Sample records for yoph mutant revealed

  1. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  2. Yersinia pestis CO92 delta yopH is a potent live, attenuated plague vaccine.

    PubMed

    Bubeck, Sarah S; Dube, Peter H

    2007-09-01

    An in-frame deletion of the yopH gene in Yersinia pestis CO92 attenuates virulence in both bubonic and pneumonic plague models. When it is used as a live, attenuated vaccine, CO92 delta yopH provides a high degree of protection from parental and respiratory challenge with Y. pestis CO92.

  3. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor

    PubMed Central

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K.; Gorska, Magdalena; Tuszynski, Jack A.; Wozniak, Michal

    2016-01-01

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  4. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2016-01-19

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding.

  5. Redox process is crucial for inhibitory properties of aurintricarboxylic acid against activity of YopH: virulence factor of Yersinia pestis

    PubMed Central

    Kuban-Jankowska, Alicja; Gorska, Magdalena; Tuszynski, Jack A; Ossowski, Tadeusz; Wozniak, Michal

    2015-01-01

    YopH is a bacterial protein tyrosine phosphatase, which is essential for the viability and pathogenic virulence of the plague-causing Yersinia sp. bacteria. Inactivation of YopH activity would lead to the loss of bacterial pathogenicity. We have studied the inhibitory properties of aurintricarboxylic acid (ATA) against YopH phosphatase and found that at nanomolar concentrations ATA reversibly decreases the activity of YopH. Computational docking studies indicated that in all binding poses ATA binds in the YopH active site. Molecular dynamics simulations showed that in the predicted binding pose, ATA binds to the essential Cys403 and Arg409 residues in the active site and has a stronger binding affinity than the natural substrate (pTyr). The cyclic voltammetry experiments suggest that ATA reacts remarkably strongly with molecular oxygen. Additionally, the electrochemical reduction of ATA in the presence of a negative potential from −2.0 to 2.5 V generates a current signal, which is observed for hydrogen peroxide. Here we showed that ATA indicates a unique mechanism of YopH inactivation due to a redox process. We proposed that the potent inhibitory properties of ATA are a result of its strong binding in the YopH active site and in situ generation of hydrogen peroxide near catalytic cysteine residue. PMID:26286963

  6. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.

    2011-07-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacingmore » a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors.« less

  7. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    PubMed Central

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.; Ulrich, Robert G.; Burke, Terrence R.; Waugh, David S.

    2011-01-01

    Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors. PMID:21697602

  8. Biologically active ligands for yersinia outer protein H (YopH): feature based pharmacophore screening, docking and molecular dynamics studies.

    PubMed

    Tamilvanan, Thangaraju; Hopper, Waheeta

    2014-01-01

    Yersinia pestis, a Gram negative bacillus, spreads via lymphatic to lymph nodes and to all organs through the bloodstream, causing plague. Yersinia outer protein H (YopH) is one of the important effector proteins, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse sets of YopH inhibitors, which would be useful for designing of potential antitoxin. In this study, we have selected 60 biologically active inhibitors of YopH to perform Ligand based pharmacophore study to elucidate the important structural features responsible for biological activity. Pharmacophore model demonstrated the importance of two acceptors, one hydrophobic and two aromatic features toward the biological activity. Based on these features, different databases were screened to identify novel compounds and these ligands were subjected for docking, ADME properties and Binding energy prediction. Post docking validation was performed using molecular dynamics simulation for selected ligands to calculate the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF). The ligands, ASN03270114, Mol_252138, Mol_31073 and ZINC04237078 may act as inhibitors against YopH of Y. pestis.

  9. Utilization of Nitrophenylphosphates and Oxime-Based Ligation for the Development of Nanomolar Affinity Inhibitors of the Yersinia Pestis Outer Protein H (YopH) Phosphatase†, §, ¶

    PubMed Central

    Bahta, Medhanit; Lountos, George T.; Dyas, Beverly; Kim, Sung-Eun; Ulrich, Robert G.; Waugh, David S.; Burke, Terrence R.

    2011-01-01

    Our current study reports the first KM optimization of a library of nitrophenylphosphate-containing substrates for generating an inhibitor lead against the Yersinia pestis outer protein phosphatase (YopH). A high activity substrate identified by this method (KM = 80 μM was converted from a substrate into an inhibitor by replacement of its phosphate group with difluoromethylphosphonic acid and by attachment of an aminooxy handle for further structural optimization by oxime-ligation. A co-crystal structure of this aminooxy-containing platform in complex with YopH allowed the identification of a conserved water molecule proximal to the aminooxy group that was subsequently employed for the design of furanyl-based oxime derivatives. By this process, a potent (IC50 = 190 nM) and non-promiscuous inhibitor was developed with good YopH selectivity relative to a panel of phosphatases. The inhibitor showed significant inhibition of intracellular Y. pestis replication at a non-cytotoxic concentration. The current work presents general approaches to PTP inhibitor development that may be useful beyond YopH. PMID:21443195

  10. Utilization of Nitrophenylphosphates and Oxime-Based Ligation for the Development of Nanomolar Affinity Inhibitors of the Yersinia pestis Outer Protein H (YopH) Phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahta, Medhanit; Lountos, George T.; Dyas, Beverly

    Our current study reports the first K{sub M} optimization of a library of nitrophenylphosphate-containing substrates for generating an inhibitor lead against the Yersinia pestis outer protein phosphatase (YopH). A high activity substrate identified by this method (K{sub M} = 80 {micro}M) was converted from a substrate into an inhibitor by replacement of its phosphate group with difluoromethylphosphonic acid and by attachment of an aminooxy handle for further structural optimization by oxime ligation. A cocrystal structure of this aminooxy-containing platform in complex with YopH allowed the identification of a conserved water molecule proximal to the aminooxy group that was subsequently employedmore » for the design of furanyl-based oxime derivatives. By this process, a potent (IC{sub 50} = 190 nM) and nonpromiscuous inhibitor was developed with good YopH selectivity relative to a panel of phosphatases. The inhibitor showed significant inhibition of intracellular Y. pestis replication at a noncytotoxic concentration. The current work presents general approaches to PTP inhibitor development that may be useful beyond YopH.« less

  11. Molecular characterization of the Salmonella typhi StpA protein that is related to both Yersinia YopE cytotoxin and YopH tyrosine phosphatase.

    PubMed

    Arricau, N; Hermant, D; Waxin, H; Popoff, M Y

    1997-01-01

    Analysis of the nucleotide sequence of a 4-kb DNA fragment located between the sip and iag loci on Salmonella typhi chromosome revealed three open reading frames, termed sipF, ctpA and stpA. The 82-amino-acid (aa) sipF product showed extensive similarity to the lacP protein from S. typhimurium. The StpA protein (535 aa) exhibited significant similarity to both Yersinia enterocolitica YopE cytotoxin and YopH tyrosine phosphatase. The CtpA polypeptide (130 aa) might be the molecular chaperone of the StpA protein.

  12. Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain.

    PubMed

    Dave, Mabel N; Silva, Juan E; Eliçabe, Ricardo J; Jeréz, María B; Filippa, Verónica P; Gorlino, Carolina V; Autenrieth, Stella; Autenrieth, Ingo B; Di Genaro, María S

    2016-11-01

    Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandao, T.; Robinson, H; Johnson, S

    Catalysis by the Yersinia protein-tyrosine phosphatase YopH is significantly impaired by the mutation of the conserved Trp354 residue to Phe. Though not a catalytic residue, this Trp is a hinge residue in a conserved flexible loop (the WPD-loop) that must close during catalysis. To learn why this seemingly conservative mutation reduces catalysis by 2 orders of magnitude, we have solved high-resolution crystal structures for the W354F YopH in the absence and in the presence of tungstate and vanadate. Oxyanion binding to the P-loop in W354F is analogous to that observed in the native enzyme. However, the WPD-loop in the presencemore » of oxyanions assumes a half-closed conformation, in contrast to the fully closed state observed in structures of the native enzyme. This observation provides an explanation for the impaired general acid catalysis observed in kinetic experiments with Trp mutants. A 1.4 Angstroms structure of the W354F mutant obtained in the presence of vanadate reveals an unusual divanadate species with a cyclic [VO]2 core, which has precedent in small molecules but has not been previously reported in a protein crystal structure.« less

  14. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  15. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins

    PubMed Central

    Morton, Kyla J.; Jia, Shangang; Zhang, Chi; Holding, David R.

    2016-01-01

    Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm. PMID:26712829

  16. Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks

    PubMed Central

    Yang, Hee-Jeong; Bogomolnaya, Lydia M.; Elfenbein, Johanna R.; Endicott-Yazdani, Tiana; Reynolds, M. Megan; Porwollik, Steffen; Cheng, Pui; Xia, Xiao-Qin

    2016-01-01

    Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection. PMID:26857572

  17. Fruit ripening mutants reveal cell metabolism and redox state during ripening.

    PubMed

    Kumar, Vinay; Irfan, Mohammad; Ghosh, Sumit; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-03-01

    Ripening which leads to fruit senescence is an inimitable process characterized by vivid changes in color, texture, flavor, and aroma of the fleshy fruits. Our understanding of the mechanisms underlying the regulation of fruit ripening and senescence is far from complete. Molecular and biochemical studies on tomato (Solanum lycopersicum) ripening mutants such as ripening inhibitor (rin), nonripening (nor), and never ripe (Nr) have been useful in our understanding of fruit development and ripening. The MADS-box transcription factor RIN, a global regulator of fruit ripening, is vital for the broad aspects of ripening, in both ethylene-dependent and independent manners. Here, we have carried out microarray analysis to study the expression profiles of tomato genes during ripening of wild type and rin mutant fruits. Analysis of the differentially expressed genes revealed the role of RIN in regulation of several molecular and biochemical events during fruit ripening including fruit specialized metabolism and cellular redox state. The role of reactive oxygen species (ROS) during fruit ripening and senescence was further examined by determining the changes in ROS level during ripening of wild type and mutant fruits and by analyzing expression profiles of the genes involved in maintaining cellular redox state. Taken together, our findings suggest an important role of ROS during fruit ripening and senescence, and therefore, modulation of ROS level during ripening could be useful in achieving desired fruit quality.

  18. Surface Polysaccharide Mutants Reveal that Absence of O Antigen Reduces Biofilm Formation of Actinobacillus pleuropneumoniae

    PubMed Central

    Hathroubi, S.; Hancock, M. A.; Langford, P. R.; Tremblay, Y. D. N.; Labrie, J.

    2015-01-01

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium belonging to the Pasteurellaceae family and the causative agent of porcine pleuropneumonia, a highly contagious lung disease causing important economic losses. Surface polysaccharides, including lipopolysaccharides (LPS) and capsular polysaccharides (CPS), are implicated in the adhesion and virulence of A. pleuropneumoniae, but their role in biofilm formation is still unclear. In this study, we investigated the requirement for these surface polysaccharides in biofilm formation by A. pleuropneumoniae serotype 1. Well-characterized mutants were used: an O-antigen LPS mutant, a truncated core LPS mutant with an intact O antigen, a capsule mutant, and a poly-N-acetylglucosamine (PGA) mutant. We compared the amount of biofilm produced by the parental strain and the isogenic mutants using static and dynamic systems. Compared to the findings for the biofilm of the parental or other strains, the biofilm of the O antigen and the PGA mutants was dramatically reduced, and it had less cell-associated PGA. Real-time PCR analyses revealed a significant reduction in the level of pgaA, cpxR, and cpxA mRNA in the biofilm cells of the O-antigen mutant compared to that in the biofilm cells of the parental strain. Specific binding between PGA and LPS was consistently detected by surface plasmon resonance, but the lack of O antigen did not abolish these interactions. In conclusion, the absence of the O antigen reduces the ability of A. pleuropneumoniae to form a biofilm, and this is associated with the reduced expression and production of PGA. PMID:26483403

  19. Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity.

    PubMed

    Zhao, Yang; Zhang, Zhengjing; Gao, Jinghui; Wang, Pengcheng; Hu, Tao; Wang, Zegang; Hou, Yueh-Ju; Wan, Yizhen; Liu, Wenshan; Xie, Shaojun; Lu, Tianjiao; Xue, Liang; Liu, Yajie; Macho, Alberto P; Tao, W Andy; Bressan, Ray A; Zhu, Jian-Kang

    2018-06-12

    Abscisic acid (ABA) is an important phytohormone controlling responses to abiotic stresses and is sensed by proteins from the PYR/PYL/RCAR family. To explore the genetic contribution of PYLs toward ABA-dependent and ABA-independent processes, we generated and characterized high-order Arabidopsis mutants with mutations in the PYL family. We obtained a pyl quattuordecuple mutant and found that it was severely impaired in growth and failed to produce seeds. Thus, we carried out a detailed characterization of a pyl duodecuple mutant, pyr1pyl1/2/3/4/5/7/8/9/10/11/12. The duodecuple mutant was extremely insensitive to ABA effects on seed germination, seedling growth, stomatal closure, leaf senescence, and gene expression. The activation of SnRK2 protein kinases by ABA was blocked in the duodecuple mutant, but, unexpectedly, osmotic stress activation of SnRK2s was enhanced. Our results demonstrate an important role of basal ABA signaling in growth, senescence, and abscission and reveal that PYLs antagonize ABA-independent activation of SnRK2s by osmotic stress. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase

    PubMed Central

    Franke, Kamila B.; Bukau, Bernd; Mogk, Axel

    2017-01-01

    The members of the hexameric AAA+ disaggregase of E. coli and S. cerevisiae, ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis. Keeping M-domains displaced from the AAA-1 ring by association with Hsp70 increases ATPase activity due to enhanced communication between protomers. This communication involves conserved arginine fingers. The control of ClpB/Hsp104 activity is crucial, as hyperactive mutants with permanently dissociated M-domains exhibit cellular toxicity. Here, we analyzed AAA-1 inter-ring communication in relation to the M-domain mediated ATPase regulation, by subjecting a conserved residue of the AAA-1 domain subunit interface of ClpB (A328) to mutational analysis. While all A328X mutants have reduced disaggregation activities, their ATPase activities strongly differed. ClpB-A328I/L mutants have reduced ATPase activity and when combined with the hyperactive ClpB-K476C M-domain mutation, suppress cellular toxicity. This underlines that ClpB ATPase activation by M-domain dissociation relies on increased subunit communication. The ClpB-A328V mutant in contrast has very high ATPase activity and exhibits cellular toxicity on its own, qualifying it as novel hyperactive ClpB mutant. ClpB-A328V hyperactivity is however, different from that of M-domain mutants as M-domains stay associated with the AAA-1 ring. The high ATPase activity of ClpB-A328V primarily relies on the AAA-2 ring and correlates with distinct conformational changes in the AAA-2 catalytic site. These findings characterize the subunit interface residue A328 as crucial regulatory element to control ATP hydrolysis in both AAA rings. PMID:28275610

  1. Transcriptomic profiling-based mutant screen reveals three new transcription factors mediating menadione resistance in Neurospora crassa.

    PubMed

    Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie

    2013-06-01

    To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner

  2. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction.

    PubMed

    Singh, Upinder; Brewer, Jeremy L; Boothroyd, John C

    2002-05-01

    Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.

  3. Analysis of Yellow Striped Mutants of Zea mays Reveals Novel Loci Contributing to Iron Deficiency Chlorosis

    PubMed Central

    Chan-Rodriguez, David; Walker, Elsbeth L.

    2018-01-01

    The micronutrient iron (Fe) is essential for photosynthesis, respiration, and many other processes, but it is only sparingly soluble in aqueous solution, making adequate acquisition by plants a serious challenge. Fe is a limiting factor for plant growth on approximately 30% of the world’s arable lands. Moreover, Fe deficiency in humans is a global health issue, affecting 1.62 billion people, or about 25% of the world’s population. It is imperative that we gain a better understanding of the mechanisms that plants use to regulate iron homeostasis, since these will be important targets for future biofortification and crop improvement strategies. Grasses and non-grasses have evolved independent mechanisms for primary iron uptake from the soil. The grasses, which include most of the world’s staple grains, have evolved a distinct ‘chelation’ mechanism to acquire iron from the soil. Strong iron chelators called phytosiderophores (PSs) are synthesized by grasses and secreted into the rhizosphere where they bind and solubilize Fe(III). The Fe(III)-PS complex is then taken up into root cells via transporters specific for the Fe(III)-PS complex. In this study, 31 novel, uncharacterized striped maize mutants available through the Maize Genetics Cooperation Stock Center (MGCSC) were analyzed to determine whether their mutant phenotypes are caused by decreased iron. Many of these proved to be either pale yellow or white striped mutants. Complementation tests were performed by crossing the MGCSC mutants to ys1 and ys3 reference mutants. This allowed assignment of 10 ys1 alleles and 4 ys3 alleles among the novel mutants. In addition, four ys∗ mutant lines were identified that are not allelic to either ys1 or ys3. Three of these were characterized as being non-allelic to each other and as having low iron in leaves. These represent new genes involved in iron acquisition by maize, and future cloning of these genes may reveal novel aspects of the grass iron acquisition

  4. Characterization of a Null Allelic Mutant of the Rice NAL1 Gene Reveals Its Role in Regulating Cell Division

    PubMed Central

    Jiang, Dan; Fang, Jingjing; Lou, Lamei; Zhao, Jinfeng; Yuan, Shoujiang; Yin, Liang; Sun, Wei; Peng, Lixiang; Guo, Baotai; Li, Xueyong

    2015-01-01

    Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1) show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1), nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogenous expression of NAL1 in fission yeast (Schizosaccharomyces pombe) further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division. PMID:25658704

  5. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library

    PubMed Central

    2009-01-01

    Background Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed

  6. Null EPAC Mutants Reveal a Sequential Order of Versatile cAMP Effects during "Drosophila" Aversive Odor Learning

    ERIC Educational Resources Information Center

    Richlitzki, Antje; Latour, Philipp; Schwärzel, Martin

    2017-01-01

    Here, we define a role of the cAMP intermediate EPAC in "Drosophila" aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the "rutabaga" adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom…

  7. Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata

    PubMed Central

    de Marcos, Alberto; Triviño, Magdalena; Pérez-Bueno, María Luisa; Ballesteros, Isabel; Barón, Matilde; Mena, Montaña; Fenoll, Carmen

    2015-01-01

    Loss of function of the positive stomata development regulators SPCH or MUTE in Arabidopsis thaliana renders stomataless plants; spch-3 and mute-3 mutants are extreme dwarfs, but produce cotyledons and tiny leaves, providing a system to interrogate plant life in the absence of stomata. To this end, we compared their cotyledon transcriptomes with that of wild-type plants. K-means clustering of differentially expressed genes generated four clusters: clusters 1 and 2 grouped genes commonly regulated in the mutants, while clusters 3 and 4 contained genes distinctively regulated in mute-3. Classification in functional categories and metabolic pathways of genes in clusters 1 and 2 suggested that both mutants had depressed secondary, nitrogen and sulfur metabolisms, while only a few photosynthesis-related genes were down-regulated. In situ quenching analysis of chlorophyll fluorescence revealed limited inhibition of photosynthesis. This and other fluorescence measurements matched the mutant transcriptomic features. Differential transcriptomes of both mutants were enriched in growth-related genes, including known stomata development regulators, which paralleled their epidermal phenotypes. Analysis of cluster 3 was not informative for developmental aspects of mute-3. Cluster 4 comprised genes differentially up−regulated in mute−3, 35% of which were direct targets for SPCH and may relate to the unique cell types of mute−3. A screen of T-DNA insertion lines in genes differentially expressed in the mutants identified a gene putatively involved in stomata development. A collection of lines for conditional overexpression of transcription factors differentially expressed in the mutants rendered distinct epidermal phenotypes, suggesting that these proteins may be novel stomatal development regulators. Thus, our transcriptome analysis represents a useful source of new genes for the study of stomata development and for characterizing physiology and growth in the absence of

  8. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    PubMed

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  9. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development

    PubMed Central

    Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.

    2009-01-01

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286

  10. Structural signatures of DRD4 mutants revealed using molecular dynamics simulations: Implications for drug targeting.

    PubMed

    Jatana, Nidhi; Thukral, Lipi; Latha, N

    2016-01-01

    Human Dopamine Receptor D4 (DRD4) orchestrates several neurological functions and represents a target for many psychological disorders. Here, we examined two rare variants in DRD4; V194G and R237L, which elicit functional alterations leading to disruption of ligand binding and G protein coupling, respectively. Using atomistic molecular dynamics (MD) simulations, we provide in-depth analysis to reveal structural signatures of wild and mutant complexes with their bound agonist and antagonist ligands. We constructed intra-protein network graphs to discriminate the global conformational changes induced by mutations. The simulations also allowed us to elucidate the local side-chain dynamical variations in ligand-bound mutant receptors. The data suggest that the mutation in transmembrane V (V194G) drastically disrupts the organization of ligand binding site and causes disorder in the native helical arrangement. Interestingly, the R237L mutation leads to significant rewiring of side-chain contacts in the intracellular loop 3 (site of mutation) and also affects the distant transmembrane topology. Additionally, these mutations lead to compact ICL3 region compared to the wild type, indicating that the receptor would be inaccessible for G protein coupling. Our findings thus reveal unreported structural determinants of the mutated DRD4 receptor and provide a robust framework for design of effective novel drugs.

  11. Tissue-Specific Profiling Reveals Transcriptome Alterations in Arabidopsis Mutants Lacking Morphological Phenotypes[C][W

    PubMed Central

    Simon, Marissa; Bruex, Angela; Kainkaryam, Raghunandan M.; Zheng, Xiaohua; Huang, Ling; Woolf, Peter J.; Schiefelbein, John

    2013-01-01

    Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype. PMID:24014549

  12. Proteome Analysis of Rice (Oryza sativa L.) Mutants Reveals Differentially Induced Proteins during Brown Planthopper (Nilaparvata lugens) Infestation

    PubMed Central

    Sangha, Jatinder Singh; Yolanda, H. Chen; Kaur, Jatinder; Khan, Wajahatullah; Abduljaleel, Zainularifeen; Alanazi, Mohammed S.; Mills, Aaron; Adalla, Candida B.; Bennett, John; Prithiviraj, Balakrishnan; Jahn, Gary C.; Leung, Hei

    2013-01-01

    Although rice resistance plays an important role in controlling the brown planthopper (BPH), Nilaparvata lugens, not all varieties have the same level of protection against BPH infestation. Understanding the molecular interactions in rice defense response is an important tool to help to reveal unexplained processes that underlie rice resistance to BPH. A proteomics approach was used to explore how wild type IR64 and near-isogenic rice mutants with gain and loss of resistance to BPH respond during infestation. A total of 65 proteins were found markedly altered in wild type IR64 during BPH infestation. Fifty-two proteins associated with 11 functional categories were identified using mass spectrometry. Protein abundance was less altered at 2 and 14 days after infestation (DAI) (T1, T2, respectively), whereas higher protein levels were observed at 28 DAI (T3). This trend diminished at 34 DAI (T4). Comparative analysis of IR64 with mutants showed 22 proteins that may be potentially associated with rice resistance to the brown planthopper (BPH). Ten proteins were altered in susceptible mutant (D1131) whereas abundance of 12 proteins including S-like RNase, Glyoxalase I, EFTu1 and Salt stress root protein “RS1” was differentially changed in resistant mutant (D518). S-like RNase was found in greater quantities in D518 after BPH infestation but remained unchanged in IR64 and decreased in D1131. Taken together, this study shows a noticeable level of protein abundance in the resistant mutant D518 compared to the susceptible mutant D1131 that may be involved in rendering enhanced level of resistance against BPH. PMID:23434671

  13. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yan, E-mail: yzheng15@students.kgi.edu; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    2015-10-15

    Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28 °C), subsequent incubation of the cells at the non-permissive temperature (37 °C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particlesmore » had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs. - Highlights: • We characterize an alphavirus capsid insertion mutation. • These capsid mutants are highly temperature sensitive for growth. • The insertion affects nucleocapsid stability. • Results suggest that the nucleocapsid is stabilized during virus budding.« less

  14. PDGFRA-mutant syndrome.

    PubMed

    Ricci, Riccardo; Martini, Maurizio; Cenci, Tonia; Carbone, Arnaldo; Lanza, Paola; Biondi, Alberto; Rindi, Guido; Cassano, Alessandra; Larghi, Alberto; Persiani, Roberto; Larocca, Luigi M

    2015-07-01

    Germline PDGFRA mutations cause multiple heterogeneous gastrointestinal mesenchymal tumors. In its familial form this disease, which was formerly termed intestinal neurofibromatosis/neurofibromatosis 3b (INF/NF3b), has been included among familial gastrointestinal stromal tumors (GISTs) because of its genotype, described when GIST was the only known PDGFRA-mutant gastrointestinal tumor. Shortly afterwards, however, inflammatory fibroid polyps also revealed PDGFRA mutations. Subsequently, gastrointestinal CD34+ 'fibrous tumors' of uncertain classification were described in a germline PDGFRA-mutant context. Our aim was to characterize the syndrome produced by germline PDGFRA mutations and establish diagnostic criteria and management strategies for this hitherto puzzling disease. We studied a kindred displaying multiple gastrointestinal mesenchymal tumors, comparing it with published families/individuals with possible analogous conditions. We identified a novel inherited PDGFRA mutation (P653L), constituting the third reported example of familial PDGFRA mutation. In adult mutants we detected inflammatory fibroid polyps, gastric GISTs and gastrointestinal fibrous tumors of uncertain nosology. We demonstrate that the syndrome formerly defined as INF/NF3b (exemplified by the family reported herein) is simplistically considered a form of familial GIST, because inflammatory fibroid polyps often prevail. Fibrous tumors appear variants of inflammatory fibroid polyps. 'INF/NF3b' and 'familial GIST' are misleading terms which we propose changing to 'PDGFRA-mutant syndrome'. In this condition, unlike KIT-dependent familial GIST syndromes, if present, GISTs are stomach-restricted and diffuse Cajal cell hyperplasia is not observed. This restriction of GISTs to the stomach in PDGFRA-mutant syndrome: (i) focuses oncological concern on gastric masses, as inflammatory fibroid polyps are benign; (ii) supports a selective role of gastric environment for PDGFRA mutations to elicit GISTs

  15. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis.

    PubMed

    Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K

    2017-03-01

    In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice

    PubMed Central

    2011-01-01

    Background In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR). Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1) is induced by auxin and encodes an AS2/LOB-domain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT) plants. Our analysis revealed that 250 and 236 genes are down- and up-regulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM)/FAS1 (FASCIATA1), GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4) and MAP (MICROTUBULE-ASSOCIATED PROTEIN) were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless some genes, FAS1/FSM

  17. A Streptococcus uberis transposon mutant screen reveals a negative role for LiaR homologue in biofilm formation.

    PubMed

    Salomäki, T; Karonen, T; Siljamäki, P; Savijoki, K; Nyman, T A; Varmanen, P; Iivanainen, A

    2015-01-01

    The environmental pathogen Streptococcus uberis causes intramammary infections in dairy cows. Because biofilm growth might contribute to Strep. uberis mastitis, we conducted a biological screen to identify genes potentially involved in the regulation of biofilm growth. By screening a transposon mutant library of Strep. uberis, we determined that the disruption of 13 genes (including hasA, coaC, clpP, miaA, nox and uidA) led to increased biofilm formation. One of the genes (SUB1382) encoded a homologue of the LiaR response regulator (RR) of the Bacillus subtilis two-component signalling system (TCS). Electrophoretic mobility shift assays revealed that DNA binding by LiaR was greatly enhanced by phosphorylation. Two-dimensional differential in-gel electrophoresis analyses of the liaR mutant and the parental Strep. uberis strain revealed five differentially produced proteins with at least a 1·5-fold change in relative abundance (P < 0·05). The DNA-binding protein LiaR is a potential regulator of biofilm formation by Strep. uberis. Several molecular primary and downstream targets involved in biofilm formation by Strep. uberis were identified. This provides a solid foundation for further studies on the regulation of biofilm formation in this important pathogen. © 2014 The Society for Applied Microbiology.

  18. Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A

    PubMed Central

    Rösler, Jutta; Klein, Ilse; Zeidler, Mathias

    2007-01-01

    Phytochrome A (phyA) plays an important role during germination and early seedling development. Because phyA is the primary photoreceptor for the high-irradiance response and the very-low-fluence response, it can trigger development not only in red and far-red (FR) light but also in a wider range of light qualities. Although phyA action is generally associated with translocation to the nucleus and regulation of transcription, there is evidence for additional cytoplasmic functions. Because nuclear accumulation of phyA has been shown to depend on far-red-elongated hypocotyl 1 (FHY1) and FHL (FHY1-like), investigation of phyA function in a double fhl/fhy1 mutant might be valuable in revealing the mechanism of phyA translocation and possible cytoplasmic functions. In fhl/fhy1, the FR-triggered nuclear translocation of phyA could no longer be detected but could be restored by transgenic expression of CFP:FHY1. Whereas the fhl/fhy1 mutant showed a phyA phenotype in respect to hypocotyl elongation and cotyledon opening under high-irradiance response conditions as well as a typical phyA germination phenotype under very-low-fluence response conditions, fhl/fhy1 showed no phenotype with respect to the phyA-dependent abrogation of negative gravitropism in blue light and in red-enhanced phototropism, demonstrating clear cytoplasmic functions of phyA. Disturbance of phyA nuclear import in fhl/fhy1 led to formation of FR-induced phyA:GFP cytoplasmic foci resembling the sequestered areas of phytochrome. FHY1 and FHL play crucial roles in phyA nuclear translocation and signaling. Thus the double-mutant fhl/fhy1 allows nuclear and cytoplasmic phyA functions to be separated, leading to the novel identification of cytoplasmic phyA responses. PMID:17566111

  19. Deletion of a Cys-His motif from the Alpharetrovirus nucleocapsid domain reveals late domain mutant-like budding defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun-Gyung; Linial, Maxine L.

    2006-03-30

    The Rous sarcoma virus (RSV) Gag polyprotein is the only protein required for virus assembly and release. We previously found that deletion of either one of the two Cys-His (CH) motifs in the RSV nucleocapsid (NC) protein did not abrogate Gag-Gag interactions, RNA binding, or packaging but greatly reduced virus production (E-G. Lee, A. Alidina et al., J. Virol. 77: 2010-2020, 2003). In this report, we have further investigated the effects of mutations in the CH motifs on virus assembly and release. Precise deletion of either CH motif, without affecting surrounding basic residues, reduced virus production by approximately 10-fold, similarmore » to levels seen for late (L) domain mutants. Strikingly, transmission electron microscopy revealed that virions of both {delta}CH1 and {delta}CH2 mutants were assembled normally at the plasma membrane but were arrested in budding. Virus particles remained tethered to the membrane or to each other, reminiscent of L domain mutants, although the release defect appears to be independent of the L domain functions. Therefore, two CH motifs are likely to be required for budding independent of a requirement for either Gag-Gag interactions or RNA packaging.« less

  20. The xipotl Mutant of Arabidopsis Reveals a Critical Role for Phospholipid Metabolism in Root System Development and Epidermal Cell Integrity

    PubMed Central

    Cruz-Ramírez, Alfredo; López-Bucio, José; Ramírez-Pimentel, Gabriel; Zurita-Silva, Andrés; Sánchez-Calderon, Lenin; Ramírez-Chávez, Enrique; González-Ortega, Emmanuel; Herrera-Estrella, Luis

    2004-01-01

    Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. PMID:15295103

  1. Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in Sinorhizobium meliloti

    PubMed Central

    Nordeste, Ricardo

    2017-01-01

    ABSTRACT Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti, we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis (phbA, phbB, phbAB, and phbC), PHB degradation (bdhA, phaZ, and acsA2), and glycogen synthesis (glgA1). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to

  2. Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in Sinorhizobium meliloti.

    PubMed

    D'Alessio, Maya; Nordeste, Ricardo; Doxey, Andrew C; Charles, Trevor C

    2017-01-01

    Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti , we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis ( phbA , phbB , phbAB , and phbC ), PHB degradation ( bdhA , phaZ , and acsA2 ), and glycogen synthesis ( glgA1 ). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to

  3. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    PubMed

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparative Proteomic and Physiological Analysis Reveals the Variation Mechanisms of Leaf Coloration and Carbon Fixation in a Xantha Mutant of Ginkgo biloba L.

    PubMed

    Liu, Xinliang; Yu, Wanwen; Wang, Guibin; Cao, Fuliang; Cai, Jinfeng; Wang, Huanli

    2016-10-27

    Yellow-green leaf mutants are common in higher plants, and these non-lethal chlorophyll-deficient mutants are ideal materials for research on photosynthesis and plant development. A novel xantha mutant of Ginkgo biloba displaying yellow-colour leaves (YL) and green-colour leaves (GL) was identified in this study. The chlorophyll content of YL was remarkably lower than that in GL. The chloroplast ultrastructure revealed that YL had less dense thylakoid lamellae, a looser structure and fewer starch grains than GL. Analysis of the photosynthetic characteristics revealed that YL had decreased photosynthetic activity with significantly high nonphotochemical quenching. To explain these phenomena, we analysed the proteomic differences in leaves and chloroplasts between YL and GL of ginkgo using two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF MS. In total, 89 differential proteins were successfully identified, 82 of which were assigned functions in nine metabolic pathways and cellular processes. Among them, proteins involved in photosynthesis, carbon fixation in photosynthetic organisms, carbohydrate/energy metabolism, amino acid metabolism, and protein metabolism were greatly enriched, indicating a good correlation between differentially accumulated proteins and physiological changes in leaves. The identifications of these differentially accumulated proteins indicates the presence of a specific different metabolic network in YL and suggests that YL possess slower chloroplast development, weaker photosynthesis, and a less abundant energy supply than GL. These studies provide insights into the mechanism of molecular regulation of leaf colour variation in YL mutants.

  5. Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key genes and pathways involved in cotton fibre initiation and elongation

    PubMed Central

    2012-01-01

    Background Fuzzless-lintless cotton mutants are considered to be the ideal material to understand the molecular mechanisms involved in fibre cell development. Although there are few reports on transcriptome and proteome analyses in cotton at fibre initiation and elongation stages, there is no comprehensive comparative transcriptome analysis of fibre-bearing and fuzzless-lintless cotton ovules covering fibre initiation to secondary cell wall (SCW) synthesis stages. In the present study, a comparative transcriptome analysis was carried out using G. hirsutum L. cv. MCU5 wild-type (WT) and it’s near isogenic fuzzless-lintless (fl) mutant at fibre initiation (0 dpa/days post anthesis), elongation (5, 10 and 15 dpa) and SCW synthesis (20 dpa) stages. Results Scanning electron microscopy study revealed the delay in the initiation of fibre cells and lack of any further development after 2 dpa in the fl mutant. Transcriptome analysis showed major down regulation of transcripts (90%) at fibre initiation and early elongation (5 dpa) stages in the fl mutant. Majority of the down regulated transcripts at fibre initiation stage in the fl mutant represent calcium and phytohormone mediated signal transduction pathways, biosynthesis of auxin and ethylene and stress responsive transcription factors (TFs). Further, transcripts involved in carbohydrate and lipid metabolisms, mitochondrial electron transport system (mETS) and cell wall loosening and elongation were highly down-regulated at fibre elongation stage (5–15 dpa) in the fl mutant. In addition, cellulose synthases and sucrose synthase C were down-regulated at SCW biosynthesis stage (15–20 dpa). Interestingly, some of the transcripts (~50%) involved in phytohormone signalling and stress responsive transcription factors that were up-regulated at fibre initiation stage in the WT were found to be up-regulated at much later stage (15 dpa) in fl mutant. Conclusions Comparative transcriptome analysis of WT and its near isogenic

  6. A genome-wide nanotoxicology screen of Saccharomyces cerevisiae mutants reveals the basis for cadmium sulphide quantum dot tolerance and sensitivity.

    PubMed

    Marmiroli, M; Pagano, L; Pasquali, F; Zappettini, A; Tosato, V; Bruschi, C V; Marmiroli, N

    2016-01-01

    The use of cadmium sulphide quantum dots (CdS QDs) is increasing, particularly in the electronics industry. Their size (1-10 nm in diameter) is, however, such that they can be taken up by living cells. Here, a bakers' yeast (Saccharomyces cerevisiae) deletion mutant collection has been exploited to provide a high-throughput means of revealing the genetic basis for tolerance/susceptibility to CdS QD exposure. The deletion of 112 genes, some associated with the abiotic stress response, some with various metabolic processes, some with mitochondrial organization, some with transport and some with DNA repair, reduced the level of tolerance to CdS QDs. A gene ontology analysis highlighted the role of oxidative stress in determining the cellular response. The transformation of sensitive mutants with centromeric plasmids harbouring DNA from a wild type strain restored the wild type growth phenotype when the complemented genes encoded either HSC82, DSK2 or ALD3. The use of these simple eukaryote knock-out mutants for functional toxicogenomic analysis will inform studies focusing on higher organisms.

  7. A Novel In Vivo Assay Reveals Inhibition of Ribosomal Nuclear Export in Ran-Cycle and Nucleoporin Mutants

    PubMed Central

    Hurt, Ed; Hannus, Stefan; Schmelzl, Birgit; Lau, Denise; Tollervey, David; Simos, George

    1999-01-01

    To identify components involved in the nuclear export of ribosomes in yeast, we developed an in vivo assay exploiting a green fluorescent protein (GFP)-tagged version of ribosomal protein L25. After its import into the nucleolus, L25-GFP assembles with 60S ribosomal subunits that are subsequently exported into the cytoplasm. In wild-type cells, GFP-labeled ribosomes are only detected by fluorescence in the cytoplasm. However, thermosensitive rna1-1 (Ran-GAP), prp20-1 (Ran-GEF), and nucleoporin nup49 and nsp1 mutants are impaired in ribosomal export as revealed by nuclear accumulation of L25-GFP. Furthermore, overexpression of dominant-negative RanGTP (Gsp1-G21V) and the tRNA exportin Los1p inhibits ribosomal export. The pattern of subnuclear accumulation of L25-GFP observed in different mutants is not identical, suggesting that transport can be blocked at different steps. Thus, nuclear export of ribosomes requires the nuclear/cytoplasmic Ran-cycle and distinct nucleoporins. This assay can be used to identify soluble transport factors required for nuclear exit of ribosomes. PMID:9971735

  8. Kasugamycin-dependent mutants of Escherichia coli.

    PubMed Central

    Dabbs, E R

    1978-01-01

    Kasugamycin-dependent mutants have been isolated from Escherichia coli B. They were obtained through mutagenesis with ethyl methane sulfonate or nitrosoguanidine in conjunction with an antibiotic underlay technique. In the case of nitrosoguanidine, dependent mutants were obtained at a frequency of about 3% of survivors growing up in the selection. In the case of ethyl methane sulfonate, the corresponding value was 1%. Nineteen mutants showing a kasugamycin-dependent phenotype were studied. In terms of response to various temperatures and antibiotic concentrations, they were very heterogeneous, although most fell into two general classes. Genetic analysis indicated that in at least some cases, the kasugamycin-dependent phenotype was the product of two mutations. Two-dimensional gel electropherograms revealed alterations in the ribosomal proteins of seven mutants. One mutant had an alteration in protein S13, and one had an alteration in protein L14. Three showed changes in protein S9. Each of two mutants had changes in two proteins, S18 and L11. Three of these mutants additionally had protein S18 occurring in a partly altered, partly unaltered form. Images PMID:363701

  9. Feedback Microtubule Control and Microtubule-Actin Cross-talk in Arabidopsis Revealed by Integrative Proteomic and Cell Biology Analysis of KATANIN 1 Mutants.

    PubMed

    Takáč, Tomáš; Šamajová, Olga; Pechan, Tibor; Luptovčiak, Ivan; Šamaj, Jozef

    2017-09-01

    Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes.

    PubMed Central

    Zolman, B K; Yoder, A; Bartel, B

    2000-01-01

    Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated responses, which allowed us to group them into four phenotypic classes. Developmental defects in the absence of exogenous sucrose suggest that some of these mutants are impaired in peroxisomal fatty acid chain shortening, implying that the conversion of IBA to IAA is also disrupted. Other mutants appear to have normal peroxisomal function; some of these may be defective in IBA transport, signaling, or response. Recombination mapping indicates that these mutants represent at least nine novel loci in Arabidopsis. The gene defective in one of the mutants was identified using a positional approach and encodes PEX5, which acts in the import of most peroxisomal matrix proteins. These results indicate that in Arabidopsis thaliana, IBA acts, at least in part, via its conversion to IAA. PMID:11063705

  11. Tyrosyl-DNA Phosphodiesterase I Catalytic Mutants Reveal an Alternative Nucleophile That Can Catalyze Substrate Cleavage*

    PubMed Central

    Comeaux, Evan Q.; Cuya, Selma M.; Kojima, Kyoko; Jafari, Nauzanene; Wanzeck, Keith C.; Mobley, James A.; Bjornsti, Mary-Ann; van Waardenburg, Robert C. A. M.

    2015-01-01

    Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3′-DNA adducts, such as the 3′-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (Hisnuc) that attacks DNA adducts to form a covalent 3′-phosphohistidyl intermediate and a general acid/base His (Hisgab), which resolves the Tdp1-DNA linkage. A Hisnuc to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of Hisgab to Arg. However, here we report that expression of the yeast HisnucAla (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 Hisgab mutants, including H432N and the SCAN1-related H432R. Moreover, the HisnucAla mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the HisnucPhe mutant was catalytically inactive and suppressed Hisgab mutant-induced toxicity. These data suggest that the activity of another nucleophile when Hisnuc is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to Hisnuc, can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate. PMID:25609251

  12. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants.

    PubMed

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B; Wiborg, Ove

    2004-03-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depression and anxiety. In the present study we have undertaken a mutational scanning of human SERT in order to identify residues that are responsible for individual differences among related monoamine transporters. One mutant, G100A, was inactive in transport. However, ligand binding affinity was similar to wild-type, suggesting that G100A amongst different possible SERT conformations is restrained to a binding conformation. We suggest that the main role of glycine-100 is to confer structural flexibility during substrate translocation. For the two single mutants, T178A and F263C, uptake rates and K(m) values were both several-fold higher than wild-type while binding affinities and inhibitory potencies decreased considerably for several drugs. Ion dependency increased and only at hyperosmotic concentrations were K(m) values partly restored. For the double mutant, T178A/F263C, shifts in uptake kinetics and ligand affinities, as well as ion dependencies, were drastic. Effects were synergistic compared to the corresponding single mutants. In conclusion, we suggest that mutating threonine-178 to an alanine and phenylalanine-263 to a cysteine mainly alter the overall uptake kinetics of SERT by affecting the conformational equilibrium of different transporter conformations.

  14. Complementation analysis of mutants of nitric oxide synthase reveals that the active site requires two hemes.

    PubMed Central

    Xie, Q W; Leung, M; Fuortes, M; Sassa, S; Nathan, C

    1996-01-01

    For catalytic activity, nitric oxide synthases (NOSs) must be dimeric. Previous work revealed that the requirements for stable dimerization included binding of tetrahydrobiopterin (BH4), arginine, and heme. Here we asked what function is served by dimerization. We assessed the ability of individually inactive mutants of mouse inducible NOS (iNOS; NOS2), each deficient in binding a particular cofactor or cosubstrate, to complement each other by generating NO upon cotransfection into human epithelial cells. The ability of the mutants to homodimerize was gauged by gel filtration and/or PAGE under partially denaturing conditions, both followed by immunoblot. Their ability to heterodimerize was assessed by coimmunoprecipitation. Heterodimers that contained only one COOH-terminal hemimer and only one BH4-binding site could both form and function, even though the NADPH-, FAD-, and FMN-binding domains (in the COOH-terminal hemimer) and the BH4-binding sites (in the NH2-terminal hemimer) were contributed by opposite chains. Heterodimers that contained only one heme-binding site (Cys-194) could also form, either in cis or in trans to the nucleotide-binding domains. However, for NO production, both chains had to bind heme. Thus, NO production by iNOS requires dimerization because the active site requires two hemes. Images Fig. 2 Fig. 3 Fig. 4 Fig. 7 PMID:8643499

  15. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.

    PubMed

    Novak, K D; Peterson, M D; Reedy, M C; Titus, M A

    1995-12-01

    The functional relationship between three Dictyostelium myosin Is, myoA, myoB, and myoC, has been examined through the creation of double mutants. Two double mutants, myoA-/B- and myoB-/C-, exhibit similar conditional defects in fluid-phase pinocytosis. Double mutants grown in suspension culture are significantly impaired in their ability to take in nutrients from the medium, whereas they are almost indistinguishable from wild-type and single mutant strains when grown on a surface. The double mutants are also found to internalize gp126, a 116-kD membrane protein, at a slower rate than either the wild-type or single mutant cells. Ultrastructural analysis reveals that both double mutants possess numerous small vesicles, in contrast to the wild-type or myosin I single mutants that exhibit several large, clear vacuoles. The alterations in fluid and membrane internalization in the suspension-grown double mutants, coupled with the altered vesicular profile, suggest that these cells may be compromised during the early stages of pinocytosis, a process that has been proposed to occur via actin-based cytoskeletal rearrangements. Scanning electron microscopy and rhodamine-phalloidin staining indicates that the myosin I double mutants appear to extend a larger number of actin-filled structures, such as filopodia and crowns, than wild-type cells. Rhodamine-phalloidin staining of the F-actin cytoskeleton of these suspension-grown cells also reveals that the double mutant cells are delayed in the rearrangement of cortical actin-rich structures upon adhesion to a substrate. We propose that myoA, myoB, and myoC play roles in controlling F-actin filled membrane projections that are required for pinosome internalization in suspension.

  16. Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries

    PubMed Central

    Shames, Stephanie R.; Liu, Luying; Havey, James C.; Schofield, Whitman B.; Goodman, Andrew L.; Roy, Craig R.

    2017-01-01

    Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires’ disease. A single strain of L. pneumophila encodes a repertoire of over 300 different effector proteins that are delivered into host cells by the Dot/Icm type IV secretion system during infection. The large number of L. pneumophila effectors has been a limiting factor in assessing the importance of individual effectors for virulence. Here, a transposon insertion sequencing technology called INSeq was used to analyze replication of a pool of effector mutants in parallel both in a mouse model of infection and in cultured host cells. Loss-of-function mutations in genes encoding effector proteins resulted in host-specific or broad virulence phenotypes. Screen results were validated for several effector mutants displaying different virulence phenotypes using genetic complementation studies and infection assays. Specifically, loss-of-function mutations in the gene encoding LegC4 resulted in enhanced L. pneumophila in the lungs of infected mice but not within cultured host cells, which indicates LegC4 augments bacterial clearance by the host immune system. The effector proteins RavY and Lpg2505 were important for efficient replication within both mammalian and protozoan hosts. Further analysis of Lpg2505 revealed that this protein functions as a metaeffector that counteracts host cytotoxicity displayed by the effector protein SidI. Thus, this study identified a large cohort of effectors that contribute to L. pneumophila virulence positively or negatively and has demonstrated regulation of effector protein activities by cognate metaeffectors as being critical for host pathogenesis. PMID:29133401

  17. Analysis of Mycobacterium avium subsp. paratuberculosis mutant libraries reveals loci-dependent transcription biases and strategies to novel mutant discovery

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne’s disease in ruminants and it has been implicated as a cause of Crohn’s disease in humans. The generation of comprehensive random mutant banks by transposon mutagenesis is a fundamental wide genomic technology utilized...

  18. Molecular characterization of baculovirus Bombyx mori nucleopolyhedrovirus polyhedron mutants.

    PubMed

    Katsuma, S; Noguchi, Y; Shimada, T; Nagata, M; Kobayashi, M; Maeda, S

    1999-01-01

    Four newly isolated and two previously isolated polyhedron mutants of Bombyx mori nucleopolyhedrovirus (BmNPV) were studied. Two polyhedron deficient mutants, #126 and #136, produced small uncrystallized particles of polyhedrin in the nuclei and cytoplasm of infected cells. Mutant #211 produced a large number of variably sized polyhedra in the nucleus and #220 produced a few large cuboidal polyhedra in the nucleus. Mutant #24 and #128 were previously isolated BmNPV mutants. Mutant #24 could not produce polyhedrin mRNA and polyhedra produced by mutant #128 lacked oral infectivity. Nucleotide sequence analysis indicated that five mutants (#126, #136, #211, #220 and #128) had amino acid substitutions in polyhedrin and mutant #24 had a point mutation only in the promoter region of the polyhedrin gene. Cotransfection experiments showed that the altered phenotypes were due to the mutations found in the polyhedrin gene regions. In mutants #126 and #136, amino acid sequences of the nuclear localization signal of polyhedrin were identical to those of wild-type BmNPV, suggesting that this sequence was necessary but not sufficient for nuclear localization of polyhedrin. Electron microscopic observation revealed that fewer occluded virions were contained in polyhedra of #128 and #220.

  19. A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots

    PubMed Central

    Hirsch, Judith; Estavillo, Gonzalo M.; Javot, Hélène; Chiarenza, Serge; Mallory, Allison C.; Maizel, Alexis; Declerck, Marie; Pogson, Barry J.; Vaucheret, Hervé; Crespi, Martin; Desnos, Thierry; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena

    2011-01-01

    Background Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. Principal Findings A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. Conclusions/Significance Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi

  20. Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955

    PubMed Central

    Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano

    2014-01-01

    A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455

  1. Mutant N143P Reveals How Na[superscript +] Activates Thrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Weiling; Chen, Zhiwei; Bush-Pelc, Leslie A.

    2010-01-12

    The molecular mechanism of thrombin activation by Na{sup +} remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na{sup +} forms. The extended scheme establishes that analysis of k{sub cat} unequivocally identifies allosteric transduction of Na{sup +} binding into enhanced catalytic activity. The thrombin mutant N143P features no Na{sup +}-dependent enhancement of k{sub cat} yet binds Na{sup +} with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absencemore » of Na{sup +} confirm that Pro{sup 143} abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu{sup 192}, which in turn controls the orientation of the Glu{sup 192}-Gly{sup 193} peptide bond and the correct architecture of the oxyanion hole. We conclude that Na{sup +} activates thrombin by securing the correct orientation of the Glu{sup 192}-Gly{sup 193} peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na{sup +} activation is present in all Na{sup +}-activated trypsin-like proteases.« less

  2. Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini.

    PubMed

    McMenamin, Sarah K; Minchin, James E N; Gordon, Tiffany N; Rawls, John F; Parichy, David M

    2013-04-01

    Somatic growth and adipogenesis are closely associated with the development of obesity in humans. In this study, we identify a zebrafish mutant, vizzini, that exhibits both a severe defect in somatic growth and increased accumulation of adipose tissue. Positional cloning of vizzini revealed a premature stop codon in gh1. Although the effects of GH are largely through igfs in mammals, we found no decrease in the expression of igf transcripts in gh1 mutants during larval development. As development progressed, however, we found overall growth to be progressively retarded and the attainment of specific developmental stages to occur at abnormally small body sizes relative to wild type. Moreover, both subcutaneous (sc) and visceral adipose tissues underwent precocious development in vizzini mutants, and at maturity, the sizes of different fat deposits were greatly expanded relative to wild type. In vivo confocal imaging of sc adipose tissue (SAT) expansion revealed that vizzini mutants exhibit extreme enlargement of adipocyte lipid droplets without a corresponding increase in lipid droplet number. These findings suggest that GH1 signaling restricts SAT hypertrophy in zebrafish. Finally, nutrient deprivation of vizzini mutants revealed that SAT mobilization was greatly diminished during caloric restriction, further implicating GH1 signaling in adipose tissue homeostasis. Overall, the zebrafish gh1 mutant, vizzini, exhibits decreased somatic growth, increased adipose tissue accumulation, and disrupted adipose plasticity after nutrient deprivation and represents a novel model to investigate the in vivo dynamics of vertebrate obesity.

  3. Dwarfism and Increased Adiposity in the gh1 Mutant Zebrafish vizzini

    PubMed Central

    McMenamin, Sarah K.; Minchin, James E.N.; Gordon, Tiffany N.

    2013-01-01

    Somatic growth and adipogenesis are closely associated with the development of obesity in humans. In this study, we identify a zebrafish mutant, vizzini, that exhibits both a severe defect in somatic growth and increased accumulation of adipose tissue. Positional cloning of vizzini revealed a premature stop codon in gh1. Although the effects of GH are largely through igfs in mammals, we found no decrease in the expression of igf transcripts in gh1 mutants during larval development. As development progressed, however, we found overall growth to be progressively retarded and the attainment of specific developmental stages to occur at abnormally small body sizes relative to wild type. Moreover, both subcutaneous (sc) and visceral adipose tissues underwent precocious development in vizzini mutants, and at maturity, the sizes of different fat deposits were greatly expanded relative to wild type. In vivo confocal imaging of sc adipose tissue (SAT) expansion revealed that vizzini mutants exhibit extreme enlargement of adipocyte lipid droplets without a corresponding increase in lipid droplet number. These findings suggest that GH1 signaling restricts SAT hypertrophy in zebrafish. Finally, nutrient deprivation of vizzini mutants revealed that SAT mobilization was greatly diminished during caloric restriction, further implicating GH1 signaling in adipose tissue homeostasis. Overall, the zebrafish gh1 mutant, vizzini, exhibits decreased somatic growth, increased adipose tissue accumulation, and disrupted adipose plasticity after nutrient deprivation and represents a novel model to investigate the in vivo dynamics of vertebrate obesity. PMID:23456361

  4. Characterization of a Spontaneous Nonmagnetic Mutant of Magnetospirillum gryphiswaldense Reveals a Large Deletion Comprising a Putative Magnetosome Island

    PubMed Central

    Schübbe, Sabrina; Kube, Michael; Scheffel, André; Wawer, Cathrin; Heyen, Udo; Meyerdierks, Anke; Madkour, Mohamed H.; Mayer, Frank; Reinhardt, Richard; Schüler, Dirk

    2003-01-01

    Frequent spontaneous loss of the magnetic phenotype was observed in stationary-phase cultures of the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1. A nonmagnetic mutant, designated strain MSR-1B, was isolated and characterized. The mutant lacked any structures resembling magnetosome crystals as well as internal membrane vesicles. The growth of strain MSR-1B was impaired under all growth conditions tested, and the uptake and accumulation of iron were drastically reduced under iron-replete conditions. A large chromosomal deletion of approximately 80 kb was identified in strain MSR-1B, which comprised both the entire mamAB and mamDC clusters as well as further putative operons encoding a number of magnetosome-associated proteins. A bacterial artificial chromosome clone partially covering the deleted region was isolated from the genomic library of wild-type M. gryphiswaldense. Sequence analysis of this fragment revealed that all previously identified mam genes were closely linked with genes encoding other magnetosome-associated proteins within less than 35 kb. In addition, this region was remarkably rich in insertion elements and harbored a considerable number of unknown gene families which appeared to be specific for magnetotactic bacteria. Overall, these findings suggest the existence of a putative large magnetosome island in M. gryphiswaldense and other magnetotactic bacteria. PMID:13129949

  5. Misfolded rhodopsin mutants display variable aggregation properties.

    PubMed

    Gragg, Megan; Park, Paul S-H

    2018-06-08

    The largest class of rhodopsin mutations causing autosomal dominant retinitis pigmentosa (adRP) is mutations that lead to misfolding and aggregation of the receptor. The misfolding mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand the disease pathogenesis and evaluate therapeutic strategies. A Förster resonance energy transfer (FRET) method was utilized to directly assess the aggregation properties of misfolding rhodopsin mutants within the cell. Partial (P23H and P267L) and complete (G188R, H211P, and P267R) misfolding mutants were characterized to reveal variability in aggregation properties. The complete misfolding mutants all behaved similarly, forming aggregates when expressed alone, minimally interacting with the wild-type receptor when coexpressed, and were unresponsive to treatment with the pharmacological chaperone 9-cis retinal. In contrast, variability was observed between the partial misfolding mutants. In the opsin form, the P23H mutant behaved similarly as the complete misfolding mutants. In contrast, the opsin form of the P267L mutant existed as both aggregates and oligomers when expressed alone and formed mostly oligomers with the wild-type receptor when coexpressed. The partial misfolding mutants both reacted similarly to the pharmacological chaperone 9-cis retinal, displaying improved folding and oligomerization when expressed alone but aggregating with wild-type receptor when coexpressed. The observed differences in aggregation properties and effect of 9-cis retinal predict different outcomes in disease pathophysiology and suggest that retinoid-based chaperones will be ineffective or even detrimental. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    PubMed

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  7. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ -ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation

    PubMed Central

    Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2015-01-01

    Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione

  8. In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants

    NASA Astrophysics Data System (ADS)

    Luchinat, Enrico; Barbieri, Letizia; Rubino, Jeffrey T.; Kozyreva, Tatiana; Cantini, Francesca; Banci, Lucia

    2014-11-01

    Mutations in the superoxide dismutase 1 (SOD1) gene are related to familial cases of amyotrophic lateral sclerosis (fALS). Here we exploit in-cell NMR to characterize the protein folding and maturation of a series of fALS-linked SOD1 mutants in human cells and to obtain insight into their behaviour in the cellular context, at the molecular level. The effect of various mutations on SOD1 maturation are investigated by changing the availability of metal ions in the cells, and by coexpressing the copper chaperone for SOD1, hCCS. We observe for most of the mutants the occurrence of an unstructured SOD1 species, unable to bind zinc. This species may be a common precursor of potentially toxic oligomeric species, that are associated with fALS. Coexpression of hCCS in the presence of copper restores the correct maturation of the SOD1 mutants and prevents the formation of the unstructured species, confirming that hCCS also acts as a molecular chaperone.

  9. CHO-cell mutant with a defect in cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, L.H.; Lindl, P.A.

    1976-01-01

    In a selection procedure designed to enrich for temperature-sensitive mutant cells blocked in mitosis a CHO-cell mutant was isolated which has a defect in cytokinesis as the basis of its temperature-sensitive phenotype. Cultures of the mutant had an abnormally high percentage (ie, 34 percent) of polyploid cells at the permissive temperature of 34/sup 0/C and showed further increased frequencies of polyploidy as well as many multinucleated cells at 38.5/sup 0/ and 39.5/sup 0/. When the mutant cells were synchronized in metaphase by Colcemid arrest and then placed into fresh medium at nonpermissive temperature, they did not divide although the completionmore » of mitosis appeared cytologically normal. Ultrastructural examination by electron microscopy of such synchronized cells at telophase revealed no specific defects in cellular components other than failure of development of a normal midbody. The sensitivity of the mutant to cytochalasin B and to Colcemid was the same as for wild-type cells. This mutation behaved as recessive in tetraploid cell hybrids constructed by fusing the mutant with a CHO strain which was wild-type with respect to temperature sensitivity.« less

  10. Characterization of an ntrX mutant of Neisseria gonorrhoeae reveals a response regulator that controls expression of respiratory enzymes in oxidase-positive proteobacteria.

    PubMed

    Atack, John M; Srikhanta, Yogitha N; Djoko, Karrera Y; Welch, Jessica P; Hasri, Norain H M; Steichen, Christopher T; Vanden Hoven, Rachel N; Grimmond, Sean M; Othman, Dk Seti Maimonah Pg; Kappler, Ulrike; Apicella, Michael A; Jennings, Michael P; Edwards, Jennifer L; McEwan, Alastair G

    2013-06-01

    NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.

  11. Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis.

    PubMed

    Zhang, Yong Q; Friedman, David B; Wang, Zhe; Woodruff, Elvin; Pan, Luyuan; O'donnell, Janis; Broadie, Kendal

    2005-03-01

    Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.

  12. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins.

    PubMed

    Yamamoto, Yuko; Hirai, Takaaki; Yamamoto, Eiji; Kawamura, Mayuko; Sato, Tomomi; Kitano, Hidemi; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2010-11-01

    To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1(P99S) interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1(P99A) has smaller K(a) (association) and K(d) (dissociation) values for GA(4) than does wild-type GID1. This suggests that the GID1(P99A) lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1(P99A). Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants.

  13. A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio

    PubMed Central

    2012-01-01

    Background Xanthophylls are oxygenated carotenoids playing an essential role as structural components of the photosynthetic apparatus. Xanthophylls contribute to the assembly and stability of light-harvesting complex, to light absorbance and to photoprotection. The first step in xanthophyll biosynthesis from α- and β-carotene is the hydroxylation of ε- and β-rings, performed by both non-heme iron oxygenases (CHY1, CHY2) and P450 cytochromes (LUT1/CYP97C1, LUT5/CYP97A3). The Arabidopsis triple chy1chy2lut5 mutant is almost completely depleted in β-xanthophylls. Results Here we report on the quadruple chy1chy2lut2lut5 mutant, additionally carrying the lut2 mutation (affecting lycopene ε-cyclase). This genotype lacks lutein and yet it shows a compensatory increase in β-xanthophylls with respect to chy1chy2lut5 mutant. Mutant plants show an even stronger photosensitivity than chy1chy2lut5, a complete lack of qE, the rapidly reversible component of non-photochemical quenching, and a peculiar organization of the pigment binding complexes into thylakoids. Biochemical analysis reveals that the chy1chy2lut2lut5 mutant is depleted in Lhcb subunits and is specifically affected in Photosystem I function, showing a deficiency in PSI-LHCI supercomplexes. Moreover, by analyzing a series of single, double, triple and quadruple Arabidopsis mutants in xanthophyll biosynthesis, we show a hitherto undescribed correlation between xanthophyll levels and the PSI-PSII ratio. The decrease in the xanthophyll/carotenoid ratio causes a proportional decrease in the LHCII and PSI core levels with respect to PSII. Conclusions The physiological and biochemical phenotype of the chy1chy2lut2lut5 mutant shows that (i) LUT1/CYP97C1 protein reveals a major β-carotene hydroxylase activity in vivo when depleted in its preferred substrate α-carotene; (ii) xanthophylls are needed for normal level of Photosystem I and LHCII accumulation. PMID:22513258

  14. Analysis of Triclosan-Selected Salmonella enterica Mutants of Eight Serovars Revealed Increased Aminoglycoside Susceptibility and Reduced Growth Rates

    PubMed Central

    Rensch, Ulrike; Klein, Guenter; Kehrenberg, Corinna

    2013-01-01

    The biocide triclosan (TRC) is used in a wide range of household, personal care, veterinary, industrial and medical products to control microbial growth. This extended use raises concerns about a possible association between the application of triclosan and the development of antibiotic resistance. In the present study we determined triclosan mutant prevention concentrations (MPC) for Salmonella enterica isolates of eight serovars and investigated selected mutants for their mechanisms mediating decreased susceptibility to triclosan. MPCTRC values were 8 - 64-fold higher than MIC values and ranged between 1 - 16 µg/ml. The frequencies at which mutants were selected varied between 1.3 x 10-10 - 9.9 x 10-11. Even if MIC values of mutants decreased by 3-7 dilution steps in the presence of the efflux pump inhibitor Phe-Arg-β-naphtylamide, only minor changes were observed in the expression of genes encoding efflux components or regulators, indicating that neither the major multidrug efflux pump AcrAB-TolC nor AcrEF are up-regulated in triclosan-selected mutants. Nucleotide sequence comparisons confirmed the absence of alterations in the regulatory regions acrRA, soxRS, marORAB, acrSE and ramRA of selected mutants. Single bp and deduced Gly93→Val amino acid exchanges were present in fabI, the target gene of triclosan, starting from a concentration of 1 µg/ml TRC used for MPC determinations. The fabI genes were up to 12.4-fold up-regulated. Complementation experiments confirmed the contribution of Gly93→Val exchanges and fabI overexpression to decreased triclosan susceptibility. MIC values of mutants compared to parent strains were even equal or resulted in a more susceptible phenotype (1-2 dilution steps) for the aminoglycoside antibiotics kanamycin and gentamicin as well as for the biocide chlorhexidine. Growth rates of selected mutants were significantly lower and hence, might partly explain the rare occurrence of Salmonella field isolates exhibiting decreased

  15. Brassinosteroid-Insensitive Dwarf Mutants of Arabidopsis Accumulate Brassinosteroids1

    PubMed Central

    Noguchi, Takahiro; Fujioka, Shozo; Choe, Sunghwa; Takatsuto, Suguru; Yoshida, Shigeo; Yuan, Heng; Feldmann, Kenneth A.; Tax, Frans E.

    1999-01-01

    Seven dwarf mutants resembling brassinosteroid (BR)-biosynthetic dwarfs were isolated that did not respond significantly to the application of exogenous BRs. Genetic and molecular analyses revealed that these were novel alleles of BRI1 (Brassinosteroid-Insensitive 1), which encodes a receptor kinase that may act as a receptor for BRs or be involved in downstream signaling. The results of morphological and molecular analyses indicated that these represent a range of alleles from weak to null. The endogenous BRs were examined from 5-week-old plants of a null allele (bri1-4) and two weak alleles (bri1-5 and bri1-6). Previous analysis of endogenous BRs in several BR-biosynthetic dwarf mutants revealed that active BRs are deficient in these mutants. However, bri1-4 plants accumulated very high levels of brassinolide, castasterone, and typhasterol (57-, 128-, and 33-fold higher, respectively, than those of wild-type plants). Weaker alleles (bri1-5 and bri1-6) also accumulated considerable levels of brassinolide, castasterone, and typhasterol, but less than the null allele (bri1-4). The levels of 6-deoxoBRs in bri1 mutants were comparable to that of wild type. The accumulation of biologically active BRs may result from the inability to utilize these active BRs, the inability to regulate BR biosynthesis in bri1 mutants, or both. Therefore, BRI1 is required for the homeostasis of endogenous BR levels. PMID:10557222

  16. A Suppressor of the Menadione-Hypersensitive Phenotype of a Xanthomonas campestris pv. phaseoli oxyR Mutant Reveals a Novel Mechanism of Toxicity and the Protective Role of Alkyl Hydroperoxide Reductase

    PubMed Central

    Vattanaviboon, Paiboon; Whangsuk, Wirongrong; Mongkolsuk, Skorn

    2003-01-01

    We isolated menadione-resistant mutants of Xanthomonas campestris pv. phaseoli oxyR (oxyRXp). The oxyRR2Xp mutant was hyperresistant to the superoxide generators menadione and plumbagin and was moderately resistant to H2O2 and tert-butyl hydroperoxide. Analysis of enzymes involved in oxidative-stress protection in the oxyRR2Xp mutant revealed a >10-fold increase in AhpC and AhpF levels, while the levels of superoxide dismutase (SOD), catalase, and the organic hydroperoxide resistance protein (Ohr) were not significantly altered. Inactivation of ahpC in the oxyRR2Xp mutant resulted in increased sensitivity to menadione killing. Moreover, high levels of expression of cloned ahpC and ahpF in the oxyRXp mutant complemented the menadione hypersensitivity phenotype. High levels of other oxidant-scavenging enzymes such as catalase and SOD did not protect the cells from menadione toxicity. These data strongly suggest that the toxicity of superoxide generators could be mediated via organic peroxide production and that alkyl hydroperoxide reductase has an important novel function in the protection against the toxicity of these compounds in X. campestris. PMID:12591894

  17. Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis.

    PubMed

    Ji, S H; Gururani, M A; Lee, J W; Ahn, B-O; Chun, S-C

    2014-03-01

    We have isolated a severe dwarf mutant derived from a Ds (Dissociation) insertion mutant rice (Oryza sativa var. japonica c.v. Dongjin). This severe dwarf phenotype, has short and dark green leaves, reduced shoot growth early in the seedling stage, and later severe dwarfism with failure to initiate flowering. When treated with bioactive GA3 , mutants are restored to the normal wild-type phenotype. Reverse transcription PCR analyses of 22 candidate genes related to the gibberellin (GA) biosynthesis pathway revealed that among 22 candidate genes tested, a dwarf mutant transcript was not expressed only in one OsKS2 gene. Genetic analysis revealed that the severe dwarf phenotype was controlled by recessive mutation of a single nuclear gene. The putative OsKS2 gene was a chromosome 4-located ent-kaurene synthase (KS), encoding the enzyme that catalyses an early step of the GA biosynthesis pathway. Sequence analysis revealed that osks2 carried a 1-bp deletion in the ORF region of OsKS2, which led to a loss-of-function mutation. The expression pattern of OsKS2 in wild-type cv Dongjin, showed that it is expressed in all organs, most prominently in the stem and floral organs. Morphological characteristics of the dwarf mutant showed dramatic modifications in internal structure and external morphology. We propose that dwarfism in this mutant is caused by a point mutation in OsKS2, which plays a significant role in growth and development of higher plants. Further investigation on OsKS2 and other OsKS-like proteins is underway and may yield better understanding of the putative role of OsKS in severe dwarf mutants. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation.

    PubMed

    Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2012-06-01

    Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion

  19. Isolation of New Gravitropic Mutants under Hypergravity Conditions.

    PubMed

    Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 ( eal1 ) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene ( enhancer of eal1 ) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis .

  20. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants

    USDA-ARS?s Scientific Manuscript database

    The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...

  1. Single-molecule force measurement via optical tweezers reveals different kinetic features of two BRaf mutants responsible for cardio-facial-cutaneous (CFC) syndrome

    PubMed Central

    Wen, Cheng; Ye, Anpei

    2013-01-01

    BRaf (B- Rapid Accelerated Fibrosarcoma) protein is an important serine/threonine-protein kinase. Two domains on BRaf can independently bind its upstream kinase, Ras (Rat Sarcoma) protein. These are the Ras binding domain (RBD) and cysteine-rich-domain (CRD). Herein we use customized optical tweezers to compare the Ras binding process in two pathological mutants of BRaf responsible for CFC syndrome, abbreviated BRaf (A246P) and BRaf (Q257R). The two mutants differ in their kinetics of Ras-binding, though both bind Ras with similar increased overall affinity. BRaf (A246P) exhibits a slightly higher Ras/CRD unbinding force and a significantly higher Ras/RBD unbinding force versus the wild type. The contrary phenomenon is observed in the Q257R mutation. Simulations of the unstressed-off rate, koff(0), yield results in accordance with the changes revealed by the mean unbinding force. Our approach can be applied to rapidly assess other mutated proteins to deduce the effects of mutation on their kinetics compared to wild type proteins and to each other. PMID:24409384

  2. Circulation of Pneumocystis dihydropteroate synthase mutants in France.

    PubMed

    Le Gal, Solène; Damiani, Céline; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Quinio, Dorothée; Moalic, Elodie; Saliou, Philippe; Berthou, Christian; Le Meur, Yann; Totet, Anne; Nevez, Gilles

    2012-10-01

    Data on the prevalence of Pneumocystis jirovecii (P. jirovecii) dihydropteroate synthase (DHPS) mutants in France are still limited. In this study, mutant prevalence in the Brest region (western France) was determined. Archival pulmonary specimens from 85 patients infected with P. jirovecii and admitted to our institution (University Hospital, Brest) from October 2007 to February 2010 were retrospectively typed at the DHPS locus using a polymerase chain reaction-restriction fragment length polymorphism assay. Type identification was successful in 66 of 85 patients. Sixty-four patients were infected with a wild type, whereas mutants were found in 2 patients (2/66, 3%). Medical chart analysis revealed that these 2 patients usually lived in Paris. Another patient usually lived on the French Riviera, whereas 63 patients were from the city of Brest. Thus, the corrected prevalence of mutants in patients who effectively lived in our geographic area was 0% (0/63). Taking into account that i) Paris is characterized by a high prevalence of mutants from 18.5% to 40%, ii) infection diagnoses were performed in the 2 Parisians during their vacation <30 days, iii) infection incubation is assumed to last about 2 months, the results provide evidence of mutant circulation from Paris to Brest through infected vacationers. The study shows that the usual city of patient residence, rather than the city of infection diagnosis, is a predictor of mutants and that P. jirovecii infections involving mutants do not represent a public health issue in western France. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    PubMed Central

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  4. Replication of transformation-defective mutants of the Prague strain of Rous sarcoma virus and isolation of a td mutant from duck-adapted PR-RSV-C.

    PubMed

    Geryk, J; Mazo, A; Svoboda, J; Hlozánek, I

    1980-01-01

    The replication of transformation-defective mutants of the Prague strain of Rous sarcoma virus subgroup C was studied using roller cultures. Under such conditions, 10(5)--10(6) infectous units of virus per 0.2 ml were produced, as revealed in both the reverse transcriptase and 16Q complementation tests. A new td daPR-RSV-C mutant was isolated from duck-adapted PR-RSV-C. This mutant replicated in roller cultures with equal efficiency as the original td PR-RSV-C. It was verified that td daPR-RSV-C does not transform chicken fibroblasts, is not oncogenic for 3-week-old chickens and has subgroup C host-range specificity. Both td mutants replicate in duck cells and reach the same titres.

  5. Isolation and characterization of acid-sensitive mutants of Pediococcus acidilactici.

    PubMed

    Kurdi, Peter; Smitinont, Thitapha; Valyasevi, Ruud

    2009-02-01

    Acid-sensitive mutants of Pediococcus acidilactici BCC 9545, a starter culture of the Thai fermented pork sausage nham, were isolated as spontaneous neomycin resistant mutants. The mutants generally produced less acid and acidified the culture media less than the parent strain in a 72 h culturing period. Interestingly, the ATPase activities of the mutants did not differ considerably from that of the parent strain in acidic conditions. It was also found that the internal pH values of the mutant strains were somewhat lower in neutral environment, while at pH 5.0 their internal pHs were significantly lower compared to the parent's. Inhibiting the H(+)-ATPase activities in energized cells by N,N'-dicyclohexyl carbodiimide also revealed that protons were leaking from the mutants at neutral pH, which increased under acidic conditions. In contrast, the parent strain exhibited a smaller proton leak and only under acidic conditions. The membrane fatty acid analysis of the mutants indicated that under acidic conditions the mutants had a significantly smaller major unsaturated/saturated fatty acids ratio ((C(18:1)+C(18:3n6))/(C(16:0)+C(18:0))) compared to the parent strain's membrane. Taken together, these observations suggest there is a reasonable possibility that the membrane fatty acid profile differences in the mutants resulted in their acid-sensitivity.

  6. bdhA-patD operon as a virulence determinant, revealed by a novel large-scale approach for identification of Legionella pneumophila mutants defective for amoeba infection.

    PubMed

    Aurass, P; Pless, B; Rydzewski, K; Holland, G; Bannert, N; Flieger, A

    2009-07-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is an intracellular parasite of eukaryotic cells. In the environment, it colonizes amoebae. After being inhaled into the human lung, the bacteria infect and damage alveolar cells in a way that is mechanistically similar to the amoeba infection. Several L. pneumophila traits, among those the Dot/Icm type IVB protein secretion machinery, are essential for exploiting host cells. In our search for novel Legionella virulence factors, we developed an agar plate assay, designated the scatter screen, which allowed screening for mutants deficient in infecting Acanthamoeba castellanii amoebae. Likewise, an L. pneumophila clone bank consisting of 23,000 transposon mutants was investigated here, and 19 different established Legionella virulence genes, for example, dot/icm genes, were identified. Importantly, 70 novel virulence-associated genes were found. One of those is L. pneumophila bdhA, coding for a protein with homology to established 3-hydroxybutyrate dehydrogenases involved in poly-3-hydroxybutyrate metabolism. Our study revealed that bdhA is cotranscribed with patD, encoding a patatin-like protein of L. pneumophila showing phospholipase A and lysophospholipase A activities. In addition to strongly reduced lipolytic activities and increased poly-3-hydroxybutyrate levels, the L. pneumophila bdhA-patD mutant showed a severe replication defect in amoebae and U937 macrophages. Our data suggest that the operon is involved in poly-3-hydroxybutyrate utilization and phospholipolysis and show that the bdhA-patD operon is a virulence determinant of L. pneumophila. In summary, the screen for amoeba-sensitive Legionella clones efficiently isolated mutants that do not grow in amoebae and, in the case of the bdhA-patD mutant, also human cells.

  7. Isolation of New Gravitropic Mutants under Hypergravity Conditions

    PubMed Central

    Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T.

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 (eal1) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis. PMID:27746791

  8. Chemically Induced Conditional Rescue of the Reduced Epidermal Fluorescence8 Mutant of Arabidopsis Reveals Rapid Restoration of Growth and Selective Turnover of Secondary Metabolite Pools1[C][OPEN

    PubMed Central

    Kim, Jeong Im; Ciesielski, Peter N.; Donohoe, Bryon S.; Chapple, Clint; Li, Xu

    2014-01-01

    The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3′-hydroxylase (C3′H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3′H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3′H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant’s growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant. PMID:24381065

  9. Isolation and molecular characterization of a urease-negative Actinobacillus pleuropneumoniae mutant.

    PubMed

    Ito, Hiroya; Takahashi, Sayaka; Asai, Tetsuo; Tamura, Yutaka; Yamamoto, Koshi

    2018-01-01

    An atypical urease-negative mutant of Actinobacillus pleuropneumoniae serovar 2 was isolated in Japan. Nucleotide sequence analysis of the urease gene cluster revealed that the insertion of a short DNA sequence into the cbiM gene was responsible for the urease-negative activity of the mutant. Veterinary diagnostic laboratories should be watchful for the presence of aberrant urease-negative A. pleuropneumoniae isolates.

  10. Native Mutant Huntingtin in Human Brain

    PubMed Central

    Sapp, Ellen; Valencia, Antonio; Li, Xueyi; Aronin, Neil; Kegel, Kimberly B.; Vonsattel, Jean-Paul; Young, Anne B.; Wexler, Nancy; DiFiglia, Marian

    2012-01-01

    Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer. PMID:22375012

  11. The chloroplast division mutant caa33 of Arabidopsis thaliana reveals a crucial impact of chloroplast homeostasis on stress acclimation and retrograde plastid-to-nucleus signaling

    PubMed Central

    Šimková, Klára; Kim, Chanhong; Gacek, Katarzyna; Baruah, Aiswarya; Laloi, Christophe; Apel, Klaus

    2011-01-01

    SUMMARY Retrograde plastid-to-nucleus signaling tightly controls and coordinates nuclear and plastid gene expression that is required for plastid biogenesis and chloroplast activities. As chloroplasts act as sensors of environmental changes, plastid-derived signaling also modulates stress responses of plants by transferring stress-related signals and altering nuclear gene expression. Various mutant screens have been undertaken to identify constituents of plastid signaling pathways. Almost all mutations identified in these screens have in common that they target plastid-specific but not extra-plastidic functions. They have been suggested to define either genuine constituents of retrograde signaling pathways or components required for the synthesis of plastid signals. Here we report the characterization of the caa33 (constitutive activator of AAA-ATPase) mutant, which reveals another way of how mutations that affect plastid functions may modulate retrograde plastid signaling. caa33 disturbs a plastid-specific function by impeding plastid division thereby perturbing plastid homeostasis. This results in pre-conditioning plants by activating the expression of stress genes, enhancing pathogen resistance and attenuating the plant’s capacity to respond to plastid signals. Our study reveals an intimate link between chloroplast activity and the plant’s susceptibility to stress and emphasizes the need to consider the possible impact of pre-conditioning on retrograde plastid-to-nucleus signaling. PMID:22014227

  12. Cysteine shotgun–mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells

    PubMed Central

    Krieger, Christine C.; An, Xiuli; Tang, Hsin-Yao; Mohandas, Narla; Speicher, David W.; Discher, Dennis E.

    2011-01-01

    Questions of if and when protein structures change within cells pervade biology and include questions of how the cytoskeleton sustains stresses on cells—particularly in mutant versus normal cells. Cysteine shotgun labeling with fluorophores is analyzed here with mass spectrometry of the spectrin–actin membrane skeleton in sheared red blood cell ghosts from normal and diseased mice. Sheared samples are compared to static samples at 37 °C in terms of cell membrane intensity in fluorescence microscopy, separated protein fluorescence, and tryptic peptide modification in liquid chromatography–tandem mass spectrometry (LC-MS/MS). Spectrin labeling proves to be the most sensitive to shear, whereas binding partners ankyrin and actin exhibit shear thresholds in labeling and both the ankyrin-binding membrane protein band 3 and the spectrin–actin stabilizer 4.1R show minimal differential labeling. Cells from 4.1R-null mice differ significantly from normal in the shear-dependent labeling of spectrin, ankyrin, and band 3: Decreased labeling of spectrin reveals less stress on the mutant network as spectrin dissociates from actin. Mapping the stress-dependent labeling kinetics of α- and β-spectrin by LC-MS/MS identifies Cys in these antiparallel chains that are either force-enhanced or force-independent in labeling, with structural analyses indicating the force-enhanced sites are sequestered either in spectrin’s triple-helical domains or in interactions with actin or ankyrin. Shear-sensitive sites identified comprehensively here in both spectrin and ankyrin appear consistent with stress relief through forced unfolding followed by cytoskeletal disruption. PMID:21527722

  13. Active site-directed double mutants of dihydrofolate reductase.

    PubMed

    Ercikan-Abali, E A; Mineishi, S; Tong, Y; Nakahara, S; Waltham, M C; Banerjee, D; Chen, W; Sadelain, M; Bertino, J R

    1996-09-15

    Variants of dihydrofolate reductase (DHFR), which confer resistance to antifolates, are used as dominant selectable markers in vitro and in vivo and may be useful in the context of gene therapy. To identify improved mutant human DHFRs with increased catalytic efficiency and decreased binding to methotrexate, we constructed by site-directed mutagenesis four variants with substitutions at both Leu22 and Phe31 (i.e., Phe22-Ser31, Tyr22-Ser31, Phe22-Gly31, and Tyr22-Gly31). Antifolate resistance has been observed previously when individual changes are made at these active-site residues. Substrate and antifolate binding properties of these "double" mutants revealed that each have greatly diminished affinity for antifolates (> 10,000-fold) yet only slightly reduced substrate affinity. Comparison of in vitro measured properties with those of single-residue variants indicates that double mutants are indeed significantly superior. This was verified for one of the double mutants that provided high-level methotrexate resistance following retrovirus-mediated gene transfer in NIH3T3 cells.

  14. A Rice gid1 Suppressor Mutant Reveals That Gibberellin Is Not Always Required for Interaction between Its Receptor, GID1, and DELLA Proteins[W][OA

    PubMed Central

    Yamamoto, Yuko; Hirai, Takaaki; Yamamoto, Eiji; Kawamura, Mayuko; Sato, Tomomi; Kitano, Hidemi; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2010-01-01

    To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1P99S interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1P99A has smaller Ka (association) and Kd (dissociation) values for GA4 than does wild-type GID1. This suggests that the GID1P99A lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1P99A. Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants. PMID:21098733

  15. Characterization and Complementation of a Chlorophyll-Less Dominant Mutant GL1 in Lagerstroemia indica.

    PubMed

    Wang, Shu'an; Wang, Peng; Gao, Lulu; Yang, Rutong; Li, Linfang; Zhang, Enliang; Wang, Qing; Li, Ya; Yin, Zengfang

    2017-05-01

    Crape myrtle (Lagerstroemia indica) is a woody ornamental plant popularly grown because of its long-lasting, midsummer blooms and beautiful colors. The GL1 dominant mutant is the first chlorophyll-less mutant identified in crape myrtle. It was obtained from a natural yellow leaf bud mutation. We previously revealed that leaf color of the GL1 mutant is affected by light intensity. However, the mechanism of the GL1 mutant on light response remained unclear. The acclimation response of mutant and wild-type (WT) plants was assessed in a time series after transferring from low light (LL) to high light (HL) by analyzing chlorophyll synthesis precursor content, photosynthetic performance, and gene expression. In LL conditions, coproporphyrinogen III (Coprogen III) content had the greatest amount of accumulation in the mutant compared with WT, increasing by 100%. This suggested that the yellow leaf phenotype of the GL1 dominant mutant might be caused by disruption of coproporphyrinogen III oxidase (CPO) biosynthesis. Furthermore, the candidate gene, oxygen-independent CPO (HEMN), might only affect expression of upstream genes involved in chlorophyll metabolism in the mutant. Moreover, two genes, photosystem II (PSII) 10 kDa protein (psbR) and chlorophyll a/b binding protein gene (CAB1), had decreased mRNA levels in the GL1 mutant within the first 96 h following LL/HL transfer compared with the WT. Hierarchical clustering revealed that these two genes shared a similar expression trend as the oxygen-dependent CPO (HEMF). These findings provide evidence that GL1 is highly coordinated with PSII stability and chloroplast biogenesis.

  16. mtDNA lineage analysis of mouse L-cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination

    PubMed Central

    Fan, Weiwei; Lin, Chun Shi; Potluri, Prasanth; Procaccio, Vincent; Wallace, Douglas C.

    2012-01-01

    The role of mitochondrial DNA (mtDNA) mutations and mtDNA recombination in cancer cell proliferation and developmental biology remains controversial. While analyzing the mtDNAs of several mouse L cell lines, we discovered that every cell line harbored multiple mtDNA mutants. These included four missense mutations, two frameshift mutations, and one tRNA homopolymer expansion. The LA9 cell lines lacked wild-type mtDNAs but harbored a heteroplasmic mixture of mtDNAs, each with a different combination of these variants. We isolated each of the mtDNAs in a separate cybrid cell line. This permitted determination of the linkage phase of each mtDNA and its physiological characteristics. All of the polypeptide mutations inhibited their oxidative phosphorylation (OXPHOS) complexes. However, they also increased mitochondrial reactive oxygen species (ROS) production, and the level of ROS production was proportional to the cellular proliferation rate. By comparing the mtDNA haplotypes of the different cell lines, we were able to reconstruct the mtDNA mutational history of the L–L929 cell line. This revealed that every heteroplasmic L-cell line harbored a mtDNA that had been generated by intracellular mtDNA homologous recombination. Therefore, deleterious mtDNA mutations that increase ROS production can provide a proliferative advantage to cancer or stem cells, and optimal combinations of mutant loci can be generated through recombination. PMID:22345519

  17. Sharing mutants and experimental information prepublication using FgMutantDB

    USDA-ARS?s Scientific Manuscript database

    There has been no central location for storing generated mutants of Fusarium graminearum or for data associated with these mutants. Instead researchers relied on several independent, non-integrated databases. FgMutantDB was designed as a simple spreadsheet that is accessible globally on the web th...

  18. Switch II Mutants Reveal Coupling between the Nucleotide- and Actin-Binding Regions in Myosin V

    PubMed Central

    Trivedi, Darshan V.; David, Charles; Jacobs, Donald J.; Yengo, Christopher M.

    2012-01-01

    Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region. PMID:22713570

  19. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Susan I.

    mutation. Characterization of mutant and wild-type plants has revealed that sugars inhibit breakdown of seed storage lipids. In addition, high concentrations of exogenous sugars largely eliminate the development of mature chloroplasts by developing seedlings. Affymetrix GeneChip experiments have revealed that expression of many plant genes is partially regulated by sugar levels, with approximately two percent of genes exhibiting alterations in steady-state mRNA levels in response to changing sugar concentrations. Ultimately, a better understanding of plant sugar responses may allow improvements in rates of carbon fixation and manipulation of carbon partitioning. These improvements will be needed to help make production of energy from biomass more economically attractive.« less

  20. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction

    PubMed Central

    Mochizuki, Nobuyoshi; Brusslan, Judy A.; Larkin, Robert; Nagatani, Akira; Chory, Joanne

    2001-01-01

    A plastid-derived signal plays an important role in the coordinated expression of both nuclear- and chloroplast-localized genes that encode photosynthesis-related proteins. Arabidopsis GUN (genomes uncoupled) loci have been identified as components of plastid-to-nucleus signal transduction. Unlike wild-type plants, gun mutants have nuclear Lhcb1 expression in the absence of chloroplast development. We observed a synergistic phenotype in some gun double-mutant combinations, suggesting there are at least two independent pathways in plastid-to-nucleus signal transduction. There is a reduction of chlorophyll accumulation in gun4 and gun5 mutant plants, and a gun4gun5 double mutant shows an albino phenotype. We cloned the GUN5 gene, which encodes the ChlH subunit of Mg-chelatase. We also show that gun2 and gun3 are alleles of the known photomorphogenic mutants, hy1 and hy2, which are required for phytochromobilin synthesis from heme. These findings suggest that certain perturbations of the tetrapyrrole biosynthetic pathway generate a signal from chloroplasts that causes transcriptional repression of nuclear genes encoding plastid-localized proteins. The comparison of mutant phenotypes of gun5 and another Mg-chelatase subunit (ChlI) mutant suggests a specific function for ChlH protein in the plastid-signaling pathway. PMID:11172074

  1. A Genetic Selection for dinB Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis.

    PubMed

    Scotland, Michelle K; Heltzel, Justin M H; Kath, James E; Choi, Jung-Suk; Berdis, Anthony J; Loparo, Joseph J; Sutton, Mark D

    2015-09-01

    Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the β sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the β clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA.

  2. HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures

    PubMed Central

    Kho, Eun-Young; Wang, Hsu-Kun; Banerjee, N. Sanjib; Broker, Thomas R.; Chow, Louise T.

    2013-01-01

    Human papillomaviruses (HPVs) amplify in differentiated strata of a squamous epithelium. The HPV E7 protein destabilizes the p130/retinoblastoma susceptibility protein family of tumor suppressors and reactivates S-phase reentry, thereby facilitating viral DNA amplification. The high-risk HPV E6 protein destabilizes the p53 tumor suppressor and many other host proteins. However, the critical E6 targets relevant to viral DNA amplification have not been identified, because functionally significant E6 mutants are not stably maintained in transfected cells. Using Cre-loxP recombination, which efficiently generates HPV genomic plasmids in transfected primary human keratinocytes, we have recapitulated a highly productive infection of HPV-18 in organotypic epithelial cultures. By using this system, we now report the characterization of four HPV-18 E6 mutations. An E6 null mutant accumulated high levels of p53 and amplified very poorly. p53 siRNA or ectopic WT E6 partially restored amplification, whereas three missense E6 mutations that did not effectively destabilize p53 complemented the null mutant poorly. Unexpectedly, in cis, two of the missense mutants amplified, albeit to a lower extent than the WT and only in cells with undetectable p53. These observations and others implicate p53 and additional host proteins in regulating viral DNA amplification and also suggest an inhibitory effect of E6 overexpression. We show that high levels of viral DNA amplification are critical for late protein expression and report several previously undescribed viral RNAs, including bicistronic transcripts predicted to encode E5 and L2 or an alternative form of E1^E4 and L1. PMID:23572574

  3. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    PubMed

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  4. Stepwise Adaptations to Low Temperature as Revealed by Multiple Mutants of Psychrophilic α-Amylase from Antarctic Bacterium*

    PubMed Central

    Cipolla, Alexandre; D'Amico, Salvino; Barumandzadeh, Roya; Matagne, André; Feller, Georges

    2011-01-01

    The mutants Mut5 and Mut5CC from a psychrophilic α-amylase bear representative stabilizing interactions found in the heat-stable porcine pancreatic α-amylase but lacking in the cold-active enzyme from an Antarctic bacterium. From an evolutionary perspective, these mutants can be regarded as structural intermediates between the psychrophilic and the mesophilic enzymes. We found that these engineered interactions improve all the investigated parameters related to protein stability as follows: compactness; kinetically driven stability; thermodynamic stability; resistance toward chemical denaturation, and the kinetics of unfolding/refolding. Concomitantly to this improved stability, both mutants have lost the kinetic optimization to low temperature activity displayed by the parent psychrophilic enzyme. These results provide strong experimental support to the hypothesis assuming that the disappearance of stabilizing interactions in psychrophilic enzymes increases the amplitude of concerted motions required by catalysis and the dynamics of active site residues at low temperature, leading to a higher activity. PMID:21900238

  5. Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation.

    PubMed

    Wang, Aoli; Yan, Xiao-E; Wu, Hong; Wang, Wenchao; Hu, Chen; Chen, Cheng; Zhao, Zheng; Zhao, Peng; Li, Xixiang; Wang, Li; Wang, Beilei; Ye, Zi; Wang, Jinhua; Wang, Chu; Zhang, Wei; Gray, Nathanael S; Weisberg, Ellen L; Chen, Liang; Liu, Jing; Yun, Cai-Hong; Liu, Qingsong

    2016-10-25

    Ibrutinib, a clinically approved irreversible BTK kinase inhibitor for Mantle Cell Lymphoma (MCL) and Chronic Lymphocytic Leukemia (CLL) etc, has been reported to be potent against EGFR mutant kinase and currently being evaluated in clinic for Non Small Cell Lung Cancer (NSCLC). Through EGFR wt/mutant engineered isogenic BaF3 cell lines we confirmed the irreversible binding mode of Ibrutinib with EGFR wt/mutant kinase via Cys797. However, comparing to typical irreversible EGFR inhibitor, such as WZ4002, the washing-out experiments revealed a much less efficient covalent binding for Ibrutinib. The biochemical binding affinity examination in the EGFR L858R/T790M kinase revealed that, comparing to more efficient irreversible inhibitor WZ4002 (Kd: 0.074 μM), Ibrutinib exhibited less efficient binding (Kd: 0.18 μM). An X-ray crystal structure of EGFR (T790M) in complex with Ibrutinib exhibited a unique DFG-in/c-Helix-out inactive binding conformation, which partially explained the less efficiency of covalent binding and provided insight for further development of highly efficient irreversible binding inhibitor for the EGFR mutant kinase. These results also imply that, unlike the canonical irreversible inhibitor, sustained effective concentration might be required for Ibrutinib in order to achieve the maximal efficacy in the clinic application against EGFR driven NSCLC.

  6. Altered sexual and social behaviors in trp2 mutant mice

    PubMed Central

    Leypold, Bradley G.; Yu, C. Ron; Leinders-Zufall, Trese; Kim, Michelle M.; Zufall, Frank; Axel, Richard

    2002-01-01

    We have used gene targeting to generate mice with a homozygous deficiency in trp2, a cation channel expressed in the vomeronasal organ (VNO). Trp2 mutant animals reveal a striking reduction in the electrophysiological response to pheromones in the VNO, suggesting that trp2 plays a central role in mediating the pheromone response. These mutants therefore afford the opportunity to examine the role of the VNO in the generation of innate sexual and social behaviors in mice. Trp2 mutant males and nursing females are docile and fail to initiate aggressive attacks on intruder males. Male–female sexual behavior appears normal, but trp2 mutant males also vigorously mount other males. These results suggest that the cation channel trp2 is required in the VNO to detect male-specific pheromones that elicit aggressive behaviors and dictate the choice of sexual partners. PMID:11972034

  7. Value of bilirubin oxidase and its mutants in the diagnosis of hyperbilirubinemia.

    PubMed

    Zhang, Lei; Zhang, Xiao; Luo, Zhi-Ying

    2005-11-01

    To elucidate the significance of the coordination amino acid residues in bilirubin oxidase (BO) and their kinetic characteristics, and evaluate whether BO mutants may serve as better diagnostic agent for hyperbilirubinemia. The BO mutants I402G and C457S were obtained by site-directed mutagenesis and confirmed by amino acid sequence analysis. Ru-incorporated C457S mutant was obtained by direct incubation of ruthenium compounds with the mutant. The electron paramagnetic resonance (EPR) spectra of the recombinant BO and the mutants were investigated, and the enzyme kinetics of the recombinant BO and I402G mutant were measured with bilirubin as the substrate at 25 degrees C. The BO mutants were expressed and purified successfully. The mutant I402G showed low enzyme activity, and had C457S virtually no enzyme activity. Nevertheless Ru-incorporation conferred higher enzyme activity to C457S mutant. The enzyme kinetic investigations revealed that the kinetic parameter k(cat) of the recombinant BO and I402G mutant was 235.8 min(-1) and 6.9 min(-1), respectively, suggesting higher enzyme activity of the recombinant BO. The coordinating amino acids have important significance in maintaining the integrity of active centers and enzyme activities of recombinant BO and its mutants. The enzyme activities of the mutants I402G and C457S are much lower than those of recombinant BO, therefore they are not appropriate for diagnostic purpose. Ru-incorporation facilitates the formation of a new intact active center in C457S mutant, which therefore acquires enzyme activity.

  8. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.).

    PubMed

    Zhang, J-J; Wu, S-Y; Jiang, L; Wang, J-L; Zhang, X; Guo, X-P; Wu, C-Y; Wan, J-M

    2015-03-01

    Bulliform cells are large, thin-walled and highly vacuolated cells, and play an important role in controlling leaf rolling in response to drought and high temperature. However, the molecular mechanisms regulating bulliform cell development have not been well documented. Here, we report isolation and characterisation of a rice leaf-rolling mutant, named shallot-like 2 (sll2). The sll2 plants exhibit adaxially rolled leaves, starting from the sixth leaf stage, accompanied by increased photosynthesis and reduced plant height and tiller number. Histological analyses showed shrinkage of bulliform cells, resulting in inward-curved leaves. The mutant is recessive and revertible at a rate of 9%. The leaf rolling is caused by a T-DNA insertion. Cloning of the insertion using TAIL-PCR revealed that the T-DNA was inserted in the promoter region of LOC_Os07 g38664. Unexpectedly, the enhanced expression of LOC_Os07 g38664 by the 35S enhancer in the T-DNA is not responsible for the leaf rolling phenotype. Further, the enhancer also exerted a long-distance effect, including up-regulation of several bulliform cell-related genes. sll2 suppressed the outward leaf rolling of oul1 in the sll2oul1 double mutant. We conclude that leaf rolling in sll2 could be a result of the combined effect of multi-genes, implying a complex network in regulation of bulliform cell development. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Molecular Dynamics Simulations of KirBac1.1 Mutants Reveal Global Gating Changes of Kir Channels.

    PubMed

    Linder, Tobias; Wang, Shizhen; Zangerl-Plessl, Eva-Maria; Nichols, Colin G; Stary-Weinzinger, Anna

    2015-04-27

    Prokaryotic inwardly rectifying (KirBac) potassium channels are homologous to mammalian Kir channels. Their activity is controlled by dynamical conformational changes that regulate ion flow through a central pore. Understanding the dynamical rearrangements of Kir channels during gating requires high-resolution structure information from channels crystallized in different conformations and insight into the transition steps, which are difficult to access experimentally. In this study, we use MD simulations on wild type KirBac1.1 and an activatory mutant to investigate activation gating of KirBac channels. Full atomistic MD simulations revealed that introducing glutamate in position 143 causes significant widening at the helix bundle crossing gate, enabling water flux into the cavity. Further, global rearrangements including a twisting motion as well as local rearrangements at the subunit interface in the cytoplasmic domain were observed. These structural rearrangements are similar to recently reported KirBac3.1 crystal structures in closed and open conformation, suggesting that our simulations capture major conformational changes during KirBac1.1 opening. In addition, an important role of protein-lipid interactions during gating was observed. Slide-helix and C-linker interactions with lipids were strengthened during activation gating.

  10. Towards a "Golden Standard" for computing globin stability: Stability and structure sensitivity of myoglobin mutants.

    PubMed

    Kepp, Kasper P

    2015-10-01

    Fast and accurate computation of protein stability is increasingly important for e.g. protein engineering and protein misfolding diseases, but no consensus methods exist for important proteins such as globins, and performance may depend on the type of structural input given. This paper reports benchmarking of six protein stability calculators (POPMUSIC 2.1, I-Mutant 2.0, I-Mutant 3.0, CUPSAT, SDM, and mCSM) against 134 experimental stability changes for mutations of sperm-whale myoglobin. Six different high-resolution structures were used to test structure sensitivity that may impair protein calculations. The trend accuracy of the methods decreased as I-Mutant 2.0 (R=0.64-0.65), SDM (R=0.57-0.60), POPMUSIC2.1 (R=0.54-0.57), I-Mutant 3.0 (R=0.53-0.55), mCSM (R=0.35-0.47), and CUPSAT (R=0.25-0.48). The mean signed errors increased as SDMMutant 2.0Mutant 3.0Mutant 2.0Mutant 3.0Mutant 3.0 (0.05)Mutant 2.0 (0.09)reveal room for improvement, but I-Mutant 2.0 is proficient for this purpose, as further validated against a data set of related cytochrome c like proteins. The results also emphasize the importance of high-quality crystal structures and reveal structure-dependent effects even in the near-atomic resolution limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Diversity and stability study on rice mutants induced in space environment.

    PubMed

    Lu, Wei-Hong; Wang, Xin-Zhu; Zheng, Qi; Guan, Shuang-Hong; Xin, Ping; Sun, Ye-Qing

    2008-03-01

    To further study the characteristics of changes on the molecular level of rice mutants induced in space environment, we analyzed proteins in leaves and seeds of four rice mutants (two high-tillering and two low-tillering) in the 8(th) and 9(th) generations after a 15-day spaceflight, and compared with their ground controls by two-dimentional polyacrylamide gel electrophoresis and reverse phase liquid chromatography (RPLC). In addition, the albumin, globulin, prolamine, glutelin, and amylose of the mutant seeds were analyzed by RPLC and ultra-violet spectrometry. The results showed that the low-abundance proteins of leaves in the peak tillering stage are more likely to be induced compared with their corresponding controls. The albumin, globulin, and prolamine of the mutant seeds revealed changes when compared with their controls, and the characteristics of changes in different mutants were stably inherited in the 8(th) and 9(th) generations, suggesting that they can be used as bio markers to identity the mutants induced by spaceflight. Moreover, two proteins (SSP9111 and SSP6302) were found to be expressed with high intensity (two-fold change) in different mutants, which were both correlated with photosystem according to mass spectrometry and database searching.

  12. Gamma ray-induced small plaque mutants of western equine encephalitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simizu, B.; Yamazaki, S.; Suzuki, K.

    1973-12-01

    Small plaque mutants of Western equine encephalitis virus were obtained from the surviving fractions of wild-type virus which was irradiated with gamma rays. The frequency with which small plaque mutants appeared in the surviving fraction increased with the radiation dose. These mutants were not more resistant to radiation than wild-type virus. The growth rate of a mutant, S127, was lower than that of wild-type. Clonally purified mutant virions presented two peaks in a velocity sedimentation profile; peak 1 corresponded to the peak of wild type and peak 2 moved faster than peak 1. Virions of both peaks were infectious andmore » consistently formed small plaques in chicken embryo cells. Virions reisolated from either peak and grown in chicken embryo cells also revealed two peaks in sedimentation analysis. In the electron microscope examination peak 2 proved to consist of giant form particles, each of which contained more than one nucleoid surrounded with a common envelope. Despite this remarkable morphological difference, densities of the wild-type and S127 mutant virions were similar in cesium chloride gradients. The RNAs and proteins of mutant virions could not be distinguished from those of wild types on the basis of size or change. (auth)« less

  13. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    PubMed

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  14. High-Throughput Sequencing of Campylobacter jejuni Insertion Mutant Libraries Reveals mapA as a Fitness Factor for Chicken Colonization

    PubMed Central

    Johnson, Jeremiah G.; Livny, Jonathan

    2014-01-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture. PMID:24633877

  15. High-throughput sequencing of Campylobacter jejuni insertion mutant libraries reveals mapA as a fitness factor for chicken colonization.

    PubMed

    Johnson, Jeremiah G; Livny, Jonathan; Dirita, Victor J

    2014-06-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.

  16. A Factor Linking Floral Organ Identity and Growth Revealed by Characterization of the Tomato Mutant unfinished flower development (ufd).

    PubMed

    Poyatos-Pertíñez, Sandra; Quinet, Muriel; Ortíz-Atienza, Ana; Yuste-Lisbona, Fernando J; Pons, Clara; Giménez, Estela; Angosto, Trinidad; Granell, Antonio; Capel, Juan; Lozano, Rafael

    2016-01-01

    Floral organogenesis requires coordinated interactions between genes specifying floral organ identity and those regulating growth and size of developing floral organs. With the aim to isolate regulatory genes linking both developmental processes (i.e., floral organ identity and growth) in the tomato model species, a novel mutant altered in the formation of floral organs was further characterized. Under normal growth conditions, floral organ primordia of mutant plants were correctly initiated, however, they were unable to complete their development impeding the formation of mature and fertile flowers. Thus, the growth of floral buds was blocked at an early stage of development; therefore, we named this mutant as unfinished flower development ( ufd ). Genetic analysis performed in a segregating population of 543 plants showed that the abnormal phenotype was controlled by a single recessive mutation. Global gene expression analysis confirmed that several MADS-box genes regulating floral identity as well as other genes participating in cell division and different hormonal pathways were affected in their expression patterns in ufd mutant plants. Moreover, ufd mutant inflorescences showed higher hormone contents, particularly ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and strigol compared to wild type. Such results indicate that UFD may have a key function as positive regulator of the development of floral primordia once they have been initiated in the four floral whorls. This function should be performed by affecting the expression of floral organ identity and growth genes, together with hormonal signaling pathways.

  17. LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion.

    PubMed

    Wulff-Strobel, Christine R; Williams, Andrew W; Straley, Susan C

    2002-01-01

    LcrQ is a regulatory protein unique to Yersinia. Previous study in Yersinia pseudotuberculosis and Yersinia enterocolitica prompted the model in which LcrQ negatively regulates the expression of a set of virulence proteins called Yops, and its secretion upon activation of the Yop secretion (Ysc) type III secretion system permits full induction of Yops expression. In this study, we tested the hypothesis that LcrQ's effects on Yops expression might be indirect. Excess LcrQ was found to exert an inhibitory effect specifically at the level of Yops secretion, independent of production, and a normal inner Ysc gate protein LcrG was required for this activity. However, overexpression of LcrQ did not prevent YopH secretion, suggesting that LcrQ's effects at the Ysc discriminate among the Yops. We tested this idea by determining the effects of deletion or overexpression of LcrQ, YopH and their common chaperone SycH on early Yop secretion through the Ysc. Together, our findings indicated that LcrQ is not a negative regulator directly, but it acts in partnership with SycH at the Ysc gate to control the entry of a set of Ysc secretion substrates. A hierarchy of YopH secretion before YopE appears to be imposed by SycH in conjunction with both LcrQ and YopH. LcrQ and SycH in addition influenced the deployment of LcrV, a component of the Yops delivery mechanism. Accordingly, LcrQ appears to be a central player in determining the substrate specificity of the Ysc.

  18. The characterization of a zebrafish mid-hindbrain mutant, mid-hindbrain gone (mgo).

    PubMed

    Shima, Takaki; Znosko, Wade; Tsang, Michael

    2009-04-01

    The vertebrate mid-hindbrain boundary (MHB) is a crucial morphological structure required for patterning and neural differentiation of the midbrain and anterior hindbrain. We isolated a novel zebrafish mutant, MHB gone (mgo), that exhibited a defective MHB. Expression of engrailed3 in the prospective MHB was absent at the 1-somite stage, suggesting that initiation of the isthmic organizer was disrupted in mgo mutants. Complementation test with mgo and noi, in which the pax2a gene is mutated, infer that the mgo mutant may represent a novel noi allele. However, pronephric, otic vesicle, and commissural axonal defects described in noi mutants were not associated with mgo mutants. Genetic mapping revealed that the mgo mutation is linked to the Pax2a locus, but no mutation was detected in pax2a exons or within intron-exon boundaries. Based on these findings, we propose that the mgo mutation genetically interacts with pax2a required for the initiation of MHB formation. Copyright 2009 Wiley-Liss, Inc.

  19. Corticostriatal circuit defects in Hoxb8 mutant mice

    PubMed Central

    Nagarajan, Naveen; Jones, Bryan W.; West, Peter J.; Marc, Robert; Capecchi, Mario R.

    2018-01-01

    Hoxb8 mutant mice exhibit compulsive grooming and hair removal dysfunction similar to humans with the OCD-spectrum disorder, trichotillomania. Since, in the mouse brain, the only detectable cells that label with Hoxb8 cell lineage appear to be microglia, we suggested that defective microglia cause the neuropsychiatric disorder. Does the Hoxb8 mutation in microglia lead to neural circuit dysfunctions? We demonstrate that Hoxb8 mutants contain corticostriatal circuit defects. Golgi staining, ultra-structural, and electrophysiological studies of mutants reveal excess dendritic spines, pre- and post-synaptic structural defects, long-term potentiation and miniature postsynaptic current defects. Hoxb8 mutants also exhibit hyperanxiety and social behavioral deficits similar to mice with neuronal mutations in Sapap3, Slitrk5 and Shank3, reported models of OCD and autism spectrum disorders (ASD’s). Long-term treatment of Hoxb8 mutants with fluoxetine, a serotonin reuptake inhibitor (SSRI), reduces excessive grooming, hyperanxiety and social behavioral impairments. These studies provide linkage between the neuronal defects induced by defective Hoxb8-microglia, and neuronal dysfunctions directly generated by mutations in synaptic components that result in mice that display similar pathological grooming, hyperanxiety and social impairment deficits. Our results shed light on Hoxb8 microglia driven circuit-specific defects and therapeutic approaches that will become essential to developing novel therapies for neuropsychiatric diseases such as OCD and ASD’s with Hoxb8-microglia being the central target. PMID:28948967

  20. Defeat mutant KRAS with synthetic lethality

    PubMed Central

    Pang, Xiufeng; Liu, Mingyao

    2017-01-01

    ABSTRACT Ras proteins are considered as the founding members of a large superfamily of small GTPases that control fundamental cellular functions. Mutationally activated RAS genes were discovered in human cancer cells more than 3 decades ago, but intensive efforts on Ras structure, biochemistry, function and signaling continue even now. Because mutant Ras proteins are inherently difficult to inhibit and have yet been therapeutically conquered, it was designated as “the Everest of oncogenes” in the cancer genome landscape, further promoting a “renaissance” in RAS research. Different paths to directly or indirectly targeting mutant Ras signaling are currently under investigation in the hope of finding an efficacious regimen. Inhibitors directly binding to KRASG12C to block its downstream signaling have been revealed, supporting the notion of Ras' druggability. An alternative indirect approach by targeting synthetic lethal interactors of mutant RAS is underway. We recently employed a synthetic lethal drug screen plus a combinatorial strategy using a panel of clinical agents and discovered that KRAS-mutant cancers were fragile to the combined inhibition of polo-like kinase 1 (Plk1) and RhoA/Rho kinase (ROCK). The combined regimen of BI-2536 (a Plk1 inhibitor) and fasudil (a ROCK inhibitor) promoted a significant inhibition of patient-derived lung cancer xenografts and prolonged the survival of LSL-KRASG12D mice. In this commentary, we will summarize the state-of-the art for the direction of synthetic lethality, and also speculate on the future development of this approach. PMID:27463838

  1. Identification of Proteus mirabilis Mutants with Increased Sensitivity to Antimicrobial Peptides

    PubMed Central

    McCoy, Andrea J.; Liu, Hongjian; Falla, Timothy J.; Gunn, John S.

    2001-01-01

    Antimicrobial peptides (APs) are important components of the innate defenses of animals, plants, and microorganisms. However, some bacterial pathogens are resistant to the action of APs. For example, Proteus mirabilis is highly resistant to the action of APs, such as polymyxin B (PM), protegrin, and the synthetic protegrin analog IB-367. To better understand this resistance, a transposon mutagenesis approach was used to generate P. mirabilis mutants sensitive to APs. Four unique PM-sensitive mutants of P. mirabilis were identified (these mutants were >2 to >128 times more sensitive than the wild type). Two of these mutants were also sensitive to IB-367 (16 and 128 times more sensitive than the wild type). Lipopolysaccharide (LPS) profiles of the PM- and protegrin-sensitive mutants demonstrated marked differences in both the lipid A and O-antigen regions, while the PM-sensitive mutants appeared to have alterations of either lipid A or O antigen. Matrix-assisted laser desorption ionization–time of flight mass spectrometry analysis of the wild-type and PM-sensitive mutant lipid A showed species with one or two aminoarabinose groups, while lipid A from the PM- and protegrin-sensitive mutants was devoid of aminoarabinose. When the mutants were streaked on an agar-containing medium, the swarming motility of the PM- and protegrin-sensitive mutants was completely inhibited and the swarming motility of the mutants sensitive to only PM was markedly decreased. DNA sequence analysis of the mutagenized loci revealed similarities to an O-acetyltransferase (PM and protegrin sensitive) and ATP synthase and sap loci (PM sensitive). These data further support the role of LPS modifications as an elaborate mechanism in the resistance of certain bacterial species to APs and suggest that LPS surface charge alterations may play a role in P. mirabilis swarming motility. PMID:11408219

  2. A Drosophila SNAP-25 null mutant reveals context-dependent redundancy with SNAP-24 in neurotransmission.

    PubMed Central

    Vilinsky, Ilya; Stewart, Bryan A; Drummond, James; Robinson, Iain; Deitcher, David L

    2002-01-01

    The synaptic protein SNAP-25 is an important component of the neurotransmitter release machinery, although its precise function is still unknown. Genetic analysis of other synaptic proteins has yielded valuable information on their role in synaptic transmission. In this study, we performed a mutagenesis screen to identify new SNAP-25 alleles that fail to complement our previously isolated recessive temperature-sensitive allele of SNAP-25, SNAP-25(ts). In a screen of 100,000 flies, 26 F(1) progeny failed to complement SNAP-25(ts) and 21 of these were found to be null alleles of SNAP-25. These null alleles die at the pharate adult stage and electroretinogram recordings of these animals reveal that synaptic transmission is blocked. At the third instar larval stage, SNAP-25 nulls exhibit nearly normal neurotransmitter release at the neuromuscular junction. This is surprising since SNAP-25(ts) larvae exhibit a much stronger synaptic phenotype. Our evidence indicates that a related protein, SNAP-24, can substitute for SNAP-25 at the larval stage in SNAP-25 nulls. However, if a wild-type or mutant form of SNAP-25 is present, then SNAP-24 does not appear to take part in neurotransmitter release at the larval NMJ. These results suggest that the apparent redundancy between SNAP-25 and SNAP-24 is due to inappropriate genetic substitution. PMID:12242238

  3. Genetic Screening Identifies Cyanogenesis-Deficient Mutants of Lotus japonicus and Reveals Enzymatic Specificity in Hydroxynitrile Glucoside Metabolism[W][OA

    PubMed Central

    Takos, Adam; Lai, Daniela; Mikkelsen, Lisbeth; Abou Hachem, Maher; Shelton, Dale; Motawia, Mohammed Saddik; Olsen, Carl Erik; Wang, Trevor L.; Martin, Cathie; Rook, Fred

    2010-01-01

    Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid–derived cyanogenic glucosides (α-hydroxynitrile glucosides) by specific β-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled. Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the β-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related β-glucosidase, BGD4, were identified. This indicated that BGD4 plays no role in cyanogenesis in L. japonicus in vivo. Biochemical analysis confirmed that BGD4 cannot hydrolyze linamarin or lotaustralin and in L. japonicus is specific for breakdown of related hydroxynitrile glucosides, such as rhodiocyanoside A. By contrast, BGD2 can hydrolyze both cyanogenic glucosides and rhodiocyanosides. Our genetic analysis demonstrated specificity in the catabolic pathways for hydroxynitrile glucosides and implied specificity in their biosynthetic pathways as well. In addition, it has provided important tools for elucidating and potentially modifying cyanogenesis pathways in plants. PMID:20453117

  4. Drosophila mauve mutants reveal a role of LYST homologs late in the maturation of phagosomes and autophagosomes.

    PubMed

    Rahman, Mokhlasur; Haberman, Adam; Tracy, Charles; Ray, Sanchali; Krämer, Helmut

    2012-12-01

    Chediak-Higashi syndrome (CHS) is a lethal disease caused by mutations that inactivate the lysosomal trafficking regulator protein (LYST). Patients suffer from diverse symptoms including oculocutaneous albinism, recurrent infections, neutropenia and progressive neurodegeneration. These defects have been traced back to over-sized lysosomes and lysosome-related organelles (LROs) in different cell types. Here, we explore mutants in the Drosophila mauve gene as a new model system for CHS. The mauve gene (CG42863) encodes a large BEACH domain protein of 3535 amino acids similar to LYST. This reflects a functional homology between these proteins as mauve mutants also display enlarged LROs, such as pigment granules. This Drosophila model also replicates the enhanced susceptibility to infections and we show a defect in the cellular immune response. Early stages of phagocytosis proceed normally in mauve mutant hemocytes but, unlike in wild type, late phagosomes fuse and generate large vacuoles containing many bacteria. Autophagy is similarly affected in mauve fat bodies as starvation-induced autophagosomes grow beyond their normal size. Together these data suggest a model in which Mauve functions to restrict homotypic fusion of different pre-lysosomal organelles and LROs. © 2012 John Wiley & Sons A/S.

  5. Synapsis-defective mutants reveal a correlation between chromosome conformation and the mode of double-strand break repair during Caenorhabditis elegans meiosis.

    PubMed

    Smolikov, Sarit; Eizinger, Andreas; Hurlburt, Allison; Rogers, Eric; Villeneuve, Anne M; Colaiácovo, Mónica P

    2007-08-01

    SYP-3 is a new structural component of the synaptonemal complex (SC) required for the regulation of chromosome synapsis. Both chromosome morphogenesis and nuclear organization are altered throughout the germlines of syp-3 mutants. Here, our analysis of syp-3 mutants provides insights into the relationship between chromosome conformation and the repair of meiotic double-strand breaks (DSBs). Although crossover recombination is severely reduced in syp-3 mutants, the production of viable offspring accompanied by the disappearance of RAD-51 foci suggests that DSBs are being repaired in these synapsis-defective mutants. Our studies indicate that once interhomolog recombination is impaired, both intersister recombination and nonhomologous end-joining pathways may contribute to repair during germline meiosis. Moreover, our studies suggest that the conformation of chromosomes may influence the mode of DSB repair employed during meiosis.

  6. Chemical Genomic Screening of a Saccharomyces cerevisiae Genomewide Mutant Collection Reveals Genes Required for Defense against Four Antimicrobial Peptides Derived from Proteins Found in Human Saliva

    PubMed Central

    Bhatt, Sanjay; Schoenly, Nathan E.; Lee, Anna Y.; Nislow, Corey; Bobek, Libuse A.

    2013-01-01

    To compare the effects of four antimicrobial peptides (MUC7 12-mer, histatin 12-mer, cathelicidin KR20, and a peptide containing lactoferricin amino acids 1 to 11) on the yeast Saccharomyces cerevisiae, we employed a genomewide fitness screen of combined collections of mutants with homozygous deletions of nonessential genes and heterozygous deletions of essential genes. When an arbitrary fitness score cutoffs of 1 (indicating a fitness defect, or hypersensitivity) and −1 (indicating a fitness gain, or resistance) was used, 425 of the 5,902 mutants tested exhibited altered fitness when treated with at least one peptide. Functional analysis of the 425 strains revealed enrichment among the identified deletions in gene groups associated with the Gene Ontology (GO) terms “ribosomal subunit,” “ribosome biogenesis,” “protein glycosylation,” “vacuolar transport,” “Golgi vesicle transport,” “negative regulation of transcription,” and others. Fitness profiles of all four tested peptides were highly similar, particularly among mutant strains exhibiting the greatest fitness defects. The latter group included deletions in several genes involved in induction of the RIM101 signaling pathway, including several components of the ESCRT sorting machinery. The RIM101 signaling regulates response of yeasts to alkaline and neutral pH and high salts, and our data indicate that this pathway also plays a prominent role in regulating protective measures against all four tested peptides. In summary, the results of the chemical genomic screens of S. cerevisiae mutant collection suggest that the four antimicrobial peptides, despite their differences in structure and physical properties, share many interactions with S. cerevisiae cells and consequently a high degree of similarity between their modes of action. PMID:23208710

  7. Resistance to collagen-induced arthritis in SHPS-1 mutant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuzawa, Chie; Kaneko, Yoriaki; Murata, Yoji

    SHPS-1 is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on dendritic cells and macrophages. Here we show that mice expressing a mutant form of SHPS-1 fail to develop type-II collagen (CII)-induced arthritis (CIA), a model for rheumatoid arthritis in humans. Histological examinations of the arthritic paws from immunized wild-type mice revealed that cartilage was destroyed in association with marked mononuclear cell infiltration, while only mild cell infiltration was observed in immunized SHPS-1 mutant mice. Consistently, the serum levels of both IgG and IgG2a specific to CII andmore » of IL-1{beta} in immunized SHPS-1 mutant mice were markedly reduced compared with those apparent for wild-type mice. The CII-induced proliferation of, and production of cytokines by, T cells from immunized SHPS-1 mutant mice were reduced compared to wild-type cells. These results suggest that SHPS-1 is essential for development of CIA.« less

  8. Calcium Signaling Regulates Trafficking of Familial Hypocalciuric Hypercalcemia (FHH) Mutants of the Calcium Sensing Receptor

    PubMed Central

    Grant, Michael P.; Stepanchick, Ann

    2012-01-01

    Calcium-sensing receptors (CaSRs) regulate systemic Ca2+ homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca2+ is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca2+, using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca2+ signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca2+ oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca2+ signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca2+ response when extracellular Ca2+ is elevated and argues that Ca2+ signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane. PMID:23077345

  9. Transcriptomic and physiological characterization of the fefe mutant of melon (Cucumis melo) reveals new aspects of iron–copper crosstalk

    PubMed Central

    Waters, Brian M.; McInturf, Samuel A.; Amundsen, Keenan

    2014-01-01

    Summary Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu deficient plants was independent of the normal Fe uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe regulated, and one was Cu regulated. Simultaneous Fe and Cu deficiency synergistically upregulated Fe uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe– Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants. PMID:24975482

  10. Transcriptome Analysis of Arabidopsis GCR1 Mutant Reveals Its Roles in Stress, Hormones, Secondary Metabolism and Phosphate Starvation

    PubMed Central

    Chakraborty, Navjyoti; Sharma, Priyanka; Kanyuka, Kostya; Pathak, Ravi R.; Choudhury, Devapriya; Hooley, Richard A.; Raghuram, Nandula

    2015-01-01

    The controversy over the existence or the need for G-protein coupled receptors (GPCRs) in plant G-protein signalling has overshadowed a more fundamental quest for the role of AtGCR1, the most studied and often considered the best candidate for GPCR in plants. Our whole transcriptome microarray analysis of the GCR1-knock-out mutant (gcr1-5) in Arabidopsis thaliana revealed 350 differentially expressed genes spanning all chromosomes. Many of them were hitherto unknown in the context of GCR1 or G-protein signalling, such as in phosphate starvation, storage compound and fatty acid biosynthesis, cell fate, etc. We also found some GCR1-responsive genes/processes that are reported to be regulated by heterotrimeric G-proteins, such as biotic and abiotic stress, hormone response and secondary metabolism. Thus, GCR1 could have G-protein-mediated as well as independent roles and regardless of whether it works as a GPCR, further analysis of the organism-wide role of GCR1 has a significance of its own. PMID:25668726

  11. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean.

    PubMed

    Yin, Xiaojian; Nishimura, Minoru; Hajika, Makita; Komatsu, Setsuko

    2016-06-03

    Flooding negatively affects the growth of soybean, and several flooding-specific stress responses have been identified; however, the mechanisms underlying flooding tolerance in soybean remain unclear. To explore the initial flooding tolerance mechanisms in soybean, flooding-tolerant mutant and abscisic acid (ABA)-treated plants were analyzed. In the mutant and ABA-treated soybeans, 146 proteins were commonly changed at the initial flooding stress. Among the identified proteins, protein synthesis-related proteins, including nascent polypeptide-associated complex and chaperonin 20, and RNA regulation-related proteins were increased in abundance both at protein and mRNA expression. However, these proteins identified at the initial flooding stress were not significantly changed during survival stages under continuous flooding. Cluster analysis indicated that glycolysis- and cell wall-related proteins, such as enolase and polygalacturonase inhibiting protein, were increased in abundance during survival stages. Furthermore, lignification of root tissue was improved even under flooding stress. Taken together, these results suggest that protein synthesis- and RNA regulation-related proteins play a key role in triggering tolerance to the initial flooding stress in soybean. Furthermore, the integrity of cell wall and balance of glycolysis might be important factors for promoting tolerance of soybean root to flooding stress during survival stages.

  12. The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres

    PubMed Central

    Marzullo, Marta; Raffa, Grazia D.; Morciano, Patrizia; Raimondo, Domenico; Burla, Romina; Saggio, Isabella; Gatti, Maurizio

    2015-01-01

    Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping. PMID:26110638

  13. Electrical phenotypes of calcium transport mutant strains of a filamentous fungus, Neurospora crassa.

    PubMed

    Hamam, Ahmed; Lew, Roger R

    2012-05-01

    We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters-a mechanosensitive channel homolog (MscS), a Ca(2+)/H(+) exchange protein (cax), and Ca(2+)-ATPases (nca-1, nca-2, nca-3)-as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H(+)-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca(2+) levels, indicative of lesions in Ca(2+) homeostasis. However, the net Ca(2+) effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca(2+)-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca(2+) signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca(2+)] was elevated. Thus, although Ca(2+) homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654-661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H(+)-ATPase activity.

  14. Electrical Phenotypes of Calcium Transport Mutant Strains of a Filamentous Fungus, Neurospora crassa

    PubMed Central

    Hamam, Ahmed

    2012-01-01

    We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters—a mechanosensitive channel homolog (MscS), a Ca2+/H+ exchange protein (cax), and Ca2+-ATPases (nca-1, nca-2, nca-3)—as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H+-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca2+ levels, indicative of lesions in Ca2+ homeostasis. However, the net Ca2+ effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca2+-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca2+ signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca2+] was elevated. Thus, although Ca2+ homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654–661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H+-ATPase activity. PMID:22408225

  15. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.

    PubMed

    Arjonen, Antti; Kaukonen, Riina; Mattila, Elina; Rouhi, Pegah; Högnäs, Gunilla; Sihto, Harri; Miller, Bryan W; Morton, Jennifer P; Bucher, Elmar; Taimen, Pekka; Virtakoivu, Reetta; Cao, Yihai; Sansom, Owen J; Joensuu, Heikki; Ivaska, Johanna

    2014-03-01

    Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.

  16. Hush puppy: a new mouse mutant with pinna, ossicle, and inner ear defects.

    PubMed

    Pau, Henry; Fuchs, Helmut; de Angelis, Martin Hrabé; Steel, Karen P

    2005-01-01

    Deafness can be associated with abnormalities of the pinna, ossicles, and cochlea. The authors studied a newly generated mouse mutant with pinna defects and asked whether these defects are associated with peripheral auditory or facial skeletal abnormalities, or both. Furthermore, the authors investigated where the mutation responsible for these defects was located in the mouse genome. The hearing of hush puppy mutants was assessed by Preyer reflex and electrophysiological measurement. The morphological features of their middle and inner ears were investigated by microdissection, paint-filling of the labyrinth, and scanning electron microscopy. Skeletal staining of skulls was performed to assess the craniofacial dimensions. Genome scanning was performed using microsatellite markers to localize the mutation to a chromosomal region. Some hush puppy mutants showed early onset of hearing impairment. They had small, bat-like pinnae and normal malleus but abnormal incus and stapes. Some mutants had asymmetrical defects and showed reduced penetrance of the ear abnormalities. Paint-filling of newborns' inner ears revealed no morphological abnormality, although half of the mice studied were expected to carry the mutation. Reduced numbers of outer hair cells were demonstrated in mutants' cochlea on scanning electron microscopy. Skeletal staining showed that the mutants have significantly shorter snouts and mandibles. Genome scan revealed that the mutation lies on chromosome 8 between markers D8Mit58 and D8Mit289. The study results indicate developmental problems of the first and second branchial arches and otocyst as a result of a single gene mutation. Similar defects are found in humans, and hush puppy provides a mouse model for investigation of such defects.

  17. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.

    PubMed

    Das, Payel; Li, Jingyuan; Royyuru, Ajay K; Zhou, Ruhong

    2009-08-01

    Historically, influenza pandemics have been triggered when an avian influenza virus or a human/avian reassorted virus acquires the ability to replicate efficiently and become transmissible in the human population. Most critically, the major surface glycoprotein hemagglutinin (HA) must adapt to the usage of human-like (alpha-2,6-linked) sialylated glycan receptors. Therefore, identification of mutations that can switch the currently circulating H5N1 HA receptor binding specificity from avian to human might provide leads to the emergence of pandemic H5N1 viruses. To define such mutations in the H5 subtype, here we provide a computational framework that combines molecular modeling with extensive free energy simulations. Our results show that the simulated binding affinities are in good agreement with currently available experimental data. Moreover, we predict that one double mutation (V135S and A138S) in HA significantly enhances alpha-2,6-linked receptor recognition by the H5 subtype. Our simulations indicate that this double mutation in H5N1 HA increases the binding affinity to alpha-2,6-linked sialic acid receptors by 2.6 +/- 0.7 kcal/mol per HA monomer that primarily arises from the electrostatic interactions. Further analyses reveal that introduction of this double mutation results in a conformational change in the receptor binding pocket of H5N1 HA. As a result, a major rearrangement occurs in the hydrogen-bonding network of HA with the human receptor, making the human receptor binding pattern of double mutant H5N1 HA surprisingly similar to that observed in human H1N1 HA. These large scale molecular simulations on single and double mutants thus provide new insights into our understanding toward human adaptation of the avian H5N1 virus. 2009 Wiley Periodicals, Inc.

  18. Working-for-Food Behaviors: A Preclinical Study in Prader-Willi Mutant Mice.

    PubMed

    Lassi, Glenda; Maggi, Silvia; Balzani, Edoardo; Cosentini, Ilaria; Garcia-Garcia, Celina; Tucci, Valter

    2016-11-01

    Abnormal feeding behavior is one of the main symptoms of Prader-Willi syndrome (PWS). By studying a PWS mouse mutant line, which carries a paternally inherited deletion of the small nucleolar RNA 116 (Snord116), we observed significant changes in working-for-food behavioral responses at various timescales. In particular, we report that PWS mutant mice show a significant delay compared to wild-type littermate controls in responding to both hour-scale and seconds-to-minutes-scale time intervals. This timing shift in mutant mice is associated with better performance in the working-for-food task, and results in better decision making in these mutant mice. The results of our study reveal a novel aspect of the organization of feeding behavior, and advance the understanding of the interplay between the metabolic functions and cognitive mechanisms of PWS. Copyright © 2016 by the Genetics Society of America.

  19. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis.

    PubMed

    Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J; Xiang, Cheng-Bin

    2010-07-01

    Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a 'sulphur-free' solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance.

  20. The Arabidopsis cax1 Mutant Exhibits Impaired Ion Homeostasis, Development, and Hormonal Responses and Reveals Interplay among Vacuolar Transporters

    PubMed Central

    Cheng, Ning-Hui; Pittman, Jon K.; Barkla, Bronwyn J.; Shigaki, Toshiro; Hirschi, Kendal D.

    2003-01-01

    The Arabidopsis Ca2+/H+ transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca2+ levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca2+/H+ antiport activity, a 40% reduction in tonoplast V-type H+-translocating ATPase activity, a 36% increase in tonoplast Ca2+-ATPase activity, and increased expression of the putative vacuolar Ca2+/H+ antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn2+ and Mg2+ stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters. PMID:12566577

  1. The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters.

    PubMed

    Cheng, Ning-Hui; Pittman, Jon K; Barkla, Bronwyn J; Shigaki, Toshiro; Hirschi, Kendal D

    2003-02-01

    The Arabidopsis Ca(2+)/H(+) transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca(2+) levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca(2+)/H(+) antiport activity, a 40% reduction in tonoplast V-type H(+)-translocating ATPase activity, a 36% increase in tonoplast Ca(2+)-ATPase activity, and increased expression of the putative vacuolar Ca(2+)/H(+) antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn(2+) and Mg(2+) stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters.

  2. Modeling dynamics of mutants in heterogeneous stem cell niche

    NASA Astrophysics Data System (ADS)

    Shahriyari, L.; Mahdipour-Shirayeh, A.

    2017-02-01

    Studying the stem cell (SC) niche architecture is a crucial step for investigating the process of oncogenesis and obtaining an effective stem cell therapy for various cancers. Recently, it has been observed that there are two groups of SCs in the SC niche collaborating with each other to maintain tissue homeostasis: border stem cells (BSCs), which are responsible in controlling the number of non-stem cells as well as stem cells, and central stem cells (CeSCs), which regulate the SC niche. Here, we develop a bi-compartmental stochastic model for the SC niche to study the spread of mutants within the niche. The analytic calculations and numeric simulations, which are in perfect agreement, reveal that in order to delay the spread of mutants in the SC niche, a small but non-zero number of SC proliferations must occur in the CeSC compartment. Moreover, the migration of BSCs to CeSCs delays the spread of mutants. Furthermore, the fixation probability of mutants in the SC niche is independent of types of SC division as long as all SCs do not divide fully asymmetrically. Additionally, the progeny of CeSCs have a much higher chance than the progeny of BSCs to take over the entire niche.

  3. C. elegans and mutants with chronic nicotine exposure as a novel model of cancer phenotype.

    PubMed

    Kanteti, Rajani; Dhanasingh, Immanuel; El-Hashani, Essam; Riehm, Jacob J; Stricker, Thomas; Nagy, Stanislav; Zaborin, Alexander; Zaborina, Olga; Biron, David; Alverdy, John C; Im, Hae Kyung; Siddiqui, Shahid; Padilla, Pamela A; Salgia, Ravi

    2016-01-01

    We previously investigated MET and its oncogenic mutants relevant to lung cancer in C. elegans. The inactive orthlogues of the receptor tyrosine kinase Eph and MET, namely vab-1 and RB2088 respectively, the temperature sensitive constitutively active form of KRAS, SD551 (let-60; GA89) and the inactive c-CBL equivalent mutants in sli-1 (PS2728, PS1258, and MT13032) when subjected to chronic exposure of nicotine resulted in a significant loss in egg-laying capacity and fertility. While the vab-1 mutant revealed increased circular motion in response to nicotine, the other mutant strains failed to show any effect. Overall locomotion speed increased with increasing nicotine concentration in all tested mutant strains except in the vab-1 mutants. Moreover, chronic nicotine exposure, in general, upregulated kinases and phosphatases. Taken together, these studies provide evidence in support of C. elegans as initial in vivo model to study nicotine and its effects on oncogenic mutations identified in humans.

  4. Isolation and Identification of Pathogenicity Mutant of Curvularia lunata via Restriction Enzyme-Mediated Integration.

    PubMed

    Wang, Y J; Liu, T; Hou, J M; Zuo, Y H

    2013-09-01

    In this report, 156 hygromycin-resistant mutants were generated via restriction enzyme-mediated insertional (REMI) mutagenesis. All mutants were subjected to a bioassay on detached leaves. Five mutants (T4, T39, T71, T91, and T135) showed reduced symptom development, whereas one mutant (T120) did not exhibit any symptoms on the leaves compared with the wild type. The pathogenicity of these mutants was further assayed through the spray inoculation of whole seedlings. The results demonstrated that the pathogenicity of the T4, T39, T71, T91, and T135 mutants was reduced, whereas the T120 mutant lost its pathogenicity. Southern blot analysis revealed that the plasmids were inserted at different sites in the genome with different copy numbers. Flanking sequences approximately 550, 860, and 150 bp were obtained from T7, T91, and T120, respectively through plasmids rescue. Sequence analysis of the flanking sequences from T7 and T91 showed no homology to any known sequences in GenBank. The flanking sequence from the T120 mutant was highly homologous to MAPKK kinases, which regulates sexual/asexual development, melanization, pathogenicity from Cochliobolus heterostrophus. These results indicate that REMI and plasmids rescue have great potential for finding pathogenicity genes.

  5. Two-Pore Channels: Lessons from Mutant Mouse Models

    PubMed Central

    Ruas, Margarida; Galione, Antony; Parrington, John

    2016-01-01

    Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform. PMID:27330869

  6. Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities.

    PubMed

    Garrett, Matthew; Sperry, Jantzen; Braas, Daniel; Yan, Weihong; Le, Thuc M; Mottahedeh, Jack; Ludwig, Kirsten; Eskin, Ascia; Qin, Yue; Levy, Rachelle; Breunig, Joshua J; Pajonk, Frank; Graeber, Thomas G; Radu, Caius G; Christofk, Heather; Prins, Robert M; Lai, Albert; Liau, Linda M; Coppola, Giovanni; Kornblum, Harley I

    2018-01-01

    There is considerable interest in defining the metabolic abnormalities of IDH mutant tumors to exploit for therapy. While most studies have attempted to discern function by using cell lines transduced with exogenous IDH mutant enzyme, in this study, we perform unbiased metabolomics to discover metabolic differences between a cohort of patient-derived IDH1 mutant and IDH wildtype gliomaspheres. Using both our own microarray and the TCGA datasets, we performed KEGG analysis to define pathways differentially enriched in IDH1 mutant and IDH wildtype cells and tumors. Liquid chromatography coupled to mass spectrometry analysis with labeled glucose and deoxycytidine tracers was used to determine differences in overall cellular metabolism and nucleotide synthesis. Radiation-induced DNA damage and repair capacity was assessed using a comet assay. Differences between endogenous IDH1 mutant metabolism and that of IDH wildtype cells transduced with the IDH1 (R132H) mutation were also investigated. Our KEGG analysis revealed that IDH wildtype cells were enriched for pathways involved in de novo nucleotide synthesis, while IDH1 mutant cells were enriched for pathways involved in DNA repair. LC-MS analysis with fully labeled 13 C-glucose revealed distinct labeling patterns between IDH1 mutant and wildtype cells. Additional LC-MS tracing experiments confirmed increased de novo nucleotide synthesis in IDH wildtype cells relative to IDH1 mutant cells. Endogenous IDH1 mutant cultures incurred less DNA damage than IDH wildtype cultures and sustained better overall growth following X-ray radiation. Overexpression of mutant IDH1 in a wildtype line did not reproduce the range of metabolic differences observed in lines expressing endogenous mutations, but resulted in depletion of glutamine and TCA cycle intermediates, an increase in DNA damage following radiation, and a rise in intracellular ROS. These results demonstrate that IDH1 mutant and IDH wildtype cells are easily distinguishable

  7. Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.

    PubMed

    Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige

    2016-02-01

    Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR.

  8. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis

    PubMed Central

    Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J.; Xiang, Cheng-Bin

    2010-01-01

    Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a ‘sulphur-free’ solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance. PMID:20547563

  9. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    PubMed Central

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  10. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress.

    PubMed

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-03-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions.

  11. A Dominant Loss-of-Function GJA1 (Cx43) Mutant Impairs Parturition in the Mouse1

    PubMed Central

    Tong, Dan; Lu, Xuerong; Wang, Hong-Xing; Plante, Isabelle; Lui, Ed; Laird, Dale W.; Bai, Donglin; Kidder, Gerald M.

    2009-01-01

    Expression of GJA1 (commonly known as connexin43 or Cx43), a major myometrial gap junction protein, is upregulated before the onset of delivery, suggesting an essential role for Cx43-mediated gap junctional intercellular communication (GJIC) in normal uterine contraction during parturition. To determine how a disease-linked Cx43 mutation affects myometrial function, we studied a mutant mouse model carrying an autosomal dominant mutation (Gja1Jrt) in the gene encoding Cx43 that displays features of the human genetic disease oculodentodigital dysplasia. We found that Cx43 level, specifically the phosphorylated species of the protein, is significantly reduced in the myometrium of the mutant mice (Gja1Jrt/+), as revealed by Western blotting and immunostaining. Patch-clamp electrophysiological measurements demonstrated that coupling between myometrial smooth muscle cells is reduced to <15% of wild-type, indicating that the mutant protein acts dominantly on its wild-type counterpart. The phosphorylated species of Cx43 in the mutant myometrium failed to increase prior to parturition as well as in response to exogenous estrogen. Correspondingly, in vitro experiments with uterine strips revealed weaker contraction of the mutant myometrium and reduced responsiveness to oxytocin, providing an explanation for the prolonged gestation and presence of suffocated fetuses in the uteri that were observed in some of the mutant mice. We conclude that the Gja1Jrt mutation has a dominant-negative effect on Cx43 function in the myometrium, severely reducing GJIC, leading to impaired parturition. PMID:19176884

  12. A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation1[W][OA

    PubMed Central

    Pislariu, Catalina I.; D. Murray, Jeremy; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; A. Benedito, Vagner; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E.; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S.; Chen, Rujin; Udvardi, Michael K.

    2012-01-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging. PMID:22679222

  13. Genetic Characterization of Escherichia coli Type 1 Pilus Adhesin Mutants and Identification of a Novel Binding Phenotype

    PubMed Central

    Hamrick, Terri S.; Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Horton, John R.; Russell, Perry W.; Orndorff, Paul E.

    2000-01-01

    Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31°C but not at 42°C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42°C but sensitive after growth at 31°C. The ts mutant thus binds macrophages with one receptor specificity at 31°C and another at 42°C. PMID:10869080

  14. Characterization of Synthetic-Lethal Mutants Reveals a Role for the Saccharomyces Cerevisiae Guanine-Nucleotide Exchange Factor Cdc24p in Vacuole Function and Na(+) Tolerance

    PubMed Central

    White, W. H.; Johnson, D. I.

    1997-01-01

    Cdc24p is the guanine-nucleotide exchange factor for the Cdc42p GTPase, which controls cell polarity in Saccharomyces cerevisiae. To identify new genes that may affect cell polarity, we characterized six UV-induced csl (CDC24 synthetic-lethal) mutants that exhibited synthetic-lethality with cdc24-4(ts) at 23°. Five mutants were not complemented by plasmid-borne CDC42, RSR1, BUD5, BEM1, BEM2, BEM3 or CLA4 genes, which are known to play a role in cell polarity. The csl3 mutant displayed phenotypes similar to those observed with calcium-sensitive, Pet(-) vma mutants defective in vacuole function. CSL5 was allelic to VMA5, the vacuolar H(+)-ATPase subunit C, and one third of csl5 cdc24-4(ts) cells were elongated or had misshapen buds. A cdc24-4(ts) Δvma5::LEU2 double mutant did not exhibit synthetic lethality, suggesting that the csl5/vma5 cdc24-4(ts) synthetic-lethality was not simply due to altered vacuole function. The cdc24-4(ts) mutant, like Δvma5::LEU2 and csl3 mutants, was sensitive to high levels of Ca(2+) as well as Na(+) in the growth media, which did not appear to be a result of a fragile cell wall because the phenotypes were not remedied by 1 M sorbitol. Our results indicated that Cdc24p was required in one V-ATPase mutant and another mutant affecting vacuole morphology, and also implicated Cdc24p in Na(+) tolerance. PMID:9286667

  15. Crystallographic Analysis Reveals a Novel Second Binding Site for Trimethoprim in Active Site Double Mutants of Human Dihydrofolate Reductase†,‡

    PubMed Central

    Cody, Vivian; Pace, Jim; Piraino, Jennifer; Queener, Sherry F.

    2011-01-01

    In order to produce a more potent replacement for trimethoprim (TMP) used as a therapy for Pneumocystis pneumonia and targets dihydrofolate reductase from Pneumocystis jirovecii (pjDHFR), it is necessary to understand the determinants of potency and selectivity against DHFR from the mammalian host and fungal pathogen cells. To this end, active site residues in human (h)DHFR were replaced with those from pjDHFR. Structural data are reported for two complexes of TMP with the double mutants Gln35Ser/Asn64Phe (Q35S/N64F) and Gln35Lys/Asn64Phe (Q35K/N64F) of hDHFR that unexpectedly show evidence for the binding of two molecules of TMP: one molecule that binds in the normal folate binding site and the second molecule that binds in a novel subpocket site such that the mutated residue Phe64 is involved in van der Waals contacts to the trimethoxyphenyl ring of the second TMP molecule. Kinetic data for the binding of TMP to hDHFR and pjDHFR reveal an 84-fold selectivity of TMP against pjDHFR (Ki 49 nM) compared to hDHFR (Ki 4093 nM). Two mutants that contain one substitution from pj- and one from the closely related Pneumocystis carinii DHFR (pcDHFR) (Q35K/N64F and Q35S/N64F) show Ki values of 593 and 617 nM, respectively; these Ki values are well above both the Ki for pjDHFR and are similar to pcDHFR (Q35K/N64F) and Q35S/N64F) (305 nM). These results suggest that active site residues 35 and 64 play key roles in determining selectivity for pneumocystis DHFR, but that other residues contribute to the unique binding of inhibitors to these enzymes. PMID:21684339

  16. Phenotypic characterization of adenovirus type 12 temperature-sensitive mutants in productive infection and transformation.

    PubMed

    Hama, S; Kimura, G

    1980-01-01

    Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.

  17. Tripeptide inhibitors of Yersinia protein-tyrosine phosphatase.

    PubMed

    Lee, Kyeong; Gao, Yang; Yao, Zhu-Jun; Phan, Jason; Wu, Li; Liang, Jiao; Waugh, David S; Zhang, Zhong-Yin; Burke, Terrence R

    2003-08-04

    The protein-tyrosine phosphatase (PTP) 'YopH' is a virulence factor of Yersinia pestis, the causative agent of plague. Potential use of Yersinia as a bioterrorism agent renders YopH inhibitors of therapeutic importance. Previously, we had examined the inhibitory potencies of a variety of phosphotyrosyl (pTyr) mimetics against the human PTP1B enzyme by displaying them in the EGFR-derived hexapeptide sequence, 'Ac-Asp-Ala-Asp-Glu-Xxx-Leu-amide', where Xxx=pTyr mimetic. The poor inhibitory potencies of certain of these pTyr mimetics were attributed to restricted orientation within the PTP1B catalytic pocket incurred by extensive peripheral interaction of the hexapeptide platform. Utilizing the smaller tripeptide platform, 'Fmoc-Glu-Xxx-Leu-amide' we demonstrate herein that several of the low affinity hexapeptide-expressed pTyr mimetics exhibit high PTP1B affinity within the context of the tripeptide platform. Of particular note, the mono-anionic 4-(carboxydifluoromethyl)Phe residue exhibits affinity equivalent to the di-anionic F(2)Pmp residue, which had previously been among the most potent PTP-binding motifs. Against YopH, it was found that all tripeptides having Glu residues with an unprotected side chain carboxyl were inactive. Alternatively, in their Glu-OBn ester forms, several of the tripeptides exhibited good YopH affinity with the mono-anionic peptide, Fmoc-Glu(OBn)-Xxx-Leu-amide, where Xxx=4-(carboxymethyloxy)Phe providing an IC(50) value of 2.8 microM. One concern with such inhibitors is that they may potentially function by non-specific mechanisms. Studies with representative inhibitors, while failing to provide evidence of a non-specific promiscuous mode of inhibition, did indicate that non-classical inhibition may be involved.

  18. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

    PubMed

    Castro, Matías; Deane, Shelly M; Ruiz, Lina; Rawlings, Douglas E; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.

  19. Diguanylate Cyclase Null Mutant Reveals That C-Di-GMP Pathway Regulates the Motility and Adherence of the Extremophile Bacterium Acidithiobacillus caldus

    PubMed Central

    Castro, Matías; Deane, Shelly M.; Ruiz, Lina; Rawlings, Douglas E.; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process. PMID:25689133

  20. Disturbed secretion of mutant adiponectin associated with the metabolic syndrome.

    PubMed

    Kishida, Ken; Nagaretani, Hiroyuki; Kondo, Hidehiko; Kobayashi, Hideki; Tanaka, Sachiyo; Maeda, Norikazu; Nagasawa, Azumi; Hibuse, Toshiyuki; Ohashi, Koji; Kumada, Masahiro; Nishizawa, Hitoshi; Okamoto, Yoshihisa; Ouchi, Noriyuki; Maeda, Kazuhisa; Kihara, Shinji; Funahashi, Tohru; Matsuzawa, Yuji

    2003-06-20

    Adiponectin, an adipocyte-derived protein, consists of collagen-like fibrous and complement C1q-like globular domains, and circulates in human plasma in a multimeric form. The protein exhibits anti-diabetic and anti-atherogenic activities. However, adiponectin plasma concentrations are low in obese subjects, and hypoadiponectinemia is associated with the metabolic syndrome, which is a cluster of insulin resistance, type 2 diabetes mellitus, hypertension, and dyslipidemia. We have recently reported a missense mutation in the adiponectin gene, in which isoleucine at position 164 in the globular domain is substituted with threonine (I164T). Subjects with this mutation showed markedly low level of plasma adiponectin and clinical features of the metabolic syndrome. Here, we examined the molecular characteristics of the mutant protein associated with a genetic cause of hypoadiponectinemia. The current study revealed (1) the mutant protein showed an oligomerization state similar to the wild-type as determined by gel filtration chromatography and, (2) the mutant protein exhibited normal insulin-sensitizing activity, but (3) pulse-chase study showed abnormal secretion of the mutant protein from adipose tissues. Our results suggest that I164T mutation is associated with hypoadiponectinemia through disturbed secretion into plasma, which may contribute to the development of the metabolic syndrome.

  1. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  2. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potentmore » against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.« less

  3. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    PubMed

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  4. Comparative proteomics of a tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation.

    PubMed

    Baldin, Clara; Valiante, Vito; Krüger, Thomas; Schafferer, Lukas; Haas, Hubertus; Kniemeyer, Olaf; Brakhage, Axel A

    2015-07-01

    The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation.

    PubMed

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero; Nilsson, Martin; Tolker-Nielsen, Tim; Meyer, Rikke Louise

    2018-04-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 +  transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Novel Escherichia coli umuD′ Mutants: Structure-Function Insights into SOS Mutagenesis

    PubMed Central

    McLenigan, Mary; Peat, Thomas S.; Frank, Ekaterina G.; McDonald, John P.; Gonzalez, Martín; Levine, Arthur S.; Hendrickson, Wayne A.; Woodgate, Roger

    1998-01-01

    Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD′, the function of UmuD′ has yet to be determined. In an attempt to elucidate the role of UmuD′ in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD′ plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD′ mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD′, three were nonsense mutations that resulted in a truncated UmuD′ protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD′. All 17 umuD′ mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD′. PMID:9721309

  7. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE PAGES

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.; ...

    2014-12-04

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  8. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  9. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta.

    PubMed

    Shi, Kui; Gu, Jiayu; Guo, Huijun; Zhao, Linshu; Xie, Yongdun; Xiong, Hongchun; Li, Junhui; Zhao, Shirong; Song, Xiyun; Liu, Luxiang

    2017-01-01

    Chloroplast development is an integral part of plant survival and growth, and occurs in parallel with chlorophyll biosynthesis. However, little is known about the mechanisms underlying chloroplast development in hexaploid wheat. Here, we obtained a spaceflight-induced wheat albino mutant mta. Chloroplast ultra-structural observation showed that chloroplasts of mta exhibit abnormal morphology and distribution compared to wild type. Photosynthetic pigments content was also significantly decreased in mta. Transcriptome and chloroplast proteome profiling of mta and wild type were done to identify differentially expressed genes (DEGs) and proteins (DEPs), respectively. In total 4,588 DEGs including 1,980 up- and 2,608 down-regulated, and 48 chloroplast DEPs including 15 up- and 33 down-regulated were identified in mta. Classification of DEGs revealed that most were involved in chloroplast development, chlorophyll biosynthesis, or photosynthesis. Besides, transcription factors such as PIF3, GLK and MYB which might participate in those pathways were also identified. The correlation analysis between DEGs and DEPs revealed that the transcript-to-protein in abundance was functioned into photosynthesis and chloroplast relevant groups. Real time qPCR analysis validated that the expression level of genes encoding photosynthetic proteins was significantly decreased in mta. Together, our results suggest that the molecular mechanism for albino leaf color formation in mta is a thoroughly regulated and complicated process. The combined analysis of transcriptome and proteome afford comprehensive information for further research on chloroplast development mechanism in wheat. And spaceflight provides a potential means for mutagenesis in crop breeding.

  10. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function

    PubMed Central

    Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.

    2016-01-01

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965

  11. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    PubMed

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  12. Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys.

    PubMed

    Chen, Yongchang; Yu, Juehua; Niu, Yuyu; Qin, Dongdong; Liu, Hailiang; Li, Gang; Hu, Yingzhou; Wang, Jiaojian; Lu, Yi; Kang, Yu; Jiang, Yong; Wu, Kunhua; Li, Siguang; Wei, Jingkuan; He, Jing; Wang, Junbang; Liu, Xiaojing; Luo, Yuping; Si, Chenyang; Bai, Raoxian; Zhang, Kunshan; Liu, Jie; Huang, Shaoyong; Chen, Zhenzhen; Wang, Shuang; Chen, Xiaoying; Bao, Xinhua; Zhang, Qingping; Li, Fuxing; Geng, Rui; Liang, Aibin; Shen, Dinggang; Jiang, Tianzi; Hu, Xintian; Ma, Yuanye; Ji, Weizhi; Sun, Yi Eve

    2017-05-18

    Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity

    NASA Technical Reports Server (NTRS)

    Fitzelle, K. J.; Kiss, J. Z.

    2001-01-01

    Despite the extensive study of plant gravitropism, there have been few experiments which have utilized hypergravity as a tool to investigate gravisensitivity in flowering plants. Previous studies have shown that starch-deficient mutants of Arabidopsis are less sensitive to gravity compared to the wild-type (WT). In this report, the question addressed was whether hypergravity could restore the sensitivity of starch-deficient mutants of Arabidopsis. The strains examined include a WT, a starchless mutant and a reduced-starch mutant. Vertical orientation studies with dark-grown seedlings indicate that increased centrifugal acceleration improves orientation relative to the acceleration vector for all strains, even the WT. For starchless roots, growth of seedlings under constant 5 g acceleration was required to restore orientation to the level of the WT at 1 g. In contrast, approximately 10 g was required to restore the orientation of the starchless mutant hypocotyls to a WT level at 1 g. Examination of plastid position in root cap columella cells of the starchless mutant revealed that the restoration of gravitropic sensitivity was correlated with the sedimentation of plastids toward the distal cell wall. Even in WT plants, hypergravity caused greater sedimentation of plastids and improved gravitropic capability. Collectively, these experiments support the hypothesis of a statolith-based system of gravity perception in plants. As far as is known, this is the first report to use hypergravity to study the mechanisms of gravitropism in Arabidopsis.

  14. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition

    PubMed Central

    Shi, Xiarong; Sousa, Leiliane P.; Mandel-Bausch, Elizabeth M.; Tome, Francisco; Reshetnyak, Andrey V.; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit

    2016-01-01

    Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095

  15. NMR studies of structure, hydrogen exchange, and main-chain dynamics in a disrupted-core mutant of thioredoxin.

    PubMed Central

    De Lorimier, R.; Hellinga, H. W.; Spicer, L. D.

    1996-01-01

    Core-packing mutants of proteins often approach molten globule states, and hence may have attributes of folding intermediates. We have studied a core-packing mutant of thioredoxin, L78K, in which a leucine residue is substituted by lysine, using 15N heteronuclear two- and three-dimensional NMR. Chemical shift differences between the mutant and wild-type main-chain resonances reveal that structural changes caused by the mutation are localized within 12 A of the altered side chain. The majority of resonances are unchanged, as are many 1H-1H NOEs indicative of the main-chain fold, suggesting that the structure of L78K is largely similar to wild type. Hydrogen exchange studies reveal that residues comprising the central beta-sheet of both mutant and wild-type proteins constitute a local unfolding unit, but with the unfolding/folding equilibrium approximately 12 times larger in L78K. The dynamics of main-chain NH bonds in L78K were studied by 15N spin relaxation and compared with a previous study of wild type. Order parameters for angular motion of NH bonds in the mutant are on average lower than in wild type, suggesting greater spatial freedom on a rapid time scale, but may also be related to different rotational correlation times in the two proteins. There is also evidence of greater conformational exchange in the mutant. Differences between mutant and wild type in hydrogen exchange and main-chain dynamics are not confined to the vicinity of the mutation. We infer that mispacking of the protein core in one location affects local dynamics and stability throughout. PMID:8976564

  16. Novel mutations in β-tubulin gene in Trichoderma harzianum mutants resistant to methyl benzimidazol-2-yl carbamate.

    PubMed

    Li, M; Zhang, H Y; Liang, B

    2013-01-01

    Twelve-low resistant (LR) mutants of Trichoderma harzianum with the capability of grow fast at 0.8 μg/mL methyl benzimidazol-2-yl carbamate (MBC) were obtained using UV mutagenesis. MR and HR mutants which could grow fast at 10 and 100 μg/mL MBC, respectively, were isolated by step-up selection protocols in which UV-treated mutants were induced and mycelial sector screening was made in plates with growth medium. Subsequently, β-tubulin genes of 14 mutants were cloned to describe-the molecular lesion likely to be responsible-for MBC resistance. Comparison of the β-tubulin sequences of the mutant and sensitive strains of T. harzianum revealed 2 new MBC-binding sites differed from those in other plant pathogens. A single mutation at-amino acid 168, having Phe (TTC) instead of Ser (TCC)', was demonstrated for the HR mutant; a double mutation in amino acid 13 resulting in the substitution of Gly (GGC) by Val (GTG) was observed in β-tubulin gene of MR mutant. On the other hand, no substitutions were identified in the β-tubulin gene and its 5'-flanking regions in 12 LR mutants of T. harzianum.

  17. Initial characterization of 17 viruses harboring mutant forms of the immediate-early gene of equine herpesvirus 1.

    PubMed

    Buczynski, Kimberly A; Kim, Seong K; O'Callaghan, Dennis J

    2005-10-01

    The sole immediate-early (IE) gene of equine herpesvirus 1 (EHV-1) encodes a major regulatory protein of 1487 amino acids (aa) capable of modulating gene expression from both early and late promoters and also of trans-repressing its own promoter. Using a specially designed recombination system and a library of IE linker-insertion, deletion, point, and nonsense mutant constructs that encode forms of the IE protein (IEP) harboring mutations within all five regions, 17 mutant viruses were generated and characterized. Ribonuclease protection analyses revealed that all 17 mutants synthesize the IE mRNA in RK-13 cells, whereas those that failed to replicate on non-complementing RK-13 cells displayed a defect in the transcription of either an important early gene (EICP0) and/or an essential late gene (glycoprotein D). Western blot analyses showed that the IEP was synthesized and detectable in cells infected with each mutant virus, including those mutants that failed to replicate on non-complementing RK-13 cells. Eleven of the 17 mutants were capable of growth on non-complementing RK-13 cells, whereas mutant viruses with deletions within the serine-rich tract (SRT), nucleus localization signal (NLS), or DNA-binding domain (DBD) were capable of growth only on the IEP-producing cell line (IE13.1). Lastly, temperature shift experiments revealed that mutant viruses containing deletions within the C-terminus (KyAn1029 and KyAn1411) or within the SRT (KyADeltaSRT2) of the IEP exhibited a temperature-sensitive phenotype in that these viruses, in contrast to the parent KyA, failed to replicate at 39 degrees C. Overall, these results indicate that the C-terminus of the IEP is not essential for IEP function in cell culture, but this region contains elements that enhance the function(s) of the IEP. The initial characterization of these 17 EHV-1 mutants has shown that sequences totaling at least 43% of the IEP are not essential for virus replication in cell culture.

  18. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation.

    PubMed

    Tian, Na; Liu, Shuoqian; Li, Juan; Xu, Wenwen; Yuan, Lin; Huang, Jianan; Liu, Zhonghua

    2014-08-01

    Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation. © 2013 Scandinavian Plant Physiology Society.

  19. The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress[W

    PubMed Central

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-01-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions. PMID:17351115

  20. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    PubMed Central

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Niño, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sánchez, Miguel E.

    2015-01-01

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion. PMID:26347754

  1. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    DOE PAGES

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.; ...

    2015-08-18

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to testmore » the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.« less

  2. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor.

    PubMed

    Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio

    2016-07-01

    The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Down regulation of miR-124 in both Werner syndrome DNA helicase mutant mice and mutant Caenorhabditis elegans wrn-1 reveals the importance of this microRNA in accelerated aging

    PubMed Central

    Dallaire, Alexandra; Garand, Chantal; Paquet, Eric R.; Mitchell, Sarah J.; de Cabo, Rafael; Simard, Martin J.

    2012-01-01

    Small non-coding microRNAs are believed to be involved in the mechanism of aging but nothing is known on the impact of microRNAs in the progeroid disorder Werner syndrome (WS). WS is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN ortholog exhibit many phenotypic features of WS, including a pro-oxidant status and a shorter mean life span. Caenorhabditis elegans (C. elegans) with a nonfunctional wrn-1 DNA helicase also exhibit a shorter life span. Thus, both models are relevant to study the expression of microRNAs involved in WS. In this study, we show that miR-124 expression is lost in the liver of Wrn helicase mutant mice. Interestingly, the expression of this conserved miR-124 in whole wrn-1 mutant worms is also significantly reduced. The loss of mir-124 in C. elegans increases reactive oxygen species formation and accumulation of the aging marker lipofuscin, reduces whole body ATP levels and results in a reduction in life span. Finally, supplementation of vitamin C normalizes the median life span of wrn-1 and mir-124 mutant worms. These results suggest that biological pathways involving WRN and miR-124 are conserved in the aging process across different species. PMID:23075628

  4. Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis

    PubMed Central

    Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Nguyen-Johnson, Alexandria; Asakawa, Kazuhide; Kawakami, Koichi; Postlethwait, John H.

    2010-01-01

    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination. PMID:20661450

  5. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics

    PubMed Central

    Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef

    2002-01-01

    Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335

  6. Modelling the Evolution and Spread of HIV Immune Escape Mutants

    PubMed Central

    Fryer, Helen R.; Frater, John; Duda, Anna; Roberts, Mick G.; Phillips, Rodney E.; McLean, Angela R.

    2010-01-01

    During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level. PMID:21124991

  7. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    PubMed

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. © 2015. Published by The Company of

  8. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.; Liu, J; Lombardo, M

    2009-01-01

    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and foundmore » that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.« less

  9. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile.

    PubMed

    Ferreira, Vanessa; Fernandes, Fátima; Pinto-Carnide, Olinda; Valentão, Patrícia; Falco, Virgílio; Martín, Juan Pedro; Ortiz, Jesús María; Arroyo-García, Rosa; Andrade, Paula B; Castro, Isaura

    2016-03-01

    A germplasm set of twenty-five grapevine accessions, forming eleven groups of possible berry skin color mutants, were genotyped with twelve microsatellite loci, being eleven of them identified as true color mutants. The polyphenolic profiling of the confirmed mutant cultivars revealed a total of twenty-four polyphenols, comprising non-colored compounds (phenolic acids, flavan-3-ols, flavonols and a stilbene) and anthocyanins. Results showed differences in the contribution of malvidin-3-O-glucoside to the characteristic Pinot Noir anthocyanins profile. Regarding the two Pique-Poul colored variants, the lighter variant was richer than the darker one in all classes of compounds, excepting anthocyanins. In Moscatel Galego Roxo the F3'H pathway seems to be more active than F3'5'H, resulting in higher amounts of cyanidin, precursor of the cyanidin derivatives. As far as we are aware, this is the first time that a relationship between the content of polyphenolic compounds is established in groups of grape berry skin color mutant cultivars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri.

    PubMed Central

    Jacob, C; Nouzières, F; Duret, S; Bové, J M; Renaudin, J

    1997-01-01

    The helical mollicute Spiroplasma citri, when growing on low-agar medium, forms fuzzy colonies with occasional surrounding satellite colonies due to the ability of the spiroplasmal cells to move through the agar matrix. In liquid medium, these helical organisms flex, twist, and rotate rapidly. By using Tn4001 insertion mutagenesis, a motility mutant was isolated on the basis of its nondiffuse, sharp-edged colonies. Dark-field microscopy observations revealed that the organism flexed at a low frequency and had lost the ability to rotate about the helix axis. In this mutant, the transposon was shown to be inserted into an open reading frame encoding a putative polypeptide of 409 amino acids for which no significant homology with known proteins was found. The corresponding gene, named scm1, was recovered from the wild-type strain and introduced into the motility mutant by using the S. citri oriC plasmid pBOT1 as the vector. The appearance of fuzzy colonies and the observation that spiroplasma cells displayed rotatory and flexional movements showed the motile phenotype to be restored in the spiroplasmal transformants. The functional complementation of the motility mutant proves the scm1 gene product to be involved in the motility mechanism of S. citri. PMID:9244268

  11. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation

    PubMed Central

    Malinova, Irina

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5–7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology. PMID:29155859

  12. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    PubMed

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  13. Integrative transcriptome, proteome, phosphoproteome and genetic mapping reveals new aspects in a fiberless mutant of cotton

    PubMed Central

    Ma, Qi-Feng; Wu, Chun-Hui; Wu, Man; Pei, Wen-Feng; Li, Xing-Li; Wang, Wen-Kui; Zhang, Jinfa; Yu, Ji-Wen; Yu, Shu-Xun

    2016-01-01

    To investigate the molecular mechanisms of fiber initiation in cotton (Gossypium spp.), an integrated approach combining transcriptome, iTRAQ-based proteome and genetic mapping was taken to compare the ovules of the Xuzhou 142 wild type (WT) with its fuzzless-lintless (fl) mutant at −3 and 0 day post-anthesis. A total of 1,953 mRNAs, 187 proteins, and 131 phosphoproteins were differentially expressed (DE) between WT and fl, and the levels of transcripts and their encoded proteins and phosphoproteins were highly congruent. A functional analysis suggested that the abundance of proteins were mainly involved in amino sugar, nucleotide sugar and fatty acid metabolism, one carbon pool for folate metabolism and flavonoid biosynthesis. qRT-PCR, Western blotting, and enzymatic assays were performed to confirm the regulation of these transcripts and proteins. A molecular mapping located the lintless gene li3 in the fl mutant on chromosome 26 for the first time. A further in-silico physical mapping of DE genes with sequence variations between fl and WT identified one and four candidate genes in the li3 and n2 regions, respectively. Taken together, the transcript abundance, phosphorylation status of proteins at the fiber initiation stage and candidate genes have provided insights into regulatory processes underlying cotton fiber initiation. PMID:27075604

  14. Morphological, Histobiochemical and Molecular Characterisation of Low Lignin Phloem Fibre (llpf) Mutant of Dark Jute (Corchorus olitorius L.).

    PubMed

    Choudhary, S B; Chowdhury, I; Singh, R K; Pandey, S P; Sharma, H K; Anil Kumar, A; Karmakar, P G; Kumari, N; Souframanien, J; Jambhulkar, S J

    2017-11-01

    Lignin is a versatile plant metabolite challenging high-end industrial applications of several plant products including jute. Application of developmental mutant in regulation of lignification in jute may open up door for much awaited jute based diversified products. In the present study, a novel dark jute (Corchorus olitorius L.) mutant with low lignin (7.23%) in phloem fibre being compared to wild-type JRO 204 (13.7%) was identified and characterised. Unique morphological features including undulated stem, petiole and leaf vein distinguished the mutant in gamma ray irradiated mutant population. Histological and biochemical analysis revealed reduced lignification of phloem fibre cells of the plant. RT-PCR analysis demonstrated temporal transcriptional regulation of CCoAMT1 gene in the mutant. The mutant was found an extremely useful model to study phloem fibre developmental biology in the crop besides acting as a donor genetic stock for low lignin containing jute fibre in dark jute improvement programme.

  15. Engineering the Pseudomonas aeruginosa II lectin: designing mutants with changed affinity and specificity

    NASA Astrophysics Data System (ADS)

    Kříž, Zdeněk; Adam, Jan; Mrázková, Jana; Zotos, Petros; Chatzipavlou, Thomais; Wimmerová, Michaela; Koča, Jaroslav

    2014-09-01

    This article focuses on designing mutations of the PA-IIL lectin from Pseudomonas aeruginosa that lead to change in specificity. Following the previous results revealing the importance of the amino acid triad 22-23-24 (so-called specificity-binding loop), saturation in silico mutagenesis was performed, with the intent of finding mutations that increase the lectin's affinity and modify its specificity. For that purpose, a combination of docking, molecular dynamics and binding free energy calculation was used. The combination of methods revealed mutations that changed the performance of the wild-type lectin and its mutants to their preferred partners. The mutation at position 22 resulted in 85 % in inactivation of the binding site, and the mutation at 23 did not have strong effects thanks to the side chain being pointed away from the binding site. Molecular dynamics simulations followed by binding free energy calculation were performed on mutants with promising results from docking, and also at those where the amino acid at position 24 was replaced for bulkier or longer polar chain. The key mutants were also prepared in vitro and their binding properties determined by isothermal titration calorimetry. Combination of the used methods proved to be able to predict changes in the lectin performance and helped in explaining the data observed experimentally.

  16. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The zinc finger transcription factor nsdC is required for both sexual development and aflatoxin production in the saprophytic fungus Aspergillus flavus. While previous work with an nsdC knockout mutant was conducted in Aspergillus nidulans and A. flavus strain 3357, here we demonstrate perturbations...

  17. Biochemical Characterization of Mutants in Chaperonin Proteins CCT4 and CCT5 Associated with Hereditary Sensory Neuropathy*

    PubMed Central

    Sergeeva, Oksana A.; Tran, Meme T.; Haase-Pettingell, Cameron; King, Jonathan A.

    2014-01-01

    Hereditary sensory neuropathies are a class of disorders marked by degeneration of the nerve fibers in the sensory periphery neurons. Recently, two mutations were identified in the subunits of the eukaryotic cytosolic chaperonin TRiC, a protein machine responsible for folding actin and tubulin in the cell. C450Y CCT4 was identified in a stock of Sprague-Dawley rats, whereas H147R CCT5 was found in a human Moroccan family. As with many genetically identified mutations associated with neuropathies, the underlying molecular basis of the mutants was not defined. We investigated the biochemical properties of these mutants using an expression system in Escherichia coli that produces homo-oligomeric rings of CCT4 and CCT5. Full-length versions of both mutant protein chains were expressed in E. coli at levels approaching that of the WT chains. Sucrose gradient centrifugation revealed chaperonin-sized complexes of both WT and mutant chaperonins, but with reduced recovery of C450Y CCT4 soluble subunits. Electron microscopy of negatively stained samples of C450Y CCT4 revealed few ring-shaped species, whereas WT CCT4, H147R CCT5, and WT CCT5 revealed similar ring structures. CCT5 complexes were assayed for their ability to suppress aggregation of and refold the model substrate γd-crystallin, suppress aggregation of mutant huntingtin, and refold the physiological substrate β-actin in vitro. H147R CCT5 was not as efficient in chaperoning these substrates as WT CCT5. The subtle effects of these mutations are consistent with the homozygous disease phenotype, in which most functions are carried out during development and adulthood, but some selective function is lost or reduced. PMID:25124038

  18. Search for methylation-sensitive amplification polymorphisms in mutant figs.

    PubMed

    Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S

    2013-07-08

    Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.

  19. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK

    PubMed Central

    Wang, Jieqiong; Hu, Kewen; Guo, Jiawei; Cheng, Feixiong; Lv, Jing; Jiang, Wenhao; Lu, Weiqiang; Liu, Jinsong; Pang, Xiufeng; Liu, Mingyao

    2016-01-01

    No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21WAF1/CIP1, leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21WAF1/CIP1, either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21WAF1/CIP1. Co-administration of BI-2536 and fasudil either in the LSL-KRASG12D mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers. PMID:27193833

  20. The yeast vps class E mutants: the beginning of the molecular genetic analysis of multivesicular body biogenesis.

    PubMed

    Coonrod, Emily M; Stevens, Tom H

    2010-12-01

    In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this "class E compartment" contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.

  1. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system.

    PubMed

    Septer, Alecia N; Bose, Jeffrey L; Lipzen, Anna; Martin, Joel; Whistler, Cheryl; Stabb, Eric V

    2015-01-01

    The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence. © 2014 John Wiley & Sons Ltd.

  2. Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin

    NASA Technical Reports Server (NTRS)

    Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.

  3. Altered Gene Regulation and Synaptic Morphology in "Drosophila" Learning and Memory Mutants

    ERIC Educational Resources Information Center

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in "Drosophila" have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in "radish" ("rsh") mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways…

  4. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast.

    PubMed

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A

    2016-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3' end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. Copyright © 2016 Larson et al.

  5. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast

    PubMed Central

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A.

    2016-01-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. PMID:27172183

  6. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    PubMed

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  7. Characterization and gene cloning of the rice (Oryza sativa L.) dwarf and narrow-leaf mutant dnl3.

    PubMed

    Shi, L; Wei, X J; Adedze, Y M N; Sheng, Z H; Tang, S Q; Hu, P S; Wang, J L

    2016-09-16

    The dwarf and narrow-leaf rice (Oryza sativa L.) mutant dnl3 was isolated from the Japonica cultivar Zhonghua 11 (wild-type). dnl3 exhibited pleiotropic developmental defects. The narrow-leaf phenotype resulted from a marked reduction in the number of vascular bundles, while the dwarf stature was caused by the formation of foreshortened internodes and a reduced number of parenchyma cells. The suggestion that cell division is impaired in the mutant was consistent with the transcriptional behavior of various genes associated with cell division. The mutant was less responsive to exogenously supplied gibberellic acid than the wild-type, and profiling the transcription of genes involved in gibberellin synthesis and response revealed that a lesion in the mutant affected gibberellin signal transduction. The dnl3 phenotype was inherited as a single-dominant gene, mapping within a 19.1-kb region of chromosome 12, which was found to harbor three open reading frames. Resequencing the open reading frames revealed that the mutant carried an allele at one of the three genes that differed from the wild-type sequence by 2-bp deletions; this gene encoded a cellulose synthase-like D4 (CSLD4) protein. Therefore, OsCSLD4 is a candidate gene for DNL3. DNL3 was expressed in all of the rice organs tested at the heading stage, particularly in the leaves, roots, and culms. These results suggest that DNL3 plays important roles in rice leaf morphogenesis and vegetative development.

  8. Enhancing the Production of D-Mannitol by an Artificial Mutant of Penicillium sp. T2-M10.

    PubMed

    Duan, Rongting; Li, Hongtao; Li, Hongyu; Tang, Linhuan; Zhou, Hao; Yang, Xueqiong; Yang, Yabin; Ding, Zhongtao

    2018-05-26

    D-Mannitol belongs to a linear polyol with six-carbon and has indispensable usage in medicine and industry. In order to obtain more efficient D-mannitol producer, this study has screened out a stable mutant Penicillium sp. T2-M10 that was isolated from the initial D-mannitol-produced strain Penicillium sp.T2-8 via UV irradiation as well as nitrosoguanidine (NTG) induction. The mutant had a considerable enhancement in yield of D-mannitol based on optimizing fermentation. The production condition was optimized as the PDB medium with 24 g/L glucose for 9 days. The results showed that the production of D-mannitol from the mutant strain T2-M10 increased 125% in contrast with the parental strain. Meanwhile, the fact that D-mannitol is the main product in the mutant simplified the process of purification. Our finding revealed the potential value of the mutant strain Penicillium sp. T2-M10 to be a D-mannitol-producing strain.

  9. Study on the generation technology of Li brocade pattern mutant genes based on the AI and Java technology

    NASA Astrophysics Data System (ADS)

    Zhou, Yuping; Zhang, Qi

    2018-04-01

    In the information environment, digital and information processing to Li brocade patterns reveals an important means of Li ethnic style and inheriting the national culture. Adobe Illustrator CS3 and Java language were used in the paper to make "variation" processing to Li brocade patterns, and generate "Li brocade pattern mutant genes". The generation of pattern mutant genes includes color mutation, shape mutation, adding and missing transform, and twisted transform, etc. Research shows that Li brocade pattern mutant genes can be generated by using the Adobe Illustrator CS3 and the image processing tools of Java language edit, etc.

  10. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto.

    PubMed

    Sasado, Takao; Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.

  11. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto

    PubMed Central

    Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3’UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3’UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3’UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo. PMID:28253363

  12. Natural history of chronic hepatitis B: what exactly has REVEAL revealed?

    PubMed

    Iloeje, Uchenna H; Yang, Hwai-I; Chen, Chien-Jen

    2012-10-01

    Chronic hepatitis B virus (HBV) infection is a serious public health problem because of its worldwide prevalence and potential to cause adverse consequences. The Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer-Hepatitis B Virus (REVEAL-HBV) study carried out in Taiwan was used to investigate the natural history of chronic hepatitis B. The REVEAL-HBV study has established an HBV viral load paradigm in the natural history of chronic hepatitis B (CHB). Serum HBV DNA level has been shown to be significantly and independently associated with incidence of hepatocellular carcinoma (HCC) and cirrhosis and liver-related mortality across a biological gradient. It is also a major predictor of HBsAg seroclearance. Genetic features including HBV genotype and basal core promoter A1762T/G1764A mutant, and precore G1896A mutant were documented as predictors of HCC risk. Inactive HBV carriers still had an increased risk on HCC development and liver-related mortality compared with HBsAg -seronegatives. Nomograms focusing on facilitating risk communication between patients and clinicians were developed incorporating non-invasive clinical parameters to predict long-term HCC risk. These will hopefully contribute to evidence-based decisions in the clinical management of CHB patients. A somewhat provocative and novel finding from the REVEAL-HBV study is the association of chronic HBV infection in active replication with an increased pancreatic cancer risk especially in women less than 50 years old. This finding will hopefully spur further research in this area seeking confirmatory evidence. Finally, we hope that the REVEAL-HBV study will continue to be a source of data to answer other important questions in chronic hepatitis B research going forward. © 2012 John Wiley & Sons A/S.

  13. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  14. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition.

    PubMed

    Cordani, Marco; Oppici, Elisa; Dando, Ilaria; Butturini, Elena; Dalla Pozza, Elisa; Nadal-Serrano, Mercedes; Oliver, Jordi; Roca, Pilar; Mariotto, Sofia; Cellini, Barbara; Blandino, Giovanni; Palmieri, Marta; Di Agostino, Silvia; Donadelli, Massimo

    2016-08-01

    Mutations in TP53 gene play a pivotal role in tumorigenesis and cancer development. Here, we report that gain-of-function mutant p53 proteins inhibit the autophagic pathway favoring antiapoptotic effects as well as proliferation of pancreas and breast cancer cells. We found that mutant p53 significantly counteracts the formation of autophagic vesicles and their fusion with lysosomes throughout the repression of some key autophagy-related proteins and enzymes as BECN1 (and P-BECN1), DRAM1, ATG12, SESN1/2 and P-AMPK with the concomitant stimulation of mTOR signaling. As a paradigm of this mechanism, we show that atg12 gene repression was mediated by the recruitment of the p50 NF-κB/mutant p53 protein complex onto the atg12 promoter. Either mutant p53 or p50 NF-κB depletion downregulates atg12 gene expression. We further correlated the low expression levels of autophagic genes (atg12, becn1, sesn1, and dram1) with a reduced relapse free survival (RFS) and distant metastasis free survival (DMFS) of breast cancer patients carrying TP53 gene mutations conferring a prognostic value to this mutant p53-and autophagy-related signature. Interestingly, the mutant p53-driven mTOR stimulation sensitized cancer cells to the treatment with the mTOR inhibitor everolimus. All these results reveal a novel mechanism through which mutant p53 proteins promote cancer cell proliferation with the concomitant inhibition of autophagy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Chaperone-mediated autophagy degrades mutant p53

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Kim, Minsu; Xia, Hong-guang; Iwanicki, Marcin P.; Ofengeim, Dimitry; Coloff, Jonathan L.; Pan, Lifeng; Ince, Tan A.; Kroemer, Guido; Brugge, Joan S.; Yuan, Junying

    2013-01-01

    Missense mutations in the gene TP53, which encodes p53, one of the most important tumor suppressors, are common in human cancers. Accumulated mutant p53 proteins are known to actively contribute to tumor development and metastasis. Thus, promoting the removal of mutant p53 proteins in cancer cells may have therapeutic significance. Here we investigated the mechanisms that govern the turnover of mutant p53 in nonproliferating tumor cells using a combination of pharmacological and genetic approaches. We show that suppression of macroautophagy by multiple means promotes the degradation of mutant p53 through chaperone-mediated autophagy in a lysosome-dependent fashion. In addition, depletion of mutant p53 expression due to macroautophagy inhibition sensitizes the death of dormant cancer cells under nonproliferating conditions. Taken together, our results delineate a novel strategy for killing tumor cells that depend on mutant p53 expression by the activation of chaperone-mediated autophagy and potential pharmacological means to reduce the levels of accumulated mutant p53 without the restriction of mutant p53 conformation in quiescent tumor cells. PMID:23913924

  16. Sequenced sorghum mutant library- an efficient platform for discovery of causal gene mutations

    USDA-ARS?s Scientific Manuscript database

    Ethyl methanesulfonate (EMS) efficiently generates high-density mutations in genomes. We applied whole-genome sequencing to 256 phenotyped mutant lines of sorghum (Sorghum bicolor L. Moench) to 16x coverage. Comparisons with the reference sequence revealed >1.8 million canonical EMS-induced G/C to A...

  17. cIAPs promote the proteasomal degradation of mutant SOD1 linked to familial amyotrophic lateral sclerosis.

    PubMed

    Choi, Jin Sun; Kim, Kidae; Lee, Do Hee; Cho, Sayeon; Ha, Jae Du; Park, Byoung Chul; Kim, Sunhong; Park, Sung Goo; Kim, Jeong-Hoon

    2016-11-18

    Although the ubiquitin-proteasome system is believed to play an important role in the pathogenesis of familial amyotrophic lateral sclerosis (FALS), caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1), the mechanism of how mutant SOD1 protein is regulated in cells is still poorly understood. Here we have demonstrated that cellular inhibitor of apoptosis proteins (cIAPs) are specifically associated with FALS-linked mutant SOD1 (mSOD1) and that this interaction promotes the ubiquitin-dependent proteasomal degradation of mutant SOD1. By utilizing cumate inducible SOD1 cells, we also showed that knock-down or pharmacologic depletion of cIAPs leads to H 2 O 2 induced cytotoxicity in mSOD1 expressing cells. Altogether, our results reveal a novel role of cIAPs in FALS-associated mutant SOD1 regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. [Pigment-protein complexes nd the number of the reaction photosystem centers in pea chlorophyll mutants].

    PubMed

    Ladygin, V G

    2004-01-01

    We studied fluorescent and absorption properties of the chloroplasts and pigment-protein complexes isolated by gel electrophoresis from the leaves of pea, the initial cultivar Torsdag and mutants chlorotica 2004 and 2014. Specific maxima of fluorescence and chlorophyll forms in individual complexes have been determined from the absorption and fluorescence spectra of the chloroplast chlorophyll and their secondary derivatives at 23 and -196 degrees C. Chlorotica 2004 mutant proved to have an increased intensity of a long-wave band at both 23 degrees C (745 nm) and -196 degrees C (728 nm) of the light-harvesting complex I. At the same time, this mutant featured a decreased accumulation of chlorophyll forms at 690, 697, and 708 nm forming the nearest-neighbor antenna of PSI reaction center. No spectral differences have been revealed between chlorotica 2014 mutant and the initial cultivar. Gel electrophoresis demonstrated synthesis of all chlorophyll-protein complexes in both mutants. At the same time, analysis of photochemical activity of PSI and PSII reaction centers and evaluation of the light-harvesting antenna as well as the number of reaction centers of the photosystems suggest that chlorotica 2004 mutant has 1.7 times less PSI reaction centers due to a mutation-disturbed chlorophyll a-protein complex of PSI. The primary effect of chlorotica 2014 mutation remains unclear. The proportional changes in the photosystem complexes in this mutant suggest that they are secondary and result from a 50% decrease in chlorophyll content.

  19. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    PubMed

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability.

  20. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice

    PubMed Central

    Sungur, A. Özge; Stemmler, Lea; Wöhr, Markus; Rust, Marco B.

    2018-01-01

    Autism spectrum disorder (ASD), schizophrenia (SCZ) and intellectual disability (ID) show a remarkable overlap in symptoms, including impairments in cognition, social behavior and communication. Human genetic studies revealed an enrichment of mutations in actin-related genes for these disorders, and some of the strongest candidate genes control actin dynamics. These findings led to the hypotheses: (i) that ASD, SCZ and ID share common disease mechanisms; and (ii) that, at least in a subgroup of affected individuals, defects in the actin cytoskeleton cause or contribute to their pathologies. Cofilin1 emerged as a key regulator of actin dynamics and we previously demonstrated its critical role for synaptic plasticity and associative learning. Notably, recent studies revealed an over-activation of cofilin1 in mutant mice displaying ASD- or SCZ-like behavioral phenotypes, suggesting that dysregulated cofilin1-dependent actin dynamics contribute to their behavioral abnormalities, such as deficits in social behavior. These findings let us hypothesize: (i) that, apart from cognitive impairments, cofilin1 mutants display additional behavioral deficits with relevance to ASD or SCZ; and (ii) that our cofilin1 mutants represent a valuable tool to study the underlying disease mechanisms. To test our hypotheses, we compared social behavior and ultrasonic communication of juvenile mutants to control littermates, and we did not obtain evidence for impaired direct reciprocal social interaction, social approach or social memory. Moreover, concomitant emission of ultrasonic vocalizations was not affected and time-locked to social activity, supporting the notion that ultrasonic vocalizations serve a pro-social communicative function as social contact calls maintaining social proximity. Finally, cofilin1 mutants did not display abnormal repetitive behaviors. Instead, they performed weaker in novel object recognition, thereby demonstrating that cofilin1 is relevant not only for

  1. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization

    PubMed Central

    2014-01-01

    Background Microalgae are a promising platform for producing neutral lipids, to be used in the application for biofuels or commodities in the feed and food industry. A very promising candidate is the oleaginous green microalga Scenedesmus obliquus, because it accumulates up to 45% w/w triacylglycerol (TAG) under nitrogen starvation. Under these conditions, starch is accumulated as well. Starch can amount up to 38% w/w under nitrogen starvation, which is a substantial part of the total carbon captured. When aiming for optimized TAG production, blocking the formation of starch could potentially increase carbon allocation towards TAG. In an attempt to increase TAG content, productivity and yield, starchless mutants of this high potential strain were generated using UV mutagenesis. Previous studies in Chlamydomonas reinhardtii have shown that blocking the starch synthesis yields higher TAG contents, although these TAG contents do not surpass those of oleaginous microalgae yet. So far no starchless mutants in oleaginous green microalgae have been isolated that result in higher TAG productivities. Results Five starchless mutants have been isolated successfully from over 3,500 mutants. The effect of the mutation on biomass and total fatty acid (TFA) and TAG productivity under nitrogen-replete and nitrogen-depleted conditions was studied. All five starchless mutants showed a decreased or completely absent starch content. In parallel, an increased TAG accumulation rate was observed for the starchless mutants and no substantial decrease in biomass productivity was perceived. The most promising mutant showed an increase in TFA productivity of 41% at 4 days after nitrogen depletion, reached a TAG content of 49.4% (% of dry weight) and had no substantial change in biomass productivity compared to the wild type. Conclusions The improved S. obliquus TAG production strains are the first starchless mutants in an oleaginous green microalga that show enhanced TAG content under

  2. Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. Cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum.

    PubMed Central

    Ito, M; Jameson, J L; Ito, M

    1997-01-01

    Mutations in the arginine vasopressin (AVP) gene cause autosomal dominant familial neurohypophyseal diabetes insipidus (FNDI). The dominant inheritance pattern has been postulated to reflect neuronal toxicity of the mutant proteins, but the mechanism for such cytotoxicity is unknown. In this study, wild-type or several different mutant AVP genes were stably expressed in neuro2A neuroblastoma cells. When cells were treated with valproic acid to induce neuronal differentiation, each of the mutants caused reduced viability. Metabolic labeling revealed diminished intracellular trafficking of mutant AVP precursors and confirmed inefficient secretion of immunoreactive AVP. Immunofluorescence studies demonstrated marked accumulation of mutant AVP precursors within the endoplasmic reticulum. These studies suggest that the cellular toxicity in FNDI may be caused by the intracellular accumulation of mutant precursor proteins. PMID:9109434

  3. Superoxide-Dismutase Deficient Mutants in Common Beans (Phaseolus vulgaris L.): Genetic Control, Differential Expressions of Isozymes, and Sensitivity to Arsenic

    PubMed Central

    Talukdar, Dibyendu; Talukdar, Tulika

    2013-01-01

    Two common bean (Phaseolus vulgaris L.) mutants, sodPv 1 and sodPv 2, exhibiting foliar superoxide dismutase (SOD) activity of only 25% and 40% of their mother control (MC) cv. VL 63 were isolated in EMS-mutagenized (0.15%, 8 h) M2 progeny. Native-PAGE analysis revealed occurrence of Mn SOD, Fe SOD, Cu/Zn SOD I and Cu/Zn SOD II isozymes in MC, while Fe SOD, and Mn SOD were not formed in sodPv 1 and sodPv 2 leaves, respectively. In-gel activity of individual isozymes differed significantly among the parents. SOD deficiency is inherited as recessive mutations, controlled by two different nonallelic loci. Gene expressions using qRT PCR confirmed higher expressions of Cu/Zn SOD transcripts in both mutants and the absence of Fe SOD in sodPv 1 and Mn SOD in sodPv 2. In 50 μM arsenic, Cu/Zn SODs genes were further upregulated but other isoforms downregulated in the two mutants, maintaining SOD activity in its control level. In an F2 double mutants of sodPv 1 × sodPv 2, no Fe SOD, and Mn SOD expressions were detectable, while both Cu/Zn SODs are down-regulated and arsenic-induced leaf necrosis appeared. In contrast to both mutants, ROS-imaging study revealed overaccumulation of both superoxides and H2O2 in leaves of double mutant. PMID:24078924

  4. Problem-Solving Test: Tryptophan Operon Mutants

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  5. Structure-Function Analysis of Friedreich's Ataxia Mutants Reveals Determinants of Frataxin Binding and Activation of the Fe-S Assembly Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P

    2012-08-01

    Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-Smore » cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a k cat/K M higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest k cat/K M of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.« less

  6. Identification and Characterization of an Arabidopsis thaliana Mutant lbt With High Tolerance to Boron Deficiency

    PubMed Central

    Huai, Zexun; Peng, Lishun; Wang, Sheliang; Zhao, Hua; Shi, Lei; Xu, Fangsen

    2018-01-01

    Boron (B) is an essential micronutrient of plants. In the present study, we characterized an Arabidopsis mutant lbt with significant low-boron tolerance that was identified based on our previous mapping of QTL for B efficiency in Arabidopsis. Multiple nutrient-deficiency analyses point out that lbt mutant is insensitive to only B-limitation stress. Compared with wild-type Col-0, the fresh weight, leaf area, root length and root elongation rate of lbt mutant were significantly improved under B deficiency during vegetative growth. lbt mutant also showed the improvements in plant height, branches and inflorescences compared with Col-0 during the reproductive stage under B limitation. Ultrastructure analysis of the leaves showed that starch accumulation in lbt mutant was significantly diminished compared with Col-0. Furthermore, there were no significant differences in the expression of transporter-related genes and B concentrations between Col-0 and lbt mutant under both normal B and low-B conditions. These results suggest that lbt mutant has a lower B demand than Col-0. Genetic analysis suggests that the low-B tolerant phenotype of lbt mutant is under the control of a monogenic recessive gene. Based on the high-density SNP linkage genetic map, only one QTL for low-B tolerance was mapped on chromosome 4 between 10.4 and 14.8 Mb. No any reported B-relative genes exist in the QTL interval, suggesting that a gene with unknown function controls the tolerance of lbt to B limitation. Taken together, lbt is a low-B tolerant mutant that does not depend on the uptake or transport of B and is controlled by a monogenic recessive gene mapped on chromosome 4, and cloning and functional analysis of LBT gene are expected to reveal novel mechanisms for plant resistance to B deficiency.

  7. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic.

    PubMed

    Santiago, Marina; Lee, Wonsik; Fayad, Antoine Abou; Coe, Kathryn A; Rajagopal, Mithila; Do, Truc; Hennessen, Fabienne; Srisuknimit, Veerasak; Müller, Rolf; Meredith, Timothy C; Walker, Suzanne

    2018-06-01

    Identifying targets of antibacterial compounds remains a challenging step in the development of antibiotics. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures identified from directional biases in insertions revealed known molecular targets and resistance mechanisms for the majority of these. Because single-gene upregulation does not always confer resistance, we used a complementary machine-learning approach to predict the mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating the antibiotic mechanism of action.

  8. Circularized Chromosome with a Large Palindromic Structure in Streptomyces griseus Mutants

    PubMed Central

    Uchida, Tetsuya; Ishihara, Naoto; Zenitani, Hiroyuki; Hiratsu, Keiichiro; Kinashi, Haruyasu

    2004-01-01

    Streptomyces linear chromosomes display various types of rearrangements after telomere deletion, including circularization, arm replacement, and amplification. We analyzed the new chromosomal deletion mutants Streptomyces griseus 301-22-L and 301-22-M. In these mutants, chromosomal arm replacement resulted in long terminal inverted repeats (TIRs) at both ends; different sizes were deleted again and recombined inside the TIRs, resulting in a circular chromosome with an extremely large palindrome. Short palindromic sequences were found in parent strain 2247, and these sequences might have played a role in the formation of this unique structure. Dynamic structural changes of Streptomyces linear chromosomes shown by this and previous studies revealed extraordinary strategies of members of this genus to keep a functional chromosome, even if it is linear or circular. PMID:15150216

  9. PBP deletion mutants of Escherichia coli exhibit irregular distribution of MreB at the deformed zones.

    PubMed

    Vijayan, Saptha; Mallick, Sathi; Dutta, Mouparna; Narayani, M; Ghosh, Anindya S

    2014-02-01

    MreB is a cytoskeletal protein, which is responsible for maintaining proper cellular morphology and is essential for cell survival. Likewise, penicillin-binding protein 5 (PBP5) helps in maintaining cell shape, though non-essential for survival. The contradicting feature of these two proteins paves the way for this study, wherein we attempt to draw a relation on the nature of distribution of MreB in PBP deletion mutants. The study revealed that the uniform MreB helices/patches were destabilized/disturbed at the zone of deformities of the PBP mutants, whereas the helical patterns were retained at the regions maintaining a rod shape. We interpret that MreB remains functional irrespective of its distribution being misguided by the aberrant shapes of PBP mutants.

  10. Gene expression analysis of Drosophilaa Manf mutants reveals perturbations in membrane traffic and major metabolic changes.

    PubMed

    Palgi, Mari; Greco, Dario; Lindström, Riitta; Auvinen, Petri; Heino, Tapio I

    2012-04-11

    MANF and CDNF are evolutionarily conserved neurotrophic factors that specifically support dopaminergic neurons. To date, the receptors and signalling pathways of this novel MANF/CDNF family have remained unknown. Independent studies have showed upregulation of MANF by unfolded protein response (UPR). To enlighten the role of MANF in multicellular organism development we carried out a microarray-based analysis of the transcriptional changes induced by the loss and overexpression of Drosophila Manf. The most dramatic change of expression was observed with genes coding membrane transport proteins and genes related to metabolism. When evaluating in parallel the ultrastructural data and transcriptome changes of maternal/zygotic and only zygotic Manf mutants, the endoplasmic reticulum (ER) stress and membrane traffic alterations were evident. In Drosophila Manf mutants the expression of several genes involved in Parkinson's disease (PD) was altered as well. We conclude that besides a neurotrophic factor, Manf is an important cellular survival factor needed to overcome the UPR especially in tissues with high secretory function. In the absence of Manf, the expression of genes involved in membrane transport, particularly exocytosis and endosomal recycling pathway was altered. In neurodegenerative diseases, such as PD, correct protein folding and proteasome function as well as neurotransmitter synthesis and uptake are crucial for the survival of neurons. The degeneration of dopaminergic neurons is the hallmark for PD and our work provides a clue on the mechanisms by which the novel neurotrophic factor MANF protects these neurons.

  11. Changes in the striatal proteome of YAC128Q mice exhibit gene-environment interactions between mutant huntingtin and manganese.

    PubMed

    Wegrzynowicz, Michal; Holt, Hunter K; Friedman, David B; Bowman, Aaron B

    2012-02-03

    Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a CAG repeat within the Huntingtin (HTT) gene, though the clinical presentation of disease and age-of-onset are strongly influenced by ill-defined environmental factors. We recently reported a gene-environment interaction wherein expression of mutant HTT is associated with neuroprotection against manganese (Mn) toxicity. Here, we are testing the hypothesis that this interaction may be manifested by altered protein expression patterns in striatum, a primary target of both neurodegeneration in HD and neurotoxicity of Mn. To this end, we compared striatal proteomes of wild-type and HD (YAC128Q) mice exposed to vehicle or Mn. Principal component analysis of proteomic data revealed that Mn exposure disrupted a segregation of WT versus mutant proteomes by the major principal component observed in vehicle-exposed mice. Identification of altered proteins revealed novel markers of Mn toxicity, particularly proteins involved in glycolysis, excitotoxicity, and cytoskeletal dynamics. In addition, YAC128Q-dependent changes suggest that axonal pathology may be an early feature in HD pathogenesis. Finally, for several proteins, genotype-specific responses to Mn were observed. These differences include increased sensitivity to exposure in YAC128Q mice (UBQLN1) and amelioration of some mutant HTT-induced alterations (SAE1, ENO1). We conclude that the interaction of Mn and mutant HTT may suppress proteomic phenotypes of YAC128Q mice, which could reveal potential targets in novel treatment strategies for HD.

  12. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer.

    PubMed

    Ho, Ying Swan; Yip, Lian Yee; Basri, Nurhidayah; Chong, Vivian Su Hui; Teo, Chin Chye; Tan, Eddy; Lim, Kah Ling; Tan, Gek San; Yang, Xulei; Yeo, Si Yong; Koh, Mariko Si Yue; Devanand, Anantham; Takano, Angela; Tan, Eng Huat; Tan, Daniel Shao Weng; Lim, Tony Kiat Hon

    2016-10-14

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.

  13. Analysis of Msx1; Msx2 double mutants reveals multiple roles for Msx genes in limb development.

    PubMed

    Lallemand, Yvan; Nicola, Marie-Anne; Ramos, Casto; Bach, Antoine; Cloment, Cécile Saint; Robert, Benoît

    2005-07-01

    The homeobox-containing genes Msx1 and Msx2 are highly expressed in the limb field from the earliest stages of limb formation and, subsequently, in both the apical ectodermal ridge and underlying mesenchyme. However, mice homozygous for a null mutation in either Msx1 or Msx2 do not display abnormalities in limb development. By contrast, Msx1; Msx2 double mutants exhibit a severe limb phenotype. Our analysis indicates that these genes play a role in crucial processes during limb morphogenesis along all three axes. Double mutant limbs are shorter and lack anterior skeletal elements (radius/tibia, thumb/hallux). Gene expression analysis confirms that there is no formation of regions with anterior identity. This correlates with the absence of dorsoventral boundary specification in the anterior ectoderm, which precludes apical ectodermal ridge formation anteriorly. As a result, anterior mesenchyme is not maintained, leading to oligodactyly. Paradoxically, polydactyly is also frequent and appears to be associated with extended Fgf activity in the apical ectodermal ridge, which is maintained up to 14.5 dpc. This results in a major outgrowth of the mesenchyme anteriorly, which nevertheless maintains a posterior identity, and leads to formation of extra digits. These defects are interpreted in the context of an impairment of Bmp signalling.

  14. Mechanism of enhanced conversion of 1,2,3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling

    NASA Astrophysics Data System (ADS)

    Banáš, Pavel; Otyepka, Michal; Jeřábek, Petr; Petřek, Martin; Damborský, Jiří

    2006-06-01

    1,2,3-Trichloropropane (TCP) is a highly toxic, recalcitrant byproduct of epichlorohydrin manufacture. Haloalkane dehalogenase (DhaA) from Rhodococcus sp. hydrolyses the carbon-halogen bond in various halogenated compounds including TCP, but with low efficiency ( k cat/ K m = 36 s-1 M-1). A Cys176Tyr-DhaA mutant with a threefold higher catalytic efficiency for TCP dehalogenation has been previously obtained by error-prone PCR. We have used molecular simulations and quantum mechanical calculations to elucidate the molecular mechanisms involved in the improved catalysis of the mutant, and enantioselectivity of DhaA toward TCP. The Cys176Tyr mutation modifies the protein access and export routes. Substitution of the Cys residue by the bulkier Tyr narrows the upper tunnel, making the second tunnel "slot" the preferred route. TCP can adopt two major orientations in the DhaA enzyme, in one of which the halide-stabilizing residue Asn41 forms a hydrogen bond with the terminal halogen atom of the TCP molecule, while in the other it bonds with the central halogen atom. The differences in these binding patterns explain the preferential formation of the ( R)- over the ( S)-enantiomer of 2,3-dichloropropane-1-ol in the reaction catalyzed by the enzyme.

  15. Mutant power: using mutant allele collections for yeast functional genomics.

    PubMed

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Listeria monocytogenes mutants with altered growth phenotypes at refrigeration temperature and high salt concentrations.

    PubMed

    Burall, Laurel S; Laksanalamai, Pongpan; Datta, Atin R

    2012-02-01

    Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and iap and showed a significant reduction in growth in BHI broth at 5°C and in the presence of 7% NaCl. Reverse transcriptase quantitative PCR (RT-qPCR) revealed a substantial reduction in the expression of iap. Additionally, a hypothetical gene (met), containing a putative S-adenosylmethionine-dependent methyltransferase domain, downstream of iap had downregulated expression. In-frame deletion mutants of iap and met were created in LS411. The LS560 (LS411 Δiap) mutant showed reduced growth at 5°C and in the presence of 7% salt, confirming its role in cold and salt growth attenuation. Surprisingly, the LS655 (LS411 Δmet) mutant showed slightly increased growth during refrigeration, though no alteration was seen in salt growth relative to the wild-type strain. The LS527 mutant, containing an insertion 36 bp upstream of the gbu operon, showed reduced expression of the gbu transcript by RT-qPCR and also showed growth reduction at 5°C and in the presence of 7% salt. This attenuation was severely exacerbated when the mutant was grown under the combined stresses. Analysis of the gbu operon deletion mutant showed decreased growth in 7% salt and refrigeration, supporting the previously characterized role for this gene in cold and salt adaptation. These studies indicate the potential for an intricate relationship between environmental stress regulation and virulence in L. monocytogenes.

  17. Listeria monocytogenes Mutants with Altered Growth Phenotypes at Refrigeration Temperature and High Salt Concentrations

    PubMed Central

    Burall, Laurel S.; Laksanalamai, Pongpan

    2012-01-01

    Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and iap and showed a significant reduction in growth in BHI broth at 5°C and in the presence of 7% NaCl. Reverse transcriptase quantitative PCR (RT-qPCR) revealed a substantial reduction in the expression of iap. Additionally, a hypothetical gene (met), containing a putative S-adenosylmethionine-dependent methyltransferase domain, downstream of iap had downregulated expression. In-frame deletion mutants of iap and met were created in LS411. The LS560 (LS411 Δiap) mutant showed reduced growth at 5°C and in the presence of 7% salt, confirming its role in cold and salt growth attenuation. Surprisingly, the LS655 (LS411 Δmet) mutant showed slightly increased growth during refrigeration, though no alteration was seen in salt growth relative to the wild-type strain. The LS527 mutant, containing an insertion 36 bp upstream of the gbu operon, showed reduced expression of the gbu transcript by RT-qPCR and also showed growth reduction at 5°C and in the presence of 7% salt. This attenuation was severely exacerbated when the mutant was grown under the combined stresses. Analysis of the gbu operon deletion mutant showed decreased growth in 7% salt and refrigeration, supporting the previously characterized role for this gene in cold and salt adaptation. These studies indicate the potential for an intricate relationship between environmental stress regulation and virulence in L. monocytogenes. PMID:22179239

  18. pH Dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum

    USDA-ARS?s Scientific Manuscript database

    The devastating plant pathogen Sclerotinia sclerotiorum produces copious (up to 50mM) amounts of oxalic acid, which, for over a quarter century, has been claimed as the pathogenicity determinant based on UV-induced mutants that concomitantly lost oxalate production and pathogenicity. Such a claim wa...

  19. Mutants of Escherichia coli defective in membrane phospholipid synthesis: macromolecular synthesis in an sn-glycerol 3-phosphate acyltransferase Km mutant.

    PubMed

    Bell, R M

    1974-03-01

    sn-Glycerol 3-phosphate (G3P) auxotrophs of Escherichia coli have been selected from a strain which cannot aerobically catabolize G3P. The auxotrophy resulted from loss of the biosynthetic G3P dehydrogenase (EC 1.1.1.8) or from a defective membranous G3P acyltransferase. The apparent K(m) of the acyltransferase for G3P was 11- to 14-fold higher (from about 90 mum to 1,000 to 1,250 mum) in membrane preparations from the mutants than those of the parent. All extracts prepared from revertants of the G3P dehydrogenase mutants showed G3P dehydrogenase activity, but most contained less than 10% of the wild-type level. Membrane preparations from revertants of the acyltransferase mutants had apparent K(m)'s for G3P similar to that of the parent. Strains have been derived in which the G3P requirement can be satisfied with glycerol in the presence of glucose, presumably because the glycerol kinase was desensitized to inhibition by fructose 1,6-diphosphate. Investigations on the growth and macromolecular synthesis in a G3P acyltransferase K(m) mutant revealed that upon glycerol deprivation, net phospholipid synthesis stopped immediately; growth continued for about one doubling; net ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein nearly doubled paralleling the growth curve; the rate of phospholipid synthesis assessed by labeling cells with (32)P-phosphate, (14)C-acetate, or (3)H-serine was reduced greater than 90%; the rates of RNA and DNA synthesis increased as the cells grew and then decreased as the cells stopped growing; the rate of protein synthesis showed no increase and declined more slowly than the rates of RNA and DNA synthesis when the cells stopped growing. The cells retained and gained in the capacity to synthesize phospholipids upon glycerol deprivation. These data indicate that net phospholipid synthesis is not required for continued macromolecular synthesis for about one doubling, and that the rates of these processes are not coupled during this

  20. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams.

    PubMed

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-07-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.

  1. Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-04-01

    DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature-sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42 degrees C (non-permissive temperature) and at 37 degrees C (semi-permissive temperature), but not at 28 degrees C (permissive temperature), compared with the wild-type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature-sensitive dnaA mutants showed similar results. On the other hand, a cold-sensitive dnaAcos mutant, in which over-initiation of DNA replication occurs at low temperature (28 degrees C), showed a higher level of unsaturation of fatty acids at 28 degrees C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.

  2. Neurobehavioral Mutants Identified in an ENU Mutagenesis Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Melloni N.; Dunning, Jonathan P; Wiley, Ronald G

    2007-01-01

    We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsivenessmore » to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.« less

  3. mPeriod2 Brdm1 and other single Period mutant mice have normal food anticipatory activity.

    PubMed

    Pendergast, Julie S; Wendroth, Robert H; Stenner, Rio C; Keil, Charles D; Yamazaki, Shin

    2017-11-14

    Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2 Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity.

  4. Prevalence of precore-defective mutant of hepatitis B virus in HBV carriers.

    PubMed

    Niitsuma, H; Ishii, M; Saito, Y; Miura, M; Kobayashi, K; Ohori, H; Toyota, T

    1995-08-01

    Two hundred and seventy-three serum specimens from hepatitis B virus (HBV) carriers were examined for the presence of a characteristic one point mutation at nucleotide (nt) 1896 from the EcoRI site of the HBV genome in the precore region (the preC mutant) using restriction fragment length polymorphism (RFLP) analysis. This assay approach could detect preC mutants or wild-type sequences when either form constituted more than 10% of the total sample. Overall, 65.5% (76/116) of HBeAg-positive carriers had only the preC wild-type. All HBeAg-positive asymptomatic carriers (n = 14) had only the preC wild-type. In patients with chronic hepatitis B and in anti-HBe-positive asymptomatic carriers, increased prevalence of the preC mutant was associated with the development of anti-HBe antibodies and normalization of the serum alanine aminotransferase concentration. Furthermore, 27 (29.0%) of 93 HBeAg-negative carriers had unexpectedly preC wild-type sequences only. Direct sequencing of the HBV precore region of HBV specimens from 24 patients revealed no mutation at nt 1896, supporting the specificity of the RFLP analysis. These results suggest that RFLP analysis was accurate for the detection of the preC mutation and that the absence of serum HBeAg cannot be explained solely by the dominance of the preC mutant.

  5. Mutant Cells That Do Not Respond to Interleukin-1 (IL-1) Reveal a Novel Role for IL-1 Receptor-Associated Kinase

    PubMed Central

    Li, Xiaoxia; Commane, Mairead; Burns, Carmel; Vithalani, Kalpa; Cao, Zhaodan; Stark, George R.

    1999-01-01

    Mutagenized human 293 cells containing an interleukin-1 (IL-1)-regulated herpes thymidine kinase gene, selected in IL-1 and gancyclovir, have yielded many independent clones that are unresponsive to IL-1. The four clones analyzed here carry recessive mutations and represent three complementation groups. Mutant A in complementation group I1 lacks IL-1 receptor-associated kinase (IRAK), while the mutants in the other two groups are defective in unknown components that function upstream of IRAK. Expression of exogenous IRAK in I1A cells (I1A-IRAK) restores their responsiveness to IL-1. Neither NFκB nor Jun kinase is activated in IL-1-treated I1A cells, but these responses are restored in I1A-IRAK cells, indicating that IRAK is required for both. To address the role of the kinase activity of IRAK in IL-1 signaling, its ATP binding site was mutated (K239A), completely abolishing kinase activity. In transfected I1A cells, IRAK-K239A was still phosphorylated upon IL-1 stimulation and, surprisingly, still complemented all the defects in the mutant cells. Therefore, IRAK must be phosphorylated by a different kinase, and phospho-IRAK must play a role in IL-1-mediated signaling that does not require its kinase activity. PMID:10373513

  6. Polarity-defective mutants of Aspergillus nidulans.

    PubMed

    Osherov, N; Mathew, J; May, G S

    2000-12-01

    We have identified two polarity-defective (pod) mutants in Aspergillus nidulans from a collection of heat-sensitive lethal mutants. At restrictive temperature, these mutants are capable of nuclear division but are unable to establish polar hyphal growth. We cloned the two pod genes by complementation of their heat-sensitive lethal phenotypes. The libraries used to clone the pod genes are under the control of the bidirectional niaD and niiA promoters. Complementation of the pod mutants is dependent on growth on inducing medium. We show that rescue of the heat-sensitive phenotype on inducing media is independent of the orientation of the gene relative to the niaD or niiA promoters, demonstrating that the intergenic region between the niaD and the niiA genes functions as an orientation-independent enhancer and repressor that is capable of functioning over long distances. The products of the podG and the podH genes were identified as homologues of the alpha subunit of yeast mitochondrial phenylalanyl--tRNA synthetase and transcription factor IIF interacting component of the CTD phosphatase. Neither of these gene products would have been predicted to produce a pod mutant phenotype based on studies of cellular polarity mutants in other organisms. The implications of these results are discussed. Copyright 2000 Academic Press.

  7. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.)

    PubMed Central

    2013-01-01

    Background Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. Results The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. Conclusion These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes. PMID:24280269

  8. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    PubMed

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  9. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica.

    PubMed

    Maluf, Mirian Perez; da Silva, Carla Cristina; de Oliveira, Michelle de Paula Abreu; Tavares, Aline Gomes; Silvarolla, Maria Bernadete; Guerreiro, Oliveiro

    2009-10-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  10. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    PubMed Central

    2009-01-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence. PMID:21637458

  11. Modulation of the Major Paths of Carbon in Photorespiratory Mutants of Synechocystis

    PubMed Central

    Huege, Jan; Goetze, Jan; Schwarz, Doreen; Bauwe, Hermann; Hagemann, Martin; Kopka, Joachim

    2011-01-01

    Background Recent studies using transcript and metabolite profiles of wild-type and gene deletion mutants revealed that photorespiratory pathways are essential for the growth of Synechocystis sp. PCC 6803 under atmospheric conditions. Pool size changes of primary metabolites, such as glycine and glycolate, indicated a link to photorespiration. Methodology/Principal Findings The 13C labelling kinetics of primary metabolites were analysed in photoautotrophically grown cultures of Synechocystis sp. PCC 6803 by gas chromatography-mass spectrometry (GC-MS) to demonstrate the link with photorespiration. Cells pre-acclimated to high CO2 (5%, HC) or limited CO2 (0.035%, LC) conditions were pulse-labelled under very high (2% w/w) 13C-NaHCO3 (VHC) conditions followed by treatment with ambient 12C at HC and LC conditions, respectively. The 13C enrichment, relative changes in pool size, and 13C flux of selected metabolites were evaluated. We demonstrate two major paths of CO2 assimilation via Rubisco in Synechocystis, i.e., from 3PGA via PEP to aspartate, malate and citrate or, to a lesser extent, from 3PGA via glucose-6-phosphate to sucrose. The results reveal evidence of carbon channelling from 3PGA to the PEP pool. Furthermore, 13C labelling of glycolate was observed under conditions thought to suppress photorespiration. Using the glycolate-accumulating ΔglcD1 mutant, we demonstrate enhanced 13C partitioning into the glycolate pool under conditions favouring photorespiration and enhanced 13C partitioning into the glycine pool of the glycine-accumulating ΔgcvT mutant. Under LC conditions, the photorespiratory mutants ΔglcD1 and ΔgcvT showed enhanced activity of the additional carbon-fixing PEP carboxylase pathway. Conclusions/Significance With our approach of non-steady-state 13C labelling and analysis of metabolite pool sizes with respective 13C enrichments, we identify the use and modulation of major pathways of carbon assimilation in Synechocystis in the presence of

  12. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir

    NASA Astrophysics Data System (ADS)

    Kar, Parimal; Knecht, Volker

    2012-02-01

    Amprenavir (APV) is a high affinity (0.15 nM) HIV-1 protease (PR) inhibitor. However, the affinities of the drug resistant protease variants V32I, I50V, I54V, I54M, I84V and L90M to amprenavir are decreased 3 to 30-fold compared to the wild-type. In this work, the popular molecular mechanics Poisson-Boltzmann surface area method has been used to investigate the effectiveness of amprenavir against the wild-type and these mutated protease variants. Our results reveal that the protonation state of Asp25/Asp25' strongly affects the dynamics, the overall affinity and the interactions of the inhibitor with individual residues. We emphasize that, in contrast to what is often assumed, the protonation state may not be inferred from the affinities but requires pKa calculations. At neutral pH, Asp25 and Asp25' are ionized or protonated, respectively, as suggested from pKa calculations. This protonation state was thus mainly considered in our study. Mutation induced changes in binding affinities are in agreement with the experimental findings. The decomposition of the binding free energy reveals the mechanisms underlying binding and drug resistance. Drug resistance arises from an increase in the energetic contribution from the van der Waals interactions between APV and PR (V32I, I50V, and I84V mutant) or a rise in the energetic contribution from the electrostatic interactions between the inhibitor and its target (I54M and I54V mutant). For the V32I mutant, also an increased free energy for the polar solvation contributes to the drug resistance. For the L90M mutant, a rise in the van der Waals energy for APV-PR interactions is compensated by a decrease in the polar solvation free energy such that the net binding affinity remains unchanged. Detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of new inhibitors against HIV-1 PR variants that are resistant against current drugs.

  13. Isolation and analysis of a mammalian temperature-sensitive mutant defective in G2 functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineo, C.; Murakami, Y.; Ishimi, Y.

    1986-11-01

    A temperature-sensitive (ts) mutant, designated tsFT210, was isolated from a mouse mammary carcinoma cell line, FM3A. The tsFT210 cells grew normally at 33/sup 0/C (permissive temperature), but more than 80% of the cells were arrested at the G2 phase at 39/sup 0/C (non-permissive temperature) as revealed by flow-microfluorimetric analysis. DNA replication and synthesis of other macromolecules by this mutant seemed to be normal at 39/sup 0/C for at least 10h. However, in this mutant, hyperphosphorylation of H1 histone from the G2 to M phase, which occurs in the normal cell cycle, could not be detected at the non-permissive temperature. Thismore » suggests that a gene product which is temperature-sensitive in tsFT210 cells is necessary for hyperphosphorylation of H1 histone and that this gene product may be related to chromosome condensation.« less

  14. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.

    PubMed

    Ellis, Christine; Karafyllidis, Ioannis; Wasternack, Claus; Turner, John G

    2002-07-01

    Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.

  15. The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses

    PubMed Central

    Ellis, Christine; Karafyllidis, Ioannis; Wasternack, Claus; Turner, John G.

    2002-01-01

    Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants. PMID:12119374

  16. A Clonal Genetic Screen for Mutants Causing Defects in Larval Tracheal Morphogenesis in Drosophila

    PubMed Central

    Baer, Magdalena M.; Bilstein, Andreas; Leptin, Maria

    2007-01-01

    The initial establishment of the tracheal network in the Drosophila embryo is beginning to be understood in great detail, both in its genetic control cascades and in its cell biological events. By contrast, the vast expansion of the system during larval growth, with its extensive ramification of preexisting tracheal branches, has been analyzed less well. The mutant phenotypes of many genes involved in this process are probably not easy to reveal, as these genes may be required for other functions at earlier developmental stages. We therefore conducted a screen for defects in individual clonal homozygous mutant cells in the tracheal network of heterozygous larvae using the mosaic analysis with a repressible cell marker (MARCM) system to generate marked, recombinant mitotic clones. We describe the identification of a set of mutants with distinct phenotypic effects. In particular we found a range of defects in terminal cells, including failure in lumen formation and reduced or extensive branching. Other mutations affect cell growth, cell shape, and cell migration. PMID:17603107

  17. Escherichia coli mutants impaired in maltodextrin transport.

    PubMed

    Wandersman, C; Schwartz, M; Ferenci, T

    1979-10-01

    Wild-type Escherichia coli K-12 was found to grow equally well on maltose and on maltodextrins containing up to seven glucose residues. Three classes of mutants unable to grow on maltodextrins, but still able to grow on maltose, were investigated in detail. The first class, already known, was composed of phage lambda-resistant mutants, which lack the outer membrane protein coded by gene lamB. These mutants grow on maltose and maltotriose but not at all on maltotetraose and longer maltodextrins which cannot cross the outer membrane. A second class of mutants were affected in malE, the structural gene of the periplasmic maltose binding protein. The maltose binding proteins isolated from the new mutants were altered in their substrate binding properties, but not in a way that could account for the mutant phenotypes. Rather, the results of growth experiments and transport studies suggest that these malE mutants are impaired in their ability to transport maltodextrins across the outer membrane. This implies that the maltose binding protein (in wild-type strains) cooperates with the lambda receptor in permeation through the outer membrane. The last class of mutants described in this paper were affected in malG, or perhaps in an as yet undetected gene close to malG. They were defective in the transfer of maltodextrins from the periplasmic space to the cytoplasm but only slightly affected in the transport of maltose.

  18. The Anti-Methicillin-Resistant Staphylococcus aureus Quinolone WCK 771 Has Potent Activity against Sequentially Selected Mutants, Has a Narrow Mutant Selection Window against Quinolone-Resistant Staphylococcus aureus, and Preferentially Targets DNA Gyrase▿ †

    PubMed Central

    Bhagwat, Sachin S.; Mundkur, Lakshmi A.; Gupte, Shrikant V.; Patel, Mahesh V.; Khorakiwala, Habil F.

    2006-01-01

    WCK 771 is a broad-spectrum fluoroquinolone with enhanced activity against quinolone-resistant staphylococci. To understand the impact of the target-level interactions of WCK 771 on its antistaphylococcal pharmacodynamic properties, we determined the MICs for genetically defined mutants and studied the mutant prevention concentrations (MPCs), the frequency of mutation, and the cidality against the wild type and double mutants. There was a twofold increase in the MICs of WCK 771 for single gyrA mutants, indicating that DNA gyrase is its primary target. All first- and second-step mutants selected by WCK 771 revealed gyrA and grlA mutations, respectively. The MICs of WCK 771 and clinafloxacin were found to be superior to those of other quinolones against strains with double and triple mutations. WCK 771 was also cidal for high-density double mutants at low concentrations. WCK 771 and clinafloxacin showed narrow mutant selection windows compared to those of the other quinolones. Against a panel of 50 high-level quinolone-resistant clinical isolates of staphylococci (ciprofloxacin MIC ≥ 16 μg/ml), the WCK 771 MPCs were ≤2 μg/ml for 68% of the strains and ≤4 μg/ml for 28% of the strains. Our results demonstrate that gyrA is the primary target of WCK 771 and that it has pharmacodynamic properties remarkably different from those of quinolones with dual targets (garenoxacin and moxifloxacin) and topoisomerase IV-specific quinolones (trovafloxacin). WCK 771 displayed an activity profile comparable to that of clinafloxacin, a dual-acting quinolone with a high affinity to DNA gyrase. Overall, the findings signify the key role of DNA gyrase in determining the optimal antistaphylococcal features of quinolones. PMID:16940059

  19. Imaginal Disc Abnormalities in Lethal Mutants of Drosophila

    PubMed Central

    Shearn, Allen; Rice, Thomas; Garen, Alan; Gehring, Walter

    1971-01-01

    Late lethal mutants of Drosophila melanogaster, dying after the larval stage of development, were isolated. The homozygous mutant larvae were examined for abnormal imaginal disc morphology, and the discs were injected into normal larval hosts to test their capacities to differentiate into adult structures. In about half of the mutants analyzed, disc abnormalities were found. Included among the abnormalities were missing discs, small discs incapable of differentiating, morphologically normal discs with limited capacities for differentiation, and discs with homeotic transformations. In some mutants all discs were affected, and in others only certain discs. The most extreme abnormal phenotype is a class of “discless” mutants. The viability of these mutant larvae indicates that the discs are essential only for the development of an adult and not of a larva. The late lethals are therefore a major source of mutants for studying the genetic control of disc formation. Images PMID:5002822

  20. Isolation and analysis of lipase-overproducing mutants of Serratia marcescens.

    PubMed

    Kawai, E; Akatsuka, H; Sakurai, N; Idei, A; Matsumae, H; Shibatani, T; Komatsubara, S; Omori, K

    2001-01-01

    We have isolated a lipase-overproducing mutant, GE14, from Serratia marcescens 8000 after three rounds of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutant GE14 produced 95 kU/ml of extracellular lipase in the lipase medium, which was about threefold higher than that of produced by the original strain 8000. Enzymatic characteristics including specific activity of purified lipases from culture supernatants of GE14 and 8000 were almost same. The lipase gene (lipA) of GE14 contained two base substitutions; one in the promoter region and another in the N-terminal region of the lipA gene without an amino acid substitution. Promoter analysis using lipA-lacZ fusion plasmids revealed that these substitutions were responsible for the increase in the lipA expression level, independently. In contrast, no base substitution was found in the genes encoding the lipase secretion device, the Lip system. In addition, the genes coding for metalloprotease and the cell surface layer protein which are both secreted through the Lip system and associated with extracellular lipase production, also contained no base substitution. The strain GE14 carrying a high-copy-number lipA plasmid produced a larger amount of the extracellular lipase than the recombinant strains of 8000 and other mutants also did, indicating that GE14 was not only a lipase-overproducing strain, but also an advantageous host strain for overproducing the lipase by a recombinant DNA technique. These results suggest that the lipase-overproducing mutant GE14 and its recombinant strains are promising candidates for the industrial production of the S. marcescens lipase.

  1. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant.

    PubMed

    Chen, Jingjing; Xie, Jianghui; Duan, Yajie; Hu, Huigang; Hu, Yulin; Li, Weiming

    2016-05-27

    Dwarfism is one of the most valuable traits in banana breeding because semi-dwarf cultivars show good resistance to damage by wind and rain. Moreover, these cultivars present advantages of convenient cultivation, management, and so on. We obtained a dwarf mutant '8818-1' through EMS (ethyl methane sulphonate) mutagenesis of Williams banana 8818 (Musa spp. AAA group). Our research have shown that gibberellins (GAs) content in 8818-1 false stems was significantly lower than that in its parent 8818 and the dwarf type of 8818-1 could be restored by application of exogenous GA3. Although GA exerts important impacts on the 8818-1 dwarf type, our understanding of the regulation of GA metabolism during banana dwarf mutant development remains limited. Genome-wide screening revealed 36 candidate GA metabolism genes were systematically identified for the first time; these genes included 3 MaCPS, 2 MaKS, 1 MaKO, 2 MaKAO, 10 MaGA20ox, 4 MaGA3ox, and 14 MaGA2ox genes. Phylogenetic tree and conserved protein domain analyses showed sequence conservation and divergence. GA metabolism genes exhibited tissue-specific expression patterns. Early GA biosynthesis genes were constitutively expressed but presented differential regulation in different tissues in Williams banana. GA oxidase family genes were mainly transcribed in young fruits, thus suggesting that young fruits were the most active tissue involved in GA metabolism, followed by leaves, bracts, and finally approximately mature fruits. Expression patterns between 8818 and 8818-1 revealed that MaGA20ox4, MaGA20ox5, and MaGA20ox7 of the MaGA20ox gene family and MaGA2ox7, MaGA2ox12, and MaGA2ox14 of the MaGA2ox gene family exhibited significant differential expression and high-expression levels in false stems. These genes are likely to be responsible for the regulation of GAs content in 8818-1 false stems. Overall, phylogenetic evolution, tissue specificity and differential expression analyses of GA metabolism genes can provide a

  2. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams

    PubMed Central

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N.; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-01-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar ‘Sasanishiki’) that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined. PMID:23381954

  3. Genome-Wide Analysis Reveals the Vacuolar pH-Stat of Saccharomyces cerevisiae

    PubMed Central

    Brett, Christopher L.; Kallay, Laura; Hua, Zhaolin; Green, Richard; Chyou, Anthony; Zhang, Yongqiang; Graham, Todd R.; Donowitz, Mark; Rao, Rajini

    2011-01-01

    Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pHv) in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pHv (5.27±0.13) was resistant to acid stress (5.28±0.14) but shifted significantly in response to alkali stress (5.83±0.13). Of 107 mutants that displayed aberrant pHv under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pHv dysregulation in a neo1ts mutant restored viability whereas cholesterol accumulation in human NPC1−/− fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation. PMID:21423800

  4. Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells.

    PubMed

    Li, Zheqi; Levine, Kevin M; Bahreini, Amir; Wang, Peilu; Chu, David; Park, Ben Ho; Oesterreich, Steffi; Lee, Adrian V

    2018-01-01

    Increased evidence suggests that somatic mutations in the ligand-binding domain of estrogen receptor [ER (ERα/ESR1)] are critical mediators of endocrine-resistant breast cancer progression. Insulinlike growth factor-1 (IGF1) is an essential regulator of breast development and tumorigenesis and also has a role in endocrine resistance. A recent study showed enhanced crosstalk between IGF1 and ERα in ESR1 mutant cells, but detailed mechanisms are incompletely understood. Using genome-edited MCF-7 and T47D cell lines harboring Y537S and D538G ESR1 mutations, we characterized altered IGF1 signaling. RNA sequencing revealed upregulation of multiple genes in the IGF1 pathway, including insulin receptor substrate-1 (IRS1), consistent in both Y537S and D538G ESR1 mutant cell line models. Higher IRS1 expression was confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting. ESR1 mutant cells also showed increased levels of IGF-regulated genes, reflected by activation of an IGF signature. IGF1 showed increased sensitivity and potency in growth stimulation of ESR1 mutant cells. Analysis of downstream signaling revealed the phosphoinositide 3-kinase (PI3K)-Akt axis as a major pathway mediating the enhanced IGF1 response in ESR1 mutant cells. Decreasing IRS1 expression by small interfering RNA diminished the increased sensitivity to IGF1. Combination treatment with inhibitors against IGF1 receptor (IGF1R; OSI-906) and ER (fulvestrant) showed synergistic growth inhibition in ESR1 mutant cells, particularly at lower effective concentrations. Our study supports a critical role of enhanced IGF1 signaling in ESR1 mutant cell lines, pointing toward a potential for cotargeting IGF1R and ERα in endocrine-resistant breast tumors with mutant ESR1. Copyright © 2018 Endocrine Society.

  5. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology.

    PubMed

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone; Migliaccio, Fernando

    2008-11-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots.

  6. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology

    PubMed Central

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone

    2008-01-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots. PMID:19704429

  7. In vivo and in vitro analyses of a Bombyx mori nucleopolyhedrovirus mutant lacking functional vfgf.

    PubMed

    Katsuma, Susumu; Horie, Satoshi; Daimon, Takaaki; Iwanaga, Masashi; Shimada, Toru

    2006-11-10

    All lepidopteran baculovirus genomes sequenced to date encode a viral fibroblast growth factor homolog (vfgf), suggesting that vfgf may play an important role in the infection cycle of lepidopteran baculoviruses. Here, we describe the characterization of a Bombyx mori nucleopolyhedrovirus (BmNPV) mutant lacking functional vfgf. We constructed a vfgf deletion mutant (BmFGFD) and characterized it in BmN cells and B. mori larvae. We observed that budded virus (BV) production was reduced in BmFGFD-infected BmN cells and B. mori larvae. The larval bioassays also revealed that deletion of vfgf did not reduce the infectivity; however, the mutant virus did take 20 h longer to kill B. mori larvae than wild-type BmNPV, when tested either by BV injection or by polyhedrin-inclusion body ingestion. These results suggest that BmNPV vfgf is involved in efficient virus production in BmN cells and B. mori larvae.

  8. Characterization of spontaneous mutants of Magnaporthe grisea expressing stable resistance to the Qo-inhibiting fungicide azoxystrobin.

    PubMed

    Avila-Adame, Cruz; Köller, Wolfram

    2003-03-01

    The class of Qo-inhibiting fungicides (QoIs) act as respiration inhibitors by binding to the Qo center of cytochrome b. The longevity of these fungicides has been challenged by the selection of fungal sub-populations resisting high doses of QoI fungicides, with a G143A amino acid exchange in the cytochrome b target site identified as the most common cause of resistance. In contrast, the mechanism of alternative respiration, as another mechanism of fungal QoI resistance, has thus far not been affiliated with practical resistance. In the present study, azoxystrobin-resistant mutants of Magnaporthe grisea were generated and characterized. Emergence of these spontaneous mutants was facilitated when resting melanized mycelia were allowed to escape full inhibition by azoxystrobin. This escape was related to the intactness of alternative respiration, indicating that residual expression of this rescue mechanism was involved in the spontaneous emergence of target-site mutants. The two mutants characterized resisted high doses of the QoI, azoxystrobin, with resistance factors exceeding 1,000. Two different mutations of the cytochrome b gene were identified as exchanges of guanine, leading to a G143A or a G143S amino acid exchange. Resistance of both target-site mutants remained stable during four consecutive disease cycles in the absence of azoxystrobin. Several parameters tested to measure fitness penalties inherent to the mutational changes revealed that the G143A mutant was not compromised. In contrast, the conidia production of the G143S mutant was significantly lower under both saprophytic and pathogenic conditions of reproduction.

  9. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus

    PubMed Central

    Kamsteeg, Erik-Jan; Bichet, Daniel G.; Konings, Irene B.M.; Nivet, Hubert; Lonergan, Michelle; Arthus, Marie-Françoise; van Os, Carel H.; Deen, Peter M.T.

    2003-01-01

    Vasopressin regulates body water conservation by redistributing aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical surface of renal collecting ducts, resulting in water reabsorption from urine. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease characterized by the inability to concentrate urine. Here, we report a frame-shift mutation in AQP2 causing dominant NDI. This AQP2 mutant is a functional water channel when expressed in Xenopus oocytes. However, expressed in polarized renal cells, it is misrouted to the basolateral instead of apical plasma membrane. Additionally, this mutant forms heterotetramers with wild-type AQP2 and redirects this complex to the basolateral surface. The frame shift induces a change in the COOH terminus of AQP2, creating both a leucine- and a tyrosine-based motif, which cause the reversed sorting of AQP2. Our data reveal a novel cellular phenotype in dominant NDI and show that dominance of basolateral sorting motifs in a mutant subunit can be the molecular basis for disease. PMID:14662748

  10. The conformational requirements for the mechanical precipitation of hemoglobin S and other mutants.

    PubMed

    Roth, E F; Elbaum, D; Bookchin, R M; Nagel, R L

    1976-08-01

    The mechanical stability of human hemoglobin mutants was studied for the specific effects of single and double amino acid substitutions, the ligand state of each chain, and the effect of hybrids between oxy and cyanmet partners on precipitability. It was found that the beta6Glu leads to Val and the beta73 Asp leads to Asn mutations increased the degree of mechanical precipitation in the liganded but not in the deoxy form. When these mutations occurred on the same chain, the effects were approximately additive. Heat labile mutants such as Hb Gun Hill and Hb Leiden exhibited mechanical instability, but probably through a different mechanism, as very little dependence on ligand state was apparent. Studies with valency hybrids of HbS(alpha2 betas2-and-alpha2 betas2 where = cyanmet) revealed that instability was primarily determined by the state of the betas chain, which must be liganded to confer instability on the tetramer. A good agreement between surface activity and mechanical precipitability of these mutants has been found.

  11. Identification of Bacillus subtilis men mutants which lack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase.

    PubMed Central

    Meganathan, R; Bentley, R; Taber, H

    1981-01-01

    Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis, whose growth requirement is satisfied by 1,4-dihydroxy-2-naphthoic acid but not by o-succinylbenzoic acid (OSB), have been analyzed for enzymatic defects. Complementation analysis of cell-free extracts of the mutants revealed that there are two groups, as already indicated by genetic analysis. The missing enzyme in each group was identified by complementation of the cell-free extracts with o-succinylbenzoyl-coenzyme A (CoA) synthetase and dihydroxynaphthoate synthase extracted from Mycobacterium phlei. Mutants found to lack dihydroxynaphthoate synthase, and which therefore complement with dihydroxynaphthoate synthase of M. phlei, were designated as menB; those lacking o-succinylbenzoyl-CoA synthetase, and therefore complementing with o-succinylbenzoyl-CoA synthetase, were designated as menE. The menB mutants RB413 (men-325) and RB415 (men-329), when incubated with [2,3-14C2]OSB, produced only the spirodilactone form of OSB in a reaction that was CoA and adenosine 5'-triphosphate dependent. PMID:6780515

  12. Remote intracranial recurrence of IDH mutant gliomas is associated with TP53 mutations and an 8q gain

    PubMed Central

    Nakae, Shunsuke; Kato, Takema; Murayama, Kazuhiro; Sasaki, Hikaru; Abe, Masato; Kumon, Masanobu; Kumai, Tadashi; Yamashiro, Kei; Inamasu, Joji; Hasegawa, Mitsuhiro; Kurahashi, Hiroki; Hirose, Yuichi

    2017-01-01

    Most IDH mutant gliomas harbor either 1p/19q co-deletions or TP53 mutation; 1p/19q co-deleted tumors have significantly better prognoses than tumors harboring TP53 mutations. To investigate the clinical factors that contribute to differences in tumor progression of IDH mutant gliomas, we classified recurrent tumor patterns based on MRI and correlated these patterns with their genomic characterization. Accordingly, in IDH mutant gliomas (N = 66), 1p/19 co-deleted gliomas only recurred locally, whereas TP53 mutant gliomas recurred both locally and in remote intracranial regions. In addition, diffuse tensor imaging suggested that remote intracranial recurrence in the astrocytomas, IDH-mutant with TP53 mutations may occur along major fiber bundles. Remotely recurrent tumors resulted in a higher mortality and significantly harbored an 8q gain; astrocytomas with an 8q gain resulted in significantly shorter overall survival than those without an 8q gain. OncoScan® arrays and next-generation sequencing revealed specific 8q regions (i.e., between 8q22 and 8q24) show a high copy number. In conclusion, only tumors with TP53 mutations showed patterns of remote recurrence in IDH mutant gliomas. Furthermore, an 8q gain was significantly associated with remote intracranial recurrence and can be considered a poor prognostic factor in astrocytomas, IDH-mutant. PMID:29156679

  13. Apparent loss-of-function mutant GPCRs revealed as constitutively desensitized receptors.

    PubMed

    Wilbanks, Alyson M; Laporte, Stéphane A; Bohn, Laura M; Barak, Larry S; Caron, Marc G

    2002-10-08

    The DRY motif is a triplet amino acid sequence (aspartic acid, arginine, and tyrosine) that is highly conserved in G protein-coupled receptors (GPCRs). Recently, we have shown that a molecular determinant for nephrogenic diabetes insipidus, the vasopressin receptor with a substitution at the DRY motif arginine (V2R R137H), is a constitutively desensitized receptor that is unable to couple to G proteins due to its constitutive association with beta-arrestin [Barak, L. S. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 93-98]. Additionally, the mutant receptors are localized in endocytic vesicles, identical to wild-type receptors stimulated with agonist. In this study, we asked whether the constitutively desensitized phenotype observed in the V2R R137H represents a general paradigm that may be extended to other GPCRs. We show that arginine substitutions in the DRY motifs of the alpha(1B) adrenergic receptor (alpha(1B)-AR) and angiotensin II type 1A receptor (AT(1A)R) result in receptors that are uncoupled from G proteins, associated with beta-arrestins, and found localized in endocytic vesicles rather than at the plasma membrane in the absence of agonists. The localization of the alpha(1B)-ARs and AT(1A)Rs with arginine substitutions can be restored to the plasma membrane by either using selective antagonists or preventing the endocytosis of the beta-arrestin-receptor complexes. These results indicate that the arginine residue of the DRY motif is essential for preserving the localization of the inactive receptor complex. Furthermore, constitutive desensitization may underlie some loss-of-function receptor phenotypes and represent an unappreciated mechanism of hormonal resistance.

  14. Characterization and classification of zebrafish brain morphology mutants

    PubMed Central

    Lowery, Laura Anne; De Rienzo, Gianluca; Gutzman, Jennifer H.; Sive, Hazel

    2010-01-01

    The mechanisms by which the vertebrate brain achieves its three-dimensional structure are clearly complex, requiring the functions of many genes. Using the zebrafish as a model, we have begun to define genes required for brain morphogenesis, including brain ventricle formation, by studying 16 mutants previously identified as having embryonic brain morphology defects. We report the phenotypic characterization of these mutants at several time-points, using brain ventricle dye injection, imaging, and immunohistochemistry with neuronal markers. Most of these mutants display early phenotypes, affecting initial brain shaping, while others show later phenotypes, affecting brain ventricle expansion. In the early phenotype group, we further define four phenotypic classes and corresponding functions required for brain morphogenesis. Although we did not use known genotypes for this classification, basing it solely on phenotypes, many mutants with defects in functionally related genes clustered in a single class. In particular, class 1 mutants show midline separation defects, corresponding to epithelial junction defects; class 2 mutants show reduced brain ventricle size; class 3 mutants show midbrain-hindbrain abnormalities, corresponding to basement membrane defects; and class 4 mutants show absence of ventricle lumen inflation, corresponding to defective ion pumping. Later brain ventricle expansion requires the extracellular matrix, cardiovascular circulation, and transcription/splicing-dependent events. We suggest that these mutants define processes likely to be used during brain morphogenesis throughout the vertebrates. PMID:19051268

  15. Bridging the gap between chemistry, physiology, and evolution: quantifying the functionality of sperm whale myoglobin mutants.

    PubMed

    Dasmeh, Pouria; Kepp, Kasper P

    2012-01-01

    This work merges a large set of previously reported thermochemical data for myoglobin (Mb) mutants with a physiological model of O(2)-transport and -storage. The model allows a quantification of the functional proficiency of myoglobin (Mb) mutants under various physiological conditions, i.e. O(2)-consumption rate resembling workload, O(2) partial pressure resembling hypoxic stress, muscle cell size, and Mb concentration, resembling different organism-specific and compensatory variables. We find that O(2)-storage and -transport are distinct functions that rank mutants and wild type differently depending on O(2) partial pressure. Specifically, the wild type is near-optimal for storage at all conditions, but for transport only at severely hypoxic conditions. At normoxic conditions, low-affinity mutants are in fact better O(2)-transporters because they still have empty sites for O(2), giving rise to a larger [MbO(2)] gradient (more varying saturation curve). The distributions of functionality reveal that many mutants are near-neutral with respect to function, whereas only a few are strongly affected, and the variation in functionality increases dramatically at lower O(2) pressure. These results together show that conserved residues in wild type (WT) Mb were fixated under a selection pressure of low P(O2). Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing

    PubMed Central

    Sakuraba, Yasuhito; Lee, Sang-Hwa; Kim, Ye-Sol; Park, Ohkmae K.; Hörtensteiner, Stefan; Paek, Nam-Chon

    2014-01-01

    Plant autophagy, one of the essential proteolysis systems, balances proteome and nutrient levels in cells of the whole plant. Autophagy has been studied by analysing Arabidopsis thaliana autophagy-defective atg mutants, but the relationship between autophagy and chlorophyll (Chl) breakdown during stress-induced leaf yellowing remains unclear. During natural senescence or under abiotic-stress conditions, extensive cell death and early yellowing occurs in the leaves of atg mutants. A new finding is revealed that atg5 and atg7 mutants exhibit a functional stay-green phenotype under mild abiotic-stress conditions, but leaf yellowing proceeds normally in wild-type leaves under these conditions. Under mild salt stress, atg5 leaves retained high levels of Chls and all photosystem proteins and maintained a normal chloroplast structure. Furthermore, a double mutant of atg5 and non-functional stay-green nonyellowing1-1 (atg5 nye1-1) showed a much stronger stay-green phenotype than either single mutant. Taking these results together, it is proposed that autophagy functions in the non-selective catabolism of Chls and photosynthetic proteins during stress-induced leaf yellowing, in addition to the selective degradation of Chl–apoprotein complexes in the chloroplasts through the senescence-induced STAY-GREEN1/NYE1 and Chl catabolic enzymes. PMID:24510943

  17. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies

    PubMed Central

    Pham, Nikki T.; Wei, Tong; Schackwitz, Wendy S.; Lipzen, Anna M.; Duong, Phat Q.; Jones, Kyle C.; Ruan, Deling; Bauer, Diane; Peng, Yi; Schmutz, Jeremy

    2017-01-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. PMID:28576844

  18. Impaired discrimination learning in interneuronal NMDAR-GluN2B mutant mice.

    PubMed

    Brigman, Jonathan L; Daut, Rachel A; Saksida, Lisa; Bussey, Timothy J; Nakazawa, Kazu; Holmes, Andrew

    2015-06-17

    Previous studies have established a role for N-methyl-D-aspartate receptor (NMDAR) containing the GluN2B subunit in efficient learning behavior on a variety of tasks. Recent findings have suggested that NMDAR on GABAergic interneurons may underlie the modulation of striatal function necessary to balance efficient action with cortical excitatory input. Here we investigated how loss of GluN2B-containing NMDAR on GABAergic interneurons altered corticostriatal-mediated associative learning. Mutant mice (floxed-GluN2B×Ppp1r2-Cre) were generated to produce loss of GluN2B on forebrain interneurons and phenotyped on a touchscreen-based pairwise visual learning paradigm. We found that the mutants showed normal performance during Pavlovian and instrumental pretraining, but were significantly impaired on a discrimination learning task. Detailed analysis of the microstructure of discrimination performance revealed reduced win→stay behavior in the mutants. These results further support the role of NMDAR, and GluN2B in particular, on modulation of striatal function necessary for efficient choice behavior and suggest that NMDAR on interneurons may play a critical role in associative learning.

  19. High-resolution analysis of locomotor activity rhythms in disconnected, a visual-system mutant of Drosophila melanogaster.

    PubMed

    Dowse, H B; Dushay, M S; Hall, J C; Ringo, J M

    1989-07-01

    Free-running locomotor activity and eclosion rhythms of Drosophila melanogaster, mutant at the disconnected (disco) locus, are substantially different from the wild-type phenotype. Initial periodogram analysis revealed little or no rhythmicity (Dushay et al., 1989). We have reanalyzed the locomotor activity data using high-resolution signal analysis (maximum-entropy spectral analysis, or MESA). These analyses, corroborated by autocorrelograms, uncovered significant residual circadian rhythmicity and strong ultradian rhythms in most of the animals tested. In this regard the disco mutants are much like flies expressing mutant alleles of the period gene, as well as wild-type flies reared throughout life in constant darkness. We hypothesize that light normally triggers the coupling of multiple ultradian oscillators into a functional circadian clock and that this process is disrupted in disco flies as a result of the neural lesion.

  20. Molecular mechanism of action of pharmacoperone rescue of misrouted GPCR mutants: the GnRH receptor.

    PubMed

    Janovick, Jo Ann; Patny, Akshay; Mosley, Ralph; Goulet, Mark T; Altman, Michael D; Rush, Thomas S; Cornea, Anda; Conn, P Michael

    2009-02-01

    The human GnRH receptor (hGnRHR), a G protein-coupled receptor, is a useful model for studying pharmacological chaperones (pharmacoperones), drugs that rescue misfolded and misrouted protein mutants and restore them to function. This technique forms the basis of a therapeutic approach of rescuing mutants associated with human disease and restoring them to function. The present study relies on computational modeling, followed by site-directed mutagenesis, assessment of ligand binding, effector activation, and confocal microscopy. Our results show that two different chemical classes of pharmacoperones act to stabilize hGnRHR mutants by bridging residues D(98) and K(121). This ligand-mediated bridge serves as a surrogate for a naturally occurring and highly conserved salt bridge (E(90)-K(121)) that stabilizes the relation between transmembranes 2 and 3, which is required for passage of the receptor through the cellular quality control system and to the plasma membrane. Our model was used to reveal important pharmacophoric features, and then identify a novel chemical ligand, which was able to rescue a D(98) mutant of the hGnRHR that could not be rescued as effectively by previously known pharmacoperones.

  1. Effect of CCS on the Accumulation of FALS SOD1 Mutant-containing Aggregates and on Mitochondrial Translocation of SOD1 Mutants: Implication of a Free Radical Hypothesis

    PubMed Central

    Kim, Ha Kun; Chung, Youn Wook; Chock, P. Boon; Yim, Moon B.

    2011-01-01

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H2O2, mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. PMID:21354101

  2. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    PubMed

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  3. Molecular mechanisms associated with leukemic transformation of MPL-mutant myeloproliferative neoplasms

    PubMed Central

    Beer, Philip A.; Ortmann, Christina A.; Stegelmann, Frank; Guglielmelli, Paola; Reilly, John T.; Larsen, Thomas S.; Hasselbalch, Hans C.; Vannucchi, Alessandro M.; Möller, Peter; Döhner, Konstanze; Green, Anthony R.

    2010-01-01

    Somatic activating mutations in MPL, the thrombopoietin receptor, occur in the myeloproliferative neoplasms, although virtually nothing is known about their role in evolution to acute myeloid leukemia. In this study, the MPL T487A mutation, identified in de novo acute myeloid leukemia, was not detected in 172 patients with a myeloproliferative neoplasm. In patients with a prior MPL W515L-mutant myeloproliferative neoplasm, leukemic transformation was accompanied by MPL-mutant leukemic blasts, was seen in the absence of prior cytoreductive therapy and often involved loss of wild-type MPL by mitotic recombination. Moreover, clonal analysis of progenitor colonies at the time of leukemic transformation revealed the presence of multiple genetically distinct but phylogenetically-related clones bearing different TP53 mutations, implying a mutator-phenotype and indicating that leukemic transformation may be preceded by the parallel expansion of diverse hematopoietic clones. PMID:20823136

  4. Tissue-specific patterns of lignification are disturbed in the brown midrib2 mutant of maize (Zea mays L.).

    PubMed

    Vermerris, W; Boon, J J

    2001-02-01

    Despite recent progress, several aspects of lignin biosynthesis, including variation in lignin composition between species and between tissues within a given species, are still poorly understood. The analysis of mutants affected in cell wall biosynthesis may help increase the understanding of these processes. We have analyzed the maize brown midrib2 (bm2) mutant, one of the four bm mutants of maize, using pyrolysis-mass spectrometry (Py-MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). Vascular tissues from the leaf blade and leaf sheath from different parts of the plant were investigated and compared to the corresponding samples from a wild-type plant of the same genetic background (inbred line A619). Multivariate analysis revealed that the bm2 mutant had reduced amounts of di- and trimeric lignin derivatives, notably species with m/z 272 and m/z 330, and that the ratio of guaiacyl residues to polysaccharides was reduced in the bm2 mutant. In addition, differences in cell wall composition between different parts of the plant (blade versus sheath, young versus old tissue) were much less pronounced in the bm2 mutant. These changes suggest that the functional Bm2 gene is important for the establishment of tissue-specific cell wall composition.

  5. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Signore, M.; Simeone, A.

    2001-01-01

    We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.

  6. Diaminopurine-Resistant Mutants of Cultured, Diploid Human Fibroblasts

    PubMed Central

    Rappaport, Harriet; DeMars, Robert

    1973-01-01

    Clones of cells resistant to 2,6-diaminopurine were detected in skin fibroblast cultures derived from 13 of 21 normal humans of both sexes from 17 unrelated families. Almost all of the cultures that yielded mutants were chosen for further study from among a total of 83 surveyed because they displayed a slight resistance to low concentrations of diaminopurine. The incidences of mutant colonies ranged between about 10-5 and 10-4 per cell surviving prior mutagenic treatment with MNNG. The incidences of spontaneous mutants were about 10-7 to 10-5 in three unrelated cultures. Most independent mutants had distinctly reduced activity of adenine phosphoribosyltransferase but some had apparently normal amounts of activity. Two mutants from unrelated boys had little or no detectable enzyme activity and were unable to effectively use exogenous adenine for growth when purine biosynthesis was blocked with azaserine. Most mutants could utilize exogenous adenine, just as most azaguanine-resistant fibroblast mutants can utilize exogenous hypoxanthine, even when their hypoxanthine-guanine phosphoribosyltransferase activity is reduced. Diverse genetic changes conferred diaminopurine resistance but their specific natures are still undefined. Gross numerical or structural chromosome abnormalities were not observed in the mutants examined so far. Since at least one gene responsible for adenine phosphoribosyltransferase activity is on autosome No. 16 our results suggest that at least some of the cultures yielding mutants were heterozygous and that alleles conferring diaminopurine resistance may be frequent enough to comprise a polymorphism. PMID:4358687

  7. Dictyostelium discoideum mutants with conditional defects in phagocytosis

    PubMed Central

    1994-01-01

    We have isolated and characterized Dictyostelium discoideum mutants with conditional defects in phagocytosis. Under suspension conditions, the mutants exhibited dramatic reductions in the uptake of bacteria and polystyrene latex beads. The initial binding of these ligands was unaffected, however, indicating that the defect was not in a plasma membrane receptor: Because of the phagocytosis defect, the mutants were unable to grow when cultured in suspensions of heat-killed bacteria. The mutants exhibited normal capacities for fluid phase endocytosis and grew as rapidly as parental (AX4) cells in axenic medium. Both the defects in phagocytosis and growth on bacteria were corrected when the mutant Dictyostelium cells were cultured on solid substrates. Reversion and genetic complementation analysis suggested that the mutant phenotypes were caused by single gene defects. While the precise site of action of the mutations was not established, the mutations are likely to affect an early signaling event because the binding of bacteria to mutant cells in suspension was unable to trigger the localized polymerization of actin filaments required for ingestion; other aspects of actin function appeared normal. This class of conditional phagocytosis mutant should prove to be useful for the expression cloning of the affected gene(s). PMID:7519624

  8. Acquisition of pro-oxidant activity of fALS-linked SOD1 mutants as revealed using circular dichroism and UV-resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimaki, Nobuhiro; Nishiya, Ken; Miura, Takashi; Nakabayashi, Takakazu

    2016-11-01

    The acquisition of pro-oxidant activity of the mutated form of human Cu, Zn-superoxide dismutase (SOD1) has been investigated to clarify the relationship between mutations in SOD1 and the pathogenesis of amyotrophic lateral sclerosis (ALS). Ala4 → Val (A4V) and Gly93 → Ala (G93A) mutants, which are representative ALS-linked SOD1 mutants, have been found to exhibit both the denaturation and the gain of pro-oxidant activity after incubation in the apo-form at a physiological condition of 37 °C and pH 7.4 and the rebinding of Cu2+. These characteristics are similar to those previously reported for the His43 → Arg (H43R) mutant. UV-resonance Raman spectra indicated that the coordination structure of the Cu-binding site catalyzing the oxidation reaction is the same among the denatured A4V, G93A, and H43R. Since wild-type SOD1 does not exhibit the denaturation in its apo-form at 37 °C and pH 7.4, the instability of the protein structure due to mutation can be considered as a significant factor that induces the denaturation and the subsequent pro-oxidant activity.

  9. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.

    PubMed

    Bahaji, Abdellatif; Baroja-Fernández, Edurne; Ricarte-Bermejo, Adriana; Sánchez-López, Ángela María; Muñoz, Francisco José; Romero, Jose M; Ruiz, María Teresa; Baslam, Marouane; Almagro, Goizeder; Sesma, María Teresa; Pozueta-Romero, Javier

    2015-09-01

    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Characterization and fine mapping of a light-dependent leaf lesion mimic mutant 1 in rice.

    PubMed

    Wang, Jing; Ye, Bangquan; Yin, Junjie; Yuan, Can; Zhou, Xiaogang; Li, Weitao; He, Min; Wang, Jichun; Chen, Weilan; Qin, Peng; Ma, Bintian; Wang, Yuping; Li, Shigui; Chen, Xuewei

    2015-12-01

    Plants that spontaneously produce lesion mimics or spots, without any signs of obvious adversity, such as pesticide and mechanical damage, or pathogen infection, are so-called lesion mimic mutants (lmms). In rice, many lmms exhibit enhanced resistance to pathogens, which provides a unique opportunity to uncover the molecular mechanism underlying lmms. We isolated a rice light-dependent leaf lesion mimic mutant 1 (llm1). Lesion spots appeared in the leaves of the llm1 mutant at the tillering stage. Furthermore, the mutant llm1 had similar agronomic traits to wild type rice. Trypan blue and diamiobenzidine staining analyses revealed that the lesion spot formation on the llm1 mutant was due to programmed cell death and reactive oxygen species. The chloroplasts were severely damaged in the llm1 mutant, suggesting that chloroplast damage was associated with the formation of lesion spots in llm1. More importantly, llm1 exhibited enhanced resistance to bacterial blight pathogens within increased expression of pathogenesis related genes (PRs). Using a map-based cloning approach, we delimited the LLM1 locus to a 121-kb interval between two simple sequence repeat markers, RM17470 and RM17473, on chromosome 4. We sequenced the candidate genes on the interval and found that a base mutation had substituted adenine phosphate for thymine in the last exon of LOC_Os04g52130, which led to an amino acid change (Asp(388) to Val) in the llm1 mutant. Our investigation showed that the putative coproporphyrinogen III oxidase (CPOX) encoded by LOC_Os04g52130 was produced by LLM1 and that amino acid Asp(388) was essential for CPOX function. Our study provides the basis for further investigations into the mechanism underlying lesion mimic initiation associated with LLM1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C.

    PubMed

    Peng, Chaohua; Zhu, Gaochun; Liu, Xiangqian; Li, He

    2018-04-30

    Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.

  12. An annotated database of Arabidopsis mutants of acyl lipid metabolism

    DOE PAGES

    McGlew, Kathleen; Shaw, Vincent; Zhang, Meng; ...

    2014-12-10

    Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism ( fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypesmore » of mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. Mutants for at least 30 % of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. Furthermore, the database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.« less

  13. Phage-Encoded Colanic Acid-Degrading Enzyme Permits Lytic Phage Infection of a Capsule-Forming Resistant Mutant Escherichia coli Strain

    PubMed Central

    Kim, Min Soo; Kim, Young Deuk; Hong, Sung Sik; Park, Kwangseo; Ko, Kwan Soo

    2014-01-01

    In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria. PMID:25416767

  14. Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds1

    PubMed Central

    González-Guzmán, Miguel; Abia, David; Salinas, Julio; Serrano, Ramón; Rodríguez, Pedro L.

    2004-01-01

    The abscisic aldehyde oxidase 3 (AAO3) gene product of Arabidopsis catalyzes the final step in abscisic acid (ABA) biosynthesis. An aao3-1 mutant in a Landsberg erecta genetic background exhibited a wilty phenotype in rosette leaves, whereas seed dormancy was not affected (Seo et al., 2000a). Therefore, it was speculated that a different aldehyde oxidase would be the major contributor to ABA biosynthesis in seeds (Seo et al., 2000a). Through a screening based on germination under high-salt concentration, we isolated two mutants in a Columbia genetic background, initially named sre2-1 and sre2-2 (for salt resistant). Complementation tests with different ABA-deficient mutants indicated that sre2-1 and sre2-2 mutants were allelic to aao3-1, and therefore they were renamed as aao3-2 and aao3-3, respectively. Indeed, molecular characterization of the aao3-2 mutant revealed a T-DNA insertional mutation that abolished the transcription of AAO3 gene, while sequence analysis of AAO3 in aao3-3 mutant revealed a deletion of three nucleotides and several missense mutations. Physiological characterization of aao3-2 and aao3-3 mutants revealed a wilty phenotype and osmotolerance in germination assays. In contrast to aao3-1, both aao3-2 and aao3-3 mutants showed a reduced dormancy. Accordingly, ABA levels were reduced in dry seeds and rosette leaves of both aao3-2 and aao3-3. Taken together, these results indicate that AAO3 gene product plays a major role in seed ABA biosynthesis. PMID:15122034

  15. Isolation and Characterization of Mms-Sensitive Mutants of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Prakash, Louise; Prakash, Satya

    1977-01-01

    We have isolated mutants sensitive to methyl methanesulfonate (MMS) in Saccharomyces cerevisiae. Alleles of rad1, rad4, rad6, rad52, rad55 and rad57 were found among these mms mutants. Twenty-nine of the mms mutants which complement the existing radiation-sensitive (rad and rev ) mutants belong to 22 new complementation groups. Mutants from five complementation groups are sensitive only to MMS. Mutants of 11 complementation groups are sensitive to UV or X rays in addition to MMS, mutants of six complementation groups are sensitive to all three agents. The cross-sensitivities of these mms mutants to UV and X rays are discussed in terms of their possible involvement in DNA repair. Sporulation is reduced or absent in homozygous diploids of mms mutants from nine complementation groups. PMID:195865

  16. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.

    PubMed

    Brokaw, C J; Luck, D J

    1985-01-01

    Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.

  17. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth.

    PubMed

    Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O

    2011-05-01

    The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.

  18. Characterization of a Weak Allele of Zebrafish cloche Mutant

    PubMed Central

    Ma, Ning; Huang, Zhibin; Chen, Xiaohui; He, Fei; Wang, Kun; Liu, Wei; Zhao, Linfeng; Xu, Xiangmin; Liao, Wangjun; Ruan, Hua; Luo, Shenqiu; Zhang, Wenqing

    2011-01-01

    Hematopoiesis is a complicated and dynamic process about which the molecular mechanisms remain poorly understood. Danio rerio (zebrafish) is an excellent vertebrate system for studying hematopoiesis and developmental mechanisms. In the previous study, we isolated and identified a cloche 172 (clo 172) mutant, a novel allele compared to the original cloche (clo) mutant, through using complementation test and initial mapping. Here, according to whole mount in-situ hybridization, we report that the endothelial cells in clo 172 mutant embryos, although initially developed, failed to form the functional vascular system eventually. In addition, further characterization indicates that the clo 172 mutant exhibited weaker defects instead of completely lost in primitive erythroid cells and definitive hematopoietic cells compared with the clo s5 mutant. In contrast, primitive myeloid cells were totally lost in clo 172 mutant. Furthermore, these reappeared definitive myeloid cells were demonstrated to initiate from the remaining hematopoietic stem cells (HSCs) in clo 172 mutant, confirmed by the dramatic decrease of lyc in clo 172 runx1w84x double mutant. Collectively, the clo 172 mutant is a weak allele compared to the clo s5 mutant, therefore providing a model for studying the early development of hematopoietic and vascular system, as well as an opportunity to further understand the function of the cloche gene. PMID:22132109

  19. Categories and inheritance of resistance to Nilaparvata lugens (Hemiptera: Delphacidae) in mutants of indica rice 'IR64'.

    PubMed

    Sangha, Jatinder Singh; Chen, Yolanda H; Palchamy, Kadirvel; Jahn, Gary C; Maheswaran, M; Adalla, Candida B; Leung, Hei

    2008-04-01

    Varietal mutants can be useful for developing durable resistance, understanding categories of resistance, and identifying candidate genes involved in defense responses. We used mutants of rice 'IR64' to isolate new sources of resistance to the planthopper Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). We compared two mutants that showed a gain and loss of resistance to N. lugens, to determine the categories of resistance to this pest. Under choice tests, female planthoppers avoided settling and laid fewer eggs on the resistant mutant 'D518' than on the susceptible mutant D1131, susceptible check 'TN1', and wild-type IR64, indicating that antixenosis was the resistance category. Similarly, under no-choice conditions, planthoppers laid 29% fewer eggs in D518 than in IR64, but they oviposited more in 'D1131' and TN1. Honeydew excretion was greater on D1131 seedlings but slightly lower on D518 than on IR64. Nymphal survival and adult female weight did not differ among rice cultivars. D518 showed higher tolerance of N. lugens infestations than IR64. Genetic analysis of the F1, F2, and F3 populations derived from D518 x IR64 revealed that resistance in D518 is dominant and controlled by a single gene. Despite the variation in resistance to N. lugens, both mutants and IR64 performed similarly in the field. The mutant D518 is a new source of durable resistance to N. lugens, mainly due to enhanced antixenosis to female hoppers for settling and oviposition.

  20. Crystal structures of the ternary complex of APH(4)-Ia/Hph with hygromycin B and an ATP analog using a thermostable mutant.

    PubMed

    Iino, Daisuke; Takakura, Yasuaki; Fukano, Kazuhiro; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke

    2013-07-01

    Aminoglycoside 4-phosphotransferase-Ia (APH(4)-Ia)/Hygromycin B phosphotransferase (Hph) inactivates the aminoglycoside antibiotic hygromycin B (hygB) via phosphorylation. The crystal structure of the binary complex of APH(4)-Ia with hygB was recently reported. To characterize substrate recognition by the enzyme, we determined the crystal structure of the ternary complex of non-hydrolyzable ATP analog AMP-PNP and hygB with wild-type, thermostable Hph mutant Hph5, and apo-mutant enzyme forms. The comparison between the ternary complex and apo structures revealed that Hph undergoes domain movement upon binding of AMP-PNP and hygB. This was about half amount of the case of APH(9)-Ia. We also determined the crystal structures of mutants in which the conserved, catalytically important residues Asp198 and Asn203, and the non-conserved Asn202, were converted to Ala, revealing the importance of Asn202 for catalysis. Hph5 contains five amino acid substitutions that alter its thermostability by 16°C; its structure revealed that 4/5 mutations in Hph5 are located in the hydrophobic core and appear to increase thermostability by strengthening hydrophobic interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.

    PubMed

    Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E

    2011-03-15

    Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.

  3. nip, a Symbiotic Medicago truncatula Mutant That Forms Root Nodules with Aberrant Infection Threads and Plant Defense-Like Response1

    PubMed Central

    Veereshlingam, Harita; Haynes, Janine G.; Penmetsa, R. Varma; Cook, Douglas R.; Sherrier, D. Janine; Dickstein, Rebecca

    2004-01-01

    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses

  4. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations.

    PubMed

    Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy

    2016-09-12

    CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function.

  5. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase.

    PubMed

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-02-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.

  6. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens

    PubMed Central

    Gubin, Matthew M.; Zhang, Xiuli; Schuster, Heiko; Caron, Etienne; Ward, Jeffrey P.; Noguchi, Takuro; Ivanova, Yulia; Hundal, Jasreet; Arthur, Cora D.; Krebber, Willem-Jan; Mulder, Gwenn E.; Toebes, Mireille; Vesely, Matthew D.; Lam, Samuel S.K.; Korman, Alan J.; Allison, James P.; Freeman, Gordon J.; Sharpe, Arlene H.; Pearce, Erika L.; Schumacher, Ton N.; Aebersold, Ruedi; Rammensee, Hans-Georg; Melief, Cornelis J. M.; Mardis, Elaine R.; Gillanders, William E.; Artyomov, Maxim N.; Schreiber, Robert D.

    2014-01-01

    The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity1–6, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion1,2,7. Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells8,9. Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies10–13. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be

  7. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.

    PubMed

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude; Newton, Yulia; Shih, Juliann; Robertson, A Gordon; Hinoue, Toshinori; Hoadley, Katherine A; Gibb, Ewan A; Roszik, Jason; Covington, Kyle R; Wu, Chia-Chin; Shinbrot, Eve; Stransky, Nicolas; Hegde, Apurva; Yang, Ju Dong; Reznik, Ed; Sadeghi, Sara; Pedamallu, Chandra Sekhar; Ojesina, Akinyemi I; Hess, Julian M; Auman, J Todd; Rhie, Suhn K; Bowlby, Reanne; Borad, Mitesh J; Zhu, Andrew X; Stuart, Josh M; Sander, Chris; Akbani, Rehan; Cherniack, Andrew D; Deshpande, Vikram; Mounajjed, Taofic; Foo, Wai Chin; Torbenson, Michael S; Kleiner, David E; Laird, Peter W; Wheeler, David A; McRee, Autumn J; Bathe, Oliver F; Andersen, Jesper B; Bardeesy, Nabeel; Roberts, Lewis R; Kwong, Lawrence N

    2017-03-14

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Ectopic Mineralization and Conductive Hearing Loss in Enpp1asj Mutant Mice, a New Model for Otitis Media and Tympanosclerosis.

    PubMed

    Tian, Cong; Harris, Belinda S; Johnson, Kenneth R

    2016-01-01

    Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets.

  9. Ectopic Mineralization and Conductive Hearing Loss in Enpp1asj Mutant Mice, a New Model for Otitis Media and Tympanosclerosis

    PubMed Central

    Tian, Cong; Harris, Belinda S.; Johnson, Kenneth R.

    2016-01-01

    Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets. PMID:27959908

  10. Isolation and characterization of mutants with lesions affecting pellicle formation and erythrocyte agglutination by type 1 piliated Escherichia coli.

    PubMed Central

    Harris, S L; Elliott, D A; Blake, M C; Must, L M; Messenger, M; Orndorff, P E

    1990-01-01

    The product of the pilE (also called fimH) gene is a minor component of type 1 pili in Escherichia coli. Mutants that have insertions in the pilE gene are fully piliated but unable to bind to and agglutinate guinea pig erythrocytes, a characteristic of wild-type type 1 piliated E. coli. In this paper we describe the isolation of 48 mutants with point lesions that map to the pilE gene. Such mutants were isolated by using mutT mutagenesis and an enrichment procedure devised to favor the growth of individuals that could form a pellicle in static broth containing alpha-methylmannoside, an inhibitor of erythrocyte binding and pellicle formation. Results indicated that the enrichment favored mutants expressing pilE gene products that were defective in mediating erythrocyte binding. Characterization of 12 of the mutants in greater detail revealed that certain lesions affected pilus number and length. In addition, a mutant that was temperature sensitive for erythrocyte binding was isolated and used to provide evidence that pellicle formation relies on the intercellular interaction of pilE gene products. Our results suggest a molecular explanation for the old and paradoxical observations connecting pellicle formation and erythrocyte agglutination by type 1 piliated E. coli. Images PMID:1977736

  11. Overexpression of mutant HSP27 causes axonal neuropathy in mice.

    PubMed

    Lee, Jinho; Jung, Sung-Chul; Joo, Jaesoon; Choi, Yu-Ri; Moon, Hyo Won; Kwak, Geon; Yeo, Ha Kyung; Lee, Ji-Su; Ahn, Hye-Jee; Jung, Namhee; Hwang, Sunhee; Rheey, Jingeun; Woo, So-Youn; Kim, Ji Yon; Hong, Young Bin; Choi, Byung-Ok

    2015-06-19

    Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin. We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination. Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype besides motor neuronal defects. Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be applied to future development of therapeutic strategies for dHMN or CMT2F.

  12. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies.

    PubMed

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; Pham, Nikki T; Martin, Joel A; Wei, Tong; Schackwitz, Wendy S; Lipzen, Anna M; Duong, Phat Q; Jones, Kyle C; Jiang, Liangrong; Ruan, Deling; Bauer, Diane; Peng, Yi; Barry, Kerrie W; Schmutz, Jeremy; Ronald, Pamela C

    2017-06-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake ( Oryza sativa ssp japonica ), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. © 2017 American Society of Plant Biologists. All rights reserved.

  13. Molecular Genetic Analysis of an Endotoxin Nonresponder Mutant Cell Line

    PubMed Central

    Schromm, Andra B.; Lien, Egil; Henneke, Philipp; Chow, Jesse C.; Yoshimura, Atsutoshi; Heine, Holger; Latz, Eicke; Monks, Brian G.; Schwartz, David A.; Miyake, Kensuke; Golenbock, Douglas T.

    2001-01-01

    Somatic cell mutagenesis is a powerful tool for characterizing receptor systems. We reported previously two complementation groups of mutant cell lines derived from CD14-transfected Chinese hamster ovary–K1 fibroblasts defective in responses to bacterial endotoxin. Both classes of mutants expressed a normal gene product for Toll-like receptor (TLR)4, and fully responded to stimulation by tumor necrosis factor (TNF)-α or interleukin (IL)-1β. We identified the lesion in one of the complementation groups in the gene for MD-2, a putative TLR4 coreceptor. The nonresponder phenotype of this mutant was reversed by transfection with MD-2. Cloning of MD-2 from the nonresponder cell line revealed a point mutation in a highly conserved region resulting in a C95Y amino acid exchange. Both forms of MD-2 colocalized with TLR4 on the cell surface after transfection, but only the wild-type cDNA reverted the lipopolysaccharide (LPS) nonresponder phenotype. Furthermore, soluble MD-2, but not soluble MD-2C95Y, functioned to enable LPS responses in cells that expressed TLR4. Thus, MD-2 is a required component of the LPS signaling complex and can function as a soluble receptor for cells that do not otherwise express it. We hypothesize that MD-2 conformationally affects the extracellular domain of TLR4, perhaps resulting in a change in affinity for LPS or functioning as a portion of the true ligand for TLR4. PMID:11435474

  14. BRAF-V600E mutant papillary craniopharyngioma dramatically responds to combination BRAF and MEK inhibitors.

    PubMed

    Roque, Ashley; Odia, Yazmin

    2017-04-01

    We present a patient with BRAF-V600E mutant papillary craniopharyngioma successfully treated with combination BRAF (dabrafenib 150 mg twice daily) and MEK (trametinib 2 mg daily) inhibitors after her unresectable tumor proved refractory to radiation. Serial brain MRIs and PET revealed marked tumor reduction with gradual neurological improvement and permanent panhypopituitarism.

  15. Functional analysis of potassium channels in Kv7.2 G271V mutant causing early onset familial epilepsy.

    PubMed

    Wang, Juanjuan; Li, Yuan; Hui, Zhiyan; Cao, Min; Shi, Ruiming; Zhang, Wei; Geng, Limeng; Zhou, Xihui

    2015-08-07

    Kv7 (KCNQ) channels underlying a class of voltage-gated K+ current are best known for regulating neuronal excitability. The first glycine (G) residue in the pore helix of Kv7.2 (KCNQ2) subunit is highly conserved among different classes of Kv7 channel family. A missense mutation causing the replacement of the corresponding G residues with a valine (p.G271V) in Kv7.2 was found in a large, four-generation pedigree. Here, we set out to examine the molecular pathomechanism of G271V mutants using patch clamp technology combined with biochemical and immunocytochemical techniques in transiently transfected human embryonic kidney (HEK) 293 cells. The expression of Kv7.2 protein had the same intensity for both wild type (WT) and G271V. In transfected HEK cells, G271V mutants induced large depolarizing shifts of the conductance-voltage relationships and marked slowing of current activation kinetics compared to WT. In addition, G271V mutants abolished currents in homomeric channels, and resulted in about 50% reduction of current in Kv7.2/G271V/Kv7.3 heteromultimeric condition, indicating a more severe functional defect. To test for G271V mutant channel expression in surface membrane, we performed fluorescence confocal microscopy imaging, which revealed no differences between the mutant and WT, suggesting that G271V channels fail to open in response to depolarization even though they are present in the membrane. Furthermore, pharmacologic intervention experiments revealed that upon specific incubation of transfected HEK 293 cells expressing G271V heteromultimeric channels in presence of Kv7 channel enhancer retigabine (ezogabine), the potassium currents increased significantly, suggesting the potential of retigabine as gene-specific therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Downregulation of aldose reductase is responsible for developmental abnormalities of the silkworm purple quail-like mutant (q-lp).

    PubMed

    Wang, Pingyang; Bi, Simin; Wei, Weiyang; Qiu, Zhiyong; Xia, Dingguo; Shen, Xingjia; Zhao, Qiaoling

    2018-05-03

    Aldose reductase (AR) is a rate-limiting enzyme in the polyol pathway and is also the key enzyme involved in diabetic complications. The silkworm purple quail-like mutant (q-l p ) exhibits pigmented dots on its epidermis. The q-l p mutant also shows developmental abnormalities and decreased vitality. In this study, fat bodies from the q-l p mutant and the wildtype 932VR strain were subjected to two-dimensional gel electrophoresis (2-DE) analysis, and the Bombyx mori AR (BmAR) protein was found to be significantly downregulated in the q-l p mutant. The expression of BmAR at the mRNA level was also significantly downregulated, as verified through quantitative reverse transcription PCR (qRT-PCR). Knockdown of the expression of BmAR via RNAi resulted in a reduction of silkworm weight. The sorbitol level in q-l p was significantly lower than in the wildtype. These results suggested that the BmAR gene is closely related to the development of the q-l p mutant. Investigation of the cause of BmAR downregulation in the q-l p mutant could contribute to revealing the function of AR in insects and offers a new method of identifying AR inhibitors for the treatment of diabetic complications. Copyright © 2017. Published by Elsevier B.V.

  17. Mechanisms responsible for imipenem resistance among Pseudomonas aeruginosa clinical isolates exposed to imipenem concentrations within the mutant selection window.

    PubMed

    Vassilara, Foula; Galani, Irene; Souli, Maria; Papanikolaou, Konstantinos; Giamarellou, Helen; Papadopoulos, Antonios

    2017-07-01

    The aim of this study was to determine the propensities of imipenem to select for resistant Pseudomonas aeruginosa mutants by determining the mutant prevention concentrations (MPCs) for 9 unrelated clinical isolates and the accession of any relationship with mechanisms of resistance development. The MPC/MIC ratios ranged from 4 to 16. Detection of resistance mechanisms in the mutant derivatives of the nine isolates mainly revealed inactivating mutations in the gene coding for outer membrane protein OprD. Point mutations leading to premature stop codons or amino acid substitution S278P, ≥1bp deletion leading to frameshift mutations and interruption of the oprD by an insertion sequence, were observed. MPC and mutant selection window (MSW) are unique parameters that may guide the implementation of antimicrobial treatment, providing useful information about the necessary imipenem concentration needed in the infection area, in order to avoid the emergence of resistance, especially in clinical situations with high bacterial load. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Bacterio-opsin mutants of Halobacterium halobium

    PubMed Central

    Betlach, Mary; Pfeifer, Felicitas; Friedman, James; Boyer, Herbert W.

    1983-01-01

    The bacterio-opsin (bop) gene of Halobacterium halobium R1 has been cloned with about 40 kilobases of flanking genomic sequence. The 40-kilobase segment is derived from the (G+C)-rich fraction of the chromosome and is not homologous to the major (pHH1) or minor endogenous covalently closed circular DNA species of H. halobium. A 5.1-kilobase Pst I fragment containing the bop gene was subcloned in pBR322 and a partial restriction map was determined. Defined restriction fragments of this clone were used as probes to analyze the defects associated with the bop gene in 12 bacterio-opsin mutants. Eleven out of 12 of the mutants examined had inserts ranging from 350 to 3,000 base pairs either in the bop gene or up to 1,400 base pairs upstream. The positions of the inserts were localized to four regions in the 5.1-kilobase genomic fragment: within the gene (one mutant), in a region that overlaps the 5′ end of the gene (seven mutants), and in two different upstream regions (three mutants). Two revertants of the mutant with the most distal insert had an additional insert in the same region. The polar effects of these inserts are discussed in terms of inactivation of a regulatory gene or disruption of part of a coordinately expressed operon. Given the defined nature of the bop mRNA—i.e., it has a 5′ leader sequence of three ribonucleotides—these observations indicate that the bop mRNA might be processed from a large mRNA transcript. Images PMID:16593291

  19. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    PubMed

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Alterations in Topoisomerase IV and DNA Gyrase in Quinolone-Resistant Mutants of Mycoplasma hominis Obtained In Vitro

    PubMed Central

    Bébéar, Cécile M.; Renaudin, Hélène; Charron, Alain; Bové, Joseph M.; Bébéar, Christiane; Renaudin, Joel

    1998-01-01

    Mycoplasma hominis mutants were selected stepwise for resistance to ofloxacin and sparfloxacin, and their gyrA, gyrB, parC, and parE quinolone resistance-determining regions were characterized. For ofloxacin, four rounds of selection yielded six first-, six second-, five third-, and two fourth-step mutants. The first-step mutants harbored a single Asp426→Asn substitution in ParE. GyrA changes (Ser83→Leu or Trp) were found only from the third round of selection. With sparfloxacin, three rounds of selection generated 4 first-, 7 second-, and 10 third-step mutants. In contrast to ofloxacin resistance, GyrA mutations (Ser83→Leu or Ser84→Trp) were detected in the first-step mutants prior to ParC changes (Glu84→Lys), which appeared only after the second round of selection. Further analysis of eight multistep-selected mutants of M. hominis that were previously described (2) revealed that they carried mutations in ParE (Asp426→Asn), GyrA (Ser83→Leu) and ParE (Asp426→Asn), GyrA (Ser83→Leu) and ParC (Ser80→Ile), or ParC (Ser80→Ile) alone, depending on the fluoroquinolone used for selection, i.e., ciprofloxacin, norfloxacin, ofloxacin, or pefloxacin, respectively. These data indicate that in M. hominis DNA gyrase is the primary target of sparfloxacin whereas topoisomerase IV is the primary target of pefloxacin, ofloxacin, and ciprofloxacin. PMID:9736554

  1. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae].

    PubMed

    Lv, Ye; Xiao, Dongguang; He, Dongqin; Guo, Xuewu

    2008-10-01

    Accumulation of trehalose is critical in improving the stress tolerance of Saccharomyces cerevisiae. Two enzymes are capable of hydrolyzing trehalose: a neutral trehalase (NTH1) and an acidic trehalase (ATH1). We constructed trehalase disruption mutants to provide a basis for future commercial application. To retain the accumulation of trehalose in yeast cell, we constructed diploid homozygous neutral trehalase mutants (Deltanth1), acid trehalase mutants (Deltaath1) and double mutants (Deltaath1Deltanth1) by using gene disruption. We tested mutants'trehalose content and their tolerance to freezing, heat, high-sugar and ethanol concentrations. These trehalase disruption mutants were further confirmed by PCR amplification and southern blot. All mutant strains accumulated higher levels of cellular trehalose and grew to a higher cell density than the isogenic parent strain. In addition, the levels of trehalose in these mutants correlated with increased tolerance to freezing, heat, high-sugar and ethanol concentration. The improved tolerance of trehalase mutants may make them useful in commercial applications, including baking and brewing protein.

  2. Molecular structure of starches from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Källman, Anna; Myers, Alan M; Seetharaman, Koushik

    2013-10-16

    Molecular structures of starches from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Amylose content with altered structure was higher in the nonwaxy mutants (25.4-30.2%) compared to the wild type maize (21.5%) as revealed by gel permeation chromatography. Superlong chains of the amylopectin component were found in all nonwaxy samples. Unit chain length distribution of amylopectins and their φ,β-limit dextrins (reflecting amylopectin internal structure) from dull1 mutants were also characterized by anion-exchange chromatography after debranching. Deficiency of SSIII led to an increased amount of short chains (DP ≤36 in amylopectin), whereas the content of long chains decreased from 8.4% to between 3.1 and 3.7% in both amylopectin and φ,β-limit dextrins. Moreover, both the external and internal chain lengths decreased, suggesting a difference in their cluster structures. Whereas the molar ratio of A:B-chains was similar in all samples (1.1-1.2), some ratios of chain categories were affected by the absence of SSIII, notably the ratio of "fingerprint" A-chains to "clustered" A-chains. This study highlighted the relationship between SSIII and the internal molecular structure of maize starch.

  3. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans.

    PubMed Central

    O'Connell, K F; Leys, C M; White, J G

    1998-01-01

    A novel screen to isolate conditional cell-division mutants in Caenorhabditis elegans has been developed. The screen is based on the phenotypes associated with existing cell-division mutations: some disrupt postembryonic divisions and affect formation of the gonad and ventral nerve cord-resulting in sterile, uncoordinated animals-while others affect embryonic divisions and result in lethality. We obtained 19 conditional mutants that displayed these phenotypes when shifted to the restrictive temperature at the appropriate developmental stage. Eighteen of these mutations have been mapped; 17 proved to be single alleles of newly identified genes, while 1 proved to be an allele of a previously identified gene. Genetic tests on the embryonic lethal phenotypes indicated that for 13 genes, embryogenesis required maternal expression, while for 6, zygotic expression could suffice. In all cases, maternal expression of wild-type activity was found to be largely sufficient for embryogenesis. Cytological analysis revealed that 10 mutants possessed embryonic cell-division defects, including failure to properly segregate DNA, failure to assemble a mitotic spindle, late cytokinesis defects, prolonged cell cycles, and improperly oriented mitotic spindles. We conclude that this approach can be used to identify mutations that affect various aspects of the cell-division cycle. PMID:9649522

  4. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis.

    PubMed

    Bhinge, Akshay; Namboori, Seema C; Zhang, Xiaoyu; VanDongen, Antonius M J; Stanton, Lawrence W

    2017-04-11

    Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS), it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN)-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity.

    PubMed

    Kampatsikas, Ioannis; Bijelic, Aleksandar; Pretzler, Matthias; Rompel, Annette

    2017-08-01

    Tyrosinases are type 3 copper enzymes that belong to the polyphenol oxidase (PPO) family and are able to catalyze both the ortho-hydroxylation of monophenols and their subsequent oxidation to o-quinones, which are precursors for the biosynthesis of colouring substances such as melanin. The first plant pro-tyrosinase from Malus domestica (MdPPO1) was recombinantly expressed in its latent form (56.4 kDa) and mutated at four positions around the catalytic pocket which are believed to influence the activity of the enzyme. Mutating the amino acids, which are known as activity controllers, yielded the mutants MdPPO1-Ala239Thr and MdPPO1-Leu243Arg, whereas mutation of the so-called water-keeper and gatekeeper residues resulted in the mutants MdPPO1-Glu234Ala and MdPPO1-Phe259Ala, respectively. The wild-type enzyme and two of the mutants, MdPPO1-Ala239Thr and MdPPO1-Phe259Ala, were successfully crystallized, leading to single crystals that diffracted to 1.35, 1.55 and 1.70 Å resolution, respectively. All crystals belonged to space group P2 1 2 1 2 1 , exhibiting similar unit-cell parameters: a = 50.70, b = 80.15, c = 115.96 Å for the wild type, a = 50.58, b = 79.90, c = 115.76 Å for MdPPO1-Ala239Thr and a = 50.53, b = 79.76, c = 116.07 Å for MdPPO1-Phe259Ala. In crystallo activity tests with the crystals of the wild type and the two mutants were performed by adding the monophenolic substrate tyramine and the diphenolic substrate dopamine to crystal-containing drops. The effects of the mutation on the activity of the enzyme were observed by colour changes of the crystals owing to the conversion of the substrates to dark chromophore products.

  6. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity

    PubMed Central

    Kampatsikas, Ioannis; Bijelic, Aleksandar; Pretzler, Matthias

    2017-01-01

    Tyrosinases are type 3 copper enzymes that belong to the polyphenol oxidase (PPO) family and are able to catalyze both the ortho-hydroxylation of monophenols and their subsequent oxidation to o-quinones, which are precursors for the biosynthesis of colouring substances such as melanin. The first plant pro-tyrosinase from Malus domestica (MdPPO1) was recombinantly expressed in its latent form (56.4 kDa) and mutated at four positions around the catalytic pocket which are believed to influence the activity of the enzyme. Mutating the amino acids, which are known as activity controllers, yielded the mutants MdPPO1-Ala239Thr and MdPPO1-Leu243Arg, whereas mutation of the so-called water-keeper and gatekeeper residues resulted in the mutants MdPPO1-Glu234Ala and MdPPO1-Phe259Ala, respectively. The wild-type enzyme and two of the mutants, MdPPO1-Ala239Thr and MdPPO1-Phe259Ala, were successfully crystallized, leading to single crystals that diffracted to 1.35, 1.55 and 1.70 Å resolution, respectively. All crystals belonged to space group P212121, exhibiting similar unit-cell parameters: a = 50.70, b = 80.15, c = 115.96 Å for the wild type, a = 50.58, b = 79.90, c = 115.76 Å for MdPPO1-Ala239Thr and a = 50.53, b = 79.76, c = 116.07 Å for MdPPO1-Phe259Ala. In crystallo activity tests with the crystals of the wild type and the two mutants were performed by adding the monophenolic substrate tyramine and the diphenolic substrate dopamine to crystal-containing drops. The effects of the mutation on the activity of the enzyme were observed by colour changes of the crystals owing to the conversion of the substrates to dark chromophore products. PMID:28777094

  7. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.

    PubMed

    Jones, D L; Petty, J; Hoyle, D C; Hayes, A; Ragni, E; Popolo, L; Oliver, S G; Stateva, L I

    2003-12-16

    Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.

  8. Computing border bases using mutant strategies

    NASA Astrophysics Data System (ADS)

    Ullah, E.; Abbas Khan, S.

    2014-01-01

    Border bases, a generalization of Gröbner bases, have actively been addressed during recent years due to their applicability to industrial problems. In cryptography and coding theory a useful application of border based is to solve zero-dimensional systems of polynomial equations over finite fields, which motivates us for developing optimizations of the algorithms that compute border bases. In 2006, Kehrein and Kreuzer formulated the Border Basis Algorithm (BBA), an algorithm which allows the computation of border bases that relate to a degree compatible term ordering. In 2007, J. Ding et al. introduced mutant strategies bases on finding special lower degree polynomials in the ideal. The mutant strategies aim to distinguish special lower degree polynomials (mutants) from the other polynomials and give them priority in the process of generating new polynomials in the ideal. In this paper we develop hybrid algorithms that use the ideas of J. Ding et al. involving the concept of mutants to optimize the Border Basis Algorithm for solving systems of polynomial equations over finite fields. In particular, we recall a version of the Border Basis Algorithm which is actually called the Improved Border Basis Algorithm and propose two hybrid algorithms, called MBBA and IMBBA. The new mutants variants provide us space efficiency as well as time efficiency. The efficiency of these newly developed hybrid algorithms is discussed using standard cryptographic examples.

  9. Mutants of Saccharomyces Cerevisiae with Defects in Acetate Metabolism: Isolation and Characterization of Acn(-) Mutants

    PubMed Central

    McCammon, M. T.

    1996-01-01

    The two carbon compounds, ethanol and acetate, can be oxidatively metabolized as well as assimilated into carbohydrate in the yeast Saccharomyces cerevisiae. The distribution of acetate metabolic enzymes among several cellular compartments, mitochondria, peroxisomes, and cytoplasm makes it an intriguing system to study complex metabolic interactions. To investigate the complex process of carbon catabolism and assimilation, mutants unable to grow on acetate were isolated. One hundred five Acn(-) (``ACetate Nonutilizing'') mutants were sorted into 21 complementation groups with an additional 20 single mutants. Five of the groups have defects in TCA cycle enzymes: MDH1, CIT1, ACO1, IDH1, and IDH2. A defect in RTG2, involved in the retrograde communication between the mitochondrion and the nucleus, was also identified. Four genes encode enzymes of the glyoxylate cycle and gluconeogenesis: ICL1, MLS1, MDH2, and PCK1. Five other genes appear to be defective in regulating metabolic activity since elevated levels of enzymes in several metabolic pathways, including the glyoxylate cycle, gluconeogenesis, and acetyl-CoA metabolism, were detected in these mutants: ACN8, ACN9, ACN17, ACN18, and ACN42. In summary, this analysis has identified at least 22 and as many as 41 different genes involved in acetate metabolism. PMID:8878673

  10. Mutant Transcriptome Sequencing Provides Insights into Pod Development in Peanut (Arachis hypogaea L.)

    PubMed Central

    Wan, Liyun; Li, Bei; Lei, Yong; Yan, Liying; Ren, Xiaoping; Chen, Yuning; Dai, Xiaofeng; Jiang, Huifang; Zhang, Juncheng; Guo, Wei; Chen, Ao; Liao, Boshou

    2017-01-01

    Pod size is the major yield component and a key target trait that is selected for in peanut breeding. However, although numerous quantitative trait loci (QTLs) for peanut pod size have been described, the molecular mechanisms underlying the development of this characteristic remain elusive. A peanut mutant with a narrower pod was developed in this study using ethyl methanesulfonate (EMS) mutagenesis and designated as the “pod width” mutant line (pw). The fresh pod weight of pw was only about 40% of that seen in the wild-type (WT) Zhonghua16, while the hull and seed filling of the mutant both also developed at earlier stages. Pods from both pw and WT lines were sampled 20, 40, and 60 days after flowering (DAF) and used for RNA-Seq analysis; the results revealed highly differentially expressed lignin metabolic pathway genes at all three stages, but especially at DAF 20 and DAF 40. At the same time, expression of genes related to auxin signal transduction was found to be significantly repressed during the pw early pod developmental stage. A genome-wide comparative analysis of expression profiles revealed 260 differentially expressed genes (DEGs) across all three stages, and two candidate genes, c26901_g1 (CAD) and c37339_g1 (ACS), responsible for pod width were identified by integrating expression patterns and function annotation of the common DEGs within the three stages. Taken together, the information provided in this study illuminates the processes underlying peanut pod development, and will facilitate further identification of causal genes and the development of improved peanut varieties with higher yields. PMID:29170673

  11. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants.

    PubMed

    García-Contreras, Rodolfo; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Hernández-González, Ismael L; Maeda, Toshinari; Hashimoto, Takahiro; Boogerd, Fred C; Sheng, Lili; Wood, Thomas K; Moreno-Sánchez, Rafael

    2013-12-01

    Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed 4- to 12-fold higher Ga minimal inhibitory growth concentrations and a greater than 8-fold increase in the minimum biofilm eliminating Ga concentration. Both types of mutants produced Ga resistant biofilms whereas the formation of wild-type biofilms was strongly inhibited by Ga. The gene interrupted in the transposon mutant was hitA, which encodes a periplasmic iron binding protein that delivers Fe³⁺ to the HitB iron permease; complementation of the mutant with the hitA gene restored the Ga sensitivity. This hitA mutant showed a 14-fold decrease in Ga internalization versus the wild-type strain, indicating that the HitAB system is also involved in the Ga uptake. Ga uptake in the spontaneous mutant was also lower, although no mutations were found in the hitAB genes. Instead, this mutant harbored 64 non-silent mutations in several genes including those of the phenazine pyocyanin biosynthesis. The spontaneous mutant produced 2-fold higher pyocyanin basal levels than the wild-type; the addition of this phenazine to wild-type cultures protected them from the Ga bacteriostatic effect. The present data indicate that mutations affecting Ga transport and probably pyocyanin biosynthesis enable cells to develop resistance to Ga. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Enriching the Environment of [alpha]CaMKII[superscript T286A] Mutant Mice Reveals that LTD Occurs in Memory Processing but Must be Subsequently Reversed by LTP

    ERIC Educational Resources Information Center

    Soto, Florentina; Giese, K. Peter; Edwards, Frances A.; Parsley, Stephanie L.; Pilgram, Sara M.

    2007-01-01

    [alpha]CaMKII[superscript T286A] mutant mice lack long-term potentiation (LTP) in the hippocampal CA1 region and are impaired in spatial learning. In situ hybridization confirms that the mutant mice show the same developmental expression of [alpha]CaMKII as their wild-type littermates. A simple hypothesis would suggest that if LTP is a substrate…

  13. Assessment of the Toxicity of CuO Nanoparticles by Using Saccharomyces cerevisiae Mutants with Multiple Genes Deleted

    PubMed Central

    Bao, Shaopan; Lu, Qicong; Dai, Heping; Zhang, Chao

    2015-01-01

    To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles. PMID:26386067

  14. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana

    DOEpatents

    Zhu, Jian-Kang [Riverside, CA; Quintero-Toscano, Francisco Javier [Sevilla, ES; Pardo-Prieto, Jose Manuel [Sevilla, ES; Qiu, Quansheng [Urbana, IL; Schumaker, Karen Sue [Tucson, AZ; Ohta, Masaru [Tsukuba, JP; Zhang, Changqing [Tucson, AZ; Guo, Yan [Beijing, CN

    2007-09-04

    The present invention provides a method of increasing salt tolerance in a plant by overexpressing a gene encoding a mutant SOS2 protein in at least one cell type in the plant. The present invention also provides for transgenic plants expressing the mutant SOS2 proteins.

  15. Misfolded opsin mutants display elevated β -sheet structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Lisa M.; Gragg, Megan; Kim, Tae Gyun

    Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinitis pigmentosa, a progressive retinal degenerative disease. The structure adopted by misfolded opsin mutants and the associated cell toxicity is poorly understood. Förster resonance energy transfer (FRET) and Fourier transform infrared (FTIR) microspectroscopy were utilized to probe within cells the structures formed by G188R and P23H opsins, which are misfolding mutants that cause autosomal dominant retinitis pigmentosa. Also, both mutants formed aggregates in the endoplasmic reticulum and exhibited altered secondary structure with elevated β-sheet and reduced α-helical content. The newly formed β-sheet structure may facilitate themore » aggregation of misfolded opsin mutants. In conclusion, the effects observed for the mutants were unrelated to retention of opsin molecules in the endoplasmic reticulum itself.« less

  16. Misfolded opsin mutants display elevated β -sheet structure

    DOE PAGES

    Miller, Lisa M.; Gragg, Megan; Kim, Tae Gyun; ...

    2015-09-07

    Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinitis pigmentosa, a progressive retinal degenerative disease. The structure adopted by misfolded opsin mutants and the associated cell toxicity is poorly understood. Förster resonance energy transfer (FRET) and Fourier transform infrared (FTIR) microspectroscopy were utilized to probe within cells the structures formed by G188R and P23H opsins, which are misfolding mutants that cause autosomal dominant retinitis pigmentosa. Also, both mutants formed aggregates in the endoplasmic reticulum and exhibited altered secondary structure with elevated β-sheet and reduced α-helical content. The newly formed β-sheet structure may facilitate themore » aggregation of misfolded opsin mutants. In conclusion, the effects observed for the mutants were unrelated to retention of opsin molecules in the endoplasmic reticulum itself.« less

  17. Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network.

    PubMed

    Wei, Shu; Gruber, Margaret Y; Yu, Bianyun; Gao, Ming-Jun; Khachatourians, George G; Hegedus, Dwayne D; Parkin, Isobel A P; Hannoufa, Abdelali

    2012-09-18

    The Arabidopsis microRNA156 (miR156) regulates 11 members of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) family by base pairing to complementary target mRNAs. Each SPL gene further regulates a set of other genes; thus, miR156 controls numerous genes through a complex gene regulation network. Increased axillary branching occurs in transgenic Arabidopsis overexpressing miR156b, similar to that observed in loss-of-function max3 and max4 mutants with lesions in carotenoid cleavage dioxygenases. Arabidopsis miR156b was found to enhance carotenoid levels and reproductive shoot branching when expressed in Brassica napus, suggesting a link between miR156b expression and carotenoid metabolism. However, details of the miR156 regulatory network of SPL genes related to carotenoid metabolism are not known. In this study, an Arabidopsis T-DNA enhancer mutant, sk156, was identified due to its altered branching and trichome morphology and increased seed carotenoid levels compared to wild type (WT) ecovar Columbia. Enhanced miR156b expression due to the 35S enhancers present on the T-DNA insert was responsible for these phenotypes. Constitutive and leaf primodium-specific expression of a miR156-insensitive (mutated) SPL15 (SPL15m) largely restored WT seed carotenoid levels and plant morphology when expressed in sk156. The Arabidopsis native miR156-sensitive SPL15 (SPL15n) and SPL15m driven by a native SPL15 promoter did not restore the WT phenotype in sk156. Our findings suggest that SPL15 function is somewhat redundant with other SPL family members, which collectively affect plant phenotypes. Moreover, substantially decreased miR156b transcript levels in sk156 expressing SPL15m, together with the presence of multiple repeats of SPL-binding GTAC core sequence close to the miR156b transcription start site, suggested feedback regulation of miR156b expression by SPL15. This was supported by the demonstration of specific in vitro interaction between DNA-binding SBP domain of SPL15

  18. Reversion of autocrine transformation by a dominant negative platelet-derived growth factor mutant.

    PubMed

    Vassbotn, F S; Andersson, M; Westermark, B; Heldin, C H; Ostman, A

    1993-07-01

    A non-receptor-binding mutant of the platelet-derived growth factor (PDGF) A chain, PDGF-0, was generated by exchanging 7 amino acids in the sequence. The mutant chains formed dimers that were similar to wild-type PDGF-AA with regard to stability and rate of processing to the mature 30-kDa secreted forms. Moreover, the mutant chains formed disulfide-bonded heterodimers with the PDGF B chain in NIH 3T3 cells heterodimer underwent the same processing and secretion as PDGF-AB. Transfection of c-sis-expressing 3T3 cells with PDGF-0 significantly inhibited the transformed phenotype of these cells, as determined by the following criteria. (i) Compared with PDGF-0-negative clones, PDGF-0-producing clones showed a reverted morphology. (ii) Clones producing PDGF-0 grew more slowly than PDGF-0-negative clones, with a fivefold difference in cell number after 14 days in culture. (iii) The expression of PDGF-0 completely inhibited the ability of the c-sis-expressing 3T3 cells to form colonies in soft agar; this inhibition was overcome by the addition of recombinant PDGF-BB to the culture medium, showing that the lack of colony formation of these cells was not due to a general unresponsiveness to PDGF. The specific expression of a PDGF-0/PDGF wild-type heterodimer in COS cells revealed that the affinity of the mutant heterodimer for the PDGF alpha receptor was decreased by approximately 50-fold compared with that of PDGF-AA. Thus, we show that a non-receptor-binding PDGF A-chain mutant neutralizes in a trans-dominant manner the autocrine transforming potential of the c-sis/PDGF B chain by forming low-affinity heterodimers with wild-type PDGF chains. This method of specifically antagonizing the effect of PDGF may be useful in investigations of the role of PDGF in normal and pathological conditions.

  19. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    PubMed

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  20. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes

    PubMed Central

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-01-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information. PMID:22384404

  1. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    PubMed

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. NRAS-mutant melanoma: current challenges and future prospect

    PubMed Central

    Muñoz-Couselo, Eva; Adelantado, Ester Zamora; Ortiz, Carolina; García, Jesús Soberino; Perez-Garcia, José

    2017-01-01

    Melanoma is one of the most common cutaneous cancers worldwide. Activating mutations in RAS oncogenes are found in a third of all human cancers and NRAS mutations are found in 15%–20% of melanomas. The NRAS-mutant subset of melanoma is more aggressive and associated with poorer outcomes, compared to non-NRAS-mutant melanoma. Although immune checkpoint inhibitors and targeted therapies for BRAF-mutant melanoma are transforming the treatment of metastatic melanoma, the ideal treatment for NRAS-mutant melanoma remains unknown. Despite promising preclinical data, current therapies for NRAS-mutant melanoma remain limited, showing a modest increase in progression-free survival but without any benefit in overall survival. Combining MEK inhibitors with agents inhibiting cell cycling and the PI3K–AKT pathway appears to provide additional benefit; in particular, a strategy of MEK inhibition and CDK4/6 inhibition is likely to be a viable treatment option in the future. Patients whose tumors had NRAS mutations had better response to immunotherapy and better outcomes than patients whose tumors had other genetic subtypes, suggesting that immune therapies – especially immune checkpoint inhibitors – may be particularly effective as treatment options for NRAS-mutant melanoma. Improved understanding of NRAS-mutant melanoma will be essential to develop new treatment strategies for this subset of patients with melanoma. PMID:28860801

  3. Gravitropism in roots of intermediate-starch mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Wright, J. B.; Caspar, T.

    1996-01-01

    Gravitropism was studied in roots of wild type (WT) Arabidopsis thaliana (L.) Heynh. (strain Wassilewskija) and three starch-deficient mutants that were generated by T-DNA insertional mutagenesis. One of these mutants was starchless while the other two were intermediate mutants, which had 51% and 60%, respectively, of the WT amount of starch as determined by light and electron microscopy. The four parameters used to assay gravitropism were: orientation during vertical growth, time course of curvature, induction, and intermittent stimulation experiments. WT roots were much more responsive to gravity than were roots of the starchless mutant, and the intermediate starch mutants exhibited an intermediate graviresponse. Our data suggest that lowered starch content in the mutants primarily affects gravitropism rather than differential growth because both phototropic curvature and growth rates were approximately equal among all four genotypes. Since responses of intermediate-starch mutants were closer to the WT response than to the starchless mutant, it appears that 51-60% of the WT level of starch is near the threshold amount needed for full gravitropic sensitivity. While other interpretations are possible, the data are consistent with the starch statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell.

  4. Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garber, E.D.; Baird, M.L.; Chapman, D.J.

    1975-12-01

    Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, $gamma$-carotene; and one yellow mutant, $beta$-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange- yellow, respectively. The whitemore » mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants. (auth)« less

  5. A limited role for carbonic anhydrase in C 4 photosynthesis as revealed by a ca1ca2 double mutant in maize.

    DOE PAGES

    Studer, Anthony J.; Gandin, Anthony; Kolbe, Allison R.; ...

    2014-04-04

    Carbonic anhydrase (CA) catalyzes the first biochemical step of the carbon concentrating mechanism of C 4 plants, and in C 4 monocots, it has been suggested that CA activity is near limiting for photosynthesis. Here, we test this hypothesis through the characterization of transposon induced mutant alleles of Ca1 and Ca2 in Zea mays. In addition, these two isoforms account for more than 85% of the CA transcript pool. A significant change in isotopic discrimination is observed in mutant plants, which have as little as 3% of wild-type CA activity, but surprisingly, photosynthesis is not reduced under current or elevatedmore » pCO 2. However, growth and rates of photosynthesis under sub-ambient pCO 2 are significantly impaired in the mutants. These findings suggest, that while CA is not limiting for C 4 photosynthesis in Z. mays at current pCO 2, it likely maintains high rates of photosynthesis when CO 2 availability is reduced. Current atmospheric CO 2 levels now exceed 400 ppm (~40.53 Pa) and contrast the low CO 2 partial pressure (pCO 2) conditions under which C 4 plants expanded their range ~10 million years ago when the global atmospheric CO 2 was below 300 ppm (~30.40 Pa). Thus, as CO 2 levels continue to rise, selective pressures for high levels of CA may be limited to arid climates where stomatal closure reduces CO 2 availability to the leaf.« less

  6. Accelerated bang recovery in Drosophila genderblind mutants.

    PubMed

    Featherstone, David E; Yanoga, Fatoumata; Grosjean, Yael

    2008-07-01

    Cystine-glutamate transporters import cystine into cells for glutathione synthesis and protection from oxidative stress, but also export significant amounts of glutamate. Increasing evidence suggests that 'ambient extracellular glutamate' secreted by cystine-glutamate transporters in the nervous system modulates glutamatergic synapse strength and behavior. To date, the only cystine-glutamate transporter mutants examined behaviorally are Drosophila genderblind mutants. These animals contain loss-of-function mutations in the 'genderblind' gene, which encodes an xCT subunit essential for cystine-glutamate transporter function. Genderblind was named based on a mutant courtship phenotype: male genderblind mutants are attracted to normally aversive male pheromones and thus court and attempt to copulate with both male and female partners equally. However, genderblind protein is expressed in many parts of the fly brain and thus might be expected to also regulate other behaviors, including behaviors not related to male courtship or chemosensation. Here, we show that genderblind mutants display faster recovery and increased negative geotaxis after strong mechanical stimuli (e.g., they climb faster and farther after vial banging). This phenotype is displayed by both males and females, consistent with strong genderblind expression in both sexes.

  7. Selection and characterization of a mutant of feline immunodeficiency virus resistant to 2',3'-dideoxycytidine.

    PubMed Central

    Medlin, H K; Zhu, Y Q; Remington, K M; Phillips, T R; North, T W

    1996-01-01

    We have selected and plaque purified a mutant of feline immunodeficiency virus (FIV) that is resistant to 2',3'-dideoxycytidine (ddC). This mutant was selected in cultured cells in the continuous presence of 25 microM ddC. The mutant, designated DCR-5c, was fourfold resistant to ddC, threefold resistant to 2',3'-dideoxyinosine, and more than fourfold resistant to phosphonoformic acid. DCR-5c displayed little or no resistance to (-)-beta-2',3'-dideoxy-3'-thiacytidine, 3'-azido-3'-deoxythymidine, or 9-(2-phosphonylmethoxyethyl) adenine. Reverse transcriptase purified from DCR-5c was less susceptible to inhibition by ddCTP, phosphonoformic acid, ddATP, or azido-dTTP than the wild-type FIV reverse transcriptase. Sequence analysis of DCR-5c revealed a single base change (G to C at nucleotide 2342) in the reverse transcriptase-encoding region of FIV. This mutation results in substitution of His for Asp at codon 3 of FIV reverse transcriptase. The role of this mutation in ddC resistance was confirmed by site-directed mutagenesis. PMID:8849258

  8. The Sequences of 1,504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies

    DOE PAGES

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; ...

    2017-06-02

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportionmore » of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. In conclusion, this work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.« less

  9. Arabidopsis Brassinosteroid-Insensitive dwarf12 Mutants Are Semidominant and Defective in a Glycogen Synthase Kinase 3β-Like Kinase1

    PubMed Central

    Choe, Sunghwa; Schmitz, Robert J.; Fujioka, Shozo; Takatsuto, Suguru; Lee, Mi-Ok; Yoshida, Shigeo; Feldmann, Kenneth A.; Tax, Frans E.

    2002-01-01

    Mutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations. dwf12 mutants displayed the characteristic morphology of previously reported BR dwarfs including short stature, short round leaves, infertility, and abnormal de-etiolation. In addition, dwf12 mutants exhibited several unique phenotypes, including severe downward curling of the leaves. Genetic analysis indicates that the two mutations are semidominant in that heterozygous plants show a semidwarf phenotype whose height is intermediate between wild-type and homozygous mutant plants. Unlike BR biosynthetic mutants, dwf12 plants were not rescued by high doses of exogenously applied BRs. Like bri1 mutants, dwf12 plants accumulated castasterone and brassinolide, 43- and 15-fold higher, respectively, providing further evidence that DWF12 is a component of the BR signaling pathway that includes BRI1. Map-based cloning of the DWF12 gene revealed that DWF12 belongs to a member of the glycogen synthase kinase 3β family. Unlike human glycogen synthase kinase 3β, DWF12 lacks the conserved serine-9 residue in the auto-inhibitory N terminus. In addition, dwf12-1D and dwf12-2D encode changes in consecutive glutamate residues in a highly conserved TREE domain. Together with previous reports that both bin2 and ucu1 mutants contain mutations in this TREE domain, this provides evidence that the TREE domain is of critical importance for proper function of DWF12/BIN2/UCU1 in BR signal transduction pathways. PMID:12428015

  10. Mutants of the lactose carrier of Escherichia coli which show altered sugar recognition plus a severe defect in sugar accumulation.

    PubMed

    Varela, M F; Wilson, T H; Rodon-Rivera, V; Shepherd, S; Dehne, T A; Rector, A C

    2000-04-01

    Lactose and melibiose are actively accumulated by the wild-type Escherichia coli lactose carrier, which is an integral membrane protein energized by the proton motive force. Mutants of the E. coli lactose carrier were isolated by their ability to grow on minimal plates with succinate plus IPTG in the presence of the toxic lactose analog beta-thio-o-nitrophenylgalactoside (TONPG). TONPG-resistant mutants were streaked on melibiose MacConkey indicator plates, and red clones were picked. These melibiose positive mutants were then streaked on lactose MacConkey plates, and white clones were picked. Transport assays indicated that the mutants had altered sugar recognition and a defect in sugar accumulation. The mutants had a poor apparent K(m) for both lactose and melibiose in transport. One mutant had almost no ability to take up lactose, but melibiose downhill transport was 58% (V(max)) of normal. All of the mutants accumulated methyl-alpha-d-galactopyranoside (TMG) to only 8% or less of normal, and two failed to accumulate. Immunoblot analysis of the mutant lactose carrier proteins indicated that loss of sugar transport activity was not due to loss of expression in the membrane. Nucleotide sequencing of the lacY gene from the mutants revealed changes in the following amino acids of the lactose carrier: M23I, W151L, G257D, A295D and G377V. Two of the mutants (G257D and G377V) are novel in that they represent the first amino acids in periplasmic loops to be implicated with changes in sugar recognition. We conclude that the amino acids M23, W151, G257, A295 and G377 of the E. coli lactose carrier play either a direct or an indirect role in sugar recognition and accumulation.

  11. Selective targeting of KRAS-Mutant cells by miR-126 through repression of multiple genes essential for the survival of KRAS-Mutant cells

    PubMed Central

    Hara, Toshifumi; Jones, Matthew F.; Subramanian, Murugan; Li, Xiao Ling; Ou, Oliver; Zhu, Yuelin; Yang, Yuan; Wakefield, Lalage M.; Hussain, S. Perwez; Gaedcke, Jochen; Ried, Thomas; Luo, Ji; Caplen, Natasha J.; Lal, Ashish

    2014-01-01

    MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors. PMID:25245095

  12. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae.

    PubMed

    Nijland, Jeroen G; Shin, Hyun Yong; Boender, Leonie G M; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    2017-06-01

    Engineering Saccharomyces cerevisiae for the utilization of pentose sugars is an important goal for the production of second-generation bioethanol and biochemicals. However, S. cerevisiae lacks specific pentose transporters, and in the presence of glucose, pentoses enter the cell inefficiently via endogenous hexose transporters (HXTs). By means of in vivo engineering, we have developed a quadruple hexokinase deletion mutant of S. cerevisiae that evolved into a strain that efficiently utilizes d-xylose in the presence of high d-glucose concentrations. A genome sequence analysis revealed a mutation (Y353C) in the general corepressor CYC8 , or SSN6 , which was found to be responsible for the phenotype when introduced individually in the nonevolved strain. A transcriptome analysis revealed altered expression of 95 genes in total, including genes involved in (i) hexose transport, (ii) maltose metabolism, (iii) cell wall function (mannoprotein family), and (iv) unknown functions (seripauperin multigene family). Of the 18 known HXTs, genes for 9 were upregulated, especially the low or nonexpressed HXT10 , HXT13 , HXT15 , and HXT16 Mutant cells showed increased uptake rates of d-xylose in the presence of d-glucose, as well as elevated maximum rates of metabolism ( V max ) for both d-glucose and d-xylose transport. The data suggest that the increased expression of multiple hexose transporters renders d-xylose metabolism less sensitive to d-glucose inhibition due to an elevated transport rate of d-xylose into the cell. IMPORTANCE The yeast Saccharomyces cerevisiae is used for second-generation bioethanol formation. However, growth on xylose is limited by pentose transport through the endogenous hexose transporters (HXTs), as uptake is outcompeted by the preferred substrate, glucose. Mutant strains were obtained with improved growth characteristics on xylose in the presence of glucose, and the mutations mapped to the regulator Cyc8. The inactivation of Cyc8 caused increased

  13. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence.

    PubMed Central

    Jahn, B; Koch, A; Schmidt, A; Wanner, G; Gehringer, H; Bhakdi, S; Brakhage, A A

    1997-01-01

    Aspergillus fumigatus is an important pathogen of immunocompromised hosts, causing pneumonia and invasive disseminated disease with high mortality. The factors contributing to the predominance of A. fumigatus as an opportunistic pathogen are largely unknown. Since the survival of conidia in the host is a prerequisite for establishing disease, we have been attempting to identify factors which are associated with conidia and, simultaneously, important for infection. Therefore, an A. fumigatus mutant strain (white [W]) lacking conidial pigmentation was isolated. Scanning electron microscopy revealed that conidia of the W mutant also differed in their surface morphology from those of the wild type (WT). Mutant (W) and WT conidia were compared with respect to their capacities to stimulate an oxidative response in human phagocytes, their intracellular survival in human monocytes, and virulence in a murine animal model. Luminol-dependent chemiluminescence was 10-fold higher when human neutrophils or monocytes were challenged with W conidia compared with WT conidia. Furthermore, mutant conidia were more susceptible to killing by oxidants in vitro and were more efficiently damaged by human monocytes in vitro than WT conidia. In a murine animal model, the W mutant strain showed reduced virulence compared with the WT. A reversion analysis of the W mutant demonstrated that all phenotypes associated with the W mutant, i.e., altered conidial surface, amount of reactive oxygen species release, susceptibility to hydrogen peroxide, and reduced virulence in an murine animal model, coreverted in revertants which had regained the ability to produce green spores. This finding strongly suggests that the A. fumigatus mutant described here carries a single mutation which caused all of the observed phenotypes. Our results suggest that the conidium pigment or a structural feature related to it contributes to fungal resistance against host defense mechanisms in A. fumigatus infections. PMID

  14. Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition

    PubMed Central

    Vermerris, Wilfred; Sherman, Debra M.; McIntyre, Lauren M.

    2010-01-01

    The hydrophobic cell wall polymer lignin is deposited in specialized cells to make them impermeable to water and prevent cell collapse as negative pressure or gravitational force is exerted. The variation in lignin subunit composition that exists among different species, and among different tissues within the same species suggests that lignin subunit composition varies depending on its precise function. In order to gain a better understanding of the relationship between lignin subunit composition and the physico-chemical properties of lignified tissues, detailed analyses were performed of near-isogenic brown midrib2 (bm2), bm4, bm2-bm4, and bm1-bm2-bm4 mutants of maize. This investigation was motivated by the fact that the bm2-bm4 double mutant is substantially shorter, displays drought symptoms even when well watered, and will often not develop reproductive organs, whereas the phenotypes of the individual bm single mutants and double mutant combinations other than bm2-bm4 are only subtly different from the wild-type control. Detailed cell wall compositional analyses revealed midrib-specific reductions in Klason lignin content in the bm2, bm4, and bm2-bm4 mutants relative to the wild-type control, with reductions in both guaiacyl (G)- and syringyl (S)-residues. The cellulose content was not different, but the reduction in lignin content was compensated by an increase in hemicellulosic polysaccharides. Linear discriminant analysis performed on the compositional data indicated that the bm2 and bm4 mutations act independently of each other on common cell wall biosynthetic steps. After quantitative analysis of scanning electron micrographs of midrib sections, the variation in chemical composition of the cell walls was shown to be correlated with the thickness of the sclerenchyma cell walls, but not with xylem vessel surface area. The bm2-bm4 double mutant represents the limit of phenotypic plasticity in cell wall composition, as the bm1-bm2-bm4 and bm2-bm3-bm4 mutants

  15. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.

    PubMed

    Dusenbery, D B; Sheridan, R E; Russell, R L

    1975-06-01

    The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.

  16. Defective transport of the obesity mutant PC1/3 N222D contributes to loss of function.

    PubMed

    Prabhu, Yogikala; Blanco, Elias H; Liu, Ming; Peinado, Juan R; Wheeler, Matthew C; Gekakis, Nicholas; Arvan, Peter; Lindberg, Iris

    2014-07-01

    Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3(N222D) mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3(N222D) mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity.

  17. Defective Transport of the Obesity Mutant PC1/3 N222D Contributes to Loss of Function

    PubMed Central

    Prabhu, Yogikala; Blanco, Elias H.; Liu, Ming; Peinado, Juan R.; Wheeler, Matthew C.; Gekakis, Nicholas; Arvan, Peter

    2014-01-01

    Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3N222D mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3N222D mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity. PMID:24828610

  18. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    PubMed Central

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  19. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation.

    PubMed

    Wang, Fang; Travins, Jeremy; DeLaBarre, Byron; Penard-Lacronique, Virginie; Schalm, Stefanie; Hansen, Erica; Straley, Kimberly; Kernytsky, Andrew; Liu, Wei; Gliser, Camelia; Yang, Hua; Gross, Stefan; Artin, Erin; Saada, Veronique; Mylonas, Elena; Quivoron, Cyril; Popovici-Muller, Janeta; Saunders, Jeffrey O; Salituro, Francesco G; Yan, Shunqi; Murray, Stuart; Wei, Wentao; Gao, Yi; Dang, Lenny; Dorsch, Marion; Agresta, Sam; Schenkein, David P; Biller, Scott A; Su, Shinsan M; de Botton, Stephane; Yen, Katharine E

    2013-05-03

    A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.

  20. Poliovirus Mutants Resistant to Neutralization with Soluble Cell Receptors

    NASA Astrophysics Data System (ADS)

    Kaplan, Gerardo; Peters, David; Racaniello, Vincent R.

    1990-12-01

    Poliovirus mutants resistant to neutralization with soluble cellular receptor were isolated. Replication of soluble receptor-resistant (srr) mutants was blocked by a monoclonal antibody directed against the HeLa cell receptor for poliovirus, indicating that the mutants use this receptor to enter cells. The srr mutants showed reduced binding to HeLa cells and cell membranes. However, the reduced binding phenotype did not have a major impact on viral replication, as judged by plaque size and one-step growth curves. These results suggest that the use of soluble receptors as antiviral agents could lead to the selection of neutralization-resistant mutants that are able to bind cell surface receptors, replicate, and cause disease.

  1. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    PubMed

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  2. Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation.

    PubMed

    Ip, H; D'Aoust, F; Begum, A A; Zhang, H; Smith, D L; Driscoll, B T; Charles, T C

    2001-12-01

    Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.

  3. Comprehensive analysis of titin protein isoform and alternative splicing in normal and mutant rats.

    PubMed

    Li, Shijun; Guo, Wei; Schmitt, Benjamin M; Greaser, Marion L

    2012-04-01

    Titin is a giant protein with multiple functions in cardiac and skeletal muscles. Rat cardiac titin undergoes developmental isoform transition from the neonatal 3.7 MDa N2BA isoform to primarily the adult 2.97 MDa N2B isoform. An autosomal dominant mutation dramatically altered this transformation. Titins from eight skeletal muscles: Tibialis Anterior (TA), Longissimus Dorsi (LD) and Gastrocnemius (GA), Extensor Digitorum Longus (ED), Soleus (SO), Psoas (PS), Extensor Oblique (EO), and Diaphram (DI) were characterized in wild type and in homozygous mutant (Hm) rats with a titin splicing defect. Results showed that the developmental reduction in titin size is eliminated in the mutant rat so that the titins in all investigated skeletal muscles remain large in the adult. The alternative splicing of titin mRNA was found repressed by this mutation, a result consistent with the large titin isoform in the mutant. The developmental pattern of titin mRNA alternative splicing differs between heart and skeletal muscles. The retention of intron 49 reveals a possible mechanism for the absence of the N2B unique region in the expressed titin protein of skeletal muscle. © 2011 Wiley Periodicals, Inc.

  4. Mutant number distribution in an exponentially growing population

    NASA Astrophysics Data System (ADS)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.

  5. Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis

    PubMed Central

    Deng, Ying; Nagachar, Nivedita; Xiao, Chaowen; Tien, Ming

    2013-01-01

    The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel−) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript “Ax” indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel− mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel− mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding β-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis. PMID:24013627

  6. Registration of two allelic erect leaf mutants of sorghum

    USDA-ARS?s Scientific Manuscript database

    Two allelic sorghum [Sorghum bicolor (L.) Moench] erect leaf (erl) mutants were isolated from an Annotated Individually-pedigreed Mutagenized Sorghum (AIMS) mutant library developed at the Plant Stress and Germplasm Development Unit, at Lubbock, Texas. The two mutants, erl1-1 and erl1-2, were isol...

  7. Conformational and hydration properties modulate ice recognition by type I antifreeze protein and its mutants.

    PubMed

    Chakraborty, Sandipan; Jana, Biman

    2017-05-10

    The mechanism of ice recognition by antifreeze protein (AFP) is a topic of recent interest. Here, using equilibrium simulations and free energy calculations, we provide structural rationale to the observed experimental anomalies on type I AFP (wfAFP isoform HPLC6) and its mutants as well as probe the molecular origin of ice recognition by them. Our results clearly demonstrate that the interplay between the conformational and hydration properties dictates the ice binding ability of type I AFP and its mutants. We find that HPLC6 exists as a highly stable long helix which adsorbs on the ice surface through the ordered water cages around the CH 3 group of threonine (THR) residues, rather than directly binding to the ice surface via threonine (THR) through hydrogen bonding. Upon mutating THR with serine (SER), the straight helix conformation of HPLC6 disappears and the most stable conformation is a kinked helix devoid of ice binding ability. Free energy calculations reveal that there is a dynamic equilibrium between straight and bent helical conformations in the case of a valine (VAL) mutant. The straight long helical form of the VAL mutant also has the ability to form an ordered water cage structure around the CH 3 groups of the VAL residues and thereby efficiently adsorbs on an ice plane similar to the wild type AFP.

  8. Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis.

    PubMed

    Lin, Yu-Mei; Chou, I-Chun; Wang, Jaw-Fen; Ho, Fang-I; Chu, Yu-Ju; Huang, Pei-Cheng; Lu, Der-Kang; Shen, Hwei-Ling; Elbaz, Mounira; Huang, Shu-Mei; Cheng, Chiu-Ping

    2008-09-01

    Ralstonia solanacearum causes a deadly wilting disease on a wide range of crops. To elucidate pathogenesis of this bacterium in different host plants, we set out to identify R. solanacearum genes involved in pathogenesis by screening random transposon insertion mutants of a highly virulent strain, Pss190, on tomato and Arabidopsis thaliana. Mutants exhibiting various decreased virulence levels on these two hosts were identified. Sequence analysis showed that most, but not all, of the identified pathogenesis genes are conserved among distinct R. solanacearum strains. A few of the disrupted loci were not reported previously as being involved in R. solanacearum pathogenesis. Notably, a group of mutants exhibited differential pathogenesis on tomato and Arabidopsis. These results were confirmed by characterizing allelic mutants in one other R. solanacearum strain of the same phylotype. The significantly decreased mutants' colonization in Arabidopsis was found to be correlated with differential pathogenesis on these two plants. Differential requirement of virulence genes suggests adaptation of this bacterium in different host environments. Together, this study reveals commonalities and differences of R. solanacearum pathogenesis on single solanaceous and nonsolanaceous hosts, and provides important new insights into interactions between R. solanacearum and different host plants.

  9. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches

    PubMed Central

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-01-01

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points. PMID:27136541

  10. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches.

    PubMed

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-04-29

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points.

  11. Novel hydrotropism mutants of Arabidopsis thaliana and their altered waving response and phototropism.

    PubMed

    Takahashi, Akiko; Kobayashi, Akie; Kakimoto, Yoko; Fujii, Nobuharu; Takahashi, Hideyuki

    2003-10-01

    Roots display positive hydrotropism in response to a moisture gradient, which is important for plants to escape from water stress and regulate the directional growth by interacting with other growth movements such as gravitropism, phototropism and waving response. On Earth, hydrotropism is interfered by gravitropism in particular, so that microgravity conditions or agravitropic mutants have been used for the study of hydrotropism. However, we have recently established an experimental system for the study of hydrotropism in Arabidopsis roots that easily develop hydrotropism in response to moisture gradient by overcoming gravitropism. Using the Arabidopsis system, we isolated hydrotropism mutants named root hydrotropism (rhy). In the present study, we examined the hydrotropism, gravitropism, phototropism, waving response and elongation growth of rhy4 and rhy5 roots that were defective in positive hydrotropism. Interestingly, rhy4 roots curved away from the water source and showed a reduced waving response. Both rhy4 and rhy5 showed normal gravitropism and a slight reduction in phototropism. These results suggest that there is a mutual molecular mechanism underlying hydrotropism, waving response and/or phototropism. Thus, we have obtained novel hydrotropic mutants that will be used for revealing molecular mechanism of root hydrotropism and its interaction with waving response and/or phototropism.

  12. Repulsion between Lys258 and upstream arginines explains the missorting of the AQP2 mutant p.Glu258Lys in nephrogenic diabetes insipidus.

    PubMed

    Kamsteeg, Erik-Jan; Stoffels, Monique; Tamma, Grazia; Konings, Irene B M; Deen, Peter M T

    2009-10-01

    Regulation of body water homeostasis occurs by the vasopressin-dependent sorting of aquaporin-2 (AQP2) water channels to and from the apical membrane of renal principal cells. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease that renders the kidney unresponsive to vasopressin, resulting in polyuria and polydipsia. The AQP2 mutant c.772G>A; p.Glu258Lys (AQP2-E258K) causes dominant NDI by oligomerizing with wild-type AQP2 and missorting of this AQP2 complex to multivesicular bodies instead of the apical membrane. The motif causing this missorting of AQP2-E258K was identified here. Functional analyses and plasma membrane expression studies of truncation mutants in oocytes revealed that AQP2-E258K shortened to Leu259 is still intracellular retained. Alanine scanning and glutamic acid to arginine exchanges revealed increased function and plasma membrane expression for AQP2-E258K mutants with the following additional changes: Leu259Ala, Arg252Glu, Arg253Glu, or Arg252Ala-Arg254Ala, or for the AQP2 mutant p.Glu258Ala, indicating that the motif RRRxxxK(258)L confers AQP2-E258K retention. Fusion of this motif to aquaporin-1 also resulted in missorting of that water channel, indicating that this retention motif is transferable. In conclusion, our data reveal that the RRRxxxKL motif and repulsion between K258 and the arginine-triplet within this motif are the primary cause of missorting of AQP2-E258K in NDI.

  13. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice.

    PubMed

    Petit, Fabrice G; Deng, Chuxia; Jamin, Soazik P

    2016-01-01

    Müllerian duct regression is a complex process which involves the AMH signalling pathway. We have previously demonstrated that besides AMH and its specific type II receptor (AMHRII), BMPR-IA and Smad5 are two essential factors implicated in this mechanism. Mothers against decapentaplegic homolog 4 (Smad4) is a transcription factor and the common Smad (co-Smad) involved in transforming growth factor beta (TGF-β) signalling pathway superfamily. Since Smad4 null mutants die early during gastrulation, we have inactivated Smad4 in the Müllerian duct mesenchyme. Specific inactivation of Smad4 in the urogenital ridge leads to the partial persistence of the Müllerian duct in adult male mice. Careful examination of the urogenital tract reveals that the Müllerian duct retention is randomly distributed either on one side or both sides. Histological analysis shows a uterus-like structure, which is confirmed by the expression of estrogen receptor α. As previously described in a β-catenin conditional mutant mouse model, β-catenin contributes to Müllerian duct regression. In our mutant male embryos, it appears that β-catenin expression is locally reduced along the urogenital ridge as compared to control mice. Moreover, the expression pattern is similar to those observed in control female mice. This study shows that reduced Smad4 expression disrupts the Wnt/β-catenin signalling leading to the partial persistence of Müllerian duct.

  14. Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps

    PubMed Central

    Piedade, Ana Paula; Morais, Paula V.

    2015-01-01

    Ochrobactrum tritici SCII24T is a highly As-resistant bacterium, with two previously described arsenic resistance operons, ars1 and ars2. Among a large number of genes, these operons contain the arsB and Acr3 genes that encode the arsenite efflux pumps responsible for arsenic resistance. Exploring the genome of O. tritici SCII24T, an additional putative operon (ars3) was identified and revealed the presence of the Acr3_2 gene that encodes for an arsenite efflux protein but which came to prove to not be required for full As resistance. The genes encoding for arsenite efflux pumps, identified in this strain, were inactivated to develop microbial accumulators of arsenic as new tools for bioremediation. Six different mutants were produced, studied and three were more useful as biotools. O. tritici wild type and the Acr3-mutants showed the highest resistance to As(III), being able to grow up to 50 mM of arsenite. On the other hand, arsB-mutants were not able to grow at concentrations higher than 1 mM As(III), and were the most As(III) sensitive mutants. In the presence of 1 mM As(III), the strain with arsB and Acr3_1 mutated showed the highest intracellular arsenic concentration (up to 17 ng(As)/mg protein), while in assays with 5 mM As(III), the single arsB-mutant was able to accumulate the highest concentration of arsenic (up to 10 ng(As)/mg protein). Therefore, arsB is the main gene responsible for arsenite resistance in O. tritici. However, both genes arsB and Acr3_1 play a crucial role in the resistance mechanism, depending on the arsenite concentration in the medium. In conclusion, at moderate arsenite concentrations, the double arsB- and Acr3_1-mutant exhibited a great ability to accumulate arsenite and can be seen as a promising bioremediation tool for environmental arsenic detoxification. PMID:26132104

  15. Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant

    PubMed Central

    Ramírez-Nava, Edson Jiovany; González-Valdez, Abigail; Vanoye-Carlo, America; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Hernández-Pineda, Jessica; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto; Oria-Hernández, Jesús; Reyes-Vivas, Horacio; Marcial-Quino, Jaime

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD) and G6PD Nefza (Leu323Pro), and the double mutant G6PD A− (Asn126Asp + Leu323Pro). The mutants showed lower residual activity (≤50% of WT G6PD) and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A−. Moreover, our study suggests that the G6PD Nefza and G6PD A− mutations affect enzyme functions in a similar fashion to those reported for Class I mutations. PMID:29072585

  16. Malaria parasite mutants with altered erythrocyte permeability: a new drug resistance mechanism and important molecular tool

    PubMed Central

    Hill, David A; Desai, Sanjay A

    2010-01-01

    Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane. PMID:20020831

  17. Isolation of ntrA-like mutants of Azotobacter vinelandii.

    PubMed Central

    Santero, E; Luque, F; Medina, J R; Tortolero, M

    1986-01-01

    A number of chlorate-resistant mutants of Azotobacter vinelandii affected in a general control of nitrogen metabolism were isolated. These mutants could not utilize dinitrogen, nitrate, or nitrite as a nitrogen source. The reason for this inability is that they were simultaneously deficient in nitrogenase and nitrate and nitrite reductase activities. They were complemented by a cosmid carrying a DNA fragment of A. vinelandii able to complement ntrA mutants of Escherichia coli, so they seemed to be ntrA-like mutants. PMID:3009406

  18. Isolation and preliminary characterization of temperature-sensitive mutants of influenza virus.

    PubMed

    Sugiura, A; Tobita, K; Kilbourne, E D

    1972-10-01

    Isolation of temperature-sensitive (ts) mutants was attempted from the WSN strain of influenza A virus which was grown and assayed in MDBK cells. After growth of wild-type virus in the presence of 5-fluorouracil, 15 ts mutants were selected for which the ratio of plaquing efficiency at 39.5 C to that at 33 C was 10(-3) or less. In pairwise crosses of ts mutants, recombination and complementation were either very efficient or undetectable. It is suggested, therefore, that the viral genome consists of physically discrete units and recombination occurs as an exchange of these units. All 15 mutants have been assigned with certainty into five recombination groups. Three mutants are suspected to be double mutants. Any two complementing mutants always recombined with each other, and noncomplementing mutants did not recombine. In physiological tests, mutants showed diverse patterns of functional defects at the nonpermissive temperature. However, it was not always possible to correlate these physiological defects with the results of genetic characterization.

  19. Analysis of AtCry1 and Mutants

    NASA Astrophysics Data System (ADS)

    Burdick, Derek; Purvis, Adam; Ahmad, Margaret; Link, Justin J.; Engle, Dorothy

    Cryptochrome is an incredibly versatile protein that influences numerous biological processes such as plant growth, bird migration, and sleep cycles. Due to the versatility of this protein, understanding the mechanism would allow for advances in numerous fields such as crop growth, animal behavior, and sleep disorders. It is known that cryptochrome requires blue light to function, but the exact processes in the regulation of biological activity are still not fully understood. It is believed that the c-terminal domain of the protein undergoes a conformational change when exposed to blue light which allows for biological function. Three different non-functioning mutants were tested during this study to gain insight on the mechanism of cryptochrome. Absorbance spectra showed a difference between two of the mutants and the wild type with one mutant showing little difference. Immunoprecipitation experiments were also conducted to identify the different c-terminal responses of the mutants. By studying non functioning mutants of this protein, the mechanism of the protein can be further characterized. This two-month research experience in Paris allowed us to experience international and interdisciplinary collaborations in science and immerse in a different culture. The Borcer Fund for Student Research, Xavier University, Cincinnati, OH, and John Hauck Foundation.

  20. Genetic Mapping of a Mutant Defective in d, l-Alanine Racemase in Bacillus subtilis 168

    PubMed Central

    Dul, Michael J.; Young, Frank E.

    1973-01-01

    Genetic analysis of a d-alanine requiring mutant (dal) of Bacillus subtilis reveals that the gene that codes for d,l-alanine racemase is linked to purB. The order of genes in this region of the chromosome is purB, pig, tsi, dal. Thus there are at least two clusters of genes that regulate cell wall biosynthesis in B. subtilis. PMID:4199510

  1. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus

    PubMed Central

    Starruß, Jörn; Peruani, Fernando; Jakovljevic, Vladimir; Søgaard-Andersen, Lotte; Deutsch, Andreas; Bär, Markus

    2012-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional reversals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies, depending on their nutritional status. To ultimately understand these two pattern-formation processes and the contributions by the two motility machineries, as well as the cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains: (i) a mutant that moves unidirectionally without reversing by the A-motility system only, (ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the wild-type that, in addition to the two motility systems, occasionally reverses its direction of movement. The mutant moving by means of the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria owing to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results in vortex formation at very high densities. These findings are consistent with what is known from self-propelled rod models, which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern-formation mechanism leading to the observed phenomena. On the other hand, we learn that when cells occasionally reverse

  2. The role of protein plasticity in computational rationalization studies on regioselectivity in testosterone hydroxylation by cytochrome P450 BM3 mutants.

    PubMed

    de Beer, Stephanie B A; van Bergen, Laura A H; Keijzer, Karlijn; Rea, Vanina; Venkataraman, Harini; Guerra, Celia Fonseca; Bickelhaupt, F Matthias; Vermeulen, Nico P E; Commandeur, Jan N M; Geerke, Daan P

    2012-02-01

    Recently, it was found that mutations in the binding cavity of drug-metabolizing Cytochrome P450 BM3 mutants can result in major changes in regioselectivity in testosterone (TES) hydroxylation. In the current work, we report the intrinsic reactivity of TES' C-H bonds and our attempts to rationalize experimentally observed changes in TES hydroxylation using a protein structure-based in silico approach, by setting up and employing a combined Molecular Dynamics (MD) and ligand docking approach to account for the flexibility and plasticity of BM3 mutants. Using this approach, about 100,000 TES binding poses were obtained per mutant. The predicted regioselectivity in TES hydroxylation by the mutants was found to be in disagreement with experiment. As revealed in a detailed structural analysis of the obtained docking poses, this disagreement is due to limitations in correctly scoring hydrogen-bonding and steric interactions with specific active-site residues, which could explain the experimentally observed trends in regioselectivity in TES hydroxylation.

  3. Methods of producing protoporphyrin IX and bacterial mutants therefor

    DOEpatents

    Zhou, Jizhong; Qiu, Dongru; He, Zhili; Xie, Ming

    2016-03-01

    The presently disclosed inventive concepts are directed in certain embodiments to a method of producing protoporphyrin IX by (1) cultivating a strain of Shewanella bacteria in a culture medium under conditions suitable for growth thereof, and (2) recovering the protoporphyrin IX from the culture medium. The strain of Shewanella bacteria comprises at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX. In certain embodiments of the method, the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or of shew_1140. In other embodiments, the presently disclosed inventive concepts are directed to mutant strains of Shewanella bacteria having at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX during cultivation of the bacteria. In certain embodiments the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or shew_1140.

  4. Cortex content of asporogenous mutants of Bacillus subtilis.

    PubMed Central

    Imae, Y; Strominger, J L

    1976-01-01

    A method for the measurement of muramic lactam, which is specifically located in the cortical peptidoglycan of bacterial spores, was developed as a quantitative assay method for spore cortex content. During sporulation of Bacillus subtilis 168, muramic lactam (i.e., spore cortex) began to appear at state IV of sporulation and continued to increase over most of the late stages of sporulation. Spore cortex contents of various spo mutants of B. subitils were surveyed. Cortex was not detected in mutants in which sporulation was blocked earlier than stage II sporulation. Spores of spo IV mutant had about 40% of the cortex content of the wild-type spores. One spo III mutant had a low amount of cortex, but four others had none. PMID:1262319

  5. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant.

    PubMed

    Zhao, Fengli; Li, Gang; Hu, Panpan; Zhao, Xia; Li, Liangjie; Wei, Wei; Feng, Jiayue; Zhou, Houcheng

    2018-02-09

    As the second largest transcription factor family in plant, the basic helix-loop-helix (bHLH) transcription factor family, characterized by the conserved bHLH domain, plays a central regulatory role in many biological process. However, the bHLH transcription factor family of strawberry has not been systematically identified, especially for the anthocyanin biosynthesis. Here, we identified a total of 113 bHLH transcription factors and described their chromosomal distribution and bioinformatics for the diploid woodland strawberry Fragaria vesca. In addition, transcription profiles of 113 orthologous bHLH genes from various tissues were analyzed for the cultivar 'Benihoppe', its white-flesh mutant 'Xiaobai', and the 'Snow Princess' from their fruit development to the ripening, as well as those under either the ABA or Eth treatment. Both the RT-PCR and qRT-PCR results show that seven selected FabHLH genes (FabHLH17, FabHLH25, FabHLH27, FabHLH29, FabHLH40, FabHLH80, FabHLH98) are responsive to the fruit anthocyanin biosynthesis and hormone signaling according to transcript profiles where three color modes are observed for strawberry's fruit skin and flesh. Further, prediction for the protein interaction network reveals that four bHLHs (FabHLH25, FabHLH29, FabHLH80, FabHLH98) are involved in the fruit anthocyanin biosynthesis and hormone signaling transduction. These bioinformatics and expression profiles provide a good basis for a further investigation of strawberry bHLH genes.

  6. Low-energy N-ion beam biotechnology application in the induction of Thai jasmine rice mutant with improved seed storability

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Techarang, Jiranat; Yu, Liangdeng; Phanchaisri, Boonrak

    2018-06-01

    Low-energy heavy-ion beam is a novel biotechnology used for mutation induction in plants. We used a low-energy N-ion beam to induce mutations in Thai jasmine rice (Oryza sativa L. cv. KDML 105) to improve the yield and seed quality. Seeds of BKOS6, a Thai jasmine rice mutant previously induced by ion beams, were re-bombarded with 60-kV-accelerated N-ions (N++N2+) to fluences of 1-2 × 1016 ions/cm2. The resulting mutant, named HyKOS21, exhibited photoperiod insensitivity, semi-dwarfness, and high yield potential. Seed storability of the mutant was studied in natural and accelerated ageing conditions and compared to that of KDML 105 and six other Thai rice varieties. In both testing conditions, HyKOS21 mutant had the highest seed storability among the tested varieties. After storage in the natural condition for 18 months, HyKOS21 had a seed germination percentage nearly two times as that of the original KDML 105. Biochemical analysis showed that the lipid peroxidation level of the mutant seeds was the lowest among those of the tested varieties. Furthermore, an expression analysis of genes encoding lipoxygenase isoenzyme (lox1, lox2, and lox3) revealed that the mutant lacked expression of lox1 and lox2 and expressed only lox3 in seeds. These results may explain the improved seed longevity of the mutant after storage. This work provides further evidence of the modification of biological materials using a low-energy ion beam to produce rice mutants with improved yield and seed storability. The benefits of this technology, to create new varieties with improved values, could serve for local economic development.

  7. UV-induced lethal sectoring and pure mutant clones in yeast.

    PubMed

    Hannan, M A; Duck, P; Nasim, A

    1976-08-01

    The induction of lethal sectoring and pure mutant clones by ultraviolet light has been studied in a homogeneous G1 population of Saccharomyces cerevisiae grown in a normal growth medium. At the lowest UV dose of 250 ergs, which corresponds to a shoulder in the survival curve, all mutants appeared as pure clones. At higher doses the frequency of mosaic mutants progressively increased. These results indicate a relationship between the highest frequency of complete mutants and the maximum repair activity. In addition, the frequency of lethal sectoring at all doses tested was too low to account for the origin of pure mutant clones.

  8. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi VI. Electron Transport in Mutant Strains Lacking Either Cytochrome 553 or Plastocyanin 1

    PubMed Central

    Gorman, Donald S.; Levine, R. P.

    1966-01-01

    A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453

  9. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease

    PubMed Central

    Yin, Xiangling; Manczak, Maria; Reddy, P. Hemachandra

    2016-01-01

    The objective of this study was to determine the protective effects of the mitochondria-targeted molecules MitoQ and SS31 in striatal neurons that stably express mutant huntingtin (Htt) (STHDhQ111/Q111) in Huntington's disease (HD). We studied mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, mitochondrial function, and ultra-structural changes in MitoQ- and SS31-treated mutant Htt neurons relative to untreated mutant Htt neurons. We used gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods. In the MitoQ- and SS31-treated mutant Htt neurons, fission genes Drp1 and Fis1 were down-regulated, and fusion genes Mfn1, Mfn2 and Opa1 were up-regulated relative to untreated neurons, suggesting that mitochondria-targeted molecules reduce fission activity. Interestingly, the mitochondrial biogenesis genes PGC1α, PGC1β, Nrf1, Nrf2 and TFAM were up-regulated in MitoQ- and SS31-treated mutant Htt neurons. The synaptic genes synaptophysin and PSD95 were up-regulated, and mitochondrial function was normal in the MitoQ- and SS31-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with the mRNA findings. TEM studies revealed decreased numbers of structurally intact mitochondria in MitoQ- and SS31-treated mutant Htt neurons. These findings suggest that mitochondria-targeted molecules MitoQ and SS31 are protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons, and these mitochondria-targeted molecules are potential therapeutic molecules for the treatment of HD neurons. PMID:26908605

  10. Characterization of endoplasmic reticulum-associated degradation of a protein S mutant identified in a family of quantitative protein S deficiency.

    PubMed

    Tsuda, Hiroko; Tokunaga, Fuminori; Nagamitsu, Hiroshi; Koide, Takehiko

    2006-01-01

    Misfolded and unassembled glycoproteins are eliminated from the endoplasmic reticulum (ER) lumen by the ER-associated degradation (ERAD). We previously identified a Tyr595Cys (Y595C) mutation of protein S (PS) in a family of a quantitative PS deficiency. The mutation causes intracellular degradation and decreased secretion of the Y595C mutant PS. The aim of the present study was to further characterize the molecular basis of the intracellular degradation of the mutant. We stably expressed the mutant in mammalian cells, and analyzed the intracellular localization of the protein. The intracellular degradation pathway was determined by pulse-chase analyses in the presence of various inhibitors of ERAD. Endoglycosidase H digestion and immunofluorescence staining revealed the mutant being retained in the ER. Epoxomicin, a potent and specific proteasome inhibitor, and Ala-Ala-Phe-CH(2)Cl (AAF), an inhibitor of tripeptidyl peptidase II (TPPII), suppressed the intracellular degradation of the mutant by about 65% and 50%, respectively. When epoxomicin was combined with AAF, the inhibitory effect was substantially enhanced. Although castanospermine, an inhibitor of glucosidases I and II, did not affect the degradation, kifunensine, an inhibitor of ER mannosidase I, suppressed it. Thus, it appears that the Y595C mutant is degraded through more than one pathway of ERAD, including the proteasome-dependent pathway and an alternate proteasome-independent pathway where proteases such as TPPII may be involved. Production of the critical B isoform of Man(8)GlcNAc(2) targets the mutant for ERAD, however, the interaction with calnexin/calreticulin through monoglucosylated oligosaccharides may not be required for the degradation of the mutant.

  11. Computational investigation of the human SOD1 mutant, Cys146Arg, that directs familial amyotrophic lateral sclerosis.

    PubMed

    Srinivasan, E; Rajasekaran, R

    2017-07-25

    The genetic substitution mutation of Cys146Arg in the SOD1 protein is predominantly found in the Japanese population suffering from familial amyotrophic lateral sclerosis (FALS). A complete study of the biophysical aspects of this particular missense mutation through conformational analysis and producing free energy landscapes could provide an insight into the pathogenic mechanism of ALS disease. In this study, we utilized general molecular dynamics simulations along with computational predictions to assess the structural characterization of the protein as well as the conformational preferences of monomeric wild type and mutant SOD1. Our static analysis, accomplished through multiple programs, predicted the deleterious and destabilizing effect of mutant SOD1. Subsequently, comparative molecular dynamic studies performed on the wild type and mutant SOD1 indicated a loss in the protein conformational stability and flexibility. We observed the mutational consequences not only in local but also in long-range variations in the structural properties of the SOD1 protein. Long-range intramolecular protein interactions decrease upon mutation, resulting in less compact structures in the mutant protein rather than in the wild type, suggesting that the mutant structures are less stable than the wild type SOD1. We also presented the free energy landscape to study the collective motion of protein conformations through principal component analysis for the wild type and mutant SOD1. Overall, the study assisted in revealing the cause of the structural destabilization and protein misfolding via structural characterization, secondary structure composition and free energy landscapes. Hence, the computational framework in our study provides a valuable direction for the search for the cure against fatal FALS.

  12. Abnormal lignin in a loblolly pine mutant.

    PubMed

    Ralph, J; MacKay, J J; Hatfield, R D; O'Malley, D M; Whetten, R W; Sederoff, R R

    1997-07-11

    Novel lignin is formed in a mutant loblolly pine (Pinus taeda L.) severely depleted in cinnamyl alcohol dehydrogenase (E.C. 1.1.1.195), which converts coniferaldehyde to coniferyl alcohol, the primary lignin precursor in pines. Dihydroconiferyl alcohol, a monomer not normally associated with the lignin biosynthetic pathway, is the major component of the mutant's lignin, accounting for approximately 30 percent (versus approximately 3 percent in normal pine) of the units. The level of aldehydes, including new 2-methoxybenzaldehydes, is also increased. The mutant pines grew normally indicating that, even within a species, extensive variations in lignin composition need not disrupt the essential functions of lignin.

  13. Analyses of Tomato Fruit Brightness Mutants Uncover Both Cutin-Deficient and Cutin-Abundant Mutants and a New Hypomorphic Allele of GDSL Lipase[C][W][OPEN

    PubMed Central

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-01-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants. PMID:24357602

  14. Mutant HNF-1{alpha} and mutant HNF-1{beta} identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Ning; Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto; Adachi, Tetsuya

    2006-08-04

    Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2more » mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.« less

  15. Analysis of maternal-zygotic ugdh mutants reveals divergent roles for HSPGs in vertebrate embryogenesis and provides new insight into the initiation of left-right asymmetry.

    PubMed

    Superina, Simone; Borovina, Antonia; Ciruna, Brian

    2014-03-15

    Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZjekyll). We demonstrate that MZjekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Targeting ESR1-Mutant Breast Cancer

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0359 TITLE: Targeting ESR1 -Mutant Breast Cancer PRINCIPAL INVESTIGATOR: Dr. Sarat Chandarlapaty CONTRACTING...31 Aug 2015 4. TITLE AND SUBTITLE Targeting ESR1 -Mutant Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0359 5c. PROGRAM ELEMENT...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The hypothesis of this proposal is that LBD mutations in ESR1 promote resistance to

  17. Targeting ESR1-Mutant Breast Cancer

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-14-1-0360 TITLE: Targeting ESR1 -Mutant Breast Cancer PRINCIPAL INVESTIGATOR: Geoffrey L. Greene, Ph.D. CONTRACTING...ADDRESS. 1. REPORT DATE September 2015 2. REPORT TYPE Annual 3. DATES COVERED 1 Sep 2014 - 31 Aug 2015 4. TITLE AND SUBTITLE Targeting ESR1 -Mutant...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The hypothesis of this proposal is that LBD mutations in ESR1 promote resistance to current FDA

  18. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.

    PubMed

    Lim, K-H; Chang, Y-C; Chiang, Y-H; Lin, H-C; Chang, C-Y; Lin, C-S; Huang, L; Wang, W-T; Gon-Shen Chen, C; Chou, W-C; Kuo, Y-Y

    2016-10-07

    CALR mutations are identified in about 30% of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs) including essential thrombocythemia (ET) and primary myelofibrosis. Although the molecular pathogenesis of CALR mutations leading to MPNs has been studied using in vitro cell lines models, how mutant CALR may affect developmental hematopoiesis remains unknown. Here we took advantage of the zebrafish model to examine the effects of mutant CALR on early hematopoiesis and model human CALR-mutated MPNs. We identified three zebrafish genes orthologous to human CALR, referred to as calr, calr3a and calr3b. The expression of CALR-del52 and CALR-ins5 mutants caused an increase in the hematopoietic stem/progenitor cells followed by thrombocytosis without affecting normal angiogenesis. The expression of CALR mutants also perturbed early developmental hematopoiesis in zebrafish. Importantly, morpholino knockdown of mpl but not epor or csf3r could significantly attenuate the effects of mutant CALR. Furthermore, the expression of mutant CALR caused jak-stat signaling activation in zebrafish that could be blocked by JAK inhibitors (ruxolitinib and fedratinib). These findings showed that mutant CALR activates jak-stat signaling through an mpl-dependent mechanism to mediate pathogenic thrombopoiesis in zebrafish, and illustrated that the signaling machinery related to mutant CALR tumorigenesis are conserved between human and zebrafish.

  19. Investigating the Structure and Dynamics of the PIK3CA Wild-Type and H1047R Oncogenic Mutant

    PubMed Central

    Pavlaki, Maria; Lazani, Vasiliki; Christoforidis, Savvas; Agianian, Bogos; Cournia, Zoe

    2014-01-01

    The PIK3CA gene is one of the most frequently mutated oncogenes in human cancers. It encodes p110α, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3Kα), which activates signaling cascades leading to cell proliferation, survival, and cell growth. The most frequent mutation in PIK3CA is H1047R, which results in enzymatic overactivation. Understanding how the H1047R mutation causes the enhanced activity of the protein in atomic detail is central to developing mutant-specific therapeutics for cancer. To this end, Surface Plasmon Resonance (SPR) experiments and Molecular Dynamics (MD) simulations were carried out for both wild-type (WT) and H1047R mutant proteins. An expanded positive charge distribution on the membrane binding regions of the mutant with respect to the WT protein is observed through MD simulations, which justifies the increased ability of the mutated protein variant to bind to membranes rich in anionic lipids in our SPR experiments. Our results further support an auto-inhibitory role of the C-terminal tail in the WT protein, which is abolished in the mutant protein due to loss of crucial intermolecular interactions. Moreover, Functional Mode Analysis reveals that the H1047R mutation alters the twisting motion of the N-lobe of the kinase domain with respect to the C-lobe and shifts the position of the conserved P-loop residues in the vicinity of the active site. These findings demonstrate the dynamical and structural differences of the two proteins in atomic detail and propose a mechanism of overactivation for the mutant protein. The results may be further utilized for the design of mutant-specific PI3Kα inhibitors that exploit the altered mutant conformation. PMID:25340423

  20. Selection of Salmonella enterica Serovar Typhi Genes Involved during Interaction with Human Macrophages by Screening of a Transposon Mutant Library

    PubMed Central

    Sabbagh, Sébastien C.; Lepage, Christine; McClelland, Michael; Daigle, France

    2012-01-01

    The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated. PMID:22574205

  1. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8.

    PubMed

    Bouhy, Delphine; Juneja, Manisha; Katona, Istvan; Holmgren, Anne; Asselbergh, Bob; De Winter, Vicky; Hochepied, Tino; Goossens, Steven; Haigh, Jody J; Libert, Claude; Ceuterick-de Groote, Chantal; Irobi, Joy; Weis, Joachim; Timmerman, Vincent

    2018-01-01

    Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces

  2. Variations in seed protein content of cotton (Gossypium hirsutum L.) mutant lines by in vivo and in vitro mutagenesis.

    PubMed

    Muthusamy, Annamalai; Jayabalan, Narayanasamy

    2013-01-01

    The present work describes the influence of gamma irradiation (GR), ethyl methane sulphonate (EMS) and sodium azide (SA) treatment on yield and protein content of selected mutant lines of cotton. Seeds of MCU 5 and MCU 11 were exposed to gamma rays (GR), ethyl methane sulphonate (EMS) and sodium azide (SA). Lower dose of gamma irradiation (100-500 Gy), 10-50 mM EMS and SA at lower concentration effectively influences in improving the yield and protein content. Significant increase in yield (258.9 g plant(-1)) and protein content (18.63 mg g(-1) d. wt.) as compared to parental lines was noted in M2 generations. During the subsequent field trials, number of mutant lines varied morphologically in terms of yield as well as biochemical characters such as protein. The selected mutant lines were bred true to their characters in M3 and M4 generations. The significant increase in protein content and profiles of the mutant lines with range of 10.21-18.63 mg g(-1). The SDS-PAGE analysis of mutant lines revealed 9 distinct bands of different intensities with range of 26-81 kDa. The difference in intensity of bands was more (41, 50 and 58 kDa) in the mutant lines obtained from in vitro mutation than in vivo mutation. Significance of such stimulation in protein content correlated with yielding ability of the mutant lines of cotton in terms of seed weight per plant. The results confirm that in cotton it is possible to enhance the both yield and biochemical characters by in vivo and in vitro mutagenic treatments.

  3. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    PubMed

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  4. Natural history of acute and chronic hepatitis B: The role of HBV genotypes and mutants.

    PubMed

    Lin, Chih-Lin; Kao, Jia-Horng

    2017-06-01

    Molecular epidemiologic studies reveal remarkable differences in the geographical distribution of hepatitis B virus (HBV) genotypes. The frequency of mutants among HBV genotypes also varies. The role of HBV genotypes/mutants in the pathogenesis of HBV infection and natural history of HBV infection has been extensively investigated. The distribution of HBV genotypes in acute hepatitis B patients reflects the predominant genotypes in a given geographic area. In chronic hepatitis B patients, genotype C and D have a higher frequency of basal core promoter A1762T/G1764A mutations than genotype A and B. HBV genotypes C, D and F carry a higher lifetime risk of cirrhosis and HCC development than genotype A and B. HBV pre-S/S gene mutations were associated with immune escape of hepatitis B immunoglobulin or vaccine-induced immunity. Mutations in the pre-S, core promoter and X regions correlate with an increased risk of cirrhosis and HCC. In summary, HBV genotypes and mutants are associated with the disease progression and long-term outcome of HBV infection. They may serve as viral genetic markers for risk stratification of chronic hepatitis B patients in clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cortico-striatal synaptic defects and OCD-like behaviors in SAPAP3 mutant mice

    PubMed Central

    Welch, Jeffrey M.; Lu, Jing; Rodriguiz, Ramona M.; Trotta, Nicholas C.; Peca, Joao; Ding, Jin-Dong; Feliciano, Catia; Chen, Meng; Adams, J. Paige; Luo, Jianhong; Dudek, Serena M.; Weinberg, Richard J.; Calakos, Nicole; Wetsel, William C.; Feng, Guoping

    2008-01-01

    Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, though the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3) is a postsynaptic scaffolding protein at excitatory synapses that is highly expressed in the striatum. Here we show that mice with genetic deletion of SAPAP3 exhibit increased anxiety and compulsive grooming behavior leading to facial hair loss and skin lesions; both behaviors are alleviated by a selective serotonin reuptake inhibitor. Electrophysiological, structural, and biochemical studies of SAPAP3 mutant mice reveal defects in cortico-striatal synapses. Furthermore, lentiviral-mediated selective expression of SAPAP3 in the striatum rescues the synaptic and behavioral defects of SAPAP3 mutant mice. These findings demonstrate a critical role for SAPAP3 at cortico-striatal synapses and emphasize the importance of cortico-striatal circuitry in OCD-like behaviors. PMID:17713528

  6. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice.

    PubMed

    Quinzii, Catarina M; Garone, Caterina; Emmanuele, Valentina; Tadesse, Saba; Krishna, Sindu; Dorado, Beatriz; Hirano, Michio

    2013-02-01

    Primary human CoQ(10) deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ(10) biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ(10) of control cells, revealed reduced activity of CoQ(10)-dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30-50% CoQ(10) of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins. We hypothesized that absence of oxidative stress markers and cell death in PDSS2 mutant fibroblasts were due to the extreme severity of CoQ(10) deficiency. Here, we have investigated in vivo effects of Pdss2 deficiency in affected and unaffected organs of CBA/Pdss2(kd/kd) mice at presymptomatic, phenotypic-onset, and end-stages of the disease. Although Pdss2 mutant mice manifest widespread CoQ(9) deficiency and mitochondrial respiratory chain abnormalities, only affected organs show increased ROS production, oxidative stress, mitochondrial DNA depletion, and reduced citrate synthase activity, an index of mitochondrial mass. Our data indicate that kidney-specific loss of mitochondria triggered by oxidative stress may be the cause of renal failure in Pdss2(kd/kd) mice.

  7. Loss of RNA-directed DNA Methylation in Maize Chromomethylase and DDM1-type Nucleosome Remodeler Mutants.

    PubMed

    Fu, Fang-Fang; Dawe, R Kelly; Gent, Jonathan I

    2018-06-08

    Plants make use of distinct types of DNA methylation characterized by their DNA methyltransferases and modes of regulation. One type, RNA-directed DNA methylation (RdDM), is guided by small interfering RNAs (siRNAs) to the edges of transposons that are close to genes, areas called mCHH islands in maize (Zea mays). Another type, chromomethylation, is guided by histone H3 lysine 9 methylation to heterochromatin across the genome. We examined DNA methylation and small RNA expression in plant tissues that were mutant for both copies of the genes encoding chromomethylases as well as mutants for both copies of the genes encoding DECREASED DNA METHYLATION1 (DDM1)-type nucleosome remodelers, which facilitate chromomethylation. Both sets of double mutants were nonviable but produced embryos and endosperm. RdDM was severely compromised in the double mutant embryos, both in terms of DNA methylation and siRNAs. Loss of 24-nt siRNA from mCHH islands was coupled with a gain of 21-, 22-, and 24-nt siRNAs in heterochromatin. These results reveal a requirement for both chromomethylation and DDM1-type nucleosome remodeling for RdDM in mCHH islands, which we hypothesize is due to dilution of RdDM components across the genome when heterochromatin is compromised. © 2018 American Society of Plant Biologists. All rights reserved.

  8. Reversion of autocrine transformation by a dominant negative platelet-derived growth factor mutant.

    PubMed Central

    Vassbotn, F S; Andersson, M; Westermark, B; Heldin, C H; Ostman, A

    1993-01-01

    A non-receptor-binding mutant of the platelet-derived growth factor (PDGF) A chain, PDGF-0, was generated by exchanging 7 amino acids in the sequence. The mutant chains formed dimers that were similar to wild-type PDGF-AA with regard to stability and rate of processing to the mature 30-kDa secreted forms. Moreover, the mutant chains formed disulfide-bonded heterodimers with the PDGF B chain in NIH 3T3 cells heterodimer underwent the same processing and secretion as PDGF-AB. Transfection of c-sis-expressing 3T3 cells with PDGF-0 significantly inhibited the transformed phenotype of these cells, as determined by the following criteria. (i) Compared with PDGF-0-negative clones, PDGF-0-producing clones showed a reverted morphology. (ii) Clones producing PDGF-0 grew more slowly than PDGF-0-negative clones, with a fivefold difference in cell number after 14 days in culture. (iii) The expression of PDGF-0 completely inhibited the ability of the c-sis-expressing 3T3 cells to form colonies in soft agar; this inhibition was overcome by the addition of recombinant PDGF-BB to the culture medium, showing that the lack of colony formation of these cells was not due to a general unresponsiveness to PDGF. The specific expression of a PDGF-0/PDGF wild-type heterodimer in COS cells revealed that the affinity of the mutant heterodimer for the PDGF alpha receptor was decreased by approximately 50-fold compared with that of PDGF-AA. Thus, we show that a non-receptor-binding PDGF A-chain mutant neutralizes in a trans-dominant manner the autocrine transforming potential of the c-sis/PDGF B chain by forming low-affinity heterodimers with wild-type PDGF chains. This method of specifically antagonizing the effect of PDGF may be useful in investigations of the role of PDGF in normal and pathological conditions. Images PMID:8321214

  9. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus

    PubMed Central

    Hodgkin, Jonathan; Kaiser, Dale

    1977-01-01

    A large number of nonmotile mutants of the gliding bacterium Myxococcus xanthus have been isolated and partly characterized. About [unk] of these mutants are conditional mutants of a novel kind: mutant cells become transiently motile after contact with nonmutant cells or with cells of a different mutant type. These “stimulatable” mutants fall into five phenotypic classes (types B, C, D, E, and F). Most mutants are nonstimulatable (type A) and never become motile, but type A cells (and wild-type cells) can stimulate cells of any of the other five types. Stimulatable mutants of different types are capable of stimulating each other. For example, in a mixture of B and C cells, both become motile. Linkage analysis using a generalized transducing phage has shown that each of types B, C, D, E, and F corresponds to a single distinct genetic locus. Type A mutants, by contrast, belong to at least 17 different loci. Stimulation depends on close apposition of interacting cells, because stimulation does not occur when contact between cells is prevented. It is possible that the stimulatable mutants are defective in components of the gliding mechanism that can be exchanged between cells. Alternatively, they may be defective in a system of cell communication controlling the coordinated cell movements observed in Myxococcus. Images PMID:16592422

  10. Genomic Landscape of Atypical Adenomatous Hyperplasia Reveals Divergent Modes to Lung Adenocarcinoma.

    PubMed

    Sivakumar, Smruthy; Lucas, F Anthony San; McDowell, Tina L; Lang, Wenhua; Xu, Li; Fujimoto, Junya; Zhang, Jianjun; Futreal, P Andrew; Fukuoka, Junya; Yatabe, Yasushi; Dubinett, Steven M; Spira, Avrum E; Fowler, Jerry; Hawk, Ernest T; Wistuba, Ignacio I; Scheet, Paul; Kadara, Humam

    2017-11-15

    There is a dearth of knowledge about the pathogenesis of premalignant lung lesions, especially for atypical adenomatous hyperplasia (AAH), the only known precursor for the major lung cancer subtype adenocarcinoma (LUAD). In this study, we performed deep DNA and RNA sequencing analyses of a set of AAH, LUAD, and normal tissues. Somatic BRAF variants were found in AAHs from 5 of 22 (23%) patients, 4 of 5 of whom had matched LUAD with driver EGFR mutations. KRAS mutations were present in AAHs from 4 of 22 (18%) of patients. KRAS mutations in AAH were only found in ever-smokers and were exclusive to BRAF -mutant cases. Integrative analysis revealed profiles expressed in KRAS -mutant cases ( UBE2C, REL ) and BRAF -mutant cases ( MAX ) of AAH, or common to both sets of cases (suppressed AXL ). Gene sets associated with suppressed antitumor (Th1; IL12A, GZMB ) and elevated protumor ( CCR2, CTLA-4 ) immune signaling were enriched in AAH development and progression. Our results reveal potentially divergent BRAF or KRAS pathways in AAH as well as immune dysregulation in the pathogenesis of this premalignant lung lesion. Cancer Res; 77(22); 6119-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. A Genetic Selection For Neurospora crassa Mutants Altered in Their Light Regulation of Transcription

    PubMed Central

    Navarro-Sampedro, Laura; Yanofsky, Charles; Corrochano, Luis M.

    2008-01-01

    Transcription of the Neurospora crassa gene con-10 is induced during conidiation and following exposure of vegetative mycelia to light, but light activation is transient due to photoadaptation. We describe mutational analyses of photoadaptation using a N. crassa strain bearing a translational fusion of con-10, including its regulatory region, to a selectable bacterial gene conferring hygromycin resistance (hph). Growth of this strain was sensitive to hygromycin, upon continuous culture in the light. Five mutants were isolated that were resistant to hygromycin when cultured under constant light. Three mutant strains displayed elevated, sustained accumulation of con-10∷hph mRNA during continued light exposure, suggesting that they bear mutations that reduce or eliminate the presumed light-dependent repression mechanism that blocks con-10 transcription upon prolonged illumination. These mutations altered photoadaptation for only a specific group of genes (con-10 and con-6), suggesting that regulation of photoadaptation is relatively gene specific. The mutations increased light-dependent mRNA accumulation for genes al-1, al-2, and al-3, each required for carotenoid biosynthesis, resulting in a threefold increase in carotenoid accumulation following continuous light exposure. Identification of the altered gene or genes in these mutants may reveal novel proteins that participate in light regulation of gene transcription in fungi. PMID:18202366

  12. Autolytic defective mutant of Streptococcus faecalis.

    PubMed Central

    Cornett, J B; Redman, B E; Shockman, G D

    1978-01-01

    Properties of a variant of Streptococcus faecalis ATCC 9790 with defective cellular autolysis are described. The mutant strain was selected as a survivor from a mutagenized cell population simultaneously challenged with two antibiotics which inhibit cell wall biosynthesis, penicillin G and cycloserine. Compared to the parental strain, the mutant strain exhibited: (i) a thermosensitive pattern of cellular autolysis; (ii) an autolytic enzyme activity that had only a slightly increased thermolability when tested in solution in the absence of wall substrate; and (iii) an isolated autolysin that had hydrolytic activity on isolated S. faecalis wall substrate indistinguishable from that of the parental strain, but that was inactive when tested on walls of Micrococcus lysodeikticus as a substrate. These data indicate an alteration in the substrate specificity of the autolytic enzyme of the mutant which appears to result from the synthesis of an altered form of autolytic enzyme. PMID:415045

  13. A Pseudomonas putida double mutant deficient in butanol assimilation: a promising step for engineering a biological biofuel production platform.

    PubMed

    Cuenca, María Del Sol; Molina-Santiago, Carlos; Gómez-García, María R; Ramos, Juan L

    2016-03-01

    Biological production in heterologous hosts is of interest for the production of the C4 alcohol (butanol) and other chemicals. However, some hurdles need to be overcome in order to achieve an economically viable process; these include avoiding the consumption of butanol and maintaining tolerance to this solvent during production. Pseudomonas putida is a potential host for solvent production; in order to further adapt P. putida to this role, we generated mini-Tn5 mutant libraries in strain BIRD-1 that do not consume butanol. We analyzed the insertion site of the mini-Tn5 in a mutant that was deficient in assimilation of butanol using arbitrary PCR followed by Sanger sequencing and found that the transposon was inserted in the malate synthase B gene. Here, we show that in a second round of mutagenesis a double mutant unable to take up butanol had an insertion in a gene coding for a multisensor hybrid histidine kinase. The genetic context of the histidine kinase sensor revealed the presence of a set of genes potentially involved in butanol assimilation; qRT-PCR analysis showed induction of this set of genes in the wild type and the malate synthase mutant but not in the double mutant. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.

    PubMed Central

    Howden, R; Goldsbrough, P B; Andersen, C R; Cobbett, C S

    1995-01-01

    An allelic series of cad1, cadmium-sensitive mutants of Arabidopsis thaliana, was isolated. These mutants were sensitive to cadmium to different extents and were deficient in their ability to form cadmium-peptide complexes as detected by gel-filtration chromatography. Each mutant was deficient in its ability to accumulate phytochelatins (PCs) as detected by high-performance liquid chromatography and the amount of PCs accumulated by each mutant correlated with its degree of sensitivity to cadmium. The mutants had wild-type levels of glutathione, the substrate for PC biosynthesis, and in vitro assays demonstrated that each of the mutants was deficient in PC synthase activity. These results demonstrate conclusively the importance of PCs for cadmium tolerance in plants. PMID:7770517

  15. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease.

    PubMed

    Yin, Xiangling; Manczak, Maria; Reddy, P Hemachandra

    2016-05-01

    The objective of this study was to determine the protective effects of the mitochondria-targeted molecules MitoQ and SS31 in striatal neurons that stably express mutant huntingtin (Htt) (STHDhQ111/Q111) in Huntington's disease (HD). We studied mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, mitochondrial function, and ultra-structural changes in MitoQ- and SS31-treated mutant Htt neurons relative to untreated mutant Htt neurons. We used gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods. In the MitoQ- and SS31-treated mutant Htt neurons, fission genes Drp1 and Fis1 were down-regulated, and fusion genes Mfn1, Mfn2 and Opa1 were up-regulated relative to untreated neurons, suggesting that mitochondria-targeted molecules reduce fission activity. Interestingly, the mitochondrial biogenesis genes PGC1α, PGC1β, Nrf1, Nrf2 and TFAM were up-regulated in MitoQ- and SS31-treated mutant Htt neurons. The synaptic genes synaptophysin and PSD95 were up-regulated, and mitochondrial function was normal in the MitoQ- and SS31-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with the mRNA findings. TEM studies revealed decreased numbers of structurally intact mitochondria in MitoQ- and SS31-treated mutant Htt neurons. These findings suggest that mitochondria-targeted molecules MitoQ and SS31 are protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons, and these mitochondria-targeted molecules are potential therapeutic molecules for the treatment of HD neurons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Isolation and Characterization of Sex-Linked Female-Sterile Mutants in DROSOPHILA MELANOGASTER

    PubMed Central

    Gans, Madeleine; Audit, Claudie; Masson, Michele

    1975-01-01

    The purpose of the experiments described was to identify X chromosome genes functioning mainly or exclusively during oogenesis. Two mutagenesis experiments were carried out with ethyl methane sulfonate. Following treatment inducing 60% lethals, 9% of the treated X chromosomes carried a female sterility mutation which did not otherwise seriously affect viability. Among —95 isolated mutants, 19 were heat-sensitive and 5 cold-sensitive. The mutants have been classified as follows: I (16 mutants; 12 complementation groups): the females laid few or no eggs; the defect concerned either ovulation or oogenesis. II (37 mutants; 18 complementation groups): the female laid morphologically abnormal eggs, often with increased membrane permeability. III A (13 mutants; at least 8 complementation groups): the homozygous females were sterile if mated to mutant males; their progeny (homo- and hemizygous) died at a late embryonic stage (11 mutants), at the larval stage (1 mutant) or at the pupal stage (1 mutant). However fertility was partly restored by breeding to wild-type males as shown by survival of some heterozygous descendants. III B (29 mutants; 22 complementation groups): the fertility of the females was not restored by breeding to a wild-type male. Most of the eggs of 13 of the mutants died at a late stage of embryogenesis. The eggs of the others ceased development earlier or, perhaps, remained unfertilized. The distribution of the number of mutants per complementation group led to an estimation of a total of about 150 X-linked genes involved in female fertility. The females of three mutants, heat-sensitive and totally sterile at 29°, produced at a lower temperature descendants morphologically abnormal or deprived of germ cells. Three other mutants not described in detail showed a reduction in female fertility with many descendants lacking germ cells. A desirable mutant which was not recovered was one with normal fertile females producing descendants which, regardless of

  17. Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study

    PubMed Central

    Hartimath, Siddesh V.; Manuelli, Valeria; Zijlma, Rolf; Signore, Alberto; Nayak, Tapan K.; Freimoser-Grundschober, Anne; Klein, Christian; Dierckx, Rudi A.J.O.; de Vries, Erik F.J.

    2018-01-01

    Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αβγ receptor, but only to its β and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [18F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [18F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [18F]FB-IL2v to IL2R was reversible. The volume of distribution (VT) and the non-displaceable binding potential (BPnd) of mutant [18F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [18F]FB-IL2 (p < 0.01). Pretreatment with wt-IL2 significantly reduced the VT and BPnd of mutant [18F]FB-IL2v in the implant (p < 0.001). This demonstrates that wild-type [18F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [18F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug. PMID:29467958

  18. Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study.

    PubMed

    Hartimath, Siddesh V; Manuelli, Valeria; Zijlma, Rolf; Signore, Alberto; Nayak, Tapan K; Freimoser-Grundschober, Anne; Klein, Christian; Dierckx, Rudi A J O; de Vries, Erik F J

    2018-01-23

    Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αβγ receptor, but only to its β and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [ 18 F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [ 18 F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [ 18 F]FB-IL2v to IL2R was reversible. The volume of distribution (V T ) and the non-displaceable binding potential (BP nd ) of mutant [ 18 F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [ 18 F]FB-IL2 ( p < 0.01). Pretreatment with wt-IL2 significantly reduced the V T and BPnd of mutant [ 18 F]FB-IL2v in the implant ( p < 0.001). This demonstrates that wild-type [ 18 F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [ 18 F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug.

  19. Metabolic Flux Analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD Mutant Reveals a Mechanism for Metabolic Adaptation to Nitrogen-Limited Conditions.

    PubMed

    Nakajima, Tsubasa; Yoshikawa, Katsunori; Toya, Yoshihiro; Matsuda, Fumio; Shimizu, Hiroshi

    2017-03-01

    Metabolic flux redirection during nitrogen-limited growth was investigated in the Synechocystis sp. PCC 6803 glucose-tolerant (GT) strain under photoautotrophic conditions by isotopically non-stationary metabolic flux analysis (INST-MFA). A ΔnrtABCD mutant of Synechocystis sp. PCC 6803 was constructed to reproduce phenotypes arising during nitrogen starvation. The ΔnrtABCD mutant and the wild-type GT strain were cultured under photoautotrophic conditions by a photobioreactor. Intracellular metabolites were labeled over a time course using NaH13CO3 as a carbon source. Based on these data, the metabolic flux distributions in the wild-type and ΔnrtABCD cells were estimated by INST-MFA. The wild-type GT and ΔnrtABCD strains displayed similar distribution patterns, although the absolute levels of metabolic flux were lower in ΔnrtABCD. Furthermore, the relative flux levels for glycogen metabolism, anaplerotic reactions and the oxidative pentose phosphate pathway were increased in ΔnrtABCD. This was probably due to the increased expression of enzyme genes that respond to nitrogen depletion. Additionally, we found that the ratio of ATP/NADPH demand increased slightly in the ΔnrtABCD mutant. These results indicated that futile ATP consumption increases under nitrogen-limited conditions because the Calvin-Benson cycle and the oxidative pentose phosphate pathway form a metabolic futile cycle that consumes ATP without CO2 fixation and NADPH regeneration. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0177 TITLE: Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer PRINCIPAL INVESTIGATOR: Katerina Politi...CONTRACT NUMBER Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer 5b. GRANT NUMBER W81XWH-14-1-0177 5c. PROGRAM ELEMENT NUMBER 6...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Phenotypic changes have been observed in EGFR mutant lung cancers that become resistant to targeted

  1. CADASIL mutant NOTCH3(R90C) decreases the viability of HS683 oligodendrocytes via apoptosis.

    PubMed

    Tang, Mibo; Shi, Changhe; Song, Bo; Yang, Jing; Yang, Ting; Mao, Chengyuan; Li, Yusheng; Liu, Xinjing; Zhang, Shuyu; Wang, Hui; Luo, Haiyang; Xu, Yuming

    2017-07-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease caused by mutations in NOTCH3. Prevailing models suggest that demyelination occurs secondary to vascular pathology. However, in zebrafish, NOTCH3 is also expressed in mature oligodendrocytes. Thus, we hypothesized that in addition to vascular defects, mutant NOTCH3 may alter glial function in individuals with CADASIL. The aim of this study was to characterize the direct effects of a mutant NOTCH3 protein in HS683 oligodendrocytes. HS683 oligodendrocytes transfected with wild-type NOTCH3, mutant NOTCH3(R90C), and empty control vector were used to study the impact of the NOTCH3(R90C) mutant on its protein hydrolytic processing, cell viability, apoptosis, autophagy, oxidative stress, and the related upstream events using immunoblotting, immunofluorescence, RT-PCR, and flow cytometry. We determined that HS683 oligodendrocytes transfected with mutant NOTCH3(R90C), which is the hotspot mutation site-associated with CADASIL, exhibited aberrant NOTCH3 proteolytic processing. Compared to cells overexpressing wild-type NOTCH3, cells overexpressing NOTCH3(R90C) were less viable and had a higher rate of apoptosis. Immunoblotting revealed that cells transfected with NOTCH3(R90C) had higher levels of intrinsic mitochondrial apoptosis, extrinsic death receptor path-related apoptosis, and autophagy compared with cells transfected with wild-type NOTCH3. This study suggests that in patients with CADASIL, early defects in glia influenced by NOTCH3(R90C) may directly contribute to white matter pathology in addition to secondary vascular defects. This study provides a potential therapeutic target for the future treatment of CADASIL.

  2. The fast-folding HP35 double mutant has a substantially reduced primary folding free energy barrier

    NASA Astrophysics Data System (ADS)

    Lei, Hongxing; Deng, Xiaojian; Wang, Zhixiang; Duan, Yong

    2008-10-01

    The LYS24/29NLE double mutant of villin headpiece subdomain (HP35) is the fastest folding protein known so far with a folding time constant of 0.6μs. In this work, the folding mechanism of the mutant has been investigated by both conventional and replica exchange molecular dynamics (CMD and REMD) simulations with AMBER FF03 force field and a generalized-Born solvation model. Direct comparison to the ab initio folding of the wild type HP35 enabled a close examination on the mutational effect on the folding process. The mutant folded to the native state, as demonstrated by the 0.50Å Cα-root mean square deviation (RMSD) sampled in both CMD and REMD simulations and the high population of the folded conformation compared with the denatured conformations. Consistent with experiments, the significantly reduced primary folding free energy barrier makes the mutant closer to a downhill folder than the wild type HP35 that directly leads to the faster transition and higher melting temperature. However, unlike the proposed downhill folding which envisages a smooth shift between unfolded and folded states without transition barrier, we observed a well-defined folding transition that was consistent with experiments. Further examination of the secondary structures revealed that the two mutated residues have higher intrinsic helical preference that facilitated the formation of both helix III and the intermediate state which contains the folded segment helix II/III. Other factors contributing to the faster folding include the more favorable electrostatic interactions in the transition state with the removal of the charged NH3+ groups from LYS. In addition, both transition state ensemble and denatured state ensemble are shifted in the mutant.

  3. Origin and Dissemination of Chloroquine-Resistant Plasmodium falciparum with Mutant pfcrt Alleles in the Philippines

    PubMed Central

    Chen, Nanhua; Wilson, Danny W.; Pasay, Cielo; Bell, David; Martin, Laura B.; Kyle, Dennis; Cheng, Qin

    2005-01-01

    The pfcrt allelic type and adjacent microsatellite marker type were determined for 82 Plasmodium falciparum isolates from the Philippines. Mutant pfcrt allelic types P1a and P2a/P2b were dominant in different locations. Microsatellite analysis revealed that P2a/P2b evolved independently in the Philippines, while P1a shared common ancestry with Papua New Guinea chloroquine-resistant parasites. PMID:15855538

  4. Acquired Substrate Preference for GAB1 Protein Bestows Transforming Activity to ERBB2 Kinase Lung Cancer Mutants

    PubMed Central

    Fan, Ying-Xin; Wong, Lily; Marino, Michael P.; Ou, Wu; Shen, Yi; Wu, Wen Jin; Wong, Kwok-Kin; Reiser, Jakob; Johnson, Gibbes R.

    2013-01-01

    Activating mutations in the αC-β4 loop of the ERBB2 kinase domain, such as ERBB2YVMA and ERBB2G776VC, have been identified in human lung cancers and found to drive tumor formation. Here we observe that the docking protein GAB1 is hyper-phosphorylated in carcinomas from transgenic mice and in cell lines expressing these ERBB2 cancer mutants. Using dominant negative GAB1 mutants lacking canonical tyrosine residues for SHP2 and PI3K interactions or lentiviral shRNA that targets GAB1, we demonstrate that GAB1 phosphorylation is required for ERBB2 mutant-induced cell signaling, cell transformation, and tumorigenesis. An enzyme kinetic analysis comparing ERBB2YVMA to wild type using physiologically relevant peptide substrates reveals that ERBB2YVMA kinase adopts a striking preference for GAB1 phosphorylation sites as evidenced by ∼150-fold increases in the specificity constants (kcat/Km) for several GAB1 peptides, and this change in substrate selectivity was predominantly attributed to the peptide binding affinities as reflected by the apparent Km values. Furthermore, we demonstrate that ERBB2YVMA phosphorylates GAB1 protein ∼70-fold faster than wild type ERBB2 in vitro. Notably, the mutation does not significantly alter the Km for ATP or sensitivity to lapatinib, suggesting that, unlike EGFR lung cancer mutants, the ATP binding cleft of the kinase is not significantly changed. Taken together, our results indicate that the acquired substrate preference for GAB1 is critical for the ERBB2 mutant-induced oncogenesis. PMID:23612964

  5. A Sordaria macrospora mutant lacking the leu1 gene shows a developmental arrest during fruiting body formation.

    PubMed

    Kück, Ulrich

    2005-10-01

    Developmental mutants with defects in fruiting body formation are excellent resources for the identification of genetic components that control cellular differentiation processes in filamentous fungi. The mutant pro4 of the ascomycete Sordaria macrospora is characterized by a developmental arrest during the sexual life cycle. This mutant generates only pre-fruiting bodies (protoperithecia), and is unable to form ascospores. Besides being sterile, pro4 is auxotrophic for leucine. Ascospore analysis revealed that the two phenotypes are genetically linked. After isolation of the wild-type leu1 gene from S. macrospora, complementation experiments demonstrated that the gene was able to restore both prototrophy and fertility in pro4. To investigate the control of leu1 expression, other genes involved in leucine biosynthesis specifically and in the general control of amino acid biosynthesis ("cross-pathway control") have been analysed using Northern hybridization and quantitative RT-PCR. These analyses demonstrated that genes of leucine biosynthesis are transcribed at higher levels under conditions of amino acid starvation. In addition, the expression data for the cpc1 and cpc2 genes indicate that cross-pathway control is superimposed on leucine-specific regulation of fruiting body development in the leu1 mutant. This was further substantiated by growth experiments in which the wild-type strain was found to show a sterile phenotype when grown on a medium containing the amino acid analogue 5-methyl-tryptophan. Taken together, these data show that pro4 represents a novel mutant type in S. macrospora, in which amino acid starvation acts as a signal that interrupts the development of the fruiting body.

  6. Deficient Gene Expression in Protein Kinase Inhibitor α Null Mutant Mice

    PubMed Central

    Gangolli, Esha A.; Belyamani, Mouna; Muchinsky, Sara; Narula, Anita; Burton, Kimberly A.; McKnight, G. Stanley; Uhler, Michael D.; Idzerda, Rejean L.

    2000-01-01

    Protein kinase inhibitor (PKI) is a potent endogenous inhibitor of the cyclic AMP (cAMP)-dependent protein kinase (PKA). It functions by binding the free catalytic (C) subunit with a high affinity and is also known to export nuclear C subunit to the cytoplasm. The significance of these actions with respect to PKI's physiological role is not well understood. To address this, we have generated by homologous recombination mutant mice that are deficient in PKIα, one of the three isoforms of PKI. The mice completely lack PKI activity in skeletal muscle and, surprisingly, show decreased basal and isoproterenol-induced gene expression in muscle. Further examination revealed reduced levels of the phosphorylated (active) form of the transcription factor CREB (cAMP response element binding protein) in the knockouts. This phenomenon stems, at least in part, from lower basal PKA activity levels in the mutants, arising from a compensatory increase in the level of the RIα subunit of PKA. The deficit in gene induction, however, is not easily explained by current models of PKI function and suggests that PKI may play an as yet undescribed role in PKA signaling. PMID:10779334

  7. Phenotypic characterization of a photomorphogenic mutant.

    PubMed

    Fankhauser, Christian; Casal, Jorge J

    2004-09-01

    Light is arguably the most important abiotic factor controlling plant growth and development throughout their life cycle. Plants have evolved sophisticated light-sensing mechanisms to monitor fluctuations in light quality, intensity, direction and periodicity (day length). In Arabidopsis, three families of photoreceptors have been identified by molecular genetic studies. The UV-A/blue light receptors cryptochromes and the red/far-red receptors phytochromes control an overlapping set of responses including photoperiodic flowering induction and de-etiolation. Phototropins are the primary photoreceptors for a set of specific responses to UV-A/blue light such as phototropism, chloroplast movement and stomatal opening. Mutants affecting a photoreceptor have a characteristic phenotype. It is therefore possible to determine the specific developmental responses and the photoreceptor pathway(s) affected in a mutant by performing an appropriate set of photobiological and genetic experiments. In this paper, we outline the principal and easiest experiments that can be performed to obtain a first indication about the nature of the photobiological defect in a given mutant.

  8. Phosphorodiamidate morpholino oligomers suppress mutant huntingtin expression and attenuate neurotoxicity

    PubMed Central

    Sun, Xin; Marque, Leonard O.; Cordner, Zachary; Pruitt, Jennifer L.; Bhat, Manik; Li, Pan P.; Kannan, Geetha; Ladenheim, Ellen E.; Moran, Timothy H.; Margolis, Russell L.; Rudnicki, Dobrila D.

    2014-01-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Disease pathogenesis derives, at least in part, from the long polyglutamine tract encoded by mutant HTT. Therefore, considerable effort has been dedicated to the development of therapeutic strategies that significantly reduce the expression of the mutant HTT protein. Antisense oligonucleotides (ASOs) targeted to the CAG repeat region of HTT transcripts have been of particular interest due to their potential capacity to discriminate between normal and mutant HTT transcripts. Here, we focus on phosphorodiamidate morpholino oligomers (PMOs), ASOs that are especially stable, highly soluble and non-toxic. We designed three PMOs to selectively target expanded CAG repeat tracts (CTG22, CTG25 and CTG28), and two PMOs to selectively target sequences flanking the HTT CAG repeat (HTTex1a and HTTex1b). In HD patient–derived fibroblasts with expanded alleles containing 44, 77 or 109 CAG repeats, HTTex1a and HTTex1b were effective in suppressing the expression of mutant and non-mutant transcripts. CTGn PMOs also suppressed HTT expression, with the extent of suppression and the specificity for mutant transcripts dependent on the length of the targeted CAG repeat and on the CTG repeat length and concentration of the PMO. PMO CTG25 reduced HTT-induced cytotoxicity in vitro and suppressed mutant HTT expression in vivo in the N171-82Q transgenic mouse model. Finally, CTG28 reduced mutant HTT expression and improved the phenotype of HdhQ7/Q150 knock-in HD mice. These data demonstrate the potential of PMOs as an approach to suppressing the expression of mutant HTT. PMID:25035419

  9. Unexpectedly low nitrogen acquisition and absence of root architecture adaptation to nitrate supply in a Medicago truncatula highly branched root mutant

    PubMed Central

    Bourion, Virginie

    2014-01-01

    To complement N2 fixation through symbiosis, legumes can efficiently acquire soil mineral N through adapted root architecture. However, root architecture adaptation to mineral N availability has been little studied in legumes. Therefore, this study investigated the effect of nitrate availability on root architecture in Medicago truncatula and assessed the N-uptake potential of a new highly branched root mutant, TR185. The effects of varying nitrate supply on both root architecture and N uptake were characterized in the mutant and in the wild type. Surprisingly, the root architecture of the mutant was not modified by variation in nitrate supply. Moreover, despite its highly branched root architecture, TR185 had a permanently N-starved phenotype. A transcriptome analysis was performed to identify genes differentially expressed between the two genotypes. This analysis revealed differential responses related to the nitrate acquisition pathway and confirmed that N starvation occurred in TR185. Changes in amino acid content and expression of genes involved in the phenylpropanoid pathway were associated with differences in root architecture between the mutant and the wild type. PMID:24706718

  10. Identification and characterization of a prevalent hepatitis B virus X protein mutant in Taiwanese patients with hepatocellular carcinoma.

    PubMed

    Yeh, C T; Shen, C H; Tai, D I; Chu, C M; Liaw, Y F

    2000-11-02

    The aim of this study was to investigate whether there was a particular hepatitis B virus (HBV) X protein (HBx) mutant associated with Taiwanese patients with hepatocellular carcinoma (HCC). Initially, the entire coding region of HBx gene from the serum samples of 14 Taiwanese patients were sequenced. A novel mutant, HBx-A31, was preferentially found in patients with HCC. Sera from 67 patients with HCC and 100 patients with chronic hepatitis B were thus subjected for codon 31 analysis using a dual amplification created restriction site method. HBx-A31 was detected more frequently in patients with HCC (52% versus 12%; P<0.001) and in patients with liver cirrhosis (44% versus 6%; P<0.001). Site directed mutagenesis experiment revealed that HBx-A31 was less effective in transactivating HBV enhancer I-X promoter complex, less efficient in supporting HBV replication, and less potent in enhancing TNF-alpha induced increment of CPP32/caspase 3 activities in HepG2 cells. In conclusion, a prevalent HBx mutant was identified in Taiwanese patients with hepatocellular carcinoma. Development of this mutant might represent a strategy of the virus to escape immune surveillance and thus contribute to the process of multiple-step hepatocarcinogenesis.

  11. The Activity of Nodules of the Supernodulating Mutant Mtsunn Is not Limited by Photosynthesis under Optimal Growth Conditions

    PubMed Central

    Cabeza, Ricardo A.; Lingner, Annika; Liese, Rebecca; Sulieman, Saad; Senbayram, Mehmet; Tränkner, Merle; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants. PMID:24727372

  12. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants.

    PubMed

    Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B; Rieger, Leonie; Frenger, Marc S; Marschall, André; Franke, Rochus B; Pattathil, Sivakumar; Voll, Lars M

    2017-01-01

    Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance.

  13. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants

    PubMed Central

    Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B.; Rieger, Leonie; Frenger, Marc S.; Marschall, André; Franke, Rochus B.; Pattathil, Sivakumar

    2017-01-01

    Abstract Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance. PMID:28204541

  14. Gene I mutants of peanut chlorotic streak virus, a caulimovirus, replicate in plants but do not move from cell to cell.

    PubMed Central

    Ducasse, D A; Mushegian, A R; Shepherd, R J

    1995-01-01

    Gene I of peanut chlorotic streak virus (PCISV), a caulimovirus, is homologous to gene I of other caulimoviruses and may encode a protein for virus movement. To evaluate the function of gene I, several mutations were created in this gene of an infectious, partially redundant clone of PCISV. Constructs with an in-frame deletion and a single amino acid substitution in gene I were not infectious. To test for replication of these mutants in primarily infected cells, an immunosorbent PCR technique was devised. Virus particles formed by mutants in plants were recovered by binding to antivirus antibodies on a solid matrix and DNase treated to discriminate against residual inoculum, and DNA of trapped virions was subjected to PCR amplification. Gene I mutants were shown to direct formation of encapsidated DNA as revealed by a PCR product. Control gene V mutants (reverse transcriptase essential for replication) did not yield a PCR product. Quantitative PCR allowed estimation of the proportion of cells initially infected by gene I mutants and the amount of extractable virus per cell. It is concluded that PCISV gene I encodes a movement protein and that the immunoselection-PCR technique is useful in studying subliminal virus infection in plants. PMID:7543587

  15. The Phenotype performance of M3 red rice mutant (Oryza sativa L.)

    NASA Astrophysics Data System (ADS)

    Kasim, N.; Sjahril, R.; Riadi, M.; Arbie, F.

    2018-05-01

    Local rice genotype generally has colour, flavour and scent more preferred by consumers, yet unfortunately it has long-lived planting period and low production. Therefore, the plant breeding practices in rice needs to be implemented for better rice varieties which are superior in terms of both quality and quantity. Our findings describe the growth character performance and the production of red rice mutant from M3 generation. This study was conducted in the Agriculture Faculty wetlands, Hasanuddin University, Makassar, by using ANOVA test with some red rice mutant genotypes i.e. 7 genotypes mutants (G1, G2, G3, G4, G5, G6 and G7) and controls/parent-plants (not the mutant). Results show that there were difference in growth performance and production of red rice mutant. Each parameter observed on each genotype had different results. Mutants produced best response in tillers production were G4 mutant with the tillers grain weight at 99.2 g, whereas by the results of the analysis of rank, mutants showed the best overall response were found in G6 mutants.

  16. An efficient screen for peroxisome-deficient mutants of Pichia pastoris.

    PubMed Central

    Liu, H; Tan, X; Veenhuis, M; McCollum, D; Cregg, J M

    1992-01-01

    We describe a rapid and efficient screen for peroxisome-deficient (per) mutants in the yeast Pichia pastoris. The screen relies on the unusual ability of P. pastoris to grow on two carbon sources, methanol and oleic acid, both of which absolutely require peroxisomes to be metabolized. A collection of 280 methanol utilization-defective (Mut-) P. pastoris mutants was isolated, organized into 46 complementation groups, and tested for those that were also oleate-utilization defective (Out-) but still capable of growth on ethanol and glucose. Mutants in 10 groups met this phenotypic description, and 8 of these were observed by electron microscopy to be peroxisome deficient (Per-). In each per mutant, Mut-, Out-, and Per- phenotypes were tightly linked and therefore were most likely due to a mutation at a single locus. Subcellular fractionation experiments indicated that the peroxisomal marker enzyme catalase was mislocalized to the cytosol in both methanol- and oleate-induced cultures of the mutants. In contrast, alcohol oxidase, a peroxisomal methanol utilization pathway enzyme, was virtually absent from per mutant cells. The relative ease of per mutant isolation in P. pastoris, in conjunction with well-developed procedures for its molecular and genetic manipulation, makes this organism an attractive system for studies on peroxisome biogenesis. Images PMID:1629154

  17. Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis.

    PubMed

    Böttcher, Christoph; von Roepenack-Lahaye, Edda; Schmidt, Jürgen; Schmotz, Constanze; Neumann, Steffen; Scheel, Dierk; Clemens, Stephan

    2008-08-01

    Metabolomics is facing a major challenge: the lack of knowledge about metabolites present in a given biological system. Thus, large-scale discovery of metabolites is considered an essential step toward a better understanding of plant metabolism. We show here that the application of a metabolomics approach generating structural information for the analysis of Arabidopsis (Arabidopsis thaliana) mutants allows the efficient cataloging of metabolites. Fifty-six percent of the features that showed significant differences in abundance between seeds of wild-type, transparent testa4, and transparent testa5 plants could be annotated. Seventy-five compounds were structurally characterized, 21 of which could be identified. About 40 compounds had not been known from Arabidopsis before. Also, the high-resolution analysis revealed an unanticipated expansion of metabolic conversions upstream of biosynthetic blocks. Deficiency in chalcone synthase results in the increased seed-specific biosynthesis of a range of phenolic choline esters. Similarly, a lack of chalcone isomerase activity leads to the accumulation of various naringenin chalcone derivatives. Furthermore, our data provide insight into the connection between p-coumaroyl-coenzyme A-dependent pathways. Lack of flavonoid biosynthesis results in elevated synthesis not only of p-coumarate-derived choline esters but also of sinapate-derived metabolites. However, sinapoylcholine is not the only accumulating end product. Instead, we observed specific and sophisticated changes in the complex pattern of sinapate derivatives.

  18. Stable Isotope Metabolic Labeling-based Quantitative Phosphoproteomic Analysis of Arabidopsis Mutants Reveals Ethylene-regulated Time-dependent Phosphoproteins and Putative Substrates of Constitutive Triple Response 1 Kinase*

    PubMed Central

    Yang, Zhu; Guo, Guangyu; Zhang, Manyu; Liu, Claire Y.; Hu, Qin; Lam, Henry; Cheng, Han; Xue, Yu; Li, Jiayang; Li, Ning

    2013-01-01

    Ethylene is an important plant hormone that regulates numerous cellular processes and stress responses. The mode of action of ethylene is both dose- and time-dependent. Protein phosphorylation plays a key role in ethylene signaling, which is mediated by the activities of ethylene receptors, constitutive triple response 1 (CTR1) kinase, and phosphatase. To address how ethylene alters the cellular protein phosphorylation profile in a time-dependent manner, differential and quantitative phosphoproteomics based on 15N stable isotope labeling in Arabidopsis was performed on both one-minute ethylene-treated Arabidopsis ethylene-overly-sensitive loss-of-function mutant rcn1-1, deficient in PP2A phosphatase activity, and a pair of long-term ethylene-treated wild-type and loss-of-function ethylene signaling ctr1-1 mutants, deficient in mitogen-activated kinase kinase kinase activity. In total, 1079 phosphopeptides were identified, among which 44 were novel. Several one-minute ethylene-regulated phosphoproteins were found from the rcn1-1. Bioinformatic analysis of the rcn1-1 phosphoproteome predicted nine phosphoproteins as the putative substrates for PP2A phosphatase. In addition, from CTR1 kinase-enhanced phosphosites, we also found putative CTR1 kinase substrates including plastid transcriptionally active protein and calcium-sensing receptor. These regulatory proteins are phosphorylated in the presence of ethylene. Analysis of ethylene-regulated phosphosites using the group-based prediction system with a protein–protein interaction filter revealed a total of 14 kinase–substrate relationships that may function in both CTR1 kinase- and PP2A phosphatase-mediated phosphor-relay pathways. Finally, several ethylene-regulated post-translational modification network models have been built using molecular systems biology tools. It is proposed that ethylene regulates the phosphorylation of arginine/serine-rich splicing factor 41, plasma membrane intrinsic protein 2A, light

  19. First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement

    PubMed Central

    Vicente-Dólera, Nelly; Troadec, Christelle; Moya, Manuel; del Río-Celestino, Mercedes; Pomares-Viciana, Teresa; Bendahmane, Abdelhafid; Picó, Belén; Román, Belén; Gómez, Pedro

    2014-01-01

    Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding. PMID:25386735

  20. Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice.

    PubMed

    Horiuchi, Keiko; Perez-Cerezales, Serafín; Papasaikas, Panagiotis; Ramos-Ibeas, Priscila; López-Cardona, Angela Patricia; Laguna-Barraza, Ricardo; Fonseca Balvís, Noelia; Pericuesta, Eva; Fernández-González, Raul; Planells, Benjamín; Viera, Alberto; Suja, Jose Angel; Ross, Pablo Juan; Alén, Francisco; Orio, Laura; Rodriguez de Fonseca, Fernando; Pintado, Belén; Valcárcel, Juan; Gutiérrez-Adán, Alfonso

    2018-04-03

    The U2AF35-like ZRSR1 has been implicated in the recognition of 3' splice site during spliceosome assembly, but ZRSR1 knockout mice do not show abnormal phenotypes. To analyze ZRSR1 function and its precise role in RNA splicing, we generated ZRSR1 mutant mice containing truncating mutations within its RNA-recognition motif. Homozygous mutant mice exhibited severe defects in erythrocytes, muscle stretch, and spermatogenesis, along with germ cell sloughing and apoptosis, ultimately leading to azoospermia and male sterility. Testis RNA sequencing (RNA-seq) analyses revealed increased intron retention of both U2- and U12-type introns, including U12-type intron events in genes with key functions in spermatogenesis and spermatid development. Affected U2 introns were commonly found flanking U12 introns, suggesting functional cross-talk between the two spliceosomes. The splicing and tissue defects observed in mutant mice attributed to ZRSR1 loss of function suggest a physiological role for this factor in U12 intron splicing. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Altered striatal function in a mutant mouse lacking D1A dopamine receptors.

    PubMed Central

    Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P

    1994-01-01

    Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078

  2. Structural and genetic analysis of a mutant of Rhodobacter sphaeroides WS8 deficient in hook length control.

    PubMed Central

    González-Pedrajo, B; Ballado, T; Campos, A; Sockett, R E; Camarena, L; Dreyfus, G

    1997-01-01

    Motility in the photosynthetic bacterium Rhodobacter sphaeroides is achieved by the unidirectional rotation of a single subpolar flagellum. In this study, transposon mutagenesis was used to obtain nonmotile flagellar mutants from this bacterium. We report here the isolation and characterization of a mutant that shows a polyhook phenotype. Morphological characterization of the mutant was done by electron microscopy. Polyhooks were obtained by shearing and were used to purify the hook protein monomer (FlgE). The apparent molecular mass of the hook protein was 50 kDa. N-terminal amino acid sequencing and comparisons with the hook proteins of other flagellated bacteria indicated that the Rhodobacter hook protein has consensus sequences common to axial flagellar components. A 25-kb fragment from an R. sphaeroides WS8 cosmid library restored wild-type flagellation and motility to the mutant. Using DNA adjacent to the inserted transposon as a probe, we identified a 4.6-kb SalI restriction fragment that contained the gene responsible for the polyhook phenotype. Nucleotide sequence analysis of this region revealed an open reading frame with a deduced amino acid sequence that was 23.4% identical to that of FliK of Salmonella typhimurium, the polypeptide responsible for hook length control in that enteric bacterium. The relevance of a gene homologous to fliK in the uniflagellated bacterium R. sphaeroides is discussed. PMID:9352903

  3. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes.

    PubMed

    Mehterov, Nikolay; Balazadeh, Salma; Hille, Jacques; Toneva, Valentina; Mueller-Roeber, Bernd; Gechev, Tsanko

    2012-10-01

    The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ, which stimulate the intracellular formation of H₂O₂ or superoxide anions, respectively, trigger cell death in loh2 but do not lead to visible damage in atr7. To study gene expression during oxidative stress and ROS-induced programmed cell death, two platforms for multi-parallel quantitative real-time PCR (qRT-PCR) analysis of 217 antioxidant and 180 ROS marker genes were employed. The qRT-PCR analyses revealed AT- and PQ-induced expression of many ROS-responsive genes mainly in loh2, confirming that an oxidative burst plays a role in the activation of the cell death in this mutant. Some of the genes were specifically regulated by either AT or PQ, serving as markers for particular types of ROS. Genes significantly induced by both AT and PQ in loh2 included transcription factors (ANAC042/JUB1, ANAC102, DREB19, HSFA2, RRTF1, ZAT10, ZAT12, ethylene-responsive factors), signaling compounds, ferritins, alternative oxidases, and antioxidant enzymes. Many of these genes were upregulated in atr7 compared to loh2 under non-stress conditions at the first time point, indicating that higher basal levels of ROS and higher antioxidant capacity in atr7 are responsible for the enhanced tolerance to oxidative stress and suggesting a possible tolerance against multiple stresses of this mutant. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. Late-onset of spinal neurodegeneration in knock-in mice expressing a mutant BiP.

    PubMed

    Jin, Hisayo; Mimura, Naoya; Kashio, Makiko; Koseki, Haruhiko; Aoe, Tomohiko

    2014-01-01

    Most human neurodegenerative diseases are sporadic, and appear later in life. While the underlying mechanisms of the progression of those diseases are still unclear, investigations into the familial forms of comparable diseases suggest that endoplasmic reticulum (ER) stress is involved in the pathogenesis. Binding immunoglobulin protein (BiP) is an ER chaperone that is central to ER function. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence in order to evaluate the effect of a functional defect in an ER chaperone in multi-cellular organisms. Here we report that heterozygous mutant BiP mice revealed motor disabilities in aging. We found a degeneration of some motoneurons in the spinal cord accompanied by accumulations of ubiquitinated proteins. The defect in retrieval of BiP by the KDEL receptor leads to impaired activities in quality control and autophagy, suggesting that functional defects in the ER chaperones may contribute to the late onset of neurodegenerative diseases.

  5. Functionality screen of streptavidin mutants by non-denaturing SDS-PAGE using biotin-4-fluorescein.

    PubMed

    Humbert, Nicolas; Ward, Thomas R

    2008-01-01

    Site-directed mutagenesis or directed evolution of proteins often leads to the production of inactive mutants. For streptavidin and related proteins, mutations may lead to the loss of their biotin-binding properties. With high-throughput screening methodologies in mind, it is imperative to detect, prior to the high-density protein production, the bacteria that produce non-functional streptavidin isoforms. Based on the incorporation of biotin-4-fluorescein in streptavidin mutants present in Escherichia coli bacterial extracts, we detail a functional screen that allows the identification of biotin-binding streptavidin variants. Bacteria are cultivated in a small volume, followed by a rapid treatment of the cells; biotin-4-fluorescein is added to the bacterial extract and loaded on an Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis (SDS-PAGE) under non-denaturing conditions. Revealing is performed using a UV transilluminator. This screen is thus easy to implement, cheap and requires only readily available equipment.

  6. Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number.

    PubMed

    Kubo, Fumika Clara; Yasui, Yukiko; Kumamaru, Toshihiro; Sato, Yutaka; Hirano, Hiro-Yuki

    2017-03-17

    Leaves are a major site for photosynthesis and a key determinant of plant architecture. Rice produces thin and slender leaves, which consist of the leaf blade and leaf sheath separated by the lamina joint. Two types of vasculature, the large and small vascular bundles, run in parallel, together with a strong structure, the midrib. In this paper, we examined the function of four genes that regulate the width of the leaf blade and the vein number: NARROW LEAF1 (NAL1), NAL2, NAL3 and NAL7. We backcrossed original mutants of these genes with the standard wild-type rice, Taichung 65. We then compared the effect of each mutation on similar genetic backgrounds and examined genetic interactions of these genes. The nal1 single mutation and the nal2 nal3 double mutation showed a severe effect on leaf width, resulting in very narrow leaves. Although vein number was also reduced in the nal1 and nal2 nal3 mutants, the small vein number was more strongly reduced than the large vein number. In contrast, the nal7 mutation showed a milder effect on leaf width and vein number, and both the large and small veins were similarly affected. Thus, the genes responsible for narrow leaf phenotype seem to play distinct roles. The nal7 mutation showed additive effects on both leaf width and vein number, when combined with the nal1 single or the nal2 nal3 double mutation. In addition, observations of inner tissues revealed that cell differentiation was partially compromised in the nal2 nal3 nal7 mutant, consistent with the severe reduction in leaf width in this triple mutant.

  7. Developmental Loss of Photosystem II Activity and Structure in a Chloroplast-Encoded Tobacco Mutant, Lutescens-11

    PubMed Central

    Chia, Catherine P.; Duesing, John H.; Arntzen, Charles J.

    1986-01-01

    Lutescens-1, a tobacco mutant with a maternally inherited dysfunction, displayed an unusual developmental phenotype. In vivo measurement of chlorophyll fluorescence revealed deterioration in photosystem II (PSII) function as leaves expanded. Analysis of thylakoid membrane proteins by polyacrylamide gel electrophoresis indicated the physical loss of nuclear- and chloroplast-encoded polypeptides comprising the PSII core complex concomitant with loss of activity. Freeze fracture electron micrographs of mutant thylakoids showed a reduced density, compared to wild type, of the EFs particles which have been shown previously to be the structural entity containing PSII core complexes and associated pigment-proteins. The selective loss of PSII cores from thylakoids resulted in a higher ratio of antenna chlorophyll to reaction centers and an altered 77 K chlorophyll fluorescence emission spectra; these data are interpreted to indicate functional isolation of light-harvesting chlorophyll a/b complexes in the absence of PSII centers. Examination of PSII reaction centers (which were present at lower levels in mutant membranes) by monitoring the light-dependent phosphorylation of PSII polypeptides and flash-induced O2 evolution patterns demonstrated that the PSII cores which were assembled in mutant thylakoids were functionally identical to those of wild type. We conclude that the lutescens-1 mutation affected the correct stoichiometry of PSII centers, in relation to other membrane constituents, by disrupting the proper assembly and maintenance of PSII complexes in lutescens-1 thylakoid membranes. Images Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16664990

  8. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.

    PubMed Central

    Howden, R; Andersen, C R; Goldsbrough, P B; Cobbett, C S

    1995-01-01

    The roots of the cadmium-sensitive mutant of Arabidopsis thaliana, cad1-1, become brown in the presence of cadmium. A new cadmium-sensitive mutant affected at a second locus, cad2, has been identified using this phenotype. Genetic analysis has grown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Assays of cadmium accumulation by intact plants indicated that the mutant is deficient in its ability to sequester cadmium. Undifferentiated callus tissue was also cadmium sensitive, suggesting that the mutant phenotype is expressed at the cellular level. The level of cadmium-binding complexes formed in vivo was decreased compared with the wild type and accumulation of phytochelatins was about 10% of that in the wild type. The level of glutathione, the substrate for phytochelatin biosynthesis, in tissues of the mutant was decreased to about 15 to 30% of that in the wild type. Thus, the deficiency in phytochelatin biosynthesis can be explained by a deficiency in glutathione. PMID:7770518

  9. Regulatory Mutants at the his1 Locus of Yeast

    PubMed Central

    Lax, Carol; Fogel, Seymour; Cramer, Carole

    1979-01-01

    The his1 gene in Saccharomyces cerevisiae codes for phosphoribosyl transferase, an allosteric enzyme that catalyzes the initial step in histidine biosynthesis. Mutants that specifically alter the feedback regulatory function were isolated by selecting his1 prototrophic revertants that overproduce and excrete histidine. The prototrophs were obtained from diploids homoallelic for his1–7 and heterozygous for the flanking markers thr3 and arg6. Among six independently derived mutant isolates, three distinct levels of histidine excretion were detected. The mutants were shown to be second-site alterations mapping at the his1 locus by recovery of the original auoxtrophic parental alleles. The double mutants, HIS1–7e, are dominant with respect to catalytic function but recessive in regulatory function. When removed from this his1–7 background, the mutant regulatory site (HIS1–e) still confers prototrophy but not histidine excretion. To yield the excretion phenotype, the primary and altered secondary sites are required in cis array. Differences in histidine excretion levels correlate with resistance to the histidine analogue, triazoalanine. PMID:385447

  10. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    PubMed

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  11. Nonbehavioral Selection for Pawns, Mutants of PARAMECIUM AURELIA with Decreased Excitability

    PubMed Central

    Schein, Stanley J.

    1976-01-01

    The reversal response in Paramecium aurelia is mediated by calcium which carries the inward current during excitation. Electrophysiological studies indicate that strontium and barium can also carry the inward current. Exposure to high concentrations of barium rapidly paralyzes and later kills wild-type paramecia. Following mutagenesis with nitrosoguanidine, seven mutants which continued to swim in the `high-barium' solution were selected. All of the mutants show decreased reversal behavior, with phenotypes ranging from extremely non-reversing (`extreme' pawns) to nearly wild-type reversal behavior (`partial' pawns). The mutations fall into three complementation groups, identical to the pwA, pwB, and pwC genes of Kung et al. (1975). All of the pwA and pwB mutants withstand longer exposure to barium, the pwB mutants surviving longer than the pwA mutants. Among mutants of each gene, survival is correlated with loss of reversal behavior. Double mutants (A–B, A–C, B–C), identified in the exautogamous progeny of crosses between `partial' mutants, exhibited a more extreme non-reversing phenotype than either of their single-mutant (`partial' pawn) parents.———Inability to reverse could be expected from an alteration in the calcium-activated reversal mechanism or in excitation. A normal calcium-activated structure was demonstrated in all pawns by chlorpromazine treatment. In a separate report (Schein, Bennett and Katz 1976) the results of electrophysiological investigations directly demonstrate decreased excitability in all of the mutants, a decrease due to an altered calcium activation. The studies of the genetics, the survival in barium and the electro-physiology of the pawns demonstrate that the pwA and pwB genes have different effects on calcium activation. PMID:1001878

  12. Creation, characterization and utilization of Cryptococcus neoformans mutants sensitive to micafungin.

    PubMed

    Toh-E, Akio; Ohkusu, Misako; Shimizu, Kiminori; Yamaguchi, Masashi; Ishiwada, Naruhiko; Watanabe, Akira; Kamei, Katsuhiko

    2017-12-01

    We constructed deletion mutants of Cryptococcus neoformans var neoformans (serotype D) genes encoding late ergosterol biosynthetic pathway enzymes and found that the mutations enhanced susceptibility to various drugs including micafungin, one of the echinocandins, to which wild-type Cryptococcus strains show no susceptibility. Furthermore, through isolation of a mutant resistant to micafungin from a micafungin-sensitive erg mutant and genetic analysis of it, we found that the responsible mutation occurred in the hotspot 2 of FKS1 encoding β-1, 3-glucan synthase, indicating that micafungin inhibited the growth of the erg mutant via inhibiting Fks1 activity. Addition of ergosterol to the culture of the erg mutants recovered the resistance to micafungin, suggesting that the presence of ergosterol in membrane inhibits the accession of micafungin to its target. We found that a loss of one of genes encoding subunits of v-ATPase, VPH1, made Cryptococcus cells sensitive to micafungin. Our observation that the erg2 vph1 double mutant was more sensitive to micafungin than either single mutant suggests that these two genes act differently in becoming resistant to micafungin. The erg mutants allowed us to study the physiological significance of β-1, 3-glucan synthesis in C. neoformans; the inhibition of β-1, 3-glucan synthesis induced cell death and changes in cellular morphology. By observing the erg mutant cells recovering from the growth inhibition imposed by micafungin, we recognized β-1, 3-glucan synthesis would suppress filamentous growth in C. neoformans.

  13. Aggressive behavior of the white-eye mutant crickets, Gryllus bimaculatus.

    PubMed

    Sakura, Midori; Watanabe, T; Aonuma, H

    2012-01-01

    Aggressive behavior of white-eye mutant crickets was investigated and compared with that of wild-type crickets. In the dark, wild-type pairs performed long-lasting fights with significantly higher aggressive levels compared to those in the light. In contrast, fights between two white-eye mutants were not significantly different with those between two wild-type crickets both in duration and the aggressive levels. Ethograms of aggressive behavior showed that the mutants could show typical sequentially escalating fight with the same behavioral categories as the wild-type crickets. These results indicate that the white-eye mutants are able to express normal aggressive behavior.

  14. Characterization of a dam Mutant of Serratia marcescens and Nucleotide Sequence of the dam Region

    PubMed Central

    Ostendorf, Tammo; Cherepanov, Peter; de Vries, Johann; Wackernagel, Wilfried

    1999-01-01

    The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors. PMID:10383952

  15. Karyotype variation in cultivars and spontaneous cocoa mutants (Theobroma cacao L.).

    PubMed

    Figueiredo, G S F; Melo, C A F; Souza, M M; Araújo, I S; Zaidan, H A; Pires, J L; Ahnert, D

    2013-10-18

    Four mutant cocoa accessions with morphological changes and a cultivar sample were karyomorphologically characterized. Slides were prepared by enzymatic digestion of the root meristem and squashed in 45% acetic acid, followed by 2% Giemsa staining. The chromosome number of 2n = 20 was seen in all accessions. The karyotype formula for Cacau Comum and Cacau Rui was 2n = 20m. Submetacentric chromosomes were observed in Cacau Pucala and Cacau Jaca, both with 2n = 18m + 2sm, but the karyotype formula for Cacau Sem Vidro was 2n = 16m + 4sm. Satellites were located on the long arm of the 1st and 2nd chromosome pairs of Cacau Comum, whereas Cacau Pucala had satellites on the 6th chromosome pair. Greater karyotypic variation in Cacau Sem Vidro was found, whose 1st and 2nd chromosome pairs had satellites on the long arm and 6th and 10th pairs had satellites on the short arm. Analysis revealed a lower average chromosome length in Cacau Comum (1.53 ± 0.026 µm) and a higher length in Cacau Sem Vidro (2.26 ± 0.038 µm). ANOVA revealed significant difference (P < 0.01) for the average chromosome length and the length of chromosome pairs within and between accessions. The average chromosome lengths of mutants of Cacau Rui and Cacau Jaca were not statistically different by the Tukey test at 5% probability. The karyotypic diversity observed in this study is not necessarily associated with the changing character of the accessions analyzed, but may reflect the genetic variation observed in Theobroma cacao.

  16. Eicosapentaenoic acid prevents arterial calcification in klotho mutant mice.

    PubMed

    Nakamura, Kazufumi; Miura, Daiji; Saito, Yukihiro; Yunoki, Kei; Koyama, Yasushi; Satoh, Minoru; Kondo, Megumi; Osawa, Kazuhiro; Hatipoglu, Omer F; Miyoshi, Toru; Yoshida, Masashi; Morita, Hiroshi; Ito, Hiroshi

    2017-01-01

    The klotho gene was identified as an "aging-suppressor" gene that accelerates arterial calcification when disrupted. Serum and vascular klotho levels are reduced in patients with chronic kidney disease, and the reduced levels are associated with arterial calcification. Intake of eicosapentaenoic acid (EPA), an n-3 fatty acid, reduces the risk of fatal coronary artery disease. However, the effects of EPA on arterial calcification have not been fully elucidated. The aim of this study was to determine the effect of EPA on arterial calcification in klotho mutant mice. Four-week-old klotho mutant mice and wild-type (WT) mice were given a diet containing 5% EPA (EPA food, klotho and WT: n = 12, each) or not containing EPA (control food, klotho and WT: n = 12, each) for 4 weeks. Calcium volume scores of thoracic and abdominal aortas assessed by computed tomography were significantly elevated in klotho mice after 4 weeks of control food, but they were not elevated in klotho mice after EPA food or in WT mice. Serum levels of EPA and resolvin E1, an active metabolite of EPA, in EPA food-fed mice were significantly increased compared to those in control food-fed mice. An oxidative stress PCR array followed by quantitative PCR revealed that NADPH oxidase-4 (NOX4), an enzyme that generates superoxide, gene expression was up-regulated in arterial smooth muscle cells (SMCs) of klotho mice. Activity of NOX was also significantly higher in SMCs of klotho mice than in those of WT mice. EPA decreased expression levels of the NOX4 gene and NOX activity. GPR120, a receptor of n-3 fatty acids, gene knockdown by siRNA canceled effects of EPA on NOX4 gene expression and NOX activity in arterial SMCs of klotho mice. EPA prevents arterial calcification together with reduction of NOX gene expression and activity via GPR120 in klotho mutant mice.

  17. Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse.

    PubMed

    Kong, W J; Scholtz, A W; Hussl, B; Kammen-Jolly, K; Schrott-Fischer, A

    2002-05-01

    Naturally occurring mutant mice provide an excellent model for the study of genetic malformations of the inner ear. Mice homozygous for the Bronx waltzer (bv/bv) mutation are severely hearing impaired or deaf and exhibit a 'waltzing' gait. Functional aspects of cochlear and vestibular efferents in the bv/bv mutant mouse are not well known. The present study was designed to evaluate several candidates of efferent neurotransmitters or neuromodulators including choline acetyltransferase (ChAT), gamma-aminobutyric acid (GABA), and calcitonin gene-related peptide (CGRP) in the inner ear of the bv/bv mutant mouse. Ultrastructural investigations at both light and electron microscopic level were performed. Ultrastructural morphologic evaluations of the cochlea and the vestibular end-organs were also undertaken. It is demonstrated that ChAT, GABA and CGRP immunoreactivities are present in the cochlea and in vestibular end-organs of bv/bv mutant mice. In the organ of Corti, immunoreactivity of ChAT, GABA and CGRP is confined to the inner spiral fibers, tunnel-crossing fibers, and the vesiculated nerve endings synapsing with outer hair cells. Interestingly, immunoreactivity was detectable even where inner hair cells appeared missing. Results also revealed malformations of the outer hair cells with synaptic contacts to efferent nerve endings consistently intact. In the neurosensory epithelia of the vestibular end-organs, the presence of ChAT, GABA, and CGRP immunoreactivity was localized at the vestibular efferents, with the exception of the macula of saccule. In one 8-month-old macula of utricle where the depletion of hair cells appeared highest, ChAT immunostaining was still discernible. Ultrastructural investigation demonstrated that vesiculated efferent nerve endings make synaptic contact with the outer hair cells in the organ of Corti and with type II hair cells in the vestibular end-organs. The present study provides further support that the efferent system in the bv

  18. The N253F mutant structure of trehalose synthase from Deinococcus radiodurans reveals an open active-site topology.

    PubMed

    Chow, Sih Yao; Wang, Yung Lin; Hsieh, Yu Chiao; Lee, Guan Chiun; Liaw, Shwu Huey

    2017-11-01

    Trehalose synthase (TS) catalyzes the reversible conversion of maltose to trehalose and belongs to glycoside hydrolase family 13 (GH13). Previous mechanistic analysis suggested a rate-limiting protein conformational change, which is probably the opening and closing of the active site. Consistently, crystal structures of Deinococcus radiodurans TS (DrTS) in complex with the inhibitor Tris displayed an enclosed active site for catalysis of the intramoleular isomerization. In this study, the apo structure of the DrTS N253F mutant displays a new open conformation with an empty active site. Analysis of these structures suggests that substrate binding induces a domain rotation to close the active site. Such a substrate-induced domain rotation has also been observed in some other GH13 enzymes.

  19. An Erwinia amylovora yjeK mutant exhibits reduced virulence, increased chemical sensitivity and numerous environmentally dependent proteomic alterations.

    PubMed

    Klee, Sara M; Mostafa, Islam; Chen, Sixue; Dufresne, Craig; Lehman, Brian L; Sinn, Judith P; Peter, Kari A; McNellis, Timothy W

    2018-07-01

    The Gram-negative bacterium Erwinia amylovora causes fire blight, an economically important disease of apples and pears. Elongation factor P (EF-P) is a highly conserved protein that stimulates the formation of the first peptide bond of certain proteins and facilitates the translation of certain proteins, including those with polyproline motifs. YjeK and YjeA are two enzymes involved in the essential post-translational β-lysylation of EF-P at a conserved lysine residue, K34. EF-P, YjeA and YjeK have been shown to be essential for the full virulence of Escherichia coli, Salmonella species and Agrobacterium tumefaciens, with efp, yjeA and yjeK mutants having highly similar phenotypes. Here, we identified an E. amylovora yjeK::Tn5 transposon mutant with decreased virulence in apple fruit and trees. The yjeK::Tn5 mutant also showed pleiotropic phenotypes, including reduced growth in rich medium, lower extracellular polysaccharide production, reduced swimming motility and increased chemical sensitivity compared with the wild-type, whilst maintaining wild-type level growth in minimal medium. All yjeK::Tn5 mutant phenotypes were complemented in trans with a plasmid bearing a wild-type copy of yjeK. Comprehensive, quantitative proteomics analyses revealed numerous, environmentally dependent changes in the prevalence of a wide range of proteins, in higher abundance and lower abundance, in yjeK::Tn5 compared with the wild-type, and many of these alterations could be linked to yjeK::Tn5 mutant phenotypes. The environmental dependence of the yjeK::Tn5 mutant proteomic alterations suggests that YjeK could be required for aspects of the environmentally dependent regulation of protein translation. YjeK activity may be critical to overcoming stress, including the challenging host environment faced by invading pathogenic bacteria. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  20. Filamentous invasive growth of mutants of the genes encoding ammonia-metabolizing enzymes in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Sasaki, Yoshie; Kojima, Ayumi; Shibata, Yuriko; Mitsuzawa, Hiroshi

    2017-01-01

    The fission yeast Schizosaccharomyces pombe undergoes a switch from yeast to filamentous invasive growth in response to certain environmental stimuli. Among them is ammonium limitation. Amt1, one of the three ammonium transporters in this yeast, is required for the ammonium limitation-induced morphological transition; however, the underlying molecular mechanism remains to be understood. Cells lacking Amt1 became capable of invasive growth upon increasing concentrations of ammonium in the medium, suggesting that the ammonium taken up into the cell or a metabolic intermediate in ammonium assimilation might serve as a signal for the ammonium limitation-induced morphological transition. To investigate the possible role of ammonium-metabolizing enzymes in the signaling process, deletion mutants were constructed for the gdh1, gdh2, gln1, and glt1 genes, which were demonstrated by enzyme assays to encode NADP-specific glutamate dehydrogenase, NAD-specific glutamate dehydrogenase, glutamine synthetase, and glutamate synthase, respectively. Growth tests on various nitrogen sources revealed that a gln1Δ mutant was a glutamine auxotroph and that a gdh1Δ mutant had a defect in growth on ammonium, particularly at high concentrations. The latter observation indicates that the NADP-specific glutamate dehydrogenase of S. pombe plays a major role in ammonium assimilation under high ammonium concentrations. Invasive growth assays showed that gdh1Δ and glt1Δ mutants underwent invasive growth to a lesser extent than did wild-type strains. Increasing the ammonium concentration in the medium suppressed the invasive growth defect of the glt1Δ mutant, but not the gdh1Δ mutant. These results suggest that the nitrogen status of the cell is important in the induction of filamentous invasive growth in S. pombe.

  1. Structural analysis of α1,3-linked galactose-containing oligosaccharides in Schizosaccharomyces pombe mutants harboring single and multiple α-galactosyltransferase genes disruptions.

    PubMed

    Ohashi, Takao; Nakakita, Shin-ichi; Sumiyoshi, Wataru; Yamada, Naotaka; Ikeda, Yuka; Tanaka, Naotaka; Takegawa, Kaoru

    2011-03-01

    In the fission yeast Schizosaccharomyces pombe, galactose (Gal) residues are transferred to N- and O-linked oligosaccharides of glycoproteins by galactosyltransferases in the lumen of the Golgi apparatus. In S. pombe, the major in vitro α1,2-galactosyltransferase activity has been purified, the gma12(+) gene has been cloned, and three α-galactosyltransferase genes (gmh1(+)-gmh3(+)) have also been partially characterized. In this study, we found three additional uncharacterized genes with homology to gmh1(+) (gmh4(+)-gmh6(+)) in the fission yeast genome sequence. All possible single disruption mutants and the septuple disruption strain were constructed and characterized. The electrophoretic mobility of acid phosphatase prepared from gma12Δ, gmh2Δ, gmh3Δ and gmh6Δ mutants was higher than that from wild type, indicating that Gma12p, Gmh2p, Gmh3p and Gmh6p are required for the galactosylation of N-linked oligosaccharides. High-performance liquid chromatography (HPLC) analysis of pyridylaminated O-linked oligosaccharides from each single mutant showed that Gma12p, Gmh2p and Gmh6p are involved in galactosylation of O-linked oligosaccharides. The septuple mutant exhibited similar drug and temperature sensitivity as a gms1Δ mutant that is incapable of galactosylation. Oligosaccharide structural analysis based on HPLC and methylation analysis revealed that the septuple mutant still contained oligosaccharides consisting of α1,3-linked Gal residues, indicating that an unknown α1,3-galactosyltransferase activity was still present in the septuple mutant.

  2. Chemical chaperones reduce endoplasmic reticulum stress and prevent mutant HFE aggregate formation.

    PubMed

    de Almeida, Sérgio F; Picarote, Gonçalo; Fleming, John V; Carmo-Fonseca, Maria; Azevedo, Jorge E; de Sousa, Maria

    2007-09-21

    HFE C282Y, the mutant protein associated with hereditary hemochromatosis (HH), fails to acquire the correct conformation in the endoplasmic reticulum (ER) and is targeted for degradation. We have recently shown that an active unfolded protein response (UPR) is present in the cells of patients with HH. Now, by using HEK 293T cells, we demonstrate that the stability of HFE C282Y is influenced by the UPR signaling pathway that promotes its degradation. Treatment of HFE C282Y-expressing cells with tauroursodeoxycholic acid (TUDCA), a bile acid derivative with chaperone properties, or with the chemical chaperone sodium 4-phenylbutyrate (4PBA) impeded the UPR activation. However, although TUDCA led to an increased stability of the mutant protein, 4PBA contributed to a more efficient disposal of HFE C282Y to the degradation route. Fluorescence microscopy and biochemical analysis of the subcellular localization of HFE revealed that a major portion of the C282Y mutant protein forms intracellular aggregates. Although neither TUDCA nor 4PBA restored the correct folding and intracellular trafficking of HFE C282Y, 4PBA prevented its aggregation. These data suggest that TUDCA hampers the UPR activation by acting directly on its signal transduction pathway, whereas 4PBA suppresses ER stress by chemically enhancing the ER capacity to cope with the expression of misfolded HFE, facilitating its degradation. Together, these data shed light on the molecular mechanisms involved in HFE C282Y-related HH and open new perspectives on the use of orally active chemical chaperones as a therapeutic approach for HH.

  3. In vitro and in silico studies reveal capsid-mutant Porcine circovirus 2b with novel cytopathogenic and structural characteristics.

    PubMed

    Cruz, Taís Fukuta; Magro, Angelo José; de Castro, Alessandra M M G; Pedraza-Ordoñez, Francisco J; Tsunemi, Miriam Harumi; Perahia, David; Araujo, João Pessoa

    2018-06-02

    Porcine circovirus 2 (PCV2) is an icosahedral, non-enveloped, and single-stranded circular DNA virus that belongs to the family Circoviridae, genus Circovirus, and is responsible for a complex of different diseases defined as porcine circovirus diseases (PCVDs). These diseases - including postweaning multisystemic wasting syndrome (PMWS), enteric disease, respiratory disease, porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure - are responsible for large economic losses in the pig industry. After serial passages in swine testicle (ST) cells of a wild-type virus isolated from an animal with PMWS, we identified three PCV2b viruses with capsid protein (known as Cap protein) cumulative mutations, including two novel mutants. The mutant viruses were introduced into new ST cell cultures for reisolation and showed, in comparison to the wild-type PCV2b, remarkable viral replication efficiency (> 10 11 DNA copies/ml) and cell death via necrosis, which were clearly related to the accretion of capsid protein mutations. The analysis of a Cap protein/capsid model showed that the mutated residues were located in solvent-accessible positions on the external PCV2b surface. Additionally, the mutated residues were found in linear epitopes and participated in pockets on the capsid surface, indicating that these residues could also be involved in antibody recognition. Taking into account the likely natural emergence of PCV2b variants, it is possible to consider that the results of this work increase knowledge of Circovirus biology and could help to prevent future serious cases of vaccine failure that could lead to heavy losses to the swine industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01.

    PubMed

    Xu, Jian-Ren; Zhao, Xin-Qing; Liu, Chen-Guang; Bai, Feng-Wu

    2018-01-01

    The major carbohydrate components of lignocellulosic biomass are cellulose and hemicelluloses. Saccharomyces cerevisiae cannot efficiently utilize xylose derived upon the hydrolysis of hemicelluloses. Although engineering the yeast with xylose metabolic pathway has been intensively studied, challenges are still ahead for developing robust strains for lignocellulosic bioethanol production. The main objective of this study was to reveal the role of the MIG1 mutant isolated from the self-flocculating S. cerevisiae SPSC01 in xylose utilization, glucose repression and ethanol fermentation by S. cerevisiae. The MIG1 mutant was amplified from S. cerevisiae SPSC01 by PCR and MIG1- overexpression-cassette was transformed into S. cerevisiae S288c and xylose-metabolizing strain YB-2625-T through homologous recombination. Yeast growth was measured by colony assay on plates with or without xylose supplementation. Then xylose utilization and ethanol production were further evaluated through flask fermentation when mixed sugars of glucose and xylose at 3:1 and 2:1, respectively, were supplied. Fermentation products were detected by HPLC, and activities of xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulokinase (XK) were also measured. The transcription of genes regulated by the expression of the MIG1 mutant was analyzed by RTqPCR. Evolutionary relationship of various MIG1s was developed by gene sequencing and sequence alignment. No difference was observed for S288c growing with xylose when it was engineered with the overexpression or deletion of its native MIG1, but its growth was enhanced when overexpressing the MIG1 mutant from SPSC01. The submerged culture of YB-2625-T MIG1-SPSC engineered with xylose-metabolic pathway and the MIG1 mutant indicated that xylitol accumulation was decreased, and consequently, more biomass was accumulated. Furthermore, improved activities of the key enzymes such as XR, XDH and XK were detected in YB-2625-T MIG1-SPSC. Evolutionary

  5. Polysaccharide production by a reduced pigmentation mutant of Aureobasidium pullulans NYS-1.

    PubMed

    West, T P; Strohfus, B

    2001-08-01

    To isolate a reduced pigmentation mutant of Aureobasidium pullulans NYS-1 and characterize its cellular pigmentation plus its polysaccharide and biomass production relative to carbon source. Cellular pigmentation, polysaccharide levels and biomass production by the isolated mutant NYSRP-1 were analysed relative to carbon source. Cellular pigmentation of the mutant was lower than its parent strain using either carbon source. The mutant elaborated higher polysaccharide levels on sucrose than on corn syrup. The pullulan content of the polysaccharide synthesized and biomass production by the mutant rose as the carbon source concentration was increased. It is feasible to isolate a reduced pigmentation mutant from strain NYS-1 that exhibits elevated polysaccharide production using corn syrup as a carbon source. The mutant provides an advantage for commercial pullulan production because of its reduced pigmentation and enhanced polysaccharide synthesis.

  6. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    PubMed

    Bozue, Joel; Cote, Christopher K; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J; Kijek, Todd K; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G; Bell, Todd; Worsham, Patricia

    2014-01-01

    Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  7. A Yersinia pestis tat Mutant Is Attenuated in Bubonic and Small-Aerosol Pneumonic Challenge Models of Infection but Not As Attenuated by Intranasal Challenge

    PubMed Central

    Bozue, Joel; Cote, Christopher K.; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J.; Kijek, Todd K.; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G.; Bell, Todd; Worsham, Patricia

    2014-01-01

    Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge. PMID:25101850

  8. Tissue-specific and time-dependent clonal expansion of ENU-induced mutant cells in gpt delta mice.

    PubMed

    Nakayama, Takafumi; Sawai, Tomoko; Masuda, Ikuko; Kaneko, Shinya; Yamauchi, Kazumi; Blyth, Benjamin J; Shimada, Yoshiya; Tachibana, Akira; Kakinuma, Shizuko

    2017-10-01

    DNA mutations play a crucial role in the origins of cancer, and the clonal expansion of mutant cells is one of the fundamental steps in multistage carcinogenesis. In this study, we correlated tumor incidence in B6C3F1 mice during the period after exposure to N-ethyl-N-nitrosourea (ENU) with the persistence of ENU-induced mutant clones in transgenic gpt delta B6C3F1 mice. The induced gpt mutations afforded no selective advantage in the mouse cells and could be distinguished by a mutational spectrum that is characteristic of ENU treatment. The gpt mutations were passengers of the mutant cell of origin and its daughter cells and thus could be used as neutral markers of clones that arose and persisted in the tissues. Female B6C3F1 mice exposed for 1 month to 200 ppm ENU in the drinking water developed early thymic lymphomas and late liver and lung tumors. To assay gpt mutations, we sampled the thymus, liver, lung, and small intestine of female gpt delta mice at 3 days, 4 weeks, and 8 weeks after the end of ENU exposure. Our results reveal that, in all four tissues, the ENU-induced gpt mutations persisted for weeks after the end of mutagen exposure. Clonal expansion of mutant cells was observed in the thymus and small intestine, with the thymus showing larger clone sizes. These results indicate that the clearance of mutant cells and the potential for clonal expansion during normal tissue growth depends on tissue type and that these factors may affect the sensitivity of different tissues to carcinogenesis. Environ. Mol. Mutagen. 58:592-606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Cytoplasmically Retargeted HSV1-tk/GFP Reporter Gene Mutants for Optimization of Noninvasive Molecular-Genetic Imaging

    PubMed Central

    Ponomarev, Vladimir; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Balatoni, Julius; Blasberg, Ronald; Tjuvajev, Juri Gelovani

    2003-01-01

    Abstract To optimize the sensitivity of imaging HSV1-tk/GFP reporter gene expression, a series of HSV1-tk/GFP mutants was developed with altered nuclear localization and better cellular enzymatic activity, compared to that of the native HSV1-tk/GFP fusion protein (HSV1-tk/GFP). Several modifications of HSV1-tk/GFP reporter gene were performed, including targeted inactivating mutations in the nuclear localization signal (NLS), the addition of a nuclear export signal (NES), a combination of both mutation types, and a truncation of the first 135 bp of the native hsv1-tk coding sequence containing a “cryptic” testicular promoter and the NLS. A recombinant HSV1-tk/GFP protein and a highly sensitive sandwich enzyme-linked immunosorbent assay for HSV1-tk/GFP were developed to quantitate the amount of reporter gene product in different assays to allow normalization of the data. These different mutations resulted in various degrees of nuclear clearance, predominant cytoplasmic distribution, and increased total cellular enzymatic activity of the HSV1-tk/GFP mutants, compared to native HSV1-tk/GFP when expressed at the same levels. This appears to be the result of improvedmetabolic bioavailability of cytoplasmically retargeted mutant HSV1-tk/GFP enzymes for reaction with the radiolabeled probe (e.g., FIAU). The analysis of enzymatic properties of different HSV1-tk/GFP mutants using FIAU as a substrate revealed no significant differences from that of the native HSV1-tk/GFP. Improved total cellular enzymatic activity of cytoplasmically retargeted HSV1-tk/GFP mutants observed in vitro was confirmed by noninvasive imaging of transduced subcutaneous tumor xenografts bearing these reporters using [131I]FIAU and a γ-camera. PMID:12869307

  10. Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses.

    PubMed

    Varas, Macarena; Valdivieso, Camilo; Mauriaca, Cecilia; Ortíz-Severín, Javiera; Paradela, Alberto; Poblete-Castro, Ignacio; Cabrera, Ricardo; Chávez, Francisco P

    2017-04-01

    Polyphosphate (polyP) is a linear biopolymer found in all living cells. In bacteria, mutants lacking polyphosphate kinase 1 (PPK1), the enzyme responsible for synthesis of most polyP, have many structural and functional defects. However, little is known about the causes of these pleiotropic alterations. The link between ppk1 deletion and those numerous phenotypes observed can be the result of complex molecular interactions that can be elucidated via a systems biology approach. By integrating different omics levels (transcriptome, proteome and phenome), we described the functioning of various metabolic pathways among Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and ΔpolyP). Bioinformatic analyses reveal the complex metabolic and regulatory bases of the phenotypes unique to polyP mutants. Our results suggest that during polyP deficiency (Δppk1 mutant), metabolic pathways needed for energy supply are up-regulated, including fermentation, aerobic and anaerobic respiration. Transcriptomic and q-proteomic contrasting changes between Δppk1 and Δppx mutant strains were observed in those central metabolic pathways and confirmed by using Phenotypic microarrays. In addition, our results suggest a regulatory connection between polyP, second messenger metabolism, alternative Sigma/Anti-Sigma factors and type-II toxin-antitoxin (TA) systems. We suggest a broader role for polyP via regulation of ATP-dependent proteolysis of type II toxin-antitoxin system and alternative Sigma/Anti-Sigma factors, that could explain the multiple structural and functional deficiencies described due to alteration of polyP metabolism. Understanding the interplay of polyP in bacterial metabolism using a systems biology approach can help to improve design of novel antimicrobials toward pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Isolation and Characterization of Sex-Linked Female-Sterile Mutants in DROSOPHILA MELANOGASTER with Special Attention to Eggshell Mutants

    PubMed Central

    Komitopoulou, Katia; Gans, Madeleine; Margaritis, Lukas H.; Kafatos, Fotis C.; Masson, Michele

    1983-01-01

    To study genes that function mainly or exclusively during oogenesis, we have isolated and analyzed female-sterile mutations, with special emphasis on those that affect eggshell formation. Following treatment that induced 61 to 66% lethals, 8.1% of the 1071 X chromosomes tested carried recessive female sterility mutations (87 isolates), and 8.0% carried partial female-sterile mutations (86 isolates), respectively. In addition, three dominant female steriles were recovered. Some of the mutants had very low fecundity, and others laid morphologically normal eggs that failed to develop. A third category included 29 mutants that laid eggs with morphological abnormalities: 26 were female steriles, two were partial female steriles and one was fertile. Mutants of this third category were characterized in some detail and compared with 40 previously isolated mutants that laid similarly abnormal eggs. Approximately 28–31 complementation groups with morphological abnormalities were detected, some of which were large allelic series (11, 9, 7, 6 and 5 alleles). Twenty-four groups were mapped genetically or cytogenetically, and 21 were partially characterized by ultrastructural and biochemical procedures. Of the latter, one group showed clear deficiency of yolk proteins, and nine showed prominent ultrastructural defects in the chorion (at least eight accompanied by deficiencies in characterized chorion proteins). At least six groups with clear-cut effects were found at loci not previously identified with known chorion structural genes. PMID:17246182

  12. Intragenic Mapping of Chemically Induced ad-7 Mutants of Schizosaccharomyces pombe

    PubMed Central

    Loprieno, Nicola

    1967-01-01

    Thirty adenine-requiring ad-7 mutants of Schizosaccharomyces pombe, induced by ethylmethanesulfonate, methyl-methanesulfonate, and hydroxylamine and exhibiting low spontaneous reversion frequencies, were located by intragenic recombination analysis. Their identification as ad-7 mutants was assessed in relation to two previously mapped ad-7 mutants. Each mutant was found to occupy a distinct mutational site; the smallest recombination fraction observed between the two closest mutational sites was of the order of 0.5 × 10−6. PMID:6051345

  13. Repair of Ultraviolet Radiation Damage in Sensitive Mutants of Micrococcus radiodurans

    PubMed Central

    Moseley, B. E. B.

    1969-01-01

    Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision. PMID:5773016

  14. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    PubMed

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but <30% of the xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations.

    PubMed

    Arias, Anthony Argüelles; Lambert, Stéphany; Martinet, Loïc; Adam, Delphine; Tenconi, Elodie; Hayette, Marie-Pierre; Ongena, Marc; Rigali, Sébastien

    2015-07-01

    Due to the necessity of iron for housekeeping functions, nutrition, morphogenesis and secondary metabolite production, siderophore piracy could be a key strategy in soil and substrate colonization by microorganisms. Here we report that mutants of bacterium Streptomyces coelicolor unable to produce desferrioxamine siderophores could recover growth when the plates were contaminated by indoor air spores of a Penicillium species and Engyodontium album. UPLC-ESI-MS analysis revealed that the HPLC fractions with the extracellular 'resuscitation' factors of the Penicillium isolate were only those that contained siderophores, i.e. Fe-dimerum acid, ferrichrome, fusarinine C and coprogen. The restored growth of the Streptomyces mutants devoid of desferrioxamine is most likely mediated through xenosiderophore uptake as the cultivability depends on the gene encoding the ABC-transporter-associated DesE siderophore-binding protein. That a filamentous fungus allows the growth of desferrioxamine non-producing Streptomyces in cocultures confirms that xenosiderophore piracy plays a vital role in nutritional interactions between these taxonomically unrelated filamentous microorganisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Use of an otolith-deficient mutant in studies of fish behavior under microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.; Mizuno, R.; Eguchi, H.

    In Medaka (Oryzias latipes ), fish of a mutant strain (ha strain) had a malfunction in otolith-vestibular system. The phenotype is expressed when the fish have this recessive gene h a) in a homozygous fashion, and the gene is autosomal. Their( difference from the normal fish was first recognizable in their embryonic stages, with abnormally larger ear vesicles and absence of otoliths called Lapillus inside the vesicles. The time-course study was carried out for the subsequent development of their otoliths. X ray phot ographs of the fish revealed that some adult fish of ha- strain still lack a pair of Lapillus, which mainly serve in sensing the direction of gravity, while others have formed the otoliths partially or completely. Changing the light direction within each day, the ha mutant fish were reared from hatching to young fish. The fish treated showed less dependence on gravity even at the age of 50 days or more. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for ha strain.

  17. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities

    PubMed Central

    Kerr, Emma; Gaude, Edoardo; Turrell, Frances; Frezza, Christian; Martins, Carla P

    2016-01-01

    Summary The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through KRAS activating mutations1-3. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations4-7. We recently showed that advanced lung tumours from KrasG12D/+;p53-null mice frequently exhibit KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1)7, implying that mutant Kras copy gains are positively selected during progression. Through a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells we now show that these genotypes are phenotypically distinct. In particular, KrasG12D/G12D cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the TCA cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous NSCLC cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of KrasG12D copy gain), but not in the corresponding early tumours (KrasG12D heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprised of two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated based on their relative mutant allelic content. We also provide the first in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577

  18. Spontaneous Chloroplast Mutants Mostly Occur by Replication Slippage and Show a Biased Pattern in the Plastome of Oenothera[OPEN

    PubMed Central

    Massouh, Amid; Schubert, Julia; Yaneva-Roder, Liliya; Ulbricht-Jones, Elena S.; Johnson, Marc T.J.; Wright, Stephen I.; Pellizzer, Tommaso; Sobanski, Johanna; Greiner, Stephan

    2016-01-01

    Spontaneous plastome mutants have been used as a research tool since the beginning of genetics. However, technical restrictions have severely limited their contributions to research in physiology and molecular biology. Here, we used full plastome sequencing to systematically characterize a collection of 51 spontaneous chloroplast mutants in Oenothera (evening primrose). Most mutants carry only a single mutation. Unexpectedly, the vast majority of mutations do not represent single nucleotide polymorphisms but are insertions/deletions originating from DNA replication slippage events. Only very few mutations appear to be caused by imprecise double-strand break repair, nucleotide misincorporation during replication, or incorrect nucleotide excision repair following oxidative damage. U-turn inversions were not detected. Replication slippage is induced at repetitive sequences that can be very small and tend to have high A/T content. Interestingly, the mutations are not distributed randomly in the genome. The underrepresentation of mutations caused by faulty double-strand break repair might explain the high structural conservation of seed plant plastomes throughout evolution. In addition to providing a fully characterized mutant collection for future research on plastid genetics, gene expression, and photosynthesis, our work identified the spectrum of spontaneous mutations in plastids and reveals that this spectrum is very different from that in the nucleus. PMID:27053421

  19. Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression

    PubMed Central

    Tamasloukht, Barek; Wong Quai Lam, Mary Sarah-Jane; Martinez, Yves; Tozo, Koffi; Barbier, Odile; Jourda, Cyril; Jauneau, Alain; Borderies, Gisèle; Balzergue, Sandrine; Renou, Jean-Pierre; Huguet, Stéphanie; Martinant, Jean Pierre; Tatout, Christophe; Lapierre, Catherine; Barrière, Yves; Goffner, Deborah; Pichon, Magalie

    2011-01-01

    Cinnamoyl-CoA reductase (CCR), which catalyses the first committed step of the lignin-specific branch of monolignol biosynthesis, has been extensively characterized in dicot species, but few data are available in monocots. By screening a Mu insertional mutant collection in maize, a mutant in the CCR1 gene was isolated named Zmccr1–. In this mutant, CCR1 gene expression is reduced to 31% of the residual wild-type level. Zmccr1– exhibited enhanced digestibility without compromising plant growth and development. Lignin analysis revealed a slight decrease in lignin content and significant changes in lignin structure. p-Hydroxyphenyl units were strongly decreased and the syringyl/guaiacyl ratio was slightly increased. At the cellular level, alterations in lignin deposition were mainly observed in the walls of the sclerenchymatic fibre cells surrounding the vascular bundles. These cell walls showed little to no staining with phloroglucinol. These histochemical changes were accompanied by an increase in sclerenchyma surface area and an alteration in cell shape. In keeping with this cell type-specific phenotype, transcriptomics performed at an early stage of plant development revealed the down-regulation of genes specifically associated with fibre wall formation. To the present authors’ knowledge, this is the first functional characterization of CCR1 in a grass species. PMID:21493812

  20. Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice

    PubMed Central

    Domingo, Concha; Lalanne, Eric; Catalá, María M.; Pla, Eva; Reig-Valiente, Juan L.; Talón, Manuel

    2016-01-01

    Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt

  1. A Buoyancy-Based Screen of Drosophila Larvae for Fat-Storage Mutants Reveals a Role for Sir2 in Coupling Fat Storage to Nutrient Availability

    PubMed Central

    Reis, Tânia; Van Gilst, Marc R.; Hariharan, Iswar K.

    2010-01-01

    Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet. PMID:21085633

  2. Germination-defective mutant of Neurospora crassa that responds to siderophores

    NASA Technical Reports Server (NTRS)

    Charlang, G.; Williams, N. P.

    1977-01-01

    A conditionally germination-defective mutant of Neurospora crassa has been found to be partially curable by ferricrocin and other siderophores. The mutant conidia rapidly lose their membrane-bound siderophores when suspended in buffer or growth media. Germination is consequently delayed unless large numbers of conidia are present (positive population effect). This indicates that the mutant has a membrane defect involving the siderophore attachment site.

  3. Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism.

    PubMed

    Eriksson, Matilda; Ambroise, Gorbatchev; Ouchida, Amanda Tomie; Lima Queiroz, Andre; Smith, Dominique; Gimenez-Cassina, Alfredo; Iwanicki, Marcin P; Muller, Patricia A; Norberg, Erik; Vakifahmetoglu-Norberg, Helin

    2017-12-15

    TP53 is one of the most commonly mutated genes in human cancers. Unlike other tumor suppressors that are frequently deleted or acquire loss-of-function mutations, the majority of TP53 mutations in tumors are missense substitutions, which lead to the expression of full-length mutant proteins that accumulate in cancer cells and may confer unique gain-of-function (GOF) activities to promote tumorigenic events. Recently, mutant p53 proteins have been shown to mediate metabolic changes as a novel GOF to promote tumor development. There is a strong rationale that the GOF activities, including alterations in cellular metabolism, might vary between the different p53 mutants. Accordingly, the effect of different mutant p53 proteins on cancer cell metabolism is largely unknown. In this study, we have metabolically profiled several individual frequently occurring p53 mutants in cancers, focusing on glycolytic and mitochondrial oxidative phosphorylation pathways. Our investigation highlights the diversity of different p53 mutants in terms of their effect on metabolism, which might provide a foundation for the development of more effective targeted pharmacological approaches toward variants of mutant p53. Copyright © 2017 American Society for Microbiology.

  4. Ozone-Sensitive Arabidopsis Mutants with Deficiencies in Photorespiratory Enzymes.

    PubMed

    Saji, Shoko; Bathula, Srinivas; Kubo, Akihiro; Tamaoki, Masanori; Aono, Mitsuko; Sano, Tomoharu; Tobe, Kazuo; Timm, Stefan; Bauwe, Hermann; Nakajima, Nobuyoshi; Saji, Hikaru

    2017-05-01

    An ozone-sensitive mutant was isolated from T-DNA-tagged lines of Arabidopsis thaliana. The T-DNA was inserted at a locus on chromosome 3, where two genes encoding glycolate oxidases, GOX1 and GOX2, peroxisomal enzymes involved in photorespiration, reside contiguously. The amounts of the mutant's foliar transcripts for these genes were reduced, and glycolate oxidase activity was approximately 60% of that of the wild-type plants. No difference in growth and appearance was observed between the mutant and the wild-type plants under normal conditions with ambient air under a light intensity of 100 µmol photons m-2 s-1. However, signs of severe damage, such as chlorosis and ion leakage from the tissue, rapidly appeared in mutant leaves in response to ozone treatment at a concentration of 0.2 µl l-1 under a higher light intensity of 350 µmol photons m-2 s-1 that caused no such symptoms in the wild-type plant. The mutant also exhibited sensitivity to sulfur dioxide and long-term high-intensity light. Arabidopsis mutants with deficiencies in other photorespiratory enzymes such as glutamate:glyoxylate aminotransferase and hydroxypyruvate reductase also exhibited ozone sensitivities. Therefore, photorespiration appears to be involved in protection against photooxidative stress caused by ozone and other abiotic factors under high-intensity light. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae.

    PubMed Central

    Erdmann, R; Veenhuis, M; Mertens, D; Kunau, W H

    1989-01-01

    Two mutants of Saccharomyces cerevisiae affected in peroxisomal assembly (pas mutants) have been isolated and characterized. Each strain contains a single mutation that results in (i) the inability to grow on oleic acid, (ii) accumulation of peroxisomal matrix enzymes in the cytosol, and (iii) absence of detectable peroxisomes at the ultrastructural level. These lesions (pas1-1 and pas2) are shown to be nonallelic and recessive. Crossing of pas1-1 and pas2 strains resulted in diploid cells that had regained the ability to grow on oleic acid as sole carbon source and to form peroxisomes. These pas mutants may provide useful tools for future studies on the molecular mechanisms involved in peroxisomal assembly. Images PMID:2568633

  6. Improved Medium for Selecting Nitrate-Nonutilizing (nit) Mutants of Verticillium dahliae.

    PubMed

    Korolev, N; Katan, T

    1997-10-01

    ABSTRACT Nitrate-nonutilizing (nit) mutants are commonly used to determine vegetative compatibility between isolates of Verticillium dahliae by complementation (heterokaryon) testing. These mutants emerge spontaneously as chlorate-resistant sectors growing out of partially restricted, wild-type colonies on chlorate-amended media. The commonly used chlorate media are based on minimal medium (MMC) or cornmeal agar (CMC), amended with potassium chlorate. nit mutants recovered on these media constituted 10 to 36%(on MMC) and 25 to 45%(on CMC) of the apparently resistant sectors. An improved water agar chlorate medium (WAC) is described that is more effective for selecting chlorate-resistant nit mutants. WAC medium consists of agar (2%), glucose (0.02%), and potassium chlorate (2 to 5%). On WAC, growth of most V. dahliae isolates was strongly inhibited, and 66 to 100%(average >80%) of the chlorate-resistant sectors formed were nit mutants. Most mutants were characterized as nit1, and about 6% as NitM.

  7. Longitudinal assessment of retinal structure and function reveals a rod-cone degeneration in a guinea pig model initially presented as night blind.

    PubMed

    Racine, Julie; Joly, Sandrine; Lachapelle, Pierre

    2011-08-01

    We have previously reported a naturally occurring retinopathy in a population of guinea pigs, where the affected animals presented a defect of the rod-mediated vision. The purpose of this study was to investigate if the mutants were affected with a stationary or degenerative retinopathy and to identify the cellular origin of this unique disorder. Electroretinogram (ERG) [postnatal day 1 (P1) to P450], light (LM) and electron microscopy (EM) [P5, P150, P450], and immunohistochemistry [P30, P150, P450] were evaluated from normal and mutant animals. Irrespective of age, the scotopic ERGs of mutants could only be evoked by bright flashes, and the resulting ERGs were of photopic waveform. Interestingly, the amplitude of the cone and the rod/cone a-waves was always of smaller amplitude in mutants, but this difference tended to decrease with age. In contrast, the b-waves were of larger amplitude than normal in photopic ERGs obtained prior to age 25 (days) and prior to age 10 for rod/cone ERGs. LM revealed, in mutants, an absence of the outer segment layer (OSL) with a reduction in the outer nuclear layer (ONL) thickness. EM disclosed the presence of cone outer segment (OS) while no rod OS could be evidenced. Immunohistochemistry revealed the presence of rhodopsin, both cone opsins as well as normal synaptophysin immunoreactivity. Finally, neither the retinal structure nor the function in the mutants achieved normal development. Results suggest that mutant animals are suffering from a degenerative retinal disorder that affects the structure and function of rods and cones.

  8. A dinoflagellate mutant with higher frequency of multiple fission.

    PubMed

    Lam, C M; Chong, C; Wong, J T

    2001-01-01

    The dinoflagellate Crypthecodinium cohnii Biecheler propagates by both binary and multiple fission. By a newly developed mutagenesis protocol based on using ethyl methanesulfonate and a cell size screening method, a cell cycle mutant, mf2, was isolated with giant cells which predominantly divide by multiple fission. The average cell size of the mutant mf2 is larger than the control C. cohnii. Cell cycle synchronization experiments suggest that mutant mf2, when compared with the control strain, has a prolonged G1 phase with a corresponding delay of the G2 + M phase.

  9. Spontaneous Chloroplast Mutants Mostly Occur by Replication Slippage and Show a Biased Pattern in the Plastome of Oenothera.

    PubMed

    Massouh, Amid; Schubert, Julia; Yaneva-Roder, Liliya; Ulbricht-Jones, Elena S; Zupok, Arkadiusz; Johnson, Marc T J; Wright, Stephen I; Pellizzer, Tommaso; Sobanski, Johanna; Bock, Ralph; Greiner, Stephan

    2016-04-01

    Spontaneous plastome mutants have been used as a research tool since the beginning of genetics. However, technical restrictions have severely limited their contributions to research in physiology and molecular biology. Here, we used full plastome sequencing to systematically characterize a collection of 51 spontaneous chloroplast mutants in Oenothera (evening primrose). Most mutants carry only a single mutation. Unexpectedly, the vast majority of mutations do not represent single nucleotide polymorphisms but are insertions/deletions originating from DNA replication slippage events. Only very few mutations appear to be caused by imprecise double-strand break repair, nucleotide misincorporation during replication, or incorrect nucleotide excision repair following oxidative damage. U-turn inversions were not detected. Replication slippage is induced at repetitive sequences that can be very small and tend to have high A/T content. Interestingly, the mutations are not distributed randomly in the genome. The underrepresentation of mutations caused by faulty double-strand break repair might explain the high structural conservation of seed plant plastomes throughout evolution. In addition to providing a fully characterized mutant collection for future research on plastid genetics, gene expression, and photosynthesis, our work identified the spectrum of spontaneous mutations in plastids and reveals that this spectrum is very different from that in the nucleus. © 2016 American Society of Plant Biologists. All rights reserved.

  10. The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis).

    PubMed

    Paolillo, D J; Garvin, D F; Parthasarathy, M V

    2004-12-01

    The Or mutation in cauliflower (Brassica oleracea L. var. botrytis) leads to abnormal accumulations of beta-carotene in orange chromoplasts, in tissues in which leucoplasts are characteristic of wild-type plants. Or chromoplasts were investigated by light microscopy of fresh materials and electron microscopy of glutaraldehyde- and potassium permanganate-fixed materials. Carotenoid inclusions in Or chromoplasts resemble those found in carrot root chromoplasts in their optical activity and angular shape. Electron microscopy revealed that the inclusions are made up of parallel, membrane-bound compartments. These stacks of membranes are variously rolled and folded into three-dimensional objects. We classify Or chromoplasts as "membranous" chromoplasts. The Or mutation also limits plastid replication so that a single chromoplast constitutes the plastidome in most of the affected cells. There are one to two chromoplasts in each cell of a shoot apex. The ability of differentiated chromoplasts to divide in the apical meristems of Or mutant plants resembles the ability of proplastids to maintain plastid continuity from cell to cell in meristems of Arabidopsis thaliana mutants in which plastid replication is drastically limited. The findings are used to discuss the number of levels of regulation involved in plastid replication.

  11. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R. (Inventor); Kern, Roger G. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  12. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  13. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE PAGES

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul; ...

    2015-11-01

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  14. Appearance of E1: A226V mutant Chikungunya virus in Coastal Karnataka, India during 2008 outbreak

    PubMed Central

    Santhosh, SR; Dash, Paban Kumar; Parida, Manmohan; Khan, Mohasin; Rao, Putcha VL

    2009-01-01

    Chikungunya has resurged in the form of unprecedented explosive epidemic in 2006 after a long gap in India affecting 1.39 million of persons. The disease continued for the next two consecutive years affecting 59,535 and 64,548 persons during 2007 and 2008 respectively. The 2008 outbreak being the second largest among these three years the information regarding the etiology and the mutations involved are useful for further control measures. Among the 2008 outbreaks the Coastal Karnataka accounts for the 46,510 persons. An in-depth investigation of Chikungunya epidemic of Coastal Karnataka, India, 2008 by serology, virus isolation, RT-PCR and genome sequencing revealed the presence and continued circulation of A226V mutant Chikungunya virus. The appearance of this mutant virus was found to be associated with higher prevalence of vector Aedes albopictus and the geographical proximity of coastal Karnataka with the adjoining Kerala state. This is the first report regarding the appearance of this mutation in Karnataka state of India. The present study identified the presence and association of A226V mutant virus with Chikungunya outbreak in India during 2008. PMID:19857273

  15. A De Novo Floral Transcriptome Reveals Clues into Phalaenopsis Orchid Flower Development

    PubMed Central

    Huang, Jian-Zhi; Lin, Chih-Peng; Cheng, Ting-Chi; Chang, Bill Chia-Han; Cheng, Shu-Yu; Chen, Yi-Wen; Lee, Chen-Yu; Chin, Shih-Wen; Chen, Fure-Chyi

    2015-01-01

    Phalaenopsis has a zygomorphic floral structure, including three outer tepals, two lateral inner tepals and a highly modified inner median tepal called labellum or lip; however, the regulation of its organ development remains unelucidated. We generated RNA-seq reads with the Illumina platform for floral organs of the Phalaenopsis wild-type and peloric mutant with a lip-like petal. A total of 43,552 contigs were obtained after de novo assembly. We used differentially expressed gene profiling to compare the transcriptional changes in floral organs for both the wild-type and peloric mutant. Pair-wise comparison of sepals, petals and labellum between peloric mutant and its wild-type revealed 1,838, 758 and 1,147 contigs, respectively, with significant differential expression. PhAGL6a (CUFF.17763), PhAGL6b (CUFF.17763.1), PhMADS1 (CUFF.36625.1), PhMADS4 (CUFF.25909) and PhMADS5 (CUFF.39479.1) were significantly upregulated in the lip-like petal of the peloric mutant. We used real-time PCR analysis of lip-like petals, lip-like sepals and the big lip of peloric mutants to confirm the five genes’ expression patterns. PhAGL6a, PhAGL6b and PhMADS4 were strongly expressed in the labellum and significantly upregulated in lip-like petals and lip-like sepals of peloric-mutant flowers. In addition, PhAGL6b was significantly downregulated in the labellum of the big lip mutant, with no change in expression of PhAGL6a. We provide a comprehensive transcript profile and functional analysis of Phalaenopsis floral organs. PhAGL6a PhAGL6b, and PhMADS4 might play crucial roles in the development of the labellum in Phalaenopsis. Our study provides new insights into how the orchid labellum differs and why the petal or sepal converts to a labellum in Phalaenopsis floral mutants. PMID:25970572

  16. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1.

    PubMed

    Li, Huapeng; Wang, Yun; Li, Xiaocheng; Gao, Yong; Wang, Zhijun; Zhao, Yun; Wang, Maolin

    2011-01-01

    A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line '3529'(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene's upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.

  17. Unexpectedly low nitrogen acquisition and absence of root architecture adaptation to nitrate supply in a Medicago truncatula highly branched root mutant.

    PubMed

    Bourion, Virginie; Martin, Chantal; de Larambergue, Henri; Jacquin, Françoise; Aubert, Grégoire; Martin-Magniette, Marie-Laure; Balzergue, Sandrine; Lescure, Geoffroy; Citerne, Sylvie; Lepetit, Marc; Munier-Jolain, Nathalie; Salon, Christophe; Duc, Gérard

    2014-06-01

    To complement N2 fixation through symbiosis, legumes can efficiently acquire soil mineral N through adapted root architecture. However, root architecture adaptation to mineral N availability has been little studied in legumes. Therefore, this study investigated the effect of nitrate availability on root architecture in Medicago truncatula and assessed the N-uptake potential of a new highly branched root mutant, TR185. The effects of varying nitrate supply on both root architecture and N uptake were characterized in the mutant and in the wild type. Surprisingly, the root architecture of the mutant was not modified by variation in nitrate supply. Moreover, despite its highly branched root architecture, TR185 had a permanently N-starved phenotype. A transcriptome analysis was performed to identify genes differentially expressed between the two genotypes. This analysis revealed differential responses related to the nitrate acquisition pathway and confirmed that N starvation occurred in TR185. Changes in amino acid content and expression of genes involved in the phenylpropanoid pathway were associated with differences in root architecture between the mutant and the wild type. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Prediction of protein mutant stability using classification and regression tool.

    PubMed

    Huang, Liang-Tsung; Saraboji, K; Ho, Shinn-Ying; Hwang, Shiow-Fen; Ponnuswamy, M N; Gromiha, M Michael

    2007-02-01

    Prediction of protein stability upon amino acid substitutions is an important problem in molecular biology and the solving of which would help for designing stable mutants. In this work, we have analyzed the stability of protein mutants using two different datasets of 1396 and 2204 mutants obtained from ProTherm database, respectively for free energy change due to thermal (DeltaDeltaG) and denaturant denaturations (DeltaDeltaG(H(2)O)). We have used a set of 48 physical, chemical energetic and conformational properties of amino acid residues and computed the difference of amino acid properties for each mutant in both sets of data. These differences in amino acid properties have been related to protein stability (DeltaDeltaG and DeltaDeltaG(H(2)O)) and are used to train with classification and regression tool for predicting the stability of protein mutants. Further, we have tested the method with 4 fold, 5 fold and 10 fold cross validation procedures. We found that the physical properties, shape and flexibility are important determinants of protein stability. The classification of mutants based on secondary structure (helix, strand, turn and coil) and solvent accessibility (buried, partially buried, partially exposed and exposed) distinguished the stabilizing/destabilizing mutants at an average accuracy of 81% and 80%, respectively for DeltaDeltaG and DeltaDeltaG(H(2)O). The correlation between the experimental and predicted stability change is 0.61 for DeltaDeltaG and 0.44 for DeltaDeltaG(H(2)O). Further, the free energy change due to the replacement of amino acid residue has been predicted within an average error of 1.08 kcal/mol and 1.37 kcal/mol for thermal and chemical denaturation, respectively. The relative importance of secondary structure and solvent accessibility, and the influence of the dataset on prediction of protein mutant stability have been discussed.

  19. Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.

    PubMed

    Liu, Wanzhao; Chaurette, Joanna; Pfister, Edith L; Kennington, Lori A; Chase, Kathryn O; Bullock, Jocelyn; Vonsattel, Jean Paul G; Faull, Richard L M; Macdonald, Douglas; DiFiglia, Marian; Zamore, Phillip D; Aronin, Neil

    2013-01-01

    Huntington's disease is caused by expansion of CAG trinucleotide repeats in the first exon of the huntingtin gene, which is essential for both development and neurogenesis. Huntington's disease is autosomal dominant. The normal allele contains 6 to 35 CAG triplets (average, 18) and the mutant, disease-causing allele contains >36 CAG triplets (average, 42). We examined 279 postmortem brain samples, including 148 HD and 131 non-HD controls. A total of 108 samples from 87 HD patients that are heterozygous at SNP rs362307, with a normal allele (18 to 27 CAG repeats) and a mutant allele (39 to 73 CAG repeats) were used to measure relative abundance of mutant and wild-type huntingtin mRNA. We used allele-specific, quantitative RT-PCR based on SNP heterozygosity to estimate the relative amount of mutant versus normal huntingtin mRNA in postmortem brain samples from patients with Huntington's disease. In the cortex and striatum, the amount of mRNA from the mutant allele exceeds that from the normal allele in 75% of patients. In the cerebellum, no significant difference between the two alleles was evident. Brain tissues from non-HD controls show no significant difference between two alleles of huntingtin mRNAs. Allelic differences were more pronounced at early neuropathological grades (grades 1 and 2) than at late grades (grades 3 and 4). More mutant HTT than normal could arise from increased transcription of mutant HTT allele, or decreased clearance of mutant HTT mRNA, or both. An implication is that equimolar silencing of both alleles would increase the mutant HTT to normal HTT ratio.

  20. Characterization of Staphylococcus aureus mutants expressing reduced susceptibility to common house-cleaners

    PubMed Central

    Davis, A.O.; O’Leary, J.O.; Muthaiyan, A.; Langevin, M.J.; Delgado, A.; Abalos, A.T.; Fajardo, A.R.; Marek, J.; Wilkinson, B.J.; Gustafson, J.E.

    2013-01-01

    Aims To characterize mutants of Staphylococcus aureus expressing reduced susceptibility to house cleaners (HC), assess the impact of the alternative sigma factor SigB on HC susceptibility, and determine the MIC of clinical methicillin-resistant S. aureus (MRSA) to a HC. Methods and Results Susceptibility to HC, HC components, H2O2, vancomycin and oxacillin and physiological parameters were determined for HC-reduced susceptibility (HCRS) mutants, parent strain COL and COLsigB::kan. HCRS mutants selected with three HC expressed reduced susceptibility to multiple HC, HC components, H2O2 and vancomycin. Two unique HCRS mutants also lost the methicillin resistance determinant. In addition, all HCRS mutants exhibited better growth at two temperatures, and one HCRS mutant expressed reduced carotenoid production. COLsigB::kan demonstrated increased susceptibility to all HC and many HC components. sigB operon mutations were not detected in one HCRS mutant background. Of 76 clinical MRSA, 20 exhibited reduced susceptibility to a HC. Conclusions HCRS mutants demonstrate altered susceptibility to multiple antimicrobials. While sigB is required for full HC resistance, one HCRS mechanism does not involve sigB operon mutations. Clinical MRSA expressing reduced susceptibility to a common HC were detected. Significance and Impact of the Study This study suggests that HCRS mutants are not protected against, nor selected by, practical HC concentrations. PMID:15659191