06-01

    Pseudomonas aeruginosa is a ubiquitous and opportunistic bacterium that inhibits the growth of different microorganisms, including Gram-positive bacteria and fungi such as Candida spp. and Aspergillus fumigatus. In this study, we investigated the interaction between P. aeruginosa and Cryptococcus spp. We found that P. aeruginosa PA14 and, to a lesser extent, PAO1 significantly inhibited the growth of Cryptococcus spp. The inhibition of growth was observed on solid medium by the visualization of a zone of inhibition of yeast growth and in liquid culture by viable cell counting. Interestingly, such inhibition was only observed when P. aeruginosa and Cryptococcus were co-cultured. Minimal inhibition was observed when cell-cell contact was prevented using a separation membrane, suggesting that cell contact is required for inhibition. Using mutant strains of Pseudomonas quinoline signaling, we showed that P. aeruginosa inhibited the growth of Cryptococcus spp. by producing antifungal molecules pyocyanin, a redox-active phenazine, and 2-heptyl-3,4-dihydroxyquinoline (PQS), an extracellular quorum-sensing signal. Because both P. aeruginosa and Cryptococcus neoformans are commonly found in lung infections of immunocompromised patients, this study may have important implication for the interaction of these microbes in both an ecological and a clinical point of view.

  3. Stability and social-behavioral consequences of toddlers' inhibited temperament and parenting behaviors.

    PubMed

    Rubin, Kenneth H; Burgess, Kim B; Hastings, Paul D

    2002-01-01

    A prospective longitudinal design was employed to ascertain whether different types of behavioral inhibition (i.e., traditional, peer-social) were stable from toddler to preschool age, and whether inhibited temperament and/or parenting style would predict children's subsequent social and behavioral problems. At Time 1, 108 toddlers (54 males, 54 females) and their mothers were observed in the Traditional Inhibition Paradigm and in a toddler-peer session; then at age 4 years, 88 children were observed with unfamiliar peers, and maternal ratings of psychological functioning were obtained. How mothers and their toddlers interacted was also observed. Results revealed meaningful connections between toddler inhibition, maternal intrusive control and derision, and nonsocial behaviors at age 4. Both forms of toddler inhibition predicted socially reticent behavior during free play at 4 years. If mothers demonstrated relatively high frequencies of intrusive control and/or derisive comments, then the association between their toddlers' peer inhibition and 4-year social reticence was significant and positive; whereas if mothers were neither intrusive nor derisive, then toddlers' peer inhibition and 4-year reticence were not significantly associated. Thus, maternal behaviors moderated the relation between toddlers' peer inhibition and preschoolers' social reticence.

  4. Effect of furosemide on ion transport in the turtle bladder: evidence for direct inhibition of active acid-base transport.

    PubMed

    Ehrenspeck, G; Voner, C

    1985-07-25

    The diuretic furosemide inhibits acid-base transport in the short-circuited turtle bladder. It inhibits luminal acidification when present in either mucosal or serosal bathing fluids, but decreases alkalinization only from the serosal side of the tissue. The inhibition of both acid-base transport processes is independent of ambient Cl-; and the disulfonic stilbene, SITS, an inhibitor of Cl--HCO3- exchange, fails to prevent the furosemide-elicited inhibition of alkalinization. These results preclude an absolute requirement of a furosemide-sensitive Cl--HCO3- exchange by these transport processes. The drug also interferes with the CO2-induced stimulation of acidification and alkalinization. The inhibition of the residual acidification in acetazolamide-treated, acidotic bladders, however, suggests an action at sites other than cytosolic carbonic anhydrase. Although active Na+ and Cl- reabsorption and tissue oxygen uptake are also decreased by furosemide, the rate of oxygen consumption uncoupled by 2,4-dinitrophenol is not diminished, indicating a primary inhibition of the various ion transport processes, not of metabolism. It is proposed that inhibition of transepithelial acid-base transport by furosemide in the turtle bladder includes inhibition of the acid-base pumps.

  5. Simulating cholinesterase inhibition in birds caused by dietary insecticide exposure

    USGS Publications Warehouse

    Corson, M.S.; Mora, M.A.; Grant, W.E.

    1998-01-01

    We describe a stochastic simulation model that simulates avian foraging in an agricultural landscape to evaluate factors affecting dietary insecticide exposure and to predict post-exposure cholinesterase (ChE) inhibition. To evaluate the model, we simulated published field studies and found that model predictions of insecticide decay and ChE inhibition reasonably approximated most observed results. Sensitivity analysis suggested that foraging location usually influenced ChE inhibition more than diet preferences or daily intake rate. Although organophosphorus insecticides usually caused greater inhibition than carbamate insecticides, insecticide toxicity appeared only moderately important. When we simulated impact of heavy insecticide applications during breeding seasons of 15 wild bird species, mean maximum ChE inhibition in most species exceeded 20% at some point. At this level of inhibition, birds may experience nausea and/or may exhibit minor behavioral changes. Simulated risk peaked in April–May and August–September and was lowest in July. ChE inhibition increased with proportion of vegetation in the diet. This model, and ones like it, may help predict insecticide exposure of and sublethal ChE inhibition in grassland animals, thereby reducing dependence of ecological risk assessments on field studies alone.

  6. Automatic and Controlled Response Inhibition: Associative Learning in the Go/No-Go and Stop-Signal Paradigms

    PubMed Central

    Verbruggen, Frederick; Logan, Gordon D.

    2008-01-01

    In five experiments, the authors examined the development of automatic response inhibition in the go/no-go paradigm and a modified version of the stop-signal paradigm. They hypothesized that automatic response inhibition may develop over practice when stimuli are consistently associated with stopping. All five experiments consisted of a training phase and a test phase in which the stimulus mapping was reversed for a subset of the stimuli. Consistent with the automatic-inhibition hypothesis, the authors found that responding in the test phase was slowed when the stimulus had been consistently associated with stopping in the training phase. In addition, they found that response inhibition benefited from consistent stimulus-stop associations. These findings suggest that response inhibition may rely on the retrieval of stimulus-stop associations after practice with consistent stimulus-stop mappings. Stimulus-stop mapping is typically consistent in the go/no-go paradigm, so automatic inhibition is likely to occur. However, stimulus-stop mapping is typically inconsistent in the stop-signal paradigm, so automatic inhibition is unlikely to occur. Thus, the results suggest that the two paradigms are not equivalent because they allow different kinds of response inhibition. PMID:18999358

  7. Effects of hexamethonium, phenothiazines, propranolol and ephedrine on acetylcholinesterase carbamylation by physostigmine, aldicarb and carbaryl: interaction between the active site and the functionally distinct peripheral sites in acetylcholinesterase.

    PubMed

    Singh, A K; Spassova, D

    1998-01-01

    Physostigmine, aldicarb and carbaryl were potent inhibitors of acetylcholinesterase (AChE). The physostigmine-inhibited AChE fluoresced at 300 nm excitation and 500 nm emission wavelengths, but the aldicarb and carbaryl inhibited enzyme did not. This suggests that the carbamylated active center is not the fluorescing site in AChE. The fluorescence intensity of physostigmine-inhibited AChE decreased with increasing the substrate (acetylthiocholine) concentration, thus indicating that physostigmine binding to the active site is essential for the development of fluorescence. Thus, the physostigmine-inhibited AChE fluoresces due to the binding of trimethylpyrrolo[2,3-b]indol (TMPI) moiety, formed by the hydrolysis of physostigmine, to a peripheral site in AChE. The fluorescence intensity of the physostigmine-inhibited enzyme decreased when the inhibited-enzyme was dialyzed for either 30 min that poorly reactivated the enzyme or 180 min that fully reactivated the enzyme. This suggests that dialysis dissociates the AChE-TMPI complex much faster than it reactivates the carbamylated AChE. Ephedrine, propranolol and phenothiazines including trifluoparazine (TPZ) caused non-competitive inhibition, while hexamethonium caused an uncompetitive inhibition of AChE activity. TPZ, upon binding with AChE, formed a fluorescent TPZ-enzyme complex. The fluorescence intensity of TPZ-AChE complex was effectively decreased by ephedrine, but not by propranolol or hexamethonium. This indicates that TPZ and ephedrine bind to the same site in AChE which is different from the site/or sites to which propranolol or hexamethonium bind. Hexamethonium protected AChE from inhibition by carbamates and decreased the fluorescence intensity of the physostigmine-inhibited AChE. Phenothiazines and ephedrine did not modulate the enzyme inhibition or the fluorescence intensity of the physostigmine-inhibited AChE. Propranolol and TPZ potentiated the enzyme inhibition and increased the fluorescence intensity in the presence of physostigmine. These compounds, however, did not affect the inhibition of AChE by carbaryl or aldicarb. Ephedrine blocked the effects of TPZ, but did not alter the effects of propranolol on physostigmine-inhibited AChE. AChE, therefore, contains multiple peripheral binding sites which, upon binding to specific ligands, transduce differential signals to the active center.

  8. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model.

    PubMed

    Papasavvas, Christoforos A; Wang, Yujiang; Trevelyan, Andrew J; Kaiser, Marcus

    2015-09-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.

  9. Quantitative NTCP Pharmacophore and Lack of Association between DILI and NTCP Inhibition

    PubMed Central

    Dong, Zhongqi; Ekins, Sean; Polli, James E.

    2014-01-01

    The human sodium taurocholate cotransporting polypeptide (NTCP) is a hepatic bile acid transporter. Inhibition of NTCP uptake may potentially also prevent hepatitis B virus (HBV) infection. The first objective was to develop a quantitative pharmacophore for NTCP inhibition. Recent studies showed that hepatotoxic drugs could inhibit bile acid uptake into hepatocytes, without inhibiting canalicular efflux, and cause bile acid elevation in plasma. Hence, a second objective was to examine whether NTCP inhibition is associated with drug induced liver injury (DILI). Twenty-seven drugs from our previous study were used as the training set to develop a quantitative pharmacophore. From secondary screening from a drug database, six retrieved drugs and three drugs not retrieved by the model were tested for NTCP inhibition. Tertiary screening involved drugs known to cause DILI and not cause DILI. Overall, ninety-four drugs were assessed for hepatotoxicity and were assessed relative to NTCP inhibition. The quantitative pharmacophore possessed one hydrogen bond acceptor, one hydrogen bond donor, a hydrophobic feature, and excluded volumes. From 94 drugs, NTCP inhibitors and non-inhibitors were approximately equally distributed across the drugs of most DILI concern, less DILI concern, and no DILI concern, indicating no relationship between NTCP inhibition and DILI risk. Hence, an approach to treat HBV via NTCP inhibition is not expected to be associated with DILI. PMID:25220493

  10. Quantitative NTCP pharmacophore and lack of association between DILI and NTCP Inhibition.

    PubMed

    Dong, Zhongqi; Ekins, Sean; Polli, James E

    2015-01-23

    The human sodium taurocholate cotransporting polypeptide (NTCP) is a hepatic bile acid transporter. Inhibition of NTCP uptake may potentially also prevent hepatitis B virus (HBV) infection. The first objective was to develop a quantitative pharmacophore for NTCP inhibition. Recent studies showed that hepatotoxic drugs could inhibit bile acid uptake into hepatocytes, without inhibiting canalicular efflux, and cause bile acid elevation in plasma. Hence, a second objective was to examine whether NTCP inhibition is associated with drug induced liver injury (DILI). Twenty-seven drugs from our previous study were used as the training set to develop a quantitative pharmacophore. From secondary screening from a drug database, six retrieved drugs and three drugs not retrieved by the model were tested for NTCP inhibition. Tertiary screening involved drugs known to cause DILI and not cause DILI. Overall, ninety-four drugs were assessed for hepatotoxicity and were assessed relative to NTCP inhibition. The quantitative pharmacophore possessed one hydrogen bond acceptor, one hydrogen bond donor, a hydrophobic feature, and excluded volumes. From 94 drugs, NTCP inhibitors and non-inhibitors were approximately equally distributed across the drugs of most DILI concern, less DILI concern, and no DILI concern, indicating no relationship between NTCP inhibition and DILI risk. Hence, an approach to treat HBV via NTCP inhibition is not expected to be associated with DILI. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus

    PubMed Central

    Song, Panai; Onishi, Akira; Koepsell, Hermann; Vallon, Volker

    2016-01-01

    Introduction Glycemic control is important in diabetes mellitus to minimize the progression of the disease and the risk of potentially devastating complications. Inhibition of the sodium–glucose cotransporter SGLT2 induces glucosuria and has been established as a new anti-hyperglycemic strategy. SGLT1 plays a distinct and complementing role to SGLT2 in glucose homeostasis and, therefore, SGLT1 inhibition may also have therapeutic potential. Areas covered This review focuses on the physiology of SGLT1 in the small intestine and kidney and its pathophysiological role in diabetes. The therapeutic potential of SGLT1 inhibition, alone as well as in combination with SGLT2 inhibition, for anti-hyperglycemic therapy are discussed. Additionally, this review considers the effects on other SGLT1-expressing organs like the heart. Expert opinion SGLT1 inhibition improves glucose homeostasis by reducing dietary glucose absorption in the intestine and by increasing the release of gastrointestinal incretins like glucagon-like peptide-1. SGLT1 inhibition has a small glucosuric effect in the normal kidney and this effect is increased in diabetes and during inhibition of SGLT2, which deliver more glucose to SGLT1 in late proximal tubule. In short-term studies, inhibition of SGLT1 and combined SGLT1/SGLT2 inhibition appeared to be safe. More data is needed on long-term safety and cardiovascular consequences of SGLT1 inhibition. PMID:26998950

  12. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    PubMed Central

    Guillén, Hugo

    2018-01-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL). Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L), being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine). L. meyenii root (maca) extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2). PMID:29568754

  13. Concurrent information affects response inhibition processes via the modulation of theta oscillations in cognitive control networks.

    PubMed

    Chmielewski, Witold X; Mückschel, Moritz; Dippel, Gabriel; Beste, Christian

    2016-11-01

    Inhibiting responses is a challenge, where the outcome (partly) depends on the situational context. In everyday situations, response inhibition performance might be altered when irrelevant input is presented simultaneously with the information relevant for response inhibition. More specifically, irrelevant concurrent information may either brace or interfere with response-relevant information, depending on whether these inputs are redundant or conflicting. The aim of this study is to investigate neurophysiological mechanisms and the network underlying such modulations using EEG beamforming as method. The results show that in comparison to a baseline condition without concurrent information, response inhibition performance can be aggravated or facilitated by manipulating the extent of conflict via concurrent input. This depends on whether the requirement for cognitive control is high, as in conflicting trials, or whether it is low, as in redundant trials. In line with this, the total theta frequency power decreases in a right hemispheric orbitofrontal response inhibition network including the SFG, MFG, and SMA, when concurrent redundant information facilitates response inhibition processes. Vice versa, theta activity in a left-hemispheric response inhibition network (i.e., SFG, MFG, and IFG) increases, when conflicting concurrent information compromises response inhibition processes. We conclude that concurrent information bi-directionally shifts response inhibition performance and modulates the network architecture underlying theta oscillations which are signaling different levels of the need for cognitive control.

  14. Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically-detailed computational model of the striatal network

    PubMed Central

    Moyer, Jason T.; Halterman, Benjamin L.; Finkel, Leif H.; Wolf, John A.

    2014-01-01

    Striatal medium spiny neurons (MSNs) receive lateral inhibitory projections from other MSNs and feedforward inhibitory projections from fast-spiking, parvalbumin-containing striatal interneurons (FSIs). The functional roles of these connections are unknown, and difficult to study in an experimental preparation. We therefore investigated the functionality of both lateral (MSN-MSN) and feedforward (FSI-MSN) inhibition using a large-scale computational model of the striatal network. The model consists of 2744 MSNs comprised of 189 compartments each and 121 FSIs comprised of 148 compartments each, with dendrites explicitly represented and almost all known ionic currents included and strictly constrained by biological data as appropriate. Our analysis of the model indicates that both lateral inhibition and feedforward inhibition function at the population level to limit non-ensemble MSN spiking while preserving ensemble MSN spiking. Specifically, lateral inhibition enables large ensembles of MSNs firing synchronously to strongly suppress non-ensemble MSNs over a short time-scale (10–30 ms). Feedforward inhibition enables FSIs to strongly inhibit weakly activated, non-ensemble MSNs while moderately inhibiting activated ensemble MSNs. Importantly, FSIs appear to more effectively inhibit MSNs when FSIs fire asynchronously. Both types of inhibition would increase the signal-to-noise ratio of responding MSN ensembles and contribute to the formation and dissolution of MSN ensembles in the striatal network. PMID:25505406

  15. Molecular mechanisms of DNA repair inhibition by caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, C.P.; Sancar, A.

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, includingmore » acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.« less

  16. Inhibition of fatty acid synthesis in isolated adipocytes by 5-(tetradecyloxy)-2-furoic acid.

    PubMed

    Halvorson, D L; McCune, S A

    1984-11-01

    The compound 5-(tetradecyloxy)-2-furoic acid (TOFA), a hypolipidemic agent, inhibits fatty acid synthesis, lactate and pyruvate accumulation and CO2 release in isolated rat adipocytes. TOFA stimulates the accumulation of citrate. ATP levels are not lowered by TOFA. In comparison with the natural fatty acid, oleate, TOFA exhibited a much greater inhibitory effect on lipogenesis. TOFyl-CoA formation within intact adipocytes was demonstrated. Although not inhibited by TOFA, acetyl-CoA carboxylase is inhibited by TOFyl-CoA. It is proposed that many of the metabolic effects of TOFA in isolated adipocytes can be explained by TOFyl-CoA inhibition of acetyl-CoA carboxylase. TOFA inhibits glycolysis as a secondary event with the primary event of inhibition of fatty acid synthesis causing an accumulation of citrate which is an inhibitor of phosphofructokinase.

  17. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    PubMed

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  18. Combination PI3K/MEK inhibition promotes tumor apoptosis and regression in PIK3CA wild-type, KRAS mutant colorectal cancer

    PubMed Central

    Roper, Jatin; Sinnamon, Mark J.; Coffee, Erin M.; Belmont, Peter; Keung, Lily; Georgeon-Richard, Larissa; Wang, Wei Vivian; Faber, Anthony C.; Yun, Jihye; Yilmaz, Omer H.; Bronson, Roderick T.; Martin, Eric S.; Tsichlis, Philip N.; Hung, Kenneth E.

    2014-01-01

    PI3K inhibition in combination with other agents has not been studied in the context of PIK3CA wild-type, KRAS mutant cancer. In a screen of phospho-kinases, PI3K inhibition of KRAS mutant colorectal cancer cells activated the MAPK pathway. Combination PI3K/MEK inhibition with NVP-BKM120 and PD-0325901 induced tumor regression in a mouse model of PIK3CA wild-type, KRAS mutant colorectal cancer, which was mediated by inhibition of mTORC1, inhibition of MCL-1, and activation of BIM. These findings implicate mitochondrial-dependent apoptotic mechanisms as determinants for the efficacy of PI3K/MEK inhibition in the treatment of PIK3CA wild-type, KRAS mutant cancer. PMID:24576621

  19. Impairment of manual but not saccadic response inhibition following acute alcohol intoxication.

    PubMed

    Campbell, Anne Eileen; Chambers, Christopher D; Allen, Christopher P G; Hedge, Craig; Sumner, Petroc

    2017-12-01

    Alcohol impairs response inhibition; however, it remains contested whether such impairments affect a general inhibition system, or whether affected inhibition systems are embedded in, and specific to, each response modality. Further, alcohol-induced impairments have not been disambiguated between proactive and reactive inhibition mechanisms, and nor have the contributions of action-updating impairments to behavioural 'inhibition' deficits been investigated. Forty Participants (25 female) completed both a manual and a saccadic stop-signal reaction time (SSRT) task before and after a 0.8g/kg dose of alcohol and, on a separate day, before and after a placebo. Blocks in which participants were required to ignore the signal to stop or make an additional 'dual' response were included to obtain measures of proactive inhibition as well as updating of attention and action. Alcohol increased manual but not saccadic SSRT. Proactive inhibition was weakly reduced by alcohol, but increases in the reaction times used to baseline this contrast prevent clear conclusions regarding response caution. Finally, alcohol also increased secondary dual response times of the dual task uniformly as a function of the delay between tasks, indicating an effect of alcohol on action-updating or execution. The modality-specific effects of alcohol favour the theory that response inhibition systems are embedded within response modalities, rather than there existing a general inhibition system. Concerning alcohol, saccadic control appears relatively more immune to disruption than manual control, even though alcohol affects saccadic latency and velocity. Within the manual domain, alcohol affects multiple types of action updating, not just inhibition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Comparative in vitro inhibition of urinary tract pathogens by single- and multi-strain probiotics.

    PubMed

    Chapman, C M C; Gibson, G R; Todd, S; Rowland, I

    2013-09-01

    Multi-species probiotic preparations have been suggested as having a wide spectrum of application, although few studies have compared their efficacy with that of individual component strains at equal concentrations. We therefore tested the ability of 4 single probiotics and 4 probiotic mixtures to inhibit the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. We used an agar spot test to test the ability of viable cells to inhibit pathogens, while a broth inhibition assay was used to assess inhibition by cell-free probiotic supernatants in both pH-neutralised and non-neutralised forms. In the agar spot test, all probiotic treatments showed inhibition, L. acidophilus was the most inhibitory single strain against E. faecalis, L. fermentum the most inhibitory against E. coli. A commercially available mixture of 14 strains (Bio-Kult(®)) was the most effective mixture, against E. faecalis, the 3-lactobacillus mixture the most inhibitory against E. coli. Mixtures were not significantly more inhibitory than single strains. In the broth inhibition assays, all probiotic supernatants inhibited both pathogens when pH was not controlled, with only 2 treatments causing inhibition at a neutral pH. Both viable cells of probiotics and supernatants of probiotic cultures were able to inhibit growth of two urinary tract pathogens. Probiotic mixtures prevented the growth of urinary tract pathogens but were not significantly more inhibitory than single strains. Probiotics appear to produce metabolites that are inhibitory towards urinary tract pathogens. Probiotics display potential to reduce the incidence of urinary tract infections via inhibition of colonisation.

  1. The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity.

    PubMed

    Matthews, Krystal; Schäfer, Alexandra; Pham, Alissa; Frieman, Matthew

    2014-12-07

    The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction. We have used plasmids expressing PLpro and IRF3 including an IRF3 mutant that is constitutively active, called IRF3(5D). In these experiments we utilize transfections, chromatin immunoprecipitation, Electro-mobility Shift Assays (EMSA) and protein localization to identify where IRF3 and IRF3(5D) are inhibited by PLpro. Here we show that PLpro also inhibits IRF3 activation at a step after phosphorylation and that this inhibition is dependent on the de-ubiquitination (DUB) activity of PLpro. We found that PLpro is able to block the type I IFN induction of a constitutively active IRF3, but does not inhibit IRF3 dimerization, nuclear localization or DNA binding. However, inhibition of PLpro's DUB activity by mutagenesis blocked the IRF3 inhibition activity of PLpro, suggesting a role for IRF3 ubiquitination in induction of a type I IFN innate immune response. These results demonstrate an additional mechanism that PLpro is able to inhibit IRF3 signaling. These data suggest novel innate immune antagonism activities of PLpro that may contribute to SARS-CoV pathogenesis.

  2. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    PubMed

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  3. Neural and behavioral mechanisms of proactive and reactive inhibition

    PubMed Central

    Meyer, Heidi C.

    2016-01-01

    Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control. PMID:27634142

  4. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation.

    PubMed

    Vendetti, Frank P; Leibowitz, Brian J; Barnes, Jennifer; Schamus, Sandy; Kiesel, Brian F; Abberbock, Shira; Conrads, Thomas; Clump, David Andy; Cadogan, Elaine; O'Connor, Mark J; Yu, Jian; Beumer, Jan H; Bakkenist, Christopher J

    2017-02-01

    We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21 CIP/WAF1 )-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21 CIP/WAF1 )-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21 CIP/WAF1 )-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21 CIP/WAF1 )-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Guang-Lin; Department of Pharmacology, University of Michigan, Ann Arbor; Du, Yi-Fang

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the anti-inflammatory activity test focusing on its modulation of inflammatory mediators as well as intracellular MAPK and NF-κB signaling pathways. In acute ear edema model, pretreatment with KYKZL-1 (p.o.) dose-dependently inhibited the xylene-induced ear edema in mice with a higher inhibition than diclofenac. In a three-day TPA-induced inflammation, KYKZL-1 also showed significant anti-inflammatory activity with inhibition ranging between 20% and 64%. In gastric lesion test, KYKZL-1 elicited markedly fewer stomach lesions with a low index of ulcer as compared to diclofenac in rats. In further studies, KYKZL-1 wasmore » found to significantly inhibit the production of NO, PGE{sub 2}, LTB{sub 4} in LPS challenged RAW264.7, which is parallel to its attenuation of the expression of iNOS, COX-2, 5-LOX mRNAs or proteins and inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. Taken together, our data indicate that KYKZL-1 comprises dual inhibition of COX and 5-LOX and exerts an obvious anti-inflammatory activity with an enhanced gastric safety profile via simultaneous inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 inhibits NO, PGE{sub 2} and LTB{sub 4} and iNOS, COX-2 and 5-LOX mRNAs and MAPKs. • KYKZL-1 inhibits phosphorylation of MAPKs. • KYKZL-1 inactivates NF-κB pathway.« less

  6. Stability and Social-Behavioral Consequences of Toddlers' Inhibited Temperament and Parenting Behaviors.

    ERIC Educational Resources Information Center

    Rubin, Kenneth H.; Burgess, Kim B.; Hastings, Paul D.

    2002-01-01

    Used prospective longitudinal design to ascertain whether different types of behavioral inhibition were stable from toddler to preschool age, and whether inhibited temperament or parenting style predicted children's subsequent social/behavioral problems. Found that traditional and peer-social toddler inhibition predicted socially reticent behavior…

  7. The Effectiveness of Reward and Punishment Contingencies on Response Inhibition

    ERIC Educational Resources Information Center

    Costantini, Arthur F.; Hoving, Kenneth L.

    1973-01-01

    The relative effectiveness of reward and punishment on the development of response inhibition was evaluated developmentally with kindergarteners and second graders. Removal of positive reinforcers was apparently more effective than reward in producing inhibiting at both age levels. Transfer of inhibition training was also evaluated. (DP)

  8. Endogenous inhibition of somatic pain is impaired in girls with irritable bowel syndrome compared with healthy girls

    USDA-ARS?s Scientific Manuscript database

    Endogenous pain inhibition is often deficient in adults with chronic pain conditions including irritable bowel syndrome (IBS). It is unclear whether deficiencies in pain inhibition are present in young children with IBS. The present study compared endogenous pain inhibition, somatic pain threshold, ...

  9. Maribavir Inhibits Epstein-Barr Virus Transcription through the EBV Protein Kinase

    PubMed Central

    Whitehurst, Christopher B.; Sanders, Marcia K.; Law, Mankit; Wang, Fu-Zhang; Xiong, Jie; Dittmer, Dirk P.

    2013-01-01

    Maribavir (MBV) inhibits Epstein-Barr virus (EBV) replication and the enzymatic activity of the viral protein kinase BGLF4. MBV also inhibits expression of multiple EBV transcripts during EBV lytic infection. Here we demonstrate, with the use of a BGLF4 knockout virus, that effects of MBV on transcription take place primarily through inhibition of BGLF4. MBV inhibits viral genome copy numbers and infectivity to levels similar to and exceeding levels produced by BGLF4 knockout virus. PMID:23449792

  10. Caffeine inhibition of aflatoxin production: mode of action.

    PubMed Central

    Buchanan, R L; Hoover, D G; Jones, S B

    1983-01-01

    Evaluation of caffeine and a number of related methylxanthines indicated that the ability of the compound to inhibit growth and aflatoxin production by Aspergillus parasiticus is highly specific and does not involve an inhibition of cyclic AMP phosphodiesterase. Supplementation of the culture medium with purine bases, nucleosides, and nucleotides suggested that the inhibition of fungal growth could be partially overcome by adenine or guanine but that the purines had little effect on the inhibition of aflatoxin production. Likewise, increasing the levels of trace minerals did not overcome the inhibition of toxin production. Electron microscopic evaluation of caffeine-treated and -untreated cultures indicated that the compound produced observable changes in the ultrastructure of the fungus. Images PMID:6316853

  11. Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition

    PubMed Central

    Blackford, Jennifer Urbano; Clauss, Jacqueline A.; Avery, Suzanne N.; Cowan, Ronald L.; Benningfield, Margaret M.; VanDerKlok, Ross M.

    2014-01-01

    The tendency to approach or avoid novel people is a fundamental human behavior and is a core dimension of social anxiety. Resting state fMRI was used to test for an association between social inhibition and intrinsic connectivity in 40 young adults ranging from low to high in social inhibition. Higher levels of social inhibition were associated with specific patterns of reduced amygdala-cingulate cortex connectivity. Connectivity was reduced between the superficial amygdala and the rostral cingulate cortex and between the centromedial amygdala and the dorsal anterior cingulate cortex. Social inhibition also modulated connectivity in several well-established intrinsic networks; higher social inhibition correlated with reduced connectivity with default mode and dorsal attention networks and enhanced connectivity in salience and executive control networks. These findings provide important preliminary evidence that social inhibition reflects differences in the underlying intrinsic connectivity of the brain in the absence of social stimuli or stressors. PMID:24534162

  12. Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity.

    PubMed

    Banerjee, R K

    1990-06-20

    The peroxidase activity of the mitochondrial fraction of rat gastric mucosa was inhibited with various nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro. Indomethacin was found to be more effective than phenylbutazone (PB) or acetylsalicylic acid (ASA). Mouse gastric peroxidase was also very sensitive to indomethacin inhibition. Indomethacin has no significant effect on submaxillary gland peroxidase activity of either of the species studied. Purified rat gastric peroxidase activity was inhibited 75% with 0.15 mM indomethacin showing half-maximal inhibition at 0.04 mM. The inhibition could be withdrawn by increasing the concentration of iodide but not by H2O2. NSAIDs inhibit gastric peroxidase activity more effectively at acid pH (pH 5.2) than at neutral pH. Spectral studies showed a bathochromic shift of the Soret band of the enzyme with indomethacin indicating its interaction at or near the heme part of the enzyme.

  13. Inhibition of MAO by fractions and constituents of hypericum extract.

    PubMed

    Bladt, S; Wagner, H

    1994-10-01

    The inhibition of monoamine oxidase (MAO) by six fractions from hypericum extract and three characteristic constituents (as pure substances) were analyzed in vitro and ex vivo to study the antidepressive mechanism of action. Rat brain homogenates were used as the in vitro model, while the ex vivo analysis was performed after intraperitoneal application of the test substances to albino rats. Massive inhibition of MAO-A could be shown with the total extract and all fractions only at the concentration of 10(-3) mol/L. At 10(-4) mol/L, one fraction rich in flavonoides showed an inhibition of 39%, and all other fractions demonstrated less than 25% inhibition. Using pure hypericin as well as in all ex vivo experiments, no relevant inhibiting effects could be shown. From the results it can be concluded that the clinically proven antidepressive effect of hypericum extract cannot be explained in terms of MAO inhibition.

  14. Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids

    PubMed Central

    Sherif, El-Sayed M.; Abdo, Hany S.; Zein El Abedin, Sherif

    2015-01-01

    In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) and 1-butyl-1-methylpyrrolidinium chloride ([Py1,4]Cl). The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs). Compared with [Py1,4]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py1,4]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier. PMID:28793413

  15. Engineered kinesin motor proteins amenable to small-molecule inhibition

    PubMed Central

    Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  16. Naringin suppresses the development of glioblastoma by inhibiting FAK activity.

    PubMed

    Li, Jinjiang; Dong, Yushu; Hao, Guangzhi; Wang, Bao; Wang, Julei; Liang, Yong; Liu, Yangyang; Zhen, Endi; Feng, Dayun; Liang, Guobiao

    2017-01-01

    As the most common and lethal primary malignant brain cancer, glioblastoma is hard to timely diagnose and sensitive therapeutic monitoring. It is essential to develop new and effective drugs for glioblastoma multiform. Naringin belongs to citrus flavonoids and was found to display strong anti-inflammatory, antioxidant and antitumor activities. In this report, we found that naringin can specifically inhibit the kinase activity of FAK and suppress the FAK p-Try397 and its downstream pathway in glioblastoma cells. Our study showed out that naringin can inhibit cell proliferation by inhibiting FAK/cyclin D1 pathway, promote cell apoptosis through influencing FAK/bads pathway, at the same time, it can also inhibit cell invasion and metastasis by inhibiting the FAK/mmps pathway. All these showed that naringin exerts the anti-tumor effects in U87 MG by inhibiting the kinase activity of FAK.

  17. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured inmore » the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.« less

  18. The Ability To Activate and Inhibit Speeded Responses: Separate Developmental Trends.

    ERIC Educational Resources Information Center

    Band, Guido P. H.; van der Molen, Maurits W.; Overtoom, Carin C. E.; Verbaten, Marinus N.

    2000-01-01

    Compared 5-, 8-, and 11-year-olds and young adults on 6 speeded performance tasks, 4 requiring an inhibition of response activation. Analyzed reaction and inhibition times; found support for hypothesis of generalized developmental changes in response activation, but revealed less pronounced development of inhibition. Concluded that a nonselective…

  19. Intentional and Reactive Inhibition during Spoken-Word Stroop Task Performance in People with Aphasia

    ERIC Educational Resources Information Center

    Pompon, Rebecca Hunting; McNeil, Malcolm R.; Spencer, Kristie A.; Kendall, Diane L.

    2015-01-01

    Purpose: The integrity of selective attention in people with aphasia (PWA) is currently unknown. Selective attention is essential for everyday communication, and inhibition is an important part of selective attention. This study explored components of inhibition--both intentional and reactive inhibition--during spoken-word production in PWA and in…

  20. Molecular cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum, and their relation to increased resistance to two fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). Inhibiting by PGIPs directly reduces potential PG activity in specific plant pathogenic fungi, reducing their aggressiveness. Here, we isolated and functionally chara...

  1. Cadmium ion inhibition of quorum signalling in Chromobacterium violaceum.

    PubMed

    Thornhill, Starla G; Kumar, Manish; Vega, Leticia M; McLean, Robert J C

    2017-10-01

    Single-celled bacteria are capable of acting as a community by sensing and responding to population density via quorum signalling. Quorum signalling in Chromobacterium violaceum, mediated by the luxI/R homologue, cviI/R, regulates a variety of phenotypes including violacein pigmentation, virulence and biofilm formation. A number of biological and organic molecules have been described as quorum signalling inhibitors but, to date, metal-based inhibitors have not been widely tested. In this study, we show that quorum sensing is inhibited in C. violaceum in the presence of sub-lethal concentrations of cadmium salts. Notable Cd 2+ -inhibition was seen against pigmentation, motility, chitinase production and biofilm formation. Cd-inhibition of quorum-signalling genes occurred at the level of transcription. There was no direct inhibition of chitinase activity by Cd 2+ at the concentrations tested. Addition of the cognate quorum signals, N-hexanoyl homoserine lactone or N-decanoyl homoserine lactone, even at concentrations in excess of physiological levels, did not reverse the inhibition, suggesting that Cd-inhibition of quorum signaling is irreversible. This study represents the first description of heavy metal-based quorum inhibition in C. violaceum.

  2. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis.

    PubMed

    Halama, Anna; Kulinski, Michal; Dib, Shaima S; Zaghlool, Shaza B; Siveen, Kodappully S; Iskandarani, Ahmad; Zierer, Jonas; Prabhu, Kirti S; Satheesh, Noothan J; Bhagwat, Aditya M; Uddin, Shahab; Kastenmüller, Gabi; Elemento, Olivier; Gross, Steven S; Suhre, Karsten

    2018-08-28

    Suppressing glutaminolysis does not always induce cancer cell death in glutamine dependent tumors because cells may switch to alternative energy sources. To reveal compensatory metabolic pathways, we investigated the metabolome-wide cellular response to inhibited glutaminolysis in cancer cells. Glutaminolysis inhibition with C.968 suppressed cell proliferation but was insufficient to induce cancer cell death. We found that lipid catabolism was activated as a compensation for glutaminolysis inhibition. Accelerated lipid catabolism, together with oxidative stress induced by glutaminolysis inhibition, triggered autophagy. Simultaneously inhibiting glutaminolysis and either beta oxidation with trimetazidine or autophagy with chloroquine both induced cancer cell death. Here we identified metabolic escape mechanisms contributing to cancer cell survival under treatment and we suggest potentially translational strategy for combined cancer therapy, given that chloroquine is an FDA approved drug. Our findings are first to show efficiency of combined inhibition of glutaminolysis and beta oxidation as potential anti-cancer strategy as well as add to the evidence that combined inhibition of glutaminolysis and autophagy may be effective in glutamine-addicted cancers. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Selective mutism and temperament: the silence and behavioral inhibition to the unfamiliar.

    PubMed

    Gensthaler, Angelika; Khalaf, Sally; Ligges, Marc; Kaess, Michael; Freitag, Christine M; Schwenck, Christina

    2016-10-01

    Behavioral inhibition (BI) is a suspected precursor of selective mutism. However, investigations on early behavioral inhibition of children with selective mutism are lacking. Children aged 3-18 with lifetime selective mutism (n = 109), social phobia (n = 61), internalizing behavior (n = 46) and healthy controls (n = 118) were assessed using the parent-rated Retrospective Infant Behavioral Inhibition (RIBI) questionnaire. Analyses showed that children with lifetime selective mutism and social phobia were more inhibited as infants and toddlers than children of the internalizing and healthy control groups, who displayed similar low levels of behavioral inhibition. Moreover, behavioral inhibition was higher in infants with lifetime selective mutism than in participants with social phobia according to the Total BI score (p = 0.012) and the Shyness subscale (p < 0.001). Infant behavioral inhibition, particularly towards social stimuli, is a temperamental feature associated with a lifetime diagnosis of selective mutism. Results yield first evidence of the recently hypothesized temperamental origin of selective mutism. Children at risk should be screened for this debilitating child psychiatric condition.

  4. Cortical organization of inhibition-related functions and modulation by psychopathology

    PubMed Central

    Warren, Stacie L.; Crocker, Laura D.; Spielberg, Jeffery M.; Engels, Anna S.; Banich, Marie T.; Sutton, Bradley P.; Miller, Gregory A.; Heller, Wendy

    2013-01-01

    Individual differences in inhibition-related functions have been implicated as risk factors for a broad range of psychopathology, including anxiety and depression. Delineating neural mechanisms of distinct inhibition-related functions may clarify their role in the development and maintenance of psychopathology. The present study tested the hypothesis that activity in common and distinct brain regions would be associated with an ecologically sensitive, self-report measure of inhibition and a laboratory performance measure of prepotent response inhibition. Results indicated that sub-regions of DLPFC distinguished measures of inhibition, whereas left inferior frontal gyrus and bilateral inferior parietal cortex were associated with both types of inhibition. Additionally, co-occurring anxiety and depression modulated neural activity in select brain regions associated with response inhibition. Results imply that specific combinations of anxiety and depression dimensions are associated with failure to implement top-down attentional control as reflected in inefficient recruitment of posterior DLPFC and increased activation in regions associated with threat (MTG) and worry (BA10). Present findings elucidate possible neural mechanisms of interference that could help explain executive control deficits in psychopathology. PMID:23781192

  5. Cortical organization of inhibition-related functions and modulation by psychopathology.

    PubMed

    Warren, Stacie L; Crocker, Laura D; Spielberg, Jeffery M; Engels, Anna S; Banich, Marie T; Sutton, Bradley P; Miller, Gregory A; Heller, Wendy

    2013-01-01

    Individual differences in inhibition-related functions have been implicated as risk factors for a broad range of psychopathology, including anxiety and depression. Delineating neural mechanisms of distinct inhibition-related functions may clarify their role in the development and maintenance of psychopathology. The present study tested the hypothesis that activity in common and distinct brain regions would be associated with an ecologically sensitive, self-report measure of inhibition and a laboratory performance measure of prepotent response inhibition. Results indicated that sub-regions of DLPFC distinguished measures of inhibition, whereas left inferior frontal gyrus and bilateral inferior parietal cortex were associated with both types of inhibition. Additionally, co-occurring anxiety and depression modulated neural activity in select brain regions associated with response inhibition. Results imply that specific combinations of anxiety and depression dimensions are associated with failure to implement top-down attentional control as reflected in inefficient recruitment of posterior DLPFC and increased activation in regions associated with threat (MTG) and worry (BA10). Present findings elucidate possible neural mechanisms of interference that could help explain executive control deficits in psychopathology.

  6. Influence of supraliminal reward information on unconsciously triggered response inhibition.

    PubMed

    Diao, Liuting; Ding, Cody; Qi, Senqing; Zeng, Qinghong; Huang, Bo; Xu, Mengsi; Fan, Lingxia; Yang, Dong

    2014-01-01

    Although executive functions (e.g., response inhibition) are often thought to interact consciously with reward, recent studies have demonstrated that they can also be triggered by unconscious stimuli. Further research has suggested a close relationship between consciously and unconsciously triggered response inhibition. To date, however, the effect of reward on unconsciously triggered response inhibition has not been explored. To address this issue, participants in this study performed runs of a modified Go/No-Go task during which they were exposed to both high and low value monetary rewards presented both supraliminally and subliminally. Participants were informed that they would earn the reward displayed if they responded correctly to each trial of the run. According to the results, when rewards were presented supraliminally, a greater unconsciously triggered response inhibition was observed for high-value rewards than for low-value rewards. In contrast, when rewards were presented subliminally, no enhanced unconsciously triggered response inhibition was observed. Results revealed that supraliminal and subliminal rewards have distinct effects on unconsciously triggered response inhibition. These findings have important implications for extending our understanding of the relationship between reward and response inhibition.

  7. Inhibition of Cell Wall-Associated Enzymes in Vitro and in Vivo with Sugar Analogs

    PubMed Central

    Nagahashi, Gerald; Tu, Shu-I; Fleet, George; Namgoong, Sun K.

    1990-01-01

    Sugar analogs were used to study the inhibition of cell wall-associated glycosidases in vitro and in vivo. For in vitro characterization, cell walls were highly purified from corn (Zea mays L.) root cortical cells and methods were developed to assay enzyme activity in situ. Inhibitor dependence curves, mode of inhibition, and specificity were determined for three sugar analogs. At low concentrations of castanospermine (CAS), 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol, and swainsonine, these inhibitors showed competitive inhibition kinetics with β-glucosidase, β-GIcNAcase, and α-mannosidase, respectively. Swainsonine specifically inhibited α-mannosidase activity, and 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol specifically inhibited β-N-acetyl-hexosamindase activity. However, CAS inhibited a broad spectrum of cell wall-associated enzymes. When the sugar analogs were applied to 2 day old corn seedlings, only CAS caused considerable changes in root growth and development. To ensure that the concentration of inhibitors used in vitro also inhibited enzyme activity in vivo, an in vivo method for measuring cell wall-associated activity was devised. PMID:16667291

  8. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells

    PubMed Central

    Maeng, Yong-Sun; Lee, Rina; Lee, Boram; Choi, Seung-il; Kim, Eung Kweon

    2016-01-01

    Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors. PMID:26857144

  9. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    PubMed

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  10. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine

    PubMed Central

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C.

    2015-01-01

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases. PMID:26400108

  11. Selective inhibition of influenza virus protein synthesis by inhibitors of DNA function. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minor, P.D.; Dimmock, N.J.

    1977-05-15

    Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and ..cap alpha..-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at highmore » concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent.« less

  12. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  13. The identification of and relief from Fe3+ inhibition for both cellulose and cellulase in cellulose saccharification catalyzed by cellulases from Penicillium decumbens.

    PubMed

    Wang, Mingyu; Mu, Ziming; Wang, Junli; Hou, Shaoli; Han, Lijuan; Dong, Yanmei; Xiao, Lin; Xia, Ruirui; Fang, Xu

    2013-04-01

    Lignocellulosic biomass is an underutilized, renewable resource that can be converted to biofuels. The key step in this conversion is cellulose saccharification catalyzed by cellulase. In this work, the effect of metal ions on cellulose hydrolysis by cellulases from Penicillium decumbens was reported for the first time. Fe(3+) and Cu(2+) were shown to be inhibitory. Further studies on Fe(3+) inhibition showed the inhibition takes place on both enzyme and substrate levels. Fe(3+) treatment damages cellulases' capability to degrade cellulose and inhibits all major cellulase activities. Fe(3+) treatment also reduces the digestibility of cellulose, due to its oxidation. Treatment of Fe(3+)-treated cellulose with DTT and supplementation of EDTA to saccharification systems partially relieved Fe(3+) inhibition. It was concluded that Fe(3+) inhibition in cellulose degradation is a complicated process in which multiple inhibition events occur, and that relief from Fe(3+) inhibition can be achieved by the supplementation of reducing or chelating agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Influence of Supraliminal Reward Information on Unconsciously Triggered Response Inhibition

    PubMed Central

    Diao, Liuting; Ding, Cody; Qi, Senqing; Zeng, Qinghong; Huang, Bo; Xu, Mengsi; Fan, Lingxia; Yang, Dong

    2014-01-01

    Although executive functions (e.g., response inhibition) are often thought to interact consciously with reward, recent studies have demonstrated that they can also be triggered by unconscious stimuli. Further research has suggested a close relationship between consciously and unconsciously triggered response inhibition. To date, however, the effect of reward on unconsciously triggered response inhibition has not been explored. To address this issue, participants in this study performed runs of a modified Go/No-Go task during which they were exposed to both high and low value monetary rewards presented both supraliminally and subliminally. Participants were informed that they would earn the reward displayed if they responded correctly to each trial of the run. According to the results, when rewards were presented supraliminally, a greater unconsciously triggered response inhibition was observed for high-value rewards than for low-value rewards. In contrast, when rewards were presented subliminally, no enhanced unconsciously triggered response inhibition was observed. Results revealed that supraliminal and subliminal rewards have distinct effects on unconsciously triggered response inhibition. These findings have important implications for extending our understanding of the relationship between reward and response inhibition. PMID:25268227

  15. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release.

    PubMed

    Simsek, Meric; Quezada-Calvillo, Roberto; Ferruzzi, Mario G; Nichols, Buford L; Hamaker, Bruce R

    2015-04-22

    In this study, it was hypothesized that dietary phenolic compounds selectively inhibit the individual C- and N-terminal (Ct, Nt) subunits of the two small intestinal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), for a modulated glycemic carbohydrate digestion. The inhibition by chlorogenic acid, caffeic acid, gallic acid, (+)-catechin, and (-)-epigallocatechin gallate (EGCG) on individual recombinant human Nt-MGAM and Nt-SI and on mouse Ct-MGAM and Ct-SI was assayed using maltose as the substrate. Inhibition constants, inhibition mechanisms, and IC50 values for each combination of phenolic compound and enzymatic subunit were determined. EGCG and chlorogenic acid were found to be more potent inhibitors for selectively inhibiting the two subunits with highest activity, Ct-MGAM and Ct-SI. All compounds displayed noncompetitive type inhibition. Inhibition of fast-digesting Ct-MGAM and Ct-SI by EGCG and chlorogenic acid could lead to a slow, but complete, digestion of starch for improved glycemic response of starchy foods with potential health benefit.

  16. Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP).

    PubMed

    Dong, Zhongqi; Ekins, Sean; Polli, James E

    2013-03-04

    The hepatic bile acid uptake transporter sodium taurocholate cotransporting polypeptide (NTCP) is less well characterized than its ileal paralog, the apical sodium dependent bile acid transporter (ASBT), in terms of drug inhibition requirements. The objectives of this study were (a) to identify FDA approved drugs that inhibit human NTCP, (b) to develop pharmacophore and Bayesian computational models for NTCP inhibition, and (c) to compare NTCP and ASBT transport inhibition requirements. A series of NTCP inhibition studies were performed using FDA approved drugs, in concert with iterative computational model development. Screening studies identified 27 drugs as novel NTCP inhibitors, including irbesartan (Ki = 11.9 μM) and ezetimibe (Ki = 25.0 μM). The common feature pharmacophore indicated that two hydrophobes and one hydrogen bond acceptor were important for inhibition of NTCP. From 72 drugs screened in vitro, a total of 31 drugs inhibited NTCP, while 51 drugs (i.e., more than half) inhibited ASBT. Hence, while there was inhibitor overlap, ASBT unexpectedly was more permissive to drug inhibition than was NTCP, and this may be related to NTCP possessing fewer pharmacophore features. Findings reflected that a combination of computational and in vitro approaches enriched the understanding of these poorly characterized transporters and yielded additional chemical probes for possible drug-transporter interaction determinations.

  17. Rhamnazin, a novel inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yao; Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang Key Laboratory of Diabetes, No.1 Qianjing Road, Xihu District, Nanchang 330009, Jiangxi Province; Cai, Wei

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation ofmore » breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate. - Highlights: • Rhamnazin inhibits the response of HUVECs to VEGF in vitro. • Rhamnazin inhibits VEGFR2 kinase activity and its downstream signaling. • Rhamnazin prevents the growth of MDA-MB-231 tumor and reduces micro-vessel density in vivo.« less

  18. Chirality Influence of Zaltoprofen Towards UDP-Glucuronosyltransferases (UGTs) Inhibition Potential.

    PubMed

    Jia, Lin; Hu, Cuimin; Wang, Haina; Liu, Yongzhe; Liu, Xin; Zhang, Yan-Yan; Li, Wei; Wang, Li-Xuan; Cao, Yun-Feng; Fang, Zhong-Ze

    2015-06-01

    Zaltoprofen (ZLT) is a nonsteroidal antiinflammation drug, and has been clinically employed to treat rheumatoid arthritis, osteoarthritis, and other chronic inflammatory pain conditions. The present study aims to investigate the chirality influence of zaltoprofen towards the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation system was employed to investigate the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT isoforms. The inhibition difference capability was observed for the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT1A8 and UGT2B7, but not for other tested UGT isoforms. (R)-zaltoprofen exhibited noncompetitive inhibition towards UGT1A8 and competitive inhibition towards UGT2B7. The inhibition kinetic parameters were calculated to be 35.3 μM and 19.2 μM for UGT1A8 and UGT2B7. (R)-zaltoprofen and (S)-zaltoprofen exhibited a different inhibition type towards UGT1A7. Based on the reported maximum plasma concentration of (R)-zaltoprofen in vivo, a high drug-drug interaction between (R)-zaltoprofen and the drugs mainly undergoing UGT1A7, UGT1A8, and UGT2B7-catalyzed glucuronidation was indicated. © 2015 Wiley Periodicals, Inc.

  19. Voltage-independent inhibition of Ca(V)2.2 channels is delimited to a specific region of the membrane potential in rat SCG neurons.

    PubMed

    Vivas, Oscar; Arenas, Isabel; García, David E

    2012-06-01

    Neurotransmitters and hormones regulate Ca(V)2.2 channels through a voltage-independent pathway which is not well understood. It has been suggested that this voltage-independent inhibition is constant at all membrane voltages. However, changes in the percent of voltage-independent inhibition of Ca(V)2.2 have not been tested within a physiological voltage range. Here, we used a double-pulse protocol to isolate the voltage-independent inhibition of Ca(V)2.2 channels induced by noradrenaline in rat superior cervical ganglion neurons. To assess changes in the percent of the voltage-independent inhibition, the activation voltage of the channels was tested between -40 and +40 mV. We found that the percent of voltage-independent inhibition induced by noradrenaline changed with the activation voltage used. In addition, voltage-independent inhibition induced by oxo-M, a muscarinic agonist, exhibited the same dependence on activation voltage, which supports that this pattern is not exclusive for adrenergic activation. Our results suggested that voltage-independent inhibition of Ca(V)2.2 channels depends on the activation voltage of the channel in a physiological voltage range. This may have relevant implications in the understanding of the mechanism involved in voltage-independent inhibition.

  20. Potency and selectivity of carprofen enantiomers for inhibition of bovine cyclooxygenase in whole blood assays.

    PubMed

    Brentnall, Claire; Cheng, Zhangrui; McKellar, Quintin A; Lees, Peter

    2012-12-01

    Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)10 to 1.84:1 for IC95. R(-) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC10 COX-1:COX-2=6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC95 COX-1:COX-2=0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(-) carprofen were 11.6:1 for IC10 and 218:1 for IC90. Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4 mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC80 COX-2 value for 32 h and the IC20 for COX-1 for 33 h. The findings are discussed in relation to efficacy and safety of carprofen in calves. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt.

    PubMed

    Hernandez-Martinez, Gabriel R; Ortiz-Alvarez, Daniela; Perez-Roa, Michael; Urbina-Suarez, Nestor Andres; Thalasso, Frederic

    2018-06-05

    Activated sludge processes are often inhibited by nickel, cadmium, and cobalt. The inhibitory effect of these heavy metals on a synthetic wastewater treatment process was tested through pulse microrespirometry; i.e., pulse of substrate injected in a microreactor system. The inhibitory effect was tested under different conditions including the heavy metals, substrate and biomass concentrations, and exposure time. The inhibitory effect was quantified by the percentage of inhibition, half saturation constant (K S ), inhibition constant (K I ), and maximum oxygen uptake rate (OUR max ). The results indicated that, in a range of concentration from 0 to 40 mg L -1 , the three heavy metals exerted an uncompetitive and incomplete inhibitory effect, with a maximum inhibition of 67, 57, and 53% for Ni, Co, and Cd, respectively. An increase of the biomass concentration by 620% resulted in a decrease of the inhibition by 47 and 69% for Co and Cd, respectively, while no effect was observed on Ni inhibition. An increase of the substrate concentration by 87% resulted in an increase of the inhibition by 24, 70, and 47% for Ni, Co and Cd, respectively. In the case of nickel and cadmium, an increase in the exposure time to the heavy metals also increased the inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex

    PubMed Central

    Large, Adam M.; Vogler, Nathan W.; Mielo, Samantha; Oswald, Anne-Marie M.

    2016-01-01

    Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features—balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class—suggest mechanisms for olfactory processing that may extend to other sensory cortices. PMID:26858458

  3. Green tea extract and aged garlic extract inhibit anion transport and sickle cell dehydration in vitro.

    PubMed

    Ohnishi, S T; Ohnishi, T; Ogunmola, G B

    2001-01-01

    Both green tea extract (GTE or tea polyphenols) and aged garlic extract (AGE) effectively inhibited in vitro dehydration of sickle red blood cells induced by K-Cl cotransport or red cell storage. For K-Cl cotransport induced by 500 mM urea, 0.3 mg/ml EGCg (epigallocatechin gallate; a major component in GTE) almost completely inhibited dehydration, and 6 mg/ml AGE inhibited dehydration to 30% of the control level. Both vitamins E and C had no effect at the level of 2 mM. Different tea extracts had different degrees of inhibition, but the inhibitory activity increased when the number of hydroxyl groups in the compounds increased. With storage of sickle cells at 4 degrees C for 6 days, the cells started to undergo spontaneous dehydration when incubated at 37 degrees C. Neither inhibitors for Ca-induced K efflux nor K-Cl cotransport could inhibit cell dehydration of stored sickle cells, but both GTE and AGE effectively inhibited it. Chloride efflux measurements using a chloride electrode demonstrated that both GTE and AGE inhibited anion transport in red blood cells. The inhibitory mechanism of these compounds may be related to anion transport inhibition, although involvement of their antioxidant activities can not yet be ruled out. Copyright 2001 Academic Press.

  4. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivatesmore » a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.« less

  5. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    PubMed Central

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2016-01-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics. PMID:26465514

  6. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    PubMed Central

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  7. Targeting of the Glutathione, Thioredoxin, and Nrf2 Antioxidant Systems in Head and Neck Cancer.

    PubMed

    Roh, Jong-Lyel; Jang, Hyejin; Kim, Eun Hye; Shin, Daiha

    2017-07-10

    The glutathione (GSH), thioredoxin (Trx), and Nrf2 systems represent a major defense against reactive oxygen species (ROS), the cellular imbalance of which in cancer promotes growth and therapeutic resistance. This study investigated whether targeting the GSH, Trx, and Nrf2 antioxidant systems effectively eliminated head and neck cancer (HNC). At high concentrations, auranofin, but not buthionine sulfoximine (BSO) alone, decreased the viability of HNC, whereas even at low concentrations, auranofin plus BSO synergized to kill HNC cells. Dual silencing of the genes for GCLM and TrxR1 induced GSH depletion, Trx activity inhibition, and ROS accumulation, synergistically killing HNC cells. Inhibition of the GSH and Trx systems resulted in activation of the Nrf2-antioxidant response element (ARE) pathway, which may result in suboptimal GSH and Trx inhibition where HNC is resistant. Genetic inhibition of Nrf2 and/or HO-1 or trigonelline enhanced growth suppression, ROS accumulation, and cell death from GSH and Trx inhibition. The in vivo effects of GSH, Trx, and Nrf2 system inhibition were confirmed in a mouse HNC xenograft model by achieving growth inhibition >60% compared with those of control. Innovations: This study is the first to show that triple inhibition of GSH, Trx, and Nrf2 pathways could be an effective method to overcome the resistance of HNC. Inhibition of the Nrf2-ARE pathway in addition to dual inhibition of the GSH and Trx antioxidant systems can effectively eliminate resistant HNC. Antioxid. Redox Signal. 27, 106-114.

  8. Inhibition of α-Amylases by Condensed and Hydrolysable Tannins: Focus on Kinetics and Hypoglycemic Actions

    PubMed Central

    Kato, Camila Gabriel; Gonçalves, Geferson de Almeida; Peralta, Rosely Aparecida; Seixas, Flavio Augusto Vicente; de Sá-Nakanishi, Anacharis Babeto; Bracht, Lívia; Comar, Jurandir Fernando

    2017-01-01

    The aim of the present study was to compare the in vitro inhibitory effects on the salivary and pancreatic α-amylases and the in vivo hypoglycemic actions of the hydrolysable tannin from Chinese natural gall and the condensed tannin from Acacia mearnsii. The human salivary α-amylase was more strongly inhibited by the hydrolysable than by the condensed tannin, with the concentrations for 50% inhibition (IC50) being 47.0 and 285.4 μM, respectively. The inhibitory capacities of both tannins on the pancreatic α-amylase were also different, with IC50 values being 141.1 μM for the hydrolysable tannin and 248.1 μM for the condensed tannin. The kinetics of the inhibition presented complex patterns in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition). Both tannins were able to inhibit the intestinal starch absorption. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 58.8 μmol/kg and 88% inhibition at the dose of 294 μmol/kg. For the condensed tannin, inhibition was not substantially different for doses between 124.4 μmol/kg (49%) and 620 μmol/kg (57%). It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the postprandial glycemic levels in diabetes. PMID:28589038

  9. Febuxostat Inhibition of Endothelial-Bound XO: Implications for Targeting Vascular ROS Production

    PubMed Central

    Malik, Umair Z.; Hundley, Nicholas J.; Romero, Guillermo; Radi, Rafael; Freeman, Bruce A.; Tarpey, Margaret M.; Kelley, Eric E.

    2011-01-01

    Xanthine oxidase (XO) is a critical source of reactive oxygen species (ROS) that contribute to vascular inflammation. Binding of XO to vascular endothelial cell glycosaminoglycans (GAGs) results in significant resistance to inhibition by traditional pyrazolopyrimidine-based inhibitors such as allopurinol. Therefore, we compared the extent of XO inhibition (free and GAG-bound) by allopurinol to febuxostat, a newly approved nonpurine XO-specific inhibitor. In solution, febuxostat was 1000 fold more potent than allopurinol inhibition of XO-dependent uric acid formation (IC50 = 1.8 nM vs. 2.9 μM). Association of XO with heparin-Sepharose 6B (HS6B-XO) had minimal effect on inhibition of uric acid formation by febuxostat (IC50 = 4.4 nM) while further limiting the effect of allopurinol (IC50 = 64 μM). Kinetic analysis of febuxostat inhibition revealed Ki values of 0.96 nM (free) and 0.92 nM (HS6B-XO), confirming equivalent inhibition for both free and GAG-immobilized enzyme. When XO was bound to endothelial cell GAGs, complete enzyme inhibition was observed with 25 nM febuxostat, while no more than 80% inhibition was seen with either allopurinol or oxypurinol, even at concentrations above those tolerated clinically. The superior potency for inhibition of endothelium-associated XO is predictive of a significant role for febuxostat in investigating pathological states where XO-derived ROS are contributive and traditional XO inhibitors are only slightly effective. PMID:21554948

  10. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation.

    PubMed

    Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G

    2009-11-01

    Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.

  11. A preliminary investigation of the enzymatic inhibition of 5alpha-reduction and growth of prostatic carcinoma cell line LNCap-FGC by natural astaxanthin and Saw Palmetto lipid extract in vitro.

    PubMed

    Anderson, Mark L

    2005-01-01

    Inhibition of 5alpha-reductase has been reported to decrease the symptoms of benign prostate hyperplasia (BPH) and possibly inhibit or help treat prostate cancer. Saw Palmetto berry lipid extract (SPLE) is reported to inhibit 5alpha-reductase and decrease the clinical symptoms of BPH. Epidemiologic studies report that carotenoids such as lycopene may inhibit prostate cancer. In this investigation the effect of the carotenoid astaxanthin, and SPLE were examined for their effect on 5alpha-reductase inhibition as well as the growth of prostatic carcinoma cells in vitro. These studies support patent #6,277,417 B1. The results show astaxanthin demonstrated 98% inhibition of 5alpha-reductase at 300 microg/mL in vitro. Alphastat, the combination of astaxanthin and SPLE, showed a 20% greater inhibition of 5alpha-reductase than SPLE alone n vitro. A nine day treatment of prostatic carcinoma cells with astaxanthin in vitro produced a 24% decrease in growth at 0.1 mcg/mL and a 38% decrease at 0.01 mcg/mL. SPLE showed a 34% decrease at 0.1 mcg/mL. Low levels of carotenoid astaxanthin inhibit 5alpha-reductase and decrease the growth of human prostatic cancer cells in vitro. Astaxanthin added to SPLE shows greater inhibition of 5alpha-reductase than SPLE alone in vitro.

  12. TANKYRASE Inhibition Enhances the Antiproliferative Effect of PI3K and EGFR Inhibition, Mutually Affecting β-CATENIN and AKT Signaling in Colorectal Cancer.

    PubMed

    Solberg, Nina T; Waaler, Jo; Lund, Kaja; Mygland, Line; Olsen, Petter A; Krauss, Stefan

    2018-03-01

    Overactivation of the WNT/β-CATENIN signaling axis is a common denominator in colorectal cancer. Currently, there is no available WNT inhibitor in clinical practice. Although TANKYRASE (TNKS) inhibitors have been proposed as promising candidates, there are many colorectal cancer models that do not respond positively to TNKS inhibition in vitro and in vivo Therefore, a combinatorial therapeutic approach combining a TNKS inhibitor (G007-LK) with PI3K (BKM120) and EGFR (erlotinib) inhibitors in colorectal cancer was investigated. The data demonstrate that TNKS inhibition enhances the effect of PI3K and EGFR inhibition in the TNKS inhibitor-sensitive COLO320DM, and in the nonsensitive HCT-15 cell line. In both cell lines, combined TNKS/PI3K/EGFR inhibition is more effective at reducing growth than a dual TNKS/MEK inhibition. TNKS/PI3K/EGFR inhibition affected in a context-dependent manner components of the WNT/β-CATENIN, AKT/mTOR, EGFR, and RAS signaling pathways. TNKS/PI3K/EGFR inhibition also efficiently reduced growth of both COLO320DM and HCT-15 tumor xenografts in vivo At the highest doses, tumor xenograft growth was halted without affecting the body weight of the tested animals. Implications: Combining TNKS inhibitors with PI3K and EGFR inhibition may expand the therapeutic arsenal against colorectal cancers. Mol Cancer Res; 16(3); 543-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression.

    PubMed

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. A redox-based mechanism for nitric oxide-induced inhibition of DNA synthesis in human vascular smooth muscle cells

    PubMed Central

    Bundy, Ruth E; Marczin, Nándor; Chester, Adrian H; Yacoub, Magdi

    2000-01-01

    The current study explored potential redox mechanisms of nitric oxide (NO)-induced inhibition of DNA synthesis in cultured human and rat aortic smooth muscle cells.Exposure to S-nitrosothiols, DETA-NONOate and NO itself inhibited ongoing DNA synthesis and S phase progression in a concentration-dependent manner, as measured by thymidine incorporation and flow cytometry. Inhibition by NO donors occurred by release of NO, as detected by chemiluminescence and judged by the effects of NO scavengers, haemoglobin and cPTIO.Co-incubation with redox compounds, N-acetyl-L-cysteine, glutathione and L-ascorbic acid prevented NO inhibition of DNA synthesis. These observations suggest that redox agents may alternatively attenuate NO bioactivity extracellularly, interfere with intracellular actions of NO on the DNA synthesis machinery or restore DNA synthesis after established inhibition by NO.Recovery of DNA synthesis after inhibition by NO was similar with and without redox agents suggesting that augmented restoration of DNA synthesis is an unlikely mechanism to explain redox regulation.Study of extracellular interactions revealed that all redox agents potentiated S-nitrosothiol decomposition and NO release.Examination of intracellular NO bioactivity showed that as opposed to attenuation of NO inhibition of DNA synthesis by redox agents, there was no inhibition (potentiation in the presence of ascorbic acid) of soluble guanylate cyclase (sGC) activation judged by cyclic GMP accumulation in rat cells.These data provide evidence that NO-induced inhibition of ongoing DNA synthesis is sensitive to redox environment. Redox processes might protect the DNA synthesis machinery from inhibition by NO, in the setting of augmented liberation of biologically active NO from NO donors. PMID:10742309

  15. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure

    PubMed Central

    Migliorini, Robyn; Moore, Eileen M.; Glass, Leila; Infante, M. Alejandra; Tapert, Susan F.; Jones, Kenneth Lyons; Mattson, Sarah N.; Riley, Edward P.

    2015-01-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12–17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. PMID:26025509

  16. Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings

    PubMed Central

    van Rooij, Daan; Hartman, Catharina A.; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.

    2015-01-01

    Introduction Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Methods Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Results Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Discussion Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD. PMID:25610797

  17. Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings.

    PubMed

    van Rooij, Daan; Hartman, Catharina A; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V; Buitelaar, Jan K; Hoekstra, Pieter J

    2015-01-01

    Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD.

  18. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure.

    PubMed

    Migliorini, Robyn; Moore, Eileen M; Glass, Leila; Infante, M Alejandra; Tapert, Susan F; Jones, Kenneth Lyons; Mattson, Sarah N; Riley, Edward P

    2015-10-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [Ca(2+)] i mobilization and fibrinogen binding via phosphorylation of IP 3R and VASP.

    PubMed

    Lee, Dong-Ha; Kwon, Hyuk-Woo; Kim, Hyun-Hong; Lim, Deok Hwi; Nam, Gi Suk; Shin, Jung-Hae; Kim, Yun-Yi; Kim, Jong-Lae; Lee, Jong-Jin; Kwon, Ho-Kyun; Park, Hwa-Jin

    2015-01-01

    In this study, we investigated the effect of cordycepin-enriched (CE)-WIB801C from Cordyceps militaris on ADP (20 µM)-stimulated platelet aggregation. CE-WIB801C dose-dependently inhibited ADP-induced platelet aggregation, and its IC50 value was 18.5 μg/mL. CE-WIB801C decreased TXA2 production, but did not inhibit the activities of COX-1 and thromboxane synthase (TXAS) in ADP-activated platelets, which suggests that the inhibition of TXA2 production by CE-WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. CE-WIB801C inhibited ATP release and [Ca(2+)]i mobilization, and increased cAMP level and IP3RI (Ser(1756)) phosphorylation in ADP-activated platelets. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased CE-WIB801C-inhibited [Ca(2+)]i mobilization, and strongly inhibited CE-WIB801C-increased IP3RI (Ser(1756)) phosphorylation. CE-WIB801C elevated the phosphorylation of VASP (Ser(157)), an A-kinase substrate, but inhibited fibrinogen binding to αIIb/β3. These results suggest that CE-WIB801C-elevated cAMP involved in IP3RI (Ser(1756)) phosphorylation to inhibit [Ca(2+)]i mobilization and, VASP (Ser(157)) phosphorylation to inhibit αIIb/β3 activation. Therefore, in this study, we demonstrate that CE-WIB801C may have a preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

  20. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens.

    PubMed

    Chapman, C M C; Gibson, G R; Rowland, I

    2012-08-01

    Many studies comparing the effects of single- and multi-strain probiotics on pathogen inhibition compare treatments with different concentrations. They also do not examine the possibility of inhibition between probiotic strains with a mixture. We tested the ability of 14 single-species probiotics to inhibit each other using a cross-streak assay, and agar spot test. We then tested the ability of 15 single-species probiotics and 5 probiotic mixtures to inhibit Clostridium difficile, Escherichia coli and S. typhimurium, using the agar spot test. Testing was done with mixtures created in two ways: one group contained component species incubated together, the other group of mixtures was made using component species which had been incubated separately, equalised to equal optical density, and then mixed in equal volumes. Inhibition was observed for all combinations of probiotics, suggesting that when used as such there may be inhibition between probiotics, potentially reducing efficacy of the mixture. Significant inter-species variation was seen against each pathogen. When single species were tested against mixtures, the multi-species preparations displayed significantly (p < 0.05 or less) greater inhibition of pathogens in 12 out of 24 cases. Despite evidence that probiotic species will inhibit each other when incubated together in vitro, in many cases a probiotic mixture was more effective at inhibiting pathogens than its component species when tested at approximately equal concentrations of biomass. This suggests that using a probiotic mixture might be more effective at reducing gastrointestinal infections, and that creating a mixture using species with different effects against different pathogens may have a broader spectrum of action that a single provided by a single strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Competitive Inhibition Mechanism of Acetylcholinesterase without Catalytic Active Site Interaction: Study on Functionalized C60 Nanoparticles via in Vitro and in Silico Assays.

    PubMed

    Liu, Yanyan; Yan, Bing; Winkler, David A; Fu, Jianjie; Zhang, Aiqian

    2017-06-07

    Acetylcholinesterase (AChE) activity regulation by chemical agents or, potentially, nanomaterials is important for both toxicology and pharmacology. Competitive inhibition via direct catalytic active sites (CAS) binding or noncompetitive inhibition through interference with substrate and product entering and exiting has been recognized previously as an AChE-inhibition mechanism for bespoke nanomaterials. The competitive inhibition by peripheral anionic site (PAS) interaction without CAS binding remains unexplored. Here, we proposed and verified the occurrence of a presumed competitive inhibition of AChE without CAS binding for hydrophobically functionalized C 60 nanoparticles (NPs) by employing both experimental and computational methods. The kinetic inhibition analysis distinguished six competitive inhibitors, probably targeting the PAS, from the pristine and hydrophilically modified C 60 NPs. A simple quantitative nanostructure-activity relationship (QNAR) model relating the pocket accessible length of substituent to inhibition capacity was then established to reveal how the geometry of the surface group decides the NP difference in AChE inhibition. Molecular docking identified the PAS as the potential binding site interacting with the NPs via a T-shaped plug-in mode. Specifically, the fullerene core covered the enzyme gorge as a lid through π-π stacking with Tyr72 and Trp286 in the PAS, while the hydrophobic ligands on the fullerene surface inserted into the AChE active site to provide further stability for the complexes. The modeling predicted that inhibition would be severely compromised by Tyr72 and Trp286 deletions, and the subsequent site-directed mutagenesis experiments proved this prediction. Our results demonstrate AChE competitive inhibition of NPs without CAS participation to gain further understanding of both the neurotoxicity and the curative effect of NPs.

  2. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice

    PubMed Central

    Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R.; Verkman, A. S.

    2014-01-01

    Background Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. Objective To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Design Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Results Screening of ~150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ~1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Conclusions Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. PMID:24052273

  3. Inhibition of 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) activity of human lung microsomes by genistein, daidzein, coumestrol and C(18)-, C(19)- and C(21)-hydroxysteroids and ketosteroids.

    PubMed

    Blomquist, Charles H; Lima, Paul H; Hotchkiss, John R

    2005-07-01

    Epidemiologic data suggest a relationship between dietary intake of phytochemicals and a lower incidence of some cancers. Modulation of steroid hormone metabolism has been proposed as a basis for this effect. It has been shown that aromatase, 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase (17beta-HSD) are inhibited by the isoflavones, genistein and daidzein, and by coumestrol. In general, the extent of inhibition has been expressed in terms of IC50-values, which do not give information as to the pattern of inhibition, i.e., competitive, non-competitive, or mixed. Less is known of the effects of these compounds on 3alpha-HSD. The human lung is known to have a high level of 17beta-HSD and 3alpha-HSD activity. During the course of studies to characterize both activities in normal and inflamed lung and lung tumors we noted that 3alpha-HSD activity with 5alpha-DHT of microsomes from normal, adult lung was particularly susceptible to inhibition by coumestrol. To clarify the pattern of inhibition, the inhibition constants Ki and K'i were evaluated from plots of 1/v versus [I] and [S]/v versus [I]. Genistein, daidzein and coumestrol gave mixed inhibition patterns versus both 5alpha-DHT and NADH. In contrast, 5alpha-androstane-3,17-dione and 5alpha-pregnane-3,20-dione were competitive with 5alpha-DHT. NAD inhibited competitively with NADH. Our findings demonstrate that phytochemicals have the potential to inhibit 5alpha-DHT metabolism and thereby affect the androgen status of the human lung. The observation of a mixed inhibition pattern suggests these compounds bind to more than one form of the enzyme within the catalytic pathway.

  4. Zoledronic Acid Inhibits Aromatase Activity and Phosphorylation: Potential Mechanism for Additive Zoledronic Acid and Letrozole Drug Interaction

    PubMed Central

    Schech, Amanda J.; Nemieboka, Brandon E.; Brodie, Angela H.

    2012-01-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole for 72 hours. This combination significantly increased inhibition of aromatase activity of AC-1 cells by compared to letrozole alone. Combination treatment of 1nM letrozole and 1μM and 10μM zoledronic acid resulted in an additive drug interaction on inhibiting cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine 473. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1μM and 10μM ZA on cell viability following treatment for 72 hours, as shown by a shift to the right in the estradiol dose response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability. PMID:22659283

  5. Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms.

    PubMed

    Laver, D R; Baynes, T M; Dulhunty, A F

    1997-04-01

    The gating of ryanodine receptor calcium release channels (RyRs) depends on myoplasmic Ca2+ and Mg2+ concentrations. RyRs from skeletal and cardiac muscle are activated by microm Ca2+ and inhibited by mm Ca2+ and Mg2+. 45Ca2+ release from skeletal SR vesicles suggests two mechanisms for Mg2+-inhibition (Meissner, Darling & Eveleth, 1986, Biochemistry 25:236-244). The present study investigates the nature of these mechanisms using measurements of single-channel activity from cardiac- and skeletal RyRs incorporated into planar lipid bilayers. Our measurements of Mg2+- and Ca2+-dependent gating kinetics confirm that there are two mechanisms for Mg2+ inhibition (Type I and II inhibition) in skeletal and cardiac RyRs. The mechanisms operate concurrently, are independent and are associated with different parts of the channel protein. Mg2+ reduces Po by competing with Ca2+ for the activation site (Type-I) or binding to more than one, and probably two low affinity inhibition sites which do not discriminate between Ca2+ and Mg2+ (Type-II). The relative contributions of the two inhibition mechanisms to the total Mg2+ effect depend on cytoplasmic [Ca2+] in such a way that Mg2+ inhibition has the properties of Types-I and II inhibition at low and high [Ca2+] respectively. Both mechanisms are equally important when [Ca2+] = 10 microm in cardiac RyRs or 1 microm in skeletal RyRs. We show that Type-I inhibition is not the sole mechanism responsible for Mg2+ inhibition, as is often assumed, and we discuss the physiological implications of this finding.

  6. Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum.

    PubMed

    Frandsen, E V; Kjeldsen, M; Kilian, M

    1997-07-01

    Oral Prevotella and Capnocytophaga species, regularly isolated from periodontal pockets and associated with extraoral infections, secret specific immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region into intact Fab and Fc fragments. To investigate whether these enzymes are subject to inhibition in vivo in humans, we tested 34 sera from periodontally diseased and healthy individuals in an enzyme-linked immunosorbent assay for the presence and titers of inhibition of seven Prevotella and Capnocytophaga proteases. All or nearly all of the sera inhibited the IgA1 protease activity of Prevotella buccae, Prevotella oris, and Prevotella loescheii. A minor proportion of the sera inhibited Prevotella buccalis, Prevotella denticola, and Prevotella melaninogenica IgA1 proteases, while no sera inhibited Capnocytophaga ochracea IgA1 protease. All inhibition titers were low, ranging from 5 to 55, with titer being defined as the reciprocal of the dilution of serum causing 50% inhibition of one defined unit of protease activity. No correlation between periodontal disease status and the presence, absence, or titer of inhibition was observed. The nature of the low titers of inhibition in all sera of the IgA1 proteases of P. buccae, P. oris, and P. loescheii was further examined. In size exclusion chromatography, inhibitory activity corresponded to the peak volume of IgA. Additional inhibition of the P. oris IgA1 protease was found in fractions containing both IgA and IgG. Purification of the IgG fractions of five sera by passage of the sera on a protein G column resulted in recovery of inhibitory IgG antibodies against all three IgA1 proteases, with the highest titer being for the P. oris enzyme. These finding indicate that inhibitory activity is associated with enzyme-neutralizing antibodies.

  7. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts.

    PubMed

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-12-31

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC.

  8. Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola.

    PubMed Central

    Robinette, D; Matthysse, A G

    1990-01-01

    Injection into tobacco leaves of biotype 1 Agrobacterium tumefaciens or of Pseudomonas savastanoi inhibited the development of a visible hypersensitive response to the subsequent injection at the same site of Pseudomonas syringae pv. phaseolicola. This interference with the hypersensitive response was not seen with injection of bacterial growth medium or Escherichia coli cells. Live A. tumefaciens cells were required for the inhibitory effect. Various mutants and strains of A. tumefaciens were examined to determine the genes involved. Known chromosomal mutations generally had no effect on the ability of A. tumefaciens to inhibit the hypersensitive response, except for chvB mutants which showed a reduced (but still significant) inhibition of the hypersensitive response. Ti plasmid genes appeared to be required for the inhibition of the hypersensitive response. The bacteria did not need to be virulent in order to inhibit the hypersensitive response. Deletion of the vir region from pTi had no effect on the inhibition. However, the T region of the Ti plasmid was required for inhibition. Studies of transposon mutants suggested that the tms but not tmr or ocs genes were required. These genes were not acting after transfer to plant cells since they were effective in strains lacking vir genes and thus unable to transfer DNA to plant cells. The results suggest that the expression of the tms genes in the bacteria may inhibit the development of the hypersensitive response by the plant. An examination of the genes required in P. savastanoi for the inhibition of the hypersensitive response suggested that bacterial production of auxin was also required for the inhibition of the hypersensitive response by these bacteria. Images PMID:2211508

  9. Enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7.

    PubMed

    Fang, Zhong-Ze; Wang, Haina; Cao, Yun-Feng; Sun, Dong-Xue; Wang, Li-Xuan; Hong, Mo; Huang, Ting; Chen, Jian-Xing; Zeng, Jia

    2015-03-01

    UDP-glucuronosyltransferases (UGTs)-catalyzed glucuronidation conjugation reaction plays an important role in the elimination of many important clinical drugs and endogenous substances. The present study aims to investigate the enantioselective inhibition of carprofen towards UGT isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation mixture was used to screen the inhibition potential of (R)-carprofen and (S)-carprofen towards multiple UGT isoforms. The results showed that (S)-carprofen exhibited stronger inhibition potential than (R)-carprofen towards UGT2B7. However, no significant difference was observed for the inhibition of (R)-carprofen and (S)-carprofen towards other UGT isoforms. Furthermore, the inhibition kinetic behavior was compared for the inhibition of (S)-carprofen and (R)-carprofen towards UGT2B7. A Lineweaver-Burk plot showed that both (S)-carprofen and (R)-carprofen exhibited competitive inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameter (Ki ) was calculated to be 7.0 μM and 31.1 μM for (S)-carprofen and (R)-carprofen, respectively. Based on the standard for drug-drug interaction, the threshold for (S)-carprofen and (R)-carprofen to induce a drug-drug interaction is 0.7 μM and 3.1 μM, respectively. In conclusion, enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7 was demonstrated in the present study. Using the in vitro inhibition kinetic parameter, the concentration threshold of (S)-carprofen and (R)-carprofen to possibly induce the drug-drug interaction was obtained. Therefore, clinical monitoring of the plasma concentration of (S)-carprofen is more important than (R)-carprofen to avoid a possible drug-drug interaction between carprofen and the drugs mainly undergoing UGT2B7-catalyzed metabolism. © 2014 Wiley Periodicals, Inc.

  10. Molecular features of biguanides required for targeting of mitochondrial respiratory complex I and activation of AMP-kinase.

    PubMed

    Bridges, Hannah R; Sirviö, Ville A; Agip, Ahmed-Noor A; Hirst, Judy

    2016-08-09

    The biguanides are a family of drugs with diverse clinical applications. Metformin, a widely used anti-hyperglycemic biguanide, suppresses mitochondrial respiration by inhibiting respiratory complex I. Phenformin, a related anti-hyperglycemic biguanide, also inhibits respiration, but proguanil, which is widely used for the prevention of malaria, does not. The molecular structures of phenformin and proguanil are closely related and both inhibit isolated complex I. Proguanil does not inhibit respiration in cells and mitochondria because it is unable to access complex I. The molecular features that determine which biguanides accumulate in mitochondria, enabling them to inhibit complex I in vivo, are not known. Here, a family of seven biguanides are used to reveal the molecular features that determine why phenformin enters mitochondria and inhibits respiration whereas proguanil does not. All seven biguanides inhibit isolated complex I, but only four of them inhibit respiration in cells and mitochondria. Direct conjugation of a phenyl group and bis-substitution of the biguanide moiety prevent uptake into mitochondria, irrespective of the compound hydrophobicity. This high selectivity suggests that biguanide uptake into mitochondria is protein mediated, and is not by passive diffusion. Only those biguanides that enter mitochondria and inhibit complex I activate AMP kinase, strengthening links between complex I and the downstream effects of biguanide treatments. Biguanides inhibit mitochondrial complex I, but specific molecular features control the uptake of substituted biguanides into mitochondria, so only some biguanides inhibit mitochondrial respiration in vivo. Biguanides with restricted intracellular access may be used to determine physiologically relevant targets of biguanide action, and for the rational design of substituted biguanides for diverse clinical applications.

  11. Inhibition of ethylene production by cobaltous ion. [Beans, apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, O.L; Yang, S.F.

    1976-07-01

    The effect of Co/sup 2 +/ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co/sup 2 +/, depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca/sup 2 +/, kinetin plus Ca/sup 2 +/, or Cu/sup 2 +/ treatments in mung bean hypocotyl segments. While Co/sup 2 +/ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co/sup 2 +/ does not exert its inhibitory effect as a general metabolicmore » inhibitor. Ni/sup 2 +/, which belongs to the same group as Co/sup 2 +/ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues. In a system in which kinetin and Ca/sup 2 +/ were applied together, kinetin greatly enhanced Ca/sup 2 +/ uptake, thus enhancing ethylene production. Co/sup 2 +/, however, slightly inhibited the uptake of Ca/sup 2 +/ but appreciably inhibited ethylene production, either in the presence or in the absence of kinetin. Tracer experiments using apple tissue indicated that Co/sup 2 +/ strongly inhibited the in vivo conversion of L-(U--/sup 14/C)methionine to /sup 14/C-ethylene. These data suggested that Co/sup 2 +/ inhibited ethylene production by inhibiting the conversion of methionine to ethylene, a common step which is required for ethylene formation by higher plants. Co/sup 2 +/ is known to promote elongation, leaf expansion, and hook opening in excised plant parts in response to applied auxins or cytokinins.Since ethylene is known to inhibit those growth phenomena, it is suggested that Co/sup 2 +/ exerts its promotive effect, at least in part, by inhibiting ethylene formation.« less

  12. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    PubMed

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  13. Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pain: A Potential Role in the Recovery of Motor Output.

    PubMed

    Burns, Emma; Chipchase, Lucinda Sian; Schabrun, Siobhan May

    2016-02-13

    . Corticomotor output is reduced in response to acute muscle pain, yet the mechanisms that underpin this effect remain unclear. Here the authors investigate the effect of acute muscle pain on short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition to determine whether these mechanisms could plausibly contribute to reduced motor output in pain. . Observational same subject pre-post test design. . Neurophysiology research laboratory. . Healthy, right-handed human volunteers (n = 22, 9 male; mean age ± standard deviation, 22.6 ± 7.8 years). . Transcranial magnetic stimulation was used to assess corticomotor output, short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition before, during, immediately after, and 15 minutes after hypertonic saline infusion into right first dorsal interosseous muscle. Pain intensity and quality were recorded using an 11-point numerical rating scale and the McGill Pain Questionnaire. . Compared with baseline, corticomotor output was reduced at all time points (p = 0.001). Short-latency afferent inhibition was reduced immediately after (p = 0.039), and long-latency afferent inhibition 15 minutes after (p = 0.035), the resolution of pain. Long-interval intra-cortical inhibition was unchanged at any time point (p = 0.36). . These findings suggest short- and long-latency afferent inhibition, mechanisms thought to reflect the integration of sensory information with motor output at the cortex, are reduced following acute muscle pain. Although the functional relevance is unclear, the authors hypothesize a reduction in these mechanisms may contribute to the restoration of normal motor output after an episode of acute muscle pain. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases.

    PubMed

    Bonavida, Benjamin; Baritaki, Stavroula; Huerta-Yepez, Sara; Vega, Mario I; Chatterjee, Devasis; Yeung, Kam

    2008-09-01

    The treatment of primary tumors results in an initial response to approved conventional therapeutics. However, recurrences and malignancies develop as a result of tumors' acquisition of anti-apoptotic mechanisms of resistance. Hence, there is an urgent need of novel therapeutics that can reverse resistance. One approach of interest is the inhibition of cell survival and anti-apoptotic pathways by sensitizing agents that can render resistant tumor cells sensitive to respond to various cytotoxic therapies. We have found that nitric oxide donors, similar to DETANONOate, inhibit cell survival anti-apoptotic pathways, such as the constitutively activated NF-kappaB and sensitize drug-resistant tumor cells to apoptosis by both chemotherapy and immunotherapy. Sensitization by DETANONOate was shown to inhibit the transcription repressor Yin Yang1 (YY1) shown to regulate resistance to both Fas ligand and TRAIL. In addition, DETANONOate-induced inhibition of NF-kappaB results downstream in the inhibition of several anti-apoptotic gene products, thus facilitating the activation of the apoptotic pathways with both chemotherapy and immunotherapy. In addition, DETANONOate induces the expression of the metastatic tumor suppressor gene product, Raf-1 Kinase Inhibitor Protein (RKIP), which inhibits the survival pathways induced by NF-kappaB and Raf-1/MEK which also contributes to the sensitizing activity. This indicates a novel finding that RKIP may also play an important role in the prevention of metastasis. Inhibition of NF-kappaB activation by DETANONOate results downstream in the inhibition of the RKIP transcription repressor Snail, resulting in upregulation of RKIP. Inhibition of Snail results in downstream inhibition of the metastatic cascade initiated by the epithelial-mesenchymal transition (EMT). Thus, nitric oxide donors have the dual functions of both sensitizing tumor cells to chemotherapy and immunotherapy and are also involved in the regulation and inhibition of metastasis.

  15. Myelin-induced inhibition in a spiral ganglion organ culture - Approaching a natural environment in vitro.

    PubMed

    Kramer, Benedikt; Tropitzsch, Anke; Müller, Marcus; Löwenheim, Hubert

    2017-08-15

    The performance of a cochlear implant depends on the defined interaction between afferent neurons of the spiral ganglion and the inserted electrode. Neurite outgrowth can be induced by neurotrophins such as brain-derived neurotrophic factor (BDNF) via tropomyosin kinase receptor B (TrkB). However, neurotrophin signaling through the p75 neurotrophin receptor (p75) inhibits neurite outgrowth in the presence of myelin. Organotypic cultures derived from postnatal (P3-5) mice were used to study myelin-induced inhibition in the cochlear spiral ganglion. Neurite outgrowth was analyzed and quantified utilizing an adapted Sholl analysis. Stimulation of neurite outgrowth was quantified after application of BDNF, the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and a selective inhibitor of the Rho-associated kinase (Y27632), which inhibits the p75 pathway. Myelin-induced inhibition was assessed by application of myelin-associated glycoprotein (MAG-Fc) to stimulate the inhibitory p75 pathway. Inhibition of neurite outgrowth was achieved by the selective TrkB inhibitor K252a. Stimulation of neurite outgrowth was observed after treatment with BDNF, 7,8 DHF and a combination of BDNF and Y27632. The 7,8-DHF-induced growth effects could be inhibited by K252a. Furthermore, inhibition of neurite outgrowth was observed after supplementation with MAG-Fc. Myelin-induced inhibition could be overcome by 7,8-DHF and the combination of BDNF and Y27632. In this study, myelin-induced inhibition of neurite outgrowth was established in a spiral ganglion model. We reveal that 7,8-DHF is a viable novel compound for the stimulation of neurite outgrowth in a myelin-induced inhibitory environment. The combination of TrkB stimulation and ROCK inhibition can be used to overcome myelin inhibition. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Inhibition of Human Cytomegalovirus Replication by Artemisinins: Effects Mediated through Cell Cycle Modulation

    PubMed Central

    Roy, Sujayita; He, Ran; Kapoor, Arun; Forman, Michael; Mazzone, Jennifer R.; Posner, Gary H.

    2015-01-01

    Artemisinin-derived monomers and dimers inhibit human cytomegalovirus (CMV) replication in human foreskin fibroblasts (HFFs). The monomer artesunate (AS) inhibits CMV at micromolar concentrations, while dimers inhibit CMV replication at nanomolar concentrations, without increased toxicity in HFFs. We report on the variable anti-CMV activity of AS compared to the consistent and reproducible CMV inhibition by dimer 606 and ganciclovir (GCV). Investigation of this phenomenon revealed that the anti-CMV activity of AS correlated with HFFs synchronized to the G0/G1 stage of the cell cycle. In contact-inhibited serum-starved HFFs or cells arrested at early/late G1 with specific checkpoint regulators, AS and dimer 606 efficiently inhibited CMV replication. However, in cycling HFFs, in which CMV replication was productive, virus inhibition by AS was significantly reduced, but inhibition by dimer 606 and GCV was maintained. Cell cycle analysis in noninfected HFFs revealed that AS induced early G1 arrest, while dimer 606 partially blocked cell cycle progression. In infected HFFs, AS and dimer 606 prevented the progression of cell cycle toward the G1/S checkpoint. AS reduced the expression of cyclin-dependent kinases (CDK) 2, 4, and 6 in noninfected cycling HFFs, while the effect of dimer 606 on these CDKs was moderate. Neither compound affected CDK expression in noninfected contact-inhibited HFFs. In CMV-infected cells, AS activity correlated with reduced CDK2 levels. CMV inhibition by AS and dimer 606 also correlated with hypophosphorylation (activity) of the retinoblastoma protein (pRb). AS activity was strongly associated with pRb hypophosphorylation, while its reduced anti-CMV activity was marked by pRb phosphorylation. Roscovitine, a CDK2 inhibitor, antagonized the anti-CMV activities of AS and dimer 606. These data suggest that cell cycle modulation through CDKs and pRb might play a role in the anti-CMV activities of artemisinins. Proteins involved in this modulation may be identified and targeted for CMV inhibition. PMID:25870074

  17. Thrombospondin-1 and Angiotensin II Inhibit Soluble Guanylyl Cyclase through an Increase in Intracellular Calcium Concentration

    PubMed Central

    Ramanathan, Saumya; Mazzalupo, Stacy; Boitano, Scott; Montfort, William R.

    2011-01-01

    Nitric Oxide (NO) regulates cardiovascular hemostasis by binding to soluble guanylyl cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca2+]i) and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, we show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells, and that inhibition requires an increase in [Ca2+]i. Using flow cytometry, we show that E3CaG1 binds directly to CD47 on the surface of Jurkat T cells. Using digital imaging microscopy on live cells, we further show that E3CaG1 binding results in a substantial increase in [Ca2+]i, up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca2+]i, also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca2+ remains inhibited, while addition of kinase inhibitor staurosporine prevents inhibition, indicating inhibition is likely due to phosphorylation. Inhibition is through an increase in Km for GTP, which rises to 834 µM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca2+]i in response to NO, inducing vasodilation, but is also inhibited by high [Ca2+]i, providing a fine balance between signals for vasodilation and vasoconstriction. PMID:21823650

  18. Cardiac effects produced by long-term stimulation of thoracic autonomic ganglia or nerves: implications for interneuronal interactions within the thoracic autonomic nervous system.

    PubMed

    Butler, C; Watson-Wright, W M; Wilkinson, M; Johnstone, D E; Armour, J A

    1988-03-01

    Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long-term stimulation in intrathoracic sympathetic neural elements with frequencies as low as 2 Hz may augment the heart as much as higher stimulation frequencies, depending upon the structure stimulated and the cardiovascular parameter monitored.

  19. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, Rajendra; Department of Oriental Medicine Resources, Mokpo National University; Kim, Seong-Bin

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by westernmore » blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti-migratory effect of magnolol was cytoskeletal dependent. • Magnolol inhibited β1-integrin and collagen expression in vivo.« less

  20. Differential In Vitro Effects of Intravenous versus Oral Formulations of Silibinin on the HCV Life Cycle and Inflammation

    PubMed Central

    Wagoner, Jessica; Morishima, Chihiro; Graf, Tyler N.; Oberlies, Nicholas H.; Teissier, Elodie; Pécheur, Eve-Isabelle; Tavis, John E.; Polyak, Stephen J.

    2011-01-01

    Silymarin prevents liver disease in many experimental rodent models, and is the most popular botanical medicine consumed by patients with hepatitis C. Silibinin is a major component of silymarin, consisting of the flavonolignans silybin A and silybin B, which are insoluble in aqueous solution. A chemically modified and soluble version of silibinin, SIL, has been shown to potently reduce hepatitis C virus (HCV) RNA levels in vivo when administered intravenously. Silymarin and silibinin inhibit HCV infection in cell culture by targeting multiple steps in the virus lifecycle. We tested the hepatoprotective profiles of SIL and silibinin in assays that measure antiviral and anti-inflammatory functions. Both mixtures inhibited fusion of HCV pseudoparticles (HCVpp) with fluorescent liposomes in a dose-dependent fashion. SIL inhibited 5 clinical genotype 1b isolates of NS5B RNA dependent RNA polymerase (RdRp) activity better than silibinin, with IC50 values of 40–85 µM. The enhanced activity of SIL may have been in part due to inhibition of NS5B binding to RNA templates. However, inhibition of the RdRps by both mixtures plateaued at 43–73%, suggesting that the products are poor overall inhibitors of RdRp. Silibinin did not inhibit HCV replication in subgenomic genotype 1b or 2a replicon cell lines, but it did inhibit JFH-1 infection. In contrast, SIL inhibited 1b but not 2a subgenomic replicons and also inhibited JFH-1 infection. Both mixtures inhibited production of progeny virus particles. Silibinin but not SIL inhibited NF-κB- and IFN-B-dependent transcription in Huh7 cells. However, both mixtures inhibited T cell proliferation to similar degrees. These data underscore the differences and similarities between the intravenous and oral formulations of silibinin, which could influence the clinical effects of this mixture on patients with chronic liver diseases. PMID:21297992

  1. Synergistic effect of baicalein, wogonin and oroxylin A mixture: multistep inhibition of the NF-κB signalling pathway contributes to an anti-inflammatory effect of Scutellaria root flavonoids.

    PubMed

    Shimizu, Tomofumi; Shibuya, Nobuhiko; Narukawa, Yuji; Oshima, Naohiro; Hada, Noriyasu; Kiuchi, Fumiyuki

    2018-01-01

    Scutellaria root, the root of Scutellaria baicalensis Georgi, is a crude drug used for inflammatory diseases. In our previous report, the combination of flavonoids contained in Scutellaria root have been found to inhibit PGE 2 production more strongly than individual flavonoids. Here, to investigate the mechanism of the synergistic effect, we examined the effects of an equimolar mixture (F-mix) of baicalein (1), wogonin (2) and oroxylin A (3) on the production of PGE 2 in LPS-treated J774.1 cells. Although 1 and 3 inhibited COX-2 activity, the F-mix showed no synergistic effect on COX-2 inhibition. Therefore, we investigated the steps leading to the activation of COX-2 protein. Compounds 1-3 and F-mix inhibited the expression of COX-2 protein. However, only 2 inhibited the expression of COX-2 mRNA among the flavonoids, and the F-mix showed no synergistic effect. Only 1 inhibited NF-κB translocation into the nucleus, and the F-mix showed no synergistic effect. Although 2 did not affect NF-κB translocation, it strongly inhibited NF-κB-dependent transcriptional activity, and the F-mix inhibited the activity slightly more than 2. Compounds 1-3 also inhibited NO production, and the F-mix showed a synergistic effect. However, the effects of each flavonoid on the expression of iNOS mRNA were not consistent with those on COX-2 mRNA. Because the flavonoids inhibit different steps in the production of PGE 2 and NO, and their mixture did not show apparent synergistic effects in each step, we conclude that the synergistic effect of the flavonoid mixture reflects the total effect of the flavonoids inhibiting different steps in the NF-κB signalling pathway.

  2. Differential inhibition of N and P/Q Ca2+ currents by 5-HT1A and 5-HT1D receptors in spinal neurons of Xenopus larvae

    PubMed Central

    Sun, Qian-Quan; Dale, Nicholas

    1998-01-01

    In whole-cell patch clamp recordings made from non-sensory neurons acutely isolated from the spinal cord of Xenopus (stage 40–42) larvae, two forms of inhibition of the high voltage-activated (HVA) Ca2+ currents were produced by 5-HT. One was voltage dependent and associated with both slowing of the activation kinetics and shifting of the voltage dependence of the HVA currents. This inhibition was relieved by strong depolarizing prepulses. A second form of inhibition was neither associated with slowing of the activation kinetics nor relieved by depolarizing prepulses and was thus voltage independent. In all neurons examined, 5-HT (1 μM) reversibly reduced 34 ± 1.6 % (n = 102) of the HVA Ca2+ currents. In about 40 % of neurons, the inhibition was totally voltage independent. In another 5 %, the inhibition was totally voltage dependent. In the remaining neurons, inhibition was only partially (by around 40 %) relieved by a large depolarizing prepulse, suggesting that in these, the inhibition consisted of both voltage-dependent and -independent components. By using selective channel blockers, we found that 5-HT acted on both N- and P/Q-type channels. However, whereas the inhibition of P/Q-type currents was only voltage independent, the inhibition of N-type currents had both voltage-dependent and -independent components. The effects of 5-HT on HVA Ca2+ currents were mediated by 5-HT1A and 5-HT1D receptors. The 5-HT1A receptors not only preferentially caused voltage-independent inhibition, but did so by acting mainly on the ω-agatoxin-IVA-sensitive Ca2+ channels. In contrast, the 5-HT1D receptor produced both voltage-dependent and -independent inhibition and was preferentially coupled to ω-conotoxin-GVIA sensitive channels. This complexity of modulation may allow fine tuning of transmitter release and calcium signalling in the spinal circuitry of Xenopus larvae. PMID:9625870

  3. Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices.

    PubMed

    de Diego, Carlos; González-Torres, Luis; Núñez, José María; Centurión Inda, Raúl; Martin-Langerwerf, David A; Sangio, Antonio D; Chochowski, Piotr; Casasnovas, Pilar; Blazquéz, Julio C; Almendral, Jesús

    2018-03-01

    Angiotensin-neprilysin inhibition compared to angiotensin inhibition decreased sudden cardiac death in patients with reduced ejection fraction heart failure (rEFHF). The precise mechanism remains unclear. The purpose of this study was to explore the effect of angiotensin-neprilysin inhibition on ventricular arrhythmias compared to angiotensin inhibition in rEFHF patients with an implantable cardioverter-defibrillator (ICD) and remote monitoring. We prospectively included 120 patients with ICD and (1) New York Heart Association functional class ≥II; (2) left ventricular ejection fraction ≤40%; and (3) remote monitoring. For 9 months, patients received 100% angiotensin inhibition with angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB), beta-blockers, and mineraloid antagonist. Subsequently, ACEi or ARB was changed to sacubitril-valsartan in all patients, who were followed for 9 months. Appropriate shocks, nonsustained ventricular tachycardia (NSVT), premature ventricular contraction (PVC) burden, and biventricular pacing percentage were analyzed. Patients were an average age of 69 ± 8 years and had mean left ventricular ejection fraction of 30.4% ± 4% (82% ischemic). Use of beta-blockers (98%), mineraloid antagonist (97%) and antiarrhythmic drugs was similar before and after sacubitril-valsartan. Sacubitril-valsartan significantly decreased NSVT episodes (5.4 ± 0.5 vs 15 ± 1.7 in angiotensin inhibition; P <.002), sustained ventricular tachycardia, and appropriate ICD shocks (0.8% vs 6.7% in angiotensin inhibition; P <.02). PVCs per hour decreased after sacubitril-valsartan (33 ± 12 vs 78 ± 15 in angiotensin inhibition; P <.0003) and was associated with increased biventricular pacing percentage (from 95% ± 6% to 98.8% ± 1.3%; P <.02). Angiotensin-neprilysin inhibition decreased ventricular arrhythmias and appropriate ICD shocks in rEFHF patients under home monitoring compared to angiotensin inhibition. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  4. Inhibition of venom serine proteinase and metalloproteinase activities by Renealmia alpinia (Zingiberaceae) extracts: comparison of wild and in vitro propagated plants.

    PubMed

    Patiño, Arley Camilo; Benjumea, Dora María; Pereañez, Jaime Andrés

    2013-09-16

    The plant Renealmia alpinia has been used in folk medicine to treat snakebites in the northwest region of Colombia. In addition, it has been shown to neutralize edema-forming, hemorrhagic, lethal, and defibrin(ogen)ating activities of Bothrops asper venom. In this work, extracts of Renealmia alpinia obtained by micropropagation (in vitro) and from specimens collected in the wild were tested and compared in their capacity to inhibit enzymatic and toxic activities of a snake venom metalloproteinase isolated from Bothrops atrox (Batx-I) venom and a serine proteinase (Cdc SII) from Crotalus durissus cumanensis venom. We have investigated the inhibition capacity of Renealmia alpinia extracts on enzymatic and toxic actions of isolated toxins, a metalloproteinase and a serine proteinase. The protocols investigated included inhibition of proteolytic activity on azocasein, inhibition of proteolytic activity on fibrinogen, inhibition of pro-coagulant activity, inhibition of hemorrhagic activity and inhibition of edema-forming activity. Colorimetric assays detected the presence of terpenoids, flavonoids, tannins and coumarins in Renealmia alpinia extracts. Renealmia alpinia extracts inhibited the enzymatic, hemorrhagic and fibrinogenolytic activities of Batx-I. Extracts also inhibited coagulant, defibrin(ogen)ating and edema-forming activities of Cdc SII. Results highlight that Renealmia alpinia in vitro extract displayed comparable inhibitory capacity on venom proteinases that Renealmia alpinia wild extract. No alteration was observed in the electrophoretic pattern of venom proteinases after incubation with Renealmia alpinia extracts, thus excluding proteolytic degradation or protein denaturation/precipitation as a mechanism of inhibition. Our results showed that Renealmia alpinia wild and in vitro extracts contain compounds that neutralize metallo- and serine proteinases present in snake venoms. The mechanism of inhibition is not related to proteolytic degradation of the enzymes nor protein aggregation, but is likely to depend on molecular interactions of secondary metabolites in the plant with these venom proteinases. Crown Copyright © 2013 Published by Elsevier Ireland Ltd. All rights reserved.

  5. Benzene Metabolite Hydroquinone Up-Regulates Chondromodulin-I and Inhibits Tube Formation in Human Bone Marrow Endothelial Cells

    PubMed Central

    Zhou, Hongfei; Kepa, Jadwiga K.; Siegel, David; Miura, Shigenori; Hiraki, Yuji; Ross, David

    2009-01-01

    Bone marrow is a major target of benzene toxicity, and NAD- (P)H:quinone oxidoreductase (NQO1), an enzyme protective against benzene toxicity, is present in human bone marrow endothelial cells, which form the hematopoietic stem cell vascular niche. In this study, we have employed a transformed human bone marrow endothelial cell (TrHBMEC) line to study the adverse effects induced by the benzene metabolite hydroquinone. Hydroquinone inhibited TrHBMEC tube formation at concentrations that were not overtly toxic, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or sulforhodamine B analysis. Hydroquinone was found to up-regulate chondromodulin-I (ChM-I), a protein that promotes chondrocyte growth and inhibits endothelial cell growth and tube formation. Recombinant human ChM-I protein inhibited tube formation in TrHBMECs, suggesting that up-regulation of ChM-I may explain the ability of hydroquinone to inhibit TrHB-MEC tube formation. To explore this possibility further, anti-ChM-I small interfering RNA (siRNA) was used to deplete ChM-I mRNA and protein. Pretreatment with anti-ChM-I siRNA markedly abrogated hydroquinone-induced inhibition of tube formation in TrHBMECs. Overexpression of the protective enzyme NQO1 in TrHBMECs inhibited the up-regulation of ChM-I and abrogated the inhibition of tube formation induced by hydroquinone. In summary, hydroquinone treatment up-regulated ChM-I and inhibited tube formation in TrHBMECs; NQO1 inhibited hydroquinone-induced up-regulation of ChM-I in TrHB-MECs and protected cells from hydroquinone-induced inhibition of tube formation. This study demonstrates that ChM-I up-regulation is one of the underlying mechanisms of inhibition of tube formation and provides a mechanism that may contribute to benzene-induced toxicity at the level of bone marrow endothelium. PMID:19525446

  6. CYTOLOGICAL STUDIES ON THE ANTIMETABOLITE ACTION OF 2,6-DIAMINOPURINE IN VICIA FABA ROOTS

    PubMed Central

    Setterfield, George; Duncan, Robert E.

    1955-01-01

    At a concentration of 9.6 x 10–5 M, 2,6-diaminopurine (DAP) completely inhibited cell enlargement, cell division, and DNA synthesis (determined by microphotometric measurement of Feulgen dye) in Vicia faba roots. Inhibition of cell enlargement was partially reversed by adenine, guanine, xanthine, adenosine, and desoxyadenosine. Guanine and the nucleosides gave the greatest reversal, suggesting that one point of DAP action upon cell enlargement is a disruption of nucleoside or nucleotide metabolism, possibly during pentosenucleic acid synthesis. DAP inhibited cell division by preventing onset of prophase. At the concentrations used it had no significant effect on the rate or appearance of mitoses in progress. Inhibition of entrance into prophase was not directly due to inhibition of DNA synthesis since approximately half of the inhibited nuclei had the doubled (4C) amount of DNA. Adenine competitively reversed DAP inhibition of cell division, giving an inhibition index of about 0.5. Guanine gave a slight reversal while xanthine, hypoxanthine, adenosine, and desoxyadenosine were inactive. A basic need for free adenine for the onset of mitosis was suggested by this reversal pattern. Meristems treated with DAP contained almost no nuclei with intermediate amounts of DNA, indicating that DAP prevented the onset of DNA synthesis while allowing that underway to reach completion. The inhibition of DNA synthesis was reversed by adenine, adenosine, and desoxyadenosine although synthesis appeared to proceed at a slower rate in reversals than in controls. Inhibition of DNA synthesis by DAP is probably through nucleoside or nucleotide metabolism. A small general depression of DNA content of nuclei in the reversal treatments was observed. This deviation from DNA "constancy" cannot be adequately explained at present although it may be a result of direct incorporation of DAP into DNA. The possible purine precursor, 4-amino-5-imidazolecarboxamide gave no reversal of DAP inhibition of cell elongation and cell division and only a slight possible reversal of inhibition of DNA synthesis. PMID:13263329

  7. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shang-Jyh; School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan; Su, Jen-Liang

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibitionmore » of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole inhibits IκBα degradation and NF-κB nucleus translocation. ► Osthole suppresses EMT by repressing vimentin and inducing E-cadherin expression.« less

  8. High-mobility group box 1 inhibits HCO3− absorption in the medullary thick ascending limb through RAGE-Rho-ROCK-mediated inhibition of basolateral Na+/H+ exchange

    PubMed Central

    Watts, Bruns A.; George, Thampi; Badalamenti, Andrew

    2016-01-01

    High-mobility group box 1 (HMGB1) is a nuclear protein released extracellularly in response to infection or injury, where it activates immune responses and contributes to the pathogenesis of kidney dysfunction in sepsis and sterile inflammatory disorders. Recently, we demonstrated that HMGB1 inhibits HCO3− absorption in perfused rat medullary thick ascending limbs (MTAL) through a basolateral receptor for advanced glycation end products (RAGE)-dependent pathway that is additive to Toll-like receptor 4 (TLR4)-ERK-mediated inhibition by LPS (Good DW, George T, Watts BA III. Am J Physiol Renal Physiol 309: F720–F730, 2015). Here, we examined signaling and transport mechanisms that mediate inhibition by HMGB1. Inhibition of HCO3− absorption by HMGB1 was eliminated by the Rho-associated kinase (ROCK) inhibitor Y27632 and by a specific inhibitor of Rho, the major upstream activator of ROCK. HMGB1 increased RhoA and ROCK1 activity. HMGB1-induced ROCK1 activation was eliminated by the RAGE antagonist FPS-ZM1 and by inhibition of Rho. The Rho and ROCK inhibitors had no effect on inhibition of HCO3− absorption by bath LPS. Inhibition of HCO3− absorption by HMGB1 was eliminated by bath amiloride, 0 Na+ bath, and the F-actin stabilizer jasplakinolide, three conditions that selectively prevent inhibition of MTAL HCO3− absorption mediated through NHE1. HMGB1 decreased basolateral Na+/H+ exchange activity through activation of ROCK. We conclude that HMGB1 inhibits HCO3− absorption in the MTAL through a RAGE-RhoA-ROCK1 signaling pathway coupled to inhibition of NHE1. The HMGB1-RAGE-RhoA-ROCK1 pathway thus represents a potential target to attenuate MTAL dysfunction during sepsis and other inflammatory disorders. HMGB1 and LPS inhibit HCO3− absorption through different receptor signaling and transport mechanisms, which enables these pathogenic mediators to act directly and independently to impair MTAL function. PMID:27358052

  9. High-mobility group box 1 inhibits HCO3− absorption in medullary thick ascending limb through a basolateral receptor for advanced glycation end products pathway

    PubMed Central

    George, Thampi; Watts, Bruns A.

    2015-01-01

    High-mobility group box 1 (HMGB1) is a damage-associated molecule implicated in mediating kidney dysfunction in sepsis and sterile inflammatory disorders. HMGB1 is a nuclear protein released extracellularly in response to infection or injury, where it interacts with Toll-like receptor 4 (TLR4) and other receptors to mediate inflammation. Previously, we demonstrated that LPS inhibits HCO3- absorption in the medullary thick ascending limb (MTAL) through a basolateral TLR4-ERK pathway (Watts BA III, George T, Sherwood ER, Good DW. Am J Physiol Cell Physiol 301: C1296–C1306, 2011). Here, we examined whether HMGB1 could inhibit HCO3- absorption through the same pathway. Adding HMGB1 to the bath decreased HCO3− absorption by 24% in isolated, perfused rat and mouse MTALs. In contrast to LPS, inhibition by HMGB1 was preserved in MTALs from TLR4−/− mice and was unaffected by ERK inhibitors. Inhibition by HMGB1 was eliminated by the receptor for advanced glycation end products (RAGE) antagonist FPS-ZM1 and by neutralizing anti-RAGE antibody. Confocal immunofluorescence showed expression of RAGE in the basolateral membrane domain. Inhibition of HCO3−absorption by HMGB1 through RAGE was additive to inhibition by LPS through TLR4 and to inhibition by Gram-positive bacterial molecules through TLR2. Bath amiloride, which selectively prevents inhibition of MTAL HCO3− absorption mediated through Na+/H+ exchanger 1 (NHE1), eliminated inhibition by HMGB1. We conclude that HMGB1 inhibits MTAL HCO3− absorption through a RAGE-dependent pathway distinct from TLR4-mediated inhibition by LPS. These studies provide new evidence that HMGB1-RAGE signaling acts directly to impair the transport function of renal tubules. They reveal a novel paradigm for sepsis-induced renal tubule dysfunction, whereby exogenous pathogen-associated molecules and endogenous damage-associated molecules act directly and independently to inhibit MTAL HCO3− absorption through different receptor signaling pathways. PMID:26180239

  10. Mis-Regulation of 3-Deoxy-d-Arabino-Heptulosonate 7-Phosphate Synthetase Does Not Account for Growth Inhibition by Phenylalanine in Agmenellum quadruplicatum

    PubMed Central

    Jensen, Roy A.; Stenmark-Cox, S.; Ingram, Lonnie O.

    1974-01-01

    The growth of the blue-green bacterium, Agmenellum quadruplicatum, is inhibited in the presence of l-phenylalanine. This species has a single, constitutively synthesized 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase. l-Phenylalanine inhibits DAHP synthetase non-competitively with respect to both substrate reactants. Other aromatic amino acids do not inhibit the activity of DAHP synthetase. A common expectation for branch-point enzymes such as DAHP synthetase is a balanced pattern of feedback control by all of the ultimate end products. It seemed likely that growth inhibition might equate with defective regulation within the branched aromatic pathway. Accordingly, the possibility was examined that mis-regulation of DAHP synthetase by l-phenylalanine in wild-type cells causes starvation for precursors of the other aromatic end products. However, the molecular basis for growth inhibition cannot be attributed to l-phenylalanine inhibition of DAHP synthetase for the following reasons: (i) DAHP synthetase enzymes from l-phenylalanine-resistant mutants are more, rather than less, sensitive to feedback inhibition by l-phenylalanine. (ii) Shikimate not only fails to antagonize inhibition, but is itself inhibitory. (iii) Neither the sensitivity nor the completeness of l-phenylalanine inhibition of the wild-type enzyme in vitro appears sufficient to account for the potent inhibition of growth in vivo by l-phenylalanine. The dominating effect of l-phenylalanine in the control of DAHP synthetase appears to reflect a mechanism that prevents rather than causes growth inhibition by l-phenylalanine. The alteration of the control of DAHP synthetase in mutants selected for resistance to growth inhibition by l-phenylalanine did indicate that the cause for this metabolite vulnerability can be localized within the aromatic amino acid pathway. Apparently, an aromatic intermediate (between shikimate and the end products) accumulates in the presence of l-phenylalanine, causing toxicity by some unknown mechanism. It is concluded that phenylpyruvate, potentially formed by transamination of l-phenylalanine, is an unlikely cause of growth inhibition. Although several significant questions remain unanswered, our results suggest that single-effector control of DAHP synthetase, the first regulatory enzyme activity of a branched pathway, may be more appropriate than it would seem a priori. PMID:4215792

  11. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition.

    PubMed

    Lawlis, V B; Roche, T E

    1981-04-28

    Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP decreased NADH inhibition under conditions compensating for the effects of Ca2+ and ADP on S0.5 for alpha-ketoglutarate. ADP was particularly effective in reducing NADH inhibition; further studies are required to determine whether this occurs through binding of NADH and ADP at the same, overlapping, or interacting sites.

  12. Brief Report: The Go/No-Go Task Online: Inhibitory Control Deficits in Autism in a Large Sample

    ERIC Educational Resources Information Center

    Uzefovsky, F.; Allison, C.; Smith, P.; Baron-Cohen, S.

    2016-01-01

    Autism Spectrum Conditions (ASC, also referred to as Autism Spectrum Disorders) entail difficulties with inhibition: inhibiting action, inhibiting one's own point of view, and inhibiting distractions that may interfere with a response set. However, the association between inhibitory control (IC) and ASC, especially in adulthood, is unclear. The…

  13. The inhibition capacities of children with mathematical disabilities.

    PubMed

    Censabella, Sandrine; Noël, Marie-Pascale

    2008-01-01

    Several authors have argued that mathematical disabilities might result from difficulties in inhibiting irrelevant information. The present study addresses this issue by assessing three inhibition functions in 40 ten-year-old children: suppression of irrelevant information from working memory, inhibition of prepotent responses, and interference control. We found no significant differences between children with math disabilities and typically achieving controls, or between children with arithmetic facts disabilities and children with above-average arithmetic facts skills. These findings, along with other empirical evidence and with theoretical considerations, cast doubt on the inhibition deficit hypothesis.

  14. Brain cholinesterase activities of passerine birds in forests sprayed with cholinesterase inhibiting insecticides

    USGS Publications Warehouse

    Zinkl, J.G.; Henny, C.J.; Shea, P.J.

    1979-01-01

    Brain cholinesterase activities were determined in passerines collected from northwestern forests that had been sprayed with trichlorfon, acephate, and carbaryl at 0.56, 1.13 and 2.26 kg/ha. Trichlorfon and carbaryl inhibited cholinesterase activity slightly in only a few birds, primarily canopy dwellers. In contrast, acephate caused marked inhibition of cholinesterase activity in nearly all birds collected. The inhibition was present even 33 days after spraying. Some birds from the acephate-sprayed forests exhibited clinical signs compatible with acute acetylcholinesterase inhibition.

  15. Inhibition of polyomavirus ori-dependent DNA replication by mSin3B.

    PubMed

    Xie, An-Yong; Folk, William R

    2002-12-01

    When tethered in cis to DNA, the transcriptional corepressor mSin3B inhibits polyomavirus (Py) ori-dependent DNA replication in vivo. Histone deacetylases (HDACs) appear not to be involved, since tethering class I and class II HDACs in cis does not inhibit replication and treating the cells with trichostatin A does not specifically relieve inhibition by mSin3B. However, the mSin3B L59P mutation that impairs mSin3B interaction with N-CoR/SMRT abrogates inhibition of replication, suggesting the involvement of N-CoR/SMRT. Py large T antigen interacts with mSin3B, suggesting an HDAC-independent mechanism by which mSin3B inhibits DNA replication.

  16. Quantum chemical study of the inhibition of the corrosion of mild steel in H2SO4 by some antibiotics.

    PubMed

    Eddy, Nnabuk O; Ibok, Udo J; Ebenso, Eno E; El Nemr, Ahmed; El Ashry, El Sayed H

    2009-09-01

    The inhibition efficiency of some antibiotics against mild steel corrosion was studied using weight loss and quantum chemical techniques. Values of inhibition efficiency obtained from weight loss measurements correlated strongly with theoretical values obtained through semi empirical calculations. High correlation coefficients were also obtained between inhibition efficiency of the antibiotics and some quantum chemical parameters, including frontier orbital (E (HOMO) and E (LUMO)), dipole moment, log P, TNC and LSER parameters (critical volume and dipolar-polarisability factor), which indicated that these parameters affect the inhibition efficiency of the compounds. It was also found that quantitative structure activity relation can be used to adequately predict the inhibition effectiveness of these compounds.

  17. Interactions of chlorphenesin and divalent metal ions with phosphodiesterase.

    PubMed

    Edelson, J; McMullen, J P

    1976-09-01

    Chlorphenesin inhibition of the hydrolysis of cyclic AMP by guinea-pig lung phosphodiesterase was reversed by the addition of exogenous magnesium ions. Chlorphenesin and theophylline inhibition of this enzyme was shown to be noncompetitive when the substrate concentration was low. Kinetic studies of the inhibition of beef heart phosphodiesterase by chlorphenesin and theophylline indicated that the substrate concentration was a factor in determining whether inhibition was competitive or noncompetitive. Calcium, cobalt and copper ions were inhibitory to guinea-pig lung phosphodiesterase. The inhibition due to chlorphenesin was partially reversed by low (40 mM or less) concentrations of barium ions; high concentrations of barium ions, or manganese ions, were inhibitory. The concentration of the divalent cation did not affect the type of inhibition that was observed.

  18. Early risk factors and developmental pathways to chronic high inhibition and social anxiety disorder in adolescence.

    PubMed

    Essex, Marilyn J; Klein, Marjorie H; Slattery, Marcia J; Goldsmith, H Hill; Kalin, Ned H

    2010-01-01

    Evidence suggests that chronic high levels of behavioral inhibition are a precursor of social anxiety disorder. The authors sought to identify early risk factors for, and developmental pathways to, chronic high inhibition among school-age children and the association of chronic high inhibition with social anxiety disorder by adolescence. A community sample of 238 children was followed from birth to grade 9. Mothers, teachers, and children reported on the children's behavioral inhibition from grades 1 to 9. Lifetime history of psychiatric disorders was available for the subset of 60 (25%) children who participated in an intensive laboratory assessment at grade 9. Four early risk factors were assessed: female gender; exposure to maternal stress during infancy and the preschool period; and at age 4.5 years, early manifestation of behavioral inhibition and elevated afternoon salivary cortisol levels. All four risk factors predicted greater and more chronic inhibition from grades 1 to 9, and together they defined two developmental pathways. The first pathway, in girls, was partially mediated by early evidence of behavioral inhibition and elevated cortisol levels at age 4.5 years. The second pathway began with exposure to early maternal stress and was also partially mediated by childhood cortisol levels. By grade 9, chronic high inhibition was associated with a lifetime history of social anxiety disorder. Chronic high levels of behavioral inhibition are associated with social anxiety disorder by adolescence. The identification of two developmental pathways suggests the potential importance of considering both sets of risk factors in developing preventive interventions for social anxiety disorder.

  19. Psychosis-proneness and neural correlates of self-inhibition in theory of mind.

    PubMed

    van der Meer, Lisette; Groenewold, Nynke A; Pijnenborg, Marieke; Aleman, André

    2013-01-01

    Impaired Theory of Mind (ToM) has been repeatedly reported as a feature of psychotic disorders. ToM is crucial in social interactions and for the development of social behavior. It has been suggested that reasoning about the belief of others, requires inhibition of the self-perspective. We investigated the neural correlates of self-inhibition in nineteen low psychosis prone (PP) and eighteen high PP subjects presenting with subclinical features. High PP subjects have a more than tenfold increased risk of developing a schizophrenia-spectrum disorder. Brain activation was measured with functional Magnetic Resonance Imaging during a ToM task differentiating between self-perspective inhibition and belief reasoning. Furthermore, to test underlying inhibitory mechanisms, we included a stop-signal task. We predicted worse behavioral performance for high compared to low PP subjects on both tasks. Moreover, based on previous neuroimaging results, different activation patterns were expected in the inferior frontal gyrus (IFG) in high versus low PP subjects in self-perspective inhibition and simple response inhibition. Results showed increased activation in left IFG during self-perspective inhibition, but not during simple response inhibition, for high PP subjects as compared to low PP subjects. High and low PP subjects showed equal behavioral performance. The results suggest that at a neural level, high PP subjects need more resources for inhibiting the self-perspective, but not for simple motor response inhibition, to equal the performance of low PP subjects. This may reflect a compensatory mechanism, which may no longer be available for patients with schizophrenia-spectrum disorders resulting in ToM impairments.

  20. Psychosis-Proneness and Neural Correlates of Self-Inhibition in Theory of Mind

    PubMed Central

    van der Meer, Lisette; Groenewold, Nynke A.; Pijnenborg, Marieke; Aleman, André

    2013-01-01

    Impaired Theory of Mind (ToM) has been repeatedly reported as a feature of psychotic disorders. ToM is crucial in social interactions and for the development of social behavior. It has been suggested that reasoning about the belief of others, requires inhibition of the self-perspective. We investigated the neural correlates of self-inhibition in nineteen low psychosis prone (PP) and eighteen high PP subjects presenting with subclinical features. High PP subjects have a more than tenfold increased risk of developing a schizophrenia-spectrum disorder. Brain activation was measured with functional Magnetic Resonance Imaging during a ToM task differentiating between self-perspective inhibition and belief reasoning. Furthermore, to test underlying inhibitory mechanisms, we included a stop-signal task. We predicted worse behavioral performance for high compared to low PP subjects on both tasks. Moreover, based on previous neuroimaging results, different activation patterns were expected in the inferior frontal gyrus (IFG) in high versus low PP subjects in self-perspective inhibition and simple response inhibition. Results showed increased activation in left IFG during self-perspective inhibition, but not during simple response inhibition, for high PP subjects as compared to low PP subjects. High and low PP subjects showed equal behavioral performance. The results suggest that at a neural level, high PP subjects need more resources for inhibiting the self-perspective, but not for simple motor response inhibition, to equal the performance of low PP subjects. This may reflect a compensatory mechanism, which may no longer be available for patients with schizophrenia-spectrum disorders resulting in ToM impairments. PMID:23874445

  1. Revisiting the mechanistic basis of the French Paradox: Red wine inhibits the activity of protein disulfide isomerase in vitro.

    PubMed

    Galinski, Christine N; Zwicker, Jeffrey I; Kennedy, Daniel R

    2016-01-01

    Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Parks, B. M.; Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1998-01-01

    High fluence-rate blue light (BL) rapidly inhibits hypocotyl growth in Arabidopsis, as in other species, after a lag time of 30 s. This growth inhibition is always preceded by the activation of anion channels. The membrane depolarization that results from the activation of anion channels by BL was only 30% of the wild-type magnitude in hy4, a mutant lacking the HY4 BL receptor. High-resolution measurements of growth made with a computer-linked displacement transducer or digitized images revealed that BL caused a rapid inhibition of growth in wild-type and hy4 seedlings. This inhibition persisted in wild-type seedlings during more than 40 h of continuous BL. By contrast, hy4 escaped from the initial inhibition after approximately 1 h of BL and grew faster than wild type for approximately 30 h. Wild-type seedlings treated with 5-nitro-2-(3-phenylpropylamino)-benzoic acid, a potent blocker of the BL-activated anion channel, displayed rapid growth inhibition, but, similar to hy4, these seedlings escaped from inhibition after approximately 1 h of BL and phenocopied the mutant for at least 2.5 h. The effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid and the HY4 mutation were not additive. Taken together, the results indicate that BL acts through HY4 to activate anion channels at the plasma membrane, causing growth inhibition that begins after approximately 1 h. Neither HY4 nor anion channels appear to participate greatly in the initial phase of inhibition.

  3. Emotional Response Inhibition in Bipolar Disorder: A Functional Magnetic Resonance Imaging Study of Trait- and State-Related Abnormalities

    PubMed Central

    Hummer, Tom A.; Hulvershorn, Leslie A.; Karne, Harish S.; Gunn, Abigail D.; Wang, Yang; Anand, Amit

    2018-01-01

    Background Impaired response inhibition and poor impulse control are hallmarks of the manic phase of bipolar disorder but are also present during depressive and, to a lesser degree, euthymic periods. The neural mechanisms underlying these impairments are poorly understood, including how mechanisms are related to bipolar trait or state effects. Methods One-hundred four unmedicated participants with bipolar mania (BM) (n = 30), bipolar depression (BD) (n = 30), bipolar euthymia (BE) (n = 14), and healthy control subjects (n = 30) underwent functional magnetic resonance imaging during emotional and nonemotional go/no-go tasks. The go/no-go task requires participants to press a button for go stimuli, while inhibiting the response to no-go trials. In separate blocks, participants inhibited the response to happy faces, sad faces, or letters. Results The BE group had higher insula activity during happy face inhibition and greater activity in left inferior frontal gyrus during sad face inhibition, demonstrating bipolar trait effects. Relative to the BE group, BD and BM groups demonstrated lower insula activity during inhibition of happy faces, though the depressed sample had lower activity than manic patients. The BD and BM groups had a greater response to inhibiting sad faces in emotion processing and regulation regions, including putamen, insula, and lateral prefrontal cortex. The manic group also had higher activity in insula and putamen during neutral letter inhibition. Conclusions These results suggest distinct trait- and state-related neural abnormalities during response inhibition in bipolar disorder, with implications for future research and treatment. PMID:22871393

  4. Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies.

    PubMed

    Hung, Yuwen; Gaillard, Schuyler L; Yarmak, Pavel; Arsalidou, Marie

    2018-06-19

    Inhibitory control is the stopping of a mental process with or without intention, conceptualized as mental suppression of competing information because of limited cognitive capacity. Inhibitory control dysfunction is a core characteristic of many major psychiatric disorders. Inhibition is generally thought to involve the prefrontal cortex; however, a single inhibitory mechanism is insufficient for interpreting the heterogeneous nature of human cognition. It remains unclear whether different dimensions of inhibitory processes-specifically cognitive inhibition, response inhibition, and emotional interference-rely on dissociated neural systems. We conducted systematic meta-analyses of fMRI studies in the BrainMap database supplemented by PubMed using whole-brain activation likelihood estimation. A total of 66 study experiments including 1,447 participants and 987 foci revealed that while the left anterior insula was concordant in all inhibitory dimensions, cognitive inhibition reliably activated specific dorsal frontal inhibitory system, engaging dorsal anterior cingulate, dorsolateral prefrontal cortex, and parietal areas, whereas emotional interference reliably implicated a ventral inhibitory system, involving the ventral surface of the inferior frontal gyrus and the amygdala. Response inhibition showed concordant clusters in the fronto-striatal system, including the dorsal anterior cingulate region and extended supplementary motor areas, the dorsal and ventral lateral prefrontal cortex, basal ganglia, midbrain regions, and parietal regions. We provide an empirically derived dimensional model of inhibition characterizing neural systems underlying different aspects of inhibitory mechanisms. This study offers a fundamental framework to advance current understanding of inhibition and provides new insights for future clinical research into disorders with different types of inhibition-related dysfunctions. © 2018 Wiley Periodicals, Inc.

  5. Mechanisms of inhibition by fluoride of urease activities of cell suspensions and biofilms of Staphylococcus epidermidis, Streptococcus salivarius, Actinomyces naeslundii and of dental plaque.

    PubMed

    Barboza-Silva, E; Castro, A C D; Marquis, R E

    2005-12-01

    Fluoride is known to be a potent inhibitor of bacterial ureases and can also act in the form of hydrofluoric acid as a transmembrane proton conductor to acidify the cytoplasm of intact cells with possible indirect, acid inhibition of urease. Our research objectives were to assess the inhibitory potencies of fluoride for three urease-positive bacteria commonly found in the mouth and to determine the relative importance of direct and indirect inhibition of ureases for overall inhibition of intact cells or biofilms. The experimental design involved intact bacteria in suspensions, mono-organism biofilms, cell extracts, and dental plaque. Standard enzymatic assays for ammonia production from urea were used. We found that ureolysis by cells in suspensions or mono-organism biofilms of Staphylococcus epidermidis, Streptococcus salivarius or Actinomyces naeslundii was inhibited by fluoride at plaque levels of 0.1-0.5 mm in a pH-dependent manner. The results of experiments with the organic weak acids indomethacin and capric acid, which do not directly inhibit urease enzyme, indicated that weak-acid effects leading to cytoplasmic acidification are also involved in fluoride inhibition. However, direct fluoride inhibition of urease appeared to be the major mechanism for reduction in ureolytic activity in acid environments. Results of experiments with freshly harvested supragingival dental plaque indicated responses to fluoride similar to those of S. salivarius with pH-dependent fluoride inhibition and both direct and indirect inhibition of urease. Fluoride can act to diminish alkali production from urea by oral bacteria through direct and indirect mechanisms.

  6. Revisiting the mechanistic basis of the French Paradox: red wine inhibits the activity of protein disulfide isomerase in vitro

    PubMed Central

    Galinski, Christine N.; Zwicker, Jeffrey I.; Kennedy, Daniel R.

    2015-01-01

    Introduction Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Methods Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. Results We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. Conclusions PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. PMID:26585763

  7. Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP.

    PubMed

    Schonhoff, Christopher M; Ramasamy, Umadevi; Anwer, M Sawkat

    2011-02-01

    The sodium-taurocholate (TC) cotransporting polypeptide (NTCP) facilitates bile formation by mediating sinusoidal Na(+)-TC cotransport. During sepsis-induced cholestasis, there is a decrease in NTCP-dependent uptake of bile acids and an increase in nitric oxide (NO) levels in hepatocytes. In rat hepatocytes NO inhibits Na(+)-dependent uptake of taurocholate. The aim of this study was to extend these findings to human NTCP and to further investigate the mechanism by which NO inhibits TC uptake. Using a human hepatoma cell line stably expressing NTCP (HuH-NTCP), we performed experiments with the NO donors sodium nitroprusside and S-nitrosocysteine and demonstrated that NO inhibits TC uptake in these cells. Kinetic analyses revealed that NO significantly decreased the V(max) but not the K(m) of TC uptake by NTCP, indicating noncompetitive inhibition. NO decreased the amount of NTCP in the plasma membrane, providing a molecular mechanism for the noncompetitive inhibition of TC uptake. One way that NO can modify protein function is through a posttranslational modification known as S-nitrosylation: the binding of NO to cysteine thiols. Using a biotin switch technique we observed that NTCP is S-nitrosylated under conditions in which NO inhibits TC uptake. Moreover, dithiothreitol reversed NO-mediated inhibition of TC uptake and S-nitrosylation of NTCP, indicating that NO inhibits TC uptake via modification of cysteine thiols. In addition, NO treatment led to a decrease in Ntcp phosphorylation. Taken together these results indicate that the inhibition of TC uptake by NO involves S-nitrosylation of NTCP.

  8. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    PubMed

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  9. Metabolic effects of p-coumaric acid in the perfused rat liver.

    PubMed

    Lima, Leonardo C N; Buss, Gisele D; Ishii-Iwamoto, Emy L; Salgueiro-Pagadigorria, Clairce; Comar, Jurandir Fernando; Bracht, Adelar; Constantin, Jorgete

    2006-01-01

    The p-coumaric acid, a phenolic acid, occurs in several plant species and, consequently, in many foods and beverages of vegetable origin. Its antioxidant activity is well documented, but there is also a single report about an inhibitory action on the monocarboxylate carrier, which operates in the plasma and mitochondrial membranes. The latter observation suggests that p-coumaric acid could be able to inhibit gluconeogenesis and related parameters. The present investigation was planned to test this hypothesis in the isolated and hemoglobin-free perfused rat liver. Transformation of lactate and alanine into glucose (gluconeogenesis) in the liver was inhibited by p-coumaric acid (IC50 values of 92.5 and 75.6 microM, respectively). Transformation of fructose into glucose was inhibited to a considerably lower degree (maximally 28%). The oxygen uptake increase accompanying gluconeogenesis from lactate was also inhibited. Pyruvate carboxylation in isolated intact mitochondria was inhibited (IC50 = 160.1 microM); no such effect was observed in freeze-thawing disrupted mitochondria. Glucose 6-phosphatase and fructose 1,6-bisphosphatase were not inhibited. In isolated intact mitochondria, p-coumaric acid inhibited respiration dependent on pyruvate oxidation but was ineffective on respiration driven by succinate and beta-hydroxybutyrate. It can be concluded that inhibition of pyruvate transport into the mitochondria is the most prominent primary effect of p-coumaric acid and also the main cause for gluconeogenesis inhibition. The existence of additional actions of p-coumaric acid, such as enzyme inhibitions and interference with regulatory mechanisms, cannot be excluded. 2006 Wiley Periodicals, Inc.

  10. Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae.

    PubMed

    Zhao, Juan; Harada, Naoaki; Okajima, Kenji

    2011-10-01

    We demonstrated that insulin-like growth factor-I (IGF-I) production in dermal papillae was increased and hair growth was promoted after sensory neuron stimulation in mice. Although the androgen metabolite dihydrotestosterone (DHT) inhibits hair growth by negatively modulating growth-regulatory effects of dermal papillae, relationship between androgen metabolism and IGF-I production in dermal papillae is not fully understood. We examined whether DHT inhibits IGF-I production by inhibiting sensory neuron stimulation, thereby preventing hair growth in mice. Effect of DHT on sensory neuron stimulation was examined using cultured dorsal root ganglion (DRG) neurons isolated from mice. DHT inhibits calcitonin gene-related peptide (CGRP) release from cultured DRG neurons. The non-steroidal androgen-receptor antagonist flutamide reversed DHT-induced inhibition of CGRP release. Dermal levels of IGF-I and IGF-I mRNA, and the number of IGF-I-positive fibroblasts around hair follicles were increased at 6h after CGRP administration. DHT administration for 3weeks decreased dermal levels of CGRP, IGF-I, and IGF-I mRNA in mice. Immunohistochemical expression of IGF-I and the number of proliferating cells in hair follicles were decreased and hair re-growth was inhibited in animals administered DHT. Co-administration of flutamide and CGRP reversed these changes induced by DHT administration. These observations suggest that DHT may decrease IGF-I production in dermal papillae by inhibiting sensory neuron stimulation through interaction with the androgen receptor, thereby inhibiting hair growth in mice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Lithium Suppresses Astrogliogenesis by Neural Stem and Progenitor Cells by Inhibiting STAT3 Pathway Independently of Glycogen Synthase Kinase 3 Beta

    PubMed Central

    Zhu, Zhenzhong; Kremer, Penny; Tadmori, Iman; Ren, Yi; Sun, Dongming; He, Xijing; Young, Wise

    2011-01-01

    Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC production of astrocytes as well as proliferation of glia restricted progenitor (GRP) cells. Lithium strongly inhibited STAT3 (signal transducer and activator of transcription 3) activation, a messenger system known to promote astrogliogenesis and cancer. Lithium abolished STAT3 activation and astrogliogenesis induced by a STAT3 agonist AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), suggesting that lithium suppresses astrogliogenesis by inhibiting STAT3. GSK3β inhibition either by a specific GSK3β inhibitor SB216763 or overexpression of GID5-6 (GSK3β Interaction Domain aa380 to 404) did not suppress astrogliogenesis and GRP proliferation. GSK3β inhibition also did not suppress STAT3 activation. Together, these results indicate that lithium inhibits astrogliogenesis through non-GSK3β-mediated inhibition of STAT. Lithium may increase efficacy of NSC transplants by increasing neurogenesis and reducing astrogliogenesis. Our results also may explain the strong safety record of lithium treatment of manic depression. Millions of people take high-dose (>1 gram/day) lithium carbonate for a lifetime. GSK3b inhibition increases WNT/beta catenin, associated with colon and other cancers. STAT3 inhibition may reduce risk for cancer. PMID:21931595

  12. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3 cell-induced osteoclast formation

    PubMed Central

    Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.

    2013-01-01

    Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158

  13. An analysis of the effects of Mn{sup 2+} on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunter, Thomas E., E-mail: thomas_gunter@urmc.rochester.ed; Gerstner, Brent, E-mail: brent_gerstner@urmc.rochester.ed; Lester, Tobias, E-mail: Tlester200@gmail.co

    2010-11-15

    Manganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays-a measure of ATP production-under rapid phosphorylation conditions to explore sites of Mn{sup 2+} inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages. First, the target tissue for Mn toxicity in the basal ganglia is energetically active and should be studied under rapid phosphorylation conditions. Second, Mn may inhibit metabolic steps which do not affect ATP production rate. This approach allows identification of inhibitions that decrease this rate. Third, mitochondria from different tissues contain different amounts of themore » components of the metabolic pathways potentially resulting in different patterns of ATP inhibition. Our results indicate that Mn{sup 2+} inhibits ATP production with very different patterns in liver, brain, and heart mitochondria. The primary Mn{sup 2+} inhibition site in liver and heart mitochondria, but not in brain mitochondria, is the F{sub 1}F{sub 0} ATP synthase. In mitochondria fueled by either succinate or glutamate + malate, ATP production is much more strongly inhibited in brain than in liver or heart mitochondria; moreover, Mn{sup 2+} inhibits two independent sites in brain mitochondria. The primary site of Mn-induced inhibition of ATP production in brain mitochondria when succinate is substrate is either fumarase or complex II, while the likely site of the primary inhibition when glutamate plus malate are the substrates is either the glutamate/aspartate exchanger or aspartate aminotransferase.« less

  14. AGE-RELATED BRAIN CHOLINESTERASE INHIBITION KINETICS FOLLOWING IN VITRO INCUBATION WITH CHLORPYRIFOS-OXON AND DIAZINON-OXON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck

    2007-01-01

    Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki valuesmore » obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.« less

  15. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Hsieh-Hsun; Chang, Chi-Sen; Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGSmore » cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.« less

  16. Potent and selective inhibition of magnolol on catalytic activities of UGT1A7 and 1A9.

    PubMed

    Zhu, Liangliang; Ge, Guangbo; Liu, Yong; He, Guiyuan; Liang, Sicheng; Fang, Zhongze; Dong, Peipei; Cao, Yunfeng; Yang, Ling

    2012-10-01

    1. Human exposure to magnolol can reach a high dose in daily life. Our previous studies indicated that magnolol showed high affinities to several UDP-glucuronosyltransferases (UGTs) This study was designed to examine the in vitro inhibitory effects of magnolol on UGTs, and further to evaluate the possibility of the in vivo inhibition that might happen. 2. Assays with recombinant UGTs and human liver microsomes (HLM) indicated that magnolol (10 µM) can selectively inhibit activities of UGT1A9 and extra-hepatic UGT1A7. Inhibition of magnolol on UGT1A7 followed competitive inhibition mechanism, while the inhibition on UGT1A9 obeyed either competitive or mixed inhibition mechanism, depending on substrates. The K(i) values for UGT1A7 and 1A9 are all in nanomolar ranges, lower than possible magnolol concentrations in human gut lumen and blood, indicating the in vivo inhibition on these two enzymes would likely occur. 3. In conclusion, UGT1A7 and 1A9 can be strongly inhibited by magnolol, raising the alarm for safe application of magnolol and traditional Chinese medicines containing magnolol. Additionally, given that UGT1A7 is an extra-hepatic enzyme, magnolol can serve as a selective UGT1A9 inhibitor that will act as a new useful tool in future hepatic glucuronidation phenotyping.

  17. On the dependence of response inhibition processes on sensory modality.

    PubMed

    Bodmer, Benjamin; Beste, Christian

    2017-04-01

    The ability to inhibit responses is a central sensorimotor function but only recently the importance of sensory processes for motor inhibition mechanisms went more into the research focus. In this regard it is elusive, whether there are differences between sensory modalities to trigger response inhibition processes. Due to functional neuroanatomical considerations strong differences may exist, for example, between the visual and the tactile modality. In the current study we examine what neurophysiological mechanisms as well as functional neuroanatomical networks are modulated during response inhibition. Therefore, a Go/NoGo-paradigm employing a novel combination of visual, tactile, and visuotactile stimuli was used. The data show that the tactile modality is more powerful than the visual modality to trigger response inhibition processes. However, the tactile modality loses its efficacy to trigger response inhibition processes when being combined with the visual modality. This may be due to competitive mechanisms leading to a suppression of certain sensory stimuli and the response selection level. Variations in sensory modalities specifically affected conflict monitoring processes during response inhibition by modulating activity in a frontal parietal network including the right inferior frontal gyrus, anterior cingulate cortex and the temporoparietal junction. Attentional selection processes are not modulated. The results suggest that the functional neuroanatomical networks involved in response inhibition critically depends on the nature of the sensory input. Hum Brain Mapp 38:1941-1951, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. D-amphetamine (A)-induced dopamine (DA) release is not strictly dependent on newly-synthesized transmitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, E.; Cubeddu, L.

    1986-03-05

    A is thought to exert its stimulant effects by releasing DA from a newly synthesized transmitter pool. This hypothesis was evaluated directly by measuring the basal efflux and electrically-evoked release of endogenous DA and dihydroxyphenylacetic acid (DOPAC). In striatal slices from reserpine-treated rabbits A increased DA efflux, reduced DOPAC efflux, and inhibited electrically-evoked /sup 3/H-ACh release in a concentration-dependent manner. These effects could not be mimicked by inhibition of neuronal uptake or MAO, but were blocked by inhibition of DA synthesis or neuronal uptake, and were potentiated by inhibition of MAO. In slices with intact vesicular transmitter stores A inducedmore » DA efflux was 2-fold greater than that seen in slices having no vesicular stores. Inhibition of DA synthesis reduced A-induced DA efflux by 60%, but had little effect on the ability of A to inhibit /sup 3/H-ACh release. A also increased the electrical stimulation-evoked overflow of DA (an effect which was attenuated slightly by synthesis inhibition), and potently inhibited DOPAC overflow. These results suggest that: 1) A facilitates efflux of axoplasmic DA by an accelerated exchange diffusion mechanism. The releasable axoplasmic pool is derived from newly synthesized and vesicular transmitter pools; 2) postsynaptic indices of transmitter release may be misleading; and 3) A increases electrically-evoked DA release possibly by inhibiting neuronal uptake.« less

  19. Structure Activity Relationship for FDA Approved Drugs as Inhibitors of the Human Sodium Taurocholate Co-transporting Polypeptide (NTCP)

    PubMed Central

    Dong, Zhongqi; Ekins, Sean; Polli, James E.

    2013-01-01

    The hepatic bile acid uptake transporter Sodium Taurocholate Cotransporting Polypeptide (NTCP) is less well characterized than its ileal paralog, the Apical Sodium Dependent Bile Acid Transporter (ASBT), in terms of drug inhibition requirements. The objectives of this study were a) to identify FDA approved drugs that inhibit human NTCP, b) to develop pharmacophore and Bayesian computational models for NTCP inhibition, and c) to compare NTCP and ASBT transport inhibition requirements. A series of NTCP inhibition studies were performed using FDA approved drugs, in concert with iterative computational model development. Screening studies identified 27 drugs as novel NTCP inhibitors, including irbesartan (Ki =11.9 μM) and ezetimibe (Ki = 25.0 μM). The common feature pharmacophore indicated that two hydrophobes and one hydrogen bond acceptor were important for inhibition of NTCP. From 72 drugs screened in vitro, a total of 31 drugs inhibited NTCP, while 51 drugs (i.e. more than half) inhibited ASBT. Hence, while there was inhibitor overlap, ASBT unexpectedly was more permissive to drug inhibition than was NTCP, and this may be related to NTCP’s possessing fewer pharmacophore features. Findings reflected that a combination of computational and in vitro approaches enriched the understanding of these poorly characterized transporters and yielded additional chemical probes for possible drug-transporter interaction determinations. PMID:23339484

  20. Urea inhibits NaK2Cl cotransport in human erythrocytes.

    PubMed Central

    Lim, J; Gasson, C; Kaji, D M

    1995-01-01

    We examined the effect of urea on NaK2Cl cotransport in human erythrocytes. In erythrocytes from nine normal subjects, the addition of 45 mM urea, a concentration commonly encountered in uremic subjects, inhibited NaK2Cl cotransport by 33 +/- 7%. Urea inhibited NaK2Cl cotransport reversibly, and in a concentration-dependent fashion with half-maximal inhibition at 63 +/- 10 mM. Acute cell shrinkage increased, and acute cell swelling decreased NaK2Cl cotransport in human erythrocytes. Okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, increased NaK2Cl cotransport by nearly 80%, suggesting an important role for these phosphatases in the regulation of NaK2Cl cotransport. Urea inhibited bumetanide-sensitive K influx even when protein phosphatases were inhibited with OA, suggesting that urea acted by inhibiting a kinase. In cells subjected to shrinking and OA pretreatment, maneuvers expected to increase the net phosphorylation, urea inhibited cotransport only minimally, suggesting that urea acted by causing a net dephosphorylation of the cotransport protein, or some key regulatory protein. The finding that concentrations of urea found in uremic subjects inhibited NaK2Cl cotransport, a widespread transport pathway with important physiological functions, suggests that urea is not only a marker for accumulation of other uremic toxins, but may be a significant uremic toxin itself. PMID:7593597

  1. The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance.

    PubMed

    Heise, Kirstin-F; Zimerman, Maximo; Hoppe, Julia; Gerloff, Christian; Wegscheider, Karl; Hummel, Friedhelm C

    2013-05-22

    Since GABAA-mediated intracortical inhibition has been shown to underlie plastic changes throughout the lifespan from development to aging, here, the aging motor system was used as a model to analyze the interdependence of plastic alterations within the inhibitory motorcortical network and level of behavioral performance. Double-pulse transcranial magnetic stimulation (dpTMS) was used to examine inhibition by means of short-interval intracortical inhibition (SICI) of the contralateral primary motor cortex in a sample of 64 healthy right-handed human subjects covering a wide range of the adult lifespan (age range 20-88 years, mean 47.6 ± 20.7, 34 female). SICI was evaluated during resting state and in an event-related condition during movement preparation in a visually triggered simple reaction time task. In a subgroup (N = 23), manual motor performance was tested with tasks of graded dexterous demand. Weak resting-state inhibition was associated with an overall lower manual motor performance. Better event-related modulation of inhibition correlated with better performance in more demanding tasks, in which fast alternating activation of cortical representations are necessary. Declining resting-state inhibition was associated with weakened event-related modulation of inhibition. Therefore, reduced resting-state inhibition might lead to a subsequent loss of modulatory capacity, possibly reflecting malfunctioning precision in GABAAergic neurotransmission; the consequence is an inevitable decline in motor function.

  2. mTOR and MEK1/2 inhibition differentially modulate tumor growth and the immune microenvironment in syngeneic models of oral cavity cancer

    PubMed Central

    Cash, Harrison; Shah, Sujay; Moore, Ellen; Caruso, Andria; Uppaluri, Ravindra; Van Waes, Carter; Allen, Clint

    2015-01-01

    We investigated the effects of mTOR and MEK1/2 inhibition on tumor growth and the tumor microenvironment in immunogenic and poorly immunogenic models of murine oral cancer. In vitro, rapamycin and PD901 inhibited signaling through expected downstream targets, but only PD901 reduced viability and altered function of MOC cells. Following transplantation of MOC cells into immune-competent mice, effects on both cancer and infiltrating immune cells were characterized following rapamycin and/or PD901 treatment for 21 days. In vivo, both rapamycin and PD901 inhibition reduced primary growth of established MOC tumors on treatment. Following withdrawal of PD901, rapid rebound of tumor growth limited survival, whereas durable tumor control was observed following rapamycin treatment in immunogenic MOC1 tumors despite more robust inhibition of oncogenic signaling by PD901. Characterization of the immune microenvironment revealed diminished infiltration and activation of antigen-specific CD8+ T-cells and other immune cells following PD901 but not rapamycin in immunogenic tumors. Subsequent in vitro T-cell assays validated robust inhibition of T-cell expansion and activation following MEK inhibition compared to mTOR inhibition. CD8 cell depletion abrogated rapamycin-induced primary tumor growth inhibition in MOC1 mice. These data have critical implications in the design of combination targeted and immune therapies in oral cancer. PMID:26506415

  3. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Mi Hee; Min, Do Sik, E-mail: minds@pusan.ac.kr

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety ofmore » cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.« less

  4. Human Milk Mucin 1 and Mucin 4 Inhibit Salmonella enterica Serovar Typhimurium Invasion of Human Intestinal Epithelial Cells In Vitro123

    PubMed Central

    Liu, Bo; Yu, Zhuoteng; Chen, Ceng; Kling, David E.; Newburg, David S.

    2012-01-01

    Many human milk glycans inhibit pathogen binding to host receptors and their consumption by infants is associated with reduced risk of disease. Salmonella infection is more frequent among infants than among the general population, but the incidence is lower in breast-fed babies, suggesting that human milk could contain components that inhibit Salmonella. This study aimed to test whether human milk per se inhibits Salmonella invasion of human intestinal epithelial cells in vitro and, if so, to identify the milk components responsible for inhibition. Salmonella enterica serovar Typhimurium SL1344 (SL1344) invasion of FHs 74 Int and Caco-2 cells were the models of human intestinal epithelium infection. Internalization of fluorescein-5-isothiocyanate–labeled SL1344 into intestinal cells was measured by flow cytometry to quantify infection. Human milk and its fractions inhibited infection; the inhibitory activity localized to the high molecular weight glycans. Mucin 1 and mucin 4 were isolated to homogeneity. At 150 μg/L, a typical concentration in milk, human milk mucin 1 and mucin 4 inhibited SL1344 invasion of both target cell types. These mucins inhibited SL1344 invasion of epithelial cells in a dose-dependent manner. Thus, mucins may prove useful as a basis for developing novel oral prophylactic and therapeutic agents that inhibit infant diseases caused by Salmonella and related pathogens. PMID:22718031

  5. Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T-cells.

    PubMed

    Yea, S S; Yang, K H; Kaminski, N E

    2000-02-01

    We previously reported that immunosuppressive cannabinoids inhibited interleukin (IL)-2 steady-state mRNA expression and secretion by phorbol-12-myristate-13-acetate plus ionomycin-activated mouse splenocytes and EL4 murine T-cells. Here we show that inhibition of IL-2 production by cannabinol, a modest central nervous system-active cannabinoid, is mediated through the inhibition of IL-2 gene transcription. Moreover, electrophoretic mobility shift assays demonstrated that cannabinol markedly inhibited the DNA binding activity of nuclear factor of activated T-cells (NF-AT) and activator protein-1 (AP-1) in a time- and concentration-dependent manner in activated EL4 cells. The inhibitory effects produced by cannabinol on AP-1 DNA binding were quite transient, showing partial recovery by 240 min after cell activation and no effect on the activity of a reporter gene under the control of AP-1. Conversely, cannabinol-mediated inhibition of NF-AT was robust and sustained as demonstrated by an NF-AT-regulated reporter gene. Collectively, these results suggest that decreased IL-2 production by cannabinol in EL4 cells is due to the inhibition of transcriptional activation of the IL-2 gene and is mediated, at least in part, through a transient inhibition of AP-1 and a sustained inhibition of NF-AT.

  6. Substrate inhibition kinetics of phenol biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudar, C.T.; Ganji, S.H.; Pujar, B.G.

    Phenol biodegradation was studied in batch experiments using an acclimated inoculum and initial phenol concentrations ranging from 0.1 to 1.3 g/L. Phenol depletion an associated microbial growth were monitored over time to provide information that was used to estimate the kinetics of phenol biodegradation. Phenol inhibited biodegradation at high concentrations, and a generalized substrate inhibition model based on statistical thermodynamics was used to describe the dynamics of microbial growth in phenol. For experimental data obtained in this study, the generalized substrate inhibition model reduced to a form that is analogous to the Andrews equation, and the biokinetic parameters {micro}{sub max},more » maximum specific growth; K{sub s}, saturation constant; and K{sub i}, inhibition constant were estimated as 0.251 h{sup {minus}1}, 0.011 g/L, and 0.348 g/L, respectively, using a nonlinear least squares technique. Given the wide variability in substrate inhibition models used to describe phenol biodegradation, an attempt was made to justify selection of particular model based on theoretical considerations. Phenol biodegradation data from nine previously published studies were used in the generalized substrate inhibition model to determine the appropriate form of the substrate inhibition model. In all nine cases, the generalized substrate inhibition model reduced to a form analogous to the Andrews equation suggesting the suitability of the Andrews equation to describe phenol biodegradation data.« less

  7. Effect of fenspiride, a non-steroidal antiinflammatory agent, on neurogenic mucus secretion in ferret trachea in vitro.

    PubMed

    Khawaja, A M; Liu, Y C; Rogers, D F

    1999-01-01

    Neural mechanisms contribute to control of mucus secretion in the airways. Fenspiride is a non-steroidal antiinflammatory agent which has a variety of actions, including inhibition of neurogenic bronchoconstriction. The effect of fenspiride on neurally-mediated mucus secretion was investigated in vitro in electrically-stimulated ferret trachea, using(35)SO(4)as a mucus marker. Cholinergic secretory responses were isolated using adrenoceptor and tachykinin receptor antagonists. Tachykinin responses were isolated using cholinoceptor and adrenoceptor antagonists. Electrical stimulation increased cholinergic secretion by;90% and tachykininergic secretion by;40%. Fenspiride (1 microM-1 mM) tended to inhibit cholinergic secretion in a concentration-dependent manner, although only at 1 mM was inhibition (by 87%) significant. Inhibition by fenspiride of tachykininergic secretion was not concentration-dependent, and again significant inhibition (by 85%) was only at 1 mM. Inhibition was not due to loss of tissue viability, as assessed by restitution of secretory response after washout. Fenspiride also inhibited secretion induced by acetylcholine, but did not inhibit substance P-induced secretion. Histamine receptor antagonists increased basal secretion by 164%, whereas fenspiride did not affect basal secretion. We conclude that, in ferret trachea in vitro, fenspiride inhibits neurally-mediated mucus secretion, with antimuscarinic action the most plausible mechanism of action, but not necessarily the only mechanism. Copyright 1999 Academic Press.

  8. Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo.

    PubMed

    Gomes, Evan G; Connelly, Sarah F; Summy, Justin M

    2013-07-01

    Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.

  9. The kinetic study of the inhibition of human cholinesterases by demeton-S-methyl shows that cholinesterase-based titration methods are not suitable for this organophosphate.

    PubMed

    Bazire, Alexandre; Gillon, Emilie; Lockridge, Oksana; Vallet, Virginie; Nachon, Florian

    2011-04-01

    The organophosphorus insecticide, demeton-S-methyl (DSM), is considered as a good surrogate of the highly toxic nerve agent VX for skin absorption studies due to similar physico-chemical properties and in vitro percutaneous penetration profile. But, when skin distribution was estimated by measuring inhibition of cholinesterase activity, the results were poorly reproducible. The various grades of commercial DSM solutions were suspected to be the origin of the discrepancies. This hypothesis was tested by measuring inhibition of human acetyl- and butyrylcholinesterase by two commercial DSM solutions. The inhibition rate was independent on the enzyme concentration confirming pseudo-first order conditions. But complete inhibition of butyrylcholinesterase activity was achieved only when the DSM concentration was at least 1500-fold higher than the enzyme concentration. Besides, complete inhibition of acetylcholinesterase was never achieved. Mass spectrometry analysis of the inhibited butyrylcholinesterase adducts identified monomethoxyphosphorylated-serine, the aged product of inhibition by DSM or a derivative with a modified leaving group. Neither spontaneous reactivation nor aging of the dimethoxyphosphorylated-serine could account for the inhibition kinetics observed, suggesting an overly complicated kinetic scheme not compatible with the requirement of a titration experiment. In conclusion, cholinesterase-based analytical methods should be avoided for DSM titration in skin penetration studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  11. Active inhibition of herpes simplex virus type 1-induced cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzik, D.J.; Person, S.; Read, G.S.

    1982-01-01

    Previous studies have demonstrated that syn mutant-infected cells fuse less well with nonsyncytial virus-infected cells than with uninfected cells, a phenomenon defined as function inhibition. The present study characterizes the kinetics as well as the requirements for expression of fusion inhibition. Initially, the capacity of sparse syn mutant-infected cells to fuse with uninfected surrounding cells was determined throughout infection. Of seven syn mutants examined, including representatives with alterations in two different viral genes that affect cell fusion, all showed an increase in fusion capacity up to 12 hr after infection and a decrease at later times. Fusion inhibition was examinedmore » in experiments employing sparse syn20-infected cells which had been incubated to a maximum fusion capacity; it was shown that surrounding cells infected with KOS, the parent of syn20, began to inhibit fusion by the syn20-infected cells at about 4 hr after infection, and that the maximum ability to inhibit fusion was attained at about 6 hr after infection. The metabolic blocking agents actinomycin D (RNA), cycloheximide (protein), 2-deoxyglucose, and tunicamycin (glycoslyation of glycoproteins) all showed the ability to inhibit the expression of fusion inhibition by KOS-infected cells if added shortly after infection. It is concluded that fusion inhibition is an active process that requires the synthesis of RNA, proteins, and glycoproteins. 17 references, 3 figures, 2 tables.« less

  12. Effectiveness of qPCR permutations, internal controls and dilution as means for minimizing the impact of inhibition while measuring Enterococcus in environmental waters.

    PubMed

    Cao, Y; Griffith, J F; Dorevitch, S; Weisberg, S B

    2012-07-01

      Draft criteria for the optional use of qPCR for recreational water quality monitoring have been published in the United States. One concern is that inhibition of the qPCR assay can lead to false-negative results and potentially inadequate public health protection. We evaluate the effectiveness of strategies for minimizing the impact of inhibition.   Five qPCR method permutations for measuring Enterococcus were challenged with 133 potentially inhibitory fresh and marine water samples. Serial dilutions were conducted to assess Enterococcus target assay inhibition, to which inhibition identified using four internal controls (IC) was compared. The frequency and magnitude of inhibition varied considerably among qPCR methods, with the permutation using an environmental master mix performing substantially better. Fivefold dilution was also effective at reducing inhibition in most samples (>78%). ICs were variable and somewhat ineffective, with 54-85% agreement between ICs and serial dilution.   The current IC methods appear to not accurately predict Enterococcus inhibition and should be used with caution; fivefold dilution and the use of reagents designed for environmental sample analysis (i.e. more robust qPCR chemistry) may be preferable.   Suitable approaches for defining, detecting and reducing inhibition will improve implementation of qPCR for water monitoring. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  13. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  14. Heightened Conflict in Cue-Target Translation Increases Backward Inhibition in Set Switching

    ERIC Educational Resources Information Center

    Grange, James A.; Houghton, George

    2010-01-01

    Backward inhibition (BI) is a performance cost that occurs when an individual returns to a task after 1 (vs. more than 1) intervening trial, and it may reflect the inhibition of task-set components during switching. In 3 experiments, we support the theory that inhibition can target cue-based preparatory stages of a task. Participants performed a…

  15. Inhibition of cortiocosteroidogenesis by delta-9-tetrahydrocannabinol.

    PubMed

    Warner, W; Harris, L S; Carchman, R A

    1977-12-01

    ACTH, cholera toxin, cyclic AMP but not pregnenolone-induced steroidogenesis in Y-1 functional mouse adrenal tumor cells was significantly inhibited by delta-9-tetrahydrocannabinol, cannabidiol, and cannabinol. The inhibition of steroidogenesis could not be correlated with a general depression in cell function or viability. The data suggest that cannabinoids inhibit corticosteroidogenesis at a site between the synthesis of cAMP and of pregnenolone.

  16. Study the Origin and Mechanisms of Castration Resistance Characterized by Outgrowth of Prostate Cancer Cells with Low/Negative Androgen Receptor

    DTIC Science & Technology

    2016-10-01

    growth. The CRISPR/ Cas9 -mediated inhibition of GREB1 function suppressed growth of AR-hi cells that are further inhibited by Enzalutamide treatment...PSA enhancer. (I) The CRISPR/ Cas9 -mediated inhibition of GREB1 function suppresses growth of AR-hi cells. * control (SgNT) vs. each GREB1 inhibited

  17. Training and Transfer Effects of Response Inhibition Training in Children and Adults

    ERIC Educational Resources Information Center

    Zhao, Xin; Chen, Ling; Maes, Joseph H. R.

    2018-01-01

    Response inhibition is crucial for mental and physical health but studies assessing the trainability of this type of inhibition are rare. Thirty-nine children aged 10-12 years and 46 adults aged 18-24 years were assigned to an adaptive go/no-go inhibition training condition or an active control condition. Transfer of training effects to…

  18. A Model of Motor Inhibition for a Complex Skill: Baseball Batting

    ERIC Educational Resources Information Center

    Gray, Rob

    2009-01-01

    The ability to inhibit an ongoing action in response to a signal from the environment is important for many perceptual-motor actions. This paper examines a particular example of this behavior: attempting to inhibit or "check" a swing in baseball batting. A model of motor inhibition in batting is proposed. In the model there are three different…

  19. STIR: Assessing and Training Response Inhibition Abilities

    DTIC Science & Technology

    2014-07-30

    Oct-2013 30-Jun-2014 Approved for Public Release; Distribution Unlimited Final Report: STIR: Assessing and Training Response Inhibition Abilities The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Civilian casualties, response inhibition, cognitive training REPORT DOCUMENTATION PAGE...Assessing and Training Response Inhibition Abilities Report Title Shooting a firearm involves a complex series of actions, and each action depends on a

  20. IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    EPA Science Inventory

    IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    Chad R. Blystone1, David J. Dix2, and John C. Rockett2
    1Department of Environmental and Molecular Toxicology, NC State University, R...

  1. Relationship between self-reported childhood behavioral inhibition and lifetime anxiety disorders in a clinical sample.

    PubMed

    Gladstone, Gemma L; Parker, Gordon B; Mitchell, Phillip B; Wilhelm, Kay A; Malhi, Gin S

    2005-01-01

    To examine the association between an early inhibited temperament and lifetime anxiety disorders, we studied a sample of patients with major depression who were not selected on the basis of comorbid axis I anxiety disorders. One-hundred eighty-nine adults (range = 17-68 years) referred to a tertiary depression unit underwent structured diagnostic interviews for depression and anxiety and completed two self-report measures of behavioral inhibition, the retrospective measure of behavioural inhibition (RMBI) [Gladstone and Parker, 2005] and the adult measure of behavioural inhibition (AMBI) [Gladstone and Parker, 2005]. Patients' scores were classified into "low," "moderate," or "high" inhibition. While groups did not differ in terms of depression severity, there were differences across groups in clinically diagnosed nonmelancholic status and age of onset of first episode. Those reporting a high degree of childhood inhibition were significantly more likely to qualify for a diagnosis of social phobia, and this association was independent of their scores on the AMBI. Findings are discussed in light of the existing risk-factor literature and support the hypothesis that an early inhibited temperament may be a significant precursor to later anxiety, especially social anxiety disorder. Copyright 2005 Wiley-Liss, Inc.

  2. Response inhibition, preattentive processing, and sex difference in young children: an event-related potential study.

    PubMed

    Liu, Tongran; Xiao, Tong; Shi, Jiannong

    2013-02-13

    Response inhibition and preattentive processing are two important cognitive abilities for child development, and the current study adopted both behavioral and electrophysiological protocols to examine whether young children's response inhibition correlated with their preattentive processing. A Go/Nogo task was used to explore young children's response inhibition performances and an Oddball task with event-related potential recordings was used to measure their preattentive processing. The behavioral results showed that girls committed significantly fewer commission error rates, which showed that girls had stronger inhibition control abilities than boys. Girls also achieved higher d' scores in the Go/Nogo task, which indicated that they were more sensitive to the stimulus signals than boys. Although the electrophysiological results of preattentive processing did not show any sex differences, the correlation patterns between children's response inhibition and preattentive processing were different between these two groups: the neural response speed of preattentive processing (mismatch negativity peak latency) negatively correlated with girls' commission error rates and positively correlated with boys' correct hit rates. The current findings supported that the preattentive processing correlated with human inhibition control performances, and further showed that girls' better inhibition responses might be because of the influence of their preattentive processing.

  3. Contrasting neural effects of aging on proactive and reactive response inhibition.

    PubMed

    Bloemendaal, Mirjam; Zandbelt, Bram; Wegman, Joost; van de Rest, Ondine; Cools, Roshan; Aarts, Esther

    2016-10-01

    Two distinct forms of response inhibition may underlie observed deficits in response inhibition in aging. We assessed whether age-related neurocognitive impairments in response inhibition reflect deficient reactive inhibition (outright stopping) or also deficient proactive inhibition (anticipatory response slowing), which might be particularly evident with high information load. We used functional magnetic resonance imaging in young (n = 25, age range 18-32) and older adults (n = 23, 61-74) with a stop-signal task. Relative to young adults, older adults exhibited impaired reactive inhibition (i.e., longer stop-signal reaction time) and increased blood oxygen level-dependent (BOLD) signal for successful versus unsuccessful inhibition in the left frontal cortex and cerebellum. Furthermore, older adults also exhibited impaired proactive slowing, but only as a function of information load. This load-dependent behavioral deficit was accompanied by a failure to increase blood oxygen level-dependent (BOLD) signal under high information load in lateral frontal cortex, presupplementary motor area and striatum. Our findings suggest that inhibitory deficits in older adults are caused both by reduced stopping abilities and by diminished preparation capacity during information overload. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons.

    PubMed

    Kubota, Shinji; Uehara, Kazumasa; Morishita, Takuya; Hirano, Masato; Funase, Kozo

    2014-02-01

    We investigated the extent to which the corticospinal inputs delivered to Ia inhibitory interneurons influence the strength of disynaptic reciprocal Ia inhibition. Seventeen healthy subjects participated in this study. The degree of reciprocal Ia inhibition was determined via short-latency (condition-test interval: 1-3ms) suppression of Sol H-reflex by conditioning stimulation of common peroneal nerve. The effect of corticospinal descending inputs on Ia inhibitory interneurons was assessed by evaluating the conditioning effect of transcranial magnetic stimulation (TMS) on the Sol H-reflex. Then, we determined the relationship between the degree of reciprocal Ia inhibition and the conditioning effect of TMS on the Sol H-reflex. We found that the degree of reciprocal Ia inhibition and the extent of change in the amplitude of the TMS-conditioned H-reflex, which was measured from short latency facilitation to inhibition, displayed a strong correlation (r=0.76, p<0.01) in the resting conditions. The extent of reciprocal Ia inhibition is affected by the corticospinal descending inputs delivered to Ia inhibitory interneurons, which might explain the inter-individual variations in reciprocal Ia inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs

    PubMed Central

    Scott, Fiona L; Denault, Jean-Bernard; Riedl, Stefan J; Shin, Hwain; Renatus, Martin; Salvesen, Guy S

    2005-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) uses its second baculovirus IAP repeat domain (BIR2) to inhibit the apoptotic executioner caspase-3 and -7. Structural studies have demonstrated that it is not the BIR2 domain itself but a segment N-terminal to it that directly targets the activity of these caspases. These studies failed to demonstrate a role of the BIR2 domain in inhibition. We used site-directed mutagenesis of BIR2 and its linker to determine the mechanism of executioner caspase inhibition by XIAP. We show that the BIR2 domain contributes substantially to inhibition of executioner caspases. A surface groove on BIR2, which also binds to Smac/DIABLO, interacts with a neoepitope generated at the N-terminus of the caspase small subunit following activation. Therefore, BIR2 uses a two-site interaction mechanism to achieve high specificity and potency for inhibition. Moreover, for caspase-7, the precise location of the activating cleavage is critical for subsequent inhibition. Since apical caspases utilize this cleavage site differently, we predict that the origin of the death stimulus should dictate the efficiency of inhibition by XIAP. PMID:15650747

  6. Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults.

    PubMed

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Ushiroyama, Kosuke; Naoi, Yuki; Motoya, Ikuo; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2017-03-01

    This study investigated the influence of stimulus conditions of transcutaneous electrical nerve stimulation (TENS) on disynaptic reciprocal Ia inhibition (RI) and presynaptic inhibition (D1 inhibition) in healthy adults. Eight healthy participants received TENS (stimulus frequencies of 50, 100, and 200 Hz) over the deep peroneal nerve and tibialis anterior (TA) muscle in the resting condition for 30 min. At pre- and post-intervention, the RI from the TA to the soleus (SOL) and D1 inhibition of the SOL alpha motor neuron were assessed by evoked electromyography. The results showed that RI was not changed by TENS at any stimulus frequency condition. Conversely, D1 inhibition was significantly changed by TENS regardless of the stimulus frequency. The present results and previous studies pertaining to RI suggest that the resting condition might strongly influence the lack of pre- vs. post-intervention change in the RI. Regarding the D1 inhibition, the present results suggest that the effect of TENS might be caused by post-tetanic potentiation. The knowledge gained from the present study might contribute to a better understanding of fundamental studies of TENS in healthy adults and its clinical application for stroke survivors.

  7. Novel derivatives of aclacinomycin A block cancer cell migration through inhibition of farnesyl transferase.

    PubMed

    Magi, Shigeyuki; Shitara, Tetsuo; Takemoto, Yasushi; Sawada, Masato; Kitagawa, Mitsuhiro; Tashiro, Etsu; Takahashi, Yoshikazu; Imoto, Masaya

    2013-03-01

    In the course of screening for an inhibitor of farnesyl transferase (FTase), we identified two compounds, N-benzyl-aclacinomycin A (ACM) and N-allyl-ACM, which are new derivatives of ACM. N-benzyl-ACM and N-allyl-ACM inhibited FTase activity with IC50 values of 0.86 and 2.93 μM, respectively. Not only ACM but also C-10 epimers of each ACM derivative failed to inhibit FTase. The inhibition of FTase by N-benzyl-ACM and N-allyl-ACM seems to be specific, because these two compounds did not inhibit geranylgeranyltransferase or geranylgeranyl pyrophosphate (GGPP) synthase up to 100 μM. In cultured A431 cells, N-benzyl-ACM and N-allyl-ACM also blocked both the membrane localization of H-Ras and activation of the H-Ras-dependent PI3K/Akt pathway. In addition, they inhibited epidermal growth factor (EGF)-induced migration of A431 cells. Thus, N-benzyl-ACM and N-allyl-ACM inhibited EGF-induced migration of A431 cells by inhibiting the farnesylation of H-Ras and subsequent H-Ras-dependent activation of the PI3K/Akt pathway.

  8. Doxycycline Indirectly Inhibits Proteolytic Activation of Tryptic Kallikrein-Related Peptidases and Activation of Cathelicidin

    PubMed Central

    Kanada, Kimberly N.; Nakatsuji, Teruaki; Gallo, Richard L.

    2014-01-01

    The increased abundance and activity of cathelicidin and kallikrein 5 (KLK5), a predominant trypsin-like serine protease (TLSP) in the stratum corneum, have been implicated in the pathogenesis of rosacea, a disorder treated by the use of low-dose doxycycline. Here we hypothesized that doxycycline can inhibit activation of tryptic KLKs through an indirect mechanism by inhibition of matrix metalloproteinases (MMPs) in keratinocytes. The capacity of doxycycline to directly inhibit enzyme activity was measured in surface collections of human facial skin and extracts of cultured keratinocytes by fluorescence polarization assay against fluorogenic substrates specific for MMPs or TLSPs. Doxycycline did inhibit MMP activity but did not directly inhibit serine protease activity against a fluorogenic substrate specific for TLSPs. However, when doxycycline or other MMP inhibitors were added to live keratinocytes during the production of tryptic KLKs, this treatment indirectly resulted in decreased TLSP activity. Furthermore, doxycycline under these conditions inhibited the generation of the cathelicidin peptide LL-37 from its precursor protein hCAP18, a process dependent on KLK activity. These results demonstrate that doxycycline can prevent cathelicidin activation, and suggest a previously unknown mechanism of action for doxycycline through inhibiting generation of active cathelicidin peptides. PMID:22336948

  9. Effect of Xylitol on Growth of Streptococcus pneumoniae in the Presence of Fructose and Sorbitol

    PubMed Central

    Tapiainen, Terhi; Kontiokari, Tero; Sammalkivi, Laura; Ikäheimo, Irma; Koskela, Markku; Uhari, Matti

    2001-01-01

    Xylitol is effective in preventing acute otitis media by inhibiting the growth of Streptococcus pneumoniae. To clarify this inhibition we used fructose, which is known to block similar growth inhibition observed in Streptococcus mutans. In addition, we evaluated the efficacy of sorbitol in inhibiting the growth of pneumococci, as sorbitol is widely used for indications similar to those for which xylitol is used. The addition of 5% xylitol to the growth medium resulted in marked growth inhibition, an effect which was totally eliminated in the presence of 1, 2.5, or 5% fructose but not in the presence of 1 or 5% glucose, 1% galactose, or 1% sucrose. This finding implies that xylitol-induced inhibition of pneumococcal growth is mediated via the fructose phosphotransferase system in a way similar to that in which mutans group streptococcal growth is inhibited. The addition of sorbitol at concentrations of 1, 2.5, or 5% to the growth medium did not affect the growth of pneumococci and neither inhibited nor enhanced the xylitol-induced growth impairment. Thus, it seems that xylitol is the only commercially used sugar substitute proven to have an antimicrobial effect on pneumococci. PMID:11120960

  10. Effect of propolis in gastric disorders: inhibition studies on the growth of Helicobacter pylori and production of its urease.

    PubMed

    Baltas, Nimet; Karaoglu, Sengul Alpay; Tarakci, Cemre; Kolayli, Sevgi

    2016-01-01

    There is considerable interest in alternative approaches to inhibit Helicobacter pylori (H. pylori) and thus treat many stomach diseases. Propolis is a pharmaceutical mixture containing many natural bioactive substances. The aim of this study was to use propolis samples to treat H. pylori. The anti-H. pylori and anti-urease activities of 15 different ethanolic propolis extracts (EPEs) were tested. The total phenolic contents and total flavonoid contents of the EPE were also measured. The agar-well diffusion assay was carried out on H. pylori strain J99 and the inhibition zones were measured and compared with standards. All propolis extracts showed high inhibition of H. pylori J99, with inhibition diameters ranging from 31.0 to 47.0 mm. Helicobacter pylori urease inhibitory activity was measured using the phenol-hypochlorite assay; all EPEs showed significant inhibition against the enzyme, with inhibition concentrations (IC 50 ; mg/mL) ranging from 0.260 to 1.525 mg/mL. The degree of inhibition was related to the phenolic content of the EPE. In conclusion, propolis extract was found to be a good inhibitor that can be used in H. pylori treatment to improve human health.

  11. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukasaki, Masayuki; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp; Suzuki, Dai

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- andmore » dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.« less

  12. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition

    PubMed Central

    Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael

    2015-01-01

    Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880

  13. Myostatin inhibition prevents diabetes and hyperphagia in a mouse model of lipodystrophy.

    PubMed

    Guo, Tingqing; Bond, Nichole D; Jou, William; Gavrilova, Oksana; Portas, Jennifer; McPherron, Alexandra C

    2012-10-01

    Lipodystrophies are characterized by a loss of white adipose tissue, which causes ectopic lipid deposition, peripheral insulin resistance, reduced adipokine levels, and increased food intake (hyperphagia). The growth factor myostatin (MSTN) negatively regulates skeletal muscle growth, and mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. MSTN inhibition may therefore be efficacious in ameliorating diabetes. To test this hypothesis, we inhibited MSTN signaling in a diabetic model of generalized lipodystrophy to analyze its effects on glucose metabolism separate from effects on adipose mass. A-ZIP/F1 lipodystrophic mice were crossed to mice expressing a dominant-negative MSTN receptor (activin receptor type IIB) in muscle. MSTN inhibition in A-ZIP/F1 mice reduced blood glucose, serum insulin, triglyceride levels, and the rate of triglyceride synthesis, and improved insulin sensitivity. Unexpectedly, hyperphagia was normalized by MSTN inhibition in muscle. Blood glucose and hyperphagia were reduced in double mutants independent of the adipokine leptin. These results show that the effect of MSTN inhibition on insulin sensitivity is not secondary to an effect on adipose mass and that MSTN inhibition may be an effective treatment for diabetes. These results further suggest that muscle may play a heretofore unappreciated role in regulating food intake.

  14. [Antifungal effect of phenolic and carotenoids extracts from chiltepin (Capsicum annum var. glabriusculum) on Alternaria alternata and Fusarium oxysporum].

    PubMed

    Rodriguez-Maturino, Alfonso; Troncoso-Rojas, Rosalba; Sánchez-Estrada, Alberto; González-Mendoza, Daniel; Ruiz-Sanchez, Esau; Zamora-Bustillos, Roberto; Ceceña-Duran, Carlos; Grimaldo-Juarez, Onecimo; Aviles-Marin, Mónica

    2015-01-01

    The effect of phenolic and carotenoid extracts from chiltepin fruits on mycelial growth and the inhibition of conidial germination of Alternaria alternata and Fusarium oxysporum were investigated in the present work. Phenolic extracts inhibited mycelial growth of A.alternata by 38.46%, and significantly reduced conidial germination on the fifth day after treatment to 92% in relation to control. No significant changes were observed in the inhibition of mycelial growth in Fusarium oxysporum; however, the number of germinated conidia was reduced, showing 85% inhibition five days after treatment in relation to control. Moreover, carotenoid extracts showed 38.5% inhibition of mycelial growth and 85.3% inhibition of conidial germination of A.alternata, five days after treatment. Carotenoid extracts showed less inhibition of mycelial growth (20.3%) in F.oxysporum, with respect to A.alternata; while there was greater inhibition of conidial germination (96%) on the fifth day after treatment. Phenolic and carotenoid extracts from chiltepin may be a promising alternative as a natural fungicide against fungi of agricultural importance. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Inhibition effect of fatty amides with secondary compound on carbon steel corrosion in hydrodynamic condition

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. M.; Jai, J.; Daud, M.; Hashim, Md A.

    2018-03-01

    The inhibition effect demonstrates an increase in the inhibition performance in presence of a secondary compound in the inhibited solution. This study introduces fatty amides as corrosion inhibitor and oxygen scavenger, namely, sodium sulphite as a secondary compound. The main objective is to determine the synergistic inhibition effect of a system by using fatty amides together with sodium sulphite in hydrodynamic condition. The synergistic inhibition of fatty amides and sodium sulphite on corrosion of carbon steel in 3.5 wt% sodium chloride solution had been studied using linear polarization resistance method and scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX). Electrochemical measurement was carried out using rotating cylinder electrode at different flow regimes (static, laminar, transition and turbulent). Linear polarization resistance experiments showed the changes in polarization resistance when the rotation speed increased. It found that, by addition of fatty amides together with sodium sulphite in test solution, the inhibition efficiency increased when rotation speed increased. The results collected from LPR experiment correlated with results from SEM-EDX. The results showed inhibition efficiency of system was enhanced when fatty amides and oxygen scavengers were present together.

  16. Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity.

    PubMed

    Tao, Guoxin; Irie, Yoshifumi; Li, Dian-Jun; Keung, Wing Ming

    2005-08-01

    Eugenol (1) is an active principle of Rhizoma acori graminei, a medicinal herb used in Asia for the treatment of symptoms reminiscent of Alzheimer's disease (AD). It has been shown to protect neuronal cells from the cytotoxic effect of amyloid beta peptides (Abetas) in cell cultures and exhibit antidepressant-like activity in mice. Results from this study show that eugenol inhibits monoamine oxidase A (MAOA) preferentially with a K(i)=26 microM. It also inhibits MAOB but at much higher concentrations (K(i)=211 microM). In both cases, inhibition is competitive with respect to the monoamine substrate. Survey of compounds structurally related to eugenol has identified a few that inhibit MAOs more potently. Structure activity relationship reveals structural features important for MAOA and MAOB inhibition. Molecular docking experiments were performed to help explain the SAR outcomes. Four of these compounds, two (1, 24) inhibiting MAOA selectively and the other two (19, 21) inhibiting neither MAOA nor MAOB, were tested for antidepressant-like activity using the forced swim test in mice. Results suggest a potential link between the antidepressant activity of eugenol and its MAOA inhibitory activity.

  17. Parenting Predictors of Delay Inhibition in Socioeconomically Disadvantaged Preschoolers

    PubMed Central

    Merz, Emily C.; Landry, Susan H.; Zucker, Tricia A.; Barnes, Marcia A.; Assel, Michael; Taylor, Heather B.; Lonigan, Christopher J.; Phillips, Beth M.; Clancy-Menchetti, Jeanine; Eisenberg, Nancy; Spinrad, Tracy L.; Valiente, Carlos; de Villiers, Jill; Consortium, the School Readiness Research

    2016-01-01

    This study examined longitudinal associations between specific parenting factors and delay inhibition in socioeconomically disadvantaged preschoolers. At Time 1, parents and 2- to 4-year-old children (mean age = 3.21 years; N = 247) participated in a videotaped parent-child free play session, and children completed delay inhibition tasks (gift delay-wrap, gift delay-bow, and snack delay tasks). Three months later, at Time 2, children completed the same set of tasks. Parental responsiveness was coded from the parent-child free play sessions, and parental directive language was coded from transcripts of a subset of 127 of these sessions. Structural equation modeling was used, and covariates included age, gender, language skills, parental education, and Time 1 delay inhibition. Results indicated that in separate models, Time 1 parental directive language was significantly negatively associated with Time 2 delay inhibition, and Time 1 parental responsiveness was significantly positively associated with Time 2 delay inhibition. When these parenting factors were entered simultaneously, Time 1 parental directive language significantly predicted Time 2 delay inhibition whereas Time 1 parental responsiveness was no longer significant. Findings suggest that parental language that modulates the amount of autonomy allotted the child may be an important predictor of early delay inhibition skills. PMID:27833461

  18. [Breast-feeding (part II): Lactation inhibition--Guidelines for clinical practice].

    PubMed

    Marcellin, L; Chantry, A A

    2015-12-01

    Provide guidelines for clinical use of non-pharmacological and pharmacological treatments of inhibition of lactation and the management of the weaning. Systematically review of the literature between 1972 and May 2015 from the databases Medline, Google Scholar, Cochrane Library, and the international recommendations about inhibition of lactation with establishment of levels of evidence (LE) and grades of recommendation. The available data on the effectiveness of non-pharmacological measures are limited, with very low levels of evidence that fail to make recommendations (Professional consensus). Pharmacological treatments for inhibition of lactation should not be given routinely to women who do not wish to breast-feed (Professional consensus). For women aware of the risks of pharmacological treatments of inhibition of lactation, lisuride and cabergolin are the preferred drugs (Professional consensus). Because of potentially serious adverse effects, bromocriptin is contraindicated in inhibiting lactation (Professional consensus). Available data on management of lactation weaning fail to provide recommendation and no treatment is recommended (Professional consensus). Bromocriptin is contraindicated in the treatment of inhibiting lactation. Women who do not wish to breast-feed have to be informed of the benefits and disadvantages of the pharmacological treatment for inhibition of lactation. Copyright © 2015. Published by Elsevier Masson SAS.

  19. RIC-3 phosphorylation enables dual regulation of excitation and inhibition of Caenorhabditis elegans muscle

    PubMed Central

    Safdie, Gracia; Liewald, Jana F.; Kagan, Sarah; Battat, Emil; Gottschalk, Alexander; Treinin, Millet

    2016-01-01

    Brain function depends on a delicate balance between excitation and inhibition. Similarly, Caenorhabditis elegans motor system function depends on a precise balance between excitation and inhibition, as C. elegans muscles receive both inhibitory, GABAergic and excitatory, cholinergic inputs from motor neurons. Here we show that phosphorylation of the ER-resident chaperone of nicotinic acetylcholine receptors, RIC-3, leads to increased muscle excitability. RIC-3 phosphorylation at Ser-164 depends on opposing functions of the phosphatase calcineurin (TAX-6), and of the casein kinase II homologue KIN-10. Effects of calcineurin down-regulation and of phosphorylated RIC-3 on muscle excitability are mediated by GABAA receptor inhibition. Thus RIC-3 phosphorylation enables effects of this chaperone on GABAA receptors in addition to nAChRs. This dual effect provides coordinated regulation of excitation and inhibition and enables fine-tuning of the excitation–inhibition balance. Moreover, regulation of inhibitory GABAA signaling by calcineurin, a calcium- and calmodulin-dependent phosphatase, enables homeostatic balancing of excitation and inhibition. PMID:27489343

  20. Studies on collagen-tannic acid-collagenase ternary system: Inhibition of collagenase against collagenolytic degradation of extracellular matrix component of collagen.

    PubMed

    Krishnamoorthy, Ganesan; Sehgal, Praveen Kumar; Mandal, Asit Baran; Sadulla, Sayeed

    2012-06-01

    We report the detailed studies on the inhibitory effect of tannic acid (TA) on Clostridium histolyticum collagenase (ChC) activity against degradation of extracellular matrix component of collagen. The TA treated collagen exhibited 64% resistance against collagenolytic hydrolysis by ChC, whereas direct interaction of TA with ChC exhibited 99% inhibition against degradation of collagen and the inhibition was found to be concentration dependant. The kinetic inhibition of ChC has been deduced from the extent of hydrolysis of N-[3-(2-furyl) acryloyl]-Leu-Gly-Pro-Ala (FALGPA). This data provides a selective competitive mode of inhibition on ChC activity seems to be influenced strongly by the nature and structure of TA. TA showed inhibitor activity against the ChC by molecular docking method. This result demonstrated that TA containing digalloyl radical possess the ability to inhibit the ChC. The inhibition of ChC in gaining new insight into the mechanism of stabilization of collagen by TA is discussed.

  1. Inhibition of Helicobacter pylori and Associated Urease by Oregano and Cranberry Phytochemical Synergies

    PubMed Central

    Lin, Y. T.; Kwon, Y. I.; Labbe, R. G.; Shetty, K.

    2005-01-01

    Ulcer-associated dyspepsia is caused by infection with Helicobacter pylori. H. pylori is linked to a majority of peptic ulcers. Antibiotic treatment does not always inhibit or kill H. pylori with potential for antibiotic resistance. The objective of this study was to determine the potential for using phenolic phytochemical extracts to inhibit H. pylori in a laboratory medium. Our approach involved the development of a specific phenolic profile with optimization of different ratios of extract mixtures from oregano and cranberry. Subsequently, antimicrobial activity and antimicrobial-linked urease inhibition ability were evaluated. The results indicated that the antimicrobial activity was greater in extract mixtures than in individual extracts of each species. The results also indicate that the synergistic contribution of oregano and cranberry phenolics may be more important for inhibition than any species-specific phenolic concentration. Further, based on plate assay, the likely mode of action may be through urease inhibition and disruption of energy production by inhibition of proline dehydrogenase at the plasma membrane. PMID:16332847

  2. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    PubMed

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  3. A corollary discharge maintains auditory sensitivity during sound production

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2002-08-01

    Speaking and singing present the auditory system of the caller with two fundamental problems: discriminating between self-generated and external auditory signals and preventing desensitization. In humans and many other vertebrates, auditory neurons in the brain are inhibited during vocalization but little is known about the nature of the inhibition. Here we show, using intracellular recordings of auditory neurons in the singing cricket, that presynaptic inhibition of auditory afferents and postsynaptic inhibition of an identified auditory interneuron occur in phase with the song pattern. Presynaptic and postsynaptic inhibition persist in a fictively singing, isolated cricket central nervous system and are therefore the result of a corollary discharge from the singing motor network. Mimicking inhibition in the interneuron by injecting hyperpolarizing current suppresses its spiking response to a 100-dB sound pressure level (SPL) acoustic stimulus and maintains its response to subsequent, quieter stimuli. Inhibition by the corollary discharge reduces the neural response to self-generated sound and protects the cricket's auditory pathway from self-induced desensitization.

  4. Detection and Quantification of Ribosome Inhibition by Aminoglycoside Antibiotics in Living Bacteria Using an Orthogonal Ribosome-Controlled Fluorescent Reporter.

    PubMed

    Huang, Shijie; Zhu, Xuechen; Melançon, Charles E

    2016-01-15

    The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome-controlled green fluorescent protein (GFP) reporter that produce fluorescent signal when the orthogonal ribosome is inhibited. As a proof of concept, we demonstrate that these strains, when coexpressing homogeneous populations of aminoglycoside resistant ribosomes, act as sensitive and quantitative detectors of ribosome inhibition by a set of 12 structurally diverse aminoglycoside antibiotics. We suggest that this strategy can be extended to quantifying ribosome inhibition by other drug classes.

  5. Inhibition of PTEN and activation of Akt by menadione.

    PubMed

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-04-01

    Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.

  6. Btk inhibition treats TLR7/IFN driven murine lupus.

    PubMed

    Bender, Andrew T; Pereira, Albertina; Fu, Kai; Samy, Eileen; Wu, Yin; Liu-Bujalski, Lesley; Caldwell, Richard; Chen, Yi-Ying; Tian, Hui; Morandi, Federica; Head, Jared; Koehler, Ursula; Genest, Melinda; Okitsu, Shinji L; Xu, Daigen; Grenningloh, Roland

    2016-03-01

    Bruton's tyrosine kinase (Btk) is expressed in a variety of immune cells and previous work has demonstrated that blocking Btk is a promising strategy for treating autoimmune diseases. Herein, we utilized a tool Btk inhibitor, M7583, to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon. In BXSB-Yaa lupus mice, Btk inhibition reduced autoantibodies, nephritis, and mortality. In the pristane-induced DBA/1 lupus model, Btk inhibition suppressed arthritis, but autoantibodies and the IFN gene signature were not significantly affected; suggesting efficacy was mediated through inhibition of Fc receptors. In vitro studies using primary human macrophages revealed that Btk inhibition can block activation by immune complexes and TLR7 which contributes to tissue damage in SLE. Overall, our results provide translational insight into how Btk inhibition may provide benefit to a variety of SLE patients by affecting both BCR and FcR signaling. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Specific Effect of Guanidine in the Programming of Poliovirus Inhibition of Deoxyribonucleic Acid Synthesis

    PubMed Central

    Powers, C. D.; Miller, B. A.; Kurtz, H.; Ackermann, W. W.

    1969-01-01

    Inhibition of HeLa cell deoxyribonucleic acid (DNA) synthesis, which occurred by the 4th to 5th hr after infection with poliovirus, could be blocked completely by guanidine only when it was present before the 2nd hr. At the 2nd hr, there was no significant ribonucleic acid (RNA)-replicase activity, and addition of guanidine inhibited all production of virus but allowed 57% of maximal DNA inhibition to develop. Maximum DNA inhibition developed in cells infected for 4 hr in the presence of guanidine when the guanidine was removed for a 10-min interval. RNA-replicase activity was not enzymatically detectable and viral multiplication did not develop in these cells unless the interval without guanidine was extended to 60 min. The interpretation of the data was that the effect of guanidine on viral-induced inhibition of DNA synthesis was distinct and not a consequence of the inhibition of RNA-replicase. PMID:4305675

  8. Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion

    PubMed Central

    Hayes, Heather Brant; Chang, Young-Hui

    2012-01-01

    Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562

  9. Inhibition of AMPK catabolic action by GSK3

    PubMed Central

    Suzuki, Tsukasa; Bridges, Dave; Nakada, Daisuke; Skiniotis, Georgios; Morrison, Sean J.; Lin, Jiandie; Saltiel, Alan R.; Inoki, Ken

    2013-01-01

    SUMMARY AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by inhibiting anabolic and activating catabolic processes. While AMPK activation has been extensively studied, mechanisms that inhibit AMPK remain elusive. Here we report that glycogen synthase kinase 3 (GSK3) inhibits AMPK function. GSK3 forms a stable complex with AMPK through interactions with the AMPK β regulatory subunit and phosphorylates the AMPK α catalytic subunit. This phosphorylation enhances the accessibility of the activation loop of the α subunit to phosphatases, thereby inhibiting AMPK kinase activity. Surprisingly, PI3K-Akt signaling, which is a major anabolic signaling and normally inhibits GSK3 activity, promotes GSK3 phosphorylation and inhibition of AMPK, thus revealing how AMPK senses anabolic environments in addition to cellular energy levels. Consistently, disrupting GSK3 function within the AMPK complex sustains higher AMPK activity and cellular catabolic processes even under anabolic conditions, indicating that GSK3 acts as a critical sensor for anabolic signaling to regulate AMPK. PMID:23623684

  10. Rho kinase inhibition drives megakaryocyte polyploidization and proplatelet formation through MYC and NFE2 downregulation.

    PubMed

    Avanzi, Mauro P; Goldberg, Francine; Davila, Jennifer; Langhi, Dante; Chiattone, Carlos; Mitchell, William Beau

    2014-03-01

    The processes of megakaryocyte polyploidization and demarcation membrane system (DMS) formation are crucial for platelet production, but the mechanisms controlling these processes are not fully determined. Inhibition of Rho kinase (ROCK) signalling leads to increased polyploidization in umbilical cord blood-derived megakaryocytes. To extend these findings we determined the effect of ROCK inhibition on development of the DMS and on proplatelet formation. The underlying mechanisms were explored by analysing the effect of ROCK inhibition on the expression of MYC and NFE2, which encode two transcription factors critical for megakaryocyte development. ROCK inhibition promoted DMS formation, and increased proplatelet formation and platelet release. Rho kinase inhibition also downregulated MYC and NFE2 expression in mature megakaryocytes, and this down-regulation correlated with increased proplatelet formation. Our findings suggest a model whereby ROCK inhibition drives polyploidization, DMS growth and proplatelet formation late in megakaryocyte maturation through downregulation of MYC and NFE2 expression. © 2014 John Wiley & Sons Ltd.

  11. Effects of Inhibition Conditions on Anammox process

    NASA Astrophysics Data System (ADS)

    Xie, Haitao; Ji, Dandan; Zang, Lihua

    2017-12-01

    Anaerobic ammonium oxidation (Anammox) is a very suitable process for the treatment of nitrogen-rich wastewater, which is a promising new biological nitrogen removal process, and has a good application prospects. However, the Anammox process is inhibited by many factors, which hinders the process improvement and the application of the Anammox process. Such as organic,temperature,salts,heavy metals, phosphates, sulfides, pH and other inhibitors are usually present in practical applications. We have reviewed the previous researches on the inhibition of Anammox processes. The effect of the substrate on the anaerobic oxide is mainly caused by free ammonia or nitrite nitrogen. Most heavy metals inhibit Anammox growth and activity. The inhibition of organic matter depends on the content of organic matter and species. High salinity inhibits Anammox activity. Dissolved oxygen allows the flora to be in a balanced state. The optimum pH and temperature, as well as other factors, can provide a good growth environment for Anammox. The knowledge of inhibition on Anammox will help prevent the application and improvement of the Anammox process.

  12. Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste.

    PubMed

    Schievano, Andrea; D'Imporzano, Giuliana; Malagutti, Luca; Fragali, Emilio; Ruboni, Gabriella; Adani, Fabrizio

    2010-07-01

    High-solids anaerobic digestion (HSAD) processes, when applied to different types of organic fractions of municipal solid waste (OFMSW), may easily be subjected to inhibition due to organic overloading. In this study, a new approach for predicting these phenomena was proposed based on the estimation of the putrescibility (oxygen consumption in 20 h biodegradation, OD(20)) of the organic mixtures undergoing the HSAD process. Different wastes exhibiting different putrescibility were subjected to lab-scale batch-HSAD. Measuring the organic loading (OL) as volatile solids (VS) was found unsuitable for predicting overload inhibition, because similar VS contents corresponded to both inhibited and successful trials. Instead, the OL calculated as OD(20) was a very good indicator of the inhibiting conditions (inhibition started for OD(20)>17-18 g O(2)kg(-1)). This new method of predicting inhibition in the HSAD process of diverse OFMSW may be useful for developing a correct approach to the technology in very different contexts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  14. Growth inhibition of Saccharomyces cerevisiae by the immunosuppressant leflunomide is due to the inhibition of uracil uptake via Fur4p.

    PubMed

    Fujimura, H

    1998-10-01

    The immunosuppressant leflunomide inhibits cytokine-stimulated proliferation of lymphoid cells in vitro and also inhibits the growth of the eukaryotic microorganism Saccharomyces cerevisiae. To elucidate the molecular mechanism of action of the drug, two yeast genes which suppress the anti-proliferative effect when present in multiple copies were cloned and designated MLF1 and MLF2 for multicopy suppressor of leflunomide sensitivity. DNA sequencing analysis revealed that the MLF1 gene is identical to the FUR4 gene, which encodes a uracil permease and functions to import uracil efficiently. The MLF2 was found to be identical to the URA3 gene. Excess exogenous uracil also overcomes the anti-proliferative effect of leflunomide on yeast cells. Uracil prototrophy also conferred resistance to leflunomide. Uracil uptake was inhibited by leflunomide. Thus, the growth inhibition by leflunomide seen in a S. cerevisiae ura3 auxotroph is due to the inhibition of the entry of exogenous uracil via the Fur4 uracil permease.

  15. Oxidative Pentose Phosphate Pathway Inhibition Is A Key Determinant of Antimalarial Induced Cancer Cell Death

    PubMed Central

    Salas, Eduardo; Roy, Srirupa; Marsh, Timothy; Rubin, Brian; Debnath, Jayanta

    2015-01-01

    Despite immense interest in employing antimalarials as autophagy inhibitors to treat cancer, it remains unclear if these agents act predominantly via autophagy inhibition or whether other pathways direct their anti-cancer properties. By comparing the treatment effects of the antimalarials chloroquine (CQ) and quinacrine (Q) on KRAS mutant lung cancer cells, we demonstrate that inhibition of the oxidative arm of the pentose phosphate pathway (oxPPP) is required for antimalarial induced apoptosis. Despite inhibiting autophagy, neither CQ treatment nor RNAi against autophagy regulators (ATGs) promote cell death. In contrast, Q triggers high levels of apoptosis, both in vitro and in vivo, and this phenotype requires both autophagy inhibition and p53-dependent inhibition of the oxPPP. Simultaneous genetic targeting of the oxPPP and autophagy is sufficient to trigger apoptosis in lung cancer cells, including cells lacking p53. Thus, in addition to reduced autophagy, oxPPP inhibition serves as an important determinant of antimalarial cytotoxicity in cancer cells. PMID:26434592

  16. Identification of a Phosphodiesterase-Inhibiting Fraction from Roasted Coffee (Coffea arabica) through Activity-Guided Fractionation.

    PubMed

    Röhrig, Teresa; Liesenfeld, David; Richling, Elke

    2017-05-17

    Recent reports that coffee can significantly inhibit cAMP phosphodiesterases (PDEs) in vitro, as well as in vivo, have described another beneficial effect of coffee consumption. However, the PDE-inhibiting substances remain mostly unknown. We chose activity-guided fractionation and an in vitro test system to identify the coffee components that are responsible for PDE inhibition. This approach indicated that a fraction of melanoidins reveals strong PDE-inhibiting potential (IC 50 = 130 ± 42 μg/mL). These melanoidins were characterized as water-soluble, low-molecular weight melanoidins (<3 kDa) with a nitrogen content of 4.2% and a carbohydrate content lower than those of other melanoidins. Fractions containing known PDE inhibitors such as chlorogenic acids, alkylpyrazines, or trigonelline as well as N-caffeoyl-tryptophan and N-p-coumaroyl-tryptophan did not exert PDE-inhibiting activity. We also observed that the known PDE inhibitor caffeine does not contribute to the PDE-inhibiting effects of coffee.

  17. Oligosynaptic inhibition of group Ia afferents from brachioradialis to triceps brachii motor neurons in humans.

    PubMed

    Sato, Toshiaki; Nito, Mitsuhiro; Suzuki, Katsuhiko; Fujii, Hiromi; Hashizume, Wataru; Miyasaka, Takuji; Shindo, Masaomi; Naito, Akira

    2018-01-01

    This study examines effects of low-threshold afferents from the brachioradialis (BR) on excitability of triceps brachii (TB) motor neurons in humans. We evaluated the effects using a post stimulus time histogram (PSTH) and electromyogram averaging (EMG-A) methods in 13 healthy human participants. Electrical conditioning stimulation to the radial nerve branch innervating BR with the intensity below the motor threshold was delivered. In the PSTH study, the stimulation produced a trough (inhibition) in 36/69 TB motor units for all the participants. A cutaneous stimulation never provoked such inhibition. The central latency of the inhibition was 1.5 ± 0.5 ms longer than that of the homonymous facilitation. In the EMG-A study, the stimulation produced inhibition in EMG-A of TB in all participants. The inhibition diminished with a tonic vibration stimulation to BR. These findings suggest that oligosynaptic inhibition mediated by group Ia afferents from BR to TB exists in humans. Muscle Nerve 57: 122-128, 2018. © 2017 Wiley Periodicals, Inc.

  18. Inhibition.

    ERIC Educational Resources Information Center

    Kupperman, Joel J.

    1978-01-01

    Explores the use of the concept of inhibition in moral philosophy. Argues that there are strong practical reasons for basing moral teaching on simple moral rules and for inculcating inhibitions about breaking these rules. (Author)

  19. A Selective Organic-Based Corrosion Inhibitors Containing Iodide Ion as Enhancer for Protection of Carbon Steel: A Review

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. M.; Kassim, E. S. Mohd; Husin, H.; Jai, J.; Daud, M.; Hashim, M. A.

    2018-05-01

    This paper contains a review on the effect of halide ion with a selected inhibitor which is imidazole derivatives on the efficiency of corrosion inhibition. The paper first describes the mechanism of synergistic inhibition effect among halide ions enhancer with inhibitor on the steel surface. Then the paper describes the measured inhibition efficiency and summarizes the synergistic inhibition condition of imidazoline derivatives inhibitor with iodide ions. The characteristic of synergistic inhibition effect and the relationship between the amount of iodide ion consumption and the amount of organic inhibitor consumption are also discussed. It has been shown that, the synergistic effect between imidazole derivative and iodide ion is an effective method to improve the inhibitive performance in different aqueous media.

  20. Aurintricarboxylic acid is a potent inhibitor of phosphofructokinase.

    PubMed Central

    McCune, S A; Foe, L G; Kemp, R G; Jurin, R R

    1989-01-01

    Aurintricarboxylic acid (ATA) was found to be a very potent inhibitor of purified rabbit liver phosphofructokinase (PFK), giving 50% inhibition at 0.2 microM. The inhibition was in a manner consistent with interaction at the citrate-inhibitory site of the enzyme. The data suggest that inhibition of PFK by ATA was not due to denaturation of the enzyme or the irreversible binding of inhibitor, since the inhibition could be reversed by addition of allosteric activators of PFK, i.e. fructose 2,6-bisphosphate or AMP. Two other tricarboxylic acids, agaric acid and (-)-hydroxycitrate, were found to inhibit PFK. ATA at much higher concentrations (500 microM) was shown to inhibit fatty acid synthesis from endogenous glycogen in rat hepatocytes; however, protein synthesis was not altered. PMID:2525029

  1. Timing of growth inhibition following shoot inversion in Pharbitis nil

    NASA Technical Reports Server (NTRS)

    Abdel-Rahman, A. M.; Cline, M. G.

    1989-01-01

    Shoot inversion in Pharbitis nil results in the enhancement of ethylene production and in the inhibition of elongation in the growth zone of the inverted shoot. The initial increase in ethylene production previously was detected within 2 to 2.75 hours after inversion. In the present study, the initial inhibition of shoot elongation was detected within 1.5 to 4 hours with a weighted mean of 2.4 hours. Ethylene treatment of upright shoots inhibited elongation in 1.5 hours. A cause and effect relationship between shoot inversion-enhanced ethylene production and inhibition of elongation cannot be excluded.

  2. Sigma receptor ligand N,N'-di-(ortho-tolyl)guanidine inhibits release of acetylcholine in the guinea pig ileum.

    PubMed

    Cambell, B G; Keana, J F; Weber, E

    1991-11-26

    The inhibition of stimulated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation by sigma receptor ligands has been previously described. In this study, the stimulated release of [3H]acetylcholine from cholinergic nerve terminals in this same preparation was monitored in the presence and absence of sigma receptor ligands. N,N'-Di-(orthotolyl)guanidine (DTG) and other compounds selective for the sigma receptor inhibited stimulated [3H]acetylcholine release. These results suggest that their inhibition of stimulated contractions in this preparation was mediated by inhibition of acetylcholine release.

  3. Inhibition of Human Cytochrome P450 2c8-catalyzed Amodiaquine N-desethylation: Effect of Five Traditionally and Commonly Used Herbs

    PubMed Central

    Muthiah, Yasotha Devi; Ong, Chin Eng; Sulaiman, Siti Amrah; Ismail, Rusli

    2016-01-01

    Background: In Southeast Asia and many parts of the world, herbal products are increasingly used in parallel with modern medicine. Objective: This study aimed to investigate the effects of herbs commonly used in Southeast Asia on activity of cytochrome P450 2C8 (CYP2C8), an important human hepatic enzyme in drug metabolism. Materials and Methods: The selected herbs, such as Eurycoma longifolia Jack (ELJ), Labisia pumila (LP), Echinacea purpurea (EP), Andrographis paniculata (AP), and Ginkgo biloba (GB), were subjected to inhibition studies using an in vitro CYP2C8 activity marker, amodiaquine N-desethylase assay. Inhibition parameters, inhibitory concentration 50% (IC50), and Ki values were determined to study the potency and mode of inhibition. Results: All herbs inhibited CYP2C8 with the following order of potency: LP > ELJ > GB > AP > EP. LP and ELJ inhibited potently at Ki's of 2 and 4 times the Ki of quercetin, the positive control. The inhibition by LP was uncompetitive in nature as compared to competitive or mixed type inhibition observed with other herbs. GB exhibited moderate inhibitory effect at a Ki6 times larger than quercetin Ki. AP and EP, on the other hand, showed only weak inhibition. Conclusion: The herbs we chose represented the more commonly used herbs in Southeast Asia where collision of tradition and modernization in healthcare, if not properly managed, may lead to therapeutic misadventures. We conclude that concurrent consumption of some herbs, in particular, LP and ELJ, may have relevance in drug-herb interactions via CYP2C8 inhibition in vivo. SUMMARY Herbs are increasingly used in parallel with modern medicines nowadays. In this study five commonly used herbs in Southeast Asia region, ELJ, LP, EP, AP and GB, were investigated for their in vitro inhibitory potency on CYP2C8, an important drug-metaboliz-ing human hepatic enzyme. All herbs inhibited CYP2C8 activity marker, amodiaquine N-desethylation, with potency order of LP > ELJ > GB >AP > EP. LP, ELJ and GB exhibited Ki values of 2, 4 and 6 times the Ki of quercetin, the positive control, indicating potent to moderate degree of enzyme inhibition. AP and EP, on the other hand, showed only weak inhibition. In summary, concurrent consumption of some herbs especially LP and ELJ may have relevance in drug-herb interactions via CYP2C8 inhibition in vivo. Abbreviations Used: AQ: Amodiaquine, AP: Andrographis paniculata, CYP: Cytochrome P450, DEAQ: Desethylamodiaquine, EP: Echinacea purpurea, ELJ: Eurycoma longifolia Jack, GB: Ginkgo biloba, Ki: Inhibition constant, LP: Labisia pumila, Vmax: Maximal velocity, Km: Michaelis-Menten constant. PMID:27695271

  4. Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami.

    PubMed

    Ben-Ari, Y; Dingledine, R; Kanazawa, I; Kelly, J S

    1976-10-01

    1. Short iontophoretic pulses of acetylcholine (ACh) inhibited almost every spontaneously active cell encountered in the nucleus reticularis thalami of cats anaesthetized with a mixture of halothane, nitrous oxide and oxygen. On 200 cells the mean current needed to eject an effective inhibitory dose of ACh was 67 +/- 2 nA. When the ACh-evoked inhibition was mimicked by gamma-aminobutyric acid (GABA) or glycine on the same cell, the current required to release ACh was found to be approximately twice as great as that required to release an equally effective dose of GABA or glycine. 2. ACh inhibitions developed with a latency which was very much shorter than that for ACh excitation in cells of the ventrobasal complex. The latency of the ACh-evoked inhibition was as rapid as the onset and offset of the excitation of the same cells glutamate and their inhibition by GABA or glycine. 3. The firing pattern of ACh-inhibited neurones in the nucleus reticularis was characterized by periods of prolonged, high frequency bursts, and their mean firing frequency was 22 Hz. Raster dot displays and interspike interval histograms showed that whereas ACh suppressed the spikes that occurred between bursts much more readily than those that occurred during bursts, all spikes were equally sensitive to the depressant action of GABA and glycine. Large doses of ACh provoked or exaggerated burst activity. 4. ACh-evoked inhibition was extremely sensitive to blockade by short iontophoretic applications of atropine, which had no effect on the inhibitions evoked on the same cell equipotent doses of GABA or glycine. The ACh-evoked inhibitions were also antagonized by dihydro-beta-erythroidine released with slightly larger currents. When tested on the same cell, small iontophoretic applications of picrotoxin and bicuculline methoiodide blocked the inhibition evoked by GABA but had no effect on that evoked by ACh. Iontophoretic strychnine only rarely affected the inhibition evoked by ACh, while readily blocking the inhibition evoked on the same cell by an equipotent dose of glycine. In two cats, intravenous strychnine (1-2 mg/kg) had no effect on the ACh-evoked inhibition, while greatly reducing the sensitivity of the cell under study to glycine. 5. Only four out of forty-eight ACh-inhibted cells tested were inhibited by iontophoretic applications of either guanosine or adenosine 3':5'-phosphate. 6. Cells of the nucleus reticularis have been shown to have an inhibitory action on the thalamic relay cells, which are excited by ACh. It is suggested that the presence of both ACh excited and inhibited cells in different nuclei of the thalamus could be of considerable functional significance in gating sensory transmission through the thalamus.

  5. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2-bromooctanoic acid was determined to be 60 μM, assuming a single-site binding of the inhibitor at a specific inhibition site. Thus, it seems likely that a coenzyme A thioester derivative of 2-bromooctanoic acid specifically inhibits an enzyme linking the two pathways, fatty acid de novo synthesis and PHA synthesis. We suggest that 2-bromooctanoic acid can substitute for the far more expensive (2,000 times) and cell-growth-inhibiting PHA synthesis inhibitor, cerulenin. PMID:11679314

  6. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Sheng-Nan; Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC; Chang, Yu-Ping

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selectivemore » inhibitory effect on CYP1B1.1 with the least K{sub i} value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC{sub 50} values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn228 in CYP1B1 was an important residue for berberine-mediated inhibition.« less

  7. Inhibition of highly productive HIV-1 infection in T cells, primary human macrophages, microglia, and astrocytes by Sargassum fusiforme

    PubMed Central

    Paskaleva, Elena E; Lin, Xudong; Li, Wen; Cotter, Robin; Klein, Michael T; Roberge, Emily; Yu, Er K; Clark, Bruce; Veille, Jean-Claude; Liu, Yanze; Lee, David Y-W; Canki, Mario

    2006-01-01

    Background The high rate of HIV-1 mutation and increasing resistance to currently available antiretroviral (ART) therapies highlight the need for new antiviral agents. Products derived from natural sources have been shown to inhibit HIV-1 replication during various stages of the virus life cycle, and therefore represent a potential source of novel therapeutic agents. To expand our arsenal of therapeutics against HIV-1 infection, we investigated aqueous extract from Sargassum fusiforme (S. fusiforme) for ability to inhibit HIV-1 infection in the periphery, in T cells and human macrophages, and for ability to inhibit in the central nervous system (CNS), in microglia and astrocytes. Results S. fusiforme extract blocked HIV-1 infection and replication by over 90% in T cells, human macrophages and microglia, and it also inhibited pseudotyped HIV-1 (VSV/NL4-3) infection in human astrocytes by over 70%. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5)-tropic HIV-1, was dose dependant and long lasting, did not inhibit cell growth or viability, was not toxic to cells, and was comparable to inhibition by the nucleoside analogue 2', 3'-didoxycytidine (ddC). S. fusiforme treatment blocked direct cell-to-cell infection spread. To investigate at which point of the virus life cycle this inhibition occurs, we infected T cells and CD4-negative primary human astrocytes with HIV-1 pseudotyped with envelope glycoprotein of vesicular stomatitis virus (VSV), which bypasses the HIV receptor requirements. Infection by pseudotyped HIV-1 (VSV/NL4-3) was also inhibited in a dose dependant manner, although up to 57% less, as compared to inhibition of native NL4-3, indicating post-entry interferences. Conclusion This is the first report demonstrating S. fusiforme to be a potent inhibitor of highly productive HIV-1 infection and replication in T cells, in primary human macrophages, microglia, and astrocytes. Results with VSV/NL4-3 infection, suggest inhibition of both entry and post-entry events of the virus life cycle. Absence of cytotoxicity and high viability of treated cells also suggest that S. fusiforme is a potential source of novel naturally occurring antiretroviral compounds that inhibit HIV-1 infection and replication at more than one site of the virus life cycle. PMID:16725040

  8. High molecular weight polysaccharide that binds and inhibits virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  9. High molecular weight polysaccharide that binds and inhibits virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konowalchuk, Thomas W

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  10. Silibinin downregulates MMP2 expression via Jak2/STAT3 pathway and inhibits the migration and invasive potential in MDA-MB-231 cells.

    PubMed

    Byun, Hyo Joo; Darvin, Pramod; Kang, Dong Young; Sp, Nipin; Joung, Youn Hee; Park, Jong Hwan; Kim, Sun Jin; Yang, Young Mok

    2017-06-01

    Worldwide, breast cancer (BCa) is the most common cancer in women. Among its subtypes, triple-negative breast cancer (TNBC) is an aggressive form associated with diminished survival. TNBCs are characterized by their absence, or minimal expression, of the estrogen and progesterone receptors, as well as the human epidermal growth factor receptor 2 (i.e. ER-/-, PR-/-, Her2-/Low). Consequently, treatment for this subtype of BCa remains problematic. Silibinin, a derivative of the flavonoid silymarin, is reported to have anticancer activities against hepatic and non-small cell lung cancers. We hypothesized that silibinin might inhibit cell-extracellular matrix interactions via the regulation, expression, and activation of STAT3 in TNBCs, which could directly inhibit metastasis in silibinin-treated BCa cells. Using proliferation assays, we found that exposure to silibinin at a concentration of 200 µM inhibited the proliferation of breast cancer (BCa) cells; this concentration also inhibited phosphorylation of STAT3 and its principal upstream kinase, Jak2. Furthermore, we found that silibinin inhibited the nuclear translocation of STAT3, as well as its binding to the MMP2 gene promoter. The ability of silibinin to inhibit metastasis was further studied using an in vitro invasion assay. The results confirm the role of STAT3 as a critical mediator in the invasive potential of BCa cells, and STAT3 knock-down resulted in inhibition of invasion. The invasion ability of silibinin-treated BCa cells was studied in detail with the expression of MMP2. Prevention of STAT3 activation also resulted in the inhibition of MMP2 expression. Use of a small interfering RNA to knock down STAT3 (siSTAT3) allowed us to confirm the role of STAT3 in regulating MMP2 expression, as well as the mechanism of action of silibinin in inhibiting MMP2. Taken together, we found that silibinin inhibits the Jak2/STAT3/MMP2 signaling pathway, and inhibits the proliferation, migration, and invasion of triple-negative BCa cells.

  11. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  12. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    PubMed Central

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  13. Methadone but not morphine inhibits lubiprostone-stimulated Cl- currents in T84 intestinal cells and recombinant human ClC-2, but not CFTR Cl- currents.

    PubMed

    Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H

    2013-05-01

    In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.

  14. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    PubMed Central

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by inhibiting the activation of NF-κB, AP-1, and C/EBPβ and that gemfibrozil, a prescribed drug for humans, may further find its therapeutic use in neuroinflammatory diseases. PMID:12244038

  15. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action

    PubMed Central

    Manza, Peter; Hu, Sien; Chao, Herta H.; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-shan R.

    2016-01-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serves to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. PMID:27126003

  16. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.

    PubMed

    Manza, Peter; Hu, Sien; Chao, Herta H; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-Shan R

    2016-07-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy.

    PubMed

    Zheng, Ling; Howell, Scott J; Hatala, Denise A; Huang, Kun; Kern, Timothy S

    2007-02-01

    It has been previously reported that aspirin inhibited the development of diabetic retinopathy in diabetic animals, raising the possibility that anti-inflammatory drugs may have beneficial effects on diabetic retinopathy. To further explore this, we compared effects of oral consumption of three different salicylate-based drugs (aspirin, sodium salicylate, and sulfasalazine) on the development of early stages of diabetic retinopathy in rats. These three drugs differ in their ability to inhibit cyclooxygenase but share an ability to inhibit nuclear factor-kappaB (NF-kappaB). Diabetes of 9-10 months duration significantly increased the number of TUNEL (transferase-mediated dUTP nick-end labeling)-positive capillary cells and acellular (degenerate) capillaries in the retinal vasculature, and all three salicylate-based drugs inhibited this cell death and formation of acellular capillaries without altering the severity of hyperglycemia. In short-term diabetes (2-4 months), all three salicylates inhibited the diabetes-induced loss of neuronal cells from the ganglion cell layer. Oral aspirin (as a representative of the salicylate family) inhibited diabetes-induced increase in NF-kappaB DNA-binding affinity in electrophoretic mobility shift assay and transcription factor array in nuclear extract isolated from whole retina. All three salicylates inhibited the diabetes-induced translocation of p50 (a subunit of NF-kappaB) into nuclei of retinal vascular endothelial cells of the isolated retinal vasculature, as well as of p50 and p65 into nuclei of cells in the ganglion cell layer and inner nuclear layer on whole-retinal sections. Sulfasalazine (also as a representative of the salicylates) inhibited the diabetes-induced upregulation of several inflammatory gene products, which are regulated by NF-kappaB, including vascular cell adhesion molecule, intracellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 in whole-retinal lysate. Salicylates, in doses administrated in our experiments, inhibited NF-kappaB and perhaps other transcription factors in the retina, were well tolerated, and offered new tools to investigate and inhibit the development of diabetic retinopathy.

  18. [Effect of metalaxyl on the synthesis of RNA, DNA and protein in Phytophthora nicotianae].

    PubMed

    Wollgiehn, R; Bräutigam, E; Schumann, B; Erge, D

    1984-01-01

    Metalaxyl is used to control diseases caused by fungi of the order of the Perenosporales. We investigated the action of this fungicid eon nucleic acid and protein synthesis in liquid cultures of Phytophthora nicotianae. The uptake of 32P, 3H-uridine, 3H-thymidine and 14C-leucine as precursors of nuclei acid and protein synthesis by the mycelium was not inhibited by metalaxyl. RNA synthesis as indicated by 3H-uridine incorporation was strongly inhibited (about 80%) by 0.5 micrograms/ml of metalaxyl. The inhibition was visible already few minutes after addition of the toxicant. Since the inhibition of incorporation of 3H-thymidine into DNA and of 14C-leucine into protein became significant 2-3 hours later, we conclude that metalaxyl primarily interfers with RNA synthesis. Synthesis of ribosomal RNA is more affected (more than 90%) than that of tRNA (about 55%) and poly(A)-containing RNA. Since in the presence of actinomycin, in contrast to metalaxyl, protein synthesis is inhibited immediately as a consequence of complete inhibition of RNA synthesis and of the short life-time of mRNA, it is also evident that mRNA synthesis is less strongly inhibited, at least during the early period of metalaxyl action. The molecular mechanism of metalaxyl inhibition of the transcription process remains open. The fungicide did not inhibit the activity of a partially purified RNA polymerase isolated from the fungus. On the other hand, the RNA synthesis (14C-UTP-incorporation) by a cell homogenate and by isolated nuclear fractions was inhibited significantly. Possibilities of the molecular action of metalaxyl are discussed. The RNA synthesis of some plant systems (cell cultures of Lycopersicon peruvianum, isolated nuclei from the same cell cultures, purified RNA polymerase from Spinacia oleracea chloroplasts) was not inhibited by metalaxyl, not even at high concentrations.

  19. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, Laura M., E-mail: beaverl@onid.orst.edu; School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331; Yu, Tian-Wei, E-mail: david.yu@oregonstate.edu

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast,more » DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.« less

  20. Withania somnifera Root Extract Inhibits Mammary Cancer Metastasis and Epithelial to Mesenchymal Transition

    PubMed Central

    Yang, Zhen; Garcia, Anapatricia; Xu, Songli; Powell, Doris R.; Vertino, Paula M.; Singh, Shivendra; Marcus, Adam I.

    2013-01-01

    Though clinicians can predict which patients are at risk for developing metastases, traditional therapies often prove ineffective and metastatic disease is the primary cause of cancer patient death; therefore, there is a need to develop anti-metastatic therapies that can be administered over long durations to specifically inhibit the motility of cancer cells. Withania somnifera root extracts (WRE) have anti-proliferative activity and the active component, Withaferin A, inhibits the pro-metastatic protein, vimentin. Vimentin is an intermediate filament protein and is part of the epithelial to mesenchymal transition (EMT) program to promote metastasis. Here, we determined whether WRE standardized to Withaferin A (sWRE) possesses anti-metastatic activity and whether it inhibits cancer motility via inhibition of vimentin and the EMT program. Several formulations of sWRE were created to enrich for Withaferin A and a stock solution of sWRE in EtOH could recover over 90% of the Withaferin A found in the original extract powder. This sWRE formulation inhibited breast cancer cell motility and invasion at concentrations less than 1µM while having negligible cytotoxicity at this dose. sWRE treatment disrupted vimentin morphology in cell lines, confirming its vimentin inhibitory activity. To determine if sWRE inhibited EMT, TGF-β was used to induce EMT in MCF10A human mammary epithelial cells. In this case, sWRE prevented EMT induction and inhibited 3-D spheroid invasion. These studies were taken into a human xenograft and mouse mammary carcinoma model. In both models, sWRE and Withaferin A showed dose-dependent inhibition of tumor growth and metastatic lung nodule formation with minimal systemic toxicity. Taken together, these data support the hypothesis that low concentrations of sWRE inhibit cancer metastasis potentially through EMT inhibition. Moreover, these doses of sWRE have nearly no toxicity in normal mouse organs, suggesting the potential for clinical use of orally administered WRE capsules. PMID:24069380

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds atmore » an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery rates, suggest different modes of exoelectrogenesis inhibition, related to the hydrophobicity of the inhibiting compounds.« less

  2. Chemical genetic inhibition of Mps1 in stable human cell lines reveals novel aspects of Mps1 function in mitosis.

    PubMed

    Sliedrecht, Tale; Zhang, Chao; Shokat, Kevan M; Kops, Geert J P L

    2010-04-22

    Proper execution of chromosome segregation relies on tight control of attachment of chromosomes to spindle microtubules. This is monitored by the mitotic checkpoint that allows chromosome segregation only when all chromosomes are stably attached. Proper functioning of the attachment and checkpoint processes is thus important to prevent chromosomal instability. Both processes rely on the mitotic kinase Mps1. We present here two cell lines in which endogenous Mps1 has been stably replaced with a mutant kinase (Mps1-as) that is specifically inhibited by bulky PP1 analogs. Mps1 inhibition in these cell lines is highly penetrant and reversible. Timed inhibition during bipolar spindle assembly shows that Mps1 is critical for attachment error-correction and confirms its role in Aurora B regulation. We furthermore show that Mps1 has multiple controls over mitotic checkpoint activity. Mps1 inhibition precludes Mad1 localization to unattached kinetochores but also accelerates mitosis. This acceleration correlates with absence of detectable mitotic checkpoint complex after Mps1 inhibition. Finally, we show that short-term inhibition of Mps1 catalytic activity is sufficient to kill cells. Mps1 is involved in the regulation of multiple key processes that ensure correct chromosome segregation and is a promising target for inhibition in anti-cancer strategies. We report here two cell lines that allow specific and highly penetrant inhibition of Mps1 in a reproducible manner through the use of chemical genetics. Using these cell lines we confirm previously suggested roles for Mps1 activity in mitosis, present evidence for novel functions and examine cell viability after short and prolonged Mps1 inhibition. These cell lines present the best cellular model system to date for investigations into Mps1 biology and the effects of penetrance and duration of Mps1 inhibition on cell viability.

  3. Antimicrobial effects of commensal oral species are regulated by environmental factors.

    PubMed

    Herrero, Esteban Rodriguez; Slomka, Vera; Bernaerts, Kristel; Boon, Nico; Hernandez-Sanabria, Emma; Passoni, Bernardo Born; Quirynen, Marc; Teughels, Wim

    2016-04-01

    The objectives of this study are to identify oral commensal species which can inhibit the growth of the main periodontopathogens, to determine the antimicrobial substances involved in these inhibitory activities and to evaluate the influence of environmental factors on the magnitude of these inhibitions. The spotting technique was used to quantify the capacity of 13 commensal species to inhibit the growth of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia. By altering experimental conditions (distance between spots and size of spots and concentration of commensal and pathogen) as well as environmental factors (inoculation sequence, oxygen and nutrition availability) the influence of these factors was evaluated. Additionally, the mechanism of inhibition was elucidated by performing inhibition experiments in the presence of peroxidase, trypsin and pepsin and by evaluating acid production. Streptococcus sanguinis, Streptococcus cristatus, Streptococcus gordonii, Streptococcus parasanguinis, Streptococcus mitis and Streptococcus oralis significantly inhibit the growth of all pathogens. The volume of the spots and concentration of the commensal have a significant positive correlation with the amount of inhibition whereas distance between the spots and concentration of the pathogen reduced the amount of inhibition. Inhibition is only observed when the commensal species are inoculated 24h before the pathogen and is more pronounced under aerobic conditions. Hydrogen peroxide production by the commensal is the main mechanism of inhibition. Bacterial antagonism is species specific and depending on experimental as well as environmental conditions. Blocking hydrogen peroxide production neutralizes the inhibitory effect. Identifying beneficial oral bacteria and understanding how they inhibit pathogens might help to unravel the mechanisms behind dysbiotic oral diseases. In this context, this study points towards an important role for hydrogen peroxide. The latter might lead in the future to novel preventive strategies for oral health based on improving the antimicrobial properties of commensal oral bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both humanmore » and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.« less

  5. Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2016-09-09

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds atmore » an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery rates, suggest different modes of exoelectrogenesis inhibition, related to the hydrophobicity of the inhibiting compounds.« less

  6. Selective inhibition of receptor activator of NF-κB ligand (RANKL) in hematopoietic cells improves outcome after experimental myocardial infarction.

    PubMed

    Slavic, Svetlana; Andrukhova, Olena; Ford, Kristopher; Handschuh, Stephan; Latic, Nejla; Reichart, Ursula; Sasgary, Soleman; Bergow, Claudia; Hofbauer, Lorenz C; Kostenuik, Paul J; Erben, Reinhold G

    2018-05-08

    The RANK (receptor activator of nuclear factor κB)/RANKL (RANK ligand)/OPG (osteoprotegerin) axis is activated after myocardial infarction (MI), but its pathophysiological role is not well understood. Here, we investigated how global and cell compartment-selective inhibition of RANKL affects cardiac function and remodeling after MI in mice. Global RANKL inhibition was achieved by treatment of human RANKL knock-in (huRANKL-KI) mice with the monoclonal antibody AMG161. huRANKL-KI mice express a chimeric RANKL protein wherein part of the RANKL molecule is humanized. AMG161 inhibits human and chimeric but not murine RANKL. To dissect the pathophysiological role of RANKL derived from hematopoietic and mesenchymal cells, we selectively exchanged the hematopoietic cell compartment by lethal irradiation and across-genotype bone marrow transplantation between wild-type and huRANKL-KI mice, exploiting the specificity of AMG161. After permanent coronary artery ligation, mice were injected with AMG161 or an isotype control antibody over 4 weeks post-MI. MI increased RANKL expression mainly in cardiomyocytes and scar-infiltrating cells 4 weeks after MI. Only inhibition of RANKL derived from hematopoietic cellular sources, but not global or mesenchymal RANKL inhibition, improved post-infarct survival and cardiac function. Mechanistically, hematopoietic RANKL inhibition reduced expression of the pro-inflammatory cytokine IL-1ß in the cardiac cellular infiltrate. In conclusion, inhibition of RANKL derived from hematopoietic cellular sources is beneficial to maintain post-ischemic cardiac function by reduction of pro-inflammatory cytokine production. Experimental myocardial infarction (MI) augments cardiac RANKL expression in mice. RANKL expression is increased in cardiomyocytes and scar-infiltrating cells after MI. Global or mesenchymal cell RANKL inhibition has no influence on cardiac function after MI. Inhibition of RANKL derived from hematopoietic cells improves heart function post-MI. Hematopoietic RANKL inhibition reduces pro-inflammatory cytokines in scar-infiltrating cells.

  7. Inhibition of excitatory non-adrenergic non-cholinergic bronchoconstriction in guinea-pig airways in vitro by activation of an atypical 5-HT receptor.

    PubMed Central

    Ward, J. K.; Fox, A. J.; Barnes, P. J.; Belvisi, M. G.

    1994-01-01

    1. The effect of 5-hydroxytryptamine (5-HT) was studied on excitatory neurally mediated non-adrenergic non-cholinergic (NANC) contractions evoked by electrical field stimulation (EFS) in guinea-pig isolated bronchi. 2. 5-HT (0.1-100 microM) produced a concentration-dependent inhibition of the excitatory NANC response with 50.9 +/- 5.0% (n = 5, P < 0.01) inhibition at 100 microM. This inhibition was not significantly affected by the 5-HT2 antagonist, ketanserin (1 microM) when inhibitions (+/- ketanserin) at each concentration of 5-HT were compared by unpaired t tests; however, this concentration appeared to produce a leftward shift (approximately 10 fold) of the 5-HT concentration-inhibition curve. Ketanserin (1 microM) was effective in blocking bronchoconstriction evoked by activation of 5-HT2A receptors on airway smooth muscle. In the presence of ketanserin (1 microM) 5-HT (100 microM) evoked an inhibition of 57.4 +/- 5.9% (n = 5, P < 0.01) with an EC50 of 0.57 microM. 3. Inhibition evoked by 5-HT (0.1-100 microM) was unaffected by the alpha-adrenoceptor antagonist phentolamine (1 microM), the beta 2-adrenoceptor antagonist, ICI 118551 (0.1 microM), the 5-HT1A/B antagonist, cyanopindolol (1 microM) or the 5-HT3/4 antagonist, ICS 205-930 (1 microM). 4. Methiothepin (0.1 microM) produced an insurmountable inhibition of the effect of 5-HT (0.1-100 microM), reducing the maximum inhibition produced by 5-HT (100 microM) to 30.2 +/- 5.0% (n = 5, P < 0.001) and suggesting a non-competitive antagonism. Methiothepin inhibited the effect of 5-HT (10 microM) in a concentration-dependent manner with an IC50 of 81 nM.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7518294

  8. Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum.

    PubMed Central

    Frandsen, E V; Kjeldsen, M; Kilian, M

    1997-01-01

    Oral Prevotella and Capnocytophaga species, regularly isolated from periodontal pockets and associated with extraoral infections, secret specific immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region into intact Fab and Fc fragments. To investigate whether these enzymes are subject to inhibition in vivo in humans, we tested 34 sera from periodontally diseased and healthy individuals in an enzyme-linked immunosorbent assay for the presence and titers of inhibition of seven Prevotella and Capnocytophaga proteases. All or nearly all of the sera inhibited the IgA1 protease activity of Prevotella buccae, Prevotella oris, and Prevotella loescheii. A minor proportion of the sera inhibited Prevotella buccalis, Prevotella denticola, and Prevotella melaninogenica IgA1 proteases, while no sera inhibited Capnocytophaga ochracea IgA1 protease. All inhibition titers were low, ranging from 5 to 55, with titer being defined as the reciprocal of the dilution of serum causing 50% inhibition of one defined unit of protease activity. No correlation between periodontal disease status and the presence, absence, or titer of inhibition was observed. The nature of the low titers of inhibition in all sera of the IgA1 proteases of P. buccae, P. oris, and P. loescheii was further examined. In size exclusion chromatography, inhibitory activity corresponded to the peak volume of IgA. Additional inhibition of the P. oris IgA1 protease was found in fractions containing both IgA and IgG. Purification of the IgG fractions of five sera by passage of the sera on a protein G column resulted in recovery of inhibitory IgG antibodies against all three IgA1 proteases, with the highest titer being for the P. oris enzyme. These finding indicate that inhibitory activity is associated with enzyme-neutralizing antibodies. PMID:9220164

  9. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    PubMed Central

    2013-01-01

    Background Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. Methods In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Results Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Conclusions Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC. PMID:24380387

  10. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice.

    PubMed

    Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R; Verkman, A S

    2014-07-01

    Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Screening of ∼150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ∼1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Inhibition by ultraviolet and photosynthetically available radiation lowers model estimates of depth-integrated picophytoplankton photosynthesis: global predictions for Prochlorococcus and Synechococcus.

    PubMed

    Neale, Patrick J; Thomas, Brian C

    2017-01-01

    Phytoplankton photosynthesis is often inhibited by ultraviolet (UV) and intense photosynthetically available radiation (PAR), but the effects on ocean productivity have received little consideration aside from polar areas subject to periodic enhanced UV-B due to depletion of stratospheric ozone. A more comprehensive assessment is important for understanding the contribution of phytoplankton production to the global carbon budget, present and future. Here, we consider responses in the temperate and tropical mid-ocean regions typically dominated by picophytoplankton including the prokaryotic lineages, Prochlorococcus and Synechococcus. Spectral models of photosynthetic response for each lineage were constructed using model strains cultured at different growth irradiances and temperatures. In the model, inhibition becomes more severe once exposure exceeds a threshold (E max ) related to repair capacity. Model parameters are presented for Prochlorococcus adding to those previously presented for Synechococcus. The models were applied to estimate midday, water column photosynthesis based on an atmospheric model of spectral radiation, satellite-derived spectral water transparency and temperature. Based on a global survey of inhibitory exposure severity, a full-latitude section of the mid-Pacific and near-equatorial region of the east Pacific were identified as representative regions for prediction of responses over the entire water column. Comparing predictions integrated over the water column including versus excluding inhibition, production was 7-28% lower due to inhibition depending on strain and site conditions. Inhibition was consistently greater for Prochlorococcus compared to two strains of Synechococcus. Considering only the surface mixed layer, production was inhibited 7-73%. On average, including inhibition lowered estimates of midday productivity around 20% for the modeled region of the Pacific with UV accounting for two-thirds of the reduction. In contrast, most other productivity models either ignore inhibition or only include PAR inhibition. Incorporation of E max model responses into an existing spectral model of depth-integrated, daily production will enable efficient global predictions of picophytoplankton productivity including inhibition. © 2016 John Wiley & Sons Ltd.

  12. Why two heads apart are better than two heads together: multiple mechanisms underlie the collaborative inhibition effect in memory.

    PubMed

    Barber, Sarah J; Harris, Celia B; Rajaram, Suparna

    2015-03-01

    Although a group of people working together remembers more than any one individual, they recall less than their predicted potential. This finding is known as collaborative inhibition and is generally thought to arise due to retrieval disruption. However, there is growing evidence that is inconsistent with the retrieval disruption account, suggesting that additional mechanisms also contribute to collaborative inhibition. In the current studies, we examined 2 alternate mechanisms: retrieval inhibition and retrieval blocking. To identify the contributions of retrieval disruption, retrieval inhibition, and retrieval blocking, we tested how collaborative recall of entirely unshared information influences subsequent individual recall and individual recognition memory. If collaborative inhibition is due solely to retrieval disruption, then there should be a release from the negative effects of collaboration on subsequent individual recall and recognition tests. If it is due to retrieval inhibition, then the negative effects of collaboration should persist on both individual recall and recognition memory tests. Finally, if it is due to retrieval blocking, then the impairment should persist on subsequent individual free recall, but not recognition, tests. Novel to the current study, results suggest that retrieval inhibition plays a role in the collaborative inhibition effect. The negative effects of collaboration persisted on a subsequent, always-individual, free-recall test (Experiment 1) and also on a subsequent, always-individual, recognition test (Experiment 2). However, consistent with the retrieval disruption account, this deficit was attenuated (Experiment 1). Together, these results suggest that, in addition to retrieval disruption, multiple mechanisms play a role in collaborative inhibition. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  13. Fenofibrate inhibits aldosterone-induced apoptosis in adult rat ventricular myocytes via stress-activated kinase-dependent mechanisms

    PubMed Central

    De Silva, Deepa S.; Wilson, Richard M.; Hutchinson, Christoph; Ip, Peter C.; Garcia, Anthony G.; Lancel, Steve; Ito, Masa; Pimentel, David R.; Sam, Flora

    2009-01-01

    Aldosterone induces extracellular signal-regulated kinase (ERK)-dependent cardiac remodeling. Fenofibrate improves cardiac remodeling in adult rat ventricular myocytes (ARVM) partly via inhibition of aldosterone-induced ERK1/2 phosphorylation and inhibition of matrix metalloproteinases. We sought to determine whether aldosterone caused apoptosis in cultured ARVM and whether fenofibrate ameliorated the apoptosis. Aldosterone (1 μM) induced apoptosis by increasing terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei in ARVM. Spironolactone (100 nM), an aldosterone receptor antagonist, but not RU-486, a glucocorticoid receptor, inhibited aldosterone-mediated apoptosis, indicating that the mineralocorticoid receptor (MR) plays a role. SP-600125 (3 μM)—a selective inhibitor of c-Jun NH2-terminal kinase (JNK)—inhibited aldosterone-induced apoptosis in ARVM. Although aldosterone increased the expression of both stress-activated protein kinases, pretreatment with fenofibrate (10 μM) decreased aldosterone-mediated apoptosis by inhibiting only JNK phosphorylation and the aldosterone-induced increases in Bax, p53, and cleaved caspase-3 and decreases in Bcl-2 protein expression in ARVM. In vivo studies demonstrated that chronic fenofibrate (100 mg·kg body wt−1·day−1) inhibited myocardial Bax and increased Bcl-2 expression in aldosterone-induced cardiac hypertrophy. Similarly, eplerenone, a selective MR inhibitor, used in chronic pressure-overload ascending aortic constriction inhibited myocardial Bax expression but had no effect on Bcl-2 expression. Therefore, involvement of JNK MAPK-dependent mitochondrial death pathway mediates ARVM aldosterone-induced apoptosis and is inhibited by fenofibrate, a peroxisome proliferator-activated receptor (PPAR)α ligand. Fenofibrate mediates beneficial effects in cardiac remodeling by inhibiting programmed cell death and the stress-activated kinases. PMID:19395558

  14. Role of the brain stem in tibial inhibition of the micturition reflex in cats.

    PubMed

    Ferroni, Matthew C; Slater, Rick C; Shen, Bing; Xiao, Zhiying; Wang, Jicheng; Lee, Andy; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-08-01

    This study examined the role of the brain stem in inhibition of bladder reflexes induced by tibial nerve stimulation (TNS) in α-chloralose-anesthetized decerebrate cats. Repeated cystometrograms (CMGs) were performed by infusing saline or 0.25% acetic acid (AA) to elicit normal or overactive bladder reflexes, respectively. TNS (5 or 30 Hz) at three times the threshold (3T) intensity for inducing toe movement was applied for 30 min between CMGs to induce post-TNS inhibition or applied during the CMGs to induce acute TNS inhibition. Inhibition was evident as an increase in bladder capacity without a change in amplitude of bladder contractions. TNS applied for 30 min between saline CMGs elicited prolonged (>2 h) poststimulation inhibition that significantly (P < 0.05) increased bladder capacity to 30-60% above control; however, TNS did not produce this effect during AA irritation. TNS applied during CMGs at 5 Hz but not 30 Hz significantly (P < 0.01) increased bladder capacity to 127.3 ± 6.1% of saline control or 187.6 ± 5.0% of AA control. During AA irritation, naloxone (an opioid receptor antagonist) administered intravenously (1 mg/kg) or directly to the surface of the rostral brain stem (300-900 μg) eliminated acute TNS inhibition and significantly (P < 0.05) reduced bladder capacity to 62.8 ± 22.6% (intravenously) or 47.6 ± 25.5% (brain stem application). Results of this and previous studies indicate 1) forebrain circuitry rostral to the pons is not essential for TNS inhibition; and 2) opioid receptors in the brain stem have a critical role in TNS inhibition of overactive bladder reflexes but are not involved in inhibition of normal bladder reflexes. Copyright © 2015 the American Physiological Society.

  15. PKA and Epac synergistically inhibit smooth muscle cell proliferation

    PubMed Central

    Hewer, Richard C.; Sala-Newby, Graciela B.; Wu, Yih-Jer; Newby, Andrew C.; Bond, Mark

    2011-01-01

    Cyclic AMP signalling promotes VSMC quiescence in healthy vessels and during vascular healing following injury. Cyclic AMP inhibits VSMC proliferation via mechanisms that are not fully understood. We investigated the role of PKA and Epac signalling on cAMP-induced inhibition of VSMC proliferation. cAMP-mediated growth arrest was PKA-dependent. However, selective PKA activation with 6-Benzoyl-cAMP did not inhibit VSMC proliferation, indicating a requirement for additional pathways. Epac activation using the selective cAMP analogue 8-CPT-2′-O-Me-cAMP, did not affect levels of hyperphosphorylated Retinoblastoma (Rb) protein, a marker of G1-S phase transition, or BrdU incorporation, despite activation of the Epac-effector Rap1. However, 6-Benzoyl-cAMP and 8-CPT-2′-O-Me-cAMP acted synergistically to inhibit Rb-hyperphosphorylation and BrdU incorporation, indicating that both pathways are required for growth inhibition. Consistent with this, constitutively active Epac increased Rap1 activity and synergised with 6-Benzoyl-cAMP to inhibit VSMC proliferation. PKA and Epac synergised to inhibit phosphorylation of ERK and JNK. Induction of stellate morphology, previously associated with cAMP-mediated growth arrest, was also dependent on activation of both PKA and Epac. Rap1 inhibition with Rap1GAP or siRNA silencing did not negate forskolin-induced inhibition of Rb-hyperphosphorylation, BrdU incorporation or stellate morphology. This data demonstrates for the first time that Epac synergises with PKA via a Rap1-independent mechanism to mediate cAMP-induced growth arrest in VSMC. This work highlights the role of Epac as a major player in cAMP-dependent growth arrest in VSMC. PMID:20971121

  16. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Fowler, J.; Wang, G.J.

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statisticalmore » parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.« less

  17. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    PubMed

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation.

  18. Fluoroquinolones inhibit human polyomavirus BK (BKV) replication in primary human kidney cells.

    PubMed

    Sharma, Biswa Nath; Li, Ruomei; Bernhoff, Eva; Gutteberg, Tore Jarl; Rinaldo, Christine Hanssen

    2011-10-01

    Reactivation of human polyomavirus BK (BKV) may cause polyomavirus-associated nephropathy or polyomavirus-associated hemorrhagic cystitis in renal- or bone marrow-transplant patients, respectively. Lack of treatment options has led to exploration of fluoroquinolones that inhibit topoisomerase II and IV in prokaryotes and possibly large T-antigen (LT-ag) helicase activity in polyomavirus. We characterized the effects of ofloxacin and levofloxacin on BKV replication in the natural host cells - primary human renal proximal tubular epithelial cells (RPTECs). Ofloxacin and levofloxacin inhibited BKV load in a dose-dependent manner yielding a ∼90% inhibition at 150 μg/ml. Ofloxacin at 150 μg/ml inhibited LT-ag mRNA and protein expression from 24h post infection (hpi). BKV genome replication was 77% reduced at 48 hpi and a similar reduction was found in VP1 and agnoprotein expression. At 72 hpi, the reduction in genome replication and protein expression was less pronounced. A dose-dependent cytostatic effect was noted. In infected cells, 150 μg/ml ofloxacin led to a 26% and 6% inhibition of cellular DNA replication and total metabolic activity, respectively while 150 μg/ml levofloxacin affected this slightly more, particularly in uninfected cells. Cell counting and xCELLigence results revealed that cell numbers were not reduced. In conclusion, ofloxacin and levofloxacin inhibit but do not eradicate BKV replication in RPTECs. At a concentration of ofloxacin giving ∼90% inhibition in BKV load, no significant cytotoxicity was observed. This concentration can be achieved in urine and possibly in the kidneys. Our results support a mechanism involving inhibition of LT-ag expression or functions but also suggest inhibition of cellular enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease.

    PubMed

    Kumari, Namita; Ammosova, Tatiana; Diaz, Sharmin; Lin, Xionghao; Niu, Xiaomei; Ivanov, Andrey; Jerebtsova, Marina; Dhawan, Subhash; Oneal, Patricia; Nekhai, Sergei

    2016-12-27

    The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription.

  20. Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease

    PubMed Central

    Kumari, Namita; Ammosova, Tatiana; Diaz, Sharmin; Lin, Xionghao; Niu, Xiaomei; Ivanov, Andrey; Jerebtsova, Marina; Dhawan, Subhash; Oneal, Patricia

    2016-01-01

    The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription. PMID:28203649

  1. Poly(ADP-ribose) polymerase inhibition combined with irradiation: A dual treatment concept to prevent neointimal hyperplasia after endarterectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, Carsten J.; Kosse, Jens; Radovits, Tamas

    2006-11-01

    Purpose: In a rat model of endarterectomy we investigated the potential role of the peroxynitrite-poly(ADP-ribose) polymerase (PARP) pathway in neointima formation and the effects of irradiation, pharmacologic inhibition of PARP, or combined pharmacologic inhibition of PARP and irradiation on vascular remodeling. Methods and Materials: Carotid endarterectomy was performed by incision of the left carotid artery with removal of intima in Sprague-Dawley rats. Six groups were studied: sham-operated rats (n = 10), control endarterectomized rats (n = 10), or endarterectomized rats irradiated with 15 Gy (n = 10), or treated with PARP inhibitor, INO-1001 (5 mg/kg/day) (n = 10), or withmore » combined treatment with INO-1001 and irradiation with 5 Gy (n = 10) or with 15 Gy (n = 10). After 21 days, neointima formation and vascular remodeling were assessed. Results: Neointima formation after endarterectomy was inhibited by postoperative irradiation with 15 Gy and was attenuated by PARP inhibition. However, in parallel to inhibition of neointimal hyperplasia, activation of the peroxynitrite-PARP pathway in the outer vessel wall layers was triggered by postoperative irradiation. Combined pharmacologic PARP inhibition and irradiation with 15 Gy significantly reduced both neointimal hyperplasia and activation of the peroxynitrite-PARP pathway in the outer vessel wall layers. Combination of PARP inhibition and irradiation with 5 Gy was less effective than both PARP inhibition or irradiation with 15 Gy alone. Conclusions: We conclude, that combined PARP inhibition and irradiation with 15 Gy may be a new dual strategy for prevention of restenosis after surgical vessel reconstruction: combining the strong antiproliferative effect of irradiation and ameliorating irradiation-induced side effects caused by excessive PARP activation.« less

  2. Initial HIV-1 Antigen-Specific CD8+ T Cells in Acute HIV-1 Infection Inhibit Transmitted/Founder Virus Replication

    PubMed Central

    Freel, Stephanie A.; Picking, Ralph A.; Ferrari, Guido; Ding, Haitao; Ochsenbauer, Christina; Kappes, John C.; Kirchherr, Jennifer L.; Soderberg, Kelly A.; Weinhold, Kent J.; Cunningham, Coleen K.; Denny, Thomas N.; Crump, John A.; Cohen, Myron S.; McMichael, Andrew J.; Haynes, Barton F.

    2012-01-01

    CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8+ T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8+ responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8+ T cells during AHI. Autologous and heterologous CD8+ T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8+ T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8+ antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8+-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8+ T cell-mediated inhibition of virus replication. CD8+ T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies. PMID:22514337

  3. Synthetic 8-hydroxydeoxyguanosine inhibited metastasis of pancreatic cancer through concerted inhibitions of ERM and Rho-GTPase.

    PubMed

    Park, Jong-Min; Han, Young-Min; Jeong, Migyeong; Chung, Myung Hee; Kwon, Chang Il; Ko, Kwang Hyun; Hahm, Ki Baik

    2017-09-01

    8-hydroxydeoxyguanosine (8-OHdG) is generated consequent to oxidative stress, but its paradoxical anti-oxidative, anti-inflammatory, and anti-mutagenic effects via Rho-GTPase inhibition were noted in various models of inflammation and cancer. Metastasis occurs through cell detachment, epithelial-mesenchymal transition (EMT), and cell migration; during these processes, changes in cell morphology are initiated through Rho-GTPase-dependent actin cytoskeleton polymerization. In this study, we explored the anti-metastatic mechanisms of 8-OHdG in Panc-1 pancreatic cancer cells. 8-OHdG inhibits cell migration by inactivating ERM and Rho-GTPase proteins, and inhibiting focal adhesion kinase (FAK) and matrix metalloproteinases (MMPs). At 15min, 8-OHdG significantly inactivated ERM (p < 0.05) and led to a significant retardation of wound healing; siERM and H1152 (ROCK inhibitor) had similar effects (p < 0.05). However, FAK inhibitor 14, DPI (NOX inhibitor), and NAC (antioxidant) significantly delayed wound healing without inhibiting ERM or CD44 (p < 0.05). In the experiments on cell migration, siERM, siCD44, DPI, and 8-OHdG significantly inhibited MMPs. 8-OHdG significantly decreased DCF-DA activation in Panc-1 pancreatic cancer cells and down-regulated NOXs (nox-1, nox-2, and nox-3). Finally, all of these anti-migration actions of 8-OHdG resulted in significant inhibition of EMT, as evidenced by the up-regulation of ZO-1 and claudin-1 and down-regulation of vimentin. We found significant inhibition of lung metastasis of Panc-1 cells by 8-OHdG. In conclusion, exogenous 8-OHdG had potent anti-metastasis effects mediated by either ERM or Rho GTPase inhibition in metastasis-prone pancreatic cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Selecting β-glucosidases to support cellulases in cellulose saccharification

    PubMed Central

    2013-01-01

    Background Enzyme end-product inhibition is a major challenge in the hydrolysis of lignocellulose at a high dry matter consistency. β-glucosidases (BGs) hydrolyze cellobiose into two molecules of glucose, thereby relieving the product inhibition of cellobiohydrolases (CBHs). However, BG inhibition by glucose will eventually lead to the accumulation of cellobiose and the inhibition of CBHs. Therefore, the kinetic properties of candidate BGs must meet the requirements determined by both the kinetic properties of CBHs and the set-up of the hydrolysis process. Results The kinetics of cellobiose hydrolysis and glucose inhibition of thermostable BGs from Acremonium thermophilum (AtBG3) and Thermoascus aurantiacus (TaBG3) was studied and compared to Aspergillus sp. BG purified from Novozyme®188 (N188BG). The most efficient cellobiose hydrolysis was achieved with TaBG3, followed by AtBG3 and N188BG, whereas the enzyme most sensitive to glucose inhibition was AtBG3, followed by TaBG3 and N188BG. The use of higher temperatures had an advantage in both increasing the catalytic efficiency and relieving the product inhibition of the enzymes. Our data, together with data from a literature survey, revealed a trade-off between the strength of glucose inhibition and the affinity for cellobiose; therefore, glucose-tolerant BGs tend to have low specificity constants for cellobiose hydrolysis. However, although a high specificity constant is always an advantage, in separate hydrolysis and fermentation, the priority may be given to a higher tolerance to glucose inhibition. Conclusions The specificity constant for cellobiose hydrolysis and the inhibition constant for glucose are the most important kinetic parameters in selecting BGs to support cellulases in cellulose hydrolysis. PMID:23883540

  5. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) against Russell's viper venom: characterization of piperine as active principle.

    PubMed

    Shenoy, P A; Nipate, S S; Sonpetkar, J M; Salvi, N C; Waghmare, A B; Chaudhari, P D

    2013-05-20

    Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. To examine the ability of ethanolic extract of fruits of Piper longum L., Piperaceae (PLE) and piperine, one of the main active principles of Piper longum, to inhibit the Russell's viper (Doboia russelii, Viperidae) snake venom activities. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine against Russell's viper venom was studied in embryonated fertile chicken eggs, mice and rats by using various models as follows: inhibition of venom lethal action, inhibition of venom haemorrhagic action (in vitro), inhibition of venom haemorrhagic action (in vivo), inhibition of venom necrotizing action, inhibition of venom defibrinogenating action, inhibition of venom induced paw edema, inhibition of venom induced mast cell degranulation, creatine kinase assay and assay for catalase activity. PLE was found to inhibit the venom induced haemorrhage in embryonated fertile chicken eggs. Administration of PLE and piperine significantly (p<0.01) inhibited venom induced lethality, haemorrhage, necrosis, defibrinogenation and inflammatory paw edema in mice in a dose dependent manner. PLE and piperine also significantly (p<0.01) reduced venom induced mast cell degranulation in rats. Venom induced decrease in catalase enzyme levels in mice kidney tissue and increase in creatine kinase enzyme levels in mice serum were significantly (p<0.01) reversed by administration of both PLE and piperine. PLE possesses good anti-snake venom properties and piperine is one of the compounds responsible for the effective venom neutralizing ability of the plant. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Vasopeptidase inhibition with omapatrilat increases fluid and protein microvascular permeability in cat skeletal muscle.

    PubMed

    Persson, Johan; Morsing, Peter; Grände, Per-Olof

    2004-03-01

    Vasopeptidase inhibition is a new antihypertensive approach combining inhibition of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), but severe oedema, mainly angio-oedema, has been reported. As ACE and NEP catalyse degradation of the permeability-increasing peptide bradykinin, and NEP also catalyses degradation of permeability-increasing peptides such as atrial natriuretic peptide, substance P, endothelin-1 and angiotensin II, vasopeptidase inhibition may increase microvascular permeability. To analyse the effects of vasopeptidase inhibition on permeability. The study was performed on the autoperfused cat calf skeletal muscle, evaluating the effects on fluid and protein permeability of a clinically relevant dose of the vasopeptidase inhibitor, omapatrilat. The effects were compared with those of the vehicle, of selective ACE and NEP inhibition, and of omapatrilat during bradykinin receptor blockade. Effects on fluid permeability were determined with a capillary filtration coefficient (CFC) technique, and effects on protein permeability were assessed from changes in the osmotic reflection coefficient for albumin. After 1.5 h of intravenous infusion of omapatrilat (0.35 mg/kg per hour), mean arterial pressure was reduced from 114 mmHg to 86 mmHg (P < 0.01) and skeletal muscle vascular resistance was reduced from 14.5 peripheral resistance units (PRU) to 11.5 PRU (P < 0.05). CFC was increased by 22% (P < 0.01) and the reflection coefficient was decreased by 17% (P < 0.01). Infusion of vehicle had no effects. Inhibition of NEP increased permeability without affecting blood pressure, whereas ACE inhibition decreased blood pressure without affecting permeability. The increase in permeability associated with omapatrilat was reduced by bradykinin blockade. A clinically relevant antihypertensive dose of omapatrilat reduces vascular resistance and increases fluid and protein permeability, the permeability effect more by inhibition of NEP than by inhibition of ACE, by a mechanism involving bradykinin.

  7. Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans.

    PubMed

    Marney, Annis; Kunchakarra, Siri; Byrne, Loretta; Brown, Nancy J

    2010-10-01

    Dipeptidyl peptidase-IV inhibitors improve glucose homeostasis in type 2 diabetics by inhibiting degradation of the incretin hormones. Dipeptidyl peptidase-IV inhibition also prevents the breakdown of the vasoconstrictor neuropeptide Y and, when angiotensin-converting enzyme (ACE) is inhibited, substance P. This study tested the hypothesis that dipeptidyl peptidase-IV inhibition would enhance the blood pressure response to acute ACE inhibition. Subjects with the metabolic syndrome were treated with 0 mg of enalapril (n=9), 5 mg of enalapril (n=8), or 10 mg enalapril (n=7) after treatment with sitagliptin (100 mg/day for 5 days and matching placebo for 5 days) in a randomized, cross-over fashion. Sitagliptin decreased serum dipeptidyl peptidase-IV activity (13.08±1.45 versus 30.28±1.76 nmol/mL/min during placebo; P≤0.001) and fasting blood glucose. Enalapril decreased ACE activity in a dose-dependent manner (P<0.001). Sitagliptin lowered blood pressure during enalapril (0 mg; P=0.02) and augmented the hypotensive response to 5 mg of enalapril (P=0.05). In contrast, sitagliptin attenuated the hypotensive response to 10 mg of enalapril (P=0.02). During sitagliptin, but not during placebo, 10 mg of enalapril significantly increased heart rate and plasma norepinephrine concentrations. There was no effect of 0 or 5 mg of enalapril on heart rate or norepinephrine after treatment with either sitagliptin or placebo. Sitagliptin enhanced the dose-dependent effect of enalapril on renal blood flow. In summary, sitagliptin lowers blood pressure during placebo or submaximal ACE inhibition; sitagliptin activates the sympathetic nervous system to diminish hypotension when ACE is maximally inhibited. This study provides the first evidence for an interactive hemodynamic effect of dipeptidyl peptidase-IV and ACE inhibition in humans.

  8. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis.

    PubMed

    Ridiandries, Anisyah; Tan, Joanne T M; Ravindran, Dhanya; Williams, Helen; Medbury, Heather J; Lindsay, Laura; Hawkins, Clare; Prosser, Hamish C G; Bursill, Christina A

    2017-03-01

    Increasing evidence shows that CC-chemokines promote inflammatory-driven angiogenesis, with little to no effect on hypoxia-mediated angiogenesis. Inhibition of the CC-chemokine class may therefore affect angiogenesis differently depending on the pathophysiological context. We compared the effect of CC-chemokine inhibition in inflammatory and physiological conditions. In vitro , the broad-spectrum CC-chemokine inhibitor "35K" inhibited inflammatory-induced endothelial cell proliferation, migration, and tubulogenesis, with more modest effects in hypoxia. In vivo , adenoviruses were used to overexpress 35K (Ad35K) and GFP (AdGFP, control virus). Plasma chemokine activity was suppressed by Ad35K in both models. In the periarterial femoral cuff model of inflammatory-driven angiogenesis, overexpression of 35K inhibited adventitial neovessel formation compared with control AdGFP-infused mice. In contrast, 35K preserved neovascularization in the hindlimb ischemia model and had no effect on physiological neovascularization in the chick chorioallantoic membrane assay. Mechanistically, 2 key angiogenic proteins (VEGF and hypoxia-inducible factor-1α) were conditionally regulated by 35K, such that expression was inhibited in inflammation but was unchanged in hypoxia. In conclusion, CC-chemokine inhibition by 35K suppresses inflammatory-driven angiogenesis while preserving physiological ischemia-mediated angiogenesis via conditional regulation of VEGF and hypoxia-inducible factor-1α. CC-chemokine inhibition may be an alternative therapeutic strategy for suppressing diseases associated with inflammatory angiogenesis without inducing the side effects caused by global inhibition.- Ridiandries, A., Tan, J. T. M., Ravindran, D., Williams, H., Medbury, H. J., Lindsay, L., Hawkins, C., Prosser, H. C. G., Bursill, C. A. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis. © FASEB.

  9. Evidence that N-acetylcysteine inhibits TNF-alpha-induced cerebrovascular endothelin-1 upregulation via inhibition of mitogen- and stress-activated protein kinase.

    PubMed

    Sury, Matthias D; Frese-Schaper, Manuela; Mühlemann, Miranda K; Schulthess, Fabienne T; Blasig, Ingolf E; Täuber, Martin G; Shaw, Sidney G; Christen, Stephan

    2006-11-01

    N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.

  10. Vibrio parahaemolyticus Inhibition of Rho Family GTPase Activation Requires a Functional Chromosome I Type III Secretion System▿

    PubMed Central

    Casselli, Timothy; Lynch, Tarah; Southward, Carolyn M.; Jones, Bryan W.; DeVinney, Rebekah

    2008-01-01

    Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis; however, its virulence mechanisms are not well understood. The identification of type III secreted proteins has provided candidate virulence factors whose functions are still being elucidated. Genotypic strain variability contributes a level of complexity to understanding the role of different virulence factors. The ability of V. parahaemolyticus to inhibit Rho family GTPases and cause cytoskeletal disruption was examined with HeLa cells. After HeLa cells were infected, intracellular Rho activation was inhibited in response to external stimuli. In vitro activation of Rho, Rac, and Cdc42 isolated from infected HeLa cell lysates was also inhibited, indicating that the bacteria were specifically targeting GTPase activation. The inhibition of Rho family GTPase activation was retained for clinical and environmental isolates of V. parahaemolyticus and was dependent on a functional chromosome I type III secretion system (CI-T3SS). GTPase inhibition was independent of hemolytic toxin genotype and the chromasome II (CII)-T3SS. Rho inhibition was accompanied by a shift in the total actin pool to its monomeric form. These phenotypes were abrogated in a mutant strain lacking the CI-T3S effector Vp1686, suggesting that the inhibiting actin polymerization may be a downstream effect of Vp1686-dependent GTPase inhibition. Although Vp1686 has been previously characterized as a potential virulence factor in macrophages, our findings reveal an effect on cultured HeLa cells. The ability to inhibit Rho family GTPases independently of the CII-T3SS and the hemolytic toxins may provide insight into the mechanisms of virulence used by strains lacking these virulence factors. PMID:18347050

  11. Psychotropic and nonpsychotropic cannabis derivatives inhibit human 5-HT(3A) receptors through a receptor desensitization-dependent mechanism.

    PubMed

    Xiong, W; Koo, B-N; Morton, R; Zhang, L

    2011-06-16

    Δ⁹ tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and nonpsychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT(3A) receptors (h5-HT(3A)Rs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC₅₀ values for CBD and THC-induced inhibition were 110 nM and 322 nM, respectively in HEK 293 cells expressing h5-HT(3A)Rs. In these cells, CBD and THC did not stimulate specific [³⁵S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT(3A)Rs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT(3A)R cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT(3A) receptors through a mechanism that is dependent on receptor desensitization. Published by Elsevier Ltd.

  12. Psychotropic and Nonpsychotropic Cannabis Derivatives Inhibit Human 5-HT3A receptors through a Receptor Desensitization-Dependent Mechanism

    PubMed Central

    Xiong, Wei; Koo, Bon-Nyeo; Morton, Russell; Zhang, Li

    2011-01-01

    Δ9 tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and non-psychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT3A receptors (h5-HT3ARs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC50 values for CBD and THC-induced inhibition were 110 nM and 322 nM respectively in HEK 293 cells expressing h5-HT3ARs. In these cells, CBD and THC did not stimulate specific [35S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT3ARs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT3AR cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT3A receptors through a mechanism that is dependent on receptor desensitization. PMID:21477640

  13. A novel muscarinic receptor-independent mechanism of KCNQ2/3 potassium channel blockade by Oxotremorine-M.

    PubMed

    Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele

    2016-11-15

    Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    PubMed

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  15. Inhibition of plasma membrane Ca(2+)-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca(2+)-occluded state.

    PubMed

    Moreira, Otacilio C; Rios, Priscila F; Barrabin, Hector

    2005-07-15

    The bidentate complex of ATP with Cr(3+), CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca(2+)-ATPase and the Na(+),K(+)-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca(2+) and Na(+), respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca(2+)-ATPase. The complex inhibited with similar efficiency the Ca(2+)-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T(1/2)=30 min at 37 degrees C) with a K(i)=28+/-9 microM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg(2+) but unaltered when Ca(2+) was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca(2+) occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La(3+) with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca(2+) at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca(2+) promoted by the plasma membrane Ca(2+)-ATPase goes through an enzymatic phospho-intermediate that maintains Ca(2+) ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.

  16. Adeno-associated virus-RNAi of GlyRα1 and characterization of its synapse-specific inhibition in OFF alpha transient retinal ganglion cells

    PubMed Central

    Zhang, C.; Rompani, S. B.; Roska, B.

    2014-01-01

    In the central nervous system, inhibition shapes neuronal excitation. In spinal cord glycinergic inhibition predominates, whereas GABAergic inhibition predominates in the brain. The retina uses GABA and glycine in approximately equal proportions. Glycinergic crossover inhibition, initiated in the On retinal pathway, controls glutamate release from presynaptic OFF cone bipolar cells (CBCs) and directly shapes temporal response properties of OFF retinal ganglion cells (RGCs). In the retina, four glycine receptor (GlyR) α-subunit isoforms are expressed in different sublaminae and their synaptic currents differ in decay kinetics. GlyRα1, expressed in both On and Off sublaminae of the inner plexiform layer, could be the glycinergic isoform that mediates On-to-Off crossover inhibition. However, subunit-selective glycine contributions remain unknown because we lack selective antagonists or cell class-specific subunit knockouts. To examine the role of GlyRα1 in direct inhibition in mature RGCs, we used retrogradely transported adeno-associated virus (AAV) that performed RNAi and eliminated almost all glycinergic spontaneous and visually evoked responses in PV5 (OFFαTransient) RGCs. Comparisons of responses in PV5 RGCs infected with AAV-scrambled-short hairpin RNA (shRNA) or AAV-Glra1-shRNA confirm a role for GlyRα1 in crossover inhibition in cone-driven circuits. Our results also define a role for direct GlyRα1 inhibition in setting the resting membrane potential of PV5 RGCs. The absence of GlyRα1 input unmasked a serial and a direct feedforward GABAAergic modulation in PV5 RGCs, reflecting a complex interaction between glycinergic and GABAAergic inhibition. PMID:25231618

  17. Corrosion inhibiting organic coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  18. Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells

    PubMed Central

    Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.

    2006-01-01

    NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739

  19. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  20. Inhibition of Long Chain Fatty Acyl-CoA Synthetase (ACSL) and Ischemia Reperfusion Injury

    PubMed Central

    Prior, Allan M.; Zhang, Man; Blakeman, Nina; Datta, Palika; Pham, Hung; Young, Lindon H.; Weis, Margaret T.; Hua, Duy H.

    2014-01-01

    Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [14C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion. PMID:24480468

  1. Feedforward somatosensory inhibition is normal in cervical dystonia.

    PubMed

    Ferrè, Elisa R; Ganos, Christos; Bhatia, Kailash P; Haggard, Patrick

    2015-03-01

    Insufficient cortical inhibition is a key pathophysiological finding in dystonia. Subliminal sensory stimuli were reported to transiently inhibit somatosensory processing. Here we investigated whether such subliminal feedforward inhibition is reduced in patients with cervical dystonia. Sixteen cervical dystonia patients and 16 matched healthy controls performed a somatosensory detection task. We measured the drop in sensitivity to detect a threshold-level digital nerve shock when it was preceded by a subliminal conditioning shock, compared to when it was not. Subliminal conditioning shocks reduced sensitivity to threshold stimuli to a similar extent in both patients and controls, suggesting that somatosensory subliminal feedforward inhibition is normal in cervical dystonia. Somatosensory feedforward inhibition was normal in this group of cervical dystonia patients. Our results qualify previous concepts of a general dystonic deficit in sensorimotor inhibitory processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Prepotent response inhibition and interference control in autism spectrum disorders: two meta-analyses.

    PubMed

    Geurts, Hilde M; van den Bergh, Sanne F W M; Ruzzano, Laura

    2014-08-01

    There is a substantial amount of data providing evidence for, but also against the hypothesis that individuals with autism spectrum disorders (ASD) encounter inhibitory control deficits. ASD is often associated with interference control deficits rather than prepotent response inhibition. Moreover, the developmental trajectory for these inhibitory control processes is hypothesized to differ in ASD as compared to typical development. In efforts to gain a more comprehensive perspective of inhibition in ASD, separate quantitative analysis for prepotent response inhibition studies and interference control studies were conducted. Together, these two meta-analyses included 41 studies with a combined sample size of 1,091 people with ASD (M age 14.8 years), and 1,306 typically developing (TD) controls (M age 13.8 years).The meta-analyses indicated that individuals with ASD show increased difficulties in prepotent response inhibition (effect size 0.55) and in interference control (effect size 0.31). In addition, age was a relevant moderator for prepotent response inhibition but not for interference control. Exploratory analyses revealed that when IQ was taken into account, heterogeneity considerably decreased among interference control studies but not among prepotent response inhibition. In contrast to the general belief, both prepotent response inhibition and interference control problems were observed in individuals with ASD. However, a large variation between studies was also found. Therefore, there remain factors beyond inhibition type, age, or IQ that significantly influence inhibitory control performance among individuals with ASD. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Neuroscience of inhibition for addiction medicine: From prediction of initiation to prediction of relapse

    PubMed Central

    Moeller, Scott J.; Bederson, Lucia; Alia-Klein, Nelly; Goldstein, Rita Z.

    2017-01-01

    A core deficit in drug addiction is the inability to inhibit maladaptive drug-seeking behavior. Consistent with this deficit, drug-addicted individuals show reliable cross-sectional differences from healthy non-addicted controls during tasks of response inhibition accompanied by brain activation abnormalities as revealed by functional neuroimaging. However, it is less clear whether inhibition-related deficits predate the transition to problematic use, and, in turn, whether these deficits predict the transition out of problematic substance use. Here, we review longitudinal studies of response inhibition in children/adolescents with little substance experience and longitudinal studies of already-addicted individuals attempting to sustain abstinence. Results show that response inhibition, and its underlying neural correlates, predict both substance use outcomes (onset and abstinence). Neurally, key roles were observed for multiple regions of the frontal cortex (e.g., inferior frontal gyrus, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex). In general, less activation of these regions during response inhibition predicted not only the onset of substance use, but interestingly, also better abstinence-related outcomes among individuals already addicted. The role of subcortical areas, although potentially important, is less clear because of inconsistent results and because these regions are less classically reported in studies of healthy response inhibition. Overall, this review indicates that response inhibition is not simply a manifestation of current drug addiction, but rather a core neurocognitive dimension that predicts key substance use outcomes. Early intervention in inhibitory deficits could have high clinical and public health relevance. PMID:26806776

  4. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner.

    PubMed

    Payne, David E; Martin, Nicholas R; Parzych, Katherine R; Rickard, Alex H; Underwood, Adam; Boles, Blaise R

    2013-02-01

    Staphylococcus aureus is a human commensal and pathogen that is capable of forming biofilms on a variety of host tissues and implanted medical devices. Biofilm-associated infections resist antimicrobial chemotherapy and attack from the host immune system, making these infections particularly difficult to treat. In order to gain insight into environmental conditions that influence S. aureus biofilm development, we screened a library of small molecules for the ability to inhibit S. aureus biofilm formation. This led to the finding that the polyphenolic compound tannic acid inhibits S. aureus biofilm formation in multiple biofilm models without inhibiting bacterial growth. We present evidence that tannic acid inhibits S. aureus biofilm formation via a mechanism dependent upon the putative transglycosylase IsaA. Tannic acid did not inhibit biofilm formation of an isaA mutant. Overexpression of wild-type IsaA inhibited biofilm formation, whereas overexpression of a catalytically dead IsaA had no effect. Tannin-containing drinks like tea have been found to reduce methicillin-resistant S. aureus nasal colonization. We found that black tea inhibited S. aureus biofilm development and that an isaA mutant resisted this inhibition. Antibiofilm activity was eliminated from tea when milk was added to precipitate the tannic acid. Finally, we developed a rodent model for S. aureus throat colonization and found that tea consumption reduced S. aureus throat colonization via an isaA-dependent mechanism. These findings provide insight into a molecular mechanism by which commonly consumed polyphenolic compounds, such as tannins, influence S. aureus surface colonization.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs.more » Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.« less

  6. Competition between yogurt probiotics and periodontal pathogens in vitro.

    PubMed

    Zhu, Yunwo; Xiao, Liying; Shen, Da; Hao, Yuqing

    2010-09-01

    To investigate the competition between probiotics in bio-yogurt and periodontal pathogens in vitro. The antimicrobial activity of bio-yogurt was studied by agar diffusion assays, using eight species of putative periodontal pathogens and a 'protective bacteria' as indicator strains. Four probiotic bacterial species (Lactobacillus bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, and Bifidobacterium) were isolated from yogurt and used to rate the competitive exclusion between probiotics and periodontal pathogens. Fresh yogurt inhibited all the periodontal pathogens included in this work, showing inhibition zones ranging from 9.3 (standard deviation 0.6) mm to 17.3 (standard deviation 1.7) mm, whereas heat-treated yogurt showed lower antimicrobial activity. In addition, neither fresh yogurt nor heat-treated yogurt inhibited the 'protective bacteria', Streptococcus sanguinis. The competition between yogurt probiotics and periodontal pathogens depended on the sequence of inoculation. When probiotics were inoculated first, Bifidobacterium inhibited Porphyromonas gingivalis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas circumdentaria, and Prevotella nigrescens; L. acidophilus inhibited P. gingivalis, A. actinomycetemcomitans, P. circumdentaria, P. nigrescens, and Peptostreptococcus anaerobius; L. bulgaricus inhibited P. gingivalis, A. actinomycetemcomitans, and P. nigrescens; and S. thermophilus inhibited P. gingivalis, F. nucleatum, and P. nigrescens. However, their antimicrobial properties were reduced when both species (probiotics and periodontal pathogens) were inoculated simultaneously. When periodontal pathogens were inoculated first, Prevotella intermedia inhibited Bifidobacterium and S. thermophilus. The results demonstrated that bio-yogurt and the probiotics that it contains are capable of inhibiting specific periodontal pathogens but have no effect on the periodontal protective bacteria.

  7. Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine

    PubMed Central

    Ross, James; Najjar, Amer M.; Sankaranarayanapillai, Madhuri; Tong, William P.; Kaluarachchi, Kumaralal; Ronen, Sabrina M.

    2008-01-01

    Expression of fatty acid synthase (FASN), the key enzyme in de novo synthesis of long-chain fatty acids (FA), is normally low but increases in cancer. Consequently, FASN is a novel target for cancer therapy. However, because FASN inhibitors can lead to tumor stasis rather than shrinkage, non-invasive methods for assessing FASN inhibition are needed. To this end, we combined 1H, 31P and 13C magnetic resonance spectroscopy (MRS) (i) to monitor the metabolic consequences of FASN inhibition and (ii) to identify MRS-detectable metabolic biomarkers of response. Treatment of PC-3 cells with the FASN inhibitor Orlistat for up to 48 h resulted in inhibition of FASN activity by 70%, correlating with 74% inhibition of FA synthesis. Furthermore, we have determined that FASN inhibition results not only in lower phosphatidylcholine levels, but also in a 59% drop in the phospholipid precursor phosphocholine (PCho). This drop resulted from inhibition in PCho synthesis as a result of a reduction in the cellular activity of its synthetic enzyme choline kinase. The drop in PCho levels following FASN inhibition was confirmed in SKOV-3 ovarian cancer cells treated with Orlistat and in MCF-7 breast cancer cells treated with Orlistat as well as cerulenin. Combining data from all treated cells, the drop in PCho significantly correlated with the drop in de novo synthesized FA levels, identifying PCho as a potential non-invasive MRS-detectable biomarker of FASN inhibition in vivo. PMID:18723500

  8. Intraglomerular inhibition shapes the strength and temporal structure of glomerular output

    PubMed Central

    Shao, Zuoyi; Puche, Adam C.; Liu, Shaolin

    2012-01-01

    Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABAA receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs. PMID:22592311

  9. Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.

    PubMed

    Shao, Zuoyi; Puche, Adam C; Liu, Shaolin; Shipley, Michael T

    2012-08-01

    Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABA(A) receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs.

  10. Anti-hypernociceptive properties of agmatine in persistent inflammatory and neuropathic models of pain in mice.

    PubMed

    Paszcuk, Ana Flávia; Gadotti, Vinicius M; Tibola, Daiane; Quintão, Nara L M; Rodrigues, Ana Lúcia S; Calixto, João B; Santos, Adair R S

    2007-07-23

    The present study examined the anti-hypernociceptive effects of agmatine (AGM) in acute and chronic models of behavioural pain in mice. Agmatine (30 mg/kg, i.p. 30 min early), produced time-dependent inhibition of mechanical hypernociception induced by Complete Freund's Adjuvant (CFA) injected in the mice paw (inhibition of 52+/-7%) after 4 h. Given chronically (twice a day) during 10 days, AGM significantly reversed the mechanical hypernociception caused by CFA (inhibition of 43+/-6% to 67+/-5%). Moreover, AGM also significantly reduced the mechanical hypernociception caused by partial sciatic nerve ligation (PSNL) during 6 h, with inhibition of 81+/-8%. In thermal hypernociception (cold stimuli) caused by PSNL the antinociceptive effect of AGM was prolonged by 4 h with inhibition of 97+/-3% observed 1 h after the treatment. Nevertheless, AGM failed to inhibit the paw oedema caused by CFA and the myeloperoxidase enzyme activity. Of note, AGM (10-100 mg/kg, i.p., 30 min before) also elicited a pronounced inhibition of the biting response induced by TNF-alpha and IL-1beta in mice, with mean ID(50) values of 61.3 mg/kg (47.7-78.6 mg/kg) and 30.4 mg/kg (18.6-49.8 mg/kg) and inhibitions of 75+/-5% and 66+/-6%, respectively. Together, present and previous findings show that AGM given systemically is effective in inhibiting mechanical and thermal hypernociception present in chronic inflammatory processes caused by CFA and also the neuropathic pain caused by PSNL.

  11. α-Lipoic acid inhibits the migration and invasion of breast cancer cells through inhibition of TGFβ signaling.

    PubMed

    Tripathy, Joytirmay; Tripathy, Anindita; Thangaraju, Muthusamy; Suar, Mrutyunjay; Elangovan, Selvakumar

    2018-05-23

    Invasion and metastasis are the main cause of mortality in breast cancer. Hence, novel therapeutic interventions with high specificity toward invasion and metastasis are necessary. α-Lipoic acid showed antiproliferative and cytotoxic effects on several cancers including breast cancer. However, the effect of lipoic acid on breast cancer metastasis remains unclear. In the present study, we examined the effects of lipoic acid on the migration and invasion of MDA-MB-231 and 4 T1 breast cancer cells. Our data showed that lipoic acid effectively inhibited the colony forming ability of highly invasive MDA-MB-231 and 4 T1 cells. Moreover, the nontoxic concentrations of lipoic acid significantly reduced the migration of breast cancer cells. Lipoic acid also inhibited the TGFβ-induced angiopoietin-like 4 (ANGPTL4) expression and reduced the activity of matrix metalloproteinase-9 (MMP-9), an enzyme involved in invasion and metastasis, in both the cell lines. The inhibition of cell migration by lipoic acid is accompanied by the downregulation of FAK, ERK1/2 and AKT phosphorylation, and inhibition of nuclear translocation of β-catenin. Our data demonstrated that lipoic acid inhibited the migration and invasion of metastatic breast cancer cells at least in part through inhibiting ERK1/2 and AKT signaling. Thus, our findings show that the inhibition of TGFβ signaling is a potential mechanism for the anti-invasive effects of lipoic acid. Copyright © 2017. Published by Elsevier Inc.

  12. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis.

    PubMed

    Huang, Jiangrong; Yang, Xiaoyu; Peng, Xiaochun; Huang, Wei

    2017-11-18

    Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Control of CA3 output by feedforward inhibition despite developmental changes in the excitation-inhibition balance.

    PubMed

    Torborg, Christine L; Nakashiba, Toshiaki; Tonegawa, Susumu; McBain, Chris J

    2010-11-17

    In somatosensory cortex, the relative balance of excitation and inhibition determines how effectively feedforward inhibition enforces the temporal fidelity of action potentials. Within the CA3 region of the hippocampus, glutamatergic mossy fiber (MF) synapses onto CA3 pyramidal cells (PCs) provide strong monosynaptic excitation that exhibit prominent facilitation during repetitive activity. We demonstrate in the juvenile CA3 that MF-driven polysynaptic IPSCs facilitate to maintain a fixed EPSC-IPSC ratio during short-term plasticity. In contrast, in young adult mice this MF-driven polysynaptic inhibitory input can facilitate or depress in response to short trains of activity. Transgenic mice lacking the feedback inhibitory loop continue to exhibit both facilitating and depressing polysynaptic IPSCs, indicating that this robust inhibition is not caused by the secondary engagement of feedback inhibition. Surprisingly, eliminating MF-driven inhibition onto CA3 pyramidal cells by blockade of GABA(A) receptors did not lead to a loss of temporal precision of the first action potential observed after a stimulus but triggered in many cases a long excitatory plateau potential capable of triggering repetitive action potential firing. These observations indicate that, unlike other regions of the brain, the temporal precision of single MF-driven action potentials is dictated primarily by the kinetics of MF EPSPs, not feedforward inhibition. Instead, feedforward inhibition provides a robust regulation of CA3 PC excitability across development to prevent excessive depolarization by the monosynaptic EPSP and multiple action potential firings.

  14. P-glycoprotein (ABCB1) inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis.

    PubMed

    Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu

    2012-10-01

    We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  16. Anticancer Agents Based on a New Class of Transition- State Analog Inhibitors for Serine and Cysteine Proteases

    DTIC Science & Technology

    1999-08-01

    electrostatic repulsion between the het- eroatom and the ketone. Swain and Lupton31 have constructed a modified Hammett equation (eq 2) in which they...determined by nonlinear fit to the Michaelis-Menten equation for competitive inhibition using simple weighing. Competitive inhibition was confirmed... equation for competitive inhibition using simple weighing. Competitive inhibition was confirmed by Lineweaver - Burk analysis using simple

  17. Sentential negation modulates inhibition in a stop-signal task. Evidence from behavioral and ERP data.

    PubMed

    Beltrán, David; Muñetón-Ayala, Mercedes; de Vega, Manuel

    2018-04-01

    Embodiment theories claim that language meaning involves sensory-motor simulation processes in the brain. A challenge for these theories, however, is to explain how abstract words, such as negations, are processed. In this article, we test the hypothesis that understanding sentential negation (e.g., You will not cut the bread) reuses the neural circuitry of response inhibition. Participants read manual action sentences with either affirmative or negative polarity, embedded in a Stop-Signal paradigm, while their EEG was recorded. The results showed that the inhibition-related N1 and P3 components were enhanced by successful inhibition. Most important, the early N1 amplitude was also modulated by sentence polarity, producing the largest values for successful inhibitions in the context of negative sentences, whereas no polarity effect was found for failing inhibition or go trials. The estimated neural sources for N1 effects revealed activations in the right inferior frontal gyrus, a typical inhibition-related area. Also, the estimated stop-signal reaction time was larger in trials with negative sentences. These results provide strong evidence that action-related negative sentences consume neural resources of response inhibition, resulting in less efficient processing in the Stop-Signal task. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Adsorption characteristics of green 5-arylaminomethylene pyrimidine-2,4,6-triones on mild steel surface in acidic medium: Experimental and computational approach

    NASA Astrophysics Data System (ADS)

    Verma, Chandrabhan; Olasunkanmi, Lukman O.; Ebenso, Eno E.; Quraishi, M. A.

    2018-03-01

    The effect of electron withdrawing nitro (-NO2) and electron releasing hydroxyl (-OH) groups on corrosion inhibition potentials of 5-arylaminomethylenepyrimidine-2,4,6-trione (AMP) had been studied. Four AMPs tagged AMP-1, AMP-2, AMP-3 and AMP-4 were studied for their ability to inhibit mild steel corrosion in 1 M HCl using experimental and theoretical methods. Gravimetric results showed that inhibition efficiency of the studied inhibitors increases with increasing concentration. The results further revealed that that electron withdrawing nitro (-NO2) group decreases the inhibition efficiency of AMP, while electron donating hydroxyl (-OH) group increases the inhibition efficiency of AMP. SEM and AFM studies showed that the studied compounds inhibit mild steel corrosion by adsorbing at the metal/electrolyte interface and their adsorption obeyed the Temkin adsorption isotherm. Potentiodynamic polarization study revealed that studied inhibitors act as mixed type inhibitors with predominant effect on cathodic reaction. The inhibitive strength of the compounds might have direct relationship electron donating ability of the molecules as revealed by quantum chemical parameters. The order of interaction energies derived from Monte Carlo simulations is AMP-4 > AMP-3 > AMP-2 > AMP-1, which is in agreement with the order of inhibition efficiencies obtained from experimental measurements.

  19. The neural correlates of tic inhibition in Gilles de la Tourette syndrome.

    PubMed

    Ganos, Christos; Kahl, Ursula; Brandt, Valerie; Schunke, Odette; Bäumer, Tobias; Thomalla, Götz; Roessner, Veit; Haggard, Patrick; Münchau, Alexander; Kühn, Simone

    2014-12-01

    Tics in Gilles de la Tourette syndrome (GTS) resemble fragments of normal motor behaviour but appear in an intrusive, repetitive and context-inappropriate manner. Although tics can be voluntarily inhibited on demand, the neural correlates of this process remain unclear. 14 GTS adults without relevant comorbidities participated in this study. First, tic severity and voluntary tic inhibitory capacity were evaluated outside the scanner. Second, patients were examined with resting state functional magnetic resonance imaging (RS-fMRI) in two states, free ticcing and voluntary tic inhibition. Local synchronization of spontaneous fMRI-signal was analysed with regional homogeneity (ReHo) and differences between both states (free ticcing

  20. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2.

    PubMed

    Chen, Chien-Min; Hsieh, Yi-Hsien; Hwang, Jin-Ming; Jan, Hsun-Jin; Hsieh, Shu-Ching; Lin, Shin-Huey; Lai, Chung-Yu

    2015-05-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid which is widely distributed in plants. It has been reported to possess some anticancer and anti-invasive capabilities. We set out to explore the effects of fisetin on antimetastatic and its mechanism of action in GBM8401 cells. The results indicated that fisetin exhibited effective inhibition of cell migration and inhibited the invasion of GBM8401 cells under non-cytotoxic concentrations. To identify the potential targets of fisetin, human proteinase antibody array analysis was performed, and the results indicated that the fisetin treatment inhibited the expression of ADAM9 protein and mRNA, which are known to contribute to the progression of glioma cancer. Our results showed that fisetin phosphorylated ERK1/2 in a sustained way that contributed to the inhibited ADAM9 protein and mRNA expression determined by Western blot and RT-PCR. Moreover, inhibition of ERK1/2 by U0126 or transfection with the siERK plasmid significantly abolished the fisetin-inhibited migration and invasion through activation of the ERK1/2 pathway. In summary, our results suggest that fisetin might be a potential therapeutic agent against human glioma cells based on its capacity to activate ERK1/2 and to inhibit ADAM9 expression.

  1. Deficient saccadic inhibition in Asperger's disorder and the social-emotional processing disorder

    PubMed Central

    Manoach, D; Lindgren, K; Barton, J

    2004-01-01

    Background: Both Asperger's disorder and the social-emotional processing disorder (SEPD), a form of non-verbal learning disability, are associated with executive function deficits. SEPD has been shown to be associated with deficient saccadic inhibition. Objective: To study two executive functions in Asperger's disorder and SEPD, inhibition and task switching, using a single saccadic paradigm. Methods: 22 control subjects and 27 subjects with developmental social processing disorders—SEPD, Asperger's disorder, or both syndromes—performed random sequences of prosaccades and antisaccades. This design resulted in four trial types, prosaccades and antisaccades, that were either repeated or switched. The design allowed the performance costs of inhibition and task switching to be isolated. Results: Subjects with both Asperger's disorder and SEPD showed deficient inhibition, as indicated by increased antisaccade errors and a disproportionate increase in latency for antisaccades relative to prosaccades. In contrast, task switching error and latency costs were normal and unrelated to the costs of inhibition. Conclusions: This study replicates the finding of deficient saccadic inhibition in SEPD, extends it to Asperger's disorder, and implicates prefrontal cortex dysfunction in these syndromes. The finding of intact task switching shows that executive function deficits in Asperger's disorder and SEPD are selective and suggests that inhibition and task switching are mediated by distinct neural networks. PMID:15548490

  2. Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis.

    PubMed

    Aye, Irving L M H; Gao, Xiaoli; Weintraub, Susan T; Jansson, Thomas; Powell, Theresa L

    2014-04-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability.

  3. Antioxidant, Antityrosinase, Anticholinesterase, and Nitric Oxide Inhibition Activities of Three Malaysian Macaranga Species

    PubMed Central

    Abas, Faridah; Ahmad, Syahida; Shaari, Khozirah; Khamis, Shamsul; Lajis, N. H.

    2013-01-01

    The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research. PMID:24319356

  4. Antioxidant, antityrosinase, anticholinesterase, and nitric oxide inhibition activities of three malaysian macaranga species.

    PubMed

    Mazlan, Nor Aishah; Mediani, Ahmed; Abas, Faridah; Ahmad, Syahida; Shaari, Khozirah; Khamis, Shamsul; Lajis, N H

    2013-01-01

    The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.

  5. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma

    PubMed Central

    Balakrishnan, Ilango; Harris, Peter; Birks, Diane K; Griesinger, Andrea; Amani, Vladimir; Cristiano, Brian; Remke, Marc; Taylor, Michael D; Handler, Michael; Foreman, Nicholas K; Vibhakar, Rajeev

    2014-01-01

    Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo. PMID:24796395

  6. Inhibition kinetics and granular sludge in an ANAMMOX reactor treating mature landfill leachate.

    PubMed

    Yun, Li; Zhaoming, Zheng; Jun, Li; Baihang, Zhao; Wei, Bian; Yanzhuo, Zhang; Xiujie, Wang

    2016-12-01

    The present study reports the inhibition kinetics and granular sludge in an anaerobic ammonium oxidation (ANAMMOX) - up-flow anaerobic sludge blanket reactor fed with diluted mature landfill leachate. The activity of ANAMMOX bacteria was inhibited by addition of mature landfill leachate, but gradually adapted to the leachate. The system achieved efficient nitrogen removal during 65-75 d and the average removal efficiencies for NH 4 + -N, NO 2 - -N and total nitrogen (TN) were 96%, 95% and 87%, respectively. ANAMMOX was the main pathway of nitrogen removal in the system, and heterotrophic denitrification occurred simultaneously. In addition, aerobic ammonia oxidation and aerobic nitrite oxidation were active in this system. Inhibition kinetic experiments showed that the NH 4 + -N and NO 2 - -N inhibition concentration threshold of ANAMMOX were 489.03 mg/L and 192.36 mg/L, respectively. ANAMMOX was significantly inhibited by mature landfill leachate, and was completely inhibited when the leachate concentration was 1,450.69 mg/L (calculated in chemical oxygen demand). Thus, the inhibition concentration of substrate and landfill leachate should be considered when applying the ANAMMOX process to landfill leachate. The color of granular sludge ANAMMOX changed from brick-red into a reddish-brown. The particle size increased from small to large, with evident granulation of the ANAMMOX sludge.

  7. BST2/Tetherin Inhibition of Alphavirus Exit

    PubMed Central

    Ooi, Yaw Shin; Dubé, Mathieu; Kielian, Margaret

    2015-01-01

    Alphaviruses such as chikungunya virus (CHIKV) and Semliki Forest virus (SFV) are small enveloped RNA viruses that bud from the plasma membrane. Tetherin/BST2 is an interferon-induced host membrane protein that inhibits the release of many enveloped viruses via direct tethering of budded particles to the cell surface. Alphaviruses have highly organized structures and exclude host membrane proteins from the site of budding, suggesting that their release might be insensitive to tetherin inhibition. Here, we demonstrated that exogenously-expressed tetherin efficiently inhibited the release of SFV and CHIKV particles from host cells without affecting virus entry and infection. Alphavirus release was also inhibited by the endogenous levels of tetherin in HeLa cells. While rubella virus (RuV) and dengue virus (DENV) have structural similarities to alphaviruses, tetherin inhibited the release of RuV but not DENV. We found that two recently identified tetherin isoforms differing in length at the N-terminus exhibited distinct capabilities in restricting alphavirus release. SFV exit was efficiently inhibited by the long isoform but not the short isoform of tetherin, while both isoforms inhibited vesicular stomatitis virus exit. Thus, in spite of the organized structure of the virus particle, tetherin specifically blocks alphavirus release and shows an interesting isoform requirement. PMID:25912717

  8. The reciprocal iso-inhibition volume concept: A procedure for the evaluation in effect-directed analysis with thin-layer chromatography - using the thin-layer chromatography-luminescent bacteria assay as an example.

    PubMed

    Schulz, Wolfgang; Weiss, Stefan C; Weber, Walter H; Winzenbacher, Rudi

    2017-10-13

    In effect-directed analysis (EDA) with high-performance thin-layer chromatography (HPTLC), the effect is often detected using images. Thus, an approach to create inhibition chromatograms from these images was developed using the example of the HPTLC- bioluminescence inhibition test. A comparison between the cuvette test and the HPTLC test shows that the test on the plate is significantly more sensitive. To describe the strength of the effect, the EC 50 value is determined from the dose-response relationship. However, the inhibiting compounds are generally unknown and thus their concentrations are also unknown. Therefore, instead of the concentration, the known application volumes are used. This enables the calculation of the application volume necessary to achieve 50% inhibition. Since the volume is inversely proportional to the concentration, the reciprocal value of the calculated volume is indicated and is referred to as the reciprocal iso-inhibition volume (RIV). Using this RIV-concept, it is now possible to compare inhibition bands within and between plates. The entire evaluation is described by the means of two samples from a contaminated site using the bioluminescence inhibition. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Myostatin Inhibition Prevents Diabetes and Hyperphagia in a Mouse Model of Lipodystrophy

    PubMed Central

    Guo, Tingqing; Bond, Nichole D.; Jou, William; Gavrilova, Oksana; Portas, Jennifer; McPherron, Alexandra C.

    2012-01-01

    Lipodystrophies are characterized by a loss of white adipose tissue, which causes ectopic lipid deposition, peripheral insulin resistance, reduced adipokine levels, and increased food intake (hyperphagia). The growth factor myostatin (MSTN) negatively regulates skeletal muscle growth, and mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. MSTN inhibition may therefore be efficacious in ameliorating diabetes. To test this hypothesis, we inhibited MSTN signaling in a diabetic model of generalized lipodystrophy to analyze its effects on glucose metabolism separate from effects on adipose mass. A-ZIP/F1 lipodystrophic mice were crossed to mice expressing a dominant-negative MSTN receptor (activin receptor type IIB) in muscle. MSTN inhibition in A-ZIP/F1 mice reduced blood glucose, serum insulin, triglyceride levels, and the rate of triglyceride synthesis, and improved insulin sensitivity. Unexpectedly, hyperphagia was normalized by MSTN inhibition in muscle. Blood glucose and hyperphagia were reduced in double mutants independent of the adipokine leptin. These results show that the effect of MSTN inhibition on insulin sensitivity is not secondary to an effect on adipose mass and that MSTN inhibition may be an effective treatment for diabetes. These results further suggest that muscle may play a heretofore unappreciated role in regulating food intake. PMID:22596054

  10. D-Phenylalanine inhibits biofilm development of a marine microbe, Pseudoalteromonas sp. SC2014.

    PubMed

    Li, Ee; Wu, Jiajia; Wang, Peng; Zhang, Dun

    2016-09-01

    D-Amino acids have been reported to be able to inhibit biofilm formation or disperse existing biofilms of many microbes; in some cases this is due to growth inhibition as an unspecific effect. In this work, six different D-amino acids were tested for their inhibitory effects on biofilm development and bacterial growth of Pseudoalteromonas sp. SC2014, a marine microbe involved in microbiologically influenced corrosion (MIC). Experimental results indicated that D-phenylalanine (D-Phe) inhibited biofilm formation effectively at concentrations that did not affect cell growth, whereas the other D-amino acids either showed little effect or inhibited biofilm formation while inhibiting bacterial growth. Further studies found that D-Phe could inhibit bacterial accumulation on the surface of 316L stainless steel, and prevent bacteria from forming a multilayer biofilm. It was also suggested that D-Phe could promote the disassembly of an established multilayer biofilm but have little effect on the remaining monolayer adherent cells. For the first time, it was found that a D-amino acid could effectively inhibit biofilm formation of an MIC-involved microbe. This might supply a new insight into how MIC could be mitigated. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Inhibition of Gene Expression in Escherichia coli by Antisense Phosphorodiamidate Morpholino Oligomers

    PubMed Central

    Geller, B. L.; Deere, J. D.; Stein, D. A.; Kroeker, A. D.; Moulton, H. M.; Iversen, P. L.

    2003-01-01

    Antisense phosphorodiamidate morpholino oligomers (PMOs) were tested for the ability to inhibit gene expression in Escherichia coli. PMOs targeted to either a myc-luciferase reporter gene product or 16S rRNA did not inhibit luciferase expression or growth. However, in a strain with defective lipopolysaccharide (lpxA mutant), which has a leaky outer membrane, PMOs targeted to the myc-luciferase or acyl carrier protein (acpP) mRNA significantly inhibited their targets in a dose-dependent response. A significant improvement was made by covalently joining the peptide (KFF)3KC to the end of PMOs. In strains with an intact outer membrane, (KFF)3KC-myc PMO inhibited luciferase expression by 63%. A second (KFF)3KC-PMO conjugate targeted to lacI mRNA induced β-galactosidase in a dose-dependent response. The end of the PMO to which (KFF)3KC is attached affected the efficiency of target inhibition but in various ways depending on the PMO. Another peptide-lacI PMO conjugate was synthesized with the cationic peptide CRRRQRRKKR and was found not to induce β-galactosidase. We conclude that the outer membrane of E. coli inhibits entry of PMOs and that (KFF)3KC-PMO conjugates are transported across both membranes and specifically inhibit expression of their genetic targets. PMID:14506035

  12. Distractor inhibition: principles of operation during selective attention.

    PubMed

    Wyatt, Natalie; Machado, Liana

    2013-02-01

    Research suggests that although target amplification acts as the main determinant of the efficacy of selective attention, distractor inhibition contributes under some circumstances. Here we aimed to gain insight into the operating principles that regulate the use of distractor inhibition during selective attention. The results suggest that, in contrast to target amplification, distractor inhibition does not onset earlier or strengthen in response to advance location information. Instead, when the location of the impending distractor was predictable, evidence of inhibitory processing weakened. Furthermore, the results suggest that distractor inhibition does not operate as a compensatory mechanism for target amplification, as evidenced by the lack of an increase in inhibitory effects when reliance on target amplification was disrupted. Unexpected emergence of inhibitory effects for improbable targets provided evidence that distractor inhibition was at work even when no inhibitory effects manifested. Overall, the pattern of inhibitory effects is interpreted as indicating that, although distractor inhibition mounts primarily reactively rather than preemptively, advance information can help prevent overreaction to the distractor. Of course, less overreaction reduces the chances of behavioral inhibitory effects manifesting even when distractor inhibition has contributed to selective attention; thus, interpreting an absence of inhibitory effects should be done cautiously. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. The effect of inhibition on the existence of traveling wave solutions for a neural field model of human seizure termination.

    PubMed

    González-Ramírez, L R; Kramer, M A

    2018-06-01

    In this paper we study the influence of inhibition on an activity-based neural field model consisting of an excitatory population with a linear adaptation term that directly regulates the activity of the excitatory population. Such a model has been used to replicate traveling wave data as observed in high density local field potential recordings (González-Ramírez et al. PLoS Computational Biology, 11(2), e1004065, 2015). In this work, we show that by adding an inhibitory population to this model we can still replicate wave properties as observed in human clinical data preceding seizure termination, but the parameter range over which such waves exist becomes more restricted. This restriction depends on the strength of the inhibition and the timescale at which the inhibition acts. In particular, if inhibition acts on a slower timescale relative to excitation then it is possible to still replicate traveling wave patterns as observed in the clinical data even with a relatively strong effect of inhibition. However, if inhibition acts on the same timescale as the excitation, or faster, then traveling wave patterns with the desired characteristics cease to exist when the inhibition becomes sufficiently strong.

  14. The development of children's inhibition: does parenting matter?

    PubMed

    Roskam, Isabelle; Stievenart, Marie; Meunier, Jean-Christophe; Noël, Marie-Pascale

    2014-06-01

    Whereas a large body of research has investigated the maturation of inhibition in relation to the prefrontal cortex, far less research has been devoted to environmental factors that could contribute to inhibition improvement. The aim of the current study was to test whether and to what extent parenting matters for inhibition development from 2 to 8years of age. Data were collected from 421 families, with 348 mother-child dyads and 342 father-child dyads participating. Children's inhibition capacities and parenting behaviors were assessed in a three-wave longitudinal data collection. The main analyses examined the impact of parenting on the development of children's inhibition capacities. They were conducted using a multilevel modeling (MLM) framework. The results lead to the conclusion that both mothers and fathers contribute through their child-rearing behavior to their children's executive functioning, even when controlling for age-related improvement (maturation) and important covariates such as gender, verbal IQ, and place of enrollment. More significant relations between children's inhibition development and parenting were displayed for mothers than for fathers. More precisely, parenting behaviors that involve higher monitoring, lower discipline, inconsistency and negative controlling, and a positive parenting style are associated with good development of inhibition capacities in children. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Structural and functional bases of inhibited temperament.

    PubMed

    Clauss, Jacqueline A; Seay, April L; VanDerKlok, Ross M; Avery, Suzanne N; Cao, Aize; Cowan, Ronald L; Benningfield, Margaret M; Blackford, Jennifer Urbano

    2014-12-01

    Children born with an inhibited temperament are at heightened risk for developing anxiety, depression and substance use. Inhibited temperament is believed to have a biological basis; however, little is known about the structural brain basis of this vulnerability trait. Structural MRI scans were obtained from 84 (44 inhibited, 40 uninhibited) young adults. Given previous findings of amygdala hyperactivity in inhibited individuals, groups were compared on three measures of amygdala structure. To identify novel substrates of inhibited temperament, a whole brain analysis was performed. Functional activation and connectivity were examined across both groups. Inhibited adults had larger amygdala and caudate volume and larger volume predicted greater activation to neutral faces. In addition, larger amygdala volume predicted greater connectivity with subcortical and higher order visual structures. Larger caudate volume predicted greater connectivity with the basal ganglia, and less connectivity with primary visual and auditory cortex. We propose that larger volume in these salience detection regions may result in increased activation and enhanced connectivity in response to social stimuli. Given the strong link between inhibited temperament and risk for psychiatric illness, novel therapeutics that target these brain regions and related neural circuits have the potential to reduce rates of illness in vulnerable individuals. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. In Vitro Modulation of Renin-Angiotensin System Enzymes by Amaranth (Amaranthus hypochondriacus) Protein-Derived Peptides: Alternative Mechanisms Different from ACE Inhibition.

    PubMed

    Quiroga, Alejandra V; Aphalo, Paula; Nardo, Agustina E; Añón, María C

    2017-08-30

    Among the factors affecting the development of cardiovascular diseases, hypertension is one of the most important. Research done on amaranth proteins has demonstrated their hypotensive capacity in vivo and in vitro; nevertheless, the mechanism underlying this effect remains unclear. The aim of this study was to analyze in vitro the inhibition of peptides derived from an amaranth hydrolysate (AHH) on other RAS enzymes other than ACE. The chymase and renin activities were studied. AHH was not able to inhibit chymase activity, although a dose-response effect was found on renin activity (IC 50 0.6 mg/mL). To provide an approach to the renin inhibition mechanism, we analyzed AHH renin inhibition kinetics and performed a structural characterization of the peptides involved in the effect in terms of molecular size and hydrophobicity. Results suggest that amaranth peptides exhibit renin competitive inhibition behavior. Renin inhibition potency was directly related to peptide hydrophobicity. RP-HPLC separation of AHH and subsequent analysis of the peptide sequences showed 6 peptides belonging to 11S globulin (that can be grouped into 3 families) that would be responsible for renin inhibition. These results demonstrate that Amaranthus hypochondriacus seeds are an adequate source of peptides with renin inhibitory properties that could be used in functional food formulations.

  17. Inhibition of Phenylamide Hydrolysis by Bacillus sphaericus with Methylcarbamate and Organophosphorus Insecticides

    PubMed Central

    Engelhardt, G.; Wallnöfer, P. R.

    1975-01-01

    The degradation of the phenylamide herbicides monolinuron, linuron, and solan by cultures of Bacillus sphaericus ATCC 12123 was inhibited by the methylcarbamate insecticides metmercapturon, aldicarb, propoxur, and carbaryl and by the organophosphorus insecticides fenthion and parathion. The extent of inhibition was largest with metmercapturon and smallest with parathion. Inhibition of hydrolysis of the two phenylurea herbicides was greater than of the acylanilide compound. Tests with crude enzyme preparations of aryl acylamidase derived from B. sphaericus showed that the inhibition of the hydrolysis of linuron with methylcarbamates is a competitive one. The insecticides tested did not induce the enzyme, nor could they serve as its substrate. PMID:1155931

  18. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    PubMed

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  19. Caffeine inhibition of aflatoxin synthesis: probable site of action.

    PubMed Central

    Buchanan, R L; Lewis, D F

    1984-01-01

    Aflatoxin production by pregrown cultures of Aspergillus parasiticus was completely inhibited by incorporation of 2 mg of caffeine per ml into the medium. This was accompanied by a decrease in glucose utilization and an inhibition of oxygen uptake and carbon dioxide evolution. Enzyme analyses indicated no significant differences in specific activities on glucose-6-phosphate dehydrogenase, mannitol dehydrogenase, phosphofructokinase, fructose 1,6-diphosphatase, pyruvate kinase, or malate dehydrogenase. Glucose uptake kinetics indicated a linear dose-related inhibition of glucose uptake. It appears likely that caffeine inhibits aflatoxin synthesis by restricting the uptake of carbohydrates which are ultimately used by the mold to synthesize this family of mycotoxins. PMID:6331311

  20. Mitigating hERG Inhibition: Design of Orally Bioavailable CCR5 Antagonists as Potent Inhibitors of R5 HIV-1 Replication

    PubMed Central

    2012-01-01

    A series of CCR5 antagonists representing the thiophene-3-yl-methyl ureas were designed that met the pharmacological criteria for HIV-1 inhibition and mitigated a human ether-a-go-go related gene (hERG) inhibition liability. Reducing lipophilicity was the main design criteria used to identify compounds that did not inhibit the hERG channel, but subtle structural modifications were also important. Interestingly, within this series, compounds with low hERG inhibition prolonged the action potential duration (APD) in dog Purkinje fibers, suggesting a mixed effect on cardiac ion channels. PMID:24900457

  1. Cholinesterase inhibition of birds inhabiting wheat fields treated with methyl parathion and toxaphene

    USGS Publications Warehouse

    Niethammer, K.R.; Baskett, T.S.

    1983-01-01

    Red-winged blackbirds (Agelaius phoeniceus) and dickcissels (Spiza americana) inhabiting wheat fields treated with 0.67 kg AI/ha methyl parathion and 1.35 kg AI/ha toxaphene showed brain cholinesterase (ChE) inhibition compared with birds inhabiting untreated fields. Maximum inhibition occurred about five days after insecticide application. ChE activities again approached normal 10 days after treatment. ChE inhibition for dickcissels and red-winged blackbirds differed significantly (p<0.05); maximum inhibition for the former species was 74%, and for the latter, 40%. These differences could not be explained by the diets of the two species, as they were similar.

  2. What Do We Really Know about Cognitive Inhibition? Task Demands and Inhibitory Effects across a Range of Memory and Behavioural Tasks

    PubMed Central

    Noreen, Saima; MacLeod, Malcolm D.

    2015-01-01

    Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks. PMID:26270470

  3. Explicit and Implicit Verbal Response Inhibition in Preschool-Age Children Who Stutter.

    PubMed

    Anderson, Julie D; Wagovich, Stacy A

    2017-04-14

    The purpose of this study was to examine (a) explicit and implicit verbal response inhibition in preschool children who do stutter (CWS) and do not stutter (CWNS) and (b) the relationship between response inhibition and language skills. Participants were 41 CWS and 41 CWNS between the ages of 3;1 and 6;1 (years;months). Explicit verbal response inhibition was measured using a computerized version of the grass-snow task (Carlson & Moses, 2001), and implicit verbal response inhibition was measured using the baa-meow task. Main dependent variables were reaction time and accuracy. The CWS were significantly less accurate than the CWNS on the implicit task, but not the explicit task. The CWS also exhibited slower reaction times than the CWNS on both tasks. Between-group differences in performance could not be attributed to working memory demands. Overall, children's performance on the inhibition tasks corresponded with parents' perceptions of their children's inhibition skills in daily life. CWS are less effective and efficient than CWNS in suppressing a dominant response while executing a conflicting response in the verbal domain.

  4. X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo

    2015-10-01

    Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F1 egg hatching was only 66 Gy. ED99 value for inhibition of hatching of F1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae.

  5. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E.

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation.more » In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.« less

  6. Dissociating interference-control processes between memory and response.

    PubMed

    Bissett, Patrick G; Nee, Derek Evan; Jonides, John

    2009-09-01

    The ability to mitigate interference is of central importance to cognition. Previous research has provided conflicting accounts about whether operations that resolve interference are singular in character or form a family of functions. Here, the authors examined the relationship between interference-resolution processes acting on working memory representations versus responses. The authors combined multiple forms of interference into a single paradigm by merging a directed-forgetting task, which induces proactive interference, with a stop-signal task, which taps response inhibition processes. The results demonstrated that proactive interference and response inhibition produced distinct behavioral signatures that did not interact. By contrast, combining two different measures of response inhibition by merging a go/no-go task variant and a stop signal produced overadditive behavioral interference, demonstrating that different forms of response inhibition tap the same processes. However, not all forms of response conflict interacted, suggesting that inhibition-related functions acting on response selection are dissociable from those acting on response inhibition. These results suggest that inhibition-related functions for memory and responses are dissociable. (c) 2009 APA, all rights reserved.

  7. Vanadate inhibition of stomatal opening in epidermal peels of Commelina communis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.; Illan, N.; Assmann, S.M.

    There are conflicting reports on the effectiveness of the plasmamembrane H{sup +} ATPase inhibitor, vanadate, in inhibiting stomatal opening. We have observed that vanadate inhibited light-stimulated stomatal opening in epidermal peels of Commelina communis only at KCl concentrations lower than 50 mM. When KCl was replaced with n-methylglucamine chloride, vanadate was still ineffective at high salt concentrations. However, in the absence of Cl{sup {minus}}, when KOH was buffered with V{sub 2}O{sub 5}, vanadate inhibition of stomatal opening occurred even at high salt concentrations (K{sup +} = 70 mM). An inhibitor of anion uptake, anthracene-9-carboxylic acid (200 {mu}M), partially prevented vanadatemore » inhibition of stomatal opening; other inhibitors (DIDS, SITS, Zn{sup 2+}) were ineffective. These results suggest that inhibition of stomatal opening by vanadate requires its entry into guard cells through an anion uptake system. Decreasing vanadate inhibition at high Cl{sup {minus}}/vanadate ratios may result from competition between vanadate and Cl{sup {minus}} for a common uptake mechanism.« less

  8. Automated image-based assay for evaluation of HIV neutralization and cell-to-cell fusion inhibition.

    PubMed

    Sheik-Khalil, Enas; Bray, Mark-Anthony; Özkaya Şahin, Gülsen; Scarlatti, Gabriella; Jansson, Marianne; Carpenter, Anne E; Fenyö, Eva Maria

    2014-08-30

    Standardized techniques to detect HIV-neutralizing antibody responses are of great importance in the search for an HIV vaccine. Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows evaluation of neutralization and inhibition of cell-cell fusion within the same assay. Neutralization of virus particles is measured as a reduction in the number of fluorescent plaques, and inhibition of cell-cell fusion as a reduction in plaque area. We found neutralization strength to be a significant factor in the ability of virus to form syncytia. Further, we introduce the inhibitory concentration of plaque area reduction (ICpar) as an additional measure of antiviral activity, i.e. fusion inhibition. We present an automated image based high-throughput, high-content HIV plaque reduction assay. This allows, for the first time, simultaneous evaluation of neutralization and inhibition of cell-cell fusion within the same assay, by quantifying the reduction in number of plaques and mean plaque area, respectively. Inhibition of cell-to-cell fusion requires higher quantities of inhibitory reagent than inhibition of virus neutralization.

  9. Hot or Not: Response Inhibition Reduces the Hedonic Value and Motivational Incentive of Sexual Stimuli

    PubMed Central

    Ferrey, Anne E.; Frischen, Alexandra; Fenske, Mark J.

    2012-01-01

    The motivational incentive of reward-related stimuli can become so salient that it drives behavior at the cost of other needs. Here we show that response inhibition applied during a Go/No-go task not only impacts hedonic evaluations but also reduces the behavioral incentive of motivationally relevant stimuli. We first examined the impact of response inhibition on the hedonic value of sex stimuli associated with strong behavioral-approach responses (Experiment 1). Sexually appealing and non-appealing images were both rated as less attractive when previously encountered as No-go (inhibited) than as Go (non-inhibited) items. We then discovered that inhibition reduces the motivational incentive of sexual appealing stimuli (Experiment 2). Prior Go/No-go status affected the number of key-presses by heterosexual males to view erotic-female (sexually appealing) but not erotic-male or scrambled-control (non-appealing) images. These findings may provide a foundation for developing inhibition-based interventions to reduce the hedonic value and motivational incentive of stimuli associated with disorders of self-control. PMID:23272002

  10. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Karen E.; Knipe, David M., E-mail: david_knipe@hms.harvard.ed

    2010-01-05

    Host cells respond to viral infection by the production of type I interferons (IFNs), which induce the expression of antiviral genes. Herpes simplex virus I (HSV-1) encodes many mechanisms that inhibit the type I IFN response, including the ICP27-dependent inhibition of type I IFN signaling. Here we show inhibition of Stat-1 nuclear accumulation in cells that express ICP27. ICP27 expression also induces the secretion of a small, heat-stable type I IFN antagonizing protein that inhibits Stat-1 nuclear accumulation. We show that the inhibition of IFN-induced Stat-1 phosphorylation occurs at or upstream of Jak-1 phosphorylation. Finally, we show that ISG15 expressionmore » is induced after IFNalpha treatment in mock-infected cells, but not cells infected with WT HSV-1 or ICP27{sup -} HSV-1. These data suggest that HSV-1 has evolved multiple mechanisms to inhibit IFN signaling not only in infected cells, but also in neighboring cells, thereby allowing for increased viral replication and spread.« less

  11. A novel peptide from TCTA protein inhibits proliferation of fibroblast-like synoviocytes of rheumatoid arthritis patients

    PubMed Central

    Yago, Toru; Kobashigawa, Tsuyoshi; Kawamoto, Manabu; Yamanaka, Hisashi; Kotake, Shigeru

    2014-01-01

    Background We have demonstrated that a peptide, which we named ‘Peptide A’, derived from the extracellular domain of T-cell leukemia translocation-associated gene (TCTA) protein, inhibited human osteoclastogenesis. Objective In the current study, we examined whether this peptide inhibits the proliferation of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) or not. Material and methods Fibroblast-like synoviocytes obtained from five RA patients were cultured in the absence or presence of 1, 5, 10 µg/ml of peptide. We used 29-mer scrambled peptide as a control. Results The peptide inhibited the proliferation of RA FLS dose-dependently. On the other hand, the scrambled peptide showed no inhibition. Conclusions The peptide inhibits both human osteoclastogenesis and the proliferation of RA FLS. Thus, the peptide may be used for the therapy of both osteoporosis and synovitis of RA patients. This is the first report of the new peptide we discovered, which inhibits both osteoclastogenesis and synovitis. Thus, this new peptide could be a new drug for patients with both osteoporosis and RA. PMID:26155164

  12. Prostaglandin E1 inhibits endocytosis in the β-cell endocytosis.

    PubMed

    Zhao, Ying; Fang, Qinghua; Straub, Susanne G; Lindau, Manfred; Sharp, Geoffrey W G

    2016-06-01

    Prostaglandins inhibit insulin secretion in a manner similar to that of norepinephrine (NE) and somatostatin. As NE inhibits endocytosis as well as exocytosis, we have now examined the modulation of endocytosis by prostaglandin E1 (PGE1). Endocytosis following exocytosis was recorded by whole-cell patch clamp capacitance measurements in INS-832/13 cells. Prolonged depolarizing pulses producing a high level of Ca(2+) influx were used to stimulate maximal exocytosis and to deplete the readily releasable pool (RRP) of granules. This high Ca(2+) influx eliminates the inhibitory effect of PGE1 on exocytosis and allows specific characterization of the inhibitory effect of PGE1 on the subsequent compensatory endocytosis. After stimulating exocytosis, endocytosis was apparent under control conditions but was inhibited by PGE1 in a Pertussis toxin-sensitive (PTX)-insensitive manner. Dialyzing a synthetic peptide mimicking the C-terminus of the α-subunit of the heterotrimeric G-protein Gz into the cells blocked the inhibition of endocytosis by PGE1, whereas a control-randomized peptide was without effect. These results demonstrate that PGE1 inhibits endocytosis and Gz mediates the inhibition. © 2016 Society for Endocrinology.

  13. Role of contact inhibition in the regulation of receptor-mediated uptake of low density lipoprotein in cultured vascular endothelial cells.

    PubMed Central

    Vlodavsky, I; Fielding, P E; Fielding, C J; Gospodarowicz, D

    1978-01-01

    Bovine vascular endothelial cells during logarithmic growth bind, internalize, and degrade low density lipoprotein (LDL) via a receptor-mediated pathway. However, contact-inhibited (confluent) monolayers bind but do not internalize LDL. This is in contrast to aortic smooth muscle cells or endothelial cells that have lost the property of contact inhibition. These cells internalize and degrade LDL at both high and low cell densities. The LDL receptors of smooth muscle and sparse endothelial cells down-regulate in response to LDL. In contrast, normal endothelial cells at confluency show little response. When contact inhibition in endothelial monolayers was locally released by wounding, and LDL was present, only cells released from contact inhibition accumulated LDL cholesterol. In smooth muscle cells under the same conditions, the entire culture interiorized lipid. It thus appears that in endothelial cells, unlike smooth muscle cells, contact inhibition is the major factor regulating cellular uptake of LDL cholesteryl ester. Reversal of contact inhibition by wounding provides a mechanism by which the endothelium could be the primary initiator of the atherosclerotic plaque. Images PMID:203937

  14. Comparable cortical activation with inferior performance in women during a novel cognitive inhibition task.

    PubMed

    Halari, R; Kumari, V

    2005-03-07

    Men are hypothesised to perform better than women at tasks requiring cognitive inhibition. The present study applied whole-brain functional magnetic resonance imaging to investigate the neural correlates of cognitive inhibition using a novel task, requiring detection of numbers decreasing in numerical order, in relation to sex. The study involved 19 young healthy subjects (9 men, 10 women). Behavioural sex differences favouring men were found on the inhibition, but not on the automatization (i.e. detection of numbers increasing in numerical order), condition of the task. Significant areas of activation associated with cognitive inhibition included the right inferior prefrontal and bilateral dorsolateral prefrontal cortices, left inferior and superior parietal lobes, and bilateral temporal regions across men and women. No brain region was significantly differently activated in men and women. Our findings demonstrate that (a) cognitive inhibition is dependent on intact processes within frontal and parietal regions, and (b) women show inferior cognitive inhibition despite of comparable activation to men in relevant regions. Equated behavioural performance may elicit sex differences in brain activation.

  15. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide.

    PubMed

    Koide, Naoki; Kaneda, Ayumi; Yokochi, Takashi; Umezawa, Kazuo

    2015-03-01

    We have isolated 9-methylstreptimidone from microorganism as a new NF-κB inhibitor. Later, we designed 3-[(dodecylthiocarbonyl) methyl]-glutarimide (DTCM-glutarimide) as an analog of this compound, which shows anti-inflammatory activity in vivo. In the present research, we found that DTCM-glutarimide inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation of mouse bone marrow-derived macrophages and RANKL- or lipopolysaccharide (LPS)-induced osteoclast differentiation of RAW 264.7 cells without any toxicity. It also inhibited the RANKL-induced NFATc1 expression. Upstream signaling involving phosphorylation of Akt and GSK-3β was induced by RANKL, of which the signaling was inhibited by DTCM-glutarimide. Then DTCM-glutarimide was confirmed to inhibit RANKL-induced NF-κB activity, possibly by inhibiting the Akt-mediated activation of IKK. Thus, DTCM-glutarimide inhibited osteoclastogenesis by blocking both the Akt-GSK3β-NFATc1 and NF-κB-NFATc1 pathways. DTCM-glutarimide may be a candidate as a chemotherapeutic agent for severe bone resorption diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Explicit and Implicit Verbal Response Inhibition in Preschool-Age Children Who Stutter

    PubMed Central

    Wagovich, Stacy A.

    2017-01-01

    Purpose The purpose of this study was to examine (a) explicit and implicit verbal response inhibition in preschool children who do stutter (CWS) and do not stutter (CWNS) and (b) the relationship between response inhibition and language skills. Method Participants were 41 CWS and 41 CWNS between the ages of 3;1 and 6;1 (years;months). Explicit verbal response inhibition was measured using a computerized version of the grass–snow task (Carlson & Moses, 2001), and implicit verbal response inhibition was measured using the baa–meow task. Main dependent variables were reaction time and accuracy. Results The CWS were significantly less accurate than the CWNS on the implicit task, but not the explicit task. The CWS also exhibited slower reaction times than the CWNS on both tasks. Between-group differences in performance could not be attributed to working memory demands. Overall, children's performance on the inhibition tasks corresponded with parents' perceptions of their children's inhibition skills in daily life. Conclusions CWS are less effective and efficient than CWNS in suppressing a dominant response while executing a conflicting response in the verbal domain. PMID:28384673

  17. “Off with the Old”: Mindfulness Practice Improves Backward Inhibition

    PubMed Central

    Greenberg, Jonathan; Reiner, Keren; Meiran, Nachshon

    2013-01-01

    Mindfulness practice has been linked to reduced depressive rumination and described as involving inhibition of information that has been relevant in the past and is no longer relevant in the present moment. Backward inhibition (BI) is considered to be one of the purest measures of task set inhibition, and impaired BI has been linked to depressive rumination. BI was contrasted with Competitor Rule Suppression (CRS), which is another phenomenon observed in task switching, yet one which involves episodic memory tagging of information that is currently conflicting rather than active inhibition. Although similar at baseline level, a randomly assigned group (n = 38) who underwent an eight session mindfulness training program exhibited improved BI but not CRS compared to a waiting list group (n = 38). Findings indicate that mindfulness improves the specific component of task set inhibition, which has previously been linked to reduced rumination. Implications regarding the potential role of task set inhibition in mediating between mindfulness and reduced rumination, as well as the role of mindfulness in “being in the present moment” are discussed. PMID:23335909

  18. Prevention of 5-Fluorouracil-Caused Growth Inhibition in Sordaria fimicola

    PubMed Central

    Schoen, Howard F.; Berech, John

    1977-01-01

    Growth (dry weight accumulation) of Sordaria fimicola in standing liquid culture (sucrose-nitrate-salts-vitamins) is inhibited by the presence of 5 μM 5-fluorouracil in the medium. This inhibition is completely prevented by uracil, deoxyuridine, and 5-bromouracil, partly prevented (40 to 90% of growth observed without 5-fluorouracil) by uridine, thymidine, and 5-bromodeoxyuridine, and slightly prevented by trifluorothymine, cytosine, cytidine, deoxycytidine, and 5-methylcytosine (all at 0.5 to 1 mM). Thymidine and thymine riboside were without any apparent effect. Growth is also inhibited by 0.2 mM 6-azauracil, and this inhibition was completely prevented by uracil and uridine, partly prevented by deoxyuridine, 5-bromouracil, cytidine, and 5-methylcytosine, and slightly prevented by thymine, thymidine, 5-bromodeoxyuridine, cytosine, and deoxycytidine. The data suggest that the observed inhibition of growth by 5-fluorouracil is due to inhibition of both ribonucleic acid and deoxyribonucleic acid synthesis. The data also allow inferences concerning pyrimidine interconversions in S. fimicola; i.e., thymine can be anabolized to thymidylic acid without first being demethylated, although demethylation appears to occur also. PMID:848926

  19. Prevention of 5-fluorouracil-caused growth inhibition in Sordaria fimicola.

    PubMed

    Schoen, H F; Berech, J

    1977-02-01

    Growth (dry weight accumulation) of Sordaria fimicola in standing liquid culture (sucrose-nitrate-salts-vitamins) is inhibited by the presence of 5 muM 5-fluorouracil in the medium. This inhibition is completely prevented by uracil, deoxyuridine, and 5-bromouracil, partly prevented (40 to 90% of growth observed without 5-fluorouracil) by uridine, thymidine, and 5-bromodeoxyuridine, and slightly prevented by trifluorothymine, cytosine, cytidine, deoxycytidine, and 5-methylcytosine (all at 0.5 to 1 mM). Thymidine and thymine riboside were without any apparent effect. Growth is also inhibited by 0.2 mM 6-azauracil, and this inhibition was completely prevented by uracil and uridine, partly prevented by deoxyuridine, 5-bromouracil, cytidine, and 5-methylcytosine, and slightly prevented by thymine, thymidine, 5-bromodeoxyuridine, cytosine, and deoxycytidine. The data suggest that the observed inhibition of growth by 5-fluorouracil is due to inhibition of both ribonucleic acid and deoxyribonucleic acid synthesis. The data also allow inferences concerning pyrimidine interconversions in S. fimicola; i.e., thymine can be anabolized to thymidylic acid without first being demethylated, although demethylation appears to occur also.

  20. Antiplatelet effects of protopine isolated from Corydalis tubers.

    PubMed

    Ko, F N; Wu, T S; Lu, S T; Wu, Y C; Huang, T F; Teng, C M

    1989-10-15

    Protopine inhibited the aggregation and ATP release of rabbit platelets induced by ADP, arachidonic acid, PAF, collagen and ionophore A23187. Although the platelet aggregation caused by thrombin was not inhibited by protopine (100 micrograms/ml), the release reaction was partially suppressed. In rabbit platelet-rich plasma, protopine also inhibited the platelet aggregation caused by ADP, arachidonic acid, PAF and collagen. The thromboxane B2 formation of washed platelets caused by arachidonic acid, collagen, ionophore A23187 and thrombin was suppressed by protopine. Protopine inhibited the intracellular calcium increase caused by arachidonic acid in quin-2/AM loaded rabbit platelets. In the presence of indomethacin, the intracellular calcium increase caused by collagen and PAF was completely suppressed by protopine, and the intracellular calcium increase caused by thrombin was partially inhibited. The phosphoinositides breakdown caused by collagen and PAF was inhibited by protopine, but that by thrombin was not affected significantly. Protopine did not cause the elevation of cyclic AMP level of platelets. It is concluded that the antiplatelet effects of protopine is due to inhibition on thromboxane formation and phosphoinositides breakdown and then lead to the decrease of intracellular calcium concentration.

Top