Sample records for young barley grains1w

  1. A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN

    PubMed Central

    Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank

    2014-01-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  2. Differences in Grain Ultrastructure, Phytochemical and Proteomic Profiles between the Two Contrasting Grain Cd-Accumulation Barley Genotypes

    PubMed Central

    Sun, Hongyan; Cao, Fangbin; Wang, Nanbo; Zhang, Mian; Mosaddek Ahmed, Imrul; Zhang, Guoping; Wu, Feibo

    2013-01-01

    To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low- grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared with Zhenong8, and lower amino acid contents with especially lower proportion of Glu, Tyr, Phe and Pro. Both scanning and transmission electron microscopy observation declared that the size of A-type starch molecule in W6nk2 was considerably larger than that of Zhenong8. Grains of Zhenong8 exhibited more protein-rich deposits around starch granules, with some A-type granules having surface pits. Seventeen proteins were identified in grains, using 2-DE coupled with mass spectrometry, with higher expression in Zhenong8 than that in W6nk2; including z-type serpin, serpin-Z7 and alpha-amylase/trypsin inhibitor CM, carbohydrate metabolism, protein synthesis and signal transduction related proteins. Twelve proteins were less expressed in Zhenong8 than that in W6nk2; including barley trypsin inhibitor chloroform/methanol-soluble protein (BTI-CMe2.1, BTI-CMe2.2), trypsin inhibitor, dehydroascorbate reductase (DHAR), pericentrin, dynein heavy chain and some antiviral related proteins. The data extend our understanding of mechanisms underlying Cd accumulation/tolerance and provides possible utilization of elite genetic resources in developing low-grain-Cd barley cultivars. PMID:24260165

  3. Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains[W

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea

    2014-01-01

    Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242

  4. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    PubMed

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  5. Technical note: In situ ruminal starch disappearance kinetics of hull-less barley, hulled barley, and corn grains.

    PubMed

    Ferreira, G; Yang, Y; Teets, C L; Brooks, W S; Griffey, C A

    2018-07-01

    The objective of this study was to compare ruminal starch disappearance rates of hull-less barley, hulled barley, and corn grains. Five different genotypes were used for each of the 2 barley types. In addition, each of these genotypes was grown in 2 different locations and years, resulting 10 independent barley samples for each of the 2 barley grain types. Five different genotypes of corn grain were obtained from a commercial seed company. After being ground to pass through a 4-mm screen of a cutter mill, 3.6 g of each grain was placed into a porous bag, which was then incubated in the rumen of 2 ruminally cannulated cows for 0, 4, 8, 12, 24, and 48 h. Corn grains had greater instant ruminal starch disappearances than barley grains (22.4 and 8.2%, respectively). Instant ruminal starch disappearances did not differ between hulled and hull-less barley grains. Ruminal starch fractional disappearance rates were greatest for hulled barley grains, moderate for hull-less barley grains, and lowest for corn grains (15.3, 13.9, and 7.1%/h, respectively). Ruminal starch half-life was shortest for hulled and hull-less barley grains (4.4 h) and longest for corn grains (6.6 h). Ruminal starch half-life did not differ between hulled barley and hull-less barley grains. In conclusion, using a holistic experimental design and statistical analysis, this study showed that starch from hull-less barley grains has a ruminal half-life similar to that of hulled barley grains and shorter than that of corn grains. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    PubMed

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.

  7. The Role of α-Glucosidase in Germinating Barley Grains1[W][OA

    PubMed Central

    Stanley, Duncan; Rejzek, Martin; Naested, Henrik; Smedley, Mark; Otero, Sofía; Fahy, Brendan; Thorpe, Frazer; Nash, Robert J.; Harwood, Wendy; Svensson, Birte; Denyer, Kay; Field, Robert A.; Smith, Alison M.

    2011-01-01

    The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process. PMID:21098673

  8. Optimization of microwave-assisted extraction of flavonoids from young barley leaves

    NASA Astrophysics Data System (ADS)

    Gao, Tian; Zhang, Min; Fang, Zhongxiang; Zhong, Qifeng

    2017-01-01

    A central composite design combined with response surface methodology was utilized to optimise microwave-assisted extraction of flavonoids from young barley leaves. The results showed that using water as solvent, the optimum conditions of microwave-assisted extraction were extracted twice at 1.27 W g-1 microwave power and liquid-solid ratio 34.02 ml g-1 for 11.12 min. The maximum extraction yield of flavonoids (rutin equivalents) was 80.78±0.52%. Compared with conventional extraction method, the microwave-assisted extraction was more efficient as the extraction time was only 6.18% of conventional extraction, but the extraction yield of flavonoids was increased by 5.47%. The main flavonoid components from the young barley leaf extract were probably 33.36% of isoorientin-7-O-glueoside and 54.17% of isovitexin-7-O-glucoside, based on the HPLC-MS analysis. The barley leaf extract exhibited strong reducing power as well as the DPPH radical scavenging capacity.

  9. Over-expression of (1,3;1,4)-β-D-glucanase isoenzyme EII gene results in decreased (1,3;1,4)-β-D-glucan content and increased starch level in barley grains.

    PubMed

    Han, Ning; Na, Chenglong; Chai, Yuqiong; Chen, Jianshu; Zhang, Zhongbo; Bai, Bin; Bian, Hongwu; Zhang, Yuhong; Zhu, Muyuan

    2017-01-01

    High content of (1,3;1,4)-β-d-glucan in barley grains is regarded as an undesirable factor affecting malting potential, brewing yield and feed utilization. Production of thermostable bacterial (1,3;1,4)-β-glucanase in transgenic barley grain or supplementation of exogenous bacterial (1,3;1,4)-β-glucanase has been used to improve malt and feed quality. The aim of the present study was to investigate the effect of over-expression of an endogenous (1,3;1,4)-β-glucanase on β-glucan content and grain composition in barley. A construct containing full-length HvGlb2 cDNA encoding barley (1,3;1,4)-β-glucanase isoenzyme EII under the control of a promoter of barley D-Hordein gene Hor3-1 was introduced into barley cultivar Golden Promise via Agrobacterium-mediated transformation, and transgenic plants were regenerated after hygromycin selection. The T 2 generation of proHor3:HvGlb2 transgenic lines showed increased activity of (1,3;1,4)-β-glucanase in grains. Total β-glucan content was reduced by more than 95.73% in transgenic grains compared with the wild-type control. Meanwhile, over-expression of (1,3;1,4)-β-glucanase led to an increase in 1000-grain weight, which might be due to elevated amounts of starch in the grain. Manipulating the expression of (1,3;1,4)-β-glucanase EII can control the β-glucan content in grain with no apparent harmful effects on grain quality of transgenic plants. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818

  11. Supplements of transgenic malt or grain containing (1,3-1,4)-beta-glucanase increase the nutritive value of barley-based broiler diets to that of maize.

    PubMed

    Von Wettstein, D; Warner, J; Kannangara, C G

    2003-07-01

    1. A diet with addition to normal barley of malt from transgenic barley expressing a protein engineered, thermotolerant Bacillus (1,3-1,4)-beta-glucanase during germination has previously been demonstrated to provide a broiler chicken weight gain comparable to maize diets. It also reduced dramatically the number of birds with adhering sticky droppings, but did not entirely eliminate sticky droppings. One of the objectives of the broiler chicken trials reported here was to determine if higher concentrations of transgenic malt could alleviate the sticky droppings. 2. Another aim was to investigate the feasibility of using mature transgenic grain containing the thermotolerant (1,3-1,4)-beta-glucanase as feed addition and to compare diets containing transgenic grain to a diet with the recommended amount of a commercial beta-glucanase-based product. 3. Inclusion of 75 or 151 g/kg transgenic malt containing 4.7 or 98 mg/kg thermotolerant (1,3-1,4)-beta-glucanase with 545 or 469 g/kg non-transgenic barley instead of maize yielded a weight gain in Cornish Cross broiler chickens indistinguishable from presently used maize diets. The gene encoding the enzyme is expressed in the aleurone with a barley alpha-amylase gene promoter and the enzyme is synthesised with a signal peptide for secretion into the endosperm of the malting grain. 4. Equal weight gain was achieved, when the feed included 39 g/kg transgenic barley grain [containing 66 mg/kg thermotolerant (1,3-1,4)-beta-glucanase] and 581 g/kg non-transgenic barley instead of maize. In this case, the gene encoding the enzyme has been expressed with the D-hordein gene (Hor3-1) promoter during grain maturation. The enzyme is synthesised as a precursor with a signal peptide for transport through the endoplasmic reticulum and targeted into the storage vacuoles. Deposition of the enzyme in the prolamin storage protein bodies of the endosperm protects it from degradation during the programmed cell death of the endosperm in the

  12. HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination1

    PubMed Central

    Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia

    2016-01-01

    Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. PMID:26912343

  13. Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.

    PubMed

    Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter

    2016-06-30

    Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage

  14. HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination.

    PubMed

    Diaz-Mendoza, Mercedes; Dominguez-Figueroa, Jose D; Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia; Hensel, Goetz; Kumlehn, Jochen; Diaz, Isabel; Martinez, Manuel

    2016-04-01

    Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis.

    PubMed

    Tang, Yawei; Zeng, Xingquan; Wang, Yulin; Bai, Lijun; Xu, Qijun; Wei, Zexiu; Yuan, Hongjun; Nyima, Tashi

    2017-01-01

    Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.

  16. Evaluation of triticale dried distillers grains with solubles as a substitute for barley grain and barley silage in feedlot finishing diets.

    PubMed

    Wierenga, K T; McAllister, T A; Gibb, D J; Chaves, A V; Okine, E K; Beauchemin, K A; Oba, M

    2010-09-01

    The objective of this study was to assess the value of triticale dried distillers grains with solubles (DDGS) as a replacement for barley silage in addition to a portion of the dry-rolled barley (DRB) in a grain-based feedlot finishing diet. The trial used 160 crossbred yearling steers: 144 noncannulated (478 +/- 84 kg) in a complete randomized design, and 16 ruminally cannulated (494 +/- 50 kg) in a replicated 4 x 4 Latin square design. The noncannulated steers were assigned to 8 standard pens (10 per pen) and 8 pens equipped with the GrowSafe system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada; 8 per pen). The cannulated steers were placed (2 per pen) in the 8 GrowSafe pens and moved between pens at 28-d intervals. Each of 4 experimental diets was fed in 2 standard and 2 GrowSafe pens. The diets contained (DM basis) 1) 85% DRB and 10% barley silage (CON); 2) 65% DRB, 20% triticale DDGS, and 10% barley silage (D-10S), 3) 65% DRB, 25% triticale DDGS, and 5% barley silage, and 4) 65% DRB, 30% triticale DDGS, and no barley silage. Supplement (5% of dietary DM) was included in all diets. Ruminal pH was measured over four 7-d periods using indwelling electrodes. Replacing barley silage with triticale DDGS linearly decreased mean ruminal pH (P = 0.006), linearly increased duration (P = 0.006 and P = 0.01) and area under the curve (P = 0.02 and P = 0.05) below pH 5.5 and 5.2, and linearly increased the frequency of subacute (P = 0.005) and acute (P = 0.05) bouts of ruminal acidosis. Variation in mean ruminal pH decreased (P = 0.008) in steers fed D-10S compared with CON. Similarly, variation in DMI was less for steers fed triticale DDGS compared with CON. Steers fed D-10S tended to have greater DMI (P = 0.08) but similar ADG and G:F compared with CON steers. Replacing barley silage with triticale DDGS tended to linearly decrease DMI (P = 0.10) and increase (P = 0.06) G:F. Compared with CON, steers fed D-10S tended to have greater backfat thickness (P = 0.10) and

  17. Phenolic compounds of barley grain and their implication in food product discoloration.

    PubMed

    Quinde-Axtell, Zory; Baik, Byung-Kee

    2006-12-27

    Barley grains contain significant amounts of phenolic compounds that may play a major role in the discoloration of food products. Phenolic acid and proanthocyanidin (PA) composition of 11 barley genotypes were determined, using high-performance liquid chromatography and liquid chromatography-mass spectrometry, and their significance on food discoloration was evaluated. Abraded grains contained 146-410 microg/g of phenolic acids (caffeic, p-coumaric, and ferulic) in hulled barley and 182-282 microg/g in hulless barley. Hulled PA-containing and PA-free genotypes had comparable phenolic acid contents. Catechin and six major barley PAs, including dimeric prodelphinidin B3 and procyandin B3, and four trimers were quantified. PAs were quantified as catechin equivalents (CE). The catechin content was higher in hulless (48-71 microg/g) than in hulled (32-37 microg/g) genotypes. The total PA content of abraded barley grains ranged from 169 to 395microg CE/g in PA-containing hulled and hulless genotypes. Major PAs were prodelphinidin B3 (39-109 microg CE/g) and procyanidin B3 (40-99 microg CE/g). The contents of trimeric PAs including procyanidin C2 ranged from 53 to 151 g CE/g. Discoloration of barley flour dough correlated with the catechin content of abraded grains (r = -0.932, P < 0.001), but not with the content of individual phenolic acids and PAs. Discoloration of barley flour dough was, however, intensified when total PA extracts and catechin or dimeric PA fractions were added into PA-free barley flour. The brightness of dough also decreased when the total PA extract or trimeric PA fraction was added into heat-treated PA-free barley flour. Despite its low concentration, catechin appears to exert the largest influence on the discoloration of barley flour dough among phenolic compounds.

  18. Substitution of wheat dried distillers grains with solubles for barley grain or barley silage in feedlot cattle diets: intake, digestibility, and ruminal fermentation.

    PubMed

    Li, Y L; McAllister, T A; Beauchemin, K A; He, M L; McKinnon, J J; Yang, W Z

    2011-08-01

    The objective of this study was to evaluate the effects of substituting wheat dried distillers grains with solubles (DDGS) for barley grain and barley silage on intake, digestibility, and ruminal fermentation in feedlot beef cattle. Eight ruminally cannulated Angus heifers (initial BW 455 ± 10.8 kg) were assigned to a replicated 4 × 4 Latin square design with 4 treatments: control, low (25%), medium (30%), and high (35%) wheat DDGS (DM basis). The diets consisted of barley silage, barley concentrate, and wheat DDGS in ratios of 15:85:0 (CON), 10:65:25 (25DDGS), 5:65:30 (30DDGS), and 0:65:35 (35DDGS; DM basis), respectively. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy (grain) and fiber in feedlot finishing diets. Intakes (kg/d) of DM and OM were not different, whereas those of CP, NDF, ADF, and ether extract (EE) were greater (P < 0.01) and intake of starch was less (P < 0.01) for the 25DDGS compared with the CON diet. The digestibilities of CP, NDF, ADF, and EE in the total digestive tract were greater (P < 0.05) for 25DDGS vs. CON. Ruminal pH and total VFA concentrations were not different (P > 0.15) between 25DDGS and CON diets. Replacing barley silage with increasing amounts of wheat DDGS (i.e., from 25DDGS to 35DDGS) linearly reduced (P < 0.05) intakes of DM and other nutrients without altering (P=0.40) CP intake. In contrast, digestibilities of DM and other nutrients in the total digestive tract linearly increased (P < 0.05) with increasing wheat DDGS except for that of EE. Additionally, with increasing amounts of wheat DDGS, mean ruminal pH tended (P=0.10) to linearly decrease, and ruminal pH status decreased with longer (P=0.04) duration of pH <5.5 and <5.2, and greater (P=0.01) curve area under pH <5.8 and <5.5 without altering (P > 0.19) ruminal VFA and NH(3)-N concentrations. Results indicated that wheat DDGS can be effectively

  19. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    PubMed Central

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  20. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves.

    PubMed

    Kazemi-Bonchenari, M; Salem, A Z M; López, S

    2017-08-01

    Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (P<0.01) and microbial nitrogen synthesis in the rumen tended to decrease by adding CA to barley. Treating barley grain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).

  1. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    PubMed

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  2. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize, and Rice[W][OA

    PubMed Central

    Dionisio, Giuseppe; Madsen, Claus K.; Holm, Preben B.; Welinder, Karen G.; Jørgensen, Malene; Stoger, Eva; Arcalis, Elsa; Brinch-Pedersen, Henrik

    2011-01-01

    Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic analyses indicated that PAPhys possess four conserved domains unique to the PAPhys. In barley and wheat, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (barley, HvPAPhy_a, HvPAPhy_b1, and HvPAPhy_b2; wheat, TaPAPhy_a1, TaPAPhy_a2, TaPAPhy_b1, and TaPAPhy_b2). In rice and maize, only the b type (OsPAPhy_b and ZmPAPhy_b, respectively) were identified. HvPAPhy_a and HvPAPhy_b1/b2 share 86% and TaPAPhya1/a2 and TaPAPhyb1/b2 share up to 90% (TaPAPhy_a2 and TaPAPhy_b2) identical amino acid sequences. despite of this, PAPhy_a and PAPhy_b isogenes are differentially expressed during grain development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed that the PAPhy_a isogene set present in wheat/barley but not in rice/maize is the origin of high phytase activity in mature grains. PMID:21220762

  3. Evolution of the Grain Dispersal System in Barley.

    PubMed

    Pourkheirandish, Mohammad; Hensel, Goetz; Kilian, Benjamin; Senthil, Natesan; Chen, Guoxiong; Sameri, Mohammad; Azhaguvel, Perumal; Sakuma, Shun; Dhanagond, Sidram; Sharma, Rajiv; Mascher, Martin; Himmelbach, Axel; Gottwald, Sven; Nair, Sudha K; Tagiri, Akemi; Yukuhiro, Fumiko; Nagamura, Yoshiaki; Kanamori, Hiroyuki; Matsumoto, Takashi; Willcox, George; Middleton, Christopher P; Wicker, Thomas; Walther, Alexander; Waugh, Robbie; Fincher, Geoffrey B; Stein, Nils; Kumlehn, Jochen; Sato, Kazuhiro; Komatsuda, Takao

    2015-07-30

    About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain

    PubMed Central

    Hassan, Ali Saleh; Houston, Kelly; Lahnstein, Jelle; Shirley, Neil; Schwerdt, Julian G.; Gidley, Michael J.; Waugh, Robbie; Little, Alan

    2017-01-01

    In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain. PMID:28771585

  5. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains.

    PubMed

    Paznocht, Luboš; Kotíková, Zora; Šulc, Miloslav; Lachman, Jaromír; Orsák, Matyáš; Eliášová, Marie; Martinek, Petr

    2018-02-01

    Carotenoids are important phytonutrients responsible for the yellow endosperm color in cereal grains. Five carotenoids, namely lutein, zeaxanthin, antheraxanthin, α- and β-carotene, were quantified by HPLC-DAD-MS in fourteen genotypes of wheat, barley and tritordeum harvested in Czechia in 2014 and 2015. The highest carotenoid contents were found in yellow-grained tritordeum HT 439 (12.16μg/gDW), followed by blue-grained wheat V1-131-15 (7.46μg/gDW), and yellow-grained wheat TA 4024 (7.04μg/gDW). Comparing carotenoid contents, blue varieties had lower whereas purple ones had the same or higher levels than conventional bread wheat. Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley. The majority of cereals contained considerable levels of esterified forms (up to 61%) of which lutein esters prevailed. It was assessed that cereal genotype determines the proportion of free and esterified forms. High temperatures and drought during the growing season promoted carotenoid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle.

    PubMed

    Tagawa, Shin-Ichi; Holtshausen, Lucia; McAllister, Tim A; Yang, Wen Zhu; Beauchemin, Karen Ann

    2017-04-01

    The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01). The DMD (g/kg DM) of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05) than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm). In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01) and tended to increase (p = 0.09) gas production and decreased (p<0.01) fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH), but consistent with Experiment 2, ENZ addition increased (p<0.01) DMD and gas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley

  7. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    PubMed

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T 2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

    PubMed

    Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia

    2015-10-01

    Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.

  9. Barley Metallothioneins: MT3 and MT4 Are Localized in the Grain Aleurone Layer and Show Differential Zinc Binding1[W][OA

    PubMed Central

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas; Hansen, Thomas Hesselhøj; Pedas, Pai; Husted, Søren; Schjoerring, Jan Kofod

    2012-01-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations. PMID:22582132

  10. Transcriptome Assembly and Analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum) Developing Grains, with Emphasis on Quality Properties

    PubMed Central

    Chen, Xin; Long, Hai; Gao, Ping; Deng, Guangbing; Pan, Zhifen; Liang, Junjun; Tang, Yawei; Tashi, Nyima; Yu, Maoqun

    2014-01-01

    Background Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. Methodology/Principal Findings In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan) were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. Conclusions/Significance We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1–3;1–4)-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley. PMID:24871534

  11. Selenium speciation in malt, wort, and beer made from selenium-biofortified two-rowed barley grain.

    PubMed

    Rodrigo, Sara; Santamaria, Oscar; Chen, Yi; McGrath, Steve P; Poblaciones, Maria J

    2014-06-25

    Selenium (Se) biofortification of barley is a suitable strategy to increase the Se concentration in grain. In the present paper, the suitability of this Se-biofortified grain for making Se-enriched beer is analyzed. The aim of the present study was to evaluate the effect of different Se fertilizer doses (0, 10, and 20 g of Se ha(-1)) and forms (sodium selenate or sodium selenite) on the Se loss during the malting and brewing processes and Se speciation in grain, malt, wort, and beer. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC)-ICP-MS for total Se and speciation. Mashing-lautering was the process with the greatest Se loss (83.8%). After malting and brewing, only 7.3% of the initial Se was retained in beer, mainly in selenite form. Even so, the fertilizer application of sodium selenate at 20 g ha(-1) increased the total Se concentration almost 6-fold in the final beer in comparison to the use of grain derived from unfertilized barley. The present paper provides evidence that the use of Se-biofortified barley grain as a raw material to produce Se-enriched beer is possible, and the results are comparable to other methods in terms of efficiency.

  12. Occurrence of deoxynivalenol and zearalenone in brewing barley grains from Brazil.

    PubMed

    Piacentini, Karim C; Rocha, L O; Savi, G D; Carnielli-Queiroz, L; Almeida, F G; Minella, E; Corrêa, B

    2018-03-09

    Barley (Hordeum vulgare L.) is an important cereal crop for food and represents one of the main ingredients in beer production. Considering the importance of barley and its derived products, the knowledge about the mycotoxin contamination in the barley production is essential in order to assess its safety. In this study, the levels of deoxynivalenol (DON) and zearalenone (ZEN) in brewing barley were determined using a LC-MS/MS method. A survey was conducted in 2015 to estimate the mycotoxin levels in these products (n = 76) from four crop regions in Brazil. The results showed high levels of DON and ZEN in the analyzed samples, with contamination levels of 94 and 73.6%, respectively. The mean levels of DON and ZEN ranged from 1700 to 7500 μg/kg and from 300 to 630 μg/kg, respectively. Barley samples from regions 1 and 2 presented higher levels of ZEN and DON, respectively, and those from region 4 presented lower levels of both. Co-occurrence of DON and ZEN was seen in the majority of the barley grain samples, and the mycotoxin content was above the maximum levels established by the Brazilian and European regulations.

  13. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    NASA Astrophysics Data System (ADS)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P < 0.05) in oat than in barley. The starch content was greater (P < 0.05) in barley than in oat. The CDC Meredith showed greater total rumen degradable carbohydrate (RDC), intestinal digestible fraction carbohydrate (FC) and lower total rumen undegradable carbohydrate (RUC). However, the estimated milk production did not differ for CDC Nasser oat and CDC Meredith barley. Lignin peak area and peak height did not differ (P > 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  14. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.

    PubMed

    Lachman, Jaromír; Hejtmánková, Alena; Orsák, Matyáš; Popov, Marek; Martinek, Petr

    2018-02-01

    Colored-grain spring and winter wheat, spring tritordeum and barley (blue aleurone, purple pericarp, and yellow endosperm) from the harvests 2014 and 2015 were evaluated for tocol contents by HPLC-FD. Higher content of total tocols was found in spring wheat varieties compared with winter varieties. Four tocols (β-tocotrienol, α-tocotrienol, β-tocopherol, and α-tocopherol) were identified in wheat and tritordeum varieties. Dominant tocols in purple- and blue-grained wheat and yellow-grained tritordeum were α-tocopherol and β-tocotrienol, whereas spring barley varieties differed from wheat and tritordeum by high α-tocotrienol content. Tocol content was significantly affected by genotype and in a lesser extent in some varieties and lines also by rainfall and temperatures during crop year. Higher rainfall and lower temperatures caused in most varieties higher tocol contents. Purple- and blue-grained wheat lines with higher tocol, anthocyanin and phenolic acids with health benefits may be useful for breeding new varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan.

    PubMed

    Lim, Wai Li; Collins, Helen M; Singh, Rohan R; Kibble, Natalie A J; Yap, Kuok; Taylor, Jillian; Fincher, Geoffrey B; Burton, Rachel A

    2018-05-01

    Hull-less barley is increasingly offering scope for breeding grains with improved characteristics for human nutrition; however, recalcitrance of hull-less cultivars to transformation has limited the use of these varieties. To overcome this limitation, we sought to develop an effective transformation system for hull-less barley using the cultivar Torrens. Torrens yielded a transformation efficiency of 1.8%, using a modified Agrobacterium transformation method. This method was used to over-express genes encoding synthases for the important dietary fiber component, (1,3;1,4)-β-glucan (mixed-linkage glucan), primarily present in starchy endosperm cell walls. Over-expression of the HvCslF6 gene, driven by an endosperm-specific promoter, produced lines where mixed-linkage glucan content increased on average by 45%, peaking at 70% in some lines, with smaller increases in transgenic HvCslH1 grain. Transgenic HvCslF6 lines displayed alterations where grain had a darker color, were more easily crushed than wild type and were smaller. This was associated with an enlarged cavity in the central endosperm and changes in cell morphology, including aleurone and sub-aleurone cells. This work provides proof-of-concept evidence that mixed-linkage glucan content in hull-less barley grain can be increased by over-expression of the HvCslF6 gene, but also indicates that hull-less cultivars may be more sensitive to attempts to modify cell wall composition. © 2017 Institute of Botany, Chinese Academy of Sciences.

  16. Comparative expression analysis of hordein and beta-amylase in developing barley grains

    USDA-ARS?s Scientific Manuscript database

    Hordeins are the major seed storage proteins (SSP) in the barley grain. They account for the majority of all proteins in the mature grain. Hordeins accumulate and are stored during grain development. Their primary function is to act as nitrogen, carbon, and sulfur reserves. Beta-amylase is a starch ...

  17. Barley ROP Binding Kinase1 Is Involved in Microtubule Organization and in Basal Penetration Resistance to the Barley Powdery Mildew Fungus1[W

    PubMed Central

    Huesmann, Christina; Reiner, Tina; Hoefle, Caroline; Preuss, Jutta; Jurca, Manuela E.; Domoki, Mónika; Fehér, Attila; Hückelhoven, Ralph

    2012-01-01

    Certain plant receptor-like cytoplasmic kinases were reported to interact with small monomeric G-proteins of the RHO of plant (ROP; also called RAC) family in planta and to be activated by this interaction in vitro. We identified a barley (Hordeum vulgare) partial cDNA of a ROP binding protein kinase (HvRBK1) in yeast (Saccharomyces cerevisiae) two-hybrid screenings with barley HvROP bait proteins. Protein interaction of the constitutively activated (CA) barley HvROPs CA HvRACB and CA HvRAC1 with full-length HvRBK1 was verified in yeast and in planta. Green fluorescent protein-tagged HvRBK1 appears in the cytoplasm and nucleoplasm, but CA HvRACB or CA HvRAC1 can recruit green fluorescent protein-HvRBK1 to the cell periphery. Barley HvRBK1 is an active kinase in vitro, and activity is enhanced by CA HvRACB or GTP-loaded HvRAC1. Hence, HvRBK1 might act downstream of active HvROPs. Transient-induced gene silencing of barley HvRBK1 supported penetration by the parasitic fungus Blumeria graminis f. sp. hordei, suggesting a function of the protein in basal disease resistance. Transient knockdown of HvRBK1 also influenced the stability of cortical microtubules in barley epidermal cells. Hence, HvRBK1 might function in basal resistance to powdery mildew by influencing microtubule organization. PMID:22415513

  18. In situ identification and quantification of protein-hydrolyzing ruminal bacteria associated with the digestion of barley and corn grain.

    PubMed

    Xia, Yun; Kong, Yunhong; Huang, Heping; Yang, Hee Eun; Forster, Robert; McAllister, Tim A

    2016-12-01

    In this study, BODIPY FL DQ™ casein staining combined with fluorescence in situ hybridization (FISH) was used to detect and identify protein-hydrolyzing bacteria within biofilms that produced active cell-surface-associated serine- and metallo-proteases during the ruminal digestion of barley and corn grain in cows fed barley-based diets at 2 different levels. A doublet coccoid bacterial morphotype associated with barley and corn grain particles fluoresced after BODIPY FL DQ™ casein staining. Bacteria with this morphotype accounted for 3%-10% of the total bacteria attached to surface of cereal grain particles, possibly indicative of an important role in the hydrolysis of the protein matrix within the endosperm. However, the identity of these predominant proteolytic bacteria could not be determined using FISH. Quantitative FISH revealed that known proteolytic species, Prevotella ruminicola, Ruminobacter amylophilus, and Butyrivibrio fibrisolvens, were attached to particles of various cultivars of barley grain and corn, confirming their role in the proteolysis of cereal grains. Differences in chemical composition among different barley cultivars did not affect the composition of proteolytic bacterial populations. However, the concentrate level in the basal diet did have an impact on the relative abundance of proteolytic bacteria and thus possibly their overall contribution to the proteolysis of cereal grains.

  19. Barley

    USDA-ARS?s Scientific Manuscript database

    The U.S. malting and brewing industries are America’s largest consumers of barley, purchasing more than one-half of the U.S. barley grain crop. More than 70% of the hectares seeded to barley are seeded to cultivars recommended by the American Malting Barley Association (AMBA). The malting and brewi...

  20. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition

    PubMed Central

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-01-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  1. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows.

    PubMed

    Iqbal, S; Zebeli, Q; Mazzolari, A; Bertoni, G; Dunn, S M; Yang, W Z; Ametaj, B N

    2009-12-01

    The objectives of the present in vivo and in situ trials were to evaluate whether feeding barley grain steeped in lactic acid (LA) would affect rumen fermentation patterns, in situ dry matter (DM) degradation kinetics, and milk production and composition in lactating dairy cows. The in vivo trial involved 8 rumen-fistulated Holstein cows fed once daily a total mixed ration containing rolled barley grain (27% in DM) steeped for 48 h in an equal quantity of tap water (CTR) or in 0.5% LA (TRT) in a 2 x 2 crossover design. The in situ trials consisted of incubation of untreated rolled barley grain in cows fed CTR or TRT diets and of incubation of 3 different substrates including CTR or barley grain steeped in 0.5% or 1.0% LA (TRT1 and TRT2, respectively) up to 72 h in the rumen. Results of the in vivo trial indicated that cows fed the TRT diet had greater rumen pH during most intensive fermentation phases at 10 and 12 h post-feeding. The latter effect was associated with a shorter duration in which rumen pH was below 5.8 for cows fed the TRT diet (2.4 h) compared with CTR diet (3.9 h). Furthermore, cows fed the TRT diet had lower concentrations of volatile fatty acids at 2 and 4 h post-feeding. In addition, concentrations of preprandial volatile fatty acids were lower in the rumen fluid of cows fed the TRT diet. Results also showed that molar proportion of acetate was lower, whereas propionate tended to increase by feeding cows the TRT diet. Cows fed the TRT diet demonstrated greater rumen in situ lag time of substrate DM degradation and a tendency to lower the fractional degradation rate. Other in situ results indicated a quadratic effect of LA on the effective rumen degradability of substrates whereby the latter variable was decreased from CTR to TRT1 but increased for TRT2 substrate. Although the diet did not affect actual milk yield, fat-corrected milk, percentages of milk protein, and lactose and concentration of milk urea nitrogen, cows fed the TRT diet increased

  2. Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis1[W

    PubMed Central

    Weichert, Nicola; Saalbach, Isolde; Weichert, Heiko; Kohl, Stefan; Erban, Alexander; Kopka, Joachim; Hause, Bettina; Varshney, Alok; Sreenivasulu, Nese; Strickert, Marc; Kumlehn, Jochen; Weschke, Winfriede; Weber, Hans

    2010-01-01

    Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations. PMID:20018590

  3. Investigation of the Germination of Barley and Wheat Grains with a Design of Experiments for the Production of Hydrolases

    PubMed Central

    Kranz, Bertolt; Koch, Milena; Schapfl, Matthias

    2015-01-01

    Summary The production of hydrolases from cereals has been examined in order to investigate food-derived enzymes as an alternative source to microbial enzymes for the use in food processes. For that, the influence of temperature on the pretreatment, imbibition and germination of barley and wheat grains was determined by measuring the β-glucosidase, β-galactosidase and lipase activities using a design of experiments. The evaluation of the statistical model showed an increase of the β-glucosidase activity with low imbibition and low germination temperature for barley grains and low imbibition and high germination temperature for wheat grains. The maximum β-glucosidase activity in wheat extracts was (585±151) nkat per g of dry mass (dm), while in barley extracts it was (109±15) nkat per g of dm. The maximum β-galactosidase activities in barley and wheat extracts were (34±12) and (63±23) nkat per g of dm, respectively. The maximum lipase activities of (6.7±0.1) and (4.6±4.4) nkat per g of dm in barley and wheat extracts, respectively, were rather low compared to the glycosidase activities. The extracts were also tested for other hydrolase activities (e.g. peptidase and α-amylase activities). The insights obtained enable the basis for the potential use of cereal hydrolases in food processing, which might be attractive to consumers. PMID:27904341

  4. Effects of process parameters on the properties of barley containing snacks enriched with brewer's spent grain.

    PubMed

    Kirjoranta, Satu; Tenkanen, Maija; Jouppila, Kirsi

    2016-01-01

    Brewer's spent grain (BSG), a by-product of malting of barley in the production of malt extract, was used as an ingredient in extruded barley-based snacks in order to improve the nutritional value of the snacks and widen the applications of this by-product in food sector. The effects of the extrusion parameters on the selected properties of the snacks were studied. Snacks with different ingredients including whole grain barley flour, BSG, whey protein isolate (WPI), barley starch and waxy corn starch were produced in 5 separate trials using a co-rotating twin-screw extruder. Extrusion parameters were water content of the mass (17-23 %), screw speed (200-500 rpm) and temperature of the last section and die (110-150 °C). Expansion, hardness and water content of the snacks were determined. Snacks containing barley flour and BSG (10 % of solids) had small expansion and high hardness. Addition of WPI (20 % of solids) increased expansion only slightly. Snacks with high expansion and small hardness were obtained when part of the barley flour was replaced with starch (barley or waxy corn). Yet, the highest expansion and the smallest hardness were achieved when barley flour was used with barley starch and WPI without BSG. Furthermore, expansion increased by increasing screw speed and decreasing water content of the mass in most of the trials. This study showed that BSG is a suitable material for extruded snacks rich in dietary fiber. Physical properties of the snacks could be improved by using barley or waxy corn starch and WPI.

  5. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. © The Author 2016. Published by

  6. Bioactive phytochemicals in barley.

    PubMed

    Idehen, Emmanuel; Tang, Yao; Sang, Shengmin

    2017-01-01

    Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong antioxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity. Copyright © 2016. Published by Elsevier B.V.

  7. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    PubMed

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  8. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains.

    PubMed

    Radchuk, Volodymyr; Riewe, David; Peukert, Manuela; Matros, Andrea; Strickert, Marc; Radchuk, Ruslana; Weier, Diana; Steinbiß, Hans-Henning; Sreenivasulu, Nese; Weschke, Winfriede; Weber, Hans

    2017-07-20

    Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  10. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs.

    PubMed

    Holme, Inger B; Wendt, Toni; Gil-Humanes, Javier; Deleuran, Lise C; Starker, Colby G; Voytas, Daniel F; Brinch-Pedersen, Henrik

    2017-09-01

    In the present study, we utilized TALEN- and CRISPR/Cas9-induced mutations to analyze the promoter of the barley phytase gene HvPAPhy_a. The purpose of the study was dual, validation of the PAPhy_a enzyme as the main contributor of the mature grain phytase activity (MGPA), as well as validating the importance of a specific promoter region of the PAPhy_a gene which contains three overlapping cis-acting regulatory elements (GCN4, Skn1 and the RY-element) known to be involved in gene expression during grain filling. The results confirm that the barley PAPhy_a enzyme is the main contributor to the MGPA as grains of knock-out lines show very low MGPA. Additionally, the analysis of the HvPAPhy_a promoter region containing the GCN4/Skn1/RY motif highlights its importance for HvPAPhy_a expression as the MGPA in grains of plant lines with mutations within this motif is significantly reduced. Interestingly, lines with deletions located downstream of the motif show even lower MGPA levels, indicating that the GCN4/SKn1/RY motif is not the only element responsible for the level of PAPhy_a expression during grain maturation. Mutant grains with very low MPGA showed delayed germination as compared to grains of wild type barley. As grains with high levels of preformed phytases would provide more readily available phosphorous needed for a fast germination, this indicates that faster germination may be implicated in the positive selection of the ancient PAPhy gene duplication that lead to the creation of the PAPhy_a gene.

  11. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products.

    PubMed

    Ibáñez, Carla; Criscioni, Patricia; Arriaga, Haritz; Merino, Pilar; Espinós, Francisco Juan; Fernández, Carlos

    2016-01-01

    The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. Twelve Murciano-Granadina dairy goats in midlactation were selected and divided into three groups based on similar body weight (42.1 ± 1.2 kg) and milk yield (2.16 ± 0.060 kg/goat/day). The experiment was conducted in an incomplete crossover design where one group of four goats was fed a mixed ration of barley grain (BRL), another group of four goats replaced barley grain with orange pulp (OP) and the last group of four goats with soybean hulls (SH). After adaptation to diets, the goats were allocated to individual metabolism cages and intake, faeces, urine and milk were recorded and analysed. Then, gas exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was similar for all three groups (2.03 kg/d, on average). No influence of the diet was observed for energy balance and the efficiency of use of metabolizable energy for milk production was 0.61. The OP and SH diets showed greater (P < 0.05) fat mobilization (-42.8 kJ/kg of BW0.75, on average) than BRL (19.2 kJ/kg of BW0.75). Pentadecanoic acid (15:0) and heptadecanoic acid (17:0) were potential biomarkers of rumen function because the higher contents found in the milk of OP and SH goats than BRL suggest a negative impact of these diets on rumen bacterial metabolism; probably linked to the lower nitrogen supply of diet OP to synthesize microbial protein and greater content of fat in diet SH. Replacement of cereal grain with fibrous by-products did not increased enteric methane emissions (54.7 L/goat per day, on average). Therefore, lactating goats could utilize dry orange pulp and soybean hulls diets with no detrimental effect on milk performance.

  12. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products

    PubMed Central

    Ibáñez, Carla; Criscioni, Patricia; Arriaga, Haritz; Merino, Pilar; Espinós, Francisco Juan; Fernández, Carlos

    2016-01-01

    The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. Twelve Murciano-Granadina dairy goats in midlactation were selected and divided into three groups based on similar body weight (42.1 ± 1.2 kg) and milk yield (2.16 ± 0.060 kg/goat/day). The experiment was conducted in an incomplete crossover design where one group of four goats was fed a mixed ration of barley grain (BRL), another group of four goats replaced barley grain with orange pulp (OP) and the last group of four goats with soybean hulls (SH). After adaptation to diets, the goats were allocated to individual metabolism cages and intake, faeces, urine and milk were recorded and analysed. Then, gas exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was similar for all three groups (2.03 kg/d, on average). No influence of the diet was observed for energy balance and the efficiency of use of metabolizable energy for milk production was 0.61. The OP and SH diets showed greater (P < 0.05) fat mobilization (-42.8 kJ/kg of BW0.75, on average) than BRL (19.2 kJ/kg of BW0.75). Pentadecanoic acid (15:0) and heptadecanoic acid (17:0) were potential biomarkers of rumen function because the higher contents found in the milk of OP and SH goats than BRL suggest a negative impact of these diets on rumen bacterial metabolism; probably linked to the lower nitrogen supply of diet OP to synthesize microbial protein and greater content of fat in diet SH. Replacement of cereal grain with fibrous by-products did not increased enteric methane emissions (54.7 L/goat per day, on average). Therefore, lactating goats could utilize dry orange pulp and soybean hulls diets with no detrimental effect on milk performance. PMID:26983120

  13. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test.

    PubMed

    Yamaura, Katsunori; Nakayama, Noriyuki; Shimada, Maki; Bi, Yuanyuan; Fukata, Hideki; Ueno, Koichi

    2012-01-01

    Young green barley leaf is one of the richest sources of antioxidants and has been widely consumed for health management in Japan. In this study, we examined whether oral administration of young green barley leaf has an antidepressant effect on the forced swimming test in mice. Mice were individually forced to swim in an open cylindrical container, one hour after oral administration of young green barley leaf (400 or 1000 mg / kg) or imipramine (100 mg / kg). Expression of mRNA for nerve growth factor (NGF), brain-derived neurotrophic factor, and glucocorticoid receptor in the brain was analyzed using real-time quantitative polymerase chain reaction (PCR). There was a significant antidepressant-like effect in the forced swimming test; both 400 and 1000 mg / kg young green barley leaves, as well as the positive control imipramine (100 mg / kg), reduced the immobility duration compared to the vehicle group. The expression of mRNA for NGF detected in the hippocampus immediately after the last swimming test was higher than that in the non-swimming group (Nil). Oral administration of imipramine suppressed this increase to the level of the Nil group. Young green barley leaf (400 and 1000 mg / kg) also showed a moderate decrease in the expression of mRNA for NGF, in a dose-dependent manner. Oral administration of young green barley leaf is able to produce an antidepressant-like effect in the forced swimming test. Consequently it is possible that the antidepressant-like effects of the young green barley leaf are, at least in part, mediated by an inhibition of the increase in the hippocampus levels of NGF.

  14. Differential triazole sensitivity among members of the Fusarium graminearum species complex infecting barley grains in Brazil

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB) is an important disease of small grains and is caused mainly by members of the Fusarium graminearum species complex (FGSC). Barley growers in Brazil rely on fungicides, especially triazoles, to suppress the disease and limit mycotoxin contamination of grain. Information on...

  15. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential.

    PubMed

    Sultan, Abida; Frisvad, Jens C; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2017-10-03

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases and xylanolytic enzymes being the most abundant. A 2-DE-based secretome analysis of Aspergillus niger and the less-studied pathogenic fungus Fusarium poae grown on barley flour and wheat arabinoxylan resulted in identification of 82 A. niger and 31 F. poae proteins many of which were hydrolytic enzymes, including xylanases. The microorganisms that inhabit the surface of cereal grains are specialized in production of enzymes such as xylanases, which depolymerize plant cell walls. Integration of gel-based proteomics approach with activity assays is a powerful tool for analysis and characterization of fungal secretomes and xylanolytic activities which can lead to identification of new enzymes with interesting properties, as well as provide insight into plant-fungal interactions, fungal pathogenicity and adaptation. Understanding the fungal response to host niche is of importance to uncover novel targets for potential symbionts, anti-fungal agents and biotechnical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Influence of barley grain treated with alkaline compounds or organic extracts on ex vivo site and extent of digestion of starch.

    PubMed

    Naseroleslami, Reza; Mesgaran, Mohsen Danesh; Tahmasbi, Abdolmansour; Vakili, Seyed Alireza; Ebrahimi, Seyed Hadi

    2018-02-01

    Two e x vivo experiments were conducted to verify the effect of barley grain ( Nusrat cultivar ) treated with alkaline compounds (AC) including alum, ammonium, and sodium hydroxide or cation-exchanged organic extracts (OE) prepared from alfalfa hay, sugar beet pulp and Ulva Fasciata , on extent and digestion of starch. In the first study, the in vitro first order disappearance kinetic parameters of dry matter (DM), crude protein (CP) and starch were estimated using a non-linear model (D (t) = D (i) · e (-k d · time) + I, where: D (t) = potentially digestible residues at any time, D (i) = potentially digestible fraction at any time, k d = fractional rate constant of digestion (/h), I = indigestible fraction at any time). In the second experiment, the ruminal and post-ruminal disappearance of DM, CP, and starch were determined using in situ mobile nylon bag. Barley grains treated with alum and alfalfa extract had a higher constant rate of starch digestion (0.11 and 0.09/h) than others. Barley grain treated with OE had a higher constant rate of CP digestion and that of treated with AC had a higher constant rate of starch digestion (0.08 and 0.11/h) compared with those of the other treatments. The indigestible fraction of starch treated with alum and sugar beet pulp extract was higher than that of the control group (0.24 and 0.25 vs 0.21). Barley grain treated with AC and OE had significant CP disappearance in the rumen, post-rumen and total tract, and also starch disappearance for post-rumen and total tract compared with the untreated (p<0.001). This study demonstrated that AC and OE might have positive effects on the starch degradation of the barley grain. In addition, treating barley grain with alum and sugar beet pulp extract could change the site and extend digestion of protein and starch.

  17. Influence of barley grain treated with alkaline compounds or organic extracts on ex vivo site and extent of digestion of starch

    PubMed Central

    Vakili, Seyed Alireza

    2018-01-01

    Objective Two ex vivo experiments were conducted to verify the effect of barley grain (Nusrat cultivar) treated with alkaline compounds (AC) including alum, ammonium, and sodium hydroxide or cation-exchanged organic extracts (OE) prepared from alfalfa hay, sugar beet pulp and Ulva Fasciata, on extent and digestion of starch. Methods In the first study, the in vitro first order disappearance kinetic parameters of dry matter (DM), crude protein (CP) and starch were estimated using a non-linear model (D(t) = D(i) · e(−kd · time) + I, where: D(t) = potentially digestible residues at any time, D(i) = potentially digestible fraction at any time, kd = fractional rate constant of digestion (/h), I = indigestible fraction at any time). In the second experiment, the ruminal and post-ruminal disappearance of DM, CP, and starch were determined using in situ mobile nylon bag. Results Barley grains treated with alum and alfalfa extract had a higher constant rate of starch digestion (0.11 and 0.09/h) than others. Barley grain treated with OE had a higher constant rate of CP digestion and that of treated with AC had a higher constant rate of starch digestion (0.08 and 0.11/h) compared with those of the other treatments. The indigestible fraction of starch treated with alum and sugar beet pulp extract was higher than that of the control group (0.24 and 0.25 vs 0.21). Barley grain treated with AC and OE had significant CP disappearance in the rumen, post-rumen and total tract, and also starch disappearance for post-rumen and total tract compared with the untreated (p<0.001). Conclusion This study demonstrated that AC and OE might have positive effects on the starch degradation of the barley grain. In addition, treating barley grain with alum and sugar beet pulp extract could change the site and extend digestion of protein and starch. PMID:28728361

  18. Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA

    PubMed Central

    Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice

    2007-01-01

    Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273

  19. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that...

  20. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment

    PubMed Central

    Obsa, Bulti Tesso; Eglinton, Jason; Coventry, Stewart; March, Timothy; Guillaume, Maxime; Le, Thanh Phuoc; Hayden, Matthew; Langridge, Peter

    2017-01-01

    Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH) populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF), Commander x WI4304 (CW), and Fleet x WI4304 (FW) developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se. PMID:28542571

  1. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment.

    PubMed

    Obsa, Bulti Tesso; Eglinton, Jason; Coventry, Stewart; March, Timothy; Guillaume, Maxime; Le, Thanh Phuoc; Hayden, Matthew; Langridge, Peter; Fleury, Delphine

    2017-01-01

    Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH) populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF), Commander x WI4304 (CW), and Fleet x WI4304 (FW) developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se.

  2. Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy.

    PubMed

    Beccari, Giovanni; Senatore, Maria Teresa; Tini, Francesco; Sulyok, Michael; Covarelli, Lorenzo

    2018-05-20

    In recent years, due to the negative impact of toxigenic mycobiota and of the accumulation of their secondary metabolites in malting barley grains, monitoring the evolution of fungal communities in a certain cultivation area as well as detecting the different mycotoxins present in the raw material prior to malting and brewing processes have become increasingly important. In this study, a survey was carried out on malting barley samples collected after their harvest in the Umbria region (central Italy). Samples were analyzed to determine the composition of the fungal community, to identify the isolated Fusarium species, to quantify fungal secondary metabolites in the grains and to characterize the in vitro mycotoxigenic profile of a subset of the isolated Fusarium strains. The fungal community of barley grains was mainly composed of microorganisms belonging to the genus Alternaria (77%), followed by those belonging to the genus Fusarium (27%). The Fusarium head blight (FHB) complex was represented by nine species with the predominance of Fusarium poae (37%), followed by Fusarium avenaceum (23%), Fusarium graminearum (22%) and Fusarium tricinctum (7%). Secondary metabolites biosynthesized by Alternaria and Fusarium species were present in the analyzed grains. Among those biosynthesized by Fusarium species, nivalenol and enniatins were the most prevalent ones. Type A trichothecenes (T-2 and HT-2 toxins) as well as beauvericin were also present with a high incidence. Conversely, the number of samples contaminated with deoxynivalenol was low. Conjugated forms, such as deoxynivalenol-3-glucoside and HT-2-glucoside, were detected for the first time in malting barley grains cultivated in the surveyed area. In addition, strains of F. avenaceum and F. tricinctum showed the ability to biosynthesize in vitro high concentrations of enniatins. The analysis of fungal secondary metabolites, both in the grains and in vitro, revealed also the presence of other compounds, for which

  3. Interactions between barley grain processing and source of supplemental dietary fat on nitrogen metabolism and urea-nitrogen recycling in dairy cows.

    PubMed

    Gozho, G N; Hobin, M R; Mutsvangwa, T

    2008-01-01

    The objective of this study was to determine the effects of methods of barley grain processing and source of supplemental fat on urea-N transfer to the gastrointestinal tract (GIT) and the utilization of this recycled urea-N in lactating dairy cows. Four ruminally cannulated Holstein cows (656.3 +/- 27.7 kg of BW; 79.8 +/- 12.3 d in milk) were used in a 4 x 4 Latin square design with 28-d periods and a 2 x 2 factorial arrangement of dietary treatments. Experimental diets contained dry-rolled barley or pelleted barley in combination with whole canola or whole flaxseed as supplemental fat sources. Nitrogen balance was measured from d 15 to 19, with concurrent measurements of urea-N kinetics using continuous intrajugular infusions of [15N 15N]-urea. Dry matter intake and N intake were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Nitrogen retention was not affected by diet, but fecal N excretion was higher in cows fed dry-rolled barley than in those fed pelleted barley. Actual and energy-corrected milk yield were not affected by diet. Milk fat content and milk fat yield were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Source of supplemental fat did not affect urea-N kinetics. Urea-N production was higher (442.2 vs. 334.3 g of N/d), and urea-N entering the GIT tended to be higher (272.9 vs. 202.0 g of N/d), in cows fed dry-rolled barley compared with those fed pelleted barley. The amount of urea-N entry into the GIT that was returned to the ornithine cycle was higher (204.1 vs. 159.5 g of N/d) in cows fed dry-rolled barley than in pelleted barley-fed cows. The amount of urea-N recycled to the GIT and used for anabolic purposes, and the amounts lost in the urine or feces were not affected by dietary treatment. Microbial nonammonia N supply, estimated using total urinary excretion of purine derivatives, was not affected by diet. These results show that even though barley grain processing altered urea

  4. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2012-05-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  5. Effect of sprouted barley grain supplementation of an herbage or haylage diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG), with a pasture (orchardgrass) or haylage diet, on nutrient digestibility, VFA production, bacterial protein synthesis, and methane production. Treatmen...

  6. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...— Damaged kernels 1 (percent) Foreign material (percent) Other grains (percent) Skinned and broken kernels....0 10.0 15.0 1 Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered against sound barley. Notes: Malting barley shall not be infested in accordance with...

  7. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence1[OPEN

    PubMed Central

    Taketa, Shin; Mascher, Martin; Yuo, Takahisa; Beier, Sebastian; Taudien, Stefan; Morgante, Michele

    2016-01-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  8. Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy.

    PubMed

    Han, Zhigang; Cai, Shengguan; Zhang, Xuelei; Qian, Qiufeng; Huang, Yuqing; Dai, Fei; Zhang, Guoping

    2017-07-15

    Barley grains are rich in phenolic compounds, which are associated with reduced risk of chronic diseases. Development of barley cultivars with high phenolic acid content has become one of the main objectives in breeding programs. A rapid and accurate method for measuring phenolic compounds would be helpful for crop breeding. We developed predictive models for both total phenolics (TPC) and p-coumaric acid (PA), based on near-infrared spectroscopy (NIRS) analysis. Regressions of partial least squares (PLS) and least squares support vector machine (LS-SVM) were compared for improving the models, and Monte Carlo-Uninformative Variable Elimination (MC-UVE) was applied to select informative wavelengths. The optimal calibration models generated high coefficients of correlation (r pre ) and ratio performance deviation (RPD) for TPC and PA. These results indicated the models are suitable for rapid determination of phenolic compounds in barley grains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Compositional Analysis of Whole Grains, Processed Grains, Grain Co-Products, and Other Carbohydrate Sources with Applicability to Pet Animal Nutrition

    PubMed Central

    Beloshapka, Alison N.; Buff, Preston R.; Fahey, George C.; Swanson, Kelly S.

    2016-01-01

    Our objective was to measure the proximate, starch, amino acid, and mineral compositions of grains, grain co-products, and other carbohydrate sources with potential use in pet foods. Thirty-two samples from barley (barley flake, cut barley, ground pearled barley, malted barley, whole pearled barley, pearled barley flakes, and steamed rolled barley); oats (groats, ground oatmeal, ground steamed groats, instant oats, oat bran, oat fiber, oat flour, quick oats, regular rolled oats, steamed rolled oat groats, and steel cut groats); rice (brown rice, polished rice, defatted rice bran, and rice flour); and miscellaneous carbohydrate sources (canary grass seed, hulled millet, whole millet, quinoa, organic spelt hull pellets, potato flake, sorghum, whole wheat, and whole yellow corn) were analyzed. Crude protein, amino acid, fat, dietary fiber, resistant starch, and mineral concentrations were highly variable among the respective fractions (i.e., barley flake vs. malted barley vs. steamed rolled barley) as well as among the various grains (i.e., barley flake vs. brown rice vs. canary grass seed). These ingredients not only provide a readily available energy source, but also a source of dietary fiber, resistant starch, essential amino acids, and macrominerals for pet diets. PMID:28231117

  10. Sprouted barley for dairy cows: Nutritional composition and digestibility

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley or barley grain with an haylage or pasture diet on nutrient digestibility and methane output. Barley grain was sprouted in climate controlled growth chambers, to be used as part ...

  11. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane outp...

  12. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets.

    PubMed

    Zhong, Yadong; Marungruang, Nittaya; Fåk, Frida; Nyman, Margareta

    2015-05-28

    Mixed-linkage β-glucans are fermented by the colon microbiota that give rise to SCFA. Propionic and butyric acids have been found to play an important role in colonic health, as well as they may have extraintestinal metabolic effects. The aim of the present study was to investigate how two whole-grain barley varieties differing in dietary fibre and β-glucan content affected caecal SCFA, gut microbiota and some plasma inflammatory markers in rats consuming low-fat (LF) or high-fat (HF) diets. Barley increased the caecal pool of SCFA in rats fed the LF and HF diets compared with those fed the control diet, and the effect was generally dependent on fibre content, an exception was butyric acid in the LF setting. Furthermore, whole-grain barley reduced plasma lipopolysaccharide-binding protein and monocyte chemoattractant protein-1, increased the caecal abundance of Lactobacillus and decreased the Bacteroides fragilis group, but increased the number of Bifidobacterium only when dietary fat was consumed at a low level. Fat content influenced the effects of barley: rats fed the HF diets had a higher caecal pool of acetic and propionic acids, higher concentrations of amino acids and higher amounts of lipids in the portal plasma and liver than rats fed the LF diets; however, less amounts of butyric acid were generally formed. Interestingly, there was an increase in the caecal abundance of Akkermansia and the caecal pool of succinic acid, and a decrease in the proportion of Bifidobacterium and the Clostridium leptum group. In summary, whole-grain barley decreased HF diet-induced inflammation, which was possibly related to the formation of SCFA and changes in microbiota composition. High β-glucan content in the diet was associated with reduced plasma cholesterol levels.

  13. Starch accumulation in hulless barley during grain filling.

    PubMed

    Zheng, Xu-Guang; Qi, Jun-Cang; Hui, Hong-Shan; Lin, Li-Hao; Wang, Feng

    2017-12-01

    Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.

  14. QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines.

    PubMed

    Honsdorf, Nora; March, Timothy J; Pillen, Klaus

    2017-01-01

    Drought is a major abiotic stress impeding the yield of cereal crops globally. Particularly in Mediterranean environments, water becomes a limiting factor during the reproductive developmental stage, causing yield losses. The wild progenitor of cultivated barley Hordeum vulgare ssp spontaneum (Hsp) is a potentially useful source of drought tolerance alleles. Wild barley introgression lines like the S42IL library may facilitate the introduction of favorable exotic alleles into breeding material. The complete set of 83 S42ILs was genotyped with the barley 9k iSelect platform in order to complete genetic information obtained in previous studies. The new map comprises 2,487 SNPs, spanning 989.8 cM and covering 94.5% of the Hsp genome. Extent and positions of introgressions were confirmed and new information for ten additional S42ILs was collected. A subset of 49 S42ILs was evaluated for drought response in four greenhouse experiments. Plants were grown under well-watered conditions until ten days post anthesis. Subsequently drought treatment was applied by reducing the available water. Several morphological and harvest parameters were evaluated. Under drought treatment, trait performance was reduced. However, there was no interaction effect between genotype and treatment, indicating that genotypes, which performed best under control treatment, also performed best under drought treatment. In total, 40 QTL for seven traits were detected in this study. For instance, favorable Hsp effects were found for thousand grain weight (TGW) and number of grains per ear under drought stress. In particular, line S42IL-121 is a promising candidate for breeding improved malting cultivars, displaying a TGW, which was increased by 17% under terminal drought stress due to the presence of an unknown wild barley QTL allele on chromosome 4H. The introgression line showed a similar advantage in previous field experiments and in greenhouse experiments under early drought stress. We, thus

  15. The 1980 US/Canada wheat and barley exploratory experiment, volume 1

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.

    1983-01-01

    The results from the U.S./Canada Wheat and Barley Exploratory Experiment which was completed during FY 1980 are presented. The results indicate that the new crop identification procedures performed well for spring small grains and that they are conductive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology. However, the crop calendars will require additional development and refinements prior to integration into automated area estimation technology. The evaluation showed the integrated technology to be capable of producing accurate and consistent spring small grains proportion estimates. However, barley proportion estimation technology was not satisfactorily evaluated. The low-density segments examined were judged not to give indicative or unequivocal results. It is concluded that, generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analyses to a variety of agricultural and meteorological conditions representative of the global environment. It is further concluded that a strong potential exists for establishing a highly efficient technology or spring small grains.

  16. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines β-Diketone Biosynthesis and Glaucousness

    PubMed Central

    Lee, Wing-Sham; Malitsky, Sergey; Almekias-Siegl, Efrat; Levy, Matan; Ben-Zvi, Gil; Alkan, Noam; Uauy, Cristobal; Jetter, Reinhard

    2016-01-01

    The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response. PMID:27225753

  17. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines β-Diketone Biosynthesis and Glaucousness.

    PubMed

    Hen-Avivi, Shelly; Savin, Orna; Racovita, Radu C; Lee, Wing-Sham; Adamski, Nikolai M; Malitsky, Sergey; Almekias-Siegl, Efrat; Levy, Matan; Vautrin, Sonia; Bergès, Hélène; Friedlander, Gilgi; Kartvelishvily, Elena; Ben-Zvi, Gil; Alkan, Noam; Uauy, Cristobal; Kanyuka, Kostya; Jetter, Reinhard; Distelfeld, Assaf; Aharoni, Asaph

    2016-06-01

    The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response. © 2016 American Society of Plant Biologists. All rights reserved.

  18. Combined moist airtight storage and feed fermentation of barley by the yeast Wickerhamomyces anomalus and a lactic acid bacteria consortium

    PubMed Central

    Borling Welin, Jenny; Lyberg, Karin; Passoth, Volkmar; Olstorpe, Matilda

    2015-01-01

    This study combined moist airtight storage of moist grain with pig feed fermentation. Starter cultures with the potential to facilitate both technologies were added to airtight stored moist crimped cereal grain, and the impact on storage microflora and the quality of feed fermentations generated from the grain was investigated. Four treatments were compared: three based on moist barley, either un-inoculated (M), inoculated with Wickerhamomyces anomalus (W), or inoculated with W. anomalus and LAB starter culture, containing Pediococcus acidilactici DSM 16243, Pediococcus pentosaceus DSM 12834 and Lactobacillus plantarum DSM 12837 (WLAB); and one treatment based on dried barley (D). After 6 weeks of storage, four feed fermentations FM, FW, FWLAB, and FD, were initiated from M, W, WLAB, and D, respectively, by mixing the grain with water to a dry matter content of 30%. Each treatment was fermented in batch initially for 7 days and then kept in a continuous mode by adding new feed daily with 50% back-slop. During the 6 week storage period, the average water activity decreased in M, W and WLAB from 0.96 to 0.85, and cereal pH decreased from approximately 6.0 at harvest to 4.5. Feed fermentation conferred a further pH decrease to 3.8–4.1. In M, W and WLAB, molds and Enterobacteriaceae were mostly below detection limit, whereas both organism groups were detected in D. In fermented feed, Enterobacteriaceae were below detection limit in almost all conditions. Molds were detected in FD, for most of the fermentation time in FM and at some sampling points in FW and FWLAB. Starter organisms, especially W. anomalus and L. plantarum comprised a considerable proportion of the yeast and LAB populations, respectively, in both stored grain and fermented feed. However, autochthonous Pichia kudriavzevii and Kazachstania exigua partially dominated the yeast populations in stored grain and fermented feed, respectively. PMID:25954295

  19. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose.

    PubMed

    Olsson, J; Börjesson, T; Lundstedt, T; Schnürer, J

    2002-02-05

    Mycotoxin contamination of cereal grains can be detected and quantified using complex extraction procedures and analytical techniques. Normally, the grain odour, i.e. the presence of non-grain volatile metabolites, is used for quality classification of grain. We have investigated the possibility of using fungal volatile metabolites as indicators of mycotoxins in grain. Ten barley samples with normal odour, and 30 with some kind of off-odour were selected from Swedish granaries. The samples were evaluated with regard to moisture content, fungal contamination, ergosterol content, and levels of ochratoxin A (OA) and deoxynivalenol (DON). Volatile compounds were also analysed using both an electronic nose and gas chromatography combined with mass spectrometry (GC-MS). Samples with normal odour had no detectable ochratoxin A and average DON contents of 16 microg kg(-1) (range 0-80), while samples with off-odour had average OA contents of 76 microg kg(-1) (range 0-934) and DON contents of 69 microg kg(-1) (range 0-857). Data were evaluated by multivariate data analysis using projection methods such as principal component analysis (PCA) and partial least squares (PLS). The results show that it was possible to classify the OA level as below or above the maximum limit of 5 microg kg(-1) cereal grain established by the Swedish National Food Administration, and that the DON level could be estimated using PLS. Samples with OA levels below 5 microg kg(-1) had higher concentration of aldehydes (nonanal, 2-hexenal) and alcohols (1-penten-3-ol, 1-octanol). Samples with OA levels above 5 microg kg(-1) had higher concentrations of ketones (2-hexanone, 3-octanone). The GC-MS system predicted OA concentrations with a higher accuracy than the electronic nose, since the GC-MS misclassified only 3 of 37 samples and the electronic nose 7 of 37 samples. No correlation was found between odour and OA level, as samples with pronounced or strong off-odours had OA levels both below and above 5

  20. Reciprocal combinations of barley and corn grains in oil-supplemented diets: feeding behavior and milk yield of lactating cows.

    PubMed

    Kargar, S; Ghorbani, G R; Khorvash, M; Sadeghi-Sefidmazgi, A; Schingoethe, D J

    2014-11-01

    The effect of barley-based (BBD) or corn-based diets (CBD), or their equal blend (BCBD) on dry matter (DM) intake, feeding and chewing behavior, and production performance of lactating dairy cows was evaluated. Nine multiparous Holstein cows (75.6 ± 11.0 d in milk) were used in a triplicate 3 × 3 Latin square design with 21-d periods. Forage-to-concentrate ratio (40:60), forage neutral detergent fiber (20% of DM), total neutral detergent fiber (>29% of DM), and geometric mean particle size (4.3mm) were similar among treatments. Meal patterns, including meal size and intermeal interval, were not affected by the dietary treatments and DM intake (25.6 kg/d) was not different among treatments. Ether extract intake increased linearly with increasing amount of the corn grain in the diets. Due to similar feed intake, actual milk (48.6 kg/d), 4% fat-corrected milk (36.8 kg/d), and fat- and protein-corrected milk (38.1 kg/d) yields were not affected by treatments. Average milk protein percentage and yield were 2.83% and 1.37 kg/d, respectively, and were not different across treatments. Milk fat percentage increased linearly with increasing amount of corn grain in the diets and was greater in CBD relative to BCBD but not BBD (2.31, 2.28, and 2.57%, for BBD, BCBD, and CBD, respectively). However, milk fat yield tended to show a linear increase as the amount of corn grain included in the diets increased. Results indicated that changing diet fermentability by replacing barley grain for corn grain in oil-supplemented diets did not influence feeding patterns and thereby no changes in feed intake and milk yield occurred. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for...

  2. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming. © 2013 Elsevier Inc. All rights reserved.

  3. Effects of ensiling cereal grains (barley, wheat, triticale and rye) on total and pre-caecal digestibility of proximate nutrients and amino acids in pigs.

    PubMed

    Hackl, W; Pieper, B; Pieper, R; Korn, U; Zeyner, A

    2010-12-01

    Inclemency of weather frequently causes critical water contents in cereal grains above 15%. Ensiling in pre-mature condition may be an alternative to other techniques of preservation. Aim of this study was to compare apparent total tract digestibility (D(t) ; barley, wheat, triticale, rye) of proximate nutrients and pre-caecal digestibility (D(pc); barley, wheat) of amino acids (AA), respectively, from cereal grains in ensiled and almost dry condition. Moistly harvested cereal grains (67-73% dry matter) were milled through a 4-mm sieve and ensiled with lactic acid bacteria (LAB, 3 × 10(5) colony forming units/g Lactobacillus plantarum DSMZ 8862 and 8866). To investigate D(t), two trials were conducted with six Mini-Lewe pigs and four German Landrace pigs, respectively. D(pc) of AA was determined using four German Landrace pigs with ileo-rectal anastomosis. D(t) of proximate nutrients did not differ between cereal grains and their silages, except for ether extract, which was more digestible in ensiled than dry wheat, triticale and rye (p < 0.05). Lysine content was lower in ensiled than dry barley and wheat. In barley, ensiling was accompanied by reduced D(pc) of lysine and histidine (p < 0.05). In wheat, ensiling increased D(pc) of lysine, methionine, threonine and leucin (p < 0.05). Ensiling of pre-mature cereal grains with LAB can serve as a reasonable storage alternative. However, as limited data are yet available, further research is required to understand completely the impact of ensiling on nutritional value as indicated, for example, by the lysine content and the D(pc) of certain AA. © 2010 Blackwell Verlag GmbH.

  4. The Compromised Recognition of Turnip Crinkle Virus1 Subfamily of Microrchidia ATPases Regulates Disease Resistance in Barley to Biotrophic and Necrotrophic Pathogens1[C][W][OPEN

    PubMed Central

    Langen, Gregor; von Einem, Sabrina; Koch, Aline; Imani, Jafargholi; Pai, Subhash B.; Manohar, Murli; Ehlers, Katrin; Choi, Hyong Woo; Claar, Martina; Schmidt, Rebekka; Mang, Hyung-Gon; Bordiya, Yogendra; Kang, Hong-Gu; Klessig, Daniel F.; Kogel, Karl-Heinz

    2014-01-01

    MORC1 and MORC2, two of the seven members of the Arabidopsis (Arabidopsis thaliana) Compromised Recognition of Turnip Crinkle Virus1 subfamily of microrchidia Gyrase, Heat Shock Protein90, Histidine Kinase, MutL (GHKL) ATPases, were previously shown to be required in multiple layers of plant immunity. Here, we show that the barley (Hordeum vulgare) MORCs also are involved in disease resistance. Genome-wide analyses identified five MORCs that are 37% to 48% identical on the protein level to AtMORC1. Unexpectedly, and in clear contrast to Arabidopsis, RNA interference-mediated knockdown of MORC in barley resulted in enhanced basal resistance and effector-triggered, powdery mildew resistance locus A12-mediated resistance against the biotrophic powdery mildew fungus (Blumeria graminis f. sp. hordei), while MORC overexpression decreased resistance. Moreover, barley knockdown mutants also showed higher resistance to Fusarium graminearum. Barley MORCs, like their Arabidopsis homologs, contain the highly conserved GHKL ATPase and S5 domains, which identify them as members of the MORC superfamily. Like AtMORC1, barley MORC1 (HvMORC1) binds DNA and has Mn2+-dependent endonuclease activities, suggesting that the contrasting function of MORC1 homologs in barley versus Arabidopsis is not due to differences in their enzyme activities. In contrast to AtMORCs, which are involved in silencing of transposons that are largely restricted to pericentromeric regions, barley MORC mutants did not show a loss-of-transposon silencing regardless of their genomic location. Reciprocal overexpression of MORC1 homologs in barley and Arabidopsis showed that AtMORC1 and HvMORC1 could not restore each other’s function. Together, these results suggest that MORC proteins function as modulators of immunity, which can act negatively (barley) or positively (Arabidopsis) dependent on the species. PMID:24390392

  5. Wet processing barley grains into concentrates with protein, beta-glucan, and starch

    USDA-ARS?s Scientific Manuscript database

    An improved wet method was developed to process barley into fractions concentrated in protein, (1-3)(1-4)-b-D-glucan (BG), starch, or other carbohydrates (CHO). Alkaline concentration, solvent to barley flour ratio (SFR), and extraction temperature were evaluated for their effects on concentration a...

  6. Application of Near Infrared Reflectance Spectroscopy for Rapid and Non-Destructive Discrimination of Hulled Barley, Naked Barley, and Wheat Contaminated with Fusarium

    PubMed Central

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Oh, Kyoungmin; Kim, Geonseob; Ham, Hyeonheui; Kim, Seongmin; Kim, Moon S.

    2018-01-01

    Fusarium is a common fungal disease in grains that reduces the yield of barley and wheat. In this study, a near infrared reflectance spectroscopic technique was used with a statistical prediction model to rapidly and non-destructively discriminate grain samples contaminated with Fusarium. Reflectance spectra were acquired from hulled barley, naked barley, and wheat samples contaminated with Fusarium using near infrared reflectance (NIR) spectroscopy with a wavelength range of 1175–2170 nm. After measurement, the samples were cultured in a medium to discriminate contaminated samples. A partial least square discrimination analysis (PLS-DA) prediction model was developed using the acquired reflectance spectra and the culture results. The correct classification rate (CCR) of Fusarium for the hulled barley, naked barley, and wheat samples developed using raw spectra was 98% or higher. The accuracy of discrimination prediction improved when second and third-order derivative pretreatments were applied. The grains contaminated with Fusarium could be rapidly discriminated using spectroscopy technology and a PLS-DA discrimination model, and the potential of the non-destructive discrimination method could be verified. PMID:29301319

  7. Isolation of tissues and preservation of RNA from intact, germinated barley grain.

    PubMed

    Betts, Natalie S; Berkowitz, Oliver; Liu, Ruijie; Collins, Helen M; Skadhauge, Birgitte; Dockter, Christoph; Burton, Rachel A; Whelan, James; Fincher, Geoffrey B

    2017-08-01

    Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Diamine oxidase is involved in H(2)O(2) production in the chalazal cells during barley grain filling.

    PubMed

    Asthir, Bavita; Duffus, Carol M; Smith, Rachel C; Spoor, William

    2002-04-01

    The localization and activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.4.3.4) together with polyamine levels have been investigated in developing grains of barley (Hordeum vulgare L.). DAO (pH 7.5) is present mainly in vascular tissue and its neighbouring cells, namely chalazal cells and nucellar projection, while PAO (pH 6.0) is mainly localized in the chlorenchymatous cells of the crease and at the base of the vascular tissue. Activities of both these enzymes appear to be independently-regulated, as DAO activity increased steadily throughout grain development while PAO activity was higher during the early stages of grain filling, declined thereafter and again increased towards maturity. The maximum activities of DAO coincided with the maximum content of putrescine while the levels of PAO did not seem to be directly correlated with spermidine or spermine contents. Isoelectric focusing (IEF) of DAO and PAO activities revealed the presence of bands at 30 and 45 DPA. The possible involvement of DAO and PAO in the supply of H(2)O(2) to peroxidase-catalysed reactions in the chalazal cells during grain filling is discussed.

  9. Granary trial of protein-enriched pea flour for the control of three stored-product insects in barley.

    PubMed

    Hou, Xingwei; Fields, Paul G

    2003-06-01

    A granary trial was conducted to evaluate the efficacy of protein-enriched pea flour against three common stored-grain insects, Sitophilus oryzae (L.), Tribolium castaneum (Herbst), and Cryptolestes ferrugineus (Stephens). Six 30-t farm granaries were filled with approximately 11 t of barley. The barley was either not treated, treated with protein-enriched pea flour at 0.1% throughout the entire grain mass, or treated at 0.5% throughout the top half of the grain mass. Adult insects were released in screened boxes (two insects per kilogram barley for S. oryzae and T. castaneum 1.4 insects per kilogram barley for C. ferrugineus). Barley was sampled four times during the 70-d trial. The number and mortality of adults and emerged adults in the samples were noted. Four kinds of traps, flight, surface-pitfall, probe-pitfall, and sticky-bar, were placed at different locations in the granaries to estimate the movement of insects. The 0.1% protein-enriched pea flour treatment reduced adult numbers of S. oryzae by 93%, T. castaneum by 66%, and C. ferrugineus by 58%, and reduced the emerged adults by 87, 77, and 77%, respectively. Treating the top half of the barley with 0.5% protein-enriched pea flour had similar effects as treating the entire grain mass with 0.1% pea-protein flour. However, the top-half treatment failed to prevent insects from penetrating into the untreated lower layer. Differences between traps are discussed.

  10. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows.

    PubMed

    Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J

    2006-11-01

    The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia

  11. Short communication: Effects of processing methods of barley grain in starter diets on feed intake and performance of dairy calves.

    PubMed

    Jarrah, A; Ghorbani, G R; Rezamand, P; Khorvash, M

    2013-01-01

    The present study was conducted to evaluate the effects of different processing methods of barley grain in starter rations on feed intake, average daily gain, feed efficiency, skeletal growth, fecal score, and rumen pH of dairy calves. Thirty-two Holstein dairy calves (16 female and 16 male) were randomly allocated to 1 of 4 treatments consisting of coarse ground, whole, steam-rolled, or roasted barley from d 4 to 56 of birth in a completely randomized design. Starter diets were formulated to have similar ingredients and composition. All calves had free access to water and feed throughout the study period and received 4 L of milk/d from a bottle from d 4 to 41, 2L/d from d 41 to 45, and weaning occurred on d 45. Feed intake and fecal score were recorded daily. Body weight and skeletal growth measures were recorded on d 4 (beginning of the study), 45, and 56. Rumen fluid and blood samples were collected on d 35, 45, and 56. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC). The results indicate that different methods of processing barley had no detectable effect on dry matter intake, average daily gain, and feed efficiency and that skeletal growth, health, and rumen pH were not affected by dietary treatments. In conclusion, the results show that different processing methods of barley included in starter diets had no detectable effect on the performance of dairy calves under our experimental conditions. Therefore, feeding whole or coarsely ground barley would be a more economical method compared with steam rolled or roasted barley. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Induced Variations in Brassinosteroid Genes Define Barley Height and Sturdiness, and Expand the Green Revolution Genetic Toolkit1[C][W][OPEN

    PubMed Central

    Dockter, Christoph; Gruszka, Damian; Braumann, Ilka; Druka, Arnis; Druka, Ilze; Franckowiak, Jerome; Gough, Simon P.; Janeczko, Anna; Kurowska, Marzena; Lundqvist, Joakim; Lundqvist, Udda; Marzec, Marek; Matyszczak, Izabela; Müller, André H.; Oklestkova, Jana; Schulz, Burkhard; Zakhrabekova, Shakhira; Hansson, Mats

    2014-01-01

    Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars. PMID:25332507

  13. Grain Unloading of Arsenic Species in Rice1[W

    PubMed Central

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Charnock, John M.; Feldmann, Joerg; Price, Adam H.; Meharg, Andrew A.

    2010-01-01

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a ± stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols. PMID:19880610

  14. Grain setting defect1, Encoding a Remorin Protein, Affects the Grain Setting in Rice through Regulating Plasmodesmatal Conductance1[W

    PubMed Central

    Gui, Jinshan; Liu, Chang; Shen, Junhui; Li, Laigeng

    2014-01-01

    Effective grain filling is one of the key determinants of grain setting in rice (Oryza sativa). Grain setting defect1 (GSD1), which encodes a putative remorin protein, was found to affect grain setting in rice. Investigation of the phenotype of a transfer DNA insertion mutant (gsd1-Dominant) with enhanced GSD1 expression revealed abnormalities including a reduced grain setting rate, accumulation of carbohydrates in leaves, and lower soluble sugar content in the phloem exudates. GSD1 was found to be specifically expressed in the plasma membrane and plasmodesmata (PD) of phloem companion cells. Experimental evidence suggests that the phenotype of the gsd1-Dominant mutant is caused by defects in the grain-filling process as a result of the impaired transport of carbohydrates from the photosynthetic site to the phloem. GSD1 functioned in affecting PD conductance by interacting with rice ACTIN1 in association with the PD callose binding protein1. Together, our results suggest that GSD1 may play a role in regulating photoassimilate translocation through the symplastic pathway to impact grain setting in rice. PMID:25253885

  15. Effect of including high-lipid by-product pellets in substitution for barley grain and canola meal in finishing diets for beef cattle on ruminal fermentation and nutrient digestibility.

    PubMed

    Górka, P; Castillo-Lopez, E; Joy, F; Chibisa, G E; McKinnon, J J; Penner, G B

    2015-10-01

    The objective was to determine the effect of replacing barley grain and canola meal with high-lipid by-product pellets (HLBP; 14.6% CP, 29.8% NDF, 9.0% fat, and 5.52 MJ NE/kg in DM) on DMI, ruminal fermentation, nutrient flow at the omasal canal, and nutrient digestibility. Four ruminally cannulated and ovariectomized Hereford × Gelbvieh heifers (initial BW of 631.9 ± 23.3 kg; mean ± SD) were used in a 4 × 4 Latin square design. Periods consisted of 28 d, including 10 d for diet transition, 11 d for dietary adaptation, and 7 d for measurements. Heifers were fed a typical finishing diet consisting of 89% of concentrate (barley grain and canola meal; CONT), 6% of barley silage, and 5% of mineral and vitamin supplement (on DM basis). Dietary treatments consisted of a CONT or diets where 30% (HLBP30), 60% (HLBP60), and 90% (HLBP90) of the barley grain and canola meal were replaced with HLBP. Dry matter intake was not affected by treatment ( > 0.10). Total short-chain fatty acid concentration and molar proportions of acetate, propionate, and butyrate ( > 0.10) among treatments and ruminal ammonia did not differ ( > 0.10) among treatments, and ruminal ammonia increased ( = 0.03) linearly with increasing HLBP inclusion rate in the diet. Mean and maximum pH increased, whereas the duration and area that pH was below 5.8, 5.5, and 5.2, thresholds used for mild, severe, and acute ruminal acidosis, respectively, decreased linearly ( ≤ 0.05) with increasing rates of inclusion of HLBP. Organic matter flow at the omasal canal increased linearly ( = 0.03) with increasing HLBP inclusion rate in the diet. However, OM digestibility coefficients and apparent ruminal NDF and ADF digestibility yielded negative values for some animals, especially those fed HLBP90, indicating that ruminal digestibility was underestimated. Total tract OM digestibility decreased linearly ( < 0.01) with increasing inclusion rates of HLBP. This study showed that HLBP inclusion in substitution for barley

  16. Aspergillus ficuum phytase activity is inhibited by cereal grain components.

    PubMed

    Bekalu, Zelalem Eshetu; Madsen, Claus Krogh; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2017-01-01

    In the current study, we report for the first time that grain components of barley, rice, wheat and maize can inhibit the activity of Aspergillus ficuum phytase. The phytase inhibition is dose dependent and varies significantly between cereal species, between cultivars of barley and cultivars of wheat and between Fusarium graminearum infected and non-infected wheat grains. The highest endpoint level of phytase activity inhibition was 90%, observed with grain protein extracts (GPE) from F. graminearum infected wheat. Wheat GPE from grains infected with F. graminearum inhibits phytase activity significantly more than GPE from non-infected grains. For four barley cultivars studied, the IC50 value ranged from 0.978 ± 0.271 to 3.616 ± 0.087 mg×ml-1. For two non-infected wheat cultivars investigated, the IC50 values were varying from 2.478 ± 0.114 to 3.038 ± 0.097 mg×ml-1. The maize and rice cultivars tested gaveIC50 values on 0.983 ± 0.205 and 1.972 ± 0.019 mg×ml-1, respectively. After purifying the inhibitor from barley grains via Superdex G200, an approximately 30-35 kDa protein was identified. No clear trend for the mechanism of inhibition could be identified via Michaelis-Menten kinetics and Lineweaver-Burk plots. However, testing of the purified phytase inhibitor together with the A. ficuum phytase and the specific protease inhibitors pepstatin A, E64, EDTA and PMSF revealed that pepstatin A repealed the phytase inhibition. This indicates that the observed inhibition of A. ficuum phytase by cereal grain extracts is caused by protease activity of the aspartic proteinase type.

  17. Aspergillus ficuum phytase activity is inhibited by cereal grain components

    PubMed Central

    Bekalu, Zelalem Eshetu; Madsen, Claus Krogh; Dionisio, Giuseppe

    2017-01-01

    In the current study, we report for the first time that grain components of barley, rice, wheat and maize can inhibit the activity of Aspergillus ficuum phytase. The phytase inhibition is dose dependent and varies significantly between cereal species, between cultivars of barley and cultivars of wheat and between Fusarium graminearum infected and non-infected wheat grains. The highest endpoint level of phytase activity inhibition was 90%, observed with grain protein extracts (GPE) from F. graminearum infected wheat. Wheat GPE from grains infected with F. graminearum inhibits phytase activity significantly more than GPE from non-infected grains. For four barley cultivars studied, the IC50 value ranged from 0.978 ± 0.271 to 3.616 ± 0.087 mg×ml-1. For two non-infected wheat cultivars investigated, the IC50 values were varying from 2.478 ± 0.114 to 3.038 ± 0.097 mg×ml-1. The maize and rice cultivars tested gaveIC50 values on 0.983 ± 0.205 and 1.972 ± 0.019 mg×ml-1, respectively. After purifying the inhibitor from barley grains via Superdex G200, an approximately 30–35 kDa protein was identified. No clear trend for the mechanism of inhibition could be identified via Michaelis-Menten kinetics and Lineweaver-Burk plots. However, testing of the purified phytase inhibitor together with the A. ficuum phytase and the specific protease inhibitors pepstatin A, E64, EDTA and PMSF revealed that pepstatin A repealed the phytase inhibition. This indicates that the observed inhibition of A. ficuum phytase by cereal grain extracts is caused by protease activity of the aspartic proteinase type. PMID:28472144

  18. Enrichment of Antioxidant Capacity and Vitamin E in Pita Made from Barley.

    PubMed

    Do, Thi Thu Dung; Muhlhausler, Beverly; Box, Amanda; Able, Amanda J

    2016-03-01

    This study aimed to enhance total antioxidant and vitamin E content of pita bread, by replacing 50% of the standard baker's flour with flours milled from covered (WI2585 and Harrington) or hulless (Finniss) barley genotypes, previously shown to have high antioxidant and vitamin E levels at harvest. Pita breads were made from either 100% baker's flour (control) or 50% malt flour, whole-grain flour, or flour from barley grains pearled at 10%, 15%, and 20% grain weight. Antioxidant capacity and vitamin E content of flours and pitas were determined by their ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and high performance liquid chromatography, respectively. The physical and sensory properties of the pitas were also assessed. All pitas made from either whole grain or pearled barley flour had a higher antioxidant capacity and most also had higher vitamin E content than standard pita. The antioxidant and vitamin E levels were reduced in pearled compared to whole grains, however the extent of that reduction varied among genotypes. The greatest antioxidant and vitamin E levels were found in pita made from malt flour or Finniss whole grain flour. Furthermore, sensory analysis suggested these pitas were acceptable to consumers and retained similar physical and sensory properties to those in the control pita. © 2016 Institute of Food Technologists®

  19. Using barley genomics to develop Fusarium head blight resistant wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight, caused by Fusarium graminearum, is a major problem for wheat and barley growers. During infection, F. graminearum produces trichothecene mycotoxins (e.g., deoxynivalenol or DON) that increases fungal virulence and reduces grain quality and yield. Previous work in Arabidopsis sh...

  20. Effect of composted sewage sludge on morpho-physiological growth parameters, grain yield and selected functional compounds of barley.

    PubMed

    Pasqualone, Antonella; Summo, Carmine; Centomani, Isabella; Lacolla, Giovanni; Caranfa, Gianraffaele; Cucci, Giovanna

    2017-03-01

    Several studies have evaluated the effects of composted sewage sludge on barley and found a positive influence on crop productivity. No studies have investigated the effects of composted sewage sludge on functional compounds of the caryopsis, such as phenolics and β-glucans. The former play a role in plant defence mechanisms and both could be influenced by variations of kernel size related to fertilization intensity. The present study aimed to evaluate the effect of different doses (3-12 mg ha -1 ) of composted sewage sludge applied alone or in combination with mineral fertilization on morpho-physiological and yield qualitative parameters, especially phenolics and β-glucans contents of grains, in barley. Increasing fertilization rates, irrespective of fertilizer type, improved morpho-physiological and yield parameters, whereas the phenolic compounds and the related antioxidant activity significantly decreased (P < 0.05). The β-glucans and the main color indices did not show significant differences. The combined application of 6 mg ha -1 sewage sludge and nitrogen was not significantly different from mineral fertilization. Morpho-physiological and qualitative parameters, as well as bioactive compounds, were all significantly correlated with nutrient levels, with higher r values for nitrogen. Composted sewage sludge had a similar effect compared to mineral fertilization. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Evaluation of in vitro models for predicting acidosis risk of barley grain in finishing beef cattle.

    PubMed

    Anele, U Y; Swift, M-L; McAllister, T A; Galyean, M L; Yang, W Z

    2015-10-01

    Our objective was to develop a model to predict the acidosis potential of barley based on the in vitro batch culture incubation of 50 samples varying in bulk density, starch content, processing method, growing location, and agronomic practices. The model was an adaptation of the acidosis index (calculated from a combination of in situ and in vitro analyses and from several components of grain chemical composition) developed in Australia for use in the feed industry to estimate the potential for grains to increase the risk of ruminal acidosis. Of the independent variables considered, DM disappearance at 6 h of incubation (DMD6) using reduced-strength (20%) buffer in the batch culture accounted for 90.5% of the variation in the acidosis index with a root mean square error (RMSE) of 4.46%. To evaluate our model using independent datasets (derived from previous batch culture studies using full-strength [100%] buffer), we performed another batch culture study using full-strength buffer. The full-strength buffer model using in vitro DMD6 (DMD6-FS) accounted for 66.5% of the variation in the acidosis index with an RMSE of 8.30%. When the new full-strength buffer model was applied to 3 independent datasets to predict acidosis, it accounted for 20.1, 28.5, and 30.2% of the variation in the calculated acidosis index. Significant ( < 0.001) mean bias was evident in 2 of the datasets, for which the DMD6 model underpredicted the acidosis index by 46.9 and 5.73%. Ranking of samples from the most diverse independent dataset using the DMD6-FS model and the Black (2008) model (calculated using in situ starch degradation) indicated the relationship between the rankings using Spearman's rank correlation was negative (ρ = -0.30; = 0.059). When the reduced-strength buffer model was used, however, there were similarities in the acidosis index ranking of barley samples by the models as shown by the result of a correlation analysis between calculated (using the Australian model) and

  2. Action of an endo-β-1,3(4)-glucanase on cellobiosyl unit structure in barley β-1,3:1,4-glucan

    PubMed Central

    Kuge, Takao; Nagoya, Hiroki; Tryfona, Theodora; Kurokawa, Tsunemi; Yoshimi, Yoshihisa; Dohmae, Naoshi; Tsubaki, Kazufumi; Dupree, Paul; Tsumuraya, Yoichi; Kotake, Toshihisa

    2015-01-01

    β-1,3:1,4-Glucan is a major cell wall component accumulating in endosperm and young tissues in grasses. The mixed linkage glucan is a linear polysaccharide mainly consisting of cellotriosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, but it also contains minor structures such as cellobiosyl units. In this study, we examined the action of an endo-β-1,3(4)-glucanase from Trichoderma sp. on a minor structure in barley β-1,3:1,4-glucan. To find the minor structure on which the endo-β-1,3(4)-glucanase acts, we prepared oligosaccharides from barley β-1,3:1,4-glucan by endo-β-1,4-glucanase digestion followed by purification by gel permeation and paper chromatography. The endo-β-1,3(4)-glucanase appeared to hydrolyze an oligosaccharide with degree of polymerization 5, designated C5-b. Based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF)/ToF-mass spectrometry (MS)/MS analysis, C5-b was identified as β-Glc-1,3-β-Glc-1,4-β-Glc-1,3-β-Glc-1,4-Glc including a cellobiosyl unit. The results indicate that a type of endo-β-1,3(4)-glucanase acts on the cellobiosyl units of barley β-1,3:1,4-glucan in an endo-manner. PMID:26027730

  3. Current and potential barley grain food products

    USDA-ARS?s Scientific Manuscript database

    Barley has been an important food source from the beginning of human civilization, and remains an important staple food crop in a few countries, although its consumption has decreased sharply with the ample availability of more palatable and versatile food crops such as rice and wheat. In many Weste...

  4. Comparative energy content and amino acid digestibility of barley obtained from diverse sources fed to growing pigs.

    PubMed

    Wang, Hong Liang; Shi, Meng; Xu, Xiao; Ma, Xiao Kang; Liu, Ling; Piao, Xiang Shu

    2017-07-01

    Two experiments were conducted to determine the content of digestible energy (DE) and metabolizable energy (ME) as well as the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in barley grains obtained from Australia, France or Canada. In Exp. 1, 18 growing barrows (Duroc×Landrace×Yorkshire; 31.5±3.2 kg) were individually placed in stainless-steel metabolism crates (1.4×0.7×0.6 m) and randomly allotted to 1 of 3 test diets. In Exp. 2, eight crossbred pigs (30.9±1.8 kg) were allotted to a replicate 3×4 Youden Square designed experiment with three periods and four diets. Two pigs received each diet during each test period. The diets included one nitrogen-free diet and three test diets. The relative amounts of gross energy (GE), CP, and all AA in the Canadian barley were higher than those in Australian and French barley while higher concentrations of neutral detergent fiber, acid detergent fiber, total dietary fiber, insoluble dietary fiber and β-glucan as well as lower concentrations of GE and ether extract were observed in the French barley compared with the other two barley sources. The DE and ME as well as the SID of histidine, isoleucine, leucine and phenylalanine in Canadian barley were higher (p<0.05) than those in French barley but did not differ from Australian barley. Differences in the chemical composition, energy content and the SID and AID of AA were observed among barley sources obtained from three countries. The feeding value of barley from Canada and Australia was superior to barley obtained from France which is important information in developing feeding systems for growing pigs where imported grains are used.

  5. Recombinant barley-produced antibody for detection and immunoprecipitation of the major bovine milk allergen, β-lactoglobulin.

    PubMed

    Ritala, A; Leelavathi, S; Oksman-Caldentey, K-M; Reddy, V S; Laukkanen, M-L

    2014-06-01

    Recombinant allergens and antibodies are needed for diagnostic, therapeutic, food processing and quality verification purposes. The aim of this work was to develop a barley-based production system for β-lactoglobulin (BLG) specific immunoglobulin E antibody (D1 scFv). The expression level in the best barley cell clone was 0.8-1.2 mg/kg fresh weight, and was constant over an expression period of 21 days. In the case of barley grains, the highest stable productivity (followed up to T2 grains) was obtained when the D1 scFv cDNA was expressed under a seed-specific Glutelin promoter rather than under the constitutive Ubiquitin promoter. Translational fusion of ER retention signal significantly improved the accumulation of recombinant antibody. Furthermore, lines without ER retention signal lost D1 scFv accumulation in T2 grains. Pilot scale purification was performed for a T2 grain pool (51 g) containing 55.0 mg D1 scFv/kg grains. The crude extract was purified by a two-step purification protocol including IMAC and size exclusion chromatography. The purification resulted in a yield of 0.47 mg of D1 scFv (31 kD) with high purity. Enzyme-linked immunosorbent assay revealed that 29 % of the purified protein was fully functional. In immunoprecipitation assay the purified D1 scFv recognized the native 18 kD BLG in the milk sample. No binding was observed with the heat-treated milk sample, as expected. The developed barley-based expression system clearly demonstrated its potential for application in the processing of dairy milk products as well as in detecting allergens from foods possibly contaminated by bovine milk.

  6. The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm1[OPEN

    PubMed Central

    Zhang, Runxuan; Burton, Rachel A; Shirley, Neil J.; Little, Alan; Morris, Jenny; Milne, Linda

    2016-01-01

    Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development. PMID:26754666

  7. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques.

    PubMed

    Ebrahimi-Najafabadi, Heshmatollah; Leardi, Riccardo; Oliveri, Paolo; Casolino, Maria Chiara; Jalali-Heravi, Mehdi; Lanteri, Silvia

    2012-09-15

    The current study presents an application of near infrared spectroscopy for identification and quantification of the fraudulent addition of barley in roasted and ground coffee samples. Nine different types of coffee including pure Arabica, Robusta and mixtures of them at different roasting degrees were blended with four types of barley. The blending degrees were between 2 and 20 wt% of barley. D-optimal design was applied to select 100 and 30 experiments to be used as calibration and test set, respectively. Partial least squares regression (PLS) was employed to build the models aimed at predicting the amounts of barley in coffee samples. In order to obtain simplified models, taking into account only informative regions of the spectral profiles, a genetic algorithm (GA) was applied. A completely independent external set was also used to test the model performances. The models showed excellent predictive ability with root mean square errors (RMSE) for the test and external set equal to 1.4% w/w and 0.8% w/w, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Effects of feeding hulled and hull-less barley with low- and high-forage diets on lactation performance, nutrient digestibility, and milk fatty acid composition of lactating dairy cows.

    PubMed

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2018-04-01

    The objective of this study was to evaluate lactation performance, nutrient digestibility, and milk fatty acid composition of high-producing dairy cows consuming diets containing hulled or hull-less barley as the grain source when feeding low-forage (LF) or high-forage (HF) diets. Eight primiparous (610 ± 40 kg of body weight and 72 ± 14 d in milk) and 16 multiparous (650 ± 58 kg of body weight and 58 ± 16 d in milk) Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and 21-d periods. Cows were assigned to squares based on parity (1, 2, and ≥3) and days in milk. Diets were formulated to contain on a dry matter basis (1) 45% forage and hulled barley as the sole grain source, (2) 65% forage and hulled barley as the sole grain source, (3) 45% forage and hull-less barley as the sole grain source, and (4) 65% forage and hull-less barley as the sole grain source. Dry matter intake tended to be lower for the diet with 65% forage and hulled barley than for the rest of the diets (24.4 vs. 26.6 kg/d). Neither the type of barley nor the forage-to-concentrate ratio affected milk yield (41.7 kg/d). Barley type did not affect milk fat or protein concentrations. Feeding LF diets decreased milk fat concentration from 3.91% to 3.50%. This decrease was less than anticipated and resulted in a 7% decrease in milk fat yield relative to cows consuming HF diets (1.60 and 1.49 kg/d for HF and LF diets, respectively). Feeding LF diets increased the concentration of C18:1 trans-10 in milk fat, suggesting that feeding LF diets may have marginally altered rumen function. In conclusion, LF diets containing barley grains can marginally decrease milk fat concentration. Overall, and based on the conditions of this study, there is limited evidence to anticipate a dramatic or acute milk fat depression when feeding hull-less barley as the grain source in diets for high-producing dairy cows. Copyright

  9. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  10. Quantitative Trait Loci Associated with the Tocochromanol (Vitamin E) Pathway in Barley.

    PubMed

    Graebner, Ryan C; Wise, Mitchell; Cuesta-Marcos, Alfonso; Geniza, Matthew; Blake, Tom; Blake, Victoria C; Butler, Joshua; Chao, Shiaomen; Hole, David J; Horsley, Rich; Jaiswal, Pankaj; Obert, Don; Smith, Kevin P; Ullrich, Steven; Hayes, Patrick M

    2015-01-01

    The Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- α-, β-, δ-, γ-tocopherol and tocotrienol- were assayed. We found 13 single nucleotide polymorphisms associated with the concentration of one or more of these tocochromanol forms in barley, seven of which were within 2 cM of sequences homologous to cloned genes associated with tocochromanol production in barley and/or other plants. These associations confirmed a prior report based on bi-parental QTL mapping. This knowledge will aid future efforts to better understand the role of tocochromanols in barley, with specific reference to abiotic stress resistance. It will also be useful in developing barley varieties with higher tocochromanol concentrations, although at current recommended daily consumption amounts, barley would not be an effective sole source of vitamin E. However, it could be an important contributor in the context of whole grains in a balanced diet.

  11. Microstructures and Grain Refinement of Additive-Manufactured Ti- xW Alloys

    NASA Astrophysics Data System (ADS)

    Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian W.; Rolchigo, Matt R.; LeSar, Richard; Collins, Peter C.

    2017-07-01

    It is necessary to better understand the composition-processing-microstructure relationships that exist for materials produced by additive manufacturing. To this end, Laser Engineered Net Shaping (LENS™), a type of additive manufacturing, was used to produce a compositionally graded titanium binary model alloy system (Ti- xW specimen (0 ≤ x ≤ 30 wt pct), so that relationships could be made between composition, processing, and the prior beta grain size. Importantly, the thermophysical properties of the Ti- xW, specifically its supercooling parameter ( P) and growth restriction factor ( Q), are such that grain refinement is expected and was observed. The systematic, combinatorial study of this binary system provides an opportunity to assess the mechanisms by which grain refinement occurs in Ti-based alloys in general, and for additive manufacturing in particular. The operating mechanisms that govern the relationship between composition and grain size are interpreted using a model originally developed for aluminum and magnesium alloys and subsequently applied for titanium alloys. The prior beta grain factor observed and the interpretations of their correlations indicate that tungsten is a good grain refiner and such models are valid to explain the grain-refinement process. By extension, other binary elements or higher order alloy systems with similar thermophysical properties should exhibit similar grain refinement.

  12. Hulled and hull-less barley grains with the genetic trait for low-phytic acid increased the apparent total-tract digestibility of phosphorus and calcium in diets for young swine.

    PubMed

    Veum, T L; Raboy, V

    2016-03-01

    A 35-d experiment was conducted using 63 crossbred pigs (35 barrows and 28 gilts) with an initial average BW of 7.0 kg and age of 28 d to evaluate the efficacy of the low-phytic acid (LPA) genetic trait in hulled or hull-less barley in isocaloric diets. Hulled barleys were the normal barley (NB) cultivar Harrington and the near-isogenic LPA mutant 955 (M955) with P availabilities of 36 and 95%, respectively. Hull-less lines were produced by crossing NB and the LPA mutant 422 line with a hull-less line, producing hull-less NB (HNB) and hull-less mutant 422 (HM422) with P availabilities of 41 and 66%, respectively. Pigs were in individual metabolism cages or pens for Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35). Diets defined as NB, HNB, HM422, or M955 with no added inorganic P (iP) had available P (aP) concentrations of 0.27, 0.28, 0.35, and 0.40% for Phase 1 and 0.15, 0.17, 0.23, and 0.31% for Phase 2, respectively. Only diet M955 was adequate in aP. Therefore, iP was added to the P-deficient diets to make diets NB + iP, HNB + iP, and HM422 + iP with aP equal to that in diet M955. Overall (d 0 to 35), ADG and G:F were greater ( < 0.01) for pigs fed diet M955 or the diets with added iP than for pigs fed the NB diet. Serum tartrate-resistant acid phosphatase activity on d 34 was greater ( < 0.01) for pigs fed the NB or HNB diets than for pigs fed the other diets. Bone breaking strength and P absorption (g/d) were greater ( < 0.01) for pigs fed diet M955 or the diets with iP than for pigs fed the NB or HNB diets. Pigs fed diet M955 absorbed greater ( < 0.01) percentages of P and Ca and had less ( < 0.01) fecal excretion of P (g/d and %) and Ca (%) than pigs fed the other diets. In conclusion, the LPA genetic trait was effective in hulled and hull-less barley in isocaloric diets fed to young pigs. Pigs fed the diet with LPA M955 consumed 31% less P and excreted 78% less fecal P and 30% less fecal Ca than pigs fed the diet with NB + iP that was equal to diet M955 in a

  13. Influence of inoculum and climatic factors on the severity of Fusarium head blight in German spring and winter barley.

    PubMed

    Linkmeyer, Andrea; Hofer, Katharina; Rychlik, Michael; Herz, Markus; Hausladen, Hans; Hückelhoven, Ralph; Hess, Michael

    2016-01-01

    Fusarium head blight (FHB) of small cereals is a disease of global importance with regard to economic losses and mycotoxin contamination harmful to human and animal health. In Germany, FHB is predominantly associated with wheat and F. graminearum is recognised as the major causal agent of the disease, but little is known about FHB of barley. Monitoring of the natural occurrence of FHB on Bavarian barley revealed differences for individual Fusarium spp. in incidence and severity of grain infection between years and between spring and winter barley. Parallel measurement of fungal DNA content in grain and mycotoxin content suggested the importance of F. graminearum in winter barley and of F. langsethiae in spring barley for FHB. The infection success of these two species was associated with certain weather conditions and barley flowering time. Inoculation experiments in the field revealed different effects of five Fusarium spp. on symptom formation, grain yield and mycotoxin production. A significant association between fungal infection of grain and mycotoxin content was observed following natural or artificial infection with the type B trichothecene producer F. culmorum, but not with the type A trichothecene-producing species F. langsethiae and F. sporotrichioides. Trichothecene type A toxin contamination also occurred in the absence of significant damage to grain and did not necessarily promote fungal colonisation.

  14. The transfer of {sup 137}Cs from barley to beer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proehl, G.; Mueller, H.; Voigt, G.

    Beer has been brewed from barley contaminated with {sup 137}Cs as a consequence of the Chernobyl accident. The {sup 137}Cs activity has been measured in all intermediate steps and in the by-products of the production process. About 35 % of the {sup 137}Cs in barley were recovered in beer. Processing factors defined as the concentration ratio of processed and raw products were determined to be 0.61, 3.3, 0.1 and 0.11 for malt, malt germs, spent grains and beer, respectively. 4 refs., 2 tabs.

  15. Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding.

    PubMed

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas; Hansen, Thomas Hesselhøj; Pedas, Pai; Husted, Søren; Schjoerring, Jan Kofod

    2012-07-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations.

  16. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

    USDA-ARS?s Scientific Manuscript database

    High beta glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to the well know health benefits. Quantitative trait loci (QTLs) associated with BG have been reported in hulled barley, however no QTL studies have been reported in hulless barley. In this study, QTL an...

  17. Surface interactions of Fusarium graminearum on barley.

    PubMed

    Imboden, Lori; Afton, Drew; Trail, Frances

    2018-06-01

    The filamentous fungus Fusarium graminearum, a devastating pathogen of barley (Hordeum vulgare L.), produces mycotoxins that pose a health hazard. To investigate the surface interactions of F. graminearum on barley, we focused on barley florets, as the most important infection site leading to grain contamination. The fungus interacted with silica-accumulating cells (trichomes and silica/cork cell pairs) on the host surface. We identified variation in trichome-type cells between two-row and six-row barley, and in the role of specific epidermal cells in the ingress of F. graminearum into barley florets. Prickle-type trichomes functioned to trap conidia and were sites of fungal penetration. Infections of more mature florets supported the spread of hyphae into the vascular bundles, whereas younger florets did not show this spread. These differences related directly to the timing and location of increases in silica content during maturation. Focal accumulation of cellulose in infected paleae of two-row and six-row barley indicated that the response is in part linked to trichome type. Overall, silica-accumulating epidermal cells had an expanded role in barley, serving to trap conidia, provide sites for fungal ingress and initiate resistance responses, suggesting a role for silica in pathogen establishment. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  18. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1

    PubMed Central

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz

    2017-01-01

    Abstract WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid–nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. PMID:28338757

  19. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains.

    PubMed

    Zhang, Xiao-Wei; Jiang, Qian-Tao; Wei, Yu-Ming; Liu, Chunji

    2017-01-01

    Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G) and cyanidin-3-glucoside (C3G), were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL) mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.

  20. Arsenite Elicits Anomalous Sulfur Starvation Responses in Barley1[W

    PubMed Central

    Reid, Rob; Gridley, Kate; Kawamata, Yuta; Zhu, Yongguan

    2013-01-01

    Treatment of barley (Hordeum vulgare) seedlings with arsenite (AsIII) rapidly induced physiological and transcriptional changes characteristic of sulfur deficiency, even in plants replete with sulfur. AsIII and sulfur deficiency induced 5- to 20-fold increases in the three genes responsible for sulfate reduction. Both treatments also caused up-regulation of a sulfate transporter, but only in the case of sulfur deficiency was there an increase in sulfate influx. Longer-term changes included reduction in transfer of sulfur from roots to shoots and an increase in root growth relative to shoot growth. Genes involved in complexation and compartmentation of arsenic were up-regulated by AsIII, but not by sulfur deficiency. The rate at which arsenic accumulated appeared to be controlled by the rate of thiol synthesis. Over a range of AsIII concentrations and growth periods, the ratio of thiols to arsenic was always close to 3:1, which is consistent with the formation of a stable complex between three glutathione molecules per AsIII. The greater toxicity of arsenic under sulfur-limiting conditions is likely to be due to an intensification of sulfur deficiency as a result of thiol synthesis, rather than to a direct toxicity to metabolism. Because influx of AsIII was nearly 20-fold faster than the rate of synthesis of thiols, it is questionable whether this complexation strategy can be effective in preventing arsenic toxicity, unless arsenic uptake becomes limited by diffusive resistances in the rhizosphere. PMID:23482871

  1. Effects of feeding hull-less barley on production performance, milk fatty acid composition, and nutrient digestibility of lactating dairy cows.

    PubMed

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2017-05-01

    The objectives of this study were to evaluate production performance, milk fatty acid composition, and nutrient digestibility in high-producing dairy cows consuming diets containing corn and hull-less barley (cultivar Amaze 10) in different proportions as the grain source. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with 21-d periods. Cows were fed once daily (1200 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). All diets contained ∼20% grain (dry matter basis). Treatments consisted of 100% corn (0B), 67% corn and 33% hull-less barley (33B), 33% corn and 67% hull-less barley (67B), and 100% hull-less barley (100B) as the grain sources. Total-tract nutrient digestibility was estimated using lanthanum chloride (LaCl 3 ) as an external marker. Dry matter intake differed quadratically among treatments, being lowest for 67B and highest for 0B and 100B. Feeding hull-less barley did not affect milk yield, and milk fat concentration differed cubically among treatments. The cubic response was attributed to the higher milk fat concentration observed for the diet containing 67B. Neither the concentrations in milk of protein and lactose nor the yields of protein and lactose differed among treatments. The proportion of de novo synthesized fatty acids in milk did not differ among treatments. The apparent total-tract digestibility of dry matter, crude protein, and neutral detergent fiber did not differ among treatments. Although a quadratic effect was observed, starch digestibility was minimally affected by treatments. In conclusion, this study indicates that hull-less barley grain is as good as corn grain as an energy source when formulating diets for high-producing dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers' grains.

    PubMed

    Duthie, C-A; Rooke, J A; Hyslop, J J; Waterhouse, A

    2015-10-01

    Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers' grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two×two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers' grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n=48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed×treatment combination (total n=40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P0.05). However, when expressed as a proportion of metabolic BW (BW0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW0.75, P<0.05) and produced more CH4 per kg BW0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher (P<0.001) and propionate and butyrate lower (P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4

  3. Response of lactating dairy cows to degree of steam-flaked barley grain in low-forage diets.

    PubMed

    Safaei, Kh; Ghorbani, G R; Alikhani, M; Sadeghi-Sefidmazgi, A; Yang, W Z

    2017-10-01

    This study was conducted to investigate the effects of processing method (grinding vs. steam flaking) and increasing densities of steam-flaked barley grain on dry matter intake (DMI), rumen pH and fermentation characteristics, digestibility of dry matter in the total digestive tract (DDTT), and milk production of dairy cows. Eight multiparous mid-lactation Holstein cows averaging 103 ± 24 DIM, 44.5 ± 4.7 kg milk/day and weighing 611 ± 43 kg at the start of the experiment were used in a replicated 4 × 4 Latin square design with 21-day periods. Cows were fed diets consisting of (DM basis) 23.8% corn silage, 13.5% chopped alfalfa hay and 62.7% concentrate. The dietary treatments were either ground barley (GB) using a hammer mill or steam-flaked barley (SFB) - varying density at 390, 340 or 290 g/l. Processing method (GB vs. SFB) did not affect DMI (23.6 kg/day on average), DDTT (71.0% on average), milk yield (43.4 kg/day on average), milk components, rumen pH and molar proportions of acetate, propionate, butyrate and sorting activity. Ruminal isovalerate concentration tended (p = 0.06) to be higher for cows fed GB than those fed SFB-based diets. Decreasing the density of SFB from 390, 340 to 290 g/l tended to linearly increase DMI (p = 0.09), decrease total solids percentage of milk (p = 0.10) and linearly decreased milk urea nitrogen (12.8, 12.4 and 12.1 mg/dl; p = 0.04); also, the sorting index (SI) of the particles retained on the 19.0-mm sieve without affecting the SI of the particles retained on 8.0-mm, 1.18-mm or passed through 1.18-mm sieve (p = 0.05). These results indicated the limited effects of processing method (grinding vs. steam flaking) and densities of SFB (390, 290 or 290 g/l) on cows' performance and feed utilization for dairy cows fed low-forage diets. Therefore, both processing methods could be recommended under current feeding conditions of dairy cows. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell

  4. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner

    PubMed Central

    Wendt, Toni; Holme, Inger; Dockter, Christoph; Preuß, Aileen; Thomas, William; Waugh, Robbie; Braumann, Ilka

    2016-01-01

    Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv.) Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield. PMID:28005988

  5. Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains.

    PubMed

    Benech-Arnold, Roberto L; Gualano, Nicolas; Leymarie, Juliette; Côme, Daniel; Corbineau, Françoise

    2006-01-01

    Two mechanisms have been suggested as being responsible for dormancy in barley grain: (i) ABA in the embryo, and (ii) limitation of oxygen supply to the embryo by oxygen fixation as a result of the oxidation of phenolic compounds in the glumellae. The aim of the present work was to investigate whether hypoxia imposed by the glumellae interferes with ABA metabolism in the embryo, thus resulting in dormancy. In dormant and non-dormant grains incubated at 20 degrees C and in non-dormant grains incubated at 30 degrees C (i.e. when dormancy is not expressed), ABA content in the embryo decreased dramatically during the first 5 h of incubation before germination was detected. By contrast, germination of dormant grains was less than 2% within 48 h at 30 degrees C and embryo ABA content increased during the first hours of incubation and then remained 2-4 times higher than in embryos from grains in which dormancy was not expressed. Removal of the glumellae allowed germination of dormant grains at 30 degrees C and the embryos did not display the initial increase in ABA content. Incubation of de-hulled grains under 5% oxygen to mimic the effect of glumellae, restored the initial increase ABA in content and completely inhibited germination. Incubation of embryos isolated from dormant grains, in the presence of a wide range of ABA concentrations and under various oxygen tensions, revealed that hypoxia increased embryo sensitivity to ABA by 2-fold. This effect was more pronounced at 30 degrees C than at 20 degrees C. Furthermore, when embryos from dormant grains were incubated at 30 degrees C in the presence of 10 microM ABA, their endogenous ABA content remained constant after 48 h of incubation under air, while it increased dramatically in embryos incubated under hypoxia, indicating that the apparent increase in embryo ABA responsiveness induced by hypoxia was, in part, mediated by an inability of the embryo to inactivate ABA. Taken together these results suggest that hypoxia

  6. Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;11[W

    PubMed Central

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A.; Tyerman, Stephen D.; Langridge, Peter; Sutton, Tim

    2010-01-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley. PMID:20581256

  7. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    PubMed

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).

  8. Evaluation of the procedure for separating barley from other spring small grains. [North Dakota, South Dakota, Minnesota and Montana

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1980-01-01

    The success of the Transition Year procedure to separate and label barley and the other small grains was assessed. It was decided that developers of the procedure would carry out the exercise in order to prevent compounding procedural problems with implementation problems. The evaluation proceeded by labeling the sping small grains first. The accuracy of this labeling was, on the average, somewhat better than that in the Transition Year operations. Other departures from the original procedure included a regionalization of the labeling process, the use of trend analysis, and the removal of time constraints from the actual processing. Segment selection, ground truth derivation, and data available for each segment in the analysis are discussed. Labeling accuracy is examined for North Dakota, South Dakota, Minnesota, and Montana as well as for the entire four-state area. Errors are characterized.

  9. A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells[C][W

    PubMed Central

    Hoefle, Caroline; Huesmann, Christina; Schultheiss, Holger; Börnke, Frederik; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2011-01-01

    Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry. PMID:21685259

  10. Amyloplast-Localized SUBSTANDARD STARCH GRAIN4 Protein Influences the Size of Starch Grains in Rice Endosperm1[W

    PubMed Central

    Matsushima, Ryo; Maekawa, Masahiko; Kusano, Miyako; Kondo, Hideki; Fujita, Naoko; Kawagoe, Yasushi; Sakamoto, Wataru

    2014-01-01

    Starch is a biologically and commercially important polymer of glucose and is synthesized to form starch grains (SGs) inside amyloplasts. Cereal endosperm accumulates starch to levels that are more than 90% of the total weight, and most of the intracellular space is occupied by SGs. The size of SGs differs depending on the plant species and is one of the most important factors for industrial applications of starch. However, the molecular machinery that regulates the size of SGs is unknown. In this study, we report a novel rice (Oryza sativa) mutant called substandard starch grain4 (ssg4) that develops enlarged SGs in the endosperm. Enlargement of SGs in ssg4 was also observed in other starch-accumulating tissues such as pollen grains, root caps, and young pericarps. The SSG4 gene was identified by map-based cloning. SSG4 encodes a protein that contains 2,135 amino acid residues and an amino-terminal amyloplast-targeted sequence. SSG4 contains a domain of unknown function490 that is conserved from bacteria to higher plants. Domain of unknown function490-containing proteins with lengths greater than 2,000 amino acid residues are predominant in photosynthetic organisms such as cyanobacteria and higher plants but are minor in proteobacteria. The results of this study suggest that SSG4 is a novel protein that influences the size of SGs. SSG4 will be a useful molecular tool for future starch breeding and biotechnology. PMID:24335509

  11. New starch phenotypes produced by TILLING in barley.

    PubMed

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.

  12. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1.

    PubMed

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz; Krupinska, Karin

    2017-02-01

    WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid-nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley.

    PubMed

    Burton, Rachel A; Jobling, Stephen A; Harvey, Andrew J; Shirley, Neil J; Mather, Diane E; Bacic, Antony; Fincher, Geoffrey B

    2008-04-01

    Cellulose synthase-like CslF genes have been implicated in the biosynthesis of (1,3;1,4)-beta-d-glucans, which are major cell wall constituents in grasses and cereals. Seven CslF genes from barley (Hordeum vulgare) can be divided into two classes on the basis of intron-exon arrangements. Four of the HvCslF genes have been mapped to a single locus on barley chromosome 2H, in a region corresponding to a major quantitative trait locus for grain (1,3;1,4)-beta-d-glucan content. The other HvCslF genes map to chromosomes 1H, 5H, and 7H, and in two cases the genes are close to other quantitative trait loci for grain (1,3;1,4)-beta-d-glucan content. Spatial and temporal patterns of transcription of the seven genes have been defined through quantitative polymerase chain reaction. In developing barley coleoptiles HvCslF6 mRNA is most abundant. Transcript levels are maximal in 4- to 5-d coleoptiles, at a time when (1,3;1,4)-beta-d-glucan content of coleoptile cell walls also reaches maximal levels. In the starchy endosperm of developing grain, HvCslF6 and HvCslF9 transcripts predominate. Two peaks of transcription are apparent. One occurs just after endosperm cellularization, 4 to 8 d after pollination, while the second occurs much later in grain development, more than 20 d after pollination. Marked varietal differences in transcription of the HvCslF genes are observed during endosperm development. Given the commercial importance of cereal (1,3;1,4)-beta-d-glucans in human nutrition, in stock feed, and in malting and brewing, the observation that only two genes, HvCslF6 and HvCslF9, are transcribed at high levels in developing grain is of potential relevance for the future manipulation of grain (1,3;1,4)-beta-d-glucan levels.

  14. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands

    PubMed Central

    2011-01-01

    Background Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. Methods A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. Results According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Conclusions Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area. PMID:21711566

  15. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis

    PubMed Central

    Taketa, Shin; Yuo, Takahisa; Tonooka, Takuji; Tsumuraya, Yoichi; Inagaki, Yoshiaki; Haruyama, Naoto; Larroque, Oscar; Jobling, Stephen A.

    2012-01-01

    (1,3;1,4)-β-D-glucans (mixed-linkage glucans) are found in tissues of members of the Poaceae (grasses), and are particularly high in barley (Hordeum vulgare) grains. The present study describes the isolation of three independent (1,3;1,4)-β-D-glucanless (betaglucanless; bgl) mutants of barley which completely lack (1,3;1,4)-β-D-glucan in all the tissues tested. The bgl phenotype cosegregates with the cellulose synthase like HvCslF6 gene on chromosome arm 7HL. Each of the bgl mutants has a single nucleotide substitution in the coding region of the HvCslF6 gene resulting in a change of a highly conserved amino acid residue of the HvCslF6 protein. Microsomal membranes isolated from developing endosperm of the bgl mutants lack detectable (1,3;1,4)-β-D-glucan synthase activity indicating that the HvCslF6 protein is inactive. This was confirmed by transient expression of the HvCslF6 cDNAs in Nicotiana benthamiana leaves. The wild-type HvCslF6 gene directed the synthesis of high levels of (1,3;1,4)-β-D-glucans, whereas the mutant HvCslF6 proteins completely lack the ability to synthesize (1,3;1,4)-β-D-glucans. The fine structure of the (1,3;1,4)-β-D-glucan produced in the tobacco leaf was also very different from that found in cereals having an extremely low DP3/DP4 ratio. These results demonstrate that, among the seven CslF and one CslH genes present in the barley genome, HvCslF6 has a unique role and is the key determinant controlling the biosynthesis of (1,3;1,4)-β-D-glucans. Natural allelic variation in the HvCslF6 gene was found predominantly within introns among 29 barley accessions studied. Genetic manipulation of the HvCslF6 gene could enable control of (1,3;1,4)-β-D-glucans in accordance with the purposes of use. PMID:21940720

  16. Nonhost Resistance of Barley to Different Fungal Pathogens Is Associated with Largely Distinct, Quantitative Transcriptional Responses1[W][OA

    PubMed Central

    Zellerhoff, Nina; Himmelbach, Axel; Dong, Wubei; Bieri, Stephane; Schaffrath, Ulrich; Schweizer, Patrick

    2010-01-01

    Nonhost resistance protects plants against attack by the vast majority of potential pathogens, including phytopathogenic fungi. Despite its high biological importance, the molecular architecture of nonhost resistance has remained largely unexplored. Here, we describe the transcriptional responses of one particular genotype of barley (Hordeum vulgare subsp. vulgare ‘Ingrid’) to three different pairs of adapted (host) and nonadapted (nonhost) isolates of fungal pathogens, which belong to the genera Blumeria (powdery mildew), Puccinia (rust), and Magnaporthe (blast). Nonhost resistance against each of these pathogens was associated with changes in transcript abundance of distinct sets of nonhost-specific genes, although general (not nonhost-associated) transcriptional responses to the different pathogens overlapped considerably. The powdery mildew- and blast-induced differences in transcript abundance between host and nonhost interactions were significantly correlated with differences between a near-isogenic pair of barley lines that carry either the Mlo wild-type allele or the mutated mlo5 allele, which mediates basal resistance to powdery mildew. Moreover, during the interactions of barley with the different host or nonhost pathogens, similar patterns of overrepresented and underrepresented functional categories of genes were found. The results suggest that nonhost resistance and basal host defense of barley are functionally related and that nonhost resistance to different fungal pathogens is associated with more robust regulation of complex but largely nonoverlapping sets of pathogen-responsive genes involved in similar metabolic or signaling pathways. PMID:20172964

  17. EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression[C][W

    PubMed Central

    Boden, Scott A.; Weiss, David; Ross, John J.; Davies, Noel W.; Trevaskis, Ben; Chandler, Peter M.; Swain, Steve M.

    2014-01-01

    EARLY FLOWERING3 (ELF3) is a circadian clock gene that contributes to photoperiod-dependent flowering in plants, with loss-of-function mutants in barley (Hordeum vulgare), legumes, and Arabidopsis thaliana flowering early under noninductive short-day (SD) photoperiods. The barley elf3 mutant displays increased expression of FLOWERING LOCUS T1 (FT1); however, it remains unclear whether this is the only factor responsible for the early flowering phenotype. We show that the early flowering and vegetative growth phenotypes of the barley elf3 mutant are strongly dependent on gibberellin (GA) biosynthesis. Expression of the central GA biosynthesis gene, GA20oxidase2, and production of the bioactive GA, GA1, were significantly increased in elf3 leaves under SDs, relative to the wild type. Inhibition of GA biosynthesis suppressed the early flowering of elf3 under SDs independently of FT1 and was associated with altered expression of floral identity genes at the developing apex. GA is also required for normal flowering of spring barley under inductive photoperiods, with chemical and genetic attenuation of the GA biosynthesis and signaling pathways suppressing inflorescence development under long-day conditions. These findings illustrate that GA is an important floral promoting signal in barley and that ELF3 suppresses flowering under noninductive photoperiods by blocking GA production and FT1 expression. PMID:24781117

  18. Discovery of Novel Bmy1 Alleles Increasing β-Amylase Activity in Chinese Landraces and Tibetan Wild Barley for Improvement of Malting Quality via MAS

    PubMed Central

    Gong, Xue; Westcott, Sharon; Zhang, Xiao-Qi; Yan, Guijun; Lance, Reg; Zhang, Guoping; Sun, Dongfa; Li, Chengdao

    2013-01-01

    China has a large barley germplasm collection which has not been well characterized and is therefore underutilized. The Bmy1 locus encoding the β-amylase enzyme on chromosome 4H has been well characterized in the worldwide barley germplasm collections due to its importance in the malting and brewing industry. The Bmy1 locus was chosen as an indicator to understand genetic potential for improvement of malting quality in Chinese landraces and Tibetan wild barley. The genetic diversity of 91 barley accessions was assessed using allele specific Multiplex-ready molecular markers. Eight accessions were further sequenced, based on the Multiplex-ready marker diversity for Bmy1 in the germplasm. Six of the eight accessions clustered together in a unique group, and showed similarities to ‘Haruna Nijo’, wild barley accession PI296896 and ‘Ashqelon’. Sequence comparisons with the known Bmy1 alleles identified not only the existing 13 amino acid substitutions, but also a new substitution positioned at A387T from a Chinese landrace W127, which has the highest β-amylase activity. Two new alleles/haplotypes namely Bmy1-Sd1c and Bmy1-Sd5 were designated based on different amino acid combinations. We identified new amino acid combination of C115, D165, V233, S347 and V430 in the germplasm. The broad variation in both β-amylase activity and amino acid composition provides novel alleles for the improvement of malting quality for different brewing styles, which indicates the high potential value of the Chinese landraces and Tibetan wild barley. PMID:24019884

  19. Proteins with High Turnover Rate in Barley Leaves Estimated by Proteome Analysis Combined with in Planta Isotope Labeling1[W][OPEN

    PubMed Central

    Nelson, Clark J.; Alexova, Ralitza; Jacoby, Richard P.; Millar, A. Harvey

    2014-01-01

    Protein turnover is a key component in cellular homeostasis; however, there is little quantitative information on degradation kinetics for individual plant proteins. We have used 15N labeling of barley (Hordeum vulgare) plants and gas chromatography-mass spectrometry analysis of free amino acids and liquid chromatography-mass spectrometry analysis of proteins to track the enrichment of 15N into the amino acid pools in barley leaves and then into tryptic peptides derived from newly synthesized proteins. Using information on the rate of growth of barley leaves combined with the rate of degradation of 14N-labeled proteins, we calculate the turnover rates of 508 different proteins in barley and show that they vary by more than 100-fold. There was approximately a 9-h lag from label application until 15N incorporation could be reliably quantified in extracted peptides. Using this information and assuming constant translation rates for proteins during the time course, we were able to quantify degradation rates for several proteins that exhibit half-lives on the order of hours. Our workflow, involving a stringent series of mass spectrometry filtering steps, demonstrates that 15N labeling can be used for large-scale liquid chromatography-mass spectrometry studies of protein turnover in plants. We identify a series of abundant proteins in photosynthesis, photorespiration, and specific subunits of chlorophyll biosynthesis that turn over significantly more rapidly than the average protein involved in these processes. We also highlight a series of proteins that turn over as rapidly as the well-known D1 subunit of photosystem II. While these proteins need further verification for rapid degradation in vivo, they cluster in chlorophyll and thiamine biosynthesis. PMID:25082890

  20. Changes in isovitexin-O-glycosylation during the development of young barley plants.

    PubMed

    Brauch, Dominic; Porzel, Andrea; Schumann, Erika; Pillen, Klaus; Mock, Hans-Peter

    2018-04-01

    Phenylpropanoids are a class of plant natural products that have many biological functions, including stress defence. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens. Although the phenylpropanoid composition of barley has recently been addressed in more detail, the biosynthesis and regulation of this pathway have not been fully established. Barley introgression lines, such as the S42IL-population offer a set of genetically diverse plants that enable the correlation of metabolic data to distinct genetic regions on the barley genome and, subsequently, identification of relevant genes. The phenylpropanoid profiles of the first and third leaf of barley seedlings in Scarlett and four members of the S42IL-population were obtained by LC-MS. Comparison of the leaf profiles revealed a change in the glycosylation pattern of the flavone-6-C-glucoside isovitexin in the elite cultivar Scarlett. The change was characterized by the stepwise decrease in isovitexin-7-O-glucoside (saponarin) and an increase in isovitexin-2″-O-β-D-glucoside content. The lines S42IL-101-, -177 and -178 were completely devoid of isovitexin-2″-O-β-D-glucoside. Parallel glucosyltransferase assays were consistent with the observed metabolic patterns. The genetic region responsible for this metabolic effect was located on chromosome 1H between 0.21 and 15.08 cM, encompassing 505 gene candidates in the genome of the sequenced cultivar Morex. Only one of these genes displayed sequence similarity with glucosyltransferases of plant secondary metabolism that possessed the characteristic PSPG motif. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress1[C][W][OPEN

    PubMed Central

    Seiler, Christiane; Harshavardhan, Vokkaliga T.; Reddy, Palakolanu S.; Hensel, Götz; Kumlehn, Jochen; Eschen-Lippold, Lennart; Rajesh, Kalladan; Korzun, Viktor; Wobus, Ulrich; Lee, Justin; Selvaraj, Gopalan; Sreenivasulu, Nese

    2014-01-01

    Abscisic acid (ABA) is a central player in plant responses to drought stress. How variable levels of ABA under short-term versus long-term drought stress impact assimilation and growth in crops is unclear. We addressed this through comparative analysis, using two elite breeding lines of barley (Hordeum vulgare) that show senescence or stay-green phenotype under terminal drought stress and by making use of transgenic barley lines that express Arabidopsis (Arabidopsis thaliana) 9-cis-epoxycarotenoid dioxygenase (AtNCED6) coding sequence or an RNA interference (RNAi) sequence of ABA 8′-hydroxylase under the control of a drought-inducible barley promoter. The high levels of ABA and its catabolites in the senescing breeding line under long-term stress were detrimental for assimilate productivity, whereas these levels were not perturbed in the stay-green type that performed better. In transgenic barley, drought-inducible AtNCED expression afforded temporal control in ABA levels such that the ABA levels rose sooner than in wild-type plants but also subsided, unlike as in the wild type , to near-basal levels upon prolonged stress treatment due to down-regulation of endogenous HvNCED genes. Suppressing of ABA catabolism with the RNA interference approach of ABA 8′-hydroxylase caused ABA flux during the entire period of stress. These transgenic plants performed better than the wild type under stress to maintain a favorable instantaneous water use efficiency and better assimilation. Gene expression analysis, protein structural modeling, and protein-protein interaction analyses of the members of the PYRABACTIN RESISTANCE1/PYRABACTIN RESISTANCE1-LIKE/REGULATORY COMPONENT OF ABA RECEPTORS, TYPE 2C PROTEIN PHOSPHATASE Sucrose non-fermenting1-related protein kinase2, and ABA-INSENSITIVE5/ABA-responsive element binding factor family identified specific members that could potentially impact ABA metabolism and stress adaptation in barley. PMID:24610749

  2. Analysis of the arabinoxylan arabinofuranohydrolase gene family in barley does not support their involvement in the remodelling of endosperm cell walls during development.

    PubMed

    Laidlaw, Hunter K C; Lahnstein, Jelle; Burton, Rachel A; Fincher, Geoffrey B; Jobling, Stephen A

    2012-05-01

    Arabinoxylan arabinofuranohydrolases (AXAHs) are family GH51 enzymes that have been implicated in the removal of arabinofuranosyl residues from the (1,4)-β-xylan backbone of heteroxylans. Five genes encoding barley AXAHs range in size from 4.6 kb to 7.1 kb and each contains 16 introns. The barley HvAXAH genes map to chromosomes 2H, 4H, and 5H. A small cluster of three HvAXAH genes is located on chromosome 4H and there is evidence for gene duplication and the presence of pseudogenes in barley. The cDNAs corresponding to barley and wheat AXAH genes were cloned, and transcript levels of the genes were profiled across a range of tissues at different developmental stages. Two HvAXAH cDNAs that were successfully expressed in Nicotiana benthamiana leaves exhibited similar activities against 4-nitrophenyl α-L-arabinofuranoside, but HvAXAH2 activity was significantly higher against wheat flour arabinoxylan, compared with HvAXAH1. HvAXAH2 also displayed activity against (1,5)-α-L-arabinopentaose and debranched arabinan. Western blotting with an anti-HvAXAH antibody was used to define further the locations of the AXAH enzymes in developing barley grain, where high levels were detected in the outer layers of the grain but little or no protein was detected in the endosperm. The chromosomal locations of the genes do not correspond to any previously identified genomic regions shown to influence heteroxylan structure. The data are therefore consistent with a role for AXAH in depolymerizing arabinoxylans in maternal tissues during grain development, but do not provide compelling evidence for a role in remodelling arabinoxylans during endosperm or coleoptile development in barley as previously proposed.

  3. Characterization of Antibodies for Grain-Specific Gluten Detection.

    PubMed

    Sharma, Girdhari M; Rallabhandi, Prasad; Williams, Kristina M; Pahlavan, Autusa

    2016-03-01

    Gluten ingestion causes immunoglobulin E (IgE)-mediated allergy or celiac disease in sensitive individuals, and a strict gluten-free diet greatly limits food choices. Immunoassays such as enzyme-linked immunosorbent assay (ELISA) are used to quantify gluten to ensure labeling compliance of gluten-free foods. Anti-gluten antibodies may not exhibit equal affinity to gluten from wheat, rye, and barley. Moreover, because wheat gluten is commonly used as a calibrator in ELISA, accurate gluten quantitation from rye and barley contaminated foods may be compromised. Immunoassays utilizing grain-specific antibodies and calibrators may help improve gluten quantitation. In this study, polyclonal antibodies raised against gluten-containing grain-specific peptides were characterized for their immunoreactivity to gluten from different grain sources. Strong immunoreactivity to multiple gluten polypeptides from wheat, rye, and barley was observed in the range 34 to 43 kDa with anti-gliadin, 11 to 15 and 72 to 95 kDa with anti-secalin, and 30 to 43 kDa with anti-hordein peptide antibodies, respectively. Minimal or no cross-reactivity with gluten from other grains was observed among these antibodies. The anti-consensus peptide antibody raised against a repetitive amino acid sequence of proline and glutamine exhibited immunoreactivity to gluten from wheat, rye, barley, and oat. The antibodies exhibited similar immunoreactivity with most of the corresponding grain cultivars by ELISA. The high specificity and minimal cross-reactivity of grain-specific antibodies suggest their potential use in immunoassays for accurate gluten quantitation. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  5. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland.

    PubMed

    Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Dutkiewicz, Jacek

    2007-01-01

    During combine harvesting of 5 various cereal crops (rye, barley, oats, buckwheat, corn) 24 samples of grain and 24 samples of settled grain dust were collected on farms located in the Lublin province of eastern Poland. The samples were examined for the concentration of total microfungi, Fusarium species, deoxynivalenol (DON), nivalenol (NIV), and ochratoxin A (OTA). Microfungi able to grow on malt agar were present in 79.2% of grain samples and in 91.7% of grain dust samples in the concentrations of 1.0-801.3x10(3) cfu/g and 1.5-12440.0x10(3) cfu/g, respectively. The concentration of microfungi in grain dust samples was significantly greater than in grain samples (p<0.01). Fusarium strains were isolated from 54.2% of grain samples and from 58.3% of grain dust samples in the concentrations of 0.1-375.0x10(3) cfu/g and 4.0-7,700.0x10(3) cfu/g, respectively. They were found in all samples of grain and grain dust from rye, barley and corn, but only in 0-16.7% of samples of grain and grain dust from oats and buckwheat. DON was found in 79.2% of grain samples and in 100% of grain dust samples in the concentrations of 0.001-0.18 microg/g and 0.006-0.283 microg/g, respectively. NIV was detected in 62.5% of grain samples and in 94.4% of grain dust samples in the concentrations of 0.004-0.502 microg/g and 0.005-0.339 microg/g, respectively. OTA was detected in 58.3% of grain samples and in 91.7% of grain dust samples in the concentrations of 0.00039- 0.00195 microg/g and 0.00036-0.00285 microg/g, respectively. The concentrations of DON, total fusariotoxins (DON+NIV) and OTA were significantly greater in grain dust samples than in grain samples (p<0.05, p<0.05, and p<0.001, respectively). The concentration of Fusarium poae in the samples of rye grain and dust was significantly correlated with the concentrations of DON (p<0.05), NIV (p<0.01), and total fusariotoxins (p<0.05). Similarly, the concentration of Fusarium culmorum in the samples of barley grain and dust was

  6. Barley and Oat beta-Glucan content measured by Calcofluor fluorescence in a microplate assay

    USDA-ARS?s Scientific Manuscript database

    Beta-glucans, linear glucan polymers of mixed linkage, are important constituents of cereal cell walls. They have important health benefits in the human diet, but also can negatively affect the use of barley grain as an animal feed. High beta-glucans in barley malt can also cause problems in brewi...

  7. Effect of β-glucan-rich barley flour fraction on rheology and quality of frozen yeasted dough.

    PubMed

    Hamed, Abdelmagid; Ragaee, Sanaa; Abdel-Aal, El-Sayed M

    2014-12-01

    Research has shown that prolonged frozen storage of bread dough reduces the quality of the end product. In this study, the effect of air-classified barley flour fraction rich in β-glucan (approximately 25%) on rheology and quality of frozen yeasted bread dough was investigated. Wheat flour (W) was replaced by air-classified barley flour fraction (B) at 10% without or with 1.4% vital gluten to produce β-glucan enriched barley dough (WB) or barley dough plus gluten (WB + G). Dough products were stored at -18 ºC for 8 wk and their rheological properties were investigated weekly. During frozen storage dough extensibility increased, while elastic and viscous moduli decreased. Differential scanning calorimeter and nuclear magnetic resonance data indicated that WB and WB + G dough products contained approximately 10% less freezable water and 9% more bound water compared to the control dough (W). β-Glucan enriched dough also exhibited less changes in gluten network as shown by SEM photographs. The addition of air-classified barley flour fraction at 10% in frozen dough reduced deterioration effects caused by frozen storage via minimizing water redistribution and maintaining rheological properties of frozen dough. © 2014 Institute of Food Technologists®

  8. Fermentation of Barley by Using Saccharomyces cerevisiae: Examination of Barley as a Feedstock for Bioethanol Production and Value-Added Products ▿

    PubMed Central

    Gibreel, Amera; Sandercock, James R.; Lan, Jingui; Goonewardene, Laksiri A.; Zijlstra, Ruurd T.; Curtis, Jonathan M.; Bressler, David C.

    2009-01-01

    The objective of this study was to examine the ethanol yield potential of three barley varieties (Xena, Bold, and Fibar) in comparison to two benchmarks, corn and wheat. Very high gravity (VHG; 30% solids) fermentations using both conventional and Stargen 001 enzymes for starch hydrolysis were carried out as simultaneous saccharification and fermentation. The grains and their corresponding dried distiller's grain with solubles (DDGS) were also analyzed for nutritional and value-added characteristics. A VHG traditional fermentation approach utilizing jet-cooking fermentation revealed that both dehulled Bold and Xena barley produced ethanol concentrations higher than that produced by wheat (12.3, 12.2, and 11.9%, respectively) but lower than that produced by corn (13.8%). VHG-modified Stargen-based fermentation of dehulled Bold barley demonstrated comparable performance (14.3% ethanol) relative to that of corn (14.5%) and wheat (13.3%). Several important components were found to survive fermentation and were concentrated in DDGS. The highest yield of phenolics was detected in the DDGS (modified Stargen 001, 20% solids) of Xena (14.6 mg of gallic acid/g) and Bold (15.0 mg of gallic acid/g) when the hull was not removed before fermentation. The highest concentration of sterols in DDGS from barley was found in Xena (3.9 mg/g) when the hull was included. The DDGS recovered from corn had the highest concentration of fatty acids (72.6 and 77.5 mg/g). The DDGS recovered from VHG jet-cooking fermentations of Fibar, dehulled Bold, and corn demonstrated similar levels of tocopherols and tocotrienols. Corn DDGS was highest in crude fat but was lowest in crude protein and in vitro energy digestibility. Wheat DDGS was highest in crude protein content, similar to previous studies. The barley DDGS was the highest in in vitro energy digestibility. PMID:19114516

  9. Mobile bag starch prececal disappearance and postprandial glycemic response of four forms of barley in horses.

    PubMed

    Philippeau, C; Varloud, M; Julliand, V

    2014-05-01

    To determine prececal starch digestibili-ty and estimate glucose uptake from the digestion of 4 forms of barley in the small intestine, 4 mature cecally fistulated geldings (449 ± 41 kg BW) fed a 62:38 (wt/wt) meadow hay:concentrate diet at 1.7 kg DM/100 kg BW were included in a 4 × 4 Latin square design experiment. During each period, horses received 80% DM of their concentrate as 1 of the 4 forms of a same batch of barley, whole grain, 2.5 mm ground, steam flaked, and pelleted. Hay was offered in 2 equal meals and concentrate in 2 unequal meals. The starch supply in the morning meal amounted 2.7 g starch/kg BW. At each period, mobile bag DM and starch disappearance was determined. Except for ground barley, each form of barley was 4 mm ground before being introduced in the bag. Nylon bags containing each substrate were intubated in the horse receiving the pelleted barley. Bags were collected in the cecum for 10 h postintubation. At each period, postprandial glycemia was measured on blood samples collected on the 4 horses via an indwelling jugular catheter just before the concentrate morning meal and for 8 h. No hay in the morning meal was given the day of the measurements. Whole blood glucose was analyzed with a portable blood glucose meter. Mobile bag prececal DM disappearance and starch disappearance depended (P < 0.01) on barley form. Prececal starch disappearance of whole barley was the lowest but no difference (P > 0.05) was detected among the 3 processed grains. No significant effect of barley form was found whatever the glycemic parameters. No significant correlation was reported between glycemic parameters and the amount of prececal mobile bag disappeared starch calculated as the starch intake in the morning meal by the mobile bag starch disappearance. To conclude, the whole form of barley exhibited the lowest prececal mobile bag starch disappearance whereas, in relationship with large individual variations, no significant variation has been shown in

  10. The Barley Genome Sequence Assembly Reveals Three Additional Members of the CslF (1,3;1,4)-β-Glucan Synthase Gene Family

    PubMed Central

    Schreiber, Miriam; Wright, Frank; MacKenzie, Katrin; Hedley, Pete E.; Schwerdt, Julian G.; Little, Alan; Burton, Rachel A.; Fincher, Geoffrey B.; Marshall, David; Waugh, Robbie; Halpin, Claire

    2014-01-01

    An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β- glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-β-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-β-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-β-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls. PMID:24595438

  11. Brassinosteroid enhances resistance to fusarium diseases of barley.

    PubMed

    Ali, Shahin S; Kumar, G B Sunil; Khan, Mojibur; Doohan, Fiona M

    2013-12-01

    Fusarium pathogens are among the most damaging pathogens of cereals. These pathogens have the ability to attack the roots, seedlings, and flowering heads of barley and wheat plants with disease, resulting in yield loss and head blight disease and also resulting in the contamination of grain with mycotoxins harmful to human and animal health. There is increasing evidence that brassinosteroid (BR) hormones play an important role in plant defense against both biotic and abiotic stress agents and this study set out to determine if and how BR might affect Fusarium diseases of barley. Application of the epibrassinolide (epiBL) to heads of 'Lux' barley reduced the severity of Fusarium head blight (FHB) caused by Fusarium culmorum by 86% and reduced the FHB-associated loss in grain weight by 33%. Growth of plants in soil amended with epiBL resulted in a 28 and 35% reduction in Fusarium seedling blight (FSB) symptoms on the Lux and 'Akashinriki' barley, respectively. Microarray analysis was used to determine whether growth in epiBL-amended soil changed the transcriptional profile in stem base tissue during the early stages of FSB development. At 24 and 48 h post F. culmorum inoculation, there were 146 epiBL-responsive transcripts, the majority being from the 48-h time point (n = 118). Real-time reverse-transcription polymerase chain reaction analysis validated the results for eight transcripts, including five defense genes. The results of gene expression studies show that chromatin remodeling, hormonal signaling, photosynthesis, and pathogenesis-related genes are activated in plants as a result of growth in epiBL.

  12. Analysis of grain characters in temperate grasses reveals distinctive patterns of endosperm organization associated with grain shape

    PubMed Central

    Drea, Sinéad

    2012-01-01

    Members of the core pooids represent the most important crops in temperate zones including wheat, barley, and oats. Their importance as crops is largely due to the grain, particularly the storage capabilities of the endosperm. In this study, a comprehensive survey of grain morphology and endosperm organization in representatives of wild and cultivated species throughout the core pooids was performed. As sister to the core pooid tribes Poeae, Aveneae, Triticeae, and Bromeae within the Pooideae subfamily, Brachypodium provides a taxonomically relevant reference point. Using macroscopic, histological, and molecular analyses distinct patterns of grain tissue organization in these species, focusing on the peripheral and modified aleurone, are described. The results indicate that aleurone organization is correlated with conventional grain quality characters such as grain shape and starch content. In addition to morphological and organizational variation, expression patterns of candidate gene markers underpinning this variation were examined. Features commonly associated with grains are largely defined by analyses on lineages within the Triticeae and knowledge of grain structure may be skewed as a result of the focus on wheat and barley. Specifically, the data suggest that the modified aleurone is largely restricted to species in the Triticeae tribe. PMID:23081982

  13. New Starch Phenotypes Produced by TILLING in Barley

    PubMed Central

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications. PMID:25271438

  14. Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples.

    PubMed

    Benedet, John A; Umeda, Hisao; Shibamoto, Takayuki

    2007-07-11

    Natural plant flavonoids, saponarin/lutonarin=4.5/1, isolated from young green barley leaves were examined for their antioxidant activity using cod liver oil, omega-3 fatty acids, phospholipids, and blood plasma. The saponarin/lutonarin (S/L) mixture inhibited malonaldehyde (MA) formation from cod liver oil by 76.47+/-0.11% at a level of 1 micromol and 85.88+/-0.12% at a level of 8 micromol. The S/L mixture inhibited MA formation from the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by 45.60+/-1.08 and 69.24+/-0.24%, respectively, at a level of 8 micromol. The S/L mixture inhibited MA formation from the phospholipids lecithin I and II by 43.08+/-0.72 and 69.16+/-2.92%, respectively, at a level of 8 micromol. It also inhibited MA formation from blood plasma by 62.20+/-0.11% at a level of 8 micromol. The antioxidant activities obtained from the S/L mixture were comparable to those obtained from alpha-tocopherol and butylated hydroxy toluene (BHT) in all lipids tested.

  15. BIOCHEMICAL COMPOSITION AND NUTRITIONAL EVALUATION OF BARLEY RIHANE (HORDEUM VULGARE L.).

    PubMed

    Lahouar, Lamia; Ghrairi, Fatma; El Arem, Amira; Medimagh, Sana; El Felah, Mouledi; Salem, Hichem Ben; Achour, Lotfi

    2017-01-01

    Many experimental studies have suggested an important role for barley Rihane(BR)in the prevention of colon cancer and cardiovascular diseases. The objective of this study was to evaluate the physico-chemical properties and nutritional characterizations of BR compared to other varieties grown in Tunisia (Manel, Roho and Tej). Total, insoluble and soluble dietary fiber(β-glucan), total protein, ash and some minerals of BR and Tunisian barley varieties were determined. The results revealed that BR is good source of dietary fiber mainly β-glucan compared to the other varieties. This variety is a relatively rich source of phosphorous and potassium and it contains many important unsaturated fatty acids. BR has higher nutritional value than other varieties. Barley Rihane has significant nutritional characterizations compared to others Tunisian barleys varieties. Abbreviations: BR, Barley Rihane; LDL, low density lipoprotein; HDL, high density lipoprotein; AOM, azoxymethane; TBV, Tunisian barley varieties; TGW, thousand grain weight; SW, weight specific; TDF, total dietary fiber; IDF, insoluble dietary fiber; SDF, soluble dietary fiber; DM, Dry Matter.

  16. BIOCHEMICAL COMPOSITION AND NUTRITIONAL EVALUATION OF BARLEY RIHANE (HORDEUM VULGARE L.)

    PubMed Central

    Lahouar, Lamia; Ghrairi, Fatma; El Arem, Amira; Medimagh, Sana; El Felah, Mouledi; Salem, Hichem Ben; Achour, Lotfi

    2017-01-01

    Background: Many experimental studies have suggested an important role for barley Rihane(BR)in the prevention of colon cancer and cardiovascular diseases. The objective of this study was to evaluate the physico-chemical properties and nutritional characterizations of BR compared to other varieties grown in Tunisia (Manel, Roho and Tej). Material and Methods: Total, insoluble and soluble dietary fiber(β-glucan), total protein, ash and some minerals of BR and Tunisian barley varieties were determined. Results: The results revealed that BR is good source of dietary fiber mainly β-glucan compared to the other varieties. This variety is a relatively rich source of phosphorous and potassium and it contains many important unsaturated fatty acids. BR has higher nutritional value than other varieties. Conclusion: Barley Rihane has significant nutritional characterizations compared to others Tunisian barleys varieties. Abbreviations: BR, Barley Rihane; LDL, low density lipoprotein; HDL, high density lipoprotein; AOM, azoxymethane; TBV, Tunisian barley varieties; TGW, thousand grain weight; SW, weight specific; TDF, total dietary fiber; IDF, insoluble dietary fiber; SDF, soluble dietary fiber; DM, Dry Matter. PMID:28480409

  17. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain.

    PubMed

    Gangopadhyay, Nirupama; Rai, Dilip K; Brunton, Nigel P; Gallagher, Eimear; Hossain, Mohammad B

    2016-11-01

    In the present study, the relative contribution of individual/classes of polyphenols in barley, to its antioxidant properties, was evaluated. Flash chromatography was used to fractionate the total polyphenol extract of Irish barley cultivar 'Irina', and fractions with highest antioxidant properties were identified using total phenolic content and three in vitro antioxidant assays: DPPH, FRAP, and ORAC. Flavanols (catechin, procyanidin B, prodelphinidin B, procyanidin C) and a novel substituted flavanol (catechin dihexoside, C27H33O16(-), m/z 613.17), were identified as constituents of the fraction with highest antioxidant capacity. Upon identification of phenolics in the other active fractions, the order of most potent contributors to observed antioxidant capacity of barley extract were, flavanols>flavonols (quercetin)>hydroxycinnamic acids (ferulic, caffeic, coumaric acids). The most abundant polyphenol in the overall extract was ferulic acid (277.7μg/gdw barley), followed by procyanidin B (73.7μg/gdw barley). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Phenotypic and Physiological Evaluation of Two and Six Rows Barley under Different Environmental Conditions.

    PubMed

    Naser, Mahmoud; Badran, Mohamed; Abouzied, Hanaa; Ali, Heba; Elbasyoni, Ibrahim

    2018-05-04

    In recent years, barley has attracted more interest as a food and feed source because of its high soluble dietary fiber and β-glucan content compared with other small grains. Twenty-five barley genotypes (20 imported genotypes and five check cultivars) were grown in three environments for two successive seasons: 2015/2016 and 2016/2017. The first environment was in El-Nubaria, Alexandria, Egypt during 2015/2016, while the second and third environments were in El-Bostan, Elbhera, Egypt during 2015/2016 and 2016/2017. The experiments were conducted in a randomized complete block design with the three replicates. The primary objectives of the current study were to evaluate the performance of 20 imported barley genotypes under several environmental conditions. The imported materials were superior to the local commercial cultivars for several traits, including grain yield. Therefore, the superior genotypes will be further evaluated and used in barley breeding programs. Our future work will focus on creating several crosses among the selected superior genotypes to improve yield and other important traits, while applying marker-assisted selection.

  19. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene

    PubMed Central

    Komatsuda, Takao; Pourkheirandish, Mohammad; He, Congfen; Azhaguvel, Perumal; Kanamori, Hiroyuki; Perovic, Dragan; Stein, Nils; Graner, Andreas; Wicker, Thomas; Tagiri, Akemi; Lundqvist, Udda; Fujimura, Tatsuhito; Matsuoka, Makoto; Matsumoto, Takashi; Yano, Masahiro

    2007-01-01

    Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1. PMID:17220272

  20. Improved palatability and bio-functionality of super-hard rice by soaking in a barley-koji miso suspension.

    PubMed

    Nakamura, Sumiko; Nakano, Yohei; Satoh, Hikaru; Ohtsubo, Ken'ichi

    2013-01-01

    Cooked grains of ae rice cultivars are too hard and non-sticky due to the presence of long-chain amylopectin, and ae rice cultivars are therefore called ``super-hard rice'' and cannot be used as table rice. However, they are promising in terms of their bio-functionality such as preventing diabetes. Miso (soybean paste) is a yeast-fermented food, made from steamed soybeans, salt, and inoculated cereals known as koji, made from rice, barley, or soybeans.We investigated the effects of soaking ae mutant rice cultivars in a miso suspension. Their chemical components, physical properties, and enzyme activities were measured under different conditions (milled rice before or after soaking in a 5% barley-koji miso suspension). Rice grains cooked after soaking in the miso suspension were less hard and more sticky than those cooked after soaking in water. Rice grains cooked after soaking in a 5% barley-koji miso suspension maintained high amounts of resistant starch and dietary fiber, and were fortified with polyphenols and isoflavones. Palatable and bio-functional ae rice could therefore be produced by cooking after soaking in a 5% barley-koji miso suspension.

  1. Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance

    NASA Astrophysics Data System (ADS)

    Kurishita, H.; Matsuo, S.; Arakawa, H.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Takida, T.; Kato, M.; Kawai, M.; Yoshida, N.

    2010-03-01

    Ultra-fine grained (UFG) W-TiC compacts fabricated by powder metallurgical methods utilizing mechanical alloying (MA) are very promising for use in irradiation environments. However, the assurance of room-temperature ductility and enhancement in surface resistances to low-energy hydrogen irradiation are unsettled issues. As an approach to solution to these, microstructural modification by hot plastic working has been applied to UFG W-TiC processed by MA in a purified Ar or H 2 atmosphere and hot isostatic pressing (HIP). Hot plastically worked compacts have been subjected to 3-point bend tests at room temperature and TEM microstructural examinations. It is found that the microstructural modification allows us to convert UFG W-1.1%TiC to compacts exhibiting a very high fracture strength and appreciable ductility at room temperature. The compacts of W-1.1%TiC/Ar (MA atmosphere: Ar) and W-1.1%TiC/H 2 (MA atmosphere: H 2) exhibit re-crystallized structures with approximately 0.5 and 1.5 μm in grain size, respectively. It is shown that the enhancement of fracture resistance by microstructural modifications is attributed to significant strengthening of weak grain boundaries in the re-crystallized state. As a result the modified compacts exhibit superior surface resistance to low-energy deuteron irradiation.

  2. Identification of a Phytase Gene in Barley (Hordeum vulgare L.)

    PubMed Central

    Dai, Fei; Qiu, Long; Ye, Lingzhen; Wu, Dezhi; Zhou, Meixue; Zhang, Guoping

    2011-01-01

    Background Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. Methodology/Principal Findings Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. Conclusions/Significance It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains. PMID:21533044

  3. Barley yellow dwarf virus: Luteoviridae or Tombusviridae?

    PubMed

    Miller, W Allen; Liu, Sijun; Beckett, Randy

    2002-07-01

    Summary Barley yellow dwarf virus (BYDV), the most economically important virus of small grains, features highly specialised relationships with its aphid vectors, a plethora of novel translation mechanisms mediated by long-distance RNA interactions, and an ambiguous taxonomic status. The structural and movement proteins of BYDV that confer aphid transmission and phloem-limitation properties resemble those of the Luteoviridae, the family in which BYDV is classified. In contrast, many genes and cis-acting signals involved in replication and gene expression most closely resemble those of the Tombusviridae. BYDV is in genus Luteovirus, family Luteoviridae. BYDV includes at least two serotypes or viruses: BYDV-PAV and BYDV-MAV. The former BYDV-RPV is now Cereal yellow dwarf virus-RPV (CYDV-RPV). CYDV is in genus Polerovirus, family Luteoviridae. Genus Luteovirus shares many features with family Tombusviridae. Physical properties: approximately 25 nm icosahedral (T = 3) virions. One major (22 kDa) and one minor (50-55 kDa) coat protein. 5.6-5.8 kb positive sense RNA genome with no 5'-cap and no poly(A) tail. Most grasses. Most important in oats, barley and wheat. Also infects maize and rice. Yellowing and dwarfing in barley, stunting in wheat; reddening, yellowing and blasting in oats. Some isolates cause leaf notching and curling. Key attractions: Model for the study of circulative transmission of aphid-transmitted viruses. Plethora of unusual translation mechanisms. Evidence of recombination in recent evolutionary history creates taxonomic ambiguity. Economically important virus of wheat, barley and oats, worldwide. Useful websites/meetings: International symposium: 'Barley Yellow Dwarf Disease: Recent Advances and Future Strategies', CIMMYT, El Batan, Mexico, 1-5 September 2002, http://www.cimmyt.cgiar.org/Research/wheat/Conf_BYD_02/invitation.htm http://www.cimmyt.org/Research/wheat/BYDVNEWS/htm/BYDVNEWS.htm Aphid transmission animation: http://www.ppws.vt.edu/~sforza/tmv/bydv_aph.html.

  4. Analysis of grain quality at receival

    USDA-ARS?s Scientific Manuscript database

    With an emphasis on wheat and to a lesser extent, barley, we describe the series of post harvest transfer stages of grain between the first point of sale and the export terminal. At each transfer point, a document accompanies a grain consignment that pertains to its quality (class, purity, sanitatio...

  5. Metabolism of Linoleic Acid by Barley Lipoxygenase and Hydroperoxide Isomerase 1

    PubMed Central

    Lulai, Edward C.; Baker, Charles W.; Zimmerman, Don C.

    1981-01-01

    The oxidation of linoleic acid in incubation mixtures containing extracts of barley lipoxygenase and hydroperoxide isomerase, and the production of these enzymes in quiescent and germinated barley, were investigated. The ratio of 9-hydroperoxylinoleic acid to 13-hydroperoxylinoleic acid was higher for incubation mixtures containing extracts of quiescent barley than for mixtures containing extracts of germinated barley; production of 13-hydroperoxylinoleic acid from germinated barley exceeded that of quiescent barley. Hydroperoxy metabolites of linoleic acid were converted to 9-hydroxy-10-oxo-cis-12-octadecenoic acid, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, and small amounts of 11-hydroxy-12,13-epoxy-cis-9-octadecenoic acid and 11-hydroxy-9,10-epoxy-cis-13-octadecenoic acid whether quiescent or germinated barley was the enzyme source; a fifth product, 13-hydroxy-12-oxo-cis-9-octadecenoic acid was formed only when germinated barley was the enzyme source. Lipoxygenase was readily extracted by buffer, but hydroperoxide isomerase was bound in a catalytically active state to the insoluble barley grist and was efficiently extracted only when Triton X-100 was included in the extraction buffer. Hydroperoxide isomerase was localized in the embryo of quiescent barley, but it was present in the embryo, acrospire, and in small but concentrated amounts in the rootlet of germinating barley. The levels of both lipoxygenase and hydroperoxide isomerase increased through the thirteenth day of germination. Images PMID:16662032

  6. Dietary fiber and flavan-3-ols in shortbread biscuits enriched with barley flours co-products.

    PubMed

    Verardo, Vito; Riciputi, Ylenia; Messia, Maria Cristina; Vallicelli, Melania; Falasca, Luisa; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-05-01

    The coarse fraction obtained by air classification of barley flour, rich in dietary fiber and flavan-3-ols, was utilized to develop functional biscuits. The flavan-3-ol content, antioxidant activity and oxidative stability of biscuits were measured during storage under retail conditions for 1 year. The replacement of 60% (w/w) refined wheat flour with barley coarse fraction increased the ash, fiber and flavan-3-ol contents significantly. Biscuit samples enriched with barley coarse fraction had a significantly higher amount of fiber compared with the control sample (six times higher). The β-glucan content in enriched samples was 15 times higher than control samples. The flavan-3-ol loss in biscuits after baking was about 67%. The initial content of flavan-3-ols increased from 0.6 to 4.3 mg/100 g in biscuits formulated with barley coarse fraction and showed improved antioxidant properties. Lipid oxidation increased during the shelf-life; the enriched biscuit showed the higher lipid oxidation status, but the level reached during the shelf-life was lower than the limit of acceptance reported for bakery products and, for this reason, does not compromise the safety.

  7. Immunological characterization of the gluten fractions and their hydrolysates from wheat, rye and barley.

    PubMed

    Rallabhandi, Prasad; Sharma, Girdhari M; Pereira, Marion; Williams, Kristina M

    2015-02-18

    Gluten proteins in wheat, rye and barley cause celiac disease, an autoimmune disorder of the small intestine, which affects approximately 1% of the world population. Gluten is comprised of prolamin and glutelin. Since avoidance of dietary gluten is the only option for celiac patients, a sensitive gluten detection and quantitation method is warranted. Most regulatory agencies have set a threshold of 20 ppm gluten in foods labeled gluten-free, based on the currently available ELISA methods. However, these methods may exhibit differences in gluten quantitation from different gluten-containing grains. In this study, prolamin and glutelin fractions were isolated from wheat, rye, barley, oats and corn. Intact and pepsin-trypsin (PT)-digested prolamin and glutelin fractions were used to assess their immunoreactivity and gluten recovery by three sandwich and two competitive ELISA kits. The Western blots revealed varied affinity of ELISA antibodies to gluten-containing grain proteins and no reactivity to oat and corn proteins. ELISA results showed considerable variation in gluten recoveries from both intact and PT-digested gluten fractions among different kits. Prolamin fractions showed higher gluten recovery compared to their respective glutelin fractions. Among prolamins, barley exhibited higher recovery compared to wheat and rye with most of the ELISA kits used. Hydrolysis resulted in reduced gluten recovery of most gluten fractions. These results suggest that the suitability of ELISA for accurate gluten quantitation is dependent upon various factors, such as grain source, antibody specificity, gluten proteins and the level of their hydrolysis in foods.

  8. LEAVING PAD - ASTRONAUT JOHN W. YOUNG - TRAINING

    NASA Image and Video Library

    1965-03-19

    S65-20636 (1965) --- Astronauts John W. Young (left), pilot, and Virgil I. Grissom, command pilot, for the Gemini-Titan 3 flight, are shown leaving the launch pad after simulations in the Gemini-3 spacecraft.

  9. Creation of the first ultra-low gluten barley (Hordeum vulgare L.) for coeliac and gluten-intolerant populations.

    PubMed

    Tanner, Gregory J; Blundell, Malcolm J; Colgrave, Michelle L; Howitt, Crispin A

    2016-04-01

    Coeliac disease is a well-defined condition that is estimated to affect approximately 1% of the population worldwide. Noncoeliac gluten sensitivity is a condition that is less well defined, but is estimated to affect up to 10% of the population, and is often self-diagnosed. At present, the only remedy for both conditions is a lifelong gluten-free diet. A gluten-free diet is often expensive, high in fat and low in fibre, which in themselves can lead to adverse health outcomes. Thus, there is an opportunity to use novel plant breeding strategies to develop alternative gluten-free grains. In this work, we describe the breeding and characterization of a novel ultra-low gluten (ULG) barley variety in which the hordein (gluten) content was reduced to below 5 ppm. This was achieved using traditional breeding strategies to combine three recessive alleles, which act independently of each other to lower the hordein content in the parental varieties. The grain of the initial variety was shrunken compared to wild-type barleys. We implemented a breeding strategy to improve the grain size to near wild-type levels and demonstrated that the grains can be malted and brewed successfully. The ULG barley has the potential to provide novel healthy foods and beverages for those who require a gluten-free diet. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Barley and oat beta-glucan content measured by calcofluor fluorescence in a microplate assay

    USDA-ARS?s Scientific Manuscript database

    Beta-glucan levels in grains, particularly barley and oats, are receiving increased interest in part due to their recognized benefits to human health. While a number of methods to determine grain beta-glucan levels are available, each suffers from significant drawbacks for routine implementation. ...

  11. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew.

    PubMed

    Eichmann, Ruth; Bischof, Melanie; Weis, Corina; Shaw, Jane; Lacomme, Christophe; Schweizer, Patrick; Duchkov, Dimitar; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2010-09-01

    BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.

  12. Inferring geographic origin of barley accessions using molecular markers

    USDA-ARS?s Scientific Manuscript database

    The USDA Agricultural Research Service (ARS) National Small Grains Collection (NSGC) has 207 landrace barleys obtained from a nursery grown in the Ukraine in 1930 by N.I. Vavilov, many of which have multiple resistance (MR) to disease similar to accessions from Ethiopia. Vavilov collected germplasm ...

  13. Gibberellic acid (GA3) induced changes in proanthocyanidins and malt quality of two- and six-row husked barleys.

    PubMed

    Yadav, S K; Luthra, Y P; Sood, D R; Aggarwal, N K

    2000-01-01

    Analysis of husked barleys for proanthocyanidins and malt quality attributes has shown that not a single variety is free of proanthocyanidins. The proanthocyanidins in barley grains varied from 3.85 to 4.94 mg/g as catechin equivalent. The concentration of proanthocyanidins decreased, while total soluble sugars, reducing sugars, diastatic power and beta-amylase activity increased during maltings as well as with exogenous gibberellic acid (GA3) application. Alfa 93 (two-row) and RD2560 (six-row) varieties appeared to be superior for malting and brewing purposes on the basis of proanthocyanidins, total phenols, diastatic power and beta-amylase activity. It is suggested that exogenous application of GA3 at 15 ppm may be useful for producing good quality malt from barley grains.

  14. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare).

    PubMed

    Platel, Kalpana; Eipeson, Sushma W; Srinivasan, Krishnapura

    2010-07-14

    Malted grains are extensively used in weaning and geriatric foods. Malting generally improves the nutrient content and digestibility of foods. The present investigation examined the influence of malting of finger millet, wheat, and barley on the bioaccessibility of iron, zinc, calcium, copper, and manganese. Malting increased the bioaccessibility of iron by >3-fold from the two varieties of finger millet and by >2-fold from wheat, whereas such a beneficial influence was not seen in barley. The bioaccessibility of zinc from wheat and barley increased to an extent of 234 and 100%, respectively, as a result of malting. However, malting reduced the bioaccessibility of zinc from finger millet. Malting marginally increased the bioaccessibility of calcium from white finger millet and wheat. Whereas malting did not exert any influence on bioaccessibility of copper from finger millet and wheat, it significantly decreased (75%) the same from barley. Malting did increase the bioaccessibility of manganese from brown finger millet (17%) and wheat (42%). Thus, malting could be an appropriate food-based strategy to derive iron and other minerals maximally from food grains.

  15. AgRISTARS: Foreign commodity production forecasting. The 1980 US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Payne, R. W. (Principal Investigator)

    1981-01-01

    The crop identification procedures used performed were for spring small grains and are conducive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology; however, the crop calendars require additional development and refinements prior to integration into automated area estimation technology. The integrated technology is capable of producing accurate and consistent spring small grains proportion estimates. Barley proportion estimation technology was not satisfactorily evaluated because LANDSAT sample segment data was not available for high density barley of primary importance in foreign regions and the low density segments examined were not judged to give indicative or unequvocal results. Generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analysis to a variety of agricultural and meteorological conditions representative of the global environment.

  16. Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects.

    PubMed

    Wang, Depeng; Lee, Dong Hyeun; Huang, Haoyuan; Vu, Tri; Lim, Rachel Su Ann; Nyayapathi, Nikhila; Chitgupi, Upendra; Liu, Maggie; Geng, Jumin; Xia, Jun; Lovell, Jonathan F

    2018-08-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality. While many contrast agents have been developed for PACT, these typically cannot immediately be used in humans due to the lengthy regulatory process. We screened two hundred types of ingestible foodstuff samples for photoacoustic contrast with 1064 nm pulse laser excitation, and identified roasted barley as a promising candidate. Twenty brands of roasted barley were further screened to identify the one with the strongest contrast, presumably based on complex chemical modifications incurred during the roasting process. Individual roasted barley particles could be detected through 3.5 cm of chicken-breast tissue and through the whole hand of healthy human volunteers. With PACT, but not ultrasound imaging, a single grain of roasted barley was detected in a field of hundreds of non-roasted particles. Upon oral administration, roasted barley enabled imaging of the gut and peristalsis in mice. Prepared roasted barley tea could be detected through 2.5 cm chicken breast tissue. When barley tea was administered to humans, photoacoustic imaging visualized swallowing dynamics in healthy volunteers. Thus, roasted barley represents an edible foodstuff that should be considered for photoacoustic contrast imaging of swallowing and gut processes, with immediate potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons

    USDA-ARS?s Scientific Manuscript database

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known so...

  18. Cooking Characteristics and Antioxidant Activity of Rice-Barley Mix at Different Cooking Method and Mixing Ratio.

    PubMed

    Woo, Koan Sik; Kim, Hyun-Joo; Lee, Ji Hae; Ko, Jee Yeon; Lee, Byong Won; Lee, Byoung Kyu

    2018-03-01

    This study aimed to compare the phenolic compounds and antioxidant activity of barley at different proportion (0, 5, 10, 15, and 20%), and using different cooking methods. The grains used in this experiment are barley ( Hordeum vulgare L. cv. Huinchalssal) and Samkwang rice. The rice-barley mixture was cooked using general and high pressure cooking methods with and without fermented alcohol. The quality characteristics such as water binding capacity, pasting characteristic, water solubility, and swelling power of different proportions of barley were evaluated. The antioxidant characteristics evaluated are total polyphenol, flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azinobis(3-ethylbenothiazoline-6-sulphonic acid) (ABTS) diammonium salt radical scavenging activities. Results showed that peak [195.0~184.0 rapid visco units (RVU)], trough (130.0~116.2 RVU), final (252.0~221.8 RVU), and setback viscosity (57.0~37.5 RVU) decreased correspondingly with the increase in the amount of barley. Water binding capacity (187.31~136.01%) and swelling power (162.37~127.58%) decreased as amounts of barley increases, however the water solubility (5.35~6.89%) increased. Moreover, the total polyphenol and flavonoid, and the DPPH and ABTS radical scavenging activities contents increased as the amounts of barley in the mixture increases. This study generally aims to provide useful information for the manufacturing of processed products.

  19. Changes in selected physical property and enzyme activity of rice and barley koji during fermentation and storage.

    PubMed

    Bechman, Allison; Phillips, Robert D; Chen, Jinru

    2012-06-01

    Koji are solid-state fermentation products made by inoculating steamed grains with the spores of fungi, particularly Aspergillus spp. This research was undertaken to identify the fermentation and storage conditions optimal for the production and maintenance of selected hydrolytic enzymes, such as α-amlyase and protease, in koji. Steamed rice and barley were inoculated with 2 × 10 ¹¹ Aspergillus oryzae spores per kilogram of grains and fermented for 118 h in a growth chamber at 28 to 32 °C with controlled relative humidities. Samples were drawn periodically during fermentation and storage at -20, 4, or 32 °C, and α-amylase and protease activity, mold counts, a(w), moisture contents, and pH of collected samples were determined. It was observed that the a(w), moisture contents, and pH of the koji were influenced by the duration of fermentation and temperature of storage. The α-amylase activity of both koji increased as the populations of A. oryzae increased during the exponential growth phase. The enzyme activity of barley koji was significantly higher than that of rice koji, reaching a peak activity of 211.87 or 116.57 U at 46 and 58 h, respectively, into the fermentation process. The enzyme activity in both products started to decrease once the mold culture entered the stationary growth phase. The protease activities of both koji were low and remained relatively stable during fermentation and storage. These results suggest that rice and barley koji can be used as sources of α-amylase and desired enzyme activity can be achieved by controlling the fermentation and storage conditions. Amylases and proteases are 2 important hydrolytic enzymes. In the food industry, these enzymes are used to break down starches and proteins while reducing the viscosity of foods. Although amylases and proteases are found in plants and animals, commercial enzymes are often produced using bacteria or molds through solid state fermentation, which is designed to use natural microbial

  20. Does Whole Grain Consumption Alter Gut Microbiota and Satiety?

    PubMed Central

    Cooper, Danielle N.; Martin, Roy J.; Keim, Nancy L.

    2015-01-01

    This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Studies comparing whole grains to their refined grain counterparts were considered, as were studies comparing different grain types. Possible mechanisms linking microbial metabolism and satiety are described. Clinical trials show that whole grain wheat, maize, and barley alter the human gut microbiota, but these findings are based on a few studies that do not include satiety components, so no functional claims between microbiota and satiety can be made. Ten satiety trials were evaluated and provide evidence that whole oats, barley, and rye can increase satiety, whereas the evidence for whole wheat and maize is not compelling. There are many gaps in the literature; no one clinical trial has examined the effects of whole grains on satiety and gut microbiota together. Once understanding the impact of whole grains on satiety and microbiota is more developed, then particular grains might be used for better appetite control. With this information at hand, healthcare professionals could make individual dietary recommendations that promote satiety and contribute to weight control. PMID:27417768

  1. Effects of grain species and cultivar, thermal processing, and enzymatic hydrolysis on gluten quantitation.

    PubMed

    Pahlavan, Autusa; Sharma, Girdhari M; Pereira, Marion; Williams, Kristina M

    2016-10-01

    Gluten from wheat, rye, and barley can trigger IgE-mediated allergy or Celiac disease in sensitive individuals. Gluten-free labeled foods are available as a safe alternative. Immunoassays such as the enzyme-linked immunosorbent assay (ELISA) are commonly used to quantify gluten in foods. However, various non-assay related factors can affect gluten quantitation. The effect of gluten-containing grain cultivars, thermal processing, and enzymatic hydrolysis on gluten quantitation by various ELISA kits was evaluated. The ELISA kits exhibited variations in gluten quantitation depending on the gluten-containing grain and their cultivars. Acceptable gluten recoveries were obtained in 200mg/kg wheat, rye, and barley-spiked corn flour thermally processed at various conditions. However, depending on the enzyme, gluten grain source, and ELISA kit used, measured gluten content was significantly reduced in corn flour spiked with 200mg/kg hydrolyzed wheat, rye, and barley flour. Thus, the gluten grain source and processing conditions should be considered for accurate gluten analysis. Published by Elsevier Ltd.

  2. Separability study of wheat and small grains

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Marquina, N. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.

  3. Extrusion of barley and oat influence the fecal microbiota and SCFA profile of growing pigs.

    PubMed

    Moen, Birgitte; Berget, Ingunn; Rud, Ida; Hole, Anastasia S; Kjos, Nils Petter; Sahlstrøm, Stefan

    2016-02-01

    The effect of extrusion of barley and oat on the fecal microbiota and the formation of SCFA was evaluated using growing pigs as model system. The pigs were fed a diet containing either whole grain barley (BU), oat groat (OU), or their respective extruded samples (BE and OE). 454 pyrosequencing showed that the fecal microbiota of growing pigs was affected by both extrusion and grain type. Extruded grain resulted in lower bacterial diversity and enrichment in operational taxonomic units (OTUs) affiliated with members of the Streptococcus, Blautia and Bulleidia genera, while untreated grain showed enrichment in OTUs affiliated with members of the Bifidobacterium and Lactobacillus genera, and the butyrate-producing bacteria Butyricicoccus, Roseburia, Coprococcus and Pseudobutyrivibrio. Untreated grain resulted in a significant increase of n-butyric, i-valeric and n-valeric acid, which correlated with an increase of Bifidobacterium and Lactobacillus. This is the first study showing that cereal extrusion affects the microbiota composition and diversity towards a state generally thought to be less beneficial for health, as well as less amounts of beneficial butyric acid.

  4. Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide.

    PubMed

    Sharma, Priyanka; Tejinder, S

    2014-12-01

    Starch was isolated from hulled (VJM 201) and hull-less (BL 134) barley with papain and aqueous sodium hydroxide treatments. For enzyme-assisted extraction, barley was steeped in water containing 0.2 % SO2 + 0.55 % lactic acid at 50° ± 2 °C for 4-5 h. The slurry was mixed with 0.4-2.0 g papain/kg barley and incubated at 50° ± 2 °C for 1-5 h. Aqueous sodium hydroxide (0.01-0.05 M) was added to the finely ground barley meal. The alkaline slurry was incubated at ambient temperature (25° ± 2 °C) for 15-60 min. The starch and grain fractions were isolated by screening and centrifugation. Increases in the time of treatment significantly affected the fiber, centrifugation and non-starch residue losses. Concentration of papain and sodium hydroxide had negligible effect on extraction losses. The enzyme-assisted extraction efficiency of starch was higher (80.7-84.6 %) than the alkaline method (70.9-83.7 %). The hulled barley showed higher extraction efficiency than the hull-less barley. The slurry treated with 0.4 g papain/kg barley for 5 h and 0.03 M sodium hydroxide for 60 min produced maximal yield of starch. Barley starch showed desirably high pasting temperature, water binding capacity and hold viscosity; and low final and setback viscosity compared with the commercial corn starch. The alkaline extracted hull-less barley starch showed exceptionally high peak and hold viscosities.

  5. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.

    PubMed

    Gong, Xue; McDonald, Glenn

    2017-09-01

    Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

  6. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  7. Antioxidant Properties of Aqueous Extract of Roasted Hulled Barley in Bulk Oil or Oil-in-Water Emulsion Matrix.

    PubMed

    Oh, Sumi; Kim, Mi-Ja; Park, Kye Won; Lee, Jae Hwan

    2015-11-01

    Antioxidant properties of the aqueous extracts of hulled barley (Hordeum vulgare L.) that had been roasted at 210 °C for 20 min were determined in bulk oil and oil-in-water (O/W) emulsions. Bulk oils were heated at 60, 100, and 180 °C, and O/W emulsions were oxidized under riboflavin photosensitization. The content of phenolic compounds was analyzed by high-performance liquid chromatography, and in vitro antioxidant assays were also conducted. The major phenolics contained in the aqueous extract of roasted hulled barley (AERB) were p-coumaric, ferulic, protocatechuic, chlorogenic, 4-hydroxybenzoic, and vanillic acids. Depending on the concentration and oxidation temperature, AERB had antioxidant or prooxidant properties in bulk oil. At 60 °C, AERB at a concentration of 0.5% acted as a prooxidant, whereas at 1.0% it acted as an antioxidant. At 100 °C, AERB acted as an antioxidant irrespective of concentration. In 180 °C conditions, 0.5% AERB acted as a prooxidant, whereas other concentrations of AERB acted as antioxidants. In the case of riboflavin photosensitized O/W emulsions, AERB showed antioxidant properties irrespective of concentration. Antioxidant abilities of AERB are affected by the food matrix, including bulk oil and O/W emulsions, and concentrations of AERB, even though diverse phenolic compounds may display high antioxidant properties in in vitro assays. Roasted barley has been widely used as a tea ingredient in East Asian countries such as Korea, China, and Japan. The highly antioxidative properties of the aqueous extracts of roasted barley have been confirmed in bulk oil and O/W emulsions as well as in vitro assays because of the presence of phenolic compounds. The results of this study can contribute to the development of antioxidant-rich beverages using roasted barley by aiding in the selection of proper food matrix-containing extracts of high phenolic compounds, as well as by expanding consumers’ choices for healthy beverages. © 2015

  8. Differential disease resistance response in the barley necrotic mutant nec1.

    PubMed

    Keisa, Anete; Kanberga-Silina, Krista; Nakurte, Ilva; Kunga, Laura; Rostoks, Nils

    2011-04-15

    Although ion fluxes are considered to be an integral part of signal transduction during responses to pathogens, only a few ion channels are known to participate in the plant response to infection. CNGC4 is a disease resistance-related cyclic nucleotide-gated ion channel. Arabidopsis thaliana CNGC4 mutants hlm1 and dnd2 display an impaired hypersensitive response (HR), retarded growth, a constitutively active salicylic acid (SA)-mediated pathogenesis-related response and elevated resistance against bacterial pathogens. Barley CNGC4 shares 67% aa identity with AtCNGC4. The barley mutant nec1 comprising of a frame-shift mutation of CNGC4 displays a necrotic phenotype and constitutively over-expresses PR-1, yet it is not known what effect the nec1 mutation has on barley resistance against different types of pathogens. nec1 mutant accumulated high amount of SA and hydrogen peroxide compared to parental cv. Parkland. Experiments investigating nec1 disease resistance demonstrated positive effect of nec1 mutation on non-host resistance against Pseudomonas syringae pv. tomato (Pst) at high inoculum density, whereas at normal Pst inoculum concentration nec1 resistance did not differ from wt. In contrast to augmented P. syringae resistance, penetration resistance against biotrophic fungus Blumeria graminis f. sp. hordei (Bgh), the causal agent of powdery mildew, was not altered in nec1. The nec1 mutant significantly over-expressed race non-specific Bgh resistance-related genes BI-1 and MLO. Induction of BI-1 and MLO suggested putative involvement of nec1 in race non-specific Bgh resistance, therefore the effect of nec1on mlo-5-mediated Bgh resistance was assessed. The nec1/mlo-5 double mutant was as resistant to Bgh as Nec1/mlo-5 plants, suggesting that nec1 did not impair mlo-5 race non-specific Bgh resistance. Together, the results suggest that nec1 mutation alters activation of systemic acquired resistance-related physiological markers and non-host resistance in barley

  9. Capturing pair-wise epistatic effects associated with three agronomic traits in barley.

    PubMed

    Xu, Yi; Wu, Yajun; Wu, Jixiang

    2018-04-01

    Genetic association mapping has been widely applied to determine genetic markers favorably associated with a trait of interest and provide information for marker-assisted selection. Many association mapping studies commonly focus on main effects due to intolerable computing intensity. This study aims to select several sets of DNA markers with potential epistasis to maximize genetic variations of some key agronomic traits in barley. By doing so, we integrated a MDR (multifactor dimensionality reduction) method with a forward variable selection approach. This integrated approach was used to determine single nucleotide polymorphism pairs with epistasis effects associated with three agronomic traits: heading date, plant height, and grain yield in barley from the barley Coordinated Agricultural Project. Our results showed that four, seven, and five SNP pairs accounted for 51.06, 45.66 and 40.42% for heading date, plant height, and grain yield, respectively with epistasis being considered, while corresponding contributions to these three traits were 45.32, 31.39, 31.31%, respectively without epistasis being included. The results suggested that epistasis model was more effective than non-epistasis model in this study and can be more preferred for other applications.

  10. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  11. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

    PubMed Central

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-01-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625

  12. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    PubMed Central

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  13. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley

    PubMed Central

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.

    2013-01-01

    Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600

  14. The barley MATE gene, HvAACT1, increases citrate efflux and Al(3+) tolerance when expressed in wheat and barley.

    PubMed

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R

    2013-08-01

    Aluminium is toxic in acid soils because the soluble Al(3+) inhibits root growth. A mechanism of Al(3+) tolerance discovered in many plant species involves the release of organic anions from root apices. The Al(3+)-activated release of citrate from the root apices of Al(3+)-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al(3+) tolerance of these important cereal species. HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al(3+) tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al(3+) tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al(3+) tolerance of important crop plants.

  15. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 7. Group V. Grains.

    DTIC Science & Technology

    1980-12-01

    but low gluten ; therefore, it is adequrate as animai teed ’,ut makes a poor breadstuff. The ciief ron-teed rie o! barley is as malt, which is barley...For example, hogs and poultry must have large quantities of grain in their ( diets . On the other hand, the ruminant animals, such as cattle and sheep...relatively cheap grain prices, grain, rather than high roughage diets , will be fed to the rumi- nants. In addition to ration variation by species, grain fed to

  16. Low-velocity Shocks Traced by Extended SiO Emission along the W43 Ridges: Witnessing the Formation of Young Massive Clusters

    NASA Astrophysics Data System (ADS)

    Nguyen-Lu'o'ng, Q.; Motte, F.; Carlhoff, P.; Louvet, F.; Lesaffre, P.; Schilke, P.; Hill, T.; Hennemann, M.; Gusdorf, A.; Didelon, P.; Schneider, N.; Bontemps, S.; Duarte-Cabral, A.; Menten, K. M.; Martin, P. G.; Wyrowski, F.; Bendo, G.; Roussel, H.; Bernard, J.-P.; Bronfman, L.; Henning, T.; Kramer, C.; Heitsch, F.

    2013-10-01

    The formation of high-mass stars is tightly linked to that of their parental clouds. Here, we focus on the high-density parts of W43, a molecular cloud undergoing an efficient event of star formation. Using a column density image derived from Herschel continuum maps, we identify two high-density filamentary clouds, called the W43-MM1 and W43-MM2 ridges. Both have gas masses of 2.1 × 104 M ⊙ and 3.5 × 104 M ⊙ above >10^{23}\\, {{cm}^{-2}} and within areas of ~6 and ~14 pc2, respectively. The W43-MM1 and W43-MM2 ridges are structures that are coherent in velocity and gravitationally bound, despite their large velocity dispersion measured by the N2H+ (1-0) lines of the W43-HERO IRAM large program. Another intriguing result is that these ridges harbor widespread (~10 pc2) bright SiO (2-1) emission, which we interpret to be the result of low-velocity shocks (<=10 km s-1). We measure a significant relationship between the SiO (2-1) luminosity and velocity extent and show that it distinguishes our observations from the high-velocity shocks associated with outflows. We use state-of-the-art shock models to demonstrate that a small percentage (10%) of Si atoms in low-velocity shocks, observed initially in gas phase or in grain mantles, can explain the observed SiO column density in the W43 ridges. The spatial and velocity overlaps between the ridges of high-density gas and the shocked SiO gas suggest that ridges could be forming via colliding flows driven by gravity and accompanied by low-velocity shocks. This mechanism may be the initial conditions for the formation of young massive clusters.

  17. 40 CFR 180.535 - Fluroxypyr 1-methylheptyl ester; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Barley, grain 0.5 Barley, hay 12.0 Barley, hay 20.0 Barley, straw 12.0 Cattle, fat 0.1 Cattle, kidney 1.5..., stover 2.0 Fruit, pome, group 11 0.02 Garlic, bulb 0.03 Goat, fat 0.1 Goat, kidney 1.5 Goat, meat 0.1... Hog, kidney 1.5 Hog, meat 0.1 Hog, meat byproducts 0.1 Horse, fat 0.1 Horse, kidney 1.5 Horse, meat 0...

  18. 40 CFR 180.535 - Fluroxypyr 1-methylheptyl ester; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Barley, grain 0.5 Barley, hay 12.0 Barley, hay 20.0 Barley, straw 12.0 Cattle, fat 0.1 Cattle, kidney 1.5..., stover 2.0 Fruit, pome, group 11 0.02 Garlic, bulb 0.03 Goat, fat 0.1 Goat, kidney 1.5 Goat, meat 0.1... Hog, kidney 1.5 Hog, meat 0.1 Hog, meat byproducts 0.1 Horse, fat 0.1 Horse, kidney 1.5 Horse, meat 0...

  19. Grain source and marginal changes in forage particle size modulate digestive processes and nutrient intake of dairy cows.

    PubMed

    Nasrollahi, S M; Khorvash, M; Ghorbani, G R; Teimouri-Yansari, A; Zali, A; Zebeli, Q

    2012-08-01

    This study investigated the effects of, and interactions between, dietary grain source and marginal changes in alfalfa hay (AH) particle size (PS) on digestive processes of dairy cows. A total of eight Holstein dairy cows (175 days in milk) were allocated in a replicated 4 × 4 Latin square design with four 21-day periods. The experiment was a 2 × 2 factorial arrangement with two levels of theoretical PS of AH (fine = 15 mm or long = 30 mm) each combined with two different sources of cereal grains (barley grain alone or barley plus corn grain in a 50 : 50 ratio). Results showed that cows consuming diets supplemented with corn had greater dry matter and nutrient intakes (P < 0.01), independent of forage PS. In addition, the apparent digestibility of fiber fractions was greater for diets supplemented with corn (P = 0.01). The feeding of barley grain-based diets was associated with greater apparent digestibility of non-fiber carbohydrates, and this variable was even greater when long AH was fed (P = 0.04). Moreover, the feeding of long AH resulted in longer time spent eating (P = 0.03) and higher pH (P < 0.01), as well as a tendency for higher acetate-to-propionate ratio in the rumen fluid (P = 0.06) at 3 h post feeding. In conclusion, the results indicated that the marginal increase of PS of AH may prolong eating time and improve rumen fermentation, particularly in diets based on barley grain. Partial substitution of barley grain by corn can improve feed intake and fiber digestibility in mid-lactation dairy cows.

  20. 7 CFR 457.118 - Malting barley price and quality endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and succeeding crop years are as follows: FCIC policies United States Department of Agriculture... the class barley in accordance with the Official United States Standards for Grain; and (3) Is not... identified by the Food and Drug Administration or other public health organizations of the United States as...

  1. 7 CFR 457.118 - Malting barley price and quality endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and succeeding crop years are as follows: FCIC policies United States Department of Agriculture... the class barley in accordance with the Official United States Standards for Grain; and (3) Is not... identified by the Food and Drug Administration or other public health organizations of the United States as...

  2. The effects on cow performance and calf birth and weaning weight of replacing grass silage with brewers grains in a barley straw diet offered to pregnant beef cows of two different breeds.

    PubMed

    Rooke, J A; Duthie, C-A; Hyslop, J J; Morgan, C A; Waterhouse, T

    2016-08-01

    The effects on cow and calf performance of replacing grass silage with brewers grains in diets based on barley straw and fed to pregnant beef cows are reported. Using a 2 × 2 factorial arrangement of breed and diet, cows pregnant by artificial insemination (n = 34) of two breeds (cross-bred Limousin, n = 19 and pure-bred Luing, n = 15) were fed diets ad libitum which consisted of either (g/kg dry matter) barley straw (664) and grass silage (325; GS) or barley straw (783) and brewers grains (206, BG) and offered as total mixed rations. From gestation day (GD) 168 until 266, individual daily feed intakes were recorded and cow body weight (BW) and body condition score (BCS) measured weekly. Calving date, calf sex, birth and weaning BW, and calf age at weaning were also recorded. Between GD 168 and 266, cross-bred Limousin cows gained more weight than Luing cows (p < 0.05) and cows offered BG gained more weight than cows offered GS (p < 0.001). Luing cows lost more BCS than cross-bred Limousin cows (p < 0.05), but diet did not affect BCS. There were no differences in dry matter intake as a result of breed or diet. Calf birth BW, however, was greater for cows fed BG than GS (44 vs. 38 kg, SEM 1.0, p < 0.001) with no difference between breeds. At weaning, calves born to BG-fed cows were heavier than those born to GS-fed cows (330 vs. 286 kg, SEM 9.3, p < 0.01). In conclusion, replacement of grass silage with brewers grains improved the performance of beef cows and increased calf birth and weaning BW. Further analysis indicated that the superior performance of cows offered the BG diet was most likely due to increases in protein supply which may have improved both energy and protein supply to the foetus. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  3. Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.

    PubMed

    Jiang, Qian-Tao; Liu, Tao; Ma, Jian; Wei, Yu-Ming; Lu, Zhen-Xiang; Lan, Xiu-Jin; Dai, Shou-Fen; Zheng, You-Liang

    2011-10-01

    The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RTPCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 30 termnal region while their 50 sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.

  4. Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial

    PubMed Central

    Sawicki, Caleigh M.; McKay, Diane L.; McKeown, Nicola M.; Dallal, Gerard; Chen, C. -Y. Oliver; Blumberg, Jeffrey B.

    2016-01-01

    While dietary fiber plays an important role in the health benefits associated with whole grain consumption, other ingredients concentrated in the outer bran layer, including alkylresorcinols, lignans, phenolic acids, phytosterols, and tocols, may also contribute to these outcomes. To determine the acute bioavailability and pharmacokinetics of the major phytochemicals found in barley and oats, we conducted a randomized, three-way crossover trial in 13 healthy subjects, aged 40–70 years with a body mass index (BMI) of 27–35.9 kg/m2. After a two-day run-in period following a diet low in phytochemicals, subjects were randomized to receive muffins made with either 48 g whole oat flour, whole barley flour, or refined wheat flour plus cellulose (control), with a one-week washout period between each intervention. At the same time, an oral glucose tolerance test was administered. In addition to plasma phytochemical concentrations, glucose and insulin responses, biomarkers of antioxidant activity, lipid peroxidation, inflammation, and vascular remodeling were determined over a 24-h period. There was no significant effect on acute bioavailability or pharmacokinetics of major phytochemicals. Administered concurrently with a glucose bolus, the source of whole grains did not attenuate the post-prandial response of markers of glucoregulation and insulin sensitivity, inflammation, nor vascular remodeling compared to the refined grain control. No significant differences were observed in the bioavailability or postprandial effects between whole-oat and whole-barley compared to a refined wheat control when administered with a glucose challenge. These null results may be due, in part, to the inclusion criteria for the subjects, dose of the whole grains, and concurrent acute administration of the whole grains with the glucose bolus. PMID:27983687

  5. Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    PubMed Central

    2011-01-01

    Background The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (Saccharomyces cerevisiae) during a series of small-scale ethanol fermentations using barley (Hordeum vulgare). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation. PMID:21888629

  6. Leaf primordium size specifies leaf width and vein number among row-type classes in barley.

    PubMed

    Thirulogachandar, Venkatasubbu; Alqudah, Ahmad M; Koppolu, Ravi; Rutten, Twan; Graner, Andreas; Hensel, Goetz; Kumlehn, Jochen; Bräutigam, Andrea; Sreenivasulu, Nese; Schnurbusch, Thorsten; Kuhlmann, Markus

    2017-08-01

    Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  7. Microbial populations and fermentation profiles in rumen liquid and solids of Holstein cows respond differently to dietary barley processing.

    PubMed

    Metzler-Zebeli, B U; Khol-Parisini, A; Gruber, L; Zebeli, Q

    2015-12-01

    To evaluate the effects of treating barley grain with lactic acid (LA) and heat on postprandial dynamics of 19 microbial taxa and fermentation in the rumen of dairy cows. This study was designed as a double 3 × 3 Latin square with six rumen-cannulated cows and three diets either containing untreated control barley or barley treated with 1% LA and 1% LA and heat (LAH, 55°C). Microbial populations, pH and volatile fatty acids were assessed in rumen liquid and solids during the postprandial period. Propionate increased and butyrate decreased in rumen solids of cows fed LA and LAH treated barley compared to the control barley. The LA but not LAH treatment depressed Fibrobacter succinogenes in rumen liquid and solids, whereas the opposite effect was observed for Ruminococcus albus in both fractions and Ruminococcus flavefaciens in rumen solids. LA promoted Ruminobacter amylophilus with the effect being more pronounced with LAH. The Lactobacillus group and Megasphaera elsdenii increased in both fractions with LA but not with LAH. LA and LAH treatment of barley differently altered ruminal abundance of certain bacterial taxa and fungi and increased propionate fermentation in rumen solids, whereby LA and LAH effects were consistent and mostly independent of the rumen fraction and time after barley feeding. Results provided evidence that LA and LAH treatment of barley can enhance rumen propionate fermentation without adversely affecting rumen pH. As propionate is the major contributor to gluconeogenesis in ruminants, the present barley treatment may have practical application to enhance energy supply in dairy cows. © 2015 The Society for Applied Microbiology.

  8. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau.

    PubMed

    Yang, Xi-Juan; Dang, Bin; Fan, Ming-Tao

    2018-04-11

    In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20-237.60, 170.10-240.75 and 336.29-453.94 mg of gallic acid equivalents per 100 g of dry weight (DW) blue highland barley grains, while the free and bound phenolic acids accounted for 50.09% and 49.91% of the total phenolic acids, respectively. The contents of the free, bound and total flavones varied among 20.61-25.59, 14.91-22.38 and 37.91-47.98 mg of catechin equivalents per 100 g of dry weight (DW) of blue highland barley grains, while the free and bound flavones accounted for 55.90% and 44.10% of the total flavones, respectively. The prominent phenolic compounds in the blue hulless barley grains were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, naringenin, hesperidin, rutin, (+)-catechin and quercetin. Among these, protocatechuic acid, chlorogenic acid and (+)-catechin were the major phenolic compounds in the free phenolics extract. The most abundant bound phenolics were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, benzoic acid, dimethoxybenzoic acid, naringenin, hesperidin, quercetin and rutin. The average contribution of the bound phenolic extract to the DPPH • free radical scavenging capacity was higher than 86%, that of free phenolic extract to the ABTS •+ free radical scavenging capacity was higher than 79%, and that of free phenolic (53%) to the FRAP antioxidant activity was equivalent to that of the bound phenol extract (47%). In addition, the planting environment exerts a very important influence on the polyphenol composition, content and antioxidant activity of blue highland barley. The correlation analysis showed that 2,4-hydroxybenzoic acid and protocatechuic acid were the main contributors to the DPPH • and ABTS •+ free radical scavenging capacity in the free phenolic extract

  9. Effect of co-milled wheat, green gram and barley on the rheological and quality characteristics of cookies.

    PubMed

    Tulse, Siddharth B; V, Reshma; Rajiv, Jyotsna; Sakhare, Suresh D

    2015-10-01

    Studies were carried out on the co-milling of wheat (W), green gram (GG) and barley (BR) grains using a roller milling system. The co-milled straight run flours obtained by varying proportions of wheat, barley and green gram WGGBR-1 (90:5:5), WGGBR-2 (80:10:10) and WGGBR-3 (70:15:15) were used in the cookie baking experiments. As the amount of GG and BR increased in blend, water absorption increased (56.5-58.4%) and dough stability and extensibility values decreased (104-92 mm). Hardness of cookie doughs and spread ratio (7.70-6.00) of cookies decreased and breaking strength values increased from 2900 to 3700 g in cookies made using co-milled blends WGGBR-1, WGGBR-2 and WGGBR-3. The highest breaking strength value (3700 g), large islands, gummy mouth feel and lowest overall quality score of 51.5 were recorded for cookies made with blend WGGBR-3 indicating that the cookies had unacceptable hard texture. The optimum blend for cookies was WGGBR-2 (80:10:10) and the cookies possessed slightly small islands, crisp, light texture and a pleasant taste. These cookies had 12.30 and 8.00% protein and dietary fibre as against the control cookie values of 8 and 4%, respectively. The in vitro protein digestibility of the control cookies was 61% and it was 51% for cookies made with WGGBR-2 blend. © The Author(s) 2014.

  10. Screening of the aerodynamic and biophysical properties of barley malt

    NASA Astrophysics Data System (ADS)

    Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.

    2016-10-01

    An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.

  11. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach

    PubMed Central

    Zhang, Kefeng; Bosch-Serra, Angela D.; Boixadera, Jaume; Thompson, Andrew J.

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm3 cm-3 and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha-l for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was discussed

  12. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach.

    PubMed

    Zhang, Kefeng; Bosch-Serra, Angela D; Boixadera, Jaume; Thompson, Andrew J

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm(3) cm(-3) and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha(-l) for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was

  13. HvFT1 polymorphism and effect—survey of barley germplasm and expression analysis

    PubMed Central

    Loscos, Jorge; Igartua, Ernesto; Contreras-Moreira, Bruno; Gracia, M. Pilar; Casas, Ana M.

    2014-01-01

    Flowering time in plants is a tightly regulated process. In barley (Hordeum vulgare L.), HvFT1, ortholog of FLOWERING LOCUS T, is the main integrator of the photoperiod and vernalization signals leading to the transition from vegetative to reproductive state of the plant. This gene presents sequence polymorphisms affecting flowering time in the first intron and in the promoter. Recently, copy number variation (CNV) has been described for this gene. An allele with more than one copy was linked to higher gene expression, earlier flowering, and an overriding effect of the vernalization mechanism. This study aims at (1) surveying the distribution of HvFT1 polymorphisms across barley germplasm and (2) assessing gene expression and phenotypic effects of HvFT1 alleles. We analyzed HvFT1 CNV in 109 winter, spring, and facultative barley lines. There was more than one copy of the gene (2–5) only in spring or facultative barleys without a functional vernalization VrnH2 allele. CNV was investigated in several regions inside and around HvFT1. Two models of the gene were found: one with the same number of promoters and transcribed regions, and another with one promoter and variable number of transcribed regions. This last model was found in Nordic barleys only. Analysis of HvFT1 expression showed that association between known polymorphisms at the HvFT1 locus and the expression of the gene was highly dependent on the genetic background. Under long day conditions the earliest flowering lines carried a sensitive PpdH1 allele. Among spring cultivars with different number of copies, no clear relation was found between CNV, gene expression and flowering time. This was confirmed in a set of doubled haploid lines of a population segregating for HvFT1 CNV. Earlier flowering in the presence of several copies of HvFT1 was only seen in cultivar Tammi, which carries one promoter, suggesting a relation of gene structure with its regulation. HvCEN also affected to a large extent flowering

  14. Molecular Farming in Barley: Development of a Novel Production Platform to Produce Human Antimicrobial Peptide LL-37.

    PubMed

    Holásková, Edita; Galuszka, Petr; Mičúchová, Alžbeta; Šebela, Marek; Öz, Mehmet Tufan; Frébort, Ivo

    2018-06-01

    The peptide LL-37, a component of the human innate immune system, represents a promising drug candidate. In particular, the development of low-cost production platform technology is a critical bottleneck in its use in medicine. In the present study, a viable approach for the LL-37 production in transgenic barley is developed. First, comparative analyses of the effects of different fused peptide epitope tags applicable for accumulation and purification on LL-37 production yield are performed using transient expression in tobacco leaves. Following the selection of the most yielding fusion peptide strategies, eight different constructs for the expression of codon optimized chimeric LL-37 genes in transgenic barley plants are created. The expression of individual constructs is driven either by an endosperm-specific promoter of the barley B1 hordein gene or by the maize ubiquitin promoter. The transgenes are stably integrated into the barley genome and inherited in the subsequent generation. All transgenic lines show normal phenotypes and are fertile. LL-37 accumulated in the barley seeds up to 0.55 mg per 1 kg of grain. The fused epitope tags are cleaved off by the use of enterokinase. Furthermore, in planta produced LL-37 including the fused versions is biologically active. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Variation in chemical composition and physical characteristics of cereal grains from different genotypes.

    PubMed

    Rodehutscord, Markus; Rückert, Christine; Maurer, Hans Peter; Schenkel, Hans; Schipprack, Wolfgang; Bach Knudsen, Knud Erik; Schollenberger, Margit; Laux, Meike; Eklund, Meike; Siegert, Wolfgang; Mosenthin, Rainer

    2016-01-01

    Genotypes of cereal grains, including winter barley (n = 21), maize (n = 27), oats (n = 14), winter rye (n = 22), winter triticale (n = 21) and winter wheat (n = 29), were assayed for their chemical composition and physical characteristics as part of the collaborative research project referred to as GrainUp. Genotypes of one grain species were grown on the same site, except maize. In general, concentrations of proximate nutrients were not largely different from feed tables. The coefficient of variation (CV) for the ether extract concentration of maize was high because the data pool comprised speciality maize bred for its high oil content. A subset of 8 barley, 20 rye, 20 triticale and 20 wheat samples was analysed to differ significantly in several carbohydrate fractions. Gross energy concentration of cereal grains could be predicted from proximate nutrient concentration with good accuracy. The mean lysine concentration of protein was the highest in oats (4.2 g/16 g N) and the lowest in wheat (2.7 g/16 g N). Significant differences were also detected in the concentrations of macro elements as well as iron, manganese, zinc and copper. Concentrations of arsenic, cadmium and lead were below the limit of detection. The concentration of lower inositol phosphates was low, but some inositol pentaphosphates were detected in all grains. In barley, relatively high inositol tetraphosphate concentration also was found. Intrinsic phytase activity was the highest in rye, followed by triticale, wheat, barley and maize, and it was not detectable in oats. Substantial differences were seen in the thousand seed weight, test weight, falling number and extract viscoelasticity characteristics. The study is a comprehensive overview of the composition of different cereal grain genotypes when grown on the same location. The relevance of the variation in composition for digestibility in different animal species will be subject of other communications.

  16. Geographical and environmental determinants of the genetic structure of wild barley in southeastern Anatolia.

    PubMed

    Pournosrat, Reza; Kaya, Selma; Shaaf, Salar; Kilian, Benjamin; Ozkan, Hakan

    2018-01-01

    Despite the global value of barley, compared to its wild progenitor, genetic variation in this crop has been drastically reduced due to the process of domestication, selection and improvement. In the medium term, this will negatively impact both the vulnerability and yield stability of barley against biotic and abiotic stresses under climate change. Returning to the crop wild relatives (CWR) as sources of new and beneficial alleles is a clear option for enhancing the resilience of diversity and adaptation to climate change. Southeastern Anatolia constitutes an important part of the natural distribution of wild barley in the Fertile Crescent where important crops were initially domesticated. In this study, we investigated genetic diversity in a comprehensive collection of 281 geo-referenced wild barley individuals from 92 collection sites with sample sizes ranging from 1 to 9 individuals per site, collected from southeastern Anatolia and 131 domesticated genotypes from 49 different countries using 40 EST-SSR markers. A total of 375 alleles were detected across entire collection, of which 283 were carried by domesticated genotypes and 316 alleles were present in the wild gene pool. The number of unique alleles in the wild and in the domesticated gene pool was 92 and 59, respectively. The population structure at K = 3 suggested two groups of wild barley namely G1-W consisting wild barley genotypes from the western part and G1-E comprising those mostly from the eastern part of the study area, with a sharp separation from the domesticated gene pool. The geographic and climatic factors jointly showed significant effects on the distribution of wild barley. Using a Latent Factor Mixed Model, we identified four candidate loci potentially involved in adaptation of wild barley to three environmental factors: temperature seasonality, mean temperature of driest quarter, and precipitation of coldest quarter. These loci are probably the targets of genomic regions, with potential

  17. Geographical and environmental determinants of the genetic structure of wild barley in southeastern Anatolia

    PubMed Central

    Shaaf, Salar; Kilian, Benjamin

    2018-01-01

    Despite the global value of barley, compared to its wild progenitor, genetic variation in this crop has been drastically reduced due to the process of domestication, selection and improvement. In the medium term, this will negatively impact both the vulnerability and yield stability of barley against biotic and abiotic stresses under climate change. Returning to the crop wild relatives (CWR) as sources of new and beneficial alleles is a clear option for enhancing the resilience of diversity and adaptation to climate change. Southeastern Anatolia constitutes an important part of the natural distribution of wild barley in the Fertile Crescent where important crops were initially domesticated. In this study, we investigated genetic diversity in a comprehensive collection of 281 geo-referenced wild barley individuals from 92 collection sites with sample sizes ranging from 1 to 9 individuals per site, collected from southeastern Anatolia and 131 domesticated genotypes from 49 different countries using 40 EST-SSR markers. A total of 375 alleles were detected across entire collection, of which 283 were carried by domesticated genotypes and 316 alleles were present in the wild gene pool. The number of unique alleles in the wild and in the domesticated gene pool was 92 and 59, respectively. The population structure at K = 3 suggested two groups of wild barley namely G1-W consisting wild barley genotypes from the western part and G1-E comprising those mostly from the eastern part of the study area, with a sharp separation from the domesticated gene pool. The geographic and climatic factors jointly showed significant effects on the distribution of wild barley. Using a Latent Factor Mixed Model, we identified four candidate loci potentially involved in adaptation of wild barley to three environmental factors: temperature seasonality, mean temperature of driest quarter, and precipitation of coldest quarter. These loci are probably the targets of genomic regions, with potential

  18. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation

    PubMed Central

    Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.

    2014-01-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629

  19. Genetic Dissection of Photoperiod Response Based on GWAS of Pre-Anthesis Phase Duration in Spring Barley

    PubMed Central

    Alqudah, Ahmad M.; Sharma, Rajiv; Pasam, Raj K.; Graner, Andreas; Kilian, Benjamin; Schnurbusch, Thorsten

    2014-01-01

    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley. PMID:25420105

  20. Extreme Suppression of Lateral Floret Development by a Single Amino Acid Change in the VRS1 Transcription Factor1[OPEN

    PubMed Central

    Lundqvist, Udda; Kakei, Yusuke; Suzuki, Takako; Hori, Kiyosumi; Wu, Jianzhong; Shimada, Yukihisa; Thomas, William T.B.; Komatsuda, Takao

    2017-01-01

    Increasing grain yield is an endless challenge for cereal crop breeding. In barley (Hordeum vulgare), grain number is controlled mainly by Six-rowed spike 1 (Vrs1), which encodes a homeodomain leucine zipper class I transcription factor. However, little is known about the genetic basis of grain size. Here, we show that extreme suppression of lateral florets contributes to enlarged grains in deficiens barley. Through a combination of fine-mapping and resequencing of deficiens mutants, we have identified that a single amino acid substitution at a putative phosphorylation site in VRS1 is responsible for the deficiens phenotype. deficiens mutant alleles confer an increase in grain size, a reduction in plant height, and a significant increase in thousand grain weight in contemporary cultivated germplasm. Haplotype analysis revealed that barley carrying the deficiens allele (Vrs1.t1) originated from two-rowed types carrying the Vrs1.b2 allele, predominantly found in germplasm from northern Africa. In situ hybridization of histone H4, a marker for cell cycle or proliferation, showed weaker expression in the lateral spikelets compared with central spikelets in deficiens. Transcriptome analysis revealed that a number of histone superfamily genes were up-regulated in the deficiens mutant, suggesting that enhanced cell proliferation in the central spikelet may contribute to larger grains. Our data suggest that grain yield can be improved by suppressing the development of specific organs that are not positively involved in sink/source relationships. PMID:29101279

  1. Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying.

    PubMed

    Cao, Xiaohuang; Zhang, Min; Mujumdar, Arun S; Zhong, Qifeng; Wang, Zhushang

    2018-01-01

    Barley grass is a plant resource for rehabilitation therapy. Its processing requires retaining nutrition well for rehabilitation cure of consumers. To meet the aim as well as low energy consumption and microbiological safety of products, ultrasonic treatments (UT) were applied to bathing materials at different power levels (10, 30, 45, 60W/L) for 10mins. After treatments, the bathed barley grass (100g) was freeze-dried under vacuum -0.09MPa with fixed power of 2W/g. Parameters of color, microbial colony, energy consumption, glass transition temperature, moisture content, water activity, taste substances, contents of flavonoid and chlorophyll were determined after drying. In contrast with no treatment case, UT (45W/L) decreased drying time by 14% and decreased energy consumption by 19%; UT (60W/L) decreased total microbial colonies by 33%. Also, UT (30W/L) yielded contents of flavonoid (9.2/kg) and chlorophyll (10.5g/kg) of dried sample; UT power (10W/L) yielded the highest L ∗ (51.5) and the lowest a ∗ (-9.3) value. Simultaneously, UT leads to a higher glass transition temperature (Tg), lower water activity and produces less sourness and bitterness of dried products. Ultra-sonication is an alternative to improve quality, flavor and energy consumption of barley grass in freeze drying. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The effects of whole grains on nutrient digestibilities, growth performance, and cecal short-chain fatty acid concentrations in young chicks fed ground corn-soybean meal diets.

    PubMed

    Biggs, P; Parsons, C M

    2009-09-01

    Five experiments were conducted to evaluate the effects of whole wheat, whole sorghum, or whole barley on nutrient digestibility, growth performance, and cecal short-chain fatty acid concentrations when supplemented primarily at the expense of corn in ground corn-soybean meal control diets. The first 4 experiments utilized New Hampshire x Columbian male chicks. In the first 2 experiments, feeding 5, 10, 15, or 20% whole wheat had no effect on growth performance at 21 d when compared with chicks fed the control diet. The third experiment tested 20, 35, and 50% whole wheat fed from 0 to 21 d of age and showed that a 50% whole wheat diet decreased (P<0.05) 21-d growth and feed efficiency when compared with chicks fed the control diet. In experiment 4, 10 and 20% whole sorghum reduced (P<0.05) growth at 21 d, whereas chicks fed 10 and 20% whole barley had similar weight gains to chicks fed a ground corn-soybean meal diet. The fifth experiment with commercial Ross x Ross male broiler chicks evaluated 10 and 20% whole sorghum or whole barley and 20 and 35% whole wheat. Growth at 21 d was unaffected by any dietary treatment. Feed efficiency was decreased (P<0.05) at 21 d with 20% whole wheat and improved (P<0.05) with 10% whole barley. Feeding whole grains to chicks resulted in an increase in gizzard weight, even as early as 7 d, in all experiments. Chicks fed diets containing 10 to 20% whole wheat generally had increased MEn values at 3 to 4, 7, 14, and 21 d and also had increased amino acid digestibility at 21 d in one experiment. At 21 d, cecal pH and short-chain fatty acid concentrations in all experiments were unaffected by feeding whole grains to chicks. The results of this study indicated that feeding whole wheat, sorghum, or barley increased gizzard weight, and feeding 10 to 20% whole wheat may increase ME and amino acid digestibility.

  3. ASTRONAUT YOUNG, JOHN W. - ZERO-GRAVITY (ZERO-G) - KC-135

    NASA Image and Video Library

    1978-12-15

    S79-30347 (31 March 1979) --- Taking advantage of a brief period of zero-gravity afforded aboard a KC-135 flying a parabolic curve, the flight crew of the first space shuttle orbital flight test (STS-1) goes through a spacesuit donning exercise. Astronaut John W. Young has just entered the hard-material torso of the shuttle spacesuit by approaching it from below. He is assisted by astronaut Robert L. Crippen. The torso is held in place by a special stand here, simulating the function provided by the airlock wall aboard the actual shuttle craft. The life support system is mated to the torso on Earth and remains so during the flight, requiring this type of donning and doffing exercise. Note Crippen?s suit is the type to be used for intravehicular activity in the shirt sleeve environment to be afforded aboard shuttle. The suit worn by Young is for extravehicular activity (EVA). Young will be STS-1 commander and Crippen, pilot. They will man the space shuttle orbiter 102 Columbia. Photo credit: NASA

  4. A Barley Powdery Mildew Fungus Non-Autonomous Retrotransposon Encodes a Peptide that Supports Penetration Success on Barley.

    PubMed

    Nottensteiner, Mathias; Zechmann, Bernd; McCollum, Christopher; Hückelhoven, Ralph

    2018-05-11

    Pathogens overcome plant immunity by the means of secreted effectors. Host effector targets often act in pathogen defense but might also support fungal accommodation or nutrition. The barley ROP GTPase HvRACB is involved in accommodation of fungal haustoria of the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) in barley epidermal cells. We found that HvRACB interacts with the ROP-interactive peptide 1 (ROPIP1) that is encoded on the active non-long terminal repeat retroelement Eg-R1 of Bgh. Over-expression of ROPIP1 in barley epidermal cells and host-induced post-transcriptional gene silencing (HIGS) of ROPIP1 suggested that ROPIP1 is involved in virulence of Bgh. Bimolecular fluorescence complementation and co-localization supported that ROPIP1 can interact with activated HvRACB in planta. We show that ROPIP1 is expressed by Bgh on barley and translocated into the cytoplasm of infected barley cells. ROPIP1 is recruited to microtubules upon co-expression of microtubule associated ROP GTPase ACTIVATING PROTEIN (HvMAGAP1) and can destabilize cortical microtubules. Data suggest that Bgh ROPIP targets HvRACB and manipulates host cell microtubule organization for facilitated host cell entry. This points to a possible neo-functionalization of retroelement-derived transcripts for the evolution of a pathogen virulence effector.

  5. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley.

    PubMed

    Wang, Rong; Yang, Fei; Zhang, Xiao-Qi; Wu, Dianxin; Tan, Cong; Westcott, Sharon; Broughton, Sue; Li, Chengdao; Zhang, Wenying; Xu, Yanhao

    2017-01-01

    Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7-9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene ( vvy ) was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.

  6. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Synchrotron-Based Infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, N.; Yu, P

    2010-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm amongmore » the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm{sup -1}) and II (ca. 1550 cm{sup -1}), cellulosic compounds (ca. 1240 cm{sup -1}), CHO component peaks (the first peak at the region ca. 1184-1132 cm{sup -1}, the second peak at ca. 1132-1066 cm{sup -1}, and the third peak at ca. 1066-950 cm{sup -1}). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between

  7. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1.

    PubMed

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A; Tyerman, Stephen D; Langridge, Peter; Sutton, Tim

    2010-08-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley.

  8. Partial replacement of barley grain and soybean meal by fleabane (Conyza bonariensis) in diets of growing Awassi lambs.

    PubMed

    Abo Omar, J M; Omar, M

    2012-07-01

    Effects of partial substitution of barley grain and soybean meal with fleabane (FB) Conyza bonariensis on growth performances and body compositions of 24 male local Awassi lambs were studied. All lambs were male with an average BW of 20.3 kg (s.d. = 2.0 kg) at the beginning of the experiment. Animals were randomly divided into four groups of six lambs each. Lambs in each group received individually their cereal-soybean-based total mixed rations with levels of FB: 0, 50, 100 and 150 g/kg dry matter (DM) diet, which replaced similar values of barley and soybean meal. All rations were isonitrogenous and isocaloric. The fattening experiment lasted 9 weeks, after which all lambs were slaughtered. The composition of nutrients in the C. bonariensis were 89.6%, 15.0%, 28.0%, 30.0% and 10% for organic matter, CP, NDF, ADF and lignin, respectively. At the end of the experiment, lambs fed 100 and 150 g FB/kg DM diets gained more weight (P < 0.05) than those fed the control and 50 g FB/kg DM diets. The DM intake was lower in lambs fed the highest level of FB compared with intakes of lambs in other treatments. Diet content of FB had significant effect (P < 0.05) on weights of empty body, carcass, gut and external (hide, head and feet) among all animals. However, FB had no effects on lambs' thoracic organs (lungs and heart) and liver. Muscle, bone, omental and mesenteric fat, subcutaneous, intermuscular, pelvic and kidney fat weights (g/kg empty BW) were not affected by FB feeding. Carcass fat was decreased (P < 0.05) by the increase of FB. Total body fat was the same in all animals of the experiment.

  9. The Genetic Basis of Composite Spike Form in Barley and ‘Miracle-Wheat’

    PubMed Central

    Poursarebani, Naser; Seidensticker, Tina; Koppolu, Ravi; Trautewig, Corinna; Gawroński, Piotr; Bini, Federica; Govind, Geetha; Rutten, Twan; Sakuma, Shun; Tagiri, Akemi; Wolde, Gizaw M.; Youssef, Helmy M.; Battal, Abdulhamit; Ciannamea, Stefano; Fusca, Tiziana; Nussbaumer, Thomas; Pozzi, Carlo; Börner, Andreas; Lundqvist, Udda; Komatsuda, Takao; Salvi, Silvio; Tuberosa, Roberto; Uauy, Cristobal; Sreenivasulu, Nese; Rossini, Laura; Schnurbusch, Thorsten

    2015-01-01

    Inflorescences of the tribe Triticeae, which includes wheat (Triticum sp. L.) and barley (Hordeum vulgare L.) are characterized by sessile spikelets directly borne on the main axis, thus forming a branchless spike. ‘Compositum-Barley’ and tetraploid ‘Miracle-Wheat’ (T. turgidum convar. compositum (L.f.) Filat.) display noncanonical spike-branching in which spikelets are replaced by lateral branch-like structures resembling small-sized secondary spikes. As a result of this branch formation ‘Miracle-Wheat’ produces significantly more grains per spike, leading to higher spike yield. In this study, we first isolated the gene underlying spike-branching in ‘Compositum-Barley,’ i.e., compositum 2 (com2). Moreover, we found that COM2 is orthologous to the branched headt (bht) locus regulating spike branching in tetraploid ‘Miracle-Wheat.’ Both genes possess orthologs with similar functions in maize BRANCHED SILKLESS 1 (BD1) and rice FRIZZY PANICLE/BRANCHED FLORETLESS 1 (FZP/BFL1) encoding AP2/ERF transcription factors. Sequence analysis of the bht locus in a collection of mutant and wild-type tetraploid wheat accessions revealed that a single amino acid substitution in the DNA-binding domain gave rise to the domestication of ‘Miracle-Wheat.’ mRNA in situ hybridization, microarray experiments, and independent qRT-PCR validation analyses revealed that the branch repression pathway in barley is governed through the spike architecture gene Six-rowed spike 4 regulating COM2 expression, while HvIDS1 (barley ortholog of maize INDETERMINATE SPIKELET 1) is a putative downstream target of COM2. These findings presented here provide new insights into the genetic basis of spike architecture in Triticeae, and have disclosed new targets for genetic manipulations aiming at boosting wheat’s yield potential. PMID:26156223

  10. A 106-fold enhancement in the conductivity of a discotic liquid crystal doped with only 1% (w/w) gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Holt, Lucy A.; Bushby, Richard J.; Evans, Stephen D.; Burgess, Andrew; Seeley, Gordon

    2008-03-01

    The presence of 1% (w/w) of methylbenzene thiol coated gold nanoparticles increases the conductivity of the discotic liquid crystal 2,3,6,7,10,11-hexakis(hexyloxy)triphenylene (HAT6) by about two orders of magnitude in all three phases (crystal, columnar liquid crystal, and isotropic liquid). However, when a field (above a certain critical value) is applied to the isotropic phase, the conductivity rapidly increases by another three or four orders of magnitude after which the higher conductivity is maintained regardless of phase, field, or temperature. This increase in conductivity is attributed to the formation of chains of gold nanoparticles. A similar phenomenon is observed for 1% (w/w) gold nanoparticles in the isotropic phase of hexadecane. However, the liquid crystal/nanoparticle mixture preserves its high conductivity when it is cooled into the crystalline phase whereas that of the hexadecane/nanoparticle mixture is lost. In hexadecane, crystal grain boundaries are expected to form in a random fashion and this disrupts the conductive pathways. However, if HAT6 crystallizes via the homeotropically aligned columnar phase, the grain boundaries form predominantly surface to surface (electrode to electrode) so that the conductive nanoparticle chains are trapped in a stabilizing solid matrix.

  11. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Chemical test for mammalian feces in grain products: collaborative study.

    PubMed

    Gerber, H R

    1989-01-01

    A collaborative study was conducted to validate the use of the AOAC alkaline phosphatase method for mammalian feces in corn meal, 44.B01-44.B06, for 7 additional products: brown rice cream, oat bran, grits, semolina, pasta flour, farina, and barley plus (a mixture of barley, oat bran, and brown rice). The proposed method determines the presence of alkaline phosphatase, an enzyme contained in mammalian feces, by using phenolphthalein diphosphate as the enzyme substrate in a test agar medium. Fecal matter is separated from the grain products by specific gravity differences in 1% test agar. As the product is distributed on liquid test agar, fecal fragments float while the grain products sink. The alkaline phosphatase cleaves phosphate radicals from phenolphthalein diphosphate, generating free phenolphthalein, which produces a pink to red-purple color around the fecal particles in the previously colorless medium. Collaborators' recovery averages ranged from 21.7 particles (72.3%) for oat bran to 25.3 particles (84.3%) for semolina at the 30 particle spike level. Overall average background was 0.4 positive reactions per food type. The collaborators reported that the method was quick, simple, and easy to use. The method has been approved interim official first action for all 7 grain products.

  13. Comparative digestibility of energy and nutrients and fermentability of dietary fiber in eight cereal grains fed to pigs.

    PubMed

    Cervantes-Pahm, Sarah K; Liu, Yanhong; Stein, Hans H

    2014-03-30

    Cereal grains provide a large portion of caloric intake in diets for humans, but not all cereal grains provide the same amount of energy. Therefore, an experiment was conducted to determine and compare the metabolizable energy (ME), the apparent ileal digestibility (AID), and the apparent total tract digestibility (ATTD) of gross energy (GE) and nutrients in eight cereal grains when fed to pigs. Rice had greater (P < 0.05) AID of GE than other cereal grains, greater (P < 0.05) AID of starch than yellow dent corn, dehulled barley, rye, and wheat, and greater (P < 0.05) ATTD of GE than yellow dent corn, rye, sorghum, and wheat. Dehulled barley, rye, and sorghum had less (P < 0.05) AID of starch than other cereal grains. Dehulled barley had greater (P < 0.05) ATTD of GE than rye. Dehulled oats had the greatest (P < 0.05) ME compared with other cereal grains, whereas rye had the least (P < 0.05) ME. Dehulled oats provide more energy to diets and should be used if the goal is to increase caloric intake. In contrast, sorghum and rye may be more suitable to control diabetes and manage body weight of humans. © 2013 Society of Chemical Industry.

  14. Biomarker of whole grain wheat intake associated lower BMI in older adults

    USDA-ARS?s Scientific Manuscript database

    Alkylresorcinols (AR) are phenolic lipids in the bran fraction of some whole grains (wheat, rye and barley). Plasma AR reflect recent intake of these whole grains. We examined the cross-sectional associations between plasma AR (measured by LCMS/ MS), whole wheat intake, and body mass index (BMI) in ...

  15. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mid-Infrared (MIR) and Near-Infrared (NIR) Detection of Rhizoctonia solani AG 2-2 IIIB on Barley-Based Artificial Inoculum.

    PubMed

    Webb, Kimberly M; Calderón, Francisco J

    2015-10-01

    The amount of Rhizoctonia solani in the soil and how much must be present to cause disease in sugar beet (Beta vulgaris L.) is relatively unknown. This is mostly because of the usually low inoculum densities found naturally in soil and the low sensitivity of traditional serial dilution assays. We investigated the usefulness of Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopic properties in identifying the artificial colonization of barley grains with R. solani AG 2-2 IIIB and in detecting R. solani populations in plant tissues and inoculants. The objectives of this study were to compare the ability of traditional plating assays to NIR and MIR spectroscopies to identify R. solani in different-size fractions of colonized ground barley (used as an artificial inoculum) and to differentiate colonized from non-inoculated barley. We found that NIR and MIR spectroscopies were sensitive in resolving different barley particle sizes, with particles that were <0.25 and 0.25-0.5 mm having different spectral properties than coarser particles. Moreover, we found that barley colonized with R. solani had different MIR spectral properties than the non-inoculated samples for the larger fractions (0.5-1.0, 1.0-2.0, and >2.0 mm) of the ground barley. This colonization was confirmed using traditional plating assays. Comparisons with the spectra from pure fungal cultures and non-inoculated barley suggest that the MIR spectrum of colonized barley is different because of the consumption of C substrates by the fungus rather than because of the presence of fungal bands in the spectra of the colonized samples. We found that MIR was better than NIR spectroscopy in differentiating the colonized from the control samples.

  17. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products.

    PubMed

    Tosh, S M

    2013-04-01

    Oat and barley foods have been shown to reduce human glycaemic response, compared to similar wheat foods or a glucose control. The strength of the evidence supporting the hypothesis that the soluble fibre, mixed linkage β-glucan, reduces glycaemic response was evaluated. A search of the literature was conducted to find clinical trials with acute glycaemic response as an end point using oat or barley products. Of the 76 human studies identified, 34 met the inclusion and exclusion criteria. Dose response and ratio of β-glucan to available carbohydrate as predictors of glycaemic response were assessed. Meals provided 0.3-12.1 g oat or barley β-glucan, and reduced glycaemic response by an average of 48 ± 33 mmol · min/l compared to a suitable control. Regression analysis on 119 treatments indicated that change in glycaemic response (expressed as incremental area under the post-prandial blood-glucose curve) was greater for intact grains than for processed foods. For processed foods, glycaemic response was more strongly related to the β-glucan dose alone (r(2)=0.48, P<0.0001) than to the ratio of β-glucan to the available carbohydrate (r(2)=0.25, P<0.0001). For processed foods containing 4 g of β-glucan, the linear model predicted a decrease in glycaemic response of 27 ± 3 mmol · min/l, and 76% of treatments significantly reduced glycaemic response. Thus, intact grains as well as a variety of processed oat and barley foods containing at least 4 g of β-glucan and 30-80 g available carbohydrate can significantly reduce post-prandial blood glucose.

  18. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    PubMed Central

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  19. Postharvest production of ochratoxin A by Aspergillus ochraceus and Penicillium viridicatum in barley with different protein levels.

    PubMed Central

    Häggblom, P E; Ghosh, J

    1985-01-01

    The production of ochratoxin A (OA) in barley by Aspergillus ochraceus and Penicillium viridicatum was measured at 12 and 25 degrees C. The grain had been fertilized with various amounts of nitrogen fertilizer (0, 90, or 240 kg/ha) and contained (at crop maturity) 9.1, 10.4, or 12.0% protein, respectively. The production of OA by both fungi increased as the protein concentration increased. Glutamic acid and proline were enriched relative to other amino acids as the protein concentration increased. The differences in OA production could not be explained by a differential effect of protein or amino acids on fungal growth in barley. However, glutamic acid and proline enhanced OA production in liquid cultures of both A. ochraceus and P. viridicatum. PMID:4004212

  20. Young Stellar Objects in the Massive Star-forming Regions W51 and W43

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saral, G.; Audard, M.; Hora, J. L.

    We present the results of our investigation of the star-forming complexes W51 and W43, two of the brightest in the first Galactic quadrant. In order to determine the young stellar object (YSO) populations in W51 and W43 we used color–magnitude relations based on Spitzer mid-infrared and 2MASS/UKIDSS near-infrared data. We identified 302 Class I YSOs and 1178 Class II/transition disk candidates in W51, and 917 Class I YSOs and 5187 Class II/transition disk candidates in W43. We also identified tens of groups of YSOs in both regions using the Minimal Spanning Tree (MST) method. We found similar cluster densities inmore » both regions, even though Spitzer was not able to probe the densest part of W43. By using the Class II/I ratios, we traced the relative ages within the regions and, based on the morphology of the clusters, we argue that several sites of star formation are independent of one another in terms of their ages and physical conditions. We used spectral energy distribution-fitting to identify the massive YSO (MYSO) candidates since they play a vital role in the star formation process, and then examined them to see if they are related to any massive star formation tracers such as UCH ii regions, masers, or dense fragments. We identified 17 MYSO candidates in W51, and 14 in W43, respectively, and found that groups of YSOs hosting MYSO candidates are positionally associated with H ii regions in W51, though we do not see any MYSO candidates associated with previously identified massive dense fragments in W43.« less

  1. Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior

    DOE PAGES

    Argibay, N.; Furnish, T. A.; Boyce, B. L.; ...

    2016-06-07

    The friction behavior of ultra-nanocrystalline Ni-W coatings was investigated. A critical stress threshold was identified below which friction remained low, and above which a time-dependent evolution toward higher friction behavior occurred. Founded on established plasticity models we propose a correlation between surface grain size and applied stress that can be used to predict the critical stress separating the two friction regimes. Lastly, this interpretation of plasticity models suggests that macro-scale low and high friction regimes are respectively associated with the nano-scale mechanisms of grain boundary and dislocation-mediated plasticity.

  2. Barley Coleoptile Peroxidases. Purification, Molecular Cloning, and Induction by Pathogens1

    PubMed Central

    Kristensen, Brian Kåre; Bloch, Helle; Rasmussen, Søren Kjærsgaard

    1999-01-01

    A cDNA clone encoding the Prx7 peroxidase from barley (Hordeum vulgare L.) predicted a 341-amino acid protein with a molecular weight of 36,515. N- and C-terminal putative signal peptides were present, suggesting a vacuolar location of the peroxidase. Immunoblotting and reverse-transcriptase polymerase chain reaction showed that the Prx7 protein and mRNA accumulated abundantly in barley coleoptiles and in leaf epidermis inoculated with powdery mildew fungus (Blumeria graminis). Two isoperoxidases with isoelectric points of 9.3 and 7.3 (P9.3 and P7.3, respectively) were purified to homogeneity from barley coleoptiles. P9.3 and P7.3 had Reinheitszahl values of 3.31 and 2.85 and specific activities (with 2,2′-azino-di-[3-ethyl-benzothiazoline-6-sulfonic acid], pH 5.5, as the substrate) of 11 and 79 units/mg, respectively. N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry peptide analysis identified the P9.3 peroxidase activity as due to Prx7. Tissue and subcellular accumulation of Prx7 was studied using activity-stained isoelectric focusing gels and immunoblotting. The peroxidase activity due to Prx7 accumulated in barley leaves 24 h after inoculation with powdery mildew spores or by wounding of epidermal cells. Prx7 accumulated predominantly in the epidermis, apparently in the vacuole, and appeared to be the only pathogen-induced vacuolar peroxidase expressed in barley tissues. The data presented here suggest that Prx7 is responsible for the biosynthesis of antifungal compounds known as hordatines, which accumulate abundantly in barley coleoptiles. PMID:10364401

  3. The effect of Fusarium culmorum infection and deoxynivalenol (DON) application on proteome response in barley cultivars Chevron and Pedant.

    PubMed

    Kosová, Klára; Chrpová, Jana; Šantrůček, Jiří; Hynek, Radovan; Štěrbová, Lenka; Vítámvás, Pavel; Bradová, Jana; Prášil, Ilja Tom

    2017-10-03

    Fusarium head blight (FHB) disease adversely affects grain quality and final yield in small-grain cereals including barley. In the present study, the effect of an artificial infection with Fusarium culmorum and an application of deoxynivalenol (DON) on barley spikes of cultivars Chevron and Pedant during flowering was investigated at grain mid-dough stage (BBCH 73) 10days after pathogen inoculation (10 dai). Proteomic analysis using a two-dimensional differential gel electrophoresis (2D-DIGE) technique coupled with LC-MS/MS investigated 98 protein spots revealing quantitative or qualitative differences between the experimental variants. Protein functional annotation of 93 identified protein spots revealed that most affected functional groups represent storage proteins (globulins, hordeins), followed by proteins involved in carbohydrate metabolism (α-amylase inhibitor, β-amylase, glycolytic enzymes), amino acid metabolism (aminotransferases), defence response (chitinase, xylanase inhibitor, serpins, SGT1, universal stress protein USP), protein folding (chaperones, chaperonins), redox metabolism (ascorbate-glutathione cycle), and proteasome-dependent protein degradation. The obtained results indicate adverse effects of infection on plant proteome as well as an active plant response to pathogen as shown by enhanced levels of several inhibitors of pathogen-produced degradation enzymes (α-amylase inhibitor, xylanase inhibitor, serpins), chaperones, and other stress-related proteins (SGT1, USP). Genotypic differences were found in hordein abundance between Chevron and Pedant. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling.

    PubMed

    Kohl, Stefan; Hollmann, Julien; Erban, Alexander; Kopka, Joachim; Riewe, David; Weschke, Winfriede; Weber, Hans

    2015-03-01

    During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK

    PubMed Central

    Nielsen, L.K.; Cook, D.J.; Edwards, S.G.; Ray, R.V.

    2014-01-01

    Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium

  6. Tungsten Isotopic Compositions in Stardust SiC Grains from the Murchison Meteorite: Constraints on the s-process in the Hf-Ta-W-Re-Os Region

    NASA Astrophysics Data System (ADS)

    Ávila, Janaína N.; Lugaro, Maria; Ireland, Trevor R.; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Holden, Peter; Buntain, Joelene; Amari, Sachiko; Karakas, Amanda

    2012-01-01

    We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes 182,183,184,186W and 179,180Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the 182W/184W and 183W/184W ratios, with deficits in 182W and 183W with respect to 184W. The 186W/184W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar 182W/184W, 183W/184W, and 186W/184W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their 182W/184W, 183W/184W, and 179Hf/180Hf isotopic compositions, although a small adjustment in the s-process production of 183W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the 186W/184W ratios observed in the SiC grains, even when the current 185W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e.g., the formation of the 13C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the 22Ne neutron source) may affect current s-process predictions.

  7. HvALMT1 from barley is involved in the transport of organic anions

    PubMed Central

    Gruber, Benjamin D.; Ryan, Peter R.; Richardson, Alan E.; Tyerman, Stephen D.; Ramesh, Sunita; Hebb, Diane M.; Howitt, Susan M.; Delhaize, Emmanuel

    2010-01-01

    Members of the ALMT gene family contribute to the Al3+ resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al3+ resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the greatest sequence similarity to TaALMT1. HvALMT1 is located on chromosome 2H which has not been associated with Al3+ resistance in barley. The relatively low levels of HvALMT1 expression detected in root and shoot tissues were independent of external aluminium or phosphorus supply. Transgenic barley plants transformed with the HvALMT1 promoter fused to the green fluorescent protein (GFP) indicated that expression of HvALMT1 was relatively high in stomatal guard cells and in root tissues containing expanding cells. GFP fused to the C-terminus of the full HvALMT1 protein localized to the plasma membrane and motile vesicles within the cytoplasm. HvALMT1 conferred both inward and outward currents when expressed in Xenopus laevis oocytes that were bathed in a range of anions including malate. Both malate uptake and efflux were confirmed in oocyte assays using [14C]malate as a radiotracer. It is suggested that HvALMT1 functions as an anion channel to facilitate organic anion transport in stomatal function and expanding cells. PMID:20176888

  8. HvALMT1 from barley is involved in the transport of organic anions.

    PubMed

    Gruber, Benjamin D; Ryan, Peter R; Richardson, Alan E; Tyerman, Stephen D; Ramesh, Sunita; Hebb, Diane M; Howitt, Susan M; Delhaize, Emmanuel

    2010-03-01

    Members of the ALMT gene family contribute to the Al(3+) resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al(3+) resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the greatest sequence similarity to TaALMT1. HvALMT1 is located on chromosome 2H which has not been associated with Al(3+) resistance in barley. The relatively low levels of HvALMT1 expression detected in root and shoot tissues were independent of external aluminium or phosphorus supply. Transgenic barley plants transformed with the HvALMT1 promoter fused to the green fluorescent protein (GFP) indicated that expression of HvALMT1 was relatively high in stomatal guard cells and in root tissues containing expanding cells. GFP fused to the C-terminus of the full HvALMT1 protein localized to the plasma membrane and motile vesicles within the cytoplasm. HvALMT1 conferred both inward and outward currents when expressed in Xenopus laevis oocytes that were bathed in a range of anions including malate. Both malate uptake and efflux were confirmed in oocyte assays using [(14)C]malate as a radiotracer. It is suggested that HvALMT1 functions as an anion channel to facilitate organic anion transport in stomatal function and expanding cells.

  9. Effects of wheat dried distillers' grains with solubles and cinnamaldehyde on in vitro fermentation and protein degradation using the Rusitec technique.

    PubMed

    Lia, Yangling; He, Maolong; Li, Chun; Forster, Robert; Beauchemin, Karen Anne; Yang, Wenzhu

    2012-04-01

    This study was conducted to evaluate the effect of wheat dried distillers' grains with solubles (DDGS) and cinnamaldehyde (CIN) on in vitro fermentation and microbial profiles using the rumen simulation technique. The control substrate (10% barley silage, 85% barley grain and 5% supplement, on dry matter basis) and the wheat DDGS substrate (30% wheat DDGS replaced an equal portion of barley grain) were combined with 0 and 300 mg CIN/l of culture fluid. The inclusion of DDGS increased (p < 0.05) the concentration of volatile fatty acids (VFA) and the molar proportion of acetate and propionate. Dry matter disappearance (p = 0.03) and production of bacterial protein (p < 0.01) were greater, whereas the disappearances of crude protein (CP) and neutral detergent fibre were less (p < 0.01) for the DDGS than for the control substrate. With addition of CIN, concentration of total VFA decreased and fermentation pattern changed to greater acetate and less propionate proportions (p < 0.01). The CIN reduced (p < 0.01) methane production and CP degradability. The copy numbers of Fibrobacter, Prevotella and Archaea were not affected by DDGS but were reduced (p < 0.05) by CIN. The results indicate that replacing barley grain by DDGS increased nutrient fermentability and potentially increase protein flows to the intestine. Supplementation of high-grain substrates with CIN reduced methane production and potentially increased the true protein reaching the small intestine; however, overall reduction of feed fermentation may lower the feeding value of a high-grain diet.

  10. Fourier transform infrared microspectroscopic analysis of the effects of cereal type and variety within a type of grain on structural makeup in relation to rumen degradation kinetics.

    PubMed

    Walker, Amanda M; Yu, Peiqiang; Christensen, Colleen R; Christensen, David A; McKinnon, John J

    2009-08-12

    The objectives of this study were to use Fourier transform infrared microspectroscopy (FTIRM) to determine structural makeup (features) of cereal grain endosperm tissue and to reveal and identify differences in protein and carbohydrate structural makeup between different cereal types (corn vs barley) and between different varieties within a grain (barley CDC Bold, CDC Dolly, Harrington, and Valier). Another objective was to investigate how these structural features relate to rumen degradation kinetics. The items assessed included (1) structural differences in protein amide I to nonstructural carbohydrate (NSC, starch) intensity and ratio within cellular dimensions; (2) molecular structural differences in the secondary structure profile of protein, alpha-helix, beta-sheet, and their ratio; (3) structural differences in NSC to amide I ratio profile. From the results, it was observed that (1) comparison between grain types [corn (cv. Pioneer 39P78) vs barley (cv. Harrington)] showed significant differences in structural makeup in terms of NSC, amide I to NSC ratio, and rumen degradation kinetics (degradation ratio, effective degradability of dry matter, protein and NSC) (P < 0.05); (2) comparison between varieties within a grain (barley varieties) also showed significant differences in structural makeup in terms of amide I, NSC, amide I to NSC ratio, alpha-helix and beta-sheet protein structures, and rumen degradation kinetics (effective degradability of dry matter, protein, and NSC) (P < 0.05); (3) correlation analysis showed that the amide I to NSC ratio was strongly correlated with rumen degradation kinetics in terms of the degradation rate (R = 0.91, P = 0.086) and effective degradability of dry matter (R = 0.93, P = 0.071). The results suggest that with the FTIRM technique, the structural makeup differences between cereal types and between different varieties within a type of grain could be revealed. These structural makeup differences were related to the rate

  11. Recrystallization behavior and thermal shock resistance of the W-1.0 wt% TaC alloy

    NASA Astrophysics Data System (ADS)

    Xie, Z. M.; Miao, S.; Zhang, T.; Liu, R.; Wang, X. P.; Fang, Q. F.; Hao, T.; Zhuang, Z.; Liu, C. S.; Lian, Y. Y.; Liu, X.; Cai, L. H.

    2018-04-01

    The high-temperature stability and good mechanical strength of tungsten (W) alloys are highly desirable for a wide range of fusion applications, which can be achieved by dispersion strengthening. In this paper, TaC dispersion effects on the thermal stabilities, tensile properties and thermal shock resistances have been investigated. A hot-rolled W-1.0 wt% TaC plate has been fabricated which contains the high tensile strength and elongation. Nanosized particles in the W matrix improve the recrystallization temperature to about 1400 °C and the ultimate tensile strength to 571 MPa at 500 °C through hindering grain boundary migration, pinning dislocations and refining grains. The effects of edge-localized mode like transient heat events on the rolled and recrystallized W-1.0 wt% TaC alloys were investigated systematically. The cracking threshold (100 shots) at room temperature is in the range of 0.33-0.44 GW/m2 for the rolled W-1.0 wt% TaC. Recrystallization degrades mechanical strength and makes the material more prone to thermal shock damages. Coarse Ta2O5 and Ta-Cx-Oy particles are easy to fracture and introduce a preferential crack initiation in W matrix during cyclic heat loads.

  12. Anthocyanin composition and oxygen radical scavenging capacity (ORAC) of milled and pearled purple, black, and common barley.

    PubMed

    Bellido, Guillermo G; Beta, Trust

    2009-02-11

    The importance of anthocyanins to the total antioxidant capacity of various fruits and vegetables has been well established, but less attention has been focused on cereal grains. This study investigated the antioxidant capacity and anthocyanin composition of a bran-rich pearling fraction (10% outer kernel layers) and whole kernel flour of purple (CI-1248), black (PERU-35), and yellow (EX-83) barley genotypes. HPLC analysis showed that as much as 6 times more anthocyanin per unit weight (microg/g) was present in the bran-rich fractions of yellow and purple barley (1587 and 3534, respectively) than in their corresponding whole kernel flours (210 and 573, respectively). Delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside, petunidin 3-glucoside, and cyanidin chloride were positively identified in barley, with as many as 9 and 15 anthocyanins being detected in yellow and purple barley, respectively. Antioxidant activity analysis showed that the ORAC values for the bran-rich fractions were significantly (p < 0.05) higher than for the whole kernel flour.

  13. Viability of barley seeds after long-term exposure to outer side of international space station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi C.; Elena, Shagimardanova; Gusev, Oleg A.; Kihara, Makoto; Hoki, Takehiro; Sychev, Vladimir N.; Levinskikh, Margarita A.; Novikova, Natalia D.; Grigoriev, Anatoly I.

    2011-09-01

    Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.

  14. Exploiting induced variation to dissect quantitative traits in barley.

    PubMed

    Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie

    2010-04-01

    The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.

  15. Astronaut John W. Young during water egress training

    NASA Image and Video Library

    1966-06-18

    S66-39691 (18 June 1966) --- Astronaut John W. Young, prime crew command pilot for the Gemini-10 spaceflight, sits in Static Article 5 during water egress training activity onboard the NASA Motor Vessel Retriever. The SA-5 will be placed in the water and he and astronaut Michael Collins will then practice egress and water survival techniques. At right is Gordon Harvey, Spacecraft Operations Branch, Flight Crew Support Division. Photo credit: NASA

  16. Natural Contamination with Mycotoxins Produced by Fusarium graminearum and Fusarium poae in Malting Barley in Argentina

    PubMed Central

    Nogueira, María Soledad; Decundo, Julieta; Martinez, Mauro; Dieguez, Susana Nelly; Moreyra, Federico; Moreno, Maria Virginia

    2018-01-01

    Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae; with both elaborating diverse toxins, especially deoxynivalenol (DON) and nivalenol (NIV), respectively. The objective of our work during the 2012–2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum, 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g); 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae, those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina. PMID:29439459

  17. Natural Contamination with Mycotoxins Produced by Fusarium graminearum and Fusarium poae in Malting Barley in Argentina.

    PubMed

    Nogueira, María Soledad; Decundo, Julieta; Martinez, Mauro; Dieguez, Susana Nelly; Moreyra, Federico; Moreno, Maria Virginia; Stenglein, Sebastian Alberto

    2018-02-11

    Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae ; with both elaborating diverse toxins, especially deoxynivalenol (DON) and nivalenol (NIV), respectively. The objective of our work during the 2012-2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum , 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g); 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae , those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina.

  18. The Barley Phytomer

    PubMed Central

    Forster, Brian P.; Franckowiak, Jerome D.; Lundqvist, Udda; Lyon, Jackie; Pitkethly, Ian; Thomas, William T. B.

    2007-01-01

    Background and Aims Morphological mutants have been useful in elucidating the phytomeric structure of plants. Recently described mutants have shed new light on the ontogeny (development of plant structures) and the phytomeric system of barley (Hordeum vulgare). Since the current model for barley phytomers was not adequate to explain the nature of some mutants, a new model is proposed. Methods New phytomer mutants were detected by visual assessment of mutant families in the Optic barley mutation grid population. This was done at various growth stages using laboratory, glasshouse and field screens. Simple explanations were adopted to account for aberrant phytomer phenotypes and a thesis for a new phytomer model was developed. Key Results and Conclusions A barley phytomer model is presented, in which the origins of vegetative and generative structures can be explained by a single repeating phytomer unit. Organs on the barley plant are divided into two classes, single or paired, depending on their origin. Paired structures are often fused together to create specific organs. The model can be applied to wheat (Triticum aestivum) and related grasses. PMID:17901062

  19. Influence of weed species and time of glyphosate application on Rhizoctonia root rot of barley

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG-8 causes root disease in wheat, barley, canola and other small grains in the dryland inland Pacific Northwest. The pathogen survives between crops on roots of volunteers and grassy weeds. Destroying this green bridge with herbicides such as glyphosate is a common tactic to cont...

  20. Hypocholesterolaemic effect of whole-grain highland hull-less barley in rats fed a high-fat diet.

    PubMed

    Xia, Xuejuan; Li, Guannan; Song, Jiaxin; Zheng, Jiong; Kan, Jianquan

    2018-05-01

    Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague-Dawley rats were divided into four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48·95 %) of WHLB. High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase α, cholesterol 7α-hydroxylase, LDL receptor, liver X receptor, and PPARα and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.

  1. Particle Size Effects on the Quality of Flour Tortillas Enriched with Whole Grain Waxy Barley

    USDA-ARS?s Scientific Manuscript database

    Wheat tortillas were enriched with whole barley flour (WBF) of different particle sizes including 237 micros (regular-R), 131 micros (intermediate-IM), and 68 micros (microground-MG). Topographical and fluorescent microstructure images of flours, doughs and tortillas were examined. Flours and tort...

  2. Effects of microwaves on the reduction of Aspergillus flavus and Aspergillus parasiticus on brown rice (Oryza sativa L.) and barley (Hordeum vulgare L.).

    PubMed

    Lee, Seung-Hun; Park, Shin Young; Byun, Kye-Hwan; Chun, Hyang Sook; Ha, Sang-Do

    2017-07-01

    Aspergillus flavus and Aspergillus parasiticus are primary pathogen moulds on brown rice and barley. This study investigated the effects of microwave irradiation (MWI) (2450 MHz, 700 W, 10-50 s) on inactivation of A. flavus and A. parasiticus on brown rice and barley and the quality of these samples. The counts of both strains were significantly (p < 0.05) reduced by the stepwise increase in MWI treatment time. The log reductions of A. flavus on brown rice and barley were 0.05 and 0.04 after 10 s; 1.06 and 1.05 after 20 s; 1.59 and 1.52 after 30 s; and 3.04 and 2.78 after 40 s. The log reductions of A. parasiticus on brown rice and barley were 0.06 and 0.10 after 10 s; 1.20 and 1.00 after 20 s; 2.04 and 1.61 after 30 s; and 2.89 and 2.90 after 40 s. Moreover, neither strain survived after 50 s of MWI. The Hunter colour 'L' gradually increased with increasing MWI treatment time. However, there were no significant differences in the 'L' of brown rice after 10-40 s of MWI treatment and of barley after 10-30 s of MWI treatment. The Hunter colour 'a' and 'b' gradually increased with increasing microwave time. No significant change was observed in the moisture content of either cereal treated with 10-20 s of MWI. The differences in the sensory quality (colour, appearance, flavour, texture and overall acceptability) after 0-30 s of MWI were not significant. However, values for colour, appearance, texture and overall acceptability were significantly reduced when treated with 40-50 s of MWI. Therefore, with 20 s of MWI at 2450 MHz, 700 W could be effective for > 90% reduction of mould without causing deleterious changes to the colour, moisture content and sensory qualities of these cereals.

  3. Drought Response in the Spikes of Barley: Gene Expression in the Lemma, Palea, Awn, and Seed

    USDA-ARS?s Scientific Manuscript database

    The photosynthetic organs of the barley spike (lemma, palea, and awn) are considered resistant to drought. This is a beneficial trait because they can sustain grain-filling when drought occurs at the reproductive stage. However, there is little information about gene expression in the spike organs u...

  4. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing.

    PubMed

    Los, Agata; Ziuzina, Dana; Akkermans, Simen; Boehm, Daniela; Cullen, Patrick J; Van Impe, Jan; Bourke, Paula

    2018-04-01

    Contamination of cereal grains as a key global food resource with insects or microorganisms is a persistent concern for the grain industry due to irreversible damage to quality and safety characteristics and economic losses. Atmospheric cold plasma presents an alternative to conventional grain decontamination methods owing to the high antimicrobial potential of reactive species generated during the treatment, but effects against product specific microflora are required to understand how to optimally develop this approach for grains. This work investigated the influence of ACP processing parameters for both cereal grain decontamination and grain quality as important criteria for grain or seed use. A high voltage (HV) (80 kV) dielectric barrier discharge (DBD) closed system was used to assess the potential for control of native microflora and pathogenic bacterial and fungal challenge microorganisms, in tandem with effects on grain functional properties. Response surface modelling of experimental data probed the key factors in relation to microbial control and seed germination promotion. The maximal reductions of barley background microbiota were 2.4 and 2.1 log 10  CFU/g and of wheat - 1.5 and 2.5 log 10  CFU/g for bacteria and fungi, respectively, which required direct treatment for 20 min followed by a 24 h sealed post-treatment retention time. In the case of challenge organisms inoculated on barley grains, the highest resistance was observed for Bacillus atrophaeus endospores, which, regardless of retention time, were maximally reduced by 2.4 log 10  CFU/g after 20 min of direct treatment. The efficacy of the plasma treatment against selected microorganisms decreased in the following order: E. coli > P. verrucosum (spores) > B. atrophaeus (vegetative cells) > B. atrophaeus (endospores). The challenge microorganisms were more susceptible to ACP treatment than naturally present background microbiota. No major effect of short term

  5. Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Mock, Hans-Peter; Marko, Doris; Weschke, Winfriede; Matros, Andrea

    2016-01-01

    Oligofructans represent one of the most important groups of sucrose-derived water–soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed. PMID:26834760

  6. miR172 down-regulates the translation of cleistogamy 1 in barley

    USDA-ARS?s Scientific Manuscript database

    Floret opening in barley is induced by the swelling of the lodicule, a trait under the control of the cleistogamy1 (cly1) gene. The product of cly1 is a member of the APETALA2 (AP2) transcription factor family, which inhibits lodicule development. A sequence polymorphism at the miR172 target site wi...

  7. Influence of Pulse Electrodeposition and Heat Treatment on Microstructure, Tribological, and Corrosion Behavior of Nano-Grain Size Co-W Coatings

    NASA Astrophysics Data System (ADS)

    Abazari, Somayeh; Rastegari, Saeed; Kheirandish, Shahram

    2017-07-01

    In the present study, Co-W nano-structured alloy coatings are produced on low-carbon steel substrate by means of pulse electrodeposition from a citrate-based bath under different average current densities and duty cycles. The results indicate that the coating deposited under 60% of duty cycle and 1 A/dm2 of average current density exhibit optimum pulse plating conditions with 44.38 wt.% W, 37 nm grain size, and 758 HV microhardness. The effect of heat treatment temperature on microstructure, composition, corrosion behavior, and morphology of amorphous deposited Co-W alloy with 44 wt.% W was investigated. The microhardness of the coating increased to 1052 HV after heat treatment at 600 °C, which is due to the formation of Co3W and CoWO4 phases in the deposit. Furthermore, the coatings heat-treated at 600 °C had lower friction coefficients and better wear resistance under various loads than before heating.

  8. Major Cereal Grain Fibers and Psyllium in Relation to Cardiovascular Health

    PubMed Central

    Bernstein, Adam M.; Titgemeier, Brigid; Kirkpatrick, Kristin; Golubic, Mladen; Roizen, Michael F.

    2013-01-01

    Numerous studies reveal the cardiovascular benefits of consuming dietary fiber and, especially, cereal fiber. Cereal fiber is associated with cardiovascular risk reduction through multiple mechanisms and consuming a variety of cereal fiber sources offers health benefits specific to the source. Certain cereal fibers have been studied more extensively than others and provide greater support for their incorporation into a healthful diet. β-glucan from oats or barley, or a combination of whole oats and barley, and soluble fiber from psyllium reduces the risk of coronary heart disease; inulin-type fructans added to foods and beverages may modestly decrease serum triacylglycerols; arabinoxylan and resistant starch may improve glycemic control. Individuals with low cereal fiber intake should increase their intake of whole grains in order to receive the benefits of whole grains in addition to fiber. For those adjusting to the texture and palatability of whole grains, turning to added-fiber products rich in β-glucan and psyllium may allow them to reach their fiber goals without increasing caloric intake. PMID:23628720

  9. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness.

    PubMed

    Suriyasak, Chetphilin; Harano, Keisuke; Tanamachi, Koichiro; Matsuo, Kazuhiro; Tamada, Aina; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-09-01

    Heat stress during grain filling increases rice grain chalkiness due to increased activity of α-amylase, which hydrolyzes starch. In rice and barley seeds, reactive oxygen species (ROS) produced after imbibition induce α-amylase activity via regulation of gibberellin (GA) and abscisic acid (ABA) levels during seed germination. Here, we examined whether ROS is involved in induction of grain chalkiness by α-amylase in developing rice grains under heat stress. To elucidate the role of ROS in grain chalkiness, we grew post-anthesis rice plants (Oryza sativa L. cv. Koshihikari) under control (25°C) or heat stress (30°C) conditions with or without antioxidant (dithiothreitol) treatment. The developing grains were analyzed for expression of NADPH oxidases, GA biosynthesis genes (OsGA3ox1, OsGA20ox1), ABA catabolism genes (OsABA8'OH1, OsABA8'OH2) and an α-amylase gene (OsAmy3E), endogenous H 2 O 2 content and the grain quality. In grains exposed to heat stress, the expression of NADPH oxidase genes (especially, OsRbohB, OsRbohD, OsRbohF and OsRbohI) and the ROS content increased. Heat stress also increased the expression of OsGA3ox1, OsGA20ox1, OsABA8'OH1, OsABA8'OH2 and OsAmy3E. On the other hand, dithiothreitol treatment reduced the effects of heat stress on the expression of these genes and significantly reduced grain chalkiness induced by heat stress. These results suggest that, similar to cereal seed germination mechanism, ROS produced under heat stress is involved in α-amylase induction in maturating rice grains through GA/ABA metabolism, and consequently caused grain chalkiness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Transient over-expression of barley BAX Inhibitor-1 weakens oxidative defence and MLA12-mediated resistance to Blumeria graminis f.sp. hordei.

    PubMed

    Eichmann, Ruth; Dechert, Cornelia; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2006-11-01

    SUMMARY BAX Inhibitor-1 (BI-1) is a conserved cell death suppressor protein. In barley, BI-1 (HvBI-1) expression is induced upon powdery mildew infection and when over-expressed in epidermal cells of barley, HvBI-1 induces susceptibility to the biotrophic fungal pathogen Blumeria graminis. We co-expressed mammalian pro-apoptotic BAX together with HvBI-1, and the mammalian BAX antagonist BCL-X(L) in barley epidermal cells. BAX expression led to cessation of cytoplasmic streaming and collapse of the cytoplasm while co-expression of HvBI-1 and BCL-X(L) partially or completely, respectively, rescued cells from BAX lethality. When B. graminis was attacking epidermal cells, a green fluorescent protein fusion of HvBI-1 accumulated at the site of attempted penetration and was also present around haustoria. Over-expression of HvBI-1 in epidermal cells weakened a cell-wall-associated local hydrogen peroxide burst in a resistant mlo-mutant genotype and supported haustoria accommodation in race-specifically resistant MLA12-barley. HvBI-1 is a cell death regulator protein of barley with the potential to suppress host defence reactions.

  11. Nutritional Physiology of the Khapra Beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) Fed on Various Barley Cultivars.

    PubMed

    Seifi, S; Naseri, B; Razmjou, J

    2016-02-01

    The Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is known as one of the mostserious pests of grains in many parts of the world. In this study, the effect of nine barley cultivars (‘Bahman’,‘CB-84-10’, ‘Fajr 30’, ‘Makuyi’, ‘Nosrat’, ‘Yousof’, ‘13A1’, ‘18A1’, and ‘19 A1’) and a wheat cultivar (‘MV17’, as a control) was determined on the nutritional indices and digestive enzymatic activity of T. granarium at 33 6 1C,relative humidity of 6565%, and a photoperiod of 14:10 (L:D) h. The highest and lowest values of larval weight gain of sixth instar were detected on wheat (0.757±0.068 mg) and cultivar Bahman (0.342±0.071 mg). Also, T. granarium larvae fed on cultivar Bahman had the lowest value of efficiency of conversion of ingested food(10.90±2.09%) as compared with wheat and other barley cultivars. Also, the highest midgut amylolytic and proteolytic activities of sixth instar were on cultivar Bahman (0.364±0.024 mU/mg and 80.54±1.73 U/mg, respectively)and the lowest activities were on cultivar Nosrat (0.043±0.004 mU/mg and 7.15±0.01 U/mg, respectively).It is concluded that barley cultivar Bahman was the most unsuitable host for feeding of T. granarium.

  12. Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley-wheat amphiploids

    PubMed Central

    Gil-Humanes, Javier; Pistón, Fernando; Martín, Antonio; Barro, Francisco

    2009-01-01

    Background The APETALA2-like genes form a large multi-gene family of transcription factors which play an important role during the plant life cycle, being key regulators of many developmental processes. Many studies in Arabidopsis have revealed that the APETALA2 (AP2) gene is implicated in the establishment of floral meristem and floral organ identity as well as temporal and spatial regulation of flower homeotic gene expression. Results In this work, we have cloned and characterised the AP2-like gene from accessions of Hordeum chilense and Hordeum vulgare, wild and domesticated barley, respectively, and compared with other AP2 homoeologous genes, including the Q gene in wheat. The Hordeum AP2-like genes contain two plant-specific DNA binding motifs called AP2 domains, as does the Q gene of wheat. We confirm that the H. chilense AP2-like gene is located on chromosome 5Hch. Patterns of expression of the AP2-like genes were examined in floral organs and other tissues in barley, wheat and in tritordeum amphiploids (barley × wheat hybrids). In tritordeum amphiploids, the level of transcription of the barley AP2-like gene was lower than in its barley parental and the chromosome substitutions 1D/1Hch and 2D/2Hch were seen to modify AP2 gene expression levels. Conclusion The results are of interest in order to understand the role of the AP2-like gene in the spike morphology of barley and wheat, and to understand the regulation of this gene in the amphiploids obtained from barley-wheat crossing. This information may have application in cereal breeding programs to up- or down-regulate the expression of AP2-like genes in order to modify spike characteristics and to obtain free-threshing plants. PMID:19480686

  13. BHQ revisited (1) - Looking at grain size

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée; Kilian, Rüdiger; Tullis, Jan

    2016-04-01

    Black Hills Quartzite (BHQ) has been used extensively in experimental rock deformation for numerous studies. Coaxial and general shear experiments have been carried out, for example, to define the dislocation creep regimes of quartz (Hirth & Tullis, 1992), to determine the effect of annealing (Heilbronner & Tullis, 2002) or to study the development of texture and microstructure with strain (Heilbronner & Tullis, 2006). BHQ was also used to determine the widely used quartz piezometer by Stipp & Tullis (2003). Among the microstructure analyses that were performed in those original papers, grain size was usually determined using CIP misorientation images. However, the CIP method (= computer-integrated polarization microscopy, details in Heilbronner and Barrett, 2014) is only capable of detecting the c-axis orientation of optically uniaxial materials and hence is only capable of detecting grain boundaries between grains that differ in c-axis orientation. One of the puzzling results we found (Heilbronner & Tullis, 2006) was that the recrystallized grain size seemed to depend on the crystallographic preferred orientation of the domain. In other words the grain size did not only depend on the flow stress but also on the orientation of the c-axis w/r to the shear direction. At the time, no EBSD analysis (electron back scatter diffraction) was carried out and hence the full crystallographic orientation was not known. In principle it is therefore possible that we missed some grain boundaries (between grains with parallel c-axes) and miscalculated our grain sizes. In the context of recent shear experiments on quartz gouge at the brittle-viscous transition (see Richter et al., this conference), where EBSD is used to measure the recrystallized grain size, we wanted to re-measure the CIP grain sizes of our 2006 samples (deformed in regime 1, 2 and 3 of dislocation) in exactly the same way. In two companion posters we use EBSD orientation imaging to repeat, refine and expand the

  14. Genome-Wide Association Mapping for Kernel and Malting Quality Traits Using Historical European Barley Records

    PubMed Central

    Röder, Marion S.; van Eeuwijk, Fred

    2014-01-01

    Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping, which involves micro-malting experiments. Although there is abundant historical information available for different cultivars in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal components scores obtained from marker information. We detected 140 marker-trait associations. Some of these associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when designing strategies for multiple trait improvements. PMID:25372869

  15. The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies.

    PubMed

    Muñoz-Amatriaín, María; Cuesta-Marcos, Alfonso; Endelman, Jeffrey B; Comadran, Jordi; Bonman, John M; Bockelman, Harold E; Chao, Shiaoman; Russell, Joanne; Waugh, Robbie; Hayes, Patrick M; Muehlbauer, Gary J

    2014-01-01

    New sources of genetic diversity must be incorporated into plant breeding programs if they are to continue increasing grain yield and quality, and tolerance to abiotic and biotic stresses. Germplasm collections provide a source of genetic and phenotypic diversity, but characterization of these resources is required to increase their utility for breeding programs. We used a barley SNP iSelect platform with 7,842 SNPs to genotype 2,417 barley accessions sampled from the USDA National Small Grains Collection of 33,176 accessions. Most of the accessions in this core collection are categorized as landraces or cultivars/breeding lines and were obtained from more than 100 countries. Both STRUCTURE and principal component analysis identified five major subpopulations within the core collection, mainly differentiated by geographical origin and spike row number (an inflorescence architecture trait). Different patterns of linkage disequilibrium (LD) were found across the barley genome and many regions of high LD contained traits involved in domestication and breeding selection. The genotype data were used to define 'mini-core' sets of accessions capturing the majority of the allelic diversity present in the core collection. These 'mini-core' sets can be used for evaluating traits that are difficult or expensive to score. Genome-wide association studies (GWAS) of 'hull cover', 'spike row number', and 'heading date' demonstrate the utility of the core collection for locating genetic factors determining important phenotypes. The GWAS results were referenced to a new barley consensus map containing 5,665 SNPs. Our results demonstrate that GWAS and high-density SNP genotyping are effective tools for plant breeders interested in accessing genetic diversity in large germplasm collections.

  16. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows: 1...

  17. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows: 1...

  18. Level of contamination with mycobiota and contents of mycotoxins from the group of trichothecenes in grain of wheat , oats, barley, rye and triticale harvested in Poland in 2006- 2008.

    PubMed

    Stuper-Szablewska, Kinga; Perkowski, Juliusz

    2017-03-01

    The risk of cereal exposure to microbial contamination is high and possible at any time, starting from the period of plant vegetation, through harvest, up to the processing, storage and transport of the final product. Contents of mycotoxins in grain are inseparably connected with the presence of fungal biomass, the presence of which may indicate the occurrence of a fungus, and indirectly also products of its metabolism. Analyses were conducted on 378 grain samples of wheat, triticale, barley, rye and oats collected from grain silos located at grain purchase stations and at mills in Poland in 2006, 2007 and 2008. The concentrations of ERG and mycotoxins from the group of trichothecenes, as well as CFU numbers were analysed. The tested cereals were characterised by similarly low concentrations of both the investigated fungal metabolites and the level of microscopic fungi. However, conducted statistical analyses showed significant variation between tested treatments. Oat and rye grain contained the highest amounts of ERG, total toxins and CFU. In turn, the lowest values of investigated parameters were found in grain of wheat and triticale. Chemometric analyses, based on the results of chemical and microbiological tests, showed slight differences between contents of analysed metabolites between the years of the study, and do not confirm the observations on the significance of the effect of weather conditions on the development of mycobiota and production of mycotoxins; however, it does pertain to treatments showing no significant infestation. Highly significant correlations between contents of trichothecenes and ERG concentration (higher than in the case of the correlation of the total toxin concentrations/log cfu/g), indicate that the level of this metabolite is inseparably connected with mycotoxin contents in grain.

  19. Development of endosperm transfer cells in barley.

    PubMed

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC

  20. Development of endosperm transfer cells in barley

    PubMed Central

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC

  1. The Effects of Atmosphere on the Sintering of Ultrafine-Grained Tungsten with Ti

    NASA Astrophysics Data System (ADS)

    Ren, Chai; Koopman, Mark; Fang, Z. Zak; Zhang, Huan

    2016-11-01

    Tungsten (W) is a brittle material at room temperature making it very difficult to fabricate. Although the lack of ductility remains a difficult challenge, nano-sized and ultrafine-grained (UFG) structures offer the potential to overcome tungsten's room-temperature brittleness. One way to manufacture UFG W is to compact and sinter nano-sized W powder. It is challenging, however, to control grain growth during sintering. As one method to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this study. Addition of 1% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. It was found that sintering in Ar yielded a finer grain size than sintering in H2 at similar densities. The active diffusion mechanisms during sintering were different for W-1% Ti nano powders sintered in Ar and H2.

  2. The duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis: dry matter intake and ruminal fermentation.

    PubMed

    Schwaiger, T; Beauchemin, K A; Penner, G B

    2013-12-01

    This study was conducted to determine if the duration of time cattle are fed a high-grain diet affects their susceptibility to and recovery from ruminal acidosis. Sixteen Angus heifers (BW ± SEM, 261 ± 6.1 kg) were assigned to 1 of 4 blocks and fed a backgrounding diet consisting of 60% barley silage, 30% barley grain, and 10% supplement (DM basis). Within block, cattle were randomly assigned to 1 of 2 treatments differing in the number of days they were fed the high-grain diet before an acidosis challenge: 34 d for long adapted (LA) and 8 d for short adapted (SA). All heifers were exposed to the same 20 d dietary transition to a high-grain diet containing 9% barley silage, 81% barley grain, and 10% supplement (DM basis). Ruminal acidosis was induced by restricting feed to 50% of DMI:BW for 24 h followed by an intraruminal infusion of ground barley at 10% DMI:BW. Heifers were then given their regular diet allocation 1 h after the intraruminal infusion. Data were collected during an 8-d baseline period (BASE), on the day of the acidosis challenge (CHAL), and during 2 consecutive 8-d recovery periods (REC1 and REC2). Acidosis induction increased daily duration (531 to 1,020 min/d; P < 0.001) and area (176 to 595 (min × pH)/d; P < 0.001) that ruminal pH was <5.5 relative to BASE. Relative to BASE, inducing acidosis also increased the daily mean (0.3 to 11.4 mM; P = 0.013) and maximum (1.3 to 29.3 mM; P = 0.008) ruminal fluid lactate concentrations. There was no effect of dietary treatment on ruminal pH, lactate, or short-chain fatty acid (SCFA) concentrations (P > 0.050). However, during BASE and CHAL, SA heifers experienced greater linear (P = 0.031), quadratic (P = 0.016), and cubic (P = 0.008) coefficients for the duration of time that pH was <5.5. In addition, a treatment × day interaction for the duration that pH was <5.5 during REC1 suggested that LA cattle tended to recover from the challenge more rapidly than SA cattle (P = 0.085). Regression analysis

  3. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis.

    PubMed

    Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat

    2015-01-01

    The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.

  4. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  5. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  6. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  7. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  8. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for payment...

  9. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours.

    PubMed

    Drakos, Antonios; Kyriakakis, Georgios; Evageliou, Vasiliki; Protonotariou, Styliani; Mandala, Ioanna; Ritzoulis, Christos

    2017-01-15

    Finer barley and rye flours were produced by jet milling at two feed rates. The effect of reduced particle size on composition and several physicochemical and mechanical properties of all flours were evaluated. Moisture content decreased as the size of the granules decreased. Differences on ash and protein contents were observed. Jet milling increased the amount of damaged starch in both rye and barley flours. True density increased with decreased particle size whereas porosity and bulk density increased. The solvent retention capacity profile was also affected by jet milling. Barley was richer in phenolics and had greater antioxidant activity than rye. Regarding colour, both rye and barley flours when subjected to jet milling became brighter, whereas their yellowness was not altered significantly. The minimum gelation concentration for all flours was 16%w/v. Barley flour gels were stronger, firmer and more elastic than the rye ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of indigestible carbohydrates in barley on glucose metabolism, appetite and voluntary food intake over 16 h in healthy adults.

    PubMed

    Johansson, Elin V; Nilsson, Anne C; Östman, Elin M; Björck, Inger M E

    2013-04-11

    Recent knowledge in animals suggests that gut microbial metabolism may affect host metabolism, including appetite regulating hormones. The aim of the present study was to evaluate the potential effects of a whole grain barley kernel product, rich in intrinsic indigestible carbohydrates (dietary fibre and resistant starch), on markers of metabolism and appetite regulation in healthy subjects. Boiled barley kernels (BK) or white wheat bread (WWB; reference) were provided as late evening meals to 19 young adults in random order using a cross-over design. During subsequent ad libitum standardized breakfast and lunch meals (10.5-16 h), blood was collected for analysis of glucose, plasma insulin, adiponectin, ghrelin, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), serum free fatty acids (FFA) and interleukin (IL)-6. In addition, appetite sensations, voluntary energy intake and breath H2 were determined. BK as evening meal increased plasma GLP-1 at fasting (P < 0.05) and during the experimental day (P < 0.01) compared with WWB. In addition the BK evening meal decreased fasting serum FFA (P < 0.05) and tended to decrease fasting serum IL-6 (P = 0.06). At lunch, preceded by BK evening meal, voluntary energy intake was decreased (P < 0.05) when compared to WWB evening meal. The BK evening meal decreased incremental blood glucose area (P < 0.01), promoted higher breath H2 (P < 0.001), maintained adiponectin concentrations (P < 0.05) and reduced perceived hunger (P < 0.05) during 10.5-16 h after the meal. The results indicate that the BK evening meal, facilitate glucose regulation, increase the release of GLP-1, reduce subsequent energy intake while at the same time decreasing hunger over 2 subsequent meals, and reduce fasting FFA the subsequent morning, possibly mediated through gut microbial fermentation of the indigestible carbohydrates.

  11. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water.

    PubMed

    Song, Bin; Molinero, Valeria

    2013-08-07

    Hydrophobic interactions are responsible for water-driven processes such as protein folding and self-assembly of biomolecules. Microscopic theories and molecular simulations have been used to study association of a pair of methanes in water, the paradigmatic example of hydrophobic attraction, and determined that entropy is the driving force for the association of the methane pair, while the enthalpy disfavors it. An open question is to which extent coarse-grained water models can still produce correct thermodynamic and structural signatures of hydrophobic interaction. In this work, we investigate the hydrophobic interaction between a methane pair in water at temperatures from 260 to 340 K through molecular dynamics simulations with the coarse-grained monatomic water model mW. We find that the coarse-grained model correctly represents the free energy of association of the methane pair, the temperature dependence of free energy, and the positive change in entropy and enthalpy upon association. We investigate the relationship between thermodynamic signatures and structural order of water through the analysis of the spatial distribution of the density, energy, and tetrahedral order parameter Qt of water. The simulations reveal an enhancement of tetrahedral order in the region between the first and second hydration shells of the methane molecules. The increase in tetrahedral order, however, is far from what would be expected for a clathrate-like or ice-like shell around the solutes. This work shows that the mW water model reproduces the key signatures of hydrophobic interaction without long ranged electrostatics or the need to be re-parameterized for different thermodynamic states. These characteristics, and its hundred-fold increase in efficiency with respect to atomistic models, make mW a promising water model for studying water-driven hydrophobic processes in more complex systems.

  12. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.

    PubMed

    Dai, Fei; Chen, Zhong-Hua; Wang, Xiaolei; Li, Zefeng; Jin, Gulei; Wu, Dezhi; Cai, Shengguan; Wang, Ning; Wu, Feibo; Nevo, Eviatar; Zhang, Guoping

    2014-09-16

    The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. Approximately 48-Gb of clean transcript sequences in 12 Hordeum spontaneum and 9 Hordeum vulgare accessions were generated. We reported 12,530 de novo assembled transcripts in all of the 21 samples. Population structure analysis showed that Tibetan hulless barley (qingke) might have existed in the early stage of domestication. Based on the large number of unique genomic regions showing the similarity between cultivated and wild-barley groups, we propose that the genomic origin of modern cultivated barley is derived from wild-barley genotypes in the Fertile Crescent (mainly in chromosomes 1H, 2H, and 3H) and Tibet (mainly in chromosomes 4H, 5H, 6H, and 7H). This study indicates that the domestication of barley may have occurred over time in geographically distinct regions.

  13. Grain Refinement by Authigenic Inoculation Inherited from the Medium-Range Order Structure of Ni-Cr-W Superalloy

    NASA Astrophysics Data System (ADS)

    Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei

    2018-04-01

    The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S(Q) of liquid Ni-Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S(Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.

  14. Grain Refinement by Authigenic Inoculation Inherited from the Medium-Range Order Structure of Ni-Cr-W Superalloy

    NASA Astrophysics Data System (ADS)

    Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei

    2018-05-01

    The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S( Q) of liquid Ni -Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S( Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.

  15. In vivo indices for predicting acidosis risk of grains in cattle: Comparison with in vitro methods.

    PubMed

    Lean, I J; Golder, H M; Black, J L; King, R; Rabiee, A R

    2013-06-01

    Our objective was to evaluate a near-infrared reflectance spectroscopy (NIRS) used in the feed industry to estimate the potential for grains to increase the risk of ruminal acidosis. The existing NIRS calibration was developed from in sacco and in vitro measures in cattle and grain chemical composition measurements. To evaluate the existing model, 20 cultivars of 5 grain types were fed to 40 Holstein heifers using a grain challenge protocol and changes in rumen VFA, ammonia, lactic acids, and pH that are associated with acidosis were measured. A method development study was performed to determine a grain feeding rate sufficient to induce non-life threatening but substantial ruminal changes during grain challenge. Feeding grain at a rate of 1.2% of BW met these criteria, lowering rumen pH (P = 0.01) and increasing valerate (P < 0.01) and propionate concentrations (P = 0.01). Valerate was the most discriminatory measure indicating ruminal change during challenge. Heifers were assigned using a row by column design in an in vivo study to 1 of 20 grain cultivars and were reassigned after a 9 d period (n = 4 cattle/treatment). The test grains were dry rolled oats (n = 3), wheat (n = 6), barley (n = 4), triticale (n = 4), and sorghum (n = 3) cultivars. Cattle were adapted to the test grain and had ad libitum access to grass silage 11 d before the challenge. Feed was withheld for 14 h before challenge feeding with 0.3 kg DM of silage followed by the respective test grain fed at 1.2% of BW. A rumen sample was taken by stomach tube 5, 65, 110, 155, and 200 min after grain consumption. The rumen is not homogenous and samples of rumen fluid obtained by stomach tube will differ from those gained by other methods. Rumen pH was measured immediately; individual VFA, ammonia, and D- and L-lactate concentrations were analyzed later. Rumen pH (P = 0.002) and all concentrations of fermentation products differed among grains (P = 0.001). A previously defined discriminant score

  16. Further Experiments on Gibberellin-Stimulated Amylase Production in Cereal Grains

    ERIC Educational Resources Information Center

    Coppage, Jo; Hill, T. A.

    1973-01-01

    Experiments conducted on wheat and barley grains to analyze activities of alpha- and beta-amylase enzymes. Gibberellins were used exogenously. Techniques are described in detail. Results on different cultivars revealed that beta-amylase was not an invariable result of imbibition. Techniques employed can be used by school students. (PS)

  17. The perspective crops for the bioregenerative human life support systems

    NASA Astrophysics Data System (ADS)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  18. Structural features of immunostimulatory polysaccharide purified from pectinase hydrolysate of barley leaf.

    PubMed

    Kim, Hoon; Kwak, Bong-Shin; Hong, Hee-Do; Suh, Hyung-Joo; Shin, Kwang-Soon

    2016-06-01

    Four polysaccharide fractions were isolated from young barley leaves treated with or without pectinase followed by ethanol fractionation. Among the polysaccharide fractions, BLE-P isolated from pectinase digested with a high molecular weight had the most enhanced macrophage stimulatory activity, indicating that pectinase digestion of barley leaf is a useful method for enhancement of its activity. BLE-P was further purified by column chromatography to identify the chemical and structural properties. BLE-P-I eluted in void volume fraction showed potent macrophage stimulatory activity. Monosaccharide composition and linkage analysis indicated that at least three kinds of polysaccharide, that is, glucuronoarabinoxylan (GAX; 40-45%), rhamnogalacturonan-I (RG-I) with branching mainly involving a type II arabinogalactan (AG-II) side chain (30-35%), and linear glucan such as starch and cellulose (less than 10%) coexisted in BLE-P-I. Given the association with macrophage stimulatory activity, it is likely that the GAX and to the RG-I polysaccharide branched with an AG-II side chain may be important for expression of the activity in barley leaf. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. 78 FR 76098 - Rail Transportation of Grain, Rate Regulation Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ...) Opening 4-5, Rate Regulation Reforms, EP 715; Alliance for Rail Competition, Montana Wheat & Barley... Producers Board, and Washington Grain Commission Opening 6-12, Rate Regulation Reforms, EP 715. \\3\\ NGFA Opening 3-4, Rate Regulation Reforms, EP 715. \\4\\ BNSF Ry. Co. Reply 10, Rate Regulation Reforms, EP 715...

  20. Wholegrain barley β-glucan fermentation does not improve glucose tolerance in rats fed a high-fat diet.

    PubMed

    Belobrajdic, Damien P; Jobling, Stephen A; Morell, Matthew K; Taketa, Shin; Bird, Anthony R

    2015-02-01

    Fermentation of oat and barley β-glucans is believed to mediate in part their metabolic health benefits, but the exact mechanisms remain unclear. In this study, we sought to test the hypothesis that barley β-glucan fermentation raises circulating incretin hormone levels and improves glucose control, independent of other grain components. Male Sprague-Dawley rats (n = 30) were fed a high-fat diet for 6 weeks and then randomly allocated to 1 of 3 dietary treatments for 2 weeks. The low- (LBG, 0% β-glucan) and high- (HBG, 3% β-glucan) β-glucan diets contained 25% wholegrain barley and similar levels of insoluble dietary fiber, available carbohydrate, and energy. A low-fiber diet (basal) was included for comparison. Immediately prior to the dietary intervention, gastric emptying rate (using the (13)C-octanoic breath test) and postprandial glycemic response of each diet were determined. At the end of the study, circulating gut hormone levels were determined; and a glucose tolerance test was performed. The rats were then killed, and indices of cecal fermentation were assessed. Diet did not affect live weight; however, the HBG diet, compared to basal and LBG, reduced food intake, tended to slow gastric emptying, increased cecal digesta mass and individual and total short-chain fatty acid pools, and lowered digesta pH. In contrast, circulating levels of glucose, insulin, gastric-inhibitory peptide, and glucagon-like peptide-1, and glucose tolerance were unaffected by diet. In conclusion, wholegrain barley β-glucan suppressed feed intake and increased cecal fermentation but did not improve postprandial glucose control or insulin sensitivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  1. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    USDA-ARS?s Scientific Manuscript database

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  2. Internal Water Balance of Barley Under Soil Moisture Stress 1

    PubMed Central

    Millar, Agustin A.; Duysen, Murray E.; Wilkinson, Guy E.

    1968-01-01

    Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments. Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied. The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions. PMID:16656869

  3. Hydrolysis of (1,4)-β-D-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of (1,4)-β-D-mannan endohydrolase and β-D-mannosidase

    PubMed Central

    Hrmova, Maria; Burton, Rachel A.; Biely, Peter; Lahnstein, Jelle; Fincher, Geoffrey B.

    2006-01-01

    A family GH5 (family 5 glycoside hydrolase) (1,4)-β-D-mannan endohydrolase or β-D-mannanase (EC 3.2.1.78), designated HvMAN1, has been purified 300-fold from extracts of 10-day-old barley (Hordeum vulgare L.) seedlings using ammonium sulfate fractional precipitation, followed by ion exchange, hydrophobic interaction and size-exclusion chromatography. The purified HvMAN1 is a relatively unstable enzyme with an apparent molecular mass of 43 kDa, a pI of 7.8 and a pH optimum of 4.75. The HvMAN1 releases Man (mannose or D-mannopyranose)-containing oligosaccharides of degree of polymerization 2–6 from mannans, galactomannans and glucomannans. With locust-bean galactomannan and mannopentaitol as substrates, the enzyme has Km constants of 0.16 mg·ml−1 and 5.3 mM and kcat constants of 12.9 and 3.9 s−1 respectively. Product analyses indicate that transglycosylation reactions occur during hydrolysis of (1,4)-β-D-manno-oligosaccharides. The complete sequence of 374 amino acid residues of the mature enzyme has been deduced from the nucleotide sequence of a near full-length cDNA, and has allowed a three-dimensional model of the HvMAN1 to be constructed. The barley HvMAN1 gene is a member of a small (1,4)-β-D-mannan endohydrolase family of at least six genes, and is transcribed at low levels in a number of organs, including the developing endosperm, but also in the basal region of young roots and in leaf tips. A second barley enzyme that participates in mannan depolymerization through its ability to hydrolyse (1,4)-β-D-manno-oligosaccharides to Man is a family GH1 β-D-mannosidase, now designated HvβMANNOS1, but previously identified as a β-D-glucosidase [Hrmova, MacGregor, Biely, Stewart and Fincher (1998) J. Biol. Chem. 273, 11134–11143], which hydrolyses 4NP (4-nitrophenyl) β-D-mannoside three times faster than 4NP β-D-glucoside, and has an action pattern typical of a (1,4)-β-D-mannan exohydrolase. PMID:16771710

  4. Inducers of Glycinebetaine Synthesis in Barley1

    PubMed Central

    Jagendorf, André T.; Takabe, Tetsuko

    2001-01-01

    Glycinebetaine is an osmoprotectant accumulated by barley (Hordeum vulgare) plants in response to high levels of NaCl, drought, and cold stress. Using barley seedlings in hydroponic culture, we characterized additional inducers of glycinebetaine accumulation. These included other inorganic salts (KCl, MgCl2, LiCl, and Na2SO4), oxidants (H2O2 and cumene hydroperoxide), and organic compounds (abscisic acid, polymixin B, n-butanol, salicylic acid, and aspirin). Stress symptoms brought on by high NaCl and other inducers, and not necessarily correlated with glycinebetaine accumulation, include wilting, loss of chlorophyll, and increase in thiobarbituric acid reacting substances. For NaCl, Ca2+ ions at 10 to 20 mm decrease these stress symptoms without diminishing, or even increasing, glycinebetaine induction. Abscisic acid induces glycinebetaine accumulation without causing any of the stress symptoms. NaCl, KCl, and H2O2 (but not other inducers) induce glycinebetaine at concentrations below those needed for the other stress symptoms. Mg2+ at 10 to 20 mm induces both stress symptoms and glycinebetaine, but only at low (0.2 mm) Ca2+. Although illumination is needed for optimal induction, a significant increase in the leaf glycinebetaine level is found in complete darkness, also. PMID:11743126

  5. Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy.

    PubMed

    Ramakrishna, Ramnarain; Sarkar, Dipayan; Manduri, Avani; Iyer, Shreyas Ganesan; Shetty, Kalidas

    2017-10-01

    Sprouts of cereal grains, such as barley ( Hordeum vulgare L.), are a good source of beneficial phenolic bioactives. Such health relevant phenolic bioactives of cereal sprouts can be targeted to manage chronic hyperglycemia and oxidative stress commonly associated with type 2 diabetes (T2D). Therefore improving phenolic bioactives by stimulating plant endogenous defense responses such as protective pentose phosphate pathway (PPP) during sprouting has significant merit. Based on this metabolic rationale, this study aimed to enhance phenolic bioactives and associated antioxidant and anti-hyperglycemic functions in dark germinated barley sprouts using exogenous elicitor treatments. Dark-germinated sprouts of two malting barley cultivars (Pinnacle and Celebration), treated with chitosan oligosaccharide (COS) and marine protein hydrolysate (GP), were evaluated. Total soluble phenolic content (TSP), phenolic acid profiles, total antioxidant activity (TA) and in vitro inhibitory activities of hyperglycemia relevant α-amylase and α-glucosidase enzymes of the dark germinated barley sprouts were evaluated at day 2, 4, and 6 post elicitor treatments. Overall, TSP content, TA, and α-amylase inhibitory activity of dark germinated barley sprouts decreased, while α-glucosidase inhibitory activity and gallic acid content increased from day 2 to day 6. Among barley cultivars, high phenolic antioxidant-linked anti-hyperglycemic bioactives were observed in Celebration. Furthermore, GP and COS seed elicitor treatments in selective doses improved T2D relevant phenolic-linked anti-hyperglycemic bioactives of barley spouts at day 6. Therefore, such seed elicitation approach can be strategically used to develop bioactive enriched functional food ingredients from cereal sprouts targeting chronic hyperglycemia and oxidative stress linked to T2D.

  6. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.

    PubMed

    Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir

    2016-10-01

    Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress. © 2016 Scandinavian Plant Physiology Society.

  7. Growth performance, feeding behavior, and selected blood metabolites of Holstein dairy calves fed restricted amounts of milk: No interactions between sources of finely ground grain and forage provision.

    PubMed

    Mirzaei, M; Khorvash, M; Ghorbani, G R; Kazemi-Bonchenari, M; Ghaffari, M H

    2017-02-01

    The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage

  8. 7 CFR 810.202 - Definition of other terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... GRAIN United States Standards for Barley Terms Defined § 810.202 Definition of other terms. (a) Black barley. Barley with black hulls. (b) Broken kernels. Barley with more than 1/4 of the kernel removed. (c... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or...

  9. Effect of rising atmospheric carbon dioxide concentration on the protein composition of cereal grain.

    PubMed

    Wroblewitz, Stefanie; Hüther, Liane; Manderscheid, Remy; Weigel, Hans-Joachim; Wätzig, Hermann; Dänicke, Sven

    2014-07-16

    The present study investigates effects of rising atmospheric CO2 concentration on protein composition of maize, wheat, and barley grain, especially on the fractions prolamins and glutelins. Cereals were grown at different atmospheric CO2 concentrations to simulate future climate conditions. Influences of two nitrogen fertilization levels were studied for wheat and barley. Enriched CO2 caused an increase of globulin and B-hordein of barley. In maize, the content of globulin, α-zein, and LMW polymers decreased, whereas total glutelin, zein, δ-zein, and HMW polymers rose. Different N supplies resulted in variations of barley subfractions and wheat globulin. Other environmental influences showed effects on the content of nearly all fractions and subfractions. Variations in starch-protein bodies caused by different CO2 treatments could be visualized by scanning electron microscopy. In conclusion, climate change would have impacts on structural composition of proteins and, consequently, on the nutritional value of cereals.

  10. miRNA regulation in the early development of barley seed

    PubMed Central

    2012-01-01

    Background During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. Results Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. Conclusion Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways. PMID:22838835

  11. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... weight per bushel (pounds) Sound barley (percent) Maximum Limits of— Damaged kernels 1 (percent) Heat damaged kernels (percent) Foreign material (percent) Broken kernels (percent) Thin barley (percent) U.S... or otherwise of distinctly low quality. 1 Includes heat-damaged kernels. Injured-by-frost kernels and...

  12. Molecular cytogenetic and morphological characterization of two wheat-barley translocation lines

    PubMed Central

    Ivanizs, László; Farkas, András; Linc, Gabriella; Molnár-Láng, Márta

    2018-01-01

    Abstract Barley chromosome 5H, carrying important QTLs for plant adaptation and tolerance to abiotic stresses, is extremely instable in the wheat genetic background and is eliminated in the early generations of wheat-barley crosses. A spontaneous wheat-barley 5HS-7DS.7DL translocation was previously obtained among the progenies of the Mv9kr1 x Igri hybrid. The present work reports on the transfer of the 5HS-7DS.7DL translocation into a modern wheat cultivar, Mv Bodri, in order to use it in the wheat breeding program. The comparison of the hybridization bands of DNA repeats HvT01, pTa71, (GAA)n and the barley centromere-specific (AGGGAG)n in Igri barley and the 5HS-7DS.7DL translocation, together with the visualization of the barley chromatin made it possible to determine the size of the introgressed barley segment, which was approximately 74% of the whole 5HS. Of the 29 newly developed PCR markers, whose source ESTs were selected from the Genome Zipper of barley chromosome 5H, 23 were mapped in the introgressed 1–0.26 FL 5HS bin, three were located in the missing C-0.26 FL region, while three markers were specific for 5HL. The translocation breakpoint was flanked by markers Hv7502 and Hv3949. A comparison of the parental wheat cultivars and the wheat-barley introgression lines indicated that the presence of the translocation improved tillering ability in the Mv9kr1 and Mv Bodri genetic background. The similar or better yield components under high- or low-input cultivation environments, respectively, indicated that the 5HS-7DS.7DL translocation had little or no negative effect on yield components, making it a promising genotype to improve wheat genetic diversity. These results promise to accelerate functional genomic studies on barley chromosome 5H and to support pre-breeding and breeding research on wheat. PMID:29889875

  13. The β-Ketoacyl-CoA Synthase HvKCS1, Encoded by Cer-zh, Plays a Key Role in Synthesis of Barley Leaf Wax and Germination of Barley Powdery Mildew.

    PubMed

    Li, Chao; Haslam, Tegan M; Krüger, Anna; Schneider, Lizette M; Mishina, Kohei; Samuels, Lacey; Yang, Hongxing; Kunst, Ljerka; Schaffrath, Ulrich; Nawrath, Christiane; Chen, Guoxiong; Komatsuda, Takao; von Wettstein-Knowles, Penny

    2018-04-01

    The cuticle coats the primary aerial surfaces of land plants. It consists of cutin and waxes, which provide protection against desiccation, pathogens and herbivores. Acyl cuticular waxes are synthesized via elongase complexes that extend fatty acyl precursors up to 38 carbons for downstream modification pathways. The leaves of 21 barley eceriferum (cer) mutants appear to have less or no epicuticular wax crystals, making these mutants excellent tools for identifying elongase and modification pathway biosynthetic genes. Positional cloning of the gene mutated in cer-zh identified an elongase component, β-ketoacyl-CoA synthase (CER-ZH/HvKCS1) that is one of 34 homologous KCSs encoded by the barley genome. The biochemical function of CER-ZH was deduced from wax and cutin analyses and by heterologous expression in yeast. Combined, these experiments revealed that CER-ZH/HvKCS1 has a substrate specificity for C16-C20, especially unsaturated, acyl chains, thus playing a major role in total acyl chain elongation for wax biosynthesis. The contribution of CER-ZH to water barrier properties of the cuticle and its influence on the germination of barley powdery mildew fungus were also assessed.

  14. Strengths and Limitations of Operational Use of 1 Km EO Biophysical Products for Regional Prediction of Grain Yelds in Europe (wheat, barley and maize)

    NASA Astrophysics Data System (ADS)

    Meroni, M.; LEO, O.; Lopez-Lozano, R.; Baruth, B.; Duveiller, G.; Garcia-Condado, S.; Hooker, J.; Seguini, L.

    2014-12-01

    The site-specific relationship between EO indicators and actual crop yields has been explored in many different studies, describing semi-empirical regression models between spatially aggregated biophysical parameters or vegetation indices and observed yields (from field measurements or official statistics). However, when considering larger extensions -from countries to continents- agro-climatic conditions and crop management may differ substantially among regions, and these differences may greatly influence the relationship between biophysical indicators and the observed yields, which may be also driven by limiting factors other than green biomass formation. The present study aims to better assess the contribution of EO indicators within an operational crop yield forecasting system in Europe and neighbouring countries, by evaluating how these above mentioned geographic differences influence the relationship between biophysical indicators and crop yield. We therefore explore, as a first step, the correspondence between fAPAR time-series (1999-2013) and the inter-annual yield variability of wheat, barley and grain maize, at sub-national level across Europe (270-450 Administrative Units, depending on crop). In a second step, we map the agro-climatic contexts in which EO indicators better explain the observed yield inter-annual variability, identify the influence of some meteorological events on the fAPAR -yield relationship and provide some recommendations for further investigation. The results indicate that in water-limited environments (e.g. Mediterranean and Black Sea areas), fAPAR is highly correlated with yields whereas in northern Europe, crop yield appears much less limited by leaf area expansion along the season, and the relationship between yield and EO products becomes more difficult to interpret.

  15. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley.

    PubMed

    Siebenhandl, Susanne; Grausgruber, Heinrich; Pellegrini, Nicoletta; Del Rio, Daniele; Fogliano, Vincenzo; Pernice, Rita; Berghofer, Emmerich

    2007-10-17

    Two pigmented wheat genotypes (blue and purple) and two black barley genotypes were fractionated in bran and flour fractions, examined, and compared for their free radical scavenging properties against 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (Trolox equivalent antioxidant capacity, TEAC), ferric reducing antioxidant power (FRAP), total phenolic content (TPC), phenolic acid composition, carotenoid composition, and total anthocyanin content. The results showed that fractionation has a significant influence on the antioxidant properties, TPC, anthocyanin and carotenoid contents, and phenolic acid composition. Bran fractions had the greatest antioxidant activities (1.9-2.3 mmol TEAC/100 g) in all four grain genotypes and were 3-5-fold higher than the respective flour fractions (0.4-0.7 mmol TEAC/100 g). Ferulic acid was the predominant phenolic acid in wheat genotypes (bran fractions) while p-coumaric acid was the predominant phenolic acid in the bran fractions of barley genotypes. High-performance liquid chromatography analysis detected the presence of lutein and zeaxanthin in all fractions with different distribution patterns within the genotypes. The highest contents of anthocyanins were found in the middlings of black barley genotypes or in the shorts of blue and purple wheat. These data suggest the possibility to improve the antioxidant release from cereal-based food through selection of postharvest treatments.

  16. Evolutionary Conserved Function of Barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in Providing Wax Signals for Germination of Powdery Mildew Fungi1[C][W

    PubMed Central

    Weidenbach, Denise; Jansen, Marcus; Franke, Rochus B.; Hensel, Goetz; Weissgerber, Wiebke; Ulferts, Sylvia; Jansen, Irina; Schreiber, Lukas; Korzun, Viktor; Pontzen, Rolf; Kumlehn, Jochen; Pillen, Klaus; Schaffrath, Ulrich

    2014-01-01

    For plant pathogenic fungi, such as powdery mildews, that survive only on a limited number of host plant species, it is a matter of vital importance that their spores sense that they landed on the right spot to initiate germination as quickly as possible. We investigated a barley (Hordeum vulgare) mutant with reduced epicuticular leaf waxes on which spores of adapted and nonadapted powdery mildew fungi showed reduced germination. The barley gene responsible for the mutant wax phenotype was cloned in a forward genetic screen and identified to encode a 3-KETOACYL-CoA SYNTHASE (HvKCS6), a protein participating in fatty acid elongation and required for synthesis of epicuticular waxes. Gas chromatography-mass spectrometry analysis revealed that the mutant has significantly fewer aliphatic wax constituents with a chain length above C-24. Complementation of the mutant restored wild-type wax and overcame germination penalty, indicating that wax constituents less present on the mutant are a crucial clue for spore germination. Investigation of Arabidopsis (Arabidopsis thaliana) transgenic plants with sense silencing of Arabidopsis REQUIRED FOR CUTICULAR WAX PRODUCTION1, the HvKCS6 ortholog, revealed the same germination phenotype against adapted and nonadapted powdery mildew fungi. Our findings hint to an evolutionary conserved mechanism for sensing of plant surfaces among distantly related powdery mildews that is based on KCS6-derived wax components. Perception of such a signal must have been evolved before the monocot-dicot split took place approximately 150 million years ago. PMID:25201879

  17. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws.

    PubMed

    Assareh, Reza; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz; Aminzadeh, Saeed; Bakhshi Khaniki, Gholamreza

    2012-09-01

    A thermophile cellulase-producing bacterium was isolated and identified as closely related to Geobacillus subterraneus. The strain, named Geobacillus sp. T1, was able to grow and produce cellulase on cellobiose, microcrystalline cellulose, carboxymethylcellulose (CMC), barley straw, wheat straw and Whatman No. 1 filter paper. However, barley and wheat straws were significantly better substrates for cellulase production. When Geobacillus sp. T1 was cultivated in the presence of 0.5% barley straw, 0.1% Tween 80 and pH 6.5 at 50°C, the maximum level of free cellulase up to 143.50 U/mL was produced after 24h. This cellulase (≈ 54 kDa) was most active at pH 6.5 and 70°C. The enzyme in citrate phosphate buffer (10mM) was stable at 60°C for at least 1h. Geobacillus sp. T1 with efficient growth and cellulase production on straws seems a potential candidate for conversion of agricultural biomass to fuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Population subdivision of Fusarium graminearum from barley and wheat in the upper Midwestern United States at the turn of the century

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in wheat and barley, is one of the most economically destructive pathogens of these grains worldwide. Recent population genetic studies of the pathogen obtained from wheat in North America supported population subdivision in part c...

  19. Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars

    PubMed Central

    Krystkowiak, Karolina; Sawikowska, Aneta; Frohmberg, Wojciech; Górny, Andrzej; Kędziora, Andrzej; Jankowiak, Janusz; Józefczyk, Damian; Karg, Grzegorz; Andrusiak, Joanna; Krajewski, Paweł; Szarejko, Iwona; Surma, Maria; Adamski, Tadeusz; Guzy-Wróbelska, Justyna; Kuczyńska, Anetta

    2016-01-01

    In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi). PMID:27227880

  20. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress.

    PubMed

    Hein, Jordan A; Sherrard, Mark E; Manfredi, Kirk P; Abebe, Tilahun

    2016-11-09

    Photosynthetic organs of the cereal spike (ear) provide assimilate for grain filling, but their response to drought is poorly understood. In this study, we characterized the drought response of individual organs of the barley spike (awn, lemma, and palea) and compared them with a vegetative organ (fifth leaf). Understanding differences in physiological and metabolic responses between the leaf and spike organs during drought can help us develop high yielding cultivars for environments where terminal drought is prevalent. We exposed barley plants to drought by withholding water for 4 days at the grain filling stage and compared changes in: (1) relative water content (RWC), (2) osmotic potential (Ψ s ), (3) osmotic adjustment (OA), (4) gas exchange, and (5) metabolite content between organs. Drought reduced RWC and Ψ s in all four organs, but the decrease in RWC was greater and there was a smaller change in Ψ s in the fifth leaf than the spike organs. We detected evidence of OA in the awn, lemma, and palea, but not in the fifth leaf. Rates of gas exchange declined more rapidly in the fifth leaf than awn during drought. We identified 18 metabolites but, only ten metabolites accumulated significantly during drought in one or more organs. Among these, proline accumulated in all organs during drought while accumulation of the other metabolites varied between organs. This may suggest that each organ in the same plant uses a different set of osmolytes for drought resistance. Our results suggest that photosynthetic organs of the barley spike maintain higher water content, greater osmotic adjustment, and higher rates of gas exchange than the leaf during drought.

  1. Discriminating oat and groat kernels from other grains using near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Oat and groats can be discriminated from other grains such as barley, wheat, rye, and triticale (non-oats) using near infrared spectroscopy. The two instruments tested were the manual version of the ARS-USDA Single Kernel Near Infrared (SKNIR) and the automated QualySense QSorter Explorer high-speed...

  2. Effect of wheat dried distillers grains with solubles and fibrolytic enzymes on ruminal fermentation, digestibility, growth performance, and feeding behavior of beef cattle.

    PubMed

    He, Z X; Walker, N D; McAllister, T A; Yang, W Z

    2015-03-01

    Two experiments were conducted to evaluate the effect of wheat dried distillers grains with solubles (DDGS) and fibrolytic enzymes (FE) on ruminal fermentation, in situ ruminal and in vivo total tract digestibility, growth performance, and feeding behavior of growing beef cattle. In Exp. 1, 6 ruminally cannulated Angus heifers (average BW of 794 ± 44.2 kg) were used in a 6 × 6 Latin square design with 2 × 3 factorial arrangement of treatments. Treatments were a control diet consisting of 50% barley silage, 10% grass hay, and 40% barley grain-based concentrate (CON) and the CON with 15% DDGS substituted for barley grain (WDG) combined with either 0, 1, or 2 mL FE/kg diet DM, respectively. Inclusion of DDGS increased total tract digestibility of CP ( < 0.01), NDF ( = 0.04), and ADF ( = 0.03). Increasing FE linearly ( = 0.03) increased CP digestibility without affecting the digestibility of other nutrients. There were no effects of DDGS inclusion or FE on ruminal pH or VFA concentration except that propionate was greater ( = 0.04) with the WDG. In situ ruminal DM and NDF disappearance of barley silage was greater ( < 0.04) in heifers fed the WDG than in heifers fed the CON after 24 h of incubation. Increasing FE linearly ( = 0.03) increased in situ NDF disappearance of barley silage after 24 h of incubation. In Exp. 2, 120 weaned steers (initial BW of 289 ± 11.0 kg) were fed diets similar to those in Exp. 1. The steers fed the WDG had greater ( < 0.01) final BW, ADG, DMI, and G:F compared with steers fed the CON. Increasing FE did not alter ADG or G:F but tended ( < 0.07) to linearly decrease DMI. There were interactions ( < 0.02) between DDGS and FE on eating rate and the time spent at the feed bunk. Supplementing FE decreased ( < 0.01) time at the bunk and increased ( < 0.01) eating rate for steers fed the WDG but not for steers fed the CON. Eating rate ( < 0.01) and meal frequency ( = 0.02) were greater but eating duration was shorter ( < 0.01) for steers fed

  3. Milk production is unaffected by replacing barley or sodium hydroxide wheat with maize cob silage in rations for dairy cows.

    PubMed

    Hymøller, L; Hellwing, A L F; Lund, P; Weisbjerg, M R

    2014-05-01

    Starch is an important energy-providing nutrient for dairy cows that is most commonly provided from cereal grains. However, ruminal fermentation of large amounts of easily degradable starch leads to excessive production and accumulation of volatile fatty acids (VFA). VFA not only play a vital role in the energy metabolism of dairy cows but are also the main cause of ruminal acidosis and depressed feed intake. The aim of the present study was to compare maize cob silage (MCS) as an energy supplement in rations for dairy cows with highly rumen-digestible rolled barley and with sodium hydroxide wheat (SHW), which has a higher proportion of by-pass starch than barley. Two studies were carried out: (1) a production study on 45 Danish Holstein cows and (2) an intensive study to determine digestibilities, rumen fermentation patterns and methane emission using three rumen-cannulated Danish Holstein cows. Both studies were organised as a 3×3 Latin square with three experimental periods and three different mixed rations. The rations consisted of grass-clover silage and maize silage (~60% of dry matter (DM)), rapeseed cake, soybean meal, sugar beet pulp and one of three different cereals as a major energy supplement: MCS, SHW or rolled barley (~25% of DM). When MCS replaced barley or SHW as an energy supplement in the mixed rations, it resulted in a lower dry matter intake; however, the apparent total tract digestibilities of DM, organic matter, NDF, starch and protein were not different between treatments. The energy-corrected milk yield was unaffected by treatment. The fat content of the milk on the MCS ration was not different from the SHW ration, whereas it was higher on the barley ration. The protein content of the milk decreased when MCS was used in the ration compared with barley and SHW. From ruminal VFA patterns and pH measures, it appeared that MCS possessed roughage qualities with respect to rumen environment, while at the same time being sufficiently energy rich

  4. Importance of ABA homeostasis under terminal drought stress in regulating grain filling events

    PubMed Central

    Govind, Geetha; Seiler, Christiane; Wobus, Ulrich

    2011-01-01

    Recent studies suggest that abscisic acid (ABA) at its basal level plays an important role during seed set and grain filling events. Under drought stress ABA levels were found to be significantly enhanced in the developing seed. Until now we lacked an understanding of (1) ABA homeostasis in developing seeds under terminal drought and (2) the interactive role of ABA in regulating the starch biosynthesis pathway in developing grains under terminal drought. We have recently reported the possible regulation of ABA homeostasis in source (flag leaf) and sink (developing grains) tissues under post-anthesis drought stress in barley and concluded that significantly enhanced ABA levels in developing grains are due to strong activation of the ABA deconjugation pathway and fine regulation of the ABA biosynthesis-degradation pathway.1 Additionally, we provided evidence for the role of ABA in differential regulation of starch biosynthesis genes and a significant upregulation of starch degradation beta amylase genes under drought, i.e., ABA not only influences the rate of starch accumulation but also starch quality. PMID:21778825

  5. Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley

    PubMed Central

    Nice, Liana M.; Steffenson, Brian J.; Brown-Guedira, Gina L.; Akhunov, Eduard D.; Liu, Chaochih; Kono, Thomas J. Y.; Morrell, Peter L.; Blake, Thomas K.; Horsley, Richard D.; Smith, Kevin P.; Muehlbauer, Gary J.

    2016-01-01

    The ability to access alleles from unadapted germplasm collections is a long-standing problem for geneticists and breeders. Here we developed, characterized, and demonstrated the utility of a wild barley advanced backcross-nested association mapping (AB-NAM) population. We developed this population by backcrossing 25 wild barley accessions to the six-rowed malting barley cultivar Rasmusson. The 25 wild barley parents were selected from the 318 accession Wild Barley Diversity Collection (WBDC) to maximize allelic diversity. The resulting 796 BC2F4:6 lines were genotyped with 384 SNP markers, and an additional 4022 SNPs and 263,531 sequence variants were imputed onto the population using 9K iSelect SNP genotypes and exome capture sequence of the parents, respectively. On average, 96% of each wild parent was introgressed into the Rasmusson background, and the population exhibited low population structure. While linkage disequilibrium (LD) decay (r2 = 0.2) was lowest in the WBDC (0.36 cM), the AB-NAM (9.2 cM) exhibited more rapid LD decay than comparable advanced backcross (28.6 cM) and recombinant inbred line (32.3 cM) populations. Three qualitative traits: glossy spike, glossy sheath, and black hull color were mapped with high resolution to loci corresponding to known barley mutants for these traits. Additionally, a total of 10 QTL were identified for grain protein content. The combination of low LD, negligible population structure, and high diversity in an adapted background make the AB-NAM an important tool for high-resolution gene mapping and discovery of novel allelic variation using wild barley germplasm. PMID:27182953

  6. Composition of extracts of airborne grain dusts: lectins and lymphocyte mitogens.

    PubMed Central

    Olenchock, S A; Lewis, D M; Mull, J C

    1986-01-01

    Airborne grain dusts are heterogeneous materials that can elicit acute and chronic respiratory pathophysiology in exposed workers. Previous characterizations of the dusts include the identification of viable microbial contaminants, mycotoxins, and endotoxins. We provide information on the lectin-like activity of grain dust extracts and its possible biological relationship. Hemagglutination of erythrocytes and immunochemical modulation by antibody to specific lectins showed the presence of these substances in extracts of airborne dusts from barley, corn, and rye. Proliferation of normal rat splenic lymphocytes in vitro provided evidence for direct biological effects on the cells of the immune system. These data expand the knowledge of the composition of grain dusts (extracts), and suggest possible mechanisms that may contribute to respiratory disease in grain workers. PMID:3709474

  7. 7 CFR 810.805 - Special grades and special grade requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... grain. Mixed grain in which barley predominates and that contains more than 4.0 percent of fungus-damaged and/or mold-damaged barley kernels. (b) Ergoty mixed grain. (1) Mixed grain in which rye or wheat... than 0.10 percent ergot. (c) Garlicky mixed grain. (1) Mixed grain in which wheat, rye, or triticale...

  8. Feasibility of FT–Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley.

    PubMed

    Liu, Y; Delwiche, S R; Dong, Y

    2009-10-01

    Rapid detection of deoxynivalenol (DON) in cereal-based food and feed has long been the goal of regulators and manufacturers. As non-destructive approaches, infrared (IR) and near-infrared (NIR) spectroscopic techniques have been used for the prediction and classification of contaminated single-kernel and ground grain without any DON extraction steps. These methods, however, are hindered by the intense and broad spectral bands attributed to naturally occurring moisture. Raman spectroscopy could be an alternative to IR and NIR due to its insensitivity to water and fewer overlapped bands. This study explored the feasibility of the Raman technique for rapid and non-destructive screening of DON-contaminated wheat and barley meal. The advantages of this technique include the use of a 1064-nm NIR excitation laser that reduces interference from fluorescence of biological compounds in wheat and barley, the use of a simple intensity-intensity algorithm at two unique frequencies, plus the technique's ease of sample preparation. The results indicate that the simple algorithm, as well as principal component analysis applied to the Raman spectra, can be used to classify low from high DON grain.

  9. The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes

    PubMed Central

    Li, Zhongyi; Li, Dehong; Du, Xihua; Wang, Hong; Larroque, Oscar; Jenkins, Colin L. D.; Jobling, Stephen A.; Morell, Matthew K.

    2011-01-01

    In this study of barley starch synthesis, the interaction between mutations at the sex6 locus and the amo1 locus has been characterized. Four barley genotypes, the wild type, sex6, amo1, and the amo1sex6 double mutant, were generated by backcrossing the sex6 mutation present in Himalaya292 into the amo1 ‘high amylose Glacier’. The wild type, amo1, and sex6 genotypes gave starch phenotypes consistent with previous studies. However, the amo1sex6 double mutant yielded an unexpected phenotype, a significant increase in starch content relative to the sex6 phenotype. Amylose content (as a percentage of starch) was not increased above the level observed for the sex6 mutation alone; however, on a per seed basis, grain from lines containing the amo1 mutation (amo1 mutants and amo1sex6 double mutants) synthesize significantly more amylose than the wild-type lines and sex6 mutants. The level of granule-bound starch synthase I (GBSSI) protein in starch granules is increased in lines containing the amo1 mutation (amo1 and amo1sex6). In the amo1 genotype, starch synthase I (SSI), SSIIa, starch branching enzyme IIa (SBEIIa), and SBEIIb also markedly increased in the starch granules. Genetic mapping studies indicate that the ssIIIa gene is tightly linked to the amo1 locus, and the SSIIIa protein from the amo1 mutant has a leucine to arginine residue substitution in a conserved domain. Zymogram analysis indicates that the amo1 phenotype is not a consequence of total loss of enzymatic activity although it remains possible that the amo1 phenotype is underpinned by a more subtle change. It is therefore proposed that amo1 may be a negative regulator of other genes of starch synthesis. PMID:21813797

  10. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Li, Shouzhe; Liu, Dongping; Benstetter, Günther; Zhang, Yang; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Wu, Yunfeng; Bi, Zhenhua

    2018-04-01

    In this study, polycrystalline tungsten (W) and three oxide dispersed strengthened W with 0.1 vol %, 1.0 vol % and 5.0 vol % lanthanum trioxide (La2O3) were irradiated with low-energy (200 eV) and high-flux (5.8 × 1021 or 1.4 × 1022 ions/m2ṡs) He+ ions at elevated temperature. After He+ irradiation at a fluence of 3.0 × 1025/m2, their surface damages were observed by scanning electron microscopy, energy dispersive spectroscopy, scanning electron microscopy-electron backscatter diffraction, and conductive atomic force microscopy. Micron-sized holes were formed on the surface of W alloys after He+ irradiation at 1100 K. Analysis shows that the La2O3 grains doped in W were sputtered preferentially by the high-flux He+ ions when compared with the W grains. For irradiation at 1550 K, W nano-fuzz was formed at the surfaces of both polycrystalline W and La2O3-doped W. The thickness of the fuzz layers formed at the surface of La2O3-doped W is 40% lower than the one of polycrystalline W. The presence of La2O3 could suppress the diffusion and coalescence of He atoms inside W, which plays an important role in the growth of nanostructures fuzz.

  11. Effect of timing and type of supplementary grain on herbage intake, nitrogen utilization and milk production in dairy cows grazed on perennial ryegrass pasture from evening to morning.

    PubMed

    Ueda, Koichiro; Mitani, Tomohiro; Kondo, Seiji

    2017-01-01

    The present study aimed to clarify the effect of timing and type of supplementary grain in grazing dairy cows on herbage dry matter intake (HDMI), nitrogen utilization and milk production. Eight lactating cows were allowed to graze from evening to morning during three seasonal periods (spring, summer, autumn). They were randomly allocated to four treatments (timing: pre- (Pre) or post-grazing (Post), for large grain allotments consisting of 75% of daily grain offered; grain type: barley or corn) in 4 × 4 Latin square designs in each period. In the spring period, HDMI was greater for cows fed corn than those fed barley (P = 0.005), whereas cows in the Pre treatment had a similar HDMI, higher (P = 0.049) urinary purine derivative concentration and greater (P = 0.004) milk yield compared with cows in the Post treatment. In the summer and autumn periods, timing treatments did not affect HDMI, nitrogen utilization or milk production, but cows supplemented with barley had higher urinary purine derivatives concentration (P < 0.05) and milk yield (P < 0.05) compared with those supplemented with corn. The results indicate that large grain allotments immediately before evening grazing during early grazing seasons increased ruminal microbial protein synthesis and milk production without reducing HDMI regardless of grain type. © 2016 Japanese Society of Animal Science.

  12. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    PubMed Central

    Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M.

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley. PMID:28407006

  13. Metabolic Architecture of the Cereal Grain and Its Relevance to Maximize Carbon Use Efficiency1[OPEN

    PubMed Central

    Rolletschek, Hardy; Grafahrend-Belau, Eva; Munz, Eberhard; Radchuk, Volodymyr; Kartäusch, Ralf; Tschiersch, Henning; Melkus, Gerd; Schreiber, Falk; Jakob, Peter M.; Borisjuk, Ljudmilla

    2015-01-01

    Here, we have characterized the spatial heterogeneity of the cereal grain’s metabolism and demonstrated how, by integrating a distinct set of metabolic strategies, the grain has evolved to become an almost perfect entity for carbon storage. In vivo imaging revealed light-induced cycles in assimilate supply toward the ear/grain of barley (Hordeum vulgare) and wheat (Triticum aestivum). In silico modeling predicted that, in the two grain storage organs (the endosperm and embryo), the light-induced shift in solute influx does cause adjustment in metabolic flux without changes in pathway utilization patterns. The enveloping, leaf-like pericarp, in contrast, shows major shifts in flux distribution (starch metabolism, photosynthesis, remobilization, and tricarboxylic acid cycle activity) allow to refix 79% of the CO2 released by the endosperm and embryo, allowing the grain to achieve an extraordinary high carbon conversion efficiency of 95%. Shading experiments demonstrated that ears are autonomously able to raise the influx of solutes in response to light, but with little effect on the steady-state levels of metabolites or transcripts or on the pattern of sugar distribution within the grain. The finding suggests the presence of a mechanism(s) able to ensure metabolic homeostasis in the face of short-term environmental fluctuation. The proposed multicomponent modeling approach is informative for predicting the metabolic effects of either an altered level of incident light or a momentary change in the supply of sucrose. It is therefore of potential value for assessing the impact of either breeding and/or biotechnological interventions aimed at increasing grain yield. PMID:26395842

  14. Characterization of volatile aroma compounds in different brewing barley cultivars.

    PubMed

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  15. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material.

    PubMed

    Steiner, Elisabeth; Auer, Andrea; Becker, Thomas; Gastl, Martina

    2012-03-15

    Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. The quality attributes of barley, malt, kettle-full-wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two-dimensional polyacrylamide gel electrophoresis was used. It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry.

  16. Acute symptoms following exposure to grain dust in farming.

    PubMed Central

    Manfreda, J; Holford-Strevens, V; Cheang, M; Warren, C P

    1986-01-01

    History of acute symptoms (cough, wheezing, shortness of breath, fever, stuffy nose, and skin itching/rash) following exposure to grain dust was obtained from 661 male and 535 female current and former farmers. These symptoms were relatively common: 60% of male and 25% of female farmers reported at least one such symptom on exposure to grain dust. Association of cough, wheezing, shortness of breath, and stuffy nose with skin reactivity and capacity to form IgE is consistent with an allergic nature of these symptoms. Barley and oats dust were perceived as dust most often producing symptoms. On the other hand, grain fever showed a different pattern, i.e., it was not associated with either skin reactivity or total IgE. Smoking might modify the susceptibility to react to grain dust with symptoms. Only those who reported wheezing on exposure to grain dust may have an increased risk to develop chronic airflow obstruction. PMID:3709486

  17. Fusariotoxicosis from barley in British Columbia. II. Analysis and toxicity of syspected barley.

    PubMed Central

    Puls, R; Greenway, J A

    1976-01-01

    Fusariotoxin T-2, a trichothecene, was tentatively identified in barley samples which caused field outbreaks of mycotoxicosis in British Columbia. Geese died when fed the contaminated barley experimentally but mice were little affected after long term feeding. The methods used in the laboratory for trichothecene extraction and identification of T-2 toxin are described. PMID:1000373

  18. GEMINI-TITAN (GT)-10 (RECOVERY) - ASTRONAUT JOHN W. YOUNG - MISC. - ATLANTIC

    NASA Image and Video Library

    1966-07-21

    S66-42772 (21 July 1966) --- A U.S. Navy frogman assist the Gemini-10 crew following splashdown at 4:07 p.m. (EST), July 21, 1966, about four miles from the recovery ship, USS Guadalcanal. Astronaut John W. Young (climbing from spacecraft), command pilot, and Michael Collins (in spacecraft), pilot, were later hoisted from the water by a recovery helicopter and flown to the Guadalcanal. Photo credit: NASA

  19. Use of a multifunctional column for the determination of deoxynivalenol in grains, grain products, and processed foods.

    PubMed

    Bao, Lei; Oles, Carolyn J; White, Kevin D; Sapp, Chelsea; Trucksess, Mary W

    2011-01-01

    Deoxynivalenol (DON), also known as vomitoxin, belongs to a class of naturally occurring mycotoxins produced by Fusarium spp. DON, 12, 13-epoxy-3,7 trihydroxytrichothec-9-en-8-one, is one of the most frequently detected mycotoxins in agricultural commodities worldwide. A method consisting of extraction, filtration, column cleanup, and RP-HPLC-UV separation and quantitation was validated for the determination of DON in grains (rice and barley), grain products (whole wheat flour, white flour, wheat germ, and wheat bran), and processed foods (bread, breakfast cereals, and pretzels). A 25 g test portion was extracted with 100 mL acetonitrile-water (84 + 16, v/v). After blending for 3 min, the supernatant was applied to a multifunctional column (MycoSep 225). The purified filtrate (2 mL) was evaporated to dryness and redissolved in the mobile phase. The toxins were then subjected to RP-HPLC-UV analysis. The accuracy and repeatability characteristics of the method were determined. Recoveries of DON added at levels ranging from 0.5 to 1.5 microg/g for all test matrixes were from 75 to 98%. SD and RSD(r) ranged from 0.7 to 11.6% and 0.9 to 12.7%, respectively. Within-laboratory HorRat values were from 0.1 to 0.7 for all matrixes analyzed. The method was found to meet AOAC method performance criteria for grains, grain products, and processed foods. The identity of DON in naturally contaminated test sample extracts was confirmed by HPLC/MS/MS analysis.

  20. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.

    PubMed

    Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey

    2017-06-19

    While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well

  1. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism

    PubMed Central

    Hazzouri, Khaled M.; Khraiwesh, Basel; Amiri, Khaled M. A.; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K.; Nelson, David; Mansour, Alain L.; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled

    2018-01-01

    Sodium (Na+) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+) and potassium (K+) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide

  2. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism.

    PubMed

    Hazzouri, Khaled M; Khraiwesh, Basel; Amiri, Khaled M A; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K; Nelson, David; Mansour, Alain L; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled

    2018-01-01

    Sodium (Na + ) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5 -like gene was a major gene in the QTL for salt tolerance, named Nax2 . In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley ( Hordeum vulgare ). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na + ) and potassium (K + ) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na + and K + were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results

  3. Mass spectrometry-based analysis of whole-grain phytochemicals.

    PubMed

    Koistinen, Ville Mikael; Hanhineva, Kati

    2017-05-24

    Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.

  4. A Small GTP-Binding Host Protein Is Required for Entry of Powdery Mildew Fungus into Epidermal Cells of Barley1

    PubMed Central

    Schultheiss, Holger; Dechert, Cornelia; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2002-01-01

    Small GTP-binding proteins such as those from the RAC family are cytosolic signal transduction proteins that often are involved in processing of extracellular stimuli. Plant RAC proteins are implicated in regulation of plant cell architecture, secondary wall formation, meristem signaling, and defense against pathogens. We isolated a RacB homolog from barley (Hordeum vulgare) to study its role in resistance to the barley powdery mildew fungus (Blumeria graminis f.sp. hordei). RacB was constitutively expressed in the barley epidermis and its expression level was not strongly influenced by inoculation with B. graminis. However, after biolistic bombardment of barley leaf segments with RacB-double-stranded RNA, sequence-specific RNA interference with RacB function inhibited fungal haustorium establishment in a cell-autonomous and genotype-specific manner. Mutants compromised in function of the Mlo wild-type gene and the Ror1 gene (genotype mlo5 ror1) that are moderately susceptible to B. graminis showed no alteration in powdery mildew resistance upon RacB-specific RNA interference. Thus, the phenotype, induced by RacB-specific RNA interference, was apparently dependent on the same processes as mlo5-mediated broad resistance, which is suppressed by ror1. We conclude that an RAC small GTP-binding protein is required for successful fungal haustorium establishment and that this function may be linked to MLO-associated functions. PMID:11950993

  5. Nitrate Transport Is Independent of NADH and NAD(P)H Nitrate Reductases in Barley Seedlings 1

    PubMed Central

    Warner, Robert L.; Huffaker, Ray C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings. PMID:11537465

  6. The effect of different grain diets on fecal shedding of Escherichia coli O157:H7 by steers.

    PubMed

    Buchko, S J; Holley, R A; Olson, W O; Gannon, V P; Veira, D M

    2000-11-01

    Three groups of six yearling steers (three rumen fistulated plus three nonfistulated) fed one of three different grain diets (85% cracked corn, 15% whole cottonseed and 70% barley, or 85% barley) were inoculated with 10(10) CFU of Escherichia coli O157:H7 strain 3081, and the presence of the inoculated strain was followed in the rumen fluid and feces for a 10-week period. E. coli O157:H7 was rapidly eliminated from the rumen of the animals on all three diets but persisted in the feces of some animals up to 67 days after inoculation, suggesting that the bovine hindgut is the site of E. coli O157:H7 persistence. A significant difference existed in the levels of E. coli O157:H7 shed by the animals among diets on days 5, 7, 49, and 63 after inoculation (P < 0.05). No significant difference was found between the levels shed among diets on days 9 through 42 and on day 67 (P > 0.05). The number of animals that were culture positive for E. coli O157:H7 strain 3081 during the 10-week period was significantly higher for the barley fed group (72 of 114 samplings) as opposed to the corn fed group (44 of 114 samplings) (P < 0.005) and the cottonseed and barley fed group (57 of 114 samplings) (P < 0.05). The fecal pH of the animals fed the corn diet was significantly lower (P < 0.05) than the fecal pH of the animals fed the cottonseed and barley and barley diets, likely resulting in a less suitable environment for E. coli O157:H7 in the hindgut of the corn fed animals. E. coli O157:H7 strain 3081 was present in 3 of 30 (corn, 1 of 10; cottonseed, 1 of 10; barley, 1 of 10) animal drinking water samples, 3 of 30 (corn, 1 of 10; cottonseed, 0 of 10; barley, 2 of 10) water trough biofilm swabs, 5 of 30 (corn, 0 of 10; cottonseed, 2 of 10; barley, 3 of 10) feed samples, and 30 of 30 manure samples taken from the pens during the entire experimental period. Mouth swabs of the steers were also culture positive for E. coli O157:H7 strain 3081 in 30 of 180 samples (corn, 7 of 60

  7. Barley processing, forage:concentrate, and forage length effects on chewing and digesta passage in lactating cows.

    PubMed

    Yang, W Z; Beauchemin, K A; Rode, L M

    2001-12-01

    Dietary factors that alter fermentability, NDF content, or particle size of the diet were evaluated for their effects on chewing behavior and distribution and passage of feed particles in the digestive tract of dairy cows. A double 4 x 4 quasi-Latin square design with a 2(3) factorial arrangement of treatments was used. The dietary factors were: extent of barley grain processing, coarse (1.60 mm) or flat (1.36 mm); forage-to-concentrate ratio (F:C), low (35:65) or high (55:45) (dry matter basis); and forage particle length, long (7.59 mm) or short (6.08 mm). Eight lactating cows with ruminal and duodenal cannulas were offered ad libitum access to total mixed diets. Chewing time, expressed as minutes per day or per kilogram of dry matter or neutral detergent fiber (NDF), was increased with high F:C diets due to increased eating and ruminating times but was decreased when expressed per kilogram of NDF intake from forage. The influence of forage particle length or grain processing on chewing activity was less pronounced than F:C ratio. Chewing activity was positively correlated to proportion of long forage particles in the diet but not to particle length of the diets. Influence of feed particle size on particle size distribution in different sites of the digestive tract was minimal. Particle size distributions of duodenal digesta and feces differed; the proportion of particles retained on the 3.35- or 1.18-mm screens was higher, but proportion of particles that passed through the 1.18-mm screen was lower in duodenal digesta than in feces. Relationships between chewing activities and ruminal pH or fractional passage rate of rumen contents were not significant. These results indicate that particle size of barley-based diets was not a reliable indicator of chewing activity. Forage particle size and NDF content of the diets were more reliable indicators of chewing activity than was the NDF content of forage. Fecal particle size was not an appropriate means of estimating

  8. Extreme star formation in the Milky Way: luminosity distributions of young stellar objects in W49A and W51

    NASA Astrophysics Data System (ADS)

    Eden, D. J.; Moore, T. J. T.; Urquhart, J. S.; Elia, D.; Plume, R.; König, C.; Baldeschi, A.; Schisano, E.; Rigby, A. J.; Morgan, L. K.; Thompson, M. A.

    2018-07-01

    We have compared the star-formation properties of the W49A and W51 regions by using far-infrared data from the Herschel infrared Galactic Plane Survey (Hi-GAL) and 850-μm observations from the James Clerk Maxwell Telescope (JCMT) to obtain luminosities and masses, respectively, of associated compact sources. The former are infrared luminosities from the catalogue of Elia et al., while the latter are from the JCMT Plane survey source catalogue as well as measurements from new data. The clump-mass distributions of the two regions are found to be consistent with each other, as are the clump-formation efficiency and star-formation efficiency analogues. However, the frequency distributions of the luminosities of the young stellar objects are significantly different. While the luminosity distribution in W51 is consistent with Galaxy-wide samples, that of W49A is top heavy. The differences are not dramatic and are concentrated in the central regions of W49A. However, they suggest that physical conditions there, which are comparable in part to those in extragalactic starbursts, are significantly affecting the star-formation properties or evolution of the dense clumps in the region.

  9. Extreme star formation in the Milky Way: Luminosity distributions of young stellar objects in W49A and W51

    NASA Astrophysics Data System (ADS)

    Eden, D. J.; Moore, T. J. T.; Urquhart, J. S.; Elia, D.; Plume, R.; König, C.; Baldeschi, A.; Schisano, E.; Rigby, A. J.; Morgan, L. K.; Thompson, M. A.

    2018-03-01

    We have compared the star-formation properties of the W49A and W51 regions by using far-infrared data from the Herschel infrared Galactic Plane Survey (Hi-GAL) and 850-μm observations from the James Clerk Maxwell Telescope (JCMT) to obtain luminosities and masses, respectively, of associated compact sources. The former are infrared luminosities from the catalogue of Elia et al. (2017), while the latter are from the JCMT Plane survey source catalogue as well as measurements from new data. The clump-mass distributions of the two regions are found to be consistent with each other, as are the clump-formation efficiency and star-formation efficiency analogues. However, the frequency distributions of the luminosities of the young stellar objects are significantly different. While the luminosity distribution in W51 is consistent with Galaxy-wide samples, that of W49A is top-heavy. The differences are not dramatic, and are concentrated in the central regions of W49A. However, they suggest that physical conditions there, which are comparable in part to those in extragalactic starbursts, are significantly affecting the star-formation properties or evolution of the dense clumps in the region.

  10. Effects of barley β-glucan-enriched flour fractions on the glycaemic index of bread.

    PubMed

    Finocchiaro, Franca; Ferrari, Barbara; Gianinetti, Alberto; Scazzina, Francesca; Pellegrini, Nicoletta; Caramanico, Rosita; Salati, Claudia; Shirvanian, Vigen; Stanca, Antonio Michele

    2012-02-01

    The aim of this research was to evaluate β-glucan-enriched flours, obtained from barleys with either normal or waxy starch, for their effects on the glycaemic index (GI) and the quality of bread. Rheological results confirmed that when barley flour was included in the dough the overall quality of bread slightly worsened. However, positive consequences on glycaemia were obtained with the normal starch barley: the GI of all-wheat bread (82.8 ± 7.2) was significantly reduced (57.2 ± 7.9) when 40% of wheat flour was substituted with β-glucan-enriched barley flour (6.0% ± 0.1 β-glucan in the final flour blend). In contrast, this positive effect was significantly reduced (GI: 70.1 ± 9.1) when 40% of wheat flour was substituted with the β-glucan-enriched flour of a waxy barley (CDC Alamo; 6.6 ± 0.2 β-glucan in the final flour blend), suggesting that the ability of β-glucans to lower the GI was affected by the barley starch-type.

  11. Low-Resolution Structure of the Full-Length Barley (Hordeum vulgare) SGT1 Protein in Solution, Obtained Using Small-Angle X-Ray Scattering

    PubMed Central

    Taube, Michał; Pieńkowska, Joanna R.; Jarmołowski, Artur; Kozak, Maciej

    2014-01-01

    SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed. PMID:24714665

  12. Bioactive compounds in cereal grains - occurrence, structure, technological significance and nutritional benefits - a review.

    PubMed

    Bartłomiej, Siurek; Justyna, Rosicka-Kaczmarek; Ewa, Nebesny

    2012-12-01

    This review presents current information about principal, biologically active compounds contained in grains of cereals that are most popular in Europe (wheat, rye, barley and oat). The tendency to provide consumers with safe foods, which promote their health and are based on cereal grains and/or their components with the high nutritive value, has been recently observed. The intake of protective substances contained in whole grains and their fractions contributes to a decreased risk of food-dependent diseases like the coronary heart disease and insulin-dependent diabetes. This study describes the structure, occurrence in cereal grains, technological importance and beneficial influence on human health of bioactive substances such as arabinoxylans, β-glucans, alkylresorcinols, tocols and phytosterols.

  13. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.

    PubMed

    Zhao, J T; Zhang, J Y; Hou, Z Q; Wu, K; Feng, X B; Liu, G; Sun, J

    2018-05-11

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu-W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C-600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu-W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu-W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu-W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu-W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu-W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  14. The W alloying effect on thermal stability and hardening of nanostructured Cu–W alloyed thin films

    NASA Astrophysics Data System (ADS)

    Zhao, J. T.; Zhang, J. Y.; Hou, Z. Q.; Wu, K.; Feng, X. B.; Liu, G.; Sun, J.

    2018-05-01

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu–W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C–600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu–W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu–W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu–W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu–W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu–W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  15. Effects of whole grains on coronary heart disease risk.

    PubMed

    Harris, Kristina A; Kris-Etherton, Penny M

    2010-11-01

    Characterizing which types of carbohydrates, including whole grains, reduce the risk for coronary heart disease (CHD) is challenging. Whole grains are characterized as being high in resistant carbohydrates as compared with refined grains, meaning they typically are high in fiber, nutrients, and bound antioxidants. Whole grain intake consistently has been associated with improved cardiovascular disease outcomes, but also with healthy lifestyles, in large observational studies. Intervention studies that assess the effects of whole grains on biomarkers for CHD have mixed results. Due to the varying nutrient compositions of different whole grains, each could potentially affect CHD risk via different mechanisms. Whole grains high in viscous fiber (oats, barley) decrease serum low-density lipoprotein cholesterol and blood pressure and improve glucose and insulin responses. Grains high in insoluble fiber (wheat) moderately lower glucose and blood pressure but also have a prebiotic effect. Obesity is inversely related to whole grain intake, but intervention studies with whole grains have not produced weight loss. Visceral fat, however, may be affected favorably. Grain processing improves palatability and can have varying effects on nutrition (e.g., the process of milling and grinding flour increases glucose availability and decreases phytochemical content whereas thermal processing increases available antioxidants). Understanding how individual grains, in both natural and processed states, affect CHD risk can inform nutrition recommendations and policies and ultimately benefit public health.

  16. Whole Tibetan Hull-Less Barley Exhibit Stronger Effect on Promoting Growth of Genus Bifidobacterium than Refined Barley In Vitro.

    PubMed

    Gong, Lingxiao; Cao, Wenyan; Gao, Jie; Wang, Jing; Zhang, Huijuan; Sun, Baoguo; Yin, Meng

    2018-04-01

    The gut microbiota has recently become a new route for research at the intersection of diet and human health. The aim of this study was to investigate whether whole Tibetan hull-less barley (WHB) and refined Tibetan hull-less barley (RHB) caused differentiation of the fecal microbiota in vitro. The microbiota-accessible ingredients in the 2 barley samples were studied using an in vitro enzymatic digestion procedure. After in vitro digestion, insoluble dietary fiber, phenolic compounds, proteins, and β-glucans were 93.2%, 103.4%. 18.8%, and 10.2% higher provided by WHB flour as compared with RHB flour based on the same mass amount. However, due to the significantly higher content of insoluble dietary fiber, WHB digesta had lower percentage contents of fast fermentable substrates including dietary fiber and starch as compared with RHB digesta. The results of Next-generation sequencing of the bacterial 16SrRNA gene showed that both WHB and RHB fermentation had significantly promoted the growth of Bifidobacterium and inhibited the growth of pathogenic bacteria such as Dorea, Escherichia, Oscillopira, and Ruminococcus. Moreover, in response to WHB fermentation, the relative abundance of Bifidobacterium increased by 78.5% and 92.8% as compared with RHB and fructo-oligosaccharides (FOs). Both WHB and RHB are good sources of fermentable dietary fiber with the ability to yield high concentration of short chain fatty acids (SCFAs) as compared to FOs. However, the higher fraction of soluble fiber in RHB digesta increase higher amounts of SCFA compared with WHB digesta. Our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health. Until now, only few reports have regarded the impact of in vitro digestion in components of whole grain with complex food matrix. Moreover, our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health. © 2018

  17. Gas-Grain Chemical Models: Inclusion of a Grain Size Distribution and a Study Of Young Stellar Objects in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler Andrew

    2017-06-01

    Computational models of interstellar gas-grain chemistry have aided in our understanding of star-forming regions. Chemical kinetics models rely on a network of chemical reactions and a set of physical conditions in which atomic and molecular species are allowed to form and react. We replace the canonical single grain-size in our chemical model MAGICKAL with a grain size distribution and analyze the effects on the chemical composition of the gas and grain surface in quiescent and collapsing dark cloud models. We find that a grain size distribution coupled with a temperature distribution across grain sizes can significantly affect the bulk ice composition when dust temperatures fall near critical values related to the surface binding energies of common interstellar chemical species. We then apply the updated model to a study of ice formation in the cold envelopes surrounding massive young stellar objects in the Magellanic Clouds. The Magellanic Clouds are local satellite galaxies of the Milky Way, and they provide nearby environments to study star formation at low metallicity. We expand the model calculation of dust temperature to include a treatment for increased interstellar radiation field intensity; we vary the radiation field to model the elevated dust temperatures observed in the Magellanic Clouds. We also adjust the initial elemental abundances used in the model, guided by observations of Magellanic Cloud HII regions. We are able to reproduce the relative ice fractions observed, indicating that metal depletion and elevated grain temperature are important drivers of the envelope ice composition. The observed shortfall in CO in Small Magellanic Cloud sources can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH 3OH abundance is found to be enhanced (relative to total carbon abundance) in

  18. HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways

    PubMed Central

    Campoli, Chiara; Pankin, Artem; Drosse, Benedikt; Casao, Cristina M; Davis, Seth J; von Korff, Maria

    2013-01-01

    Photoperiodic flowering is a major factor determining crop performance and is controlled by interactions between environmental signals and the circadian clock. We proposed Hvlux1, an ortholog of the Arabidopsis circadian gene LUX ARRHYTHMO, as a candidate underlying the early maturity 10 (eam10) locus in barley (Hordeum vulgare L.). The link between eam10 and Hvlux1 was discovered using high-throughput sequencing of enriched libraries and segregation analysis. We conducted functional, phylogenetic, and diversity studies of eam10 and HvLUX1 to understand the genetic control of photoperiod response in barley and to characterize the evolution of LUX-like genes within barley and across monocots and eudicots. We demonstrate that eam10 causes circadian defects and interacts with the photoperiod response gene Ppd-H1 to accelerate flowering under long and short days. The results of phylogenetic and diversity analyses indicate that HvLUX1 was under purifying selection, duplicated at the base of the grass clade, and diverged independently of LUX-like genes in other plant lineages. Taken together, these findings contribute to improved understanding of the barley circadian clock, its interaction with the photoperiod pathway, and evolution of circadian systems in barley and across monocots and eudicots. PMID:23731278

  19. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    PubMed

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  20. Degradation parameters of amaranth, barley and quinoa in alpacas fed grass hay.

    PubMed

    Nilsen, B; Johnston, N P; Stevens, N; Robinson, T F

    2015-10-01

    This study was conducted to determine the compartment 1 (C1) characteristics of alpacas (fistulated male, 7 ± 1.5 years old, 61 ± 5 kg BW) fed grass hay (GH) supplemented with amaranth (AM), quinoa (Q) and barley (B) grains. Alpacas were provided water ad libitum while housed in metabolism crates. The GH and GH plus treatments were fed at 0700 every day. Treatment periods were for 14 days in which GH or GH plus one of the grain treatments were randomly allocated. On day 14, volatile fatty acids (VFA), pH and ammonia nitrogen (NH3 -N) were determined at 1, 3, 6, 10, 14, 18 and 24 h post-feeding. C1 degradation of each feed component was also determined with the alpacas being fed GH only and the samples incubated for 0, 2, 4, 8, 14, 24, 48 and 72 h. Dry matter (DM), neutral detergent fibre (NDF) and crude protein (CP) were determined and were divided into three categories: a = immediately soluble; b = the non-soluble but degradable; and u = non-degradable/unavailable, potential extent of degradation (PE), degradation rate (c) and effective degradation (ED). C1 passage rate was determined using acid detergent insoluble ash as a marker and was calculated to be 5.5%∙h-1. Total DM intake was highest (p < 0.05) for B and resulted in a higher (p < 0.05) CP intake. GH and AM were different in mean pH (6.81 and 6.66, respectively). B NH3 -N was greater (p < 0.05) than the other treatments. Total VFA was greatest (p < 0.05) for AM, with the greatest composition differences being a shift form acetate percentage to butyrate. DM, NDF and CP degradation was different across the treatments, where PE and ED were higher (p < 0.05) for the grain treatments. The pseudo-grains AM and Q had similar C1 degradation characteristics to B. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  1. Cold-Specific Induction of a Dehydrin Gene Family Member in Barley.

    PubMed Central

    Van Zee, K.; Chen, F. Q.; Hayes, P. M.; Close, T. J.; Chen, THH.

    1995-01-01

    An interval on barley (Hordeum vulgare L.) chromosome 7 accounting for significant quantitative trait locus effects for winter hardiness were detected in a winter (Dicktoo) x spring (Morex) barley population (P.M. Hayes, T. Blake, T.H.H. Chen, S. Tragoonrung, F. Chen, A. Pan, and B. Liu [1993] Genome 36: 66-71). Two members of the barley dehydrin gene family, Dhn1 and Dhn2, were located within the region defining the winter hardiness quantitative trait locus effect (A. Pan, P.M. Hayes, F. Chen, T. Blake, T.H.H. Chen, T.T.S. Wright, I. Karsai, Z. Bedo [1994] Theor Appl Genet 89: 900-910). To investigate the possible role of Dhn1 and Dhn2 in winter hardiness, we examined the expression pattern of six barley dehydrin gene family members in shoot tissue in response to cold temperature. Incubation of 3-week-old barley plants at 2[deg]C resulted in a rapid induction of a single 86-kD polypeptide that was recognized by an antiserum against a peptide conserved in the dehydrin gene family. Northern blot analysis confirmed the induction of an mRNA corresponding to Dhn5. The expression patterns of cold-induced dehydrins in shoot tissue for Dicktoo and Morex were identical under the conditions studied, in spite of the known phenotypic differences in their winter hardiness. These results, together with the allelic structure of selected high- and low-survival lines, suggest that the Dicktoo alleles at the Dhn1 and Dhn2 may not be the primary determinants of winter hardiness in barley. PMID:12228540

  2. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  3. Transcriptomic Analysis of Temperature Responses of Aspergillus kawachii during Barley Koji Production

    PubMed Central

    Futagami, Taiki; Mori, Kazuki; Wada, Shotaro; Ida, Hiroko; Kajiwara, Yasuhiro; Takashita, Hideharu; Tashiro, Kosuke; Yamada, Osamu; Omori, Toshiro; Kuhara, Satoru

    2014-01-01

    The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40°C and is then lowered to 30°C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30°C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40°C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii. PMID:25501485

  4. Transcriptomic analysis of temperature responses of Aspergillus kawachii during barley koji production.

    PubMed

    Futagami, Taiki; Mori, Kazuki; Wada, Shotaro; Ida, Hiroko; Kajiwara, Yasuhiro; Takashita, Hideharu; Tashiro, Kosuke; Yamada, Osamu; Omori, Toshiro; Kuhara, Satoru; Goto, Masatoshi

    2015-02-01

    The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40 °C and is then lowered to 30 °C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30 °C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40 °C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii.

  5. The Genetic Architecture of Barley Plant Stature

    PubMed Central

    Alqudah, Ahmad M.; Koppolu, Ravi; Wolde, Gizaw M.; Graner, Andreas; Schnurbusch, Thorsten

    2016-01-01

    Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture. PMID:27446200

  6. Barley hulls and straw constituents and emulsifying properties of their hemicelluloses

    USDA-ARS?s Scientific Manuscript database

    Barley hulls (husks) are potential by-products of barley ethanol production. Barley straw is an abundant biomass in the regions producing barley for malting, feeds, and fuel ethanol. Both barley hulls and straw contain valuable hemicelluloses (arabinoxylans) and other useful carbohydrate and non-car...

  7. GEMINI-TITAN (GT)-10 (RECOVERY)- ASTRONAUT JOHN W. YOUNG - MISC. - ATLANTIC

    NASA Image and Video Library

    1966-07-21

    S66-42787 (21 July 1966) --- Twelve-year -old Billy Doyle of Virginia Beach, VA., shakes hands with astronaut Michael Collins, Gemini-10 pilot, aboard the recovery ship USS Guadalcanal. At right is John W. Young, command pilot of the Gemini-10 spaceflight. Billy represented 41 youngsters permitted aboard the Guadalcanal to witness the recovery with their Naval fathers or close relatives, marking the first time dependents have been permitted aboard a ship during a Gemini recovery operation. Photo credit: NASA

  8. Can T1 w/T2 w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1 w/T2 w ratios, GRASE-based T1 w/T2 w ratios and multi-echo GRASE-based myelin water fractions.

    PubMed

    Uddin, Md Nasir; Figley, Teresa D; Marrie, Ruth Ann; Figley, Chase R

    2018-03-01

    Given the growing popularity of T 1 -weighted/T 2 -weighted (T 1 w/T 2 w) ratio measurements, the objective of the current study was to evaluate the concordance between T 1 w/T 2 w ratios obtained using conventional fast spin echo (FSE) versus combined gradient and spin echo (GRASE) sequences for T 2 w image acquisition, and to compare the resulting T 1 w/T 2 w ratios with histologically validated myelin water fraction (MWF) measurements in several subcortical brain structures. In order to compare these measurements across a relatively wide range of myelin concentrations, whole-brain T 1 w magnetization prepared rapid acquisition gradient echo (MPRAGE), T 2 w FSE and three-dimensional multi-echo GRASE data were acquired from 10 participants with multiple sclerosis at 3 T. Then, after high-dimensional, non-linear warping, region of interest (ROI) analyses were performed to compare T 1 w/T 2 w ratios and MWF estimates (across participants and brain regions) in 11 bilateral white matter (WM) and four bilateral subcortical grey matter (SGM) structures extracted from the JHU_MNI_SS 'Eve' atlas. Although the GRASE sequence systematically underestimated T 1 w/T 2 w values compared to the FSE sequence (revealed by Bland-Altman and mountain plots), linear regressions across participants and ROIs revealed consistently high correlations between the two methods (r 2 = 0.62 for all ROIs, r 2 = 0.62 for WM structures and r 2 = 0.73 for SGM structures). However, correlations between either FSE-based or GRASE-based T 1 w/T 2 w ratios and MWFs were extremely low in WM structures (FSE-based, r 2 = 0.000020; GRASE-based, r 2 = 0.0014), low across all ROIs (FSE-based, r 2 = 0.053; GRASE-based, r 2 = 0.029) and moderate in SGM structures (FSE-based, r 2 = 0.20; GRASE-based, r 2 = 0.17). Overall, our findings indicated a high degree of correlation (but not equivalence) between FSE-based and GRASE-based T 1 w/T 2 w ratios, and low correlations between T 1 w/T 2 w ratios and MWFs. This

  9. Products based on a high fiber barley genotype, but not on common barley or oats, lower postprandial glucose and insulin responses in healthy humans.

    PubMed

    Liljeberg, H G; Granfeldt, Y E; Björck, I M

    1996-02-01

    Postprandial blood glucose and insulin responses to cereal products made from common barley, oats or a barley genotype containing elevated levels of beta-glucans were evaluated in nine healthy subjects. Porridges were made from commercial Swedish whole-meal barley or oat flours, and a mixed whole-meal porridge using the high fiber barley genotype and commercial Swedish common barley (50:50). Also studied were two types of flour-based bread products composed of high fiber barley and common barley in ratios of 50:50 or 80:20, respectively. The common oat and barley porridges produced postprandial glucose and insulin responses similar to the white wheat bread reference, suggesting that the naturally occurring dietary fiber in these whole-meal flours has no impact on the glucose tolerance. In contrast, all high fiber barley products induced significantly lower responses than did the reference product, with the glycemic and insulin indices ranging from 57 to 72 or 42 to 72%, respectively. It is concluded that "lente" products of high sensory quality can be prepared from a barley genotype with an elevated content of soluble dietary fiber. The glycemic index of these products compares favorably with that of products made from common cereals, suggesting their use as a potential component of diets for patients with diabetes and hyperlipidemia, and for individuals predisposed to metabolic disease.

  10. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison.

    PubMed

    Li, Chengdao; Ni, Peixiang; Francki, Michael; Hunter, Adam; Zhang, Yong; Schibeci, David; Li, Heng; Tarr, Allen; Wang, Jun; Cakir, Mehmet; Yu, Jun; Bellgard, Matthew; Lance, Reg; Appels, Rudi

    2004-05-01

    Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable. A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified as a candidate gene controlling the seed dormancy/pre-harvest sprouting QTL on 5HL. This chromosomal region also shared synteny with the telomere region of wheat chromosome 4AL, but was located outside of the QTL reported for seed dormancy in wheat. The wheat chromosome 4AL QTL region for seed dormancy was syntenic to both rice chromosome 3 and 11. In both cases, corresponding QTLs for seed dormancy have been mapped in rice.

  11. Updated survey of Fusarium species and toxins in Finnish cereal grains.

    PubMed

    Hietaniemi, Veli; Rämö, Sari; Yli-Mattila, Tapani; Jestoi, Marika; Peltonen, Sari; Kartio, Mirja; Sieviläinen, Elina; Koivisto, Tauno; Parikka, Päivi

    2016-05-01

    The aim of the project was to produce updated information during 2005-14 on the Fusarium species found in Finnish cereal grains, and the toxins produced by them, as the last comprehensive survey study of Fusarium species and their toxins in Finland was carried out at the turn of the 1960s and the 1970s. Another aim was to use the latest molecular and chemical methods to investigate the occurrence and correlation of Fusarium species and their mycotoxins in Finland. The most common Fusarium species found in Finland in the FinMyco project 2005 and 2006 were F. avenaceum, F. culmorum, F. graminearum, F. poae, F. sporotrichioides and F. langsethiae. F. avenaceum was the most dominant species in barley, spring wheat and oat samples. The occurrence of F. culmorum and F. graminearum was high in oats and barley. Infection by Fusarium fungi was the lowest in winter cereal grains. The incidence of Fusarium species in 2005 was much higher than in 2006 due to weather conditions. F. langsethiae has become much more common in Finland since 2001. F. graminearum has also risen in the order of importance. A highly significant correlation was found between Fusarium graminearum DNA and deoxynivalenol (DON) levels in Finnish oats, barley and wheat. When comparing the FinMyco data in 2005-06 with the results of the Finnish safety monitoring programme for 2005-14, spring cereals were noted as being more susceptible to infection by Fusarium fungi and the formation of toxins. The contents of T-2 and HT-2 toxins and the frequency of exceptionally high DON concentrations all increased in Finland during 2005-14. Beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) were also very common contaminants of Finnish grains in 2005-06. Climate change is leading to warmer weather, and this may indicate more changes in Finnish Fusarium mycobiota and toxin contents and profiles in the near future.

  12. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus.

    PubMed

    Xu, Weihui; Meng, Yan; Wise, Roger P

    2014-03-01

    Barley (Hordeum vulgare L.) Mildew resistance locus a (Mla) confers allele-specific interactions with natural variants of the ascomycete fungus Blumeria graminis f. sp. hordei (Bgh), the causal agent of powdery mildew disease. Significant reprogramming of Mla-mediated gene expression occurs upon infection by this obligate biotrophic pathogen. • We utilized a proteomics-based approach, combined with barley mla, required for Mla12 resistance1 (rar1), and restoration of Mla resistance1 (rom1) mutants, to identify components of Mla-directed signaling. • Loss-of-function mutations in Mla and Rar1 both resulted in the reduced accumulation of chloroplast copper/zinc superoxide dismutase 1 (HvSOD1), whereas loss of function in Rom1 re-established HvSOD1 levels. In addition, both Mla and Rom1 negatively regulated hvu-microRNA398 (hvu-miR398), and up-regulation of miR398 was coupled to reduced HvSOD1 expression. Barley stripe mosaic virus (BSMV)-mediated over-expression of both barley and Arabidopsis miR398 repressed accumulation of HvSOD1, and BSMV-induced gene silencing of HvSod1 impeded Mla-triggered H₂O₂ and hypersensitive reaction (HR) at barley-Bgh interaction sites. • These data indicate that Mla- and Rom1-regulated hvu-miR398 represses HvSOD1 accumulation, influencing effector-induced HR in response to the powdery mildew fungus. No claim to original US Government works. New Phytologist © 2013 New Phytologist Trust.

  13. Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques.

    PubMed

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Liu, David X; Alvarez, Xavier; Laine, David; Clarke, Adam; Doyle, Anthony; Aye, Pyone P; Blanchard, James; Moehs, Charles P

    2016-06-28

    Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD) is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS) rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement-but not remission-of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm-by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG) barley (lys3a)-derived source. The main focus of this (phase two) study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE). Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2) antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea-all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches.

  14. Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques

    PubMed Central

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Liu, David X.; Alvarez, Xavier; Laine, David; Clarke, Adam; Doyle, Anthony; Aye, Pyone P.; Blanchard, James; Moehs, Charles P.

    2016-01-01

    Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD) is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS) rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement—but not remission—of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm—by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG) barley (lys3a)-derived source. The main focus of this (phase two) study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE). Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2) antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea—all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches. PMID:27367722

  15. Structural comparison of arabinoxylans from two barley side-stream fractions.

    PubMed

    Pitkänen, Leena; Tuomainen, Päivi; Virkki, Liisa; Aseyev, Vladimir; Tenkanen, Maija

    2008-07-09

    The structures of barley ( Hordeum vulgare) arabinoxylans isolated from two industrial side fractions, barley husks (BH) and barley fiber (BF), were characterized. Arabinoxylans were extracted with saturated barium hydroxide after enzymatic pretreatment. Barium hydroxide was selective toward arabinoxylans, and only a minor amount of glucose-containing material was coextracted. Acid methanolysis followed by gas chromatography, 1H NMR spectroscopy, and specific enzymatic treatments followed by anion exchange chromatography with pulse amperometric detection (HPAEC-PAD) revealed that the chemical structure of barley husk arabinoxylan (BHAX) clearly differed from that of barley fiber arabinoxylan (BFAX). BFAX was more branched, containing more beta-D-xylopyranosyl (beta-D-Xylp) residues carrying alpha-L-arabinofuranosyl (alpha-L-Araf) units at both O-2 and O-3 positions. BHAX, on the other hand, contained more 2-O-beta-D-Xyl p-alpha-L-Ara f substituents than BFAX. BHAX and BFAX also differed with respect to the hydrodynamic properties investigated with multidetector size exclusion chromatography. BFAX had a higher weight-average molar mass and larger hydrodynamic volume, the latter indicating less dense conformation than BHAX. Mn, Mw /Mn, Rh, and the Mark-Houwink a value were also determined for both arabinoxylans.

  16. Cereal grains and coronary heart disease.

    PubMed

    Truswell, A S

    2002-01-01

    Cereal grains and their products provide around 30% of total energy intake in British adults, (much more than any of the other major food groups). Coronary heart disease (CHD) is the largest single cause of death in Britain and many other Western countries. This review examines the question whether there is a relation between cereal consumption and CHD. Several of the nutrients in cereals have known potential for reducing risk factors for CHD: the linoleic acid, fibre, vitamin E, selenium and folate. Cereals also contain phytoestrogens of the lignan family and several phenolic acids with antioxidant properties. Processing generally reduces the content of these nutrients and bioprotective substances. Although cereals at the farm gate are very low in salt, processed cereal foods, eg bread and some breakfast cereals, are high-salt foods and thus could contribute to raising blood pressure. Human experiments have clearly shown that oat fibre tends to lower plasma total and LDL cholesterol but wheat fibre does not. Rice bran and barley may also lower cholesterol but most people do not eat enough barley to have an effect. Cereal foods with low glycaemic index such as pasta and oats are beneficial for people with diabetes and might lower plasma lipids. Between 1996 and 2001 an accumulation of five very large cohort studies in the USA, Finland and Norway have all reported that subjects consuming relatively large amounts of whole grain cereals have significantly lower rates of CHD. This confirms an earlier report from a small British cohort. The protective effect does not seem to be due to cholesterol-lowering. While cohort studies have shown this consistent protective effect of whole grain cereals, there has been (only one) randomised controlled secondary prevention trial of advice to eat more cereal fibre. In this there was no reduction of the rate of reinfarction. The trial had some weaknesses, eg there were eight different diets, compliance was not checked objectively

  17. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao

    2016-01-01

    Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793

  18. Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability.

    PubMed

    Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro; Ogushi, Kensuke

    2015-04-01

    Foam stability is a key factor of beer quality for consumers and brewers. Recent beer proteome analyses have suggested that barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) derived from barley are important for beer foam stability. In this study, BDAI-1 and ALP were purified from a Japanese commercial beer sample using salt precipitation and column chromatography. The purification level was verified using two-dimensional gel electrophoresis, mass spectrometry, and database searches. Purified BDAI-1 and ALP were added to a beer sample to compare the foam stability to that of a control beer sample. As a result, beer foam stability was significantly improved by BDAI-1 but not by ALP, thereby suggesting that BDAI-1 affects beer foam stability whereas ALP does not. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. phiC31 Integrase-Mediated Site-Specific Recombination in Barley

    PubMed Central

    Rubtsova, Myroslava; Kumlehn, Jochen; Gils, Mario

    2012-01-01

    The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity. PMID:23024817

  20. 40 CFR 180.377 - Diflubenzuron; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Parts per million Almond, hulls 6.0 Barley, grain 0.06 Barley, hay 3.0 Barley, straw 1.8 Brassica, leafy greens, subgroup 5B 9.0 Cattle, meat byproducts 0.15 Citrus, oil 32 Fruit, citrus, group 10-10 3.0 Fruit... Peanut, refined oil 0.20 Pear 0.50 Pepper 1.0 Pistachio 0.06 Rice, grain 0.02 Rice, straw 0.8 Sheep, meat...

  1. Validation of the β-amy1 transcription profiling assay and selection of reference genes suited for a RT-qPCR assay in developing barley caryopsis.

    PubMed

    Ovesná, Jaroslava; Kučera, Ladislav; Vaculová, Kateřina; Štrymplová, Kamila; Svobodová, Ilona; Milella, Luigi

    2012-01-01

    Reverse transcription coupled with real-time quantitative PCR (RT-qPCR) is a frequently used method for gene expression profiling. Reference genes (RGs) are commonly employed to normalize gene expression data. A limited information exist on the gene expression and profiling in developing barley caryopsis. Expression stability was assessed by measuring the cycle threshold (Ct) range and applying both the GeNorm (pair-wise comparison of geometric means) and Normfinder (model-based approach) principles for the calculation. Here, we have identified a set of four RGs suitable for studying gene expression in the developing barley caryopsis. These encode the proteins GAPDH, HSP90, HSP70 and ubiquitin. We found a correlation between the frequency of occurrence of a transcript in silico and its suitability as an RG. This set of RGs was tested by comparing the normalized level of β-amylase (β-amy1) transcript with directly measured quantities of the BMY1 gene product in the developing barley caryopsis. This panel of genes could be used for other gene expression studies, as well as to optimize β-amy1 analysis for study of the impact of β-amy1 expression upon barley end-use quality.

  2. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    PubMed Central

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We

  3. ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals1[W][OA

    PubMed Central

    Greenup, Aaron G.; Sasani, Shahryar; Oliver, Sandra N.; Talbot, Mark J.; Dennis, Elizabeth S.; Hemming, Megan N.; Trevaskis, Ben

    2010-01-01

    In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis. PMID:20431086

  4. Experimental Barley Flour Production in 12,500-Year-Old Rock-Cut Mortars in Southwestern Asia.

    PubMed

    Eitam, David; Kislev, Mordechai; Karty, Adiel; Bar-Yosef, Ofer

    2015-01-01

    Experimental archaeology at a Natufian site in the Southern Levant documents for the first time the use of 12,500-year-old rock-cut mortars for producing wild barley flour, some 2,000 to 3,000 years before cereal cultivation. Our reconstruction involved processing wild barley on the prehistoric threshing floor, followed by use of the conical mortars (a common feature in Natufian sites), thereby demonstrating the efficient peeling and milling of hulled grains. This discovery complements nearly 80 years of investigations suggesting that the Natufians regularly harvested almost-ripe wild cereals using sickles hafted with flint blades. Sickles had been replicated in the past and tested in the field for harvesting cereals, thusly obtaining the characteristic sheen along the edge of the hafted flint blades as found in Natufian remnants. Here we report that Natufian wide and narrow conical mortars enabled the processing of wild barley for making the groats and fine flour that provided considerable quantities of nourishment. Dishes in the Early Natufian (15,000-13,500 CalBP) were groat meals and porridge and subsequently, in the Late Natufian (13,500-11,700 CalBP), we suggest that unleavened bread made from fine flour was added. These food preparing techniques widened the dietary breadth of the sedentary Natufian hunter-gatherers, paving the way to the emergence of farming communities, the hallmark of the Neolithic Revolution.

  5. Assessment of genetic diversity among barley cultivars and breeding lines adapted to the US Pacific Northwest, and its implications in breeding barley for imidazolinone-resistance.

    PubMed

    Rustgi, Sachin; Matanguihan, Janet; Mejías, Jaime H; Gemini, Richa; Brew-Appiah, Rhoda A T; Wen, Nuan; Osorio, Claudia; Ankrah, Nii; Murphy, Kevin M; von Wettstein, Diter

    2014-01-01

    Extensive application of imidazolinone (IMI) herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the 'Bob' barley AHAS (acetohydroxy acid synthase) gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW), since it comprises ∼23% (335,000 ha) of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the 'Bob' AHAS mutant. The six selected genotypes were used to make 29-53 crosses with the AHAS mutant and a range of 358-471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158-2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%-90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed.

  6. Feeding performance and life table parameters of Khapra Beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on various barley cultivars.

    PubMed

    Golizadeh, A; Abedi, Z

    2017-10-01

    The Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is a common pest of cereal grains and other stored products. In this study, the effects of ten barley cultivars (Abidar, Bahman, Line20, Line22, Line30, Lisuei, Lokht11, Makuyi, Sahand, and Sahraa) were evaluated on life table parameters and nutritional indices of T. granarium under the following laboratory conditions: 33 ± 1°C, 60 ± 5% RH, and a photoperiod of 14: 10 (L: D) h. Life history parameters of T. granarium could be appropriate indices in resistance and susceptibility evaluation of barley cultivars. The maximum survival rate of immature stages was observed on Makuyi and Lisuei cultivars and the minimum rate was on Abidar and Line22 cultivars. The shortest development time was on Makuyi cultivar and the longest on Line22 cultivar. Pupal weight was ranged from 2.56 mg on Lokht11 to 4.86 mg on Makuyi. Fecundity and egg-hatching rates were highest on Lisuei cultivar and the adults were long-lived on Makuyi cultivar. The highest r m values were observed on Makuyi and Lisuei cultivars but lower value of it resulted from rearing of T. granarium on Line22 cultivar (0.0350 female per female day-1). The results showed that T. granarium larvae fed on Makuyi cultivar had higher values of relative consumption rate and relative growth rate. The results indicated that Makuyi and Lisuei cultivars were relatively susceptible barley cultivars and Line22 was the most inappropriate cultivar for feeding of T. granarium, which could prove useful in the development of Integrated Pest Management programs for this pest.

  7. Microstructure and Mechanical Properties of W-ZrC Composites Synthesized by Reactive Melt Infiltration of Zr2Cu into Porous Preforms from Partially Carburized W Powders

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Yu-Jin; Huo, Si-Jia; Zhao, Yan-Wei; Ouyang, Jia-Hu; Song, Gui-Ming; Zhou, Yu

    2018-03-01

    W-ZrC composites with different W contents from 48 to 73 vol.% have been synthesized by reactive melt infiltration of Zr2Cu melt into porous preforms from partially carburized W powders at 1300 °C for 1 h in vacuum. The influences of carbon content and porosity in the preforms on microstructure and mechanical properties of W-ZrC composites are investigated. Cold isostatic pressing followed by pre-sintering process is used to produce porous preforms with suitable porosities of 53.6-47% under a pressure of 100 MPa to allow sufficient penetration of Zr2Cu melt into the preforms. Small amounts of Cu-rich phases form in the synthesized W-ZrC composites after a complete reaction of y/2xZr2Cu(l) + WC y (s) = y/xZrC x (s) + W(s) + y/2xCu(l). These Cu-rich phases are distributed not only at the phase boundaries of W matrix and ZrC grains, but also in the interior of ZrC x grains. With decreasing W content from 73 to 48 vol.% in the W-ZrC composites, the flexural strength and fracture toughness increase from 519 to 657 MPa and from 9.1 to 10.6 MPa m1/2, respectively.

  8. Stable carbon and nitrogen isotopes and quality traits of fossil cereal grains provide clues on sustainability at the beginnings of Mediterranean agriculture.

    PubMed

    Aguilera, Mònica; Araus, José Luis; Voltas, Jordi; Rodríguez-Ariza, Maria Oliva; Molina, Fernando; Rovira, Núria; Buxó, Ramon; Ferrio, Juan Pedro

    2008-06-01

    We present a novel approach to study the sustainability of ancient Mediterranean agriculture that combines the measurement of carbon isotope discrimination (Delta(13)C) and nitrogen isotope composition (delta(15)N) along with the assessment of quality traits in fossil cereal grains. Charred grains of naked wheat and barley were recovered in Los Castillejos, an archaeological site in SE Spain, with a continuous occupation of ca. 1500 years starting soon after the origin of agriculture (ca. 4000 BCE) in the region. Crop water status and yield were estimated from Delta(13)C and soil fertility and management practices were assessed from the delta(15)N and N content of grains. The original grain weight was inferred from grain dimensions and grain N content was assessed after correcting N concentration for the effect of carbonisation. Estimated water conditions (i.e. rainfall) during crop growth remained constant for the entire period. However, the grain size and grain yield decreased progressively during the first millennium after the onset of agriculture, regardless of the species, with only a slight recovery afterwards. Minimum delta(15)N values and grain N content were also recorded in the later periods of site occupation. Our results indicate a progressive loss of soil fertility, even when the amount of precipitation remained steady, thereby indicating the unsustainable nature of early agriculture at this site in the Western Mediterranean Basin. In addition, several findings suggest that barley and wheat were cultivated separately, the former being restricted to marginal areas, coinciding with an increased focus on wheat cultivation. John Wiley & Sons, Ltd

  9. Elucidation of the origin of 'agriocrithon' based on domestication genes questions the hypothesis that Tibet is one of the centers of barley domestication.

    PubMed

    Pourkheirandish, Mohammad; Kanamori, Hiroyuki; Wu, Jianzhong; Sakuma, Shun; Blattner, Frank R; Komatsuda, Takao

    2018-05-01

    Wild barley forms a two-rowed spike with a brittle rachis whereas domesticated barley has two- or six-rowed spikes with a tough rachis. Like domesticated barley, 'agriocrithon' forms a six-rowed spike; however, the spike is brittle as in wild barley, which makes the origin of agriocrithon obscure. Haplotype analysis of the Six-rowed spike 1 (vrs1) and Non-brittle rachis 1 (btr1) and 2 (btr2) genes was conducted to infer the origin of agriocrithon barley. Some agriocrithon barley accessions (eu-agriocrithon) carried Btr1 and Btr2 haplotypes that are not found in any cultivars, implying that they are directly derived from wild barley through a mutation at the vrs1 locus. Other agriocrithon barley accessions (pseudo-agriocrithon) carried Btr1 or Btr2 from cultivated barley, thus implying that they originated from hybridization between six-rowed landraces carrying btr1Btr2 and Btr1btr2 genotypes followed by recombination to produce Btr1Btr2. All materials we collected from Tibet belong to pseudo-agriocrithon and thus do not support the Tibetan Plateau as being a center of barley domestication. Tracing the evolutionary history of these allelic variants revealed that eu-agriocrithon represents six-rowed barley lineages that were selected by early farmers, once in south-eastern Turkmenistan (vrs1.a1) and again in the eastern part of Uzbekistan (vrs1.a4). © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  10. Characterization of Resistance to Cephus cinctus (Hymenoptera: Cephidae) in Barley Germplasm.

    PubMed

    Varella, Andrea C; Talbert, Luther E; Achhami, Buddhi B; Blake, Nancy K; Hofland, Megan L; Sherman, Jamie D; Lamb, Peggy F; Reddy, Gadi V P; Weaver, David K

    2018-04-02

    Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.

  11. {1 1 1} facet growth laws and grain competition during silicon crystallization

    NASA Astrophysics Data System (ADS)

    Stamelou, V.; Tsoutsouva, M. G.; Riberi-Béridot, T.; Reinhart, G.; Regula, G.; Baruchel, J.; Mangelinck-Noël, N.

    2017-12-01

    Directional solidification from mono-crystalline Si seeds having different orientations along the growth direction is studied. Due to the frequent twinning phenomenon, new grains soon nucleate during growth. The grain competition is then characterized in situ by imaging the dynamic evolution of the grain boundaries and of the corresponding grain boundary grooves that are formed at the solid-liquid interface. To perform this study, an experimental investigation based on Bridgman solidification technique coupled with in situ X-ray imaging is conducted in an original device: GaTSBI (Growth at high Temperature observed by X-ray Synchrotron Beam Imaging). Imaging characterisation techniques using X-ray synchrotron radiation at ESRF (European Synchrotron Radiation Facility, Grenoble, France) are applied during the solidification to study the growth dynamics. Facetted/facetted grain boundary grooves only are studied due to their importance in the grain competition because of their implication in the twinning mechanism. The maximum undercooling inside the groove is calculated from the groove depth knowing the local temperature gradient. Additionally, thanks to dynamic X-ray images, the global solid-liquid interface growth rate and the normal growth rate of the {1 1 1} facets existing at the grooves and at the edges are measured. From these measurements, experimental growth laws that correlate the normal velocity of the {1 1 1} facets with the maximum undercooling of the groove are extracted and compared to existing theoretical models. Finally, the experimental laws found for the contribution to the undercooling of the {1 1 1} facets are in good agreement with the theoretical model implying nucleation and growth eased by the presence of dislocations. Moreover, it is shown that, for the same growth parameters, the undercooling at the level of the facets (always lower than 1 K) is higher at the edges so that there is a higher probability of twin nucleation at the edges which

  12. Infestation and Quantification of Ochratoxigenic Fungi in Barley and Wheat Naturally Contaminated with Ochratoxin A.

    PubMed

    Kuruc, Julie; Hegstad, Justin; Lee, Hyun Jung; Simons, Kristin; Ryu, Dojin; Wolf-Hall, Charlene

    2015-07-01

    Cereal grains are a significant source of ochratoxin A (OTA) in the human diet. Multiple ochratoxigenic Aspergillus and Penicillium spp. have been reported as contaminants on various cereal grains around the world, although relatively few species dominate in any given location. Efforts to mitigate the risk of fungal contamination and OTA accumulation can be made pre- and postharvest. Still, a rapid and reliable screening method is sought that can be used to predict the OTA level of a sample and to inform risk assessments prior to processing. In this study, we assessed the efficacy of two OTA-related indices for OTA level prediction. Infestation rates were determined by direct plating for freshly harvested and stored barley, durum, and hard red spring wheat samples (n = 139) with known OTA levels. Presumptive ochratoxigenic isolates were tested for their ability to produce OTA. The nonribosomal peptide synthase (otanpsPN) involved in OTA biosynthesis was used to quantify ochratoxigenic fungi in barley and wheat. Viable Penicillium verrucosum was present in 45% of the samples. In total, 62.7% (n = 110) of the P. verrucosum isolates tested produced OTA on dichloran yeast extract sucrose 18% glycerol agar. Both OTA level and infestation rate (r = 0.30), as well as OTA level and otanpsPN concentration (r = 0.56), were weakly correlated. Neither infestation rate nor otanpsPN concentration is a reliable predictor of OTA level in a sample.

  13. Transposable element junctions in marker development and genomic characterization of barley

    USDA-ARS?s Scientific Manuscript database

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  14. Golgi Localized Barley MTP8 Proteins Facilitate Mn Transport

    PubMed Central

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species. PMID:25486417

  15. Significance of heat-moisture treatment conditions on the pasting and gelling behaviour of various starch-rich cereal and pseudocereal flours.

    PubMed

    Collar, Concha

    2017-10-01

    The impact of heat-moisture treatment processing conditions (15%, 25%, and 35% moisture content; 1, 3, and 5 h heating time at 120 ℃) on the viscosity pasting and gelling profiles of different grain flours matrices (barley, buckwheat, sorghum, high β-glucan barley, and wheat) was investigated by applying successive cooking and cooling cycles to rapid visco analyser canisters with highly hydrated samples (3.5:25, w:w). At a milder heat-moisture treatment conditions (15% moisture content, 1 h heating time), except for sorghum, heat-moisture treatment flours reached much higher viscosity values during earlier pasting and subsequent gelling than the corresponding native counterparts. Besides heat-moisture treatment wheat flour, the described behaviour found also for non-wheat-treated flours has not been previously reported in the literature. An increased hydrophobicity of prolamins and glutelins in low moisture-short heating time heat-moisture treatment of non-wheat flours with high protein content (12.92%-19.95%) could explain the enhanced viscosity profile observed.

  16. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    PubMed

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  17. 40 CFR 180.332 - Metribuzin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)-one) and its triazinone metabolites in or on food commodities: Commodity Parts per million Alfalfa, forage 2.0 Alfalfa, hay 7.0 Asparagus 0.1 Barley, grain 0.75 Barley, hay 7.0 Barley, pearled barley 3.0...

  18. Effects of water storage in the stele on measurements of the hydraulics of young roots of corn and barley.

    PubMed

    Joshi, Ankur; Knipfer, Thorsten; Steudle, Ernst

    2009-11-01

    In standard techniques (root pressure probe or high-pressure flowmeter), the hydraulic conductivity of roots is calculated from transients of root pressure using responses following step changes in volume or pressure, which may be affected by a storage of water in the stele. Storage effects were examined using both experimental data of root pressure relaxations and clamps and a physical capacity model. Young roots of corn and barley were treated as a three-compartment system, comprising a serial arrangement of xylem/probe, stele and outside medium/cortex. The hydraulic conductivities of the endodermis and of xylem vessels were derived from experimental data. The lower limit of the storage capacity of stelar tissue was caused by the compressibility of water. This was subsequently increased to account for realistic storage capacities of the stele. When root water storage was varied over up to five orders of magnitude, the results of simulations showed that storage effects could not explain the experimental data, suggesting a major contribution of effects other than water storage. It is concluded that initial water flows may be used to measure root hydraulic conductivity provided that the volumes of water used are much larger than the volumes stored.

  19. Shotgun proteomics of the barley seed proteome

    USDA-ARS?s Scientific Manuscript database

    Barley seed proteins are of prime importance to the brewing industry, human and animal nutrition and in plant breeding for cultivar identification. To obtain comprehensive proteomic data from barley seeds, acetone precipitated proteins were in-solution digested and the resulting peptides were analyz...

  20. 40 CFR Table 1 to Subpart W of... - General Provisions Applicability to Subpart W

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Subpart W 1 Table 1 to Subpart W of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Polyamides Production Pt. 63, Subpt. W, Table 1 Table 1 to Subpart W of Part 63—General Provisions Applicability to Subpart W Reference Applies to subpart W BLR WSR WSR alternative standard, and BLR equipment...

  1. The 1980 US/Canada wheat and barley exploratory experiment. Volume 2: Addenda

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.

    1983-01-01

    Three study areas supporting the U.S./Canada Wheat and Barley Exploratory Experiment are discussed including an evaluation of the experiment shakedown test analyst labeling results, an evaluation of the crop proportion estimate procedure 1A component, and the evaluation of spring wheat and barley crop calendar models for the 1979 crop year.

  2. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.

    PubMed

    Moscou, Matthew J; Lauter, Nick; Steffenson, Brian; Wise, Roger P

    2011-07-01

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement

  3. Quantitative and Qualitative Stem Rust Resistance Factors in Barley Are Associated with Transcriptional Suppression of Defense Regulons

    PubMed Central

    Moscou, Matthew J.; Lauter, Nick; Steffenson, Brian; Wise, Roger P.

    2011-01-01

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host–pathogen interaction with enhancement

  4. Aspergillus clavatus tremorgenic neurotoxicosis in cattle fed sprouted grains.

    PubMed

    McKenzie, R A; Kelly, M A; Shivas, R G; Gibson, J A; Cook, P J; Widderick, K; Guilfoyle, A F

    2004-10-01

    Beef and dairy cattle from four different herds in southern and central Queensland fed hydroponically-produced sprouted barley or wheat grain heavily infested with Aspergillus clavatus developed posterior ataxia with knuckling of fetlocks, muscular tremors and recumbency, but maintained appetite. A few animals variously had reduced milk production, hyperaesthesia, drooling of saliva, hypermetria of hind limbs or muscle spasms. Degeneration of large neurones was seen in the brain stem and spinal cord grey matter. The syndrome was consistent with A clavatus tremorgenic mycotoxicosis of ruminants. The cases are the earliest known to be associated with this fungus in Australia. They highlight a potential hazard of hydroponic fodder production systems, which appear to favour A clavatus growth on sprouted grain, exacerbated in some cases by equipment malfunctions that increase operating temperatures.

  5. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    PubMed

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  6. 40 CFR 180.253 - Methomyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Asparagus 2 None Avocado 2 None Barley, grain 1 None Barley, hay 10 None Barley, straw 10 None Bean, dry, seed 0.1 None Bean, forage 10 None Bean, succulent 2 None Beet, garden, tops 6 None Bermudagrass...

  7. 40 CFR 180.253 - Methomyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Asparagus 2 None Avocado 2 None Barley, grain 1 None Barley, hay 10 None Barley, straw 10 None Bean, dry, seed 0.1 None Bean, forage 10 None Bean, succulent 2 None Beet, garden, tops 6 None Bermudagrass...

  8. The Importance of Barley Genetics and Domestication in a Global Perspective

    PubMed Central

    Pourkheirandish, Mohammad; Komatsuda, Takao

    2007-01-01

    Background Archaeological evidence has revealed that barley (Hordeum vulgare) is one of the oldest crops used by ancient farmers. Studies of the time and place of barley domestication may help in understanding ancient human civilization. Scope The studies of domesticated genes in crops have uncovered the mechanisms which converted wild and unpromising wild species to the most important food for humans. In addition to archaeological studies, molecular studies are finding new insights into the process of domestication. Throughout the process of barley domestication human selection on wild species resulted in plants with more harvestable seeds. One of the remarkable changes during barley domestications was the appearance of six-rowed barley. The gene associated with this trait results in three times more seed per spike compared with ancestral wild barley. This increase in number of seed resulted in a major dichotomy in the evolution of barley. The identification of the six-rowed spike gene provided a framework for understanding how this character was evolved. Some important barley domestication genes have been discovered and many are currently being investigated. Conclusions Identification of domestication genes in crops revealed that most of the drastic changes during domestication are the result of functional impairments in transcription factor genes, and creation of new functions is rare. Isolation of the six-rowed spike gene revealed that this trait was domesticated more than once in the domestication history of barley. Six-rowed barley is derived from two-rowed ancestral forms. Isolation of photoperiod-response genes in barley and rice revealed that different genes belonging to similar genetic networks partially control this trait. PMID:17761690

  9. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  10. Transient Overexpression of HvSERK2 Improves Barley Resistance to Powdery Mildew.

    PubMed

    Li, Yingbo; Li, Qingwei; Guo, Guimei; He, Ting; Gao, Runhong; Faheem, Muhammad; Huang, Jianhua; Lu, Ruiju; Liu, Chenghong

    2018-04-18

    Somatic embryogenesis receptor-like kinases (SERKs) play an essential role in plant response to pathogen infection. Here we identified three SERK genes ( HvSERK1/2/3 ) from barley, and aimed to determine their implication in defense responses to barley powdery mildew ( Bgh ). Although HvSERK1/2/3 share the characteristic domains of the SERK family, only HvSERK2 was significantly induced in barley leaves during Bgh infection. The expression of HvSERK2 was rapidly induced by hydrogen peroxide (H₂O₂) treatment, but not by treatment with salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), or abscisic acid (ABA). Bioinformatics analysis of the cloned HvSERK2 promoter revealed that it contains several elements responsible for defense responses against pathogens. Promoter functional analysis showed that the HvSERK2 promoter was induced by Bgh and H₂O₂. Subcellular localization analysis of HvSERK2 indicated that it is mainly located on the plasma membrane. Transient overexpression of HvSERK2 in epidermal cells of the susceptible barley cultivar Hua 30 reduced the Bgh haustorium index from 58.6% to 43.2%. This study suggests that the HvSERK2 gene plays a positive role in the improvement of barley resistance to powdery mildew, and provides new insight into the function of SERK genes in the biotic stress response of plants.

  11. A two-step fermentation of distillers' grains using Trichoderma viride and Rhodopseudomonas palustris for fish feed.

    PubMed

    Zhang, Jian; Zhang, Wen-Xue; Li, Shun-Zhou; You, Ling; Zhang, Chao; Sun, Chuan-Ze; Liu, Xiao-Bin

    2013-10-01

    It is important to provide added value or to make full use of the co-product of grains from ethanol production. In order to convert distillers' grains into a high-quality feed, the Trichoderma viride and Rhodopseudomonas palustris fermentation were combined and investigated in this study. The T. viride fermentation was carried out in an aerobic fermentation installation in favoring of the growth of the fungi and the degradation of the cellulose, and then the fermentation of R. palustris was performed to increase the content of protein with an anaerobic installation. After the two step fermentations, the true protein content of dried distiller' grains increased from 11.4 to 33.6 % (w/w) (the content of crude protein from 14.5 to 39.7 %), the crude fiber content decreased from 21.3 to 7.6 % (w/w), the crude fat content increased from 5.5 to 7.9 % (w/w), the crude ash decreased from 14.6 to 10.2 % (w/w), the total phosphorus content increased from 0.4 to 1.2 % (w/w), and the water content was 11.8 % (w/w). The dried and fermented grains contain the R. palustris viable count of 5.3 × 10¹¹ CFU/g dry matter. The results may support a new application of an active photosynthetic bacteria fish feed in fisheries industry and offer a reference for the further study of lignocellulosic materials as raw materials converting into high-quality feed.

  12. Experimental Barley Flour Production in 12,500-Year-Old Rock-Cut Mortars in Southwestern Asia

    PubMed Central

    Eitam, David; Kislev, Mordechai; Karty, Adiel; Bar-Yosef, Ofer

    2015-01-01

    Experimental archaeology at a Natufian site in the Southern Levant documents for the first time the use of 12,500-year-old rock-cut mortars for producing wild barley flour, some 2,000 to 3,000 years before cereal cultivation. Our reconstruction involved processing wild barley on the prehistoric threshing floor, followed by use of the conical mortars (a common feature in Natufian sites), thereby demonstrating the efficient peeling and milling of hulled grains. This discovery complements nearly 80 years of investigations suggesting that the Natufians regularly harvested almost-ripe wild cereals using sickles hafted with flint blades. Sickles had been replicated in the past and tested in the field for harvesting cereals, thusly obtaining the characteristic sheen along the edge of the hafted flint blades as found in Natufian remnants. Here we report that Natufian wide and narrow conical mortars enabled the processing of wild barley for making the groats and fine flour that provided considerable quantities of nourishment. Dishes in the Early Natufian (15,000–13,500 CalBP) were groat meals and porridge and subsequently, in the Late Natufian (13,500–11,700 CalBP), we suggest that unleavened bread made from fine flour was added. These food preparing techniques widened the dietary breadth of the sedentary Natufian hunter-gatherers, paving the way to the emergence of farming communities, the hallmark of the Neolithic Revolution. PMID:26230092

  13. Wheat is more potent than corn or barley for dietary mitigation of enteric methane emissions from dairy cows.

    PubMed

    Moate, P J; Williams, S R O; Jacobs, J L; Hannah, M C; Beauchemin, K A; Eckard, R J; Wales, W J

    2017-09-01

    Wheat is the most common concentrate fed to dairy cows in Australia, but few studies have examined the effects of wheat feeding on enteric methane emissions, and no studies have compared the relative potencies of wheat, corn, and barley for their effects on enteric methane production. In this 35-d experiment, 32 Holstein dairy cows were offered 1 of 4 diets: a corn diet (CRN) of 10.0 kg of dry matter (DM)/d of single-rolled corn grain, 1.8 kg of DM/d of canola meal, 0.2 kg of DM/d of minerals, and 11.0 kg of DM/d of chopped alfalfa hay; a wheat diet (WHT) similar to the CRN diet but with the corn replaced by single-rolled wheat; a barley diet (SRB) similar to the CRN diet but with the corn replaced by single-rolled barley; and a barley diet (DRB) similar to the CRN diet but with the corn replaced by double-rolled barley. Individual cow feed intakes, milk yields, and milk compositions were measured daily but reported for the last 5 d of the experiment. During the last 5 d of the experiment, individual cow methane emissions were measured using the SF 6 tracer technique for all cows, and ruminal fluid pH was continuously measured by intraruminal sensors for 3 cows in each treatment group. The average DM intake of cows offered the CRN, WHT, SRB, and DRB diets was 22.2, 21.1, 22.6, and 22.6 kg/d. The mean energy-corrected milk of cows fed the WHT diet was less than that of cows fed the other diets. This occurred because the milk fat percentage of cows fed the WHT diet was significantly less than that of cows fed the other diets. The mean methane emissions and methane yields of cows fed the WHT diet were also significantly less than those of cows fed the other diets. Indeed, the CRN, SRB, and DRB diets were associated with 49, 73, and 78% greater methane emissions, respectively, compared with the emissions from the WHT diet. Methane yield was found to be most strongly related to the minimum daily ruminal fluid pH. This study showed that although the inclusion of wheat in

  14. Irradiation effects on multilayered W/ZrO2 film under 4 MeV Au ions

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Gao, Yuan; Fu, Engang; Yang, Tengfei; Xue, Jianming; Yan, Sha; Chu, Paul K.; Wang, Yugang

    2014-12-01

    Irradiation induced structural changes in multilayered W/ZrO2 nanocomposites with periodic bilayer thicknesses of (7/14 nm) and (70/140 nm) were investigated following Au+ ion irradiation. The samples were irradiated by 4 MeV Au ions with fluences ranging from 6 × 1014 to 1 × 1016 ions/cm2. The immiscible W/ZrO2 interfaces remained unchanged without intermixing of the layers upon the irradiation. No voids were observed in the samples with different periodic layer thicknesses. The XRD and XTEM studies reveal thickness dependent microstructural changes in the samples. W and ZrO2 grains in the thinner (7/14 nm) bilayer sample exhibit significant resistance to grain growth compared to the thicker (70/140 nm) bilayer sample as well as a W monolayer film. The high fraction of flat interfaces as well as grain boundaries in multilayer films plays a role in suppressing ion irradiation-induced grain growth and void formation.

  15. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice

  16. Characterisation of radiation damage in W and W-based alloys from 2MeV self-ion near-bulk implantations

    DOE PAGES

    Yi, Xiaoou; Culham Science Centre, Abingdon; Jenkins, Michael L.; ...

    2015-04-21

    The displacement damage induced in bulk W and W-5 wt.% Re and W-5 wt.% Ta alloys by 2 MeV W + irradiation to doses 3.3×10 17 - 2.5×10 19 W +/m 2 at temperatures ranging from 300 to750°C has been characterized by transmission electron microscopy. An automated sizing and counting approach based on Image J has been proposed and performed for all irradiation data. In all cases the damage comprised dislocation loops, mostly of interstitial type, with Burgers vectors b = ½<111> (> 60%) and b = <100>. The diameters of loops did not exceed 20 nm, with the majoritymore » being ≤ 6 nm. The loop number density varied between 10 22 and 10 23 loops/m 3 . With increasing irradiation temperature, the loop size distributions shifted towards larger sizes, and there was a substantial decrease in loop number densities. The damage microstructure was less sensitive to dose than to temperature. Under the same irradiation conditions, loop number densities in the alloys were higher than in pure W but loops were smaller. In grains with normals close to z = <001>, loop strings developed in W at temperatures ≥ 500°C and doses ≥ 1.2 dpa, but such strings were not observed in the W-Re or W-Ta alloys. However, in other grain orientations complex structures appeared in all materials and dense dislocation networks formed at higher doses.« less

  17. 40 CFR 180.292 - Picloram; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., grain 0.5 Barley, pearled barley 3.0 Barley, straw 1.0 Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 15 Egg 0.05 Goat, fat 0.4 Goat, meat 0.4 Goat, meat byproducts 15 Grain, aspirated fractions 4.0 Grass, forage 400 Grass, hay 225 Hog, fat 0.05 Hog, meat 0.05 Hog, meat byproducts 0.05 Horse, fat 0.4...

  18. 40 CFR 180.292 - Picloram; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., grain 0.5 Barley, pearled barley 3.0 Barley, straw 1.0 Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 15 Egg 0.05 Goat, fat 0.4 Goat, meat 0.4 Goat, meat byproducts 15 Grain, aspirated fractions 4.0 Grass, forage 400 Grass, hay 225 Hog, fat 0.05 Hog, meat 0.05 Hog, meat byproducts 0.05 Horse, fat 0.4...

  19. 40 CFR 180.292 - Picloram; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., grain 0.5 Barley, pearled barley 3.0 Barley, straw 1.0 Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 15 Egg 0.05 Goat, fat 0.4 Goat, meat 0.4 Goat, meat byproducts 15 Grain, aspirated fractions 4.0 Grass, forage 400 Grass, hay 225 Hog, fat 0.05 Hog, meat 0.05 Hog, meat byproducts 0.05 Horse, fat 0.4...

  20. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice.

    PubMed

    Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai

    2017-09-01

    Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. The role of grain size and shape in the strengthening of dispersion hardened nickel alloys

    NASA Technical Reports Server (NTRS)

    Wilcox, B. A.; Clauer, A. H.

    1972-01-01

    Thermomechanical processing was used to develop various microsstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20CR-2ThO2, Ni-20Cr-10W-and Ni-20Cr-10W-2ThO2. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation, and substructure refinement was a much more potent means of strengthening than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength was the grain aspect ratio (grain length, L, divided by grain width, 1. The yield strength and creep strength increased linearly with increasing L/1.

  2. Malt in combination with Lactobacillus rhamnosus increases concentrations of butyric acid in the distal colon and serum in rats compared with other barley products but decreases viable counts of cecal bifidobacteria.

    PubMed

    Bränning, Camilla E; Nyman, Margareta E

    2011-01-01

    Several substances, including glutamine and propionic acid but in particular butyric acid, have been proposed to be important for colonic health. β-Glucans lead to the formation of comparatively high amounts of butyric acid, and germinated barley foodstuff obtained from brewer's spent grain (BSG), containing high amounts of β-glucans and glutamine, has been reported to reduce the inflammatory response in the colon of patients with ulcerative colitis. The present study examines how 3 barley products, whole grain barley, malt, and BSG, affect SCFA in the hindgut and serum of rats and whether the addition of Lactobacillus rhamnosus 271 to each of these diets would have further effects. Amino acids in plasma and the cecal composition of the microbiota were also analyzed. The butyric acid concentration in the distal colon and serum was higher in the malt groups than in the other groups as was the serum concentration of propionic acid. The concentrations of propionic and butyric acids were higher in the cecum and serum of rats given L. rhamnosus than in those not given this strain. The proportion of plasma glutamine and the cecal number of bifidobacteria were lower in the malt groups than in the other groups. L. rhamnosus decreased the number of cecal bifidobacteria, whereas plasma glutamine was unaffected. We conclude that malt together with L. rhamnosus 271 had greater effects on propionic and butyric acid concentrations in rats than the other barley products. This is interesting when developing food with effects on colonic health.

  3. Effect of maturity at harvest for whole-crop barley and oat on dry matter intake, sorting, and digestibility when fed to beef cattle.

    PubMed

    Rosser, C L; Beattie, A D; Block, H C; McKinnon, J J; Lardner, H A; Górka, P; Penner, G B

    2016-02-01

    The objectives were to evaluate the effect of harvest maturity of whole-crop oat (Study 1) and whole-crop barley (Study 2) on forage intake and sorting, ruminal fermentation, ruminal digestibility, and total tract digestibility when fed to beef heifers. In Study 1, 3 ruminally cannulated heifers (417 ± 5 kg) were used in a 3 × 3 Latin square design with 24-d periods. Whole-crop oat forage harvested at the late milk (LMILK), hard dough (HD), or ripe (RP) stages was fed for ad libitum intake and heifers were supplemented (1% of BW) with alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Maturity at harvest for whole-crop oat did not affect ( ≥ 0.058) forage intake, DE intake, amount of forage refused, ruminal short-chain fatty acid concentration, or digestibility of DM, OM, NDF, and ADF. Ruminal starch digestibility decreased ( < 0.001) from 92.6% at the LMILK stage to 90.0% at the RP stage, with total tract starch digestibility decreasing ( = 0.043) from 95.8% at the LMILK stage to 94.8% at the RP stage. Ruminal CP digestibility was reduced at the HD stage compared with the LMILK and RP stages ( < 0.001). Mean ruminal pH was greatest for the LMILK stage (6.36; = 0.003) compared with the HD and RP stages (6.30 and 6.28, respectively). In Study 2, 6 ruminally cannulated heifers (273 ± 16 kg) were used in a replicated 3 × 3 Latin square design with 24-d periods. Dietary treatments included ad libitum access to whole-crop barley harvested at the LMILK, HD, or RP stage and a constant rate (0.8% BW) of supplement containing alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Dry matter intake, ruminal content mass, and feeding behavior were not affected by harvest maturity ( ≥ 0.16). There was a decrease in total tract digestibility of DM, OM, and NDF observed at the HD stage compared with the LMILK and RP stages ( ≤ 0.004). Ruminal NDF digestibility decreased from 69.7% at the LMILK stage to 54.4% at the HD

  4. Adaptation of barley to mild winters: A role for PPDH2

    PubMed Central

    2011-01-01

    Background Understanding the adaptation of cereals to environmental conditions is one of the key areas in which plant science can contribute to tackling challenges presented by climate change. Temperature and day length are the main environmental regulators of flowering and drivers of adaptation in temperate cereals. The major genes that control flowering time in barley in response to environmental cues are VRNH1, VRNH2, VRNH3, PPDH1, and PPDH2 (candidate gene HvFT3). These genes from the vernalization and photoperiod pathways show complex interactions to promote flowering that are still not understood fully. In particular, PPDH2 function is assumed to be limited to the ability of a short photoperiod to promote flowering. Evidence from the fields of biodiversity, ecogeography, agronomy, and molecular genetics was combined to obtain a more complete overview of the potential role of PPDH2 in environmental adaptation in barley. Results The dominant PPDH2 allele is represented widely in spring barley cultivars but is found only occasionally in modern winter cultivars that have strong vernalization requirements. However, old landraces from the Iberian Peninsula, which also have a vernalization requirement, possess this allele at a much higher frequency than modern winter barley cultivars. Under field conditions in which the vernalization requirement of winter cultivars is not satisfied, the dominant PPDH2 allele promotes flowering, even under increasing photoperiods above 12 h. This hypothesis was supported by expression analysis of vernalization-responsive genotypes. When the dominant allele of PPDH2 was expressed, this was associated with enhanced levels of VRNH1 and VRNH3 expression. Expression of these two genes is needed for the induction of flowering. Therefore, both in the field and under controlled conditions, PPDH2 has an effect of promotion of flowering. Conclusions The dominant, ancestral, allele of PPDH2 is prevalent in southern European barley germplasm

  5. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes

    DOE PAGES

    Tumuluru, J. S.; Tabil, L. G.; Song, Y.; ...

    2014-10-01

    The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities >700 kg/m3 for wheat, oat, canola, and barley straws. Lower feedstock moisture content of <10 % (w.b.) andmore » higher die temperatures >110 °C and compression pressure >10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120–130 °C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to <8 % (w.b.) and maximized density to >700 kg/m3. Durability rating >90 % is achievable at higher die temperatures of >123 °C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values.« less

  6. Boron-toxicity tolerance in barley arising from efflux transporter amplification.

    PubMed

    Sutton, Tim; Baumann, Ute; Hayes, Julie; Collins, Nicholas C; Shi, Bu-Jun; Schnurbusch, Thorsten; Hay, Alison; Mayo, Gwenda; Pallotta, Margaret; Tester, Mark; Langridge, Peter

    2007-11-30

    Both limiting and toxic soil concentrations of the essential micronutrient boron represent major limitations to crop production worldwide. We identified Bot1, a BOR1 ortholog, as the gene responsible for the superior boron-toxicity tolerance of the Algerian barley landrace Sahara 3771 (Sahara). Bot1 was located at the tolerance locus by high-resolution mapping. Compared to intolerant genotypes, Sahara contains about four times as many Bot1 gene copies, produces substantially more Bot1 transcript, and encodes a Bot1 protein with a higher capacity to provide tolerance in yeast. Bot1 transcript levels identified in barley tissues are consistent with a role in limiting the net entry of boron into the root and in the disposal of boron from leaves via hydathode guttation.

  7. Diversity in boron toxicity tolerance of Australian barley (Hordeum vulgare L.) genotypes.

    PubMed

    Hayes, Julie E; Pallotta, Margaret; Garcia, Melissa; Öz, Mehmet Tufan; Rongala, Jay; Sutton, Tim

    2015-09-26

    Boron (B) is an important micronutrient for plant growth, but is toxic when levels are too high. This commonly occurs in environments with alkaline soils and relatively low rainfall, including many of the cereal growing regions of southern Australia. Four major genetic loci controlling tolerance to high soil B have been identified in the landrace barley, Sahara 3771. Genes underlying two of the loci encode the B transporters HvBot1 and HvNIP2;1. We investigated sequence and expression level diversity in HvBot1 and HvNIP2;1 across barley germplasm, and identified five novel coding sequence alleles for HvBot1. Lines were identified containing either single or multiple copies of the Sahara HvBot1 allele. We established that only the tandemly duplicated Sahara allele conferred B tolerance, and this duplicated allele was found only in a set of nine lines accessioned in Australian collections as Sahara 3763-3771. HvNIP2;1 coding sequences were highly conserved across barley germplasm. We identified the likely causative SNP in the 5'UTR of Sahara HvNIP2;1, and propose that the creation of a small upstream open reading frame interferes with HvNIP2;1 translation in Sahara 3771. Similar to HvBot1, the tolerant HvNIP2;1 allele was unique to the Sahara barley accessions. We identified a new source of the 2H B tolerance allele controlling leaf symptom development, in the landrace Ethiopia 756. Ethiopia 756, as well as the cultivar Sloop Vic which carries both the 2H and HvBot1 B tolerance alleles derived from Sahara 3771, may be valuable as alternative parents in breeding programs targeted to high soil B environments. There is significant diversity in B toxicity tolerance among contemporary Australian barley varieties but this is not related to variation at any of the four known B tolerance loci, indicating that novel, as yet undiscovered, sources of tolerance exist.

  8. Ectoparasitic growth of Magnaporthe on barley triggers expression of the putative barley wax biosynthesis gene CYP96B22 which is involved in penetration resistance

    PubMed Central

    2014-01-01

    Background Head blast caused by the fungal plant pathogen Magnaporthe oryzae is an upcoming threat for wheat and barley cultivation. We investigated the nonhost response of barley to an isolate of the Magnaporthe species complex which is pathogenic on Pennisetum spp. as a potential source for novel resistance traits. Results Array experiments identified a barley gene encoding a putative cytochrome P450 monooxygenase whose transcripts accumulate to a higher concentration in the nonhost as compared to the host interaction. The gene clusters within the CYP96 clade of the P450 plant gene family and is designated as CYP96B22. Expression of CYP96B22 was triggered during the ectoparasitic growth of the pathogen on the outside of the leaf. Usage of a fungicidal treatment and a Magnaporthe mutant confirmed that penetration was not necessary for this early activation of CYP96B22. Transcriptional silencing of CYP96B22 using Barley stripe mosaic virus led to a decrease in penetration resistance of barley plants to Magnaporthe host and nonhost isolates. This phenotype seems to be specific for the barley-Magnaporthe interaction, since penetration of the adapted barley powdery mildew fungus was not altered in similarly treated plants. Conclusion Taken together our results suggest a cross-talk between barley and Magnaporthe isolates across the plant surface. Since members of the plant CYP96 family are known to be involved in synthesis of epicuticular waxes, these substances or their derivatives might act as signal components. We propose a functional overlap of CYP96B22 in the execution of penetration resistance during basal and nonhost resistance of barley against different Magnaporthe species. PMID:24423145

  9. The calibration of the WISE W1 and W2 Tully-Fisher relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neill, J. D.; Seibert, Mark; Scowcroft, Victoria

    2014-09-10

    In order to explore local large-scale structures and velocity fields, accurate galaxy distance measures are needed. We now extend the well-tested recipe for calibrating the correlation between galaxy rotation rates and luminosities—capable of providing such distance measures—to the all-sky, space-based imaging data from the Wide-field Infrared Survey Explorer (WISE) W1 (3.4 μm) and W2 (4.6 μm) filters. We find a correlation of line width to absolute magnitude (known as the Tully-Fisher relation, TFR) of M{sub W1}{sup b,i,k,a}=−20.35−9.56(log W{sub mx}{sup i}−2.5) (0.54 mag rms) and M{sub W2}{sup b,i,k,a}=−19.76−9.74(log W{sub mx}{sup i}−2.5) (0.56 mag rms) from 310 galaxies in 13 clusters. We update themore » I-band TFR using a sample 9% larger than in Tully and Courtois. We derive M{sub I}{sup b,i,k}=−21.34−8.95(log W{sub mx}{sup i}−2.5) (0.46 mag rms). The WISE TFRs show evidence of curvature. Quadratic fits give M{sub W1}{sup b,i,k,a}=−20.48−8.36(log W{sub mx}{sup i}−2.5)+3.60(log W{sub mx}{sup i}−2.5){sup 2} (0.52 mag rms) and M{sub W2}{sup b,i,k,a}=−19.91−8.40(log W{sub mx}{sup i}−2.5)+4.32(log W{sub mx}{sup i}−2.5){sup 2} (0.55 mag rms). We apply an I-band –WISE color correction to lower the scatter and derive M{sub C{sub W{sub 1}}}=−20.22−9.12(log W{sub mx}{sup i}−2.5) and M{sub C{sub W{sub 2}}}=−19.63−9.11(log W{sub mx}{sup i}−2.5) (both 0.46 mag rms). Using our three independent TFRs (W1 curved, W2 curved, and I band), we calibrate the UNION2 Type Ia supernova sample distance scale and derive H {sub 0} = 74.4 ± 1.4(stat) ± 2.4(sys) km s{sup –1} Mpc{sup –1} with 4% total error.« less

  10. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat

    PubMed Central

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L.; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F.; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A.; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus. PMID:28018377

  11. 7 CFR 457.118 - Malting barley price and quality endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... highest additional value price will be used until the number of bushels covered at the higher additional... barley contract or malting barley price agreement, you must provide us with a copy of your current crop... contract or malting barley price agreement is not provided to us by the acreage reporting date. (c) Under...

  12. Diversity and Evolution of Disease Resistance Genes in Barley (Hordeum vulgare L.)

    PubMed Central

    Andersen, Ethan J.; Ali, Shaukat; Reese, R. Neil; Yen, Yang; Neupane, Surendra; Nepal, Madhav P.

    2016-01-01

    Plant disease resistance genes (R-genes) play a critical role in the defense response to pathogens. Barley is one of the most important cereal crops, having a genome recently made available, for which the diversity and evolution of R-genes are not well understood. The main objectives of this research were to conduct a genome-wide identification of barley Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) genes and elucidate their evolutionary history. We employed a Hidden Markov Model using 52 Arabidopsis thaliana CNL reference sequences and analyzed for phylogenetic relationships, structural variation, and gene clustering. We identified 175 barley CNL genes nested into three clades, showing (a) evidence of an expansion of the CNL-C clade, primarily due to tandem duplications; (b) very few members of clade CNL-A and CNL-B; and (c) a complete absence of clade CNL-D. Our results also showed that several of the previously identified mildew locus A (MLA) genes may be allelic variants of two barley CNL genes, MLOC_66581 and MLOC_10425, which respond to powdery mildew. Approximately 23% of the barley CNL genes formed 15 gene clusters located in the extra-pericentromeric regions on six of the seven chromosomes; more than half of the clustered genes were located on chromosomes 1H and 7H. Higher average numbers of exons and multiple splice variants in barley relative to those in Arabidopsis and rice may have contributed to a diversification of the CNL-C members. These results will help us understand the evolution of R-genes with potential implications for developing durable resistance in barley cultivars. PMID:27168720

  13. Study of the prevalence of chronic, non-specific lung disease and related health problems in the grain-handling industry. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankin, J.; Bates, J.; Claremont, A.

    1986-10-01

    A total of 310 grain handlers was studied, with attention to prevalence and characteristics of clinical, psychological, immunological, radiological, serological blood and urine parameters to determine any apparent effects from grain-dust exposure. Grain handlers had a higher prevalence of respiratory symptoms and signs than did the city workers who comprised the comparison group. Evidence of accumulative respiratory effect due to recurring exposures to grain dust was found. Acute and chronic airway reactions were induced by exposure to grain dust. Wheezing and dyspnea on exposure were related to length of employment. Grain fever syndrome was prevalent. Cases of acute recurrent conjunctivitismore » and rhinitis were found along with skin pruritus, mainly on exposure to barley dust. Pesticide exposure caused temporary disabling symptoms. Lung function was adversely affected by grain-dust exposure. Exposure to grain mites and insects in contaminated cereal grain caused a reaction among grain workers.« less

  14. Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling1

    PubMed Central

    Yang, Jianchang; Zhang, Jianhua; Wang, Zhiqing; Zhu, Qingsen; Wang, Wei

    2001-01-01

    Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed 14CO2 into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA1 + GA4) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P < 0.01) and the partitioning of fixed 14C into grains (r = 0.95**, P < 0.01). Exogenously applied ABA on pot-grown HN rice showed similar results as those by WS. Results suggest that an altered hormonal balance in rice grains by water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate. PMID:11553759

  15. White Matter Fiber-based Analysis of T1w/T2w Ratio Map.

    PubMed

    Chen, Haiwei; Budin, Francois; Noel, Jean; Prieto, Juan Carlos; Gilmore, John; Rasmussen, Jerod; Wadhwa, Pathik D; Entringer, Sonja; Buss, Claudia; Styner, Martin

    2017-02-01

    To develop, test, evaluate and apply a novel tool for the white matter fiber-based analysis of T1w/T2w ratio maps quantifying myelin content. The cerebral white matter in the human brain develops from a mostly non-myelinated state to a nearly fully mature white matter myelination within the first few years of life. High resolution T1w/T2w ratio maps are believed to be effective in quantitatively estimating myelin content on a voxel-wise basis. We propose the use of a fiber-tract-based analysis of such T1w/T2w ratio data, as it allows us to separate fiber bundles that a common regional analysis imprecisely groups together, and to associate effects to specific tracts rather than large, broad regions. We developed an intuitive, open source tool to facilitate such fiber-based studies of T1w/T2w ratio maps. Via its Graphical User Interface (GUI) the tool is accessible to non-technical users. The framework uses calibrated T1w/T2w ratio maps and a prior fiber atlas as an input to generate profiles of T1w/T2w values. The resulting fiber profiles are used in a statistical analysis that performs along-tract functional statistical analysis. We applied this approach to a preliminary study of early brain development in neonates. We developed an open-source tool for the fiber based analysis of T1w/T2w ratio maps and tested it in a study of brain development.

  16. White matter fiber-based analysis of T1w/T2w ratio map

    NASA Astrophysics Data System (ADS)

    Chen, Haiwei; Budin, Francois; Noel, Jean; Prieto, Juan Carlos; Gilmore, John; Rasmussen, Jerod; Wadhwa, Pathik D.; Entringer, Sonja; Buss, Claudia; Styner, Martin

    2017-02-01

    Purpose: To develop, test, evaluate and apply a novel tool for the white matter fiber-based analysis of T1w/T2w ratio maps quantifying myelin content. Background: The cerebral white matter in the human brain develops from a mostly non-myelinated state to a nearly fully mature white matter myelination within the first few years of life. High resolution T1w/T2w ratio maps are believed to be effective in quantitatively estimating myelin content on a voxel-wise basis. We propose the use of a fiber-tract-based analysis of such T1w/T2w ratio data, as it allows us to separate fiber bundles that a common regional analysis imprecisely groups together, and to associate effects to specific tracts rather than large, broad regions. Methods: We developed an intuitive, open source tool to facilitate such fiber-based studies of T1w/T2w ratio maps. Via its Graphical User Interface (GUI) the tool is accessible to non-technical users. The framework uses calibrated T1w/T2w ratio maps and a prior fiber atlas as an input to generate profiles of T1w/T2w values. The resulting fiber profiles are used in a statistical analysis that performs along-tract functional statistical analysis. We applied this approach to a preliminary study of early brain development in neonates. Results: We developed an open-source tool for the fiber based analysis of T1w/T2w ratio maps and tested it in a study of brain development.

  17. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2016-01-01

    The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300

  18. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley

    PubMed Central

    Rey, María-Dolores; Calderón, María C.; Prieto, Pilar

    2015-01-01

    Intensive breeding has led to a narrowing in the genetic base of our major crops. In wheat, access to the extensive gene pool residing in its many and varied relatives (some cultivated, others wild) is hampered by the block on recombination imposed by the Ph1 (Pairing homoeologous 1) gene. Here, the ph1b mutant has been exploited to induced allosyndesis between wheat chromosomes and those of both Hordeum vulgare (cultivated barley) and H. chilense (a wild barley). A number of single chromosome Hordeum sp. substitution and addition lines in wheat were crossed and backcrossed to the ph1b mutant to produce plants in which pairing between the wheat and the non-wheat chromosomes was not suppressed by the presence of Ph1. Genomic in situ hybridization was applied to almost 500 BC1F2 progeny as a screen for allosyndetic recombinants. Chromosome rearrangements were detected affecting H. chilense chromosomes 4Hch, 5Hch, 6Hch, and 7Hch and H. vulgare chromosomes 4Hv, 6Hv, and 7Hv. Two of these were clearly the product of a recombination event involving chromosome 4Hch and a wheat chromosome. PMID:25852713

  19. Overexpression of HvHGGT Enhances Tocotrienol Levels and Antioxidant Activity in Barley.

    PubMed

    Chen, Jianshu; Liu, Cuicui; Shi, Bo; Chai, Yuqiong; Han, Ning; Zhu, Muyuan; Bian, Hongwu

    2017-06-28

    Vitamin E is a potent lipid-soluble antioxidant and essential nutrient for human health. Tocotrienols are the major form of vitamin E in seeds of most monocots. It has been known that homogentisate geranylgeranyl transferase (HGGT) catalyzes the committed step of tocotrienol biosynthesis. In the present study, we generated transgenic barley overexpressing HvHGGT under endogenous D-Hordein promoter (proHor). Overexpression of HvHGGT increased seed size and seed weight in transgenic barley. Notably, total tocotrienol content increased by 10-15% in seeds of transgenic lines, due to the increased levels of δ-, β-, and γ-tocotrienol, but not α-tocotrienol. Total tocopherol content decreased by 14-18% in transgenic lines, compared to wild type. The antioxidant activity of seeds was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and lipid peroxidation assays. Compared to wild type, radical scavenging activity of seed extracts was enhanced by 17-18% in transgenic lines. Meanwhile, the lipid peroxidation level was decreased by about 20% in transgenic barley seeds. Taken together, overexpression of HvHGGT enhanced the tocotrienol levels and antioxidant capacity in barley seeds.

  20. Community-based grain banks using local foods for improved infant and young child feeding in Ethiopia.

    PubMed

    Roche, Marion L; Sako, Binta; Osendarp, Saskia J M; Adish, Abdul A; Tolossa, Azeb L

    2017-04-01

    The first thousand days of a child's life are critical for ensuring adequate nutrition to enable optimal health, development and growth. Inadequate infant and young child feeding (IYCF) practices likely contribute to Ethiopia's concerning malnutrition situation. Development partners in four regions of Ethiopia implemented community production of complementary food with women's groups processing local grains and legumes at grain banks to improve availability, accessibility, dietary diversity and timely introduction of complementary foods. The objective of this study was to establish the acceptability, perceived impact, feasibility and required inputs to sustain local grain bank interventions to improve IYCF. A subsidized barter system was used by mothers in the rural communities, and flour was sold in the semi-urban context. Purposive sampling guided the qualitative study design and selection of project stakeholders. A total of 51 key informant interviews and 33 focus group discussions (n = 237) were conducted. The grain bank flour was valued for its perceived diverse local ingredients; while the project was perceived as creating labour savings for women. The grain bank flour offered the potential to contribute to improved IYCF; however, further dietary modification or fortification is needed to improve the micronutrient content. Dependence upon external inputs to subsidize the barter model and the reliance on volunteer labour from women's groups in the rural context are the greatest risks to sustainability. This intervention illustrates how integrated agricultural and health interventions leveraging local production can appeal to diverse stakeholders as an acceptable approach to improve IYCF. © 2015 John Wiley & Sons Ltd.

  1. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers.

    PubMed

    Chełkowski, Jerzy; Tyrka, Mirosław; Sobkiewicz, Andrzej

    2003-01-01

    Current information on barley resistance genes available from scientific papers and on-line databases is summarised. The recent literature contains information on 107 major resistance genes (R genes) against fungal pathogens (excluding powdery mildew), pathogenic viruses and aphids identified in Hordeum vulgare accessions. The highest number of resistance genes was identified against Puccinia hordei, Rhynchosporium secalis, and the viruses BaYMV and BaMMV, with 17, 14 and 13 genes respectively. There is still a lot of confusion regarding symbols for R genes against powdery mildew. Among the 23 loci described to date, two regions Mla and Mlo comprise approximately 31 and 25 alleles. Over 50 R genes have already been localised and over 30 mapped on 7 barley chromosomes. Four barley R genes have been cloned recently: Mlo, Rpg1, Mla1 and Mla6, and their structures (sequences) are available. The paper presents a catalogue of barley resistance gene symbols, their chromosomalocation and the list of available DNA markers useful in characterising cultivars and breeding accessions.

  2. Machine vision methods for use in grain variety discrimination and quality analysis

    NASA Astrophysics Data System (ADS)

    Winter, Philip W.; Sokhansanj, Shahab; Wood, Hugh C.

    1996-12-01

    Decreasing cost of computer technology has made it feasible to incorporate machine vision technology into the agriculture industry. The biggest attraction to using a machine vision system is the computer's ability to be completely consistent and objective. One use is in the variety discrimination and quality inspection of grains. Algorithms have been developed using Fourier descriptors and neural networks for use in variety discrimination of barley seeds. RGB and morphology features have been used in the quality analysis of lentils, and probability distribution functions and L,a,b color values for borage dockage testing. These methods have been shown to be very accurate and have a high potential for agriculture. This paper presents the techniques used and results obtained from projects including: a lentil quality discriminator, a barley variety classifier, a borage dockage tester, a popcorn quality analyzer, and a pistachio nut grading system.

  3. Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process

    PubMed Central

    2010-01-01

    Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic) process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis) or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS) co-product had extremely low β-glucan (below 0.2%) making it suitable for use in both ruminant and mono-gastric animal

  4. Fusion, rupture, and degeneration: the fate of in vivo-labelled PSVs in developing barley endosperm *

    PubMed Central

    Ibl, Verena; Kapusi, Eszter; Arcalis, Elsa; Kawagoe, Yasushi; Stoger, Eva

    2014-01-01

    Cereal endosperm is a highly differentiated tissue containing specialized organelles for the accumulation of storage proteins. The endosperm of barley contains hordeins, which are ultimately deposited within protein storage vacuoles (PSVs). These organelles have been characterized predominantly by the histochemical analysis of fixed immature tissue samples. However, little is known about the fate of PSVs during barley endosperm development, and in vivo imaging has not been attempted in order to gain further insight. In this report, young seeds were followed through development to characterize the dynamic morphology of PSVs from aleurone, subaleurone, and central starchy endosperm cells. TIP3-GFP was used as a PSV membrane marker and several fluorescent tracers were used to identify membranes and monitor endomembrane organelles in real time. Whereas the spherical appearance of strongly labelled TIP3-GFP PSVs in the aleurone remained constant, those in the subaleurone and central starchy endosperm underwent substantial morphological changes. Fusion and rupture events were observed in the subaleurone, and internal membranes derived from both the tonoplast and endoplasmic reticulum were identified within these PSVs. TIP3-GFP-labelled PSVs in the starchy endosperm cells underwent a dramatic reduction in size, so that finally the protein bodies were tightly enclosed. Potential desiccation-related membrane-altering processes that may be causally linked to these dynamic endomembrane events in the barley endosperm are discussed. PMID:24803499

  5. 40 CFR 180.565 - Thiamethoxam; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., hulls 1.2 Artichoke, globe 0.45 Avocado 0.40 Barley, grain 0.30 Barley, hay 0.40 Barley, straw 0.40 Bean..., meat byproducts 0.04 Cattle, meat 0.02 Citrus, dried pulp 0.60 ppm Coffee, bean, green 1 0.05 Corn...

  6. Using ATR-FT/IR molecular spectroscopy to detect effects of blend DDGS inclusion level on the molecular structure spectral and metabolic characteristics of the proteins in hulless barley

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewei; Yu, Peiqiang

    2012-09-01

    The objectives of this study were to investigate the effects of inclusion of a bioethanol co-product of blend DDGS (wheat:corn = 70%:30%) on protein molecular structure spectral and metabolic characteristics in hulless barley-based feed using ATR-FT/IR molecular spectroscopy. Hulless barley grain with the blend DDGS were mixed in the five ratios. The results showed that when blend DDGS was included at an increased ratio, predicted truly absorbed protein supply was highly and linearly increased (P < 0.05) from 98 to 245 g kg-1 DM and degraded protein balance was increased (P < 0.05) from -1 to 75 g kg-1 DM. The ratio of amide I to II peak area was increased (P < 0.05) in the original combination samples but decreased (P < 0.05) in the in situ 48 h residue samples. The ratio of α-helix to β-sheet peak height was quadratically changed with increasing inclusion rate of blend DDGS in the original samples, but no difference among the in situ 48 h residue samples, indicating completion of protein degradation. No correlation was found between protein 2nd structures and protein nutrient profiles not only for the original combination samples (except NPN) but also for in situ 48 h residue samples. This study may provide information on how protein molecular structure and metabolic characteristic changes after feed combination and how more effectively utilize hulless barley and blend co-products for dairy and beef cattle.

  7. Quantifying the mechanical effects of He, W and He + W ion irradiation on tungsten with spherical nanoindentation

    DOE PAGES

    Weaver, Jordan S.; Sun, Cheng; Wang, Yongqiang; ...

    2017-12-19

    Here, recent advances in spherical nanoindentation protocols have proven very useful for capturing the grain-scale mechanical response of different metals. This is achieved by converting the load–displacement response into an effective indentation stress–strain response which reveals latent information such as the elastic–plastic transition or indentation yield strength and work-hardening behavior and subsequently correlating the response with the material structure (e.g., crystal orientation) at the indentation site. Using these protocols, we systematically study and quantify the microscale mechanical effects of He, W, and He + W ion irradiation on commercially pure, polycrystalline tungsten. The indentation stress–strain response is correlated with themore » crystal orientation from electron backscatter diffraction, the defect structure from transmission electron microscopy micrographs, and the stopping range of ions in matter calculations of displacement damage and He concentration. He-implanted grains show a much higher indentation yield strength and saturation stress compared to W-ion-irradiated grains for the same displacement damage. There is also good agreement between the dispersed barrier hardening model with a barrier strength of 0.5–0.8 and void models (Bacon–Kochs–Scattergood and Osetsky–Bacon models) with the experimentally observed changes in indentation strength due to the presence of He bubbles. This finding indicates that a high density (~ 9 × 10 23 m –3) and concentration (~ 1.5 at.%) of small (~ 1 nm diameter) He bubbles can be moderate to strong barriers to dislocation slip in tungsten.« less

  8. Quantifying the mechanical effects of He, W and He + W ion irradiation on tungsten with spherical nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Sun, Cheng; Wang, Yongqiang

    Here, recent advances in spherical nanoindentation protocols have proven very useful for capturing the grain-scale mechanical response of different metals. This is achieved by converting the load–displacement response into an effective indentation stress–strain response which reveals latent information such as the elastic–plastic transition or indentation yield strength and work-hardening behavior and subsequently correlating the response with the material structure (e.g., crystal orientation) at the indentation site. Using these protocols, we systematically study and quantify the microscale mechanical effects of He, W, and He + W ion irradiation on commercially pure, polycrystalline tungsten. The indentation stress–strain response is correlated with themore » crystal orientation from electron backscatter diffraction, the defect structure from transmission electron microscopy micrographs, and the stopping range of ions in matter calculations of displacement damage and He concentration. He-implanted grains show a much higher indentation yield strength and saturation stress compared to W-ion-irradiated grains for the same displacement damage. There is also good agreement between the dispersed barrier hardening model with a barrier strength of 0.5–0.8 and void models (Bacon–Kochs–Scattergood and Osetsky–Bacon models) with the experimentally observed changes in indentation strength due to the presence of He bubbles. This finding indicates that a high density (~ 9 × 10 23 m –3) and concentration (~ 1.5 at.%) of small (~ 1 nm diameter) He bubbles can be moderate to strong barriers to dislocation slip in tungsten.« less

  9. Recycled grains in lunar soils as an additional, necessary, regolith evolution parameter

    NASA Technical Reports Server (NTRS)

    Basu, A.

    1990-01-01

    Recycled lunar soil grains are defined as those soil grains that have been a part of either regolith breccias or agglutinates; thus, mineral grains, rock fragments, older agglutinates, and volcanic glass spherules, if dislodged from an agglutinate or a regolith breccia, would all qualify as recycled grains. This paper shows that it is possible to estimate the proportion of recycled material in lunar soils. Optical data from 12 soils in the Apollo 16 core 64001/2 were collected to estimate the proportion (W) of recycled crystalline grains in each of these soils. The W values show a correspondence with other independently derived parameters and the history of the core soils, indicating that W can be used as a valid soil-evolution parameter.

  10. Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS.

    PubMed

    Campoli, Chiara; Drosse, Benedikt; Searle, Iain; Coupland, George; von Korff, Maria

    2012-03-01

    Variation in photoperiod response is a major factor determining plant development and the agronomic performance of crops. The genetic control of photoperiodic flowering has been elucidated in the model plant Arabidopsis, and many of the identified genes are structurally conserved in the grasses. In this study, HvCO1, the closest barley ortholog of the key photoperiod response gene CONSTANS in Arabidopsis, was over-expressed in the spring barley Golden Promise. Over-expression of HvCO1 accelerated time to flowering in long- and short-day conditions and caused up-regulation of HvFT1 mRNA under long-day conditions. However, the transgenic plants retained a response to photoperiod, suggesting the presence of photoperiod response factors acting downstream of HvCO1 transcription. Analysis of a population segregating for HvCO1 over-expression and natural genetic variation at Ppd-H1 demonstrated that Ppd-H1 acts downstream of HvCO1 transcription on HvFT1 expression and flowering. Furthermore, variation at Ppd-H1 did not affect diurnal expression of HvCO1 or HvCO2. Over-expression of HvCO1 increased transcription of the spring allele of Vrn-H1 in long- and short-day conditions, while genetic variation at Ppd-H1 did not affect Vrn-H1 expression. Over-expression of HvCO1 and natural genetic variation at Ppd-H1 accelerated inflorescence development and stem elongation. Thus, HvCO1 probably induces flowering by activating HvFT1 whilst Ppd-H1 regulates HvFT1 independently of HvCO1 mRNA, and all three genes also appear to have a strong effect in promoting inflorescence development. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  11. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel.

    PubMed

    Yang, Zujun; Zhang, Tao; Bolshoy, Alexander; Beharav, Alexander; Nevo, Eviatar

    2009-05-01

    'Evolution Canyon' (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unravelling evolution in action highlighting the twin evolutionary processes of adaptation and speciation. A major model organism in ECI is wild barley, Hordeum spontaneum, the progenitor of cultivated barley, which displays dramatic interslope adaptive and speciational divergence on the 'African' dry slope (AS) and the 'European' humid slope (ES), separated on average by 200 m. Here we examined interslope single nucleotide polymorphism (SNP) sequences and the expression diversity of the drought resistant dehydrin 1 gene (Dhn1) between the opposite slopes. We analysed 47 plants (genotypes), 4-10 individuals in each of seven stations (populations) in an area of 7000 m(2), for Dhn1 sequence diversity located in the 5' upstream flanking region of the gene. We found significant levels of Dhn1 genic diversity represented by 29 haplotypes, derived from 45 SNPs in a total of 708 bp sites. Most of the haplotypes, 25 out of 29 (= 86.2%), were represented by one genotype; hence, unique to one population. Only a single haplotype was common to both slopes. Genetic divergence of sequence and haplotype diversity was generally and significantly different among the populations and slopes. Nucleotide diversity was higher on the AS, whereas haplotype diversity was higher on the ES. Interslope divergence was significantly higher than intraslope divergence. The applied Tajima D rejected neutrality of the SNP diversity. The Dhn1 expression under dehydration indicated interslope divergent expression between AS and ES genotypes, reinforcing Dhn1 associated with drought resistance of wild barley at 'Evolution Canyon'. These results are inexplicable by mutation, gene flow, or chance effects, and support adaptive natural microclimatic selection as the major evolutionary divergent driving force.

  12. Rice planted along with accumulators in arsenic amended plots reduced arsenic uptake in grains and shoots.

    PubMed

    Praveen, Ashish; Mehrotra, Sonali; Singh, Nandita

    2017-10-01

    An experiment was designed using phytoremadiation technology to obtain grains of rice safe for consumption. Sixteen plots of size 2 × 2 m were prepared (8 plots were treated with 50 mg kg -1 of sodium arsenate and rest 8 without any treatment). The study was done for two plantations (1st and 2nd plantation). Rice was planted with three accumulators (Phragmites australis, Vetiveria zizanioides and Pteris vitatta) in treated and untreated plot. Arsenic in grains of Actr (R + Pt, R + Ph and R + Vt) for 1st plantation was 0.4, 0.2 and 0.2 mg kg -1 where as in the case of wActr (Ras) it was 3 mg kg -1 . In 2nd plantation the concentration of arsenic in grain of Actr (R + Pt, R + Ph and R + Vt) was 0.1, 0.1 and 0.1 mg kg -1 where as in the case of wActr (Ras) it was 2 mg kg -1 . Significant differences in growth and yield parameters of rice between Actr and wActr in 1st plantation, while for 2nd plantation the activity was reduced in combinations except R + Pt and no significant difference was observed between Actr, Acntr and wActr. The study concluded that combinations of accumulators with crops could be useful for the survival and safe grains in As-contaminated soils but with some amendments in long-term remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Customized Gene Expression Microarray Reveals That the Brittle Stem Phenotype fs2 of Barley Is Attributable to a Retroelement in the HvCesA4 Cellulose Synthase Gene1[W][OA

    PubMed Central

    Burton, Rachel A.; Ma, Gang; Baumann, Ute; Harvey, Andrew J.; Shirley, Neil J.; Taylor, Jillian; Pettolino, Filomena; Bacic, Antony; Beatty, Mary; Simmons, Carl R.; Dhugga, Kanwarpal S.; Rafalski, J. Antoni; Tingey, Scott V.; Fincher, Geoffrey B.

    2010-01-01

    The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion. Sequencing of the HvCesA4 genes revealed the presence of a 964-bp solo long terminal repeat of a Copia-like retroelement in the first intron of the HvCesA4 genes of both mutant lines. The retroelement appears to interfere with transcription of the HvCesA4 gene or with processing of the mRNA, and this is likely to account for the lower crystalline cellulose content and lower stem strength of the mutants. The HvCesA4 gene maps to a position on chromosome 1H of barley that coincides with the previously reported position of fs2. PMID:20530215

  14. iTAG Barley: A 9-12 classroom module to explore gene expression and segregation using Oregon Wolfe Barley

    USDA-ARS?s Scientific Manuscript database

    The Oregon Wolfe Barleys (OWBs) are a model resource for genetics research and instruction (http://barleyworld.org/oregonwolfe ; http://wheat.pw.usda.gov/ggpages/OWB_gallery/ISS-OWB/index.htm). The population of 94 doubled haploid lines was developed from an F1 of a cross between dominant and reces...

  15. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture.

    PubMed

    Hafla, A N; Soder, K J; Brito, A F; Rubano, M D; Dell, C J

    2014-12-01

    A 4-unit dual-flow continuous-culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane (CH4) output. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement using 7 d for diet adaptation and 3 d for sample collection. Experimental diets were (1) 55.5 g of herbage dry matter (DM) + 4.5 g of SB DM, (2) 56.0 g of herbage DM + 4.0 g of BG DM, (3) 55.5 g of haylage DM + 4.5 g of SB DM, and (4) 56.0 g of haylage DM + 4.0 g of BG DM. Forages were fed at 0730, 1030, 1400, and 1900 h, whereas SB and BG were fed at 0730 and 1400 h. Gas samples for CH₄ analysis were collected at 0725, 0900, 1000, 1355, 1530, and 1630 h on d 8, 9, and 10. Fluid samples were taken once daily on d 8, 9, and 10 for pH measurements and for ammonia-N and VFA analysis and analyzed for DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber for determination of nutrient digestibilities and estimation of bacterial protein synthesis. Orthogonal contrasts were used to compare the effect of forage source (haylage vs. herbage), supplement (BG vs. SB), and the forage × supplement interaction. Apparent and true DM and organic matter digestibilities as well as apparent crude protein digestibility were not affected by forage source. However, true DM digestibility was greatest for diets supplemented with SB. Apparent neutral and acid detergent fiber digestibilities of herbage-based diets were higher than haylage-based diets but fiber digestibility was not affected by supplement. Diets supplemented with SB had higher mean and minimum pH than BG; however, maximum pH was not affected by diet. Supplementation with BG produced a greater concentration of total VFA compared with diets supplemented with SB. Haylage

  16. Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines

    PubMed Central

    Wang, Gongwei; Schmalenbach, Inga; von Korff, Maria; Léon, Jens; Kilian, Benjamin; Rode, Jeannette

    2010-01-01

    The control of flowering time has important impacts on crop yield. The variation in response to day length (photoperiod) and low temperature (vernalization) has been selected in barley to provide adaptation to different environments and farming practices. As a further step towards unraveling the genetic mechanisms underlying flowering time control in barley, we investigated the allelic variation of ten known or putative photoperiod and vernalization pathway genes between two genotypes, the spring barley elite cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare) and the wild barley accession ‘ISR42-8’ (Hordeum vulgare ssp. spontaneum). The genes studied are Ppd-H1, VRN-H1, VRN-H2, VRN-H3, HvCO1, HvCO2, HvGI, HvFT2, HvFT3 and HvFT4. ‘Scarlett’ and ‘ISR42-8’ are the parents of the BC2DH advanced backcross population S42 and a set of wild barley introgression lines (S42ILs). The latter are derived from S42 after backcrossing and marker-assisted selection. The genotypes and phenotypes in S42 and S42ILs were utilized to determine the genetic map location of the candidate genes and to test if these genes may exert quantitative trait locus (QTL) effects on flowering time, yield and yield-related traits in the two populations studied. By sequencing the characteristic regions of the genes and genotyping with diagnostic markers, the contrasting allelic constitutions of four known flowering regulation genes were identified as ppd-H1, Vrn-H1, vrn-H2 and vrn-H3 in ‘Scarlett’ and as Ppd-H1, vrn-H1, Vrn-H2 and a novel allele of VRN-H3 in ‘ISR42-8’. All candidate genes could be placed on a barley simple sequence repeat (SSR) map. Seven candidate genes (Ppd-H1, VRN-H2, VRN-H3, HvGI, HvFT2, HvFT3 and HvFT4) were associated with flowering time QTLs in population S42. Four exotic alleles (Ppd-H1, Vrn-H2, vrn-H3 and HvCO1) possibly exhibited significant effects on flowering time in S42ILs. In both populations, the QTL showing the strongest effect corresponded to

  17. Incorporation of whole, ancient grains into a modern Asian Indian diet to reduce the burden of chronic disease.

    PubMed

    Dixit, Anjali A; Azar, Kristen Mj; Gardner, Christopher D; Palaniappan, Latha P

    2011-08-01

    Refined carbohydrates, such as white rice and white flour, are the mainstay of the modern Asian Indian diet, and may contribute to the rising incidence of type 2 diabetes and cardiovascular disease in this population. Prior to the 1950s, whole grains such as amaranth, barley, brown rice, millet, and sorghum were more commonly used in Asian Indian cooking. These grains and other non-Indian grains such as couscous, quinoa, and spelt are nutritionally advantageous and may be culturally acceptable carbohydrate substitutes for Asian Indians. This review focuses on practical recommendations for culturally sensitive carbohydrate modification in a modern Asian Indian diet to reduce type 2 diabetes and cardiovascular disease in this population. © 2011 International Life Sciences Institute.

  18. Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

    PubMed Central

    Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam

    2013-01-01

    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966

  19. Rapid nested PCR-based detection of Ramularia collo-cygni direct from barley.

    PubMed

    Havis, Neil D; Oxley, Simonj P; Piper, Stephen R; Langrell, Stephen R H

    2006-03-01

    Ramularia collo-cygni is a barley pathogen of increasing importance in Northern and Central Europe, New Zealand and South America. Accurate visual and microscopic identification of the pathogen from diseased tissue is difficult. A nested PCR-based diagnostic test has been developed as part of an initiative to map the distribution of the pathogen in Scotland. The entire nuclear ribosomal internal transcribed spacer and 5.8S rRNA gene regions from 14 isolates of diverse global origin exhibited complete homology following sequence characterization. Two pairs of species-specific primers, based on inter-specific sequence divergence with closely related species, were designed and empirically evaluated for diagnostic nested PCR. Nested primers Rcc3 and Rcc4 consistently amplified a single product of 256 bp from DNA of 24 R. collo-cygni isolates of diverse global provenance, but not from other Ramularia species, or other fungi commonly encountered in cereal pathosystems, as well as Hordeum or Secale DNA preparations. Using this approach, R. collo-cygni was successfully identified from naturally infected barley leaf, awn and grain samples of diverse geographical provenance, in particular from symptoms that lacked the presence of characteristic conidiophores. It is envisaged that this assay will become established as an important tool in continuing studies into the ecology, aetiology and epidemiology of this poorly understood yet economically damaging plant pathogen.

  20. Genome-Wide Prediction of the Performance of Three-Way Hybrids in Barley.

    PubMed

    Li, Zuo; Philipp, Norman; Spiller, Monika; Stiewe, Gunther; Reif, Jochen C; Zhao, Yusheng

    2017-03-01

    Predicting the grain yield performance of three-way hybrids is challenging. Three-way crosses are relevant for hybrid breeding in barley ( L.) and maize ( L.) adapted to East Africa. The main goal of our study was to implement and evaluate genome-wide prediction approaches of the performance of three-way hybrids using data of single-cross hybrids for a scenario in which parental lines of the three-way hybrids originate from three genetically distinct subpopulations. We extended the ridge regression best linear unbiased prediction (RRBLUP) and devised a genomic selection model allowing for subpopulation-specific marker effects (GSA-RRBLUP: general and subpopulation-specific additive RRBLUP). Using an empirical barley data set, we showed that applying GSA-RRBLUP tripled the prediction ability of three-way hybrids from 0.095 to 0.308 compared with RRBLUP, modeling one additive effect for all three subpopulations. The experimental findings were further substantiated with computer simulations. Our results emphasize the potential of GSA-RRBLUP to improve genome-wide hybrid prediction of three-way hybrids for scenarios of genetically diverse parental populations. Because of the advantages of the GSA-RRBLUP model in dealing with hybrids from different parental populations, it may also be a promising approach to boost the prediction ability for hybrid breeding programs based on genetically diverse heterotic groups. Copyright © 2017 Crop Science Society of America.

  1. Alkylresorcinols in selected Polish rye and wheat cereals and whole-grain cereal products.

    PubMed

    Kulawinek, Mariola; Jaromin, Anna; Kozubek, Arkadiusz; Zarnowski, Robert

    2008-08-27

    The alkylresorcinol content and homologue composition in selected Polish rye and wheat cultivars and selected whole-grain cereal products were determined in this study. Cereal grains and whole-grain cereal products were extracted with acetone, whereas bread types were extracted with hot 1-propanol. The average alkylresorcinol content in tested rye (approximately 1100 mg/kg DM) and wheat (approximately 800 mg/kg DM) grains harvested in Poland was within the range previously reported in Swedish and Finnish samples. The total alkylresorcinol content in tested cereal products available on the Polish market varied from very low levels in barley grain-based foods up to 3000 mg/kg DM in wheat bran. The total alkylresorcinol content in 14 bread samples extracted with hot 1-propanol varied from approximately 100 mg/kg DM in whole bread made with honey up to approximately 650 mg/kg DM in whole-rye bread. Calculated ratios of C17:0 to C21:0 homologues, a useful parameter previously used to distinguish between rye and wheat cereals and their derived products, was about 1.2-1.4 in rye products, about 0.2 in wheat products, and varied between 0.2 and 0.6 in cereal-derived products containing a mixture of whole rye and/or wheat. The data set obtained were subsequently compared using cluster and principal component analysis, which allowed the tested cereal products to be classified into two major groups consisting of whole-rye or whole-wheat products, respectively. On the basis of that approach, mixed cereal products containing rye and wheat bran or whole rye and wheat flour were grouped between those two well-defined clusters. Our work not only provides a detailed examination of alkylresorcinols in selected Polish rye and wheat cultivars and selected whole-grain cereal products, but also demonstrates that this type of analysis accompanied by the use of proper statistical algorithms offers an objective way to evaluate the quality of whole-grain rye and/or wheat and their derived

  2. Comparison of wheat or corn dried distillers grains with solubles on rumen fermentation and nutrient digestibility by feedlot heifers.

    PubMed

    Walter, L J; McAllister, T A; Yang, W Z; Beauchemin, K A; He, M; McKinnon, J J

    2012-04-01

    A 5 × 5 Latin square design trial was conducted to evaluate rumen fermentation and apparent nutrient digestibility in 5 rumen-cannulated heifers (420 ± 6 kg) fed a barley-based finishing diet supplemented with 20 or 40% wheat or corn dried distillers grains with solubles (DDGS). The composition of the control diet was 88.7% rolled barley grain, 5.5% supplement, and 5.8% barley silage (DM basis). Increasing the quantity of corn DDGS in the ration resulted in a quadratic decrease in DMI (P = 0.04) and OM intake (P = 0.05). Rumen pH, pH duration, and area under rumen pH thresholds of 5.8 or 5.5 were not affected (P > 0.05) by treatment. Inclusion of wheat DDGS resulted in a quadratic increase (P = 0.05) in pH area below the cutoff value of 5.2, with the most pronounced effect at 20% inclusion. Wheat DDGS linearly increased (P = 0.01) rumen NH(3)-N concentrations. Increasing the inclusion rate of wheat and corn DDGS resulted in quadratic (P = 0.05) and linear (P = 0.04) decreases in rumen propionate, whereas butyrate increased quadratically (P < 0.01) and linearly (P < 0.01), respectively. Feeding wheat DDGS linearly decreased (P < 0.01) DM and OM digestibility values. Inclusion of corn DDGS increased the digestibility values of ether extract (P = 0.05; quadratic response) and CP (P < 0.01; linear response). Neutral detergent fiber digestibility increased in a linear fashion (P = 0.01) as both wheat and corn DDGS inclusion increased, whereas ADF digestibility increased linearly (P = 0.03) for wheat and quadratically (P = 0.02) for corn DDGS. Increased inclusion of wheat DDGS resulted in a linear decrease in GE digestibility (P = 0.01), whereas increasing corn DDGS inclusion linearly increased (P < 0.01) the DE content of the diet. Feeding both wheat and corn DDGS linearly increased (P = 0.01) the excretion of N and P. In summary, replacement of barley grain with up to 40% wheat or corn DDGS did not mitigate rumen pH conditions associated with mild to moderate

  3. Trichothecene mycotoxins and their determinants in settled dust related to grain production.

    PubMed

    Nordby, Karl-Christian; Halstensen, Anne Straumfors; Elen, Oleif; Clasen, Per-Erik; Langseth, Wenche; Kristensen, Petter; Eduard, Wijnand

    2004-01-01

    We hypothesise that inhalant exposure to mycotoxins causes developmental outcomes and certain hormone-related cancers that are associated with grain farming in an epidemiological study. The aim of the present study was to identify and validate determinants of measured trichothecene mycotoxins in grain dust as work environmental trichothecene exposure indicators. Settled grain dust was collected in 92 Norwegian farms during seasons of 1999 and 2000. Production characteristics and climatic data were studied as determinants of trichothecenes in settled dust samples obtained during the production of barley (N = 59), oats (N = 32), and spring wheat (N = 13). Median concentrations of trichothecenes in grain dust were <20, 54, and < 50 mg/kg (ranges < 20-340, < 30-2400, and < 50-1200) for deoxynivalenol (DON), HT-2 toxin (HT-2) and T-2 toxin (T-2) respectively. Late blight potato rot (fungal) forecasts have been broadcast in Norway to help prevent this potato disease. Fungal forecasts representing wet, temperate, and humid meteorological conditions were identified as strong determinants of trichothecene mycotoxins in settled grain dust in this study. Differences in cereal species, production properties and districts contributed less to explain mycotoxin concentrations. Fungal forecasts are validated as indicators of mycotoxin exposure of grain farmers and their use in epidemiological studies may be warranted.

  4. Redox-dependent interaction between thaumatin-like protein and β-glucan influences malting quality of barley.

    PubMed

    Singh, Surinder; Tripathi, Rajiv K; Lemaux, Peggy G; Buchanan, Bob B; Singh, Jaswinder

    2017-07-18

    Barley is the cornerstone of the malting and brewing industry. It is known that 250 quantitative trait loci (QTLs) of the grain are associated with 19 malting-quality phenotypes. However, only a few of the contributing genetic components have been identified. One of these, on chromosome 4H, contains a major malting QTL, QTL2, located near the telomeric region that accounts, respectively, for 28.9% and 37.6% of the variation in the β-glucan and extract fractions of malt. In the current study, we dissected the QTL2 region using an expression- and microsynteny-based approach. From a set of 22 expressed sequence tags expressed in seeds at the malting stage, we identified a candidate gene, TLP8 ( thaumatin-like protein 8 ), which was differentially expressed and influenced malting quality. Transcript abundance and protein profiles of TLP8 were studied in different malt and feed varieties using quantitative PCR, immunoblotting, and enzyme-linked immunosorbent assay (ELISA). The experiments demonstrated that TLP8 binds to insoluble (1, 3, 1, 4)-β-D glucan in grain extracts, thereby facilitating the removal of this undesirable polysaccharide during malting. Further, the binding of TLP8 to β-glucan was dependent on redox. These findings represent a stride forward in our understanding of the malting process and provide a foundation for future improvements in the final beer-making process.

  5. Fine Mapping of the Barley Chromosome 6H Net Form Net Blotch Susceptibility Locus

    PubMed Central

    Richards, Jonathan; Chao, Shiaoman; Friesen, Timothy; Brueggeman, Robert

    2016-01-01

    Net form net blotch, caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres, is a destructive foliar disease of barley with the potential to cause significant yield loss in major production regions throughout the world. The complexity of the host–parasite genetic interactions in this pathosystem hinders the deployment of effective resistance in barley cultivars, warranting a deeper understanding of the interactions. Here, we report on the high-resolution mapping of the dominant susceptibility locus near the centromere of chromosome 6H in the barley cultivars Rika and Kombar, which are putatively targeted by necrotrophic effectors from P. teres f. teres isolates 6A and 15A, respectively. Utilization of progeny isolates derived from a cross of P. teres f. teres isolates 6A × 15A harboring single major virulence loci (VK1, VK2, and VR2) allowed for the Mendelization of single inverse gene-for-gene interactions in a high-resolution population consisting of 2976 Rika × Kombar recombinant gametes. Brachypodium distachyon synteny was exploited to develop and saturate the susceptibility region with markers, delimiting it to ∼0.24 cM and a partial physical map was constructed. This genetic and physical characterization further resolved the dominant susceptibility locus, designated Spt1 (susceptibility to P. teres f. teres). The high-resolution mapping and cosegregation of the Spt1.R and Spt1.K gene/s indicates tightly linked genes in repulsion or alleles possibly targeted by different necrotrophic effectors. Newly developed barley genomic resources greatly enhance the efficiency of positional cloning efforts in barley, as demonstrated by the Spt1 fine mapping and physical contig identification reported here. PMID:27172206

  6. 17 CFR 32.1 - Scope of part 32; definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., corn, oats, barley, rye, flaxseed, grain sorghums, mill feeds, butter, eggs, onions, Solanum tuberosum..., livestock, livestock products and frozen concentrated orange juice; (2) Interstate commerce shall be...

  7. 40 CFR 180.509 - Mefenpyr-diethyl; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the herbicide safener, mefenpyr-diethyl, 1-(2,4-dichlorophenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylic acid, diethyl ester and its 2,4-dichlorophenyl-pyrazoline metabolites, when applied... agricultural commodities: Commodity Parts per million Barley, grain 0.05 Barley, hay 0.2 Barley, straw 0.5...

  8. Genetic variations of HvP5CS1 and their association with drought tolerance related traits in barley (Hordeum vulgare L.)

    USDA-ARS?s Scientific Manuscript database

    Delta-1-pyrroline-5-carboxylate synthase gene1 (P5CS1) is the key gene involved in the biosynthesis of proline and is significantly induced by drought stress. The exploration of genetic variation in HvP5CS1 may facilitate a better understanding of the mechanism of drought adaptation in barley. In th...

  9. Control of the Water Transport Activity of Barley HvTIP3;1 Specifically Expressed in Seeds.

    PubMed

    Utsugi, Shigeko; Shibasaka, Mineo; Maekawa, Masahiko; Katsuhara, Maki

    2015-09-01

    Tonoplast intrinsic proteins (TIPs) are involved in the transport and storage of water, and control intracellular osmotic pressure by transporting material related to the water potential of cells. In the present study, we focused on HvTIP3;1 during the periods of seed development and desiccation in barley. HvTIP3;1 was specifically expressed in seeds. An immunochemical analysis showed that HvTIP3;1 strongly accumulated in the aleurone layers and outer layers of barley seeds. The water transport activities of HvTIP3;1 and HvTIP1;2, which also accumulated in seeds, were measured in the heterologous expression system of Xenopus oocytes. When they were expressed individually, HvTIP1;2 transported water, whereas HvTIP3;1 did not. However, HvTIP3;1 exhibited water transport activity when co-expressed with HvTIP1;2 in oocytes, and this activity was higher than when HvTIP1;2 was expressed alone. This is the first report to demonstrate that the water permeability of a TIP aquaporin was activated when co-expressed with another TIP. The split-yellow fluorescent protein (YFP) system in onion cells revealed that HvTIP3;1 interacted with HvTIP1;2 to form a heterotetramer in plants. These results suggest that HvTIP3;1 functions as an active water channel to regulate water movement through tissues during the periods of seed development and desiccation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. 40 CFR 180.668 - Sulfoxaflor; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Parts per million Almond, hulls 6.0 Barley, grain 0.40 Barley, hay 1.0 Barley, straw 2.0 Bean, dry seed 0.20 Bean, succulent 4.0 Beet, sugar, dried pulp 0.07 Beet, sugar, molasses 0.25 Berry, low growing...

  11. 40 CFR 180.668 - Sulfoxaflor; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Parts per million Almond, hulls 6.0 Barley, grain 0.40 Barley, hay 1.0 Barley, straw 2.0 Bean, dry seed 0.20 Bean, succulent 4.0 Beet, sugar, dried pulp 0.07 Beet, sugar, molasses 0.25 Berry, low growing...

  12. Hot ammonia around young O-type stars. III. High-mass star formation and hot core activity in W51 Main

    NASA Astrophysics Data System (ADS)

    Goddi, C.; Ginsburg, A.; Zhang, Q.

    2016-05-01

    Context. This paper is the third in a series of NH3 multilevel imaging studies in well-known, high-mass star-forming regions. The main goal is to characterize kinematics and physical conditions of (hot and dense) circumstellar molecular gas around O-type young stars. Aims: We want to map at subarcsecond resolution highly excited inversion lines of NH3 in the high-mass star-forming region W51 Main (distance = 5.4 kpc), which is an ideal target to constrain theoretical models of high-mass star formation. Methods: Using the Karl Jansky Very Large Array (JVLA), we mapped the hot and dense molecular gas in W51 Main with ~0.2 arcsec-0.3 arcsec angular resolution in five metastable (J = K) inversion transitions of ammonia (NH3): (J,K) = (6, 6), (7, 7), (9, 9), (10, 10), and (13, 13). These lines arise from energy levels between ~400 K and ~1700 K above the ground state. We also made maps of the (free-free) continuum emission at frequencies between 25 and 36 GHz. Results: We have identified and characterized two main centers of high-mass star formation in W51 Main, which excite hot cores and host one or multiple high-mass young stellar objects (YSOs) at their centers: the W51e2 complex and the W51e8 core (~6'' southward of W51e2). The former breaks down into three further subcores: W51e2-W, which surrounds the well-known hypercompact (HC) HII region, where hot NH3 is observed in absorption, and two additional dusty cores, W51e2-E (~0.8 arcsec to the East) and W51e2-NW (~1'' to the North), where hot NH3 is observed in emission. The velocity maps toward the HC HII region show a clear velocity gradient along the east-west in all lines. The gradient may indicate rotation, although any Keplerian motion must be on smaller scales (<1000 AU) as we do not directly observe a Keplerian velocity profile. The absence of outflow and/or maser activity and the low amount of molecular gas available for accretion (~5 M⊙, assuming [NH3]/[H2] = 10-7) with respect to the mass of the central

  13. Barley stripe mosaic virus: Structure and relationship to the tobamoviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, Amy; Williams, Dewight; Bian, Wen

    Barley stripe mosaic virus (BSMV) is the type member of the genus Hordeivirus, rigid, rod-shaped viruses in the family Virgaviridae. We have used fiber diffraction and cryo-electron microscopy to determine the helical symmetry of BSMV to be 23.2 subunits per turn of the viral helix, and to obtain a low-resolution model of the virus by helical reconstruction methods. Features in the model support a structural relationship between the coat proteins of the hordeiviruses and the tobamoviruses. - Highlights: • We report a low-resolution structure of barley stripe mosaic virus. • Barley stripe mosaic virus has 23.2 subunits per turn ofmore » the viral helix. • We compare barley stripe mosaic virus with tobacco mosaic virus.« less

  14. Fusion, rupture, and degeneration: the fate of in vivo-labelled PSVs in developing barley endosperm.

    PubMed

    Ibl, Verena; Kapusi, Eszter; Arcalis, Elsa; Kawagoe, Yasushi; Stoger, Eva

    2014-07-01

    Cereal endosperm is a highly differentiated tissue containing specialized organelles for the accumulation of storage proteins. The endosperm of barley contains hordeins, which are ultimately deposited within protein storage vacuoles (PSVs). These organelles have been characterized predominantly by the histochemical analysis of fixed immature tissue samples. However, little is known about the fate of PSVs during barley endosperm development, and in vivo imaging has not been attempted in order to gain further insight. In this report, young seeds were followed through development to characterize the dynamic morphology of PSVs from aleurone, subaleurone, and central starchy endosperm cells. TIP3-GFP was used as a PSV membrane marker and several fluorescent tracers were used to identify membranes and monitor endomembrane organelles in real time. Whereas the spherical appearance of strongly labelled TIP3-GFP PSVs in the aleurone remained constant, those in the subaleurone and central starchy endosperm underwent substantial morphological changes. Fusion and rupture events were observed in the subaleurone, and internal membranes derived from both the tonoplast and endoplasmic reticulum were identified within these PSVs. TIP3-GFP-labelled PSVs in the starchy endosperm cells underwent a dramatic reduction in size, so that finally the protein bodies were tightly enclosed. Potential desiccation-related membrane-altering processes that may be causally linked to these dynamic endomembrane events in the barley endosperm are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Alternative Splicing of Barley Clock Genes in Response to Low Temperature

    PubMed Central

    Calixto, Cristiane P. G.; Simpson, Craig G.; Waugh, Robbie; Brown, John W. S.

    2016-01-01

    Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement. PMID:27959947

  16. Sequencing of 15,622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

    USDA-ARS?s Scientific Manuscript database

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework....

  17. Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to Fusarium head blight disease by a biocontrol strain of Pseudomonas fluorescens.

    PubMed

    Petti, Carloalberto; Khan, Mojibur; Doohan, Fiona

    2010-11-01

    Strains of non-pathogenic pseudomonad bacteria, can elicit host defence responses against pathogenic microorganisms. Pseudomonas fluorescens strain MKB158 can protect cereals from pathogenesis by Fusarium fungi, including Fusarium head blight which is an economically important disease due to its association with both yield loss and mycotoxin contamination of grain. Using the 22 K barley Affymetrix chip, trancriptome studies were undertaken to determine the local effect of P. fluorescens strain MKB158 on the transcriptome of barley head tissue, and to discriminate transcripts primed by the bacterium to respond to challenge by Fusarium culmorum, a causal agent of the economically important Fusarium head blight disease of cereals. The bacterium significantly affected the accumulation of 1203 transcripts and primed 74 to positively, and 14 to negatively, respond to the pathogen (P = 0.05). This is the first study to give insights into bacterium priming in the Triticeae tribe of grasses and associated transcripts were classified into 13 functional classes, associated with diverse functions, including detoxification, cell wall biosynthesis and the amplification of host defence responses. In silico analysis of Arabidopsis homologs of bacterium-primed barley genes indicated that, as is the case in dicots, jasmonic acid plays a role in pseudomonad priming of host responses. Additionally, the transcriptome studies described herein also reveal new insights into bacterium-mediated priming of host defences against necrotrophs, including the positive effects on grain filling, lignin deposition, oxidative stress responses, and the inhibition of protease inhibitors and proteins that play a key role in programmed cell death.

  18. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    PubMed

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2015-01-01

    In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments

  19. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level

    PubMed Central

    Borg, Søren

    2015-01-01

    In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments

  20. GAD1 Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication[OPEN

    PubMed Central

    Hua, Lei; Zhao, Xinhui; Zhang, Weifeng; Liu, Fengxia; Fu, Yongcai; Cai, Hongwei; Sun, Xianyou; Gu, Ping; Xie, Daoxin

    2016-01-01

    Cultivated rice (Oryza sativa) was domesticated from wild rice (Oryza rufipogon), which typically displays fewer grains per panicle and longer grains than cultivated rice. In addition, wild rice has long awns, whereas cultivated rice has short awns or lacks them altogether. These changes represent critical events in rice domestication. Here, we identified a major gene, GRAIN NUMBER, GRAIN LENGTH AND AWN DEVELOPMENT1 (GAD1), that regulates those critical changes during rice domestication. GAD1 is located on chromosome 8 and is predicted to encode a small secretary signal peptide belonging to the EPIDERMAL PATTERNING FACTOR-LIKE family. A frame-shift insertion in gad1 destroyed the conserved cysteine residues of the peptide, resulting in a loss of function, and causing the increased number of grains per panicle, shorter grains, and awnless phenotype characteristic of cultivated rice. Our findings provide a useful paradigm for revealing functions of peptide signal molecules in plant development and helps elucidate the molecular basis of rice domestication. PMID:27634315

  1. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat.

    PubMed

    Boden, Scott A; Cavanagh, Colin; Cullis, Brian R; Ramm, Kerrie; Greenwood, Julian; Jean Finnegan, E; Trevaskis, Ben; Swain, Steve M

    2015-01-26

    The domestication of cereal crops such as wheat, maize, rice and barley has included the modification of inflorescence architecture to improve grain yield and ease harvesting(1). Yield increases have often been achieved through modifying the number and arrangement of spikelets, which are specialized reproductive branches that form part of the inflorescence. Multiple genes that control spikelet development have been identified in maize, rice and barley(2-5). However, little is known about the genetic underpinnings of this process in wheat. Here, we describe a modified spikelet arrangement in wheat, termed paired spikelets. Combining comprehensive QTL and mutant analyses, we show that Photoperiod-1 (Ppd-1), a pseudo-response regulator gene that controls photoperiod-dependent floral induction, has a major inhibitory effect on paired spikelet formation by regulating the expression of FLOWERING LOCUS T (FT)(6,7). These findings show that modulated expression of the two important flowering genes, Ppd-1 and FT, can be used to form a wheat inflorescence with a more elaborate arrangement and increased number of grain producing spikelets.

  2. 40 CFR 180.560 - Cloquintocet-mexyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-sodium (wheat only), pinoxaden (wheat or barley), clodinafop-propargyl (wheat only), or pyroxsulum (wheat..., hay 0.1 Barley, straw 0.1 Wheat, forage 0.2 Wheat, grain 0.1 Wheat, hay 0.5 Wheat, straw 0.1 (b...

  3. Wavelength-Dependent Extinction and Grain Sizes in "Dippers"

    NASA Astrophysics Data System (ADS)

    Sitko, Michael; Russell, Ray W.; Long, Zachary; Bayyari, Ammar; Assani, Korash; Grady, Carol; Lisse, Carey Michael; Marengo, Massimo; Wisniewski, John

    2018-01-01

    We have examined inter-night variability of K2-discovered "Dippers" that are not close to being viewed edge-on (as determined from previously-reported ALMA images) using the SpeX spectrograph on NASA's Infrared Telescope facility (IRTF). The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 ( = 2MASS J16042165-2130284). Using the ratio of the fluxes from 0.7-2.4 microns between two successive nights, we find that in at least two cases, the extinction increased toward shorter wavelengths. In the case of EPIC 204638512, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The best fit to the data on EPIC 204638512 includes grains at least 500 microns in size, but lacks grains smaller than 0.25 microns. Since EPIC 204638512 is seen nearly face-on, it is possible the grains are entrained in an accretion flow that preferentially destroys the smallest grains. However, we have no indication of significant gas accretion onto the star in the form of emission lines observed in young low-mass stars. But the He I line at 1.083 microns was seen to change from night to night, and showed a P Cygni profile on one night, suggesting the gas might be outflowing from regions near the star.

  4. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings

    PubMed Central

    Du, Juan; Yang, Xiaomeng; Li, Xia; Li, Ling; Zhou, Yan; Yang, Tao

    2018-01-01

    Barley grass powder is the best functional food that provides nutrition and eliminates toxins from cells in human beings; however, its functional ingredients have played an important role as health benefit. In order to better cognize the preventive and therapeutic role of barley grass for chronic diseases, we carried out the systematic strategies for functional ingredients of barley grass, based on the comprehensive databases, especially the PubMed, Baidu, ISI Web of Science, and CNKI, between 2008 and 2017. Barley grass is rich in functional ingredients, such as gamma-aminobutyric acid (GABA), flavonoids, saponarin, lutonarin, superoxide dismutase (SOD), K, Ca, Se, tryptophan, chlorophyll, vitamins (A, B1, C, and E), dietary fiber, polysaccharide, alkaloid, metallothioneins, and polyphenols. Barley grass promotes sleep; has antidiabetic effect; regulates blood pressure; enhances immunity; protects liver; has anti-acne/detoxifying and antidepressant effects; improves gastrointestinal function; has anticancer, anti-inflammatory, antioxidant, hypolipidemic, and antigout effects; reduces hyperuricemia; prevents hypoxia, cardiovascular diseases, fatigue, and constipation; alleviates atopic dermatitis; is a calcium supplement; improves cognition; and so on. These results support that barley grass may be one of the best functional foods for preventive chronic diseases and the best raw material of modern diet structure in promoting the development of large health industry and further reveal that GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan mechanism of barley grass have preventive and therapeutic role for chronic diseases. This paper can be used as a scientific evidence for developing functional foods and novel drugs for barley grass for preventive chronic diseases.

  5. Performance of laying hens fed diets containing DAS-59122-7 maize grain compared with diets containing nontransgenic maize grain.

    PubMed

    Jacobs, C M; Utterback, P L; Parsons, C M; Rice, D; Smith, B; Hinds, M; Liebergesell, M; Sauber, T

    2008-03-01

    An experiment using 216 Hy-Line W-36 pullets was conducted to evaluate transgenic maize grain containing the cry34Ab1 and cry35Ab1 genes from a Bacillus thuringiensis (Bt) strain and the phosphinothricin ace-tyltransferase (pat) gene from Streptomyces viridochromogenes. Expression of the cry34Ab1 and cry35Ab1 genes confers resistance to corn rootworms, and the pat gene confers tolerance to herbicides containing glufosinate-ammonium. Pullets (20 wk of age) were placed in cage lots (3 hens/cage, 2 cages/lot) and were randomly assigned to 1 of 3 corn-soybean meal dietary treatments (12 lots/treatment) formulated with the following maize grains: near-isogenic control (control), conventional maize, and transgenic test corn line 59122 containing event DAS-59122-7. Differences between 59122 and control group means were evaluated with statistical significance at P < 0.05. Body weight and gain, egg production, egg mass, and feed efficiency for hens fed the 59122 corn were not significantly different from the respective values for hens fed diets formulated with control maize grain. Egg component weights, Haugh unit measures, and egg weight class distribution were similar regardless of the corn source. This research indicates that performance of hens fed diets containing 59122 maize grain, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with near-isogenic corn grain.

  6. Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina.

    PubMed

    Sanna, Aimaro; Li, Sujing; Linforth, Rob; Smart, Katherine A; Andrésen, John M

    2011-11-01

    The pyrolysis of wheat and barley spent grains resulting from bio-ethanol and beer production respectively was investigated at temperatures between 460 and 540 °C using an activated alumina bed. The results showed that the bio-oil yield and quality depend principally on the applied temperature where pyrolysis at 460 °C leaves a bio-oil with lower nitrogen content in comparison with the original spent grains and low oxygen content. The viscosity profile of the spent grains indicated that activated alumina could promote liquefaction and prevent charring of the structure between 400 and 460 °C. The biochar contains about 10-12% of original carbon and 13-20% of starting nitrogen resulting very attractive as a soil amendment and for carbon sequestration. Overall, value can be added to the spent grains opening a new market in bio-fuel production without the needs of external energy. The bio-oil from spent grains could meet about 9% of the renewable obligation in the UK. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Discovery of novel cold-induced CISP genes encoding small RNA-binding proteins related to cold adaptation in barley.

    PubMed

    Ying, Mengchao; Kidou, Shin-Ichiro

    2017-07-01

    To adapt to cold conditions, barley plants rely on specific mechanisms, which have not been fully understood. In this study, we characterized a novel barley cold-induced gene identified using a PCR-based high coverage gene expression profiling method. The identified gene encodes a small protein that we named CISP1 (Cold-induced Small Protein 1). Homology searches of sequence databases revealed that CISP1 homologs (CISP2 and CISP3) exist in barley genome. Further database analyses showed that the CISP1 homologs were widely distributed in cold-tolerant plants such as wheat and rye. Quantitative reverse transcription PCR analyses indicated that the expression of barley CISP genes was markedly increased in roots exposed to cold conditions. In situ hybridization analyses showed that the CISP1 transcripts were localized in the root tip and lateral root primordium. We also demonstrated that the CISP1 protein bound to RNA. Taken together, these findings indicate that CISP1 and its homologs encoding small RNA-binding proteins may serve as RNA chaperones playing a vital role in the cold adaptation of barley root. This is the first report describing the likely close relationship between root-specific genes and the cold adaptation process, as well as the potential function of the identified genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Radiation hybrid map of barley chromosome 3H

    USDA-ARS?s Scientific Manuscript database

    Assembly of the barley genome is complicated by its large size (5.1 Gb) and proportion of repetitive elements (84%). This process is facilitated by high resolution maps for aligning BAC contigs along chromosomes. Available genetic maps; however, do not provide accurate information on the physical po...

  9. Salicylic Acid Alleviates the Cadmium Toxicity in Barley Seedlings1

    PubMed Central

    Metwally, Ashraf; Finkemeier, Iris; Georgi, Manfred; Dietz, Karl-Josef

    2003-01-01

    Salicylic acid (SA) plays a key role in plant disease resistance and hypersensitive cell death but is also implicated in hardening responses to abiotic stressors. Cadmium (Cd) exposure increased the free SA contents of barley (Hordeum vulgare) roots by a factor of about 2. Cultivation of dry barley caryopses presoaked in SA-containing solution for only 6 h or single transient addition of SA at a 0.5 mm concentration to the hydroponics solution partially protected the seedlings from Cd toxicity during the following growth period. Both SA treatments had little effect on growth in the absence of Cd, but increased root and shoot length and fresh and dry weight and inhibited lipid peroxidation in roots, as indicated by malondialdehyde contents, in the presence of Cd. To test whether this protection was due to up-regulation of antioxidant enzymes, activities and transcript levels of the H2O2-metabolizing enzymes such as catalase and ascorbate peroxidase were measured in control and SA-treated seedlings in the presence or absence of 25 μm Cd. Cd stress increased the activity of these enzymes by variable extent. SA treatments strongly or completely suppressed the Cd-induced up-regulation of the antioxidant enzyme activities. Slices from leaves treated with SA for 24 h also showed an increased level of tolerance toward high Cd concentrations as indicated by chlorophyll a fluorescence parameters. The results support the conclusion that SA alleviates Cd toxicity not at the level of antioxidant defense but by affecting other mechanisms of Cd detoxification. PMID:12746532

  10. Natural variation and genetic make-up of leaf blade area in spring barley.

    PubMed

    Alqudah, Ahmad M; Youssef, Helmy M; Graner, Andreas; Schnurbusch, Thorsten

    2018-04-01

    GWAS analysis for leaf blade area (LA) revealed intriguing genomic regions associated with putatively novel QTL and known plant stature-related phytohormone and sugar-related genes. Despite long-standing studies in the morpho-physiological characters of leaf blade area (LA) in cereal crops, advanced genetic studies to explore its natural variation are lacking. The importance of modifying LA in improving cereal grain yield and the genes controlling leaf traits have been well studied in rice but not in temperate cereals. To better understand the natural genetic variation of LA at four developmental stages, main culm LA was measured from 215 worldwide spring barleys including 92 photoperiod-sensitive accessions [PHOTOPERIOD RESPONSE LOCUS 1 (Ppd-H1)] and 123 accessions with reduced photoperiod sensitivity (ppd-H1) locus under controlled greenhouse conditions (long-day; 16/8 h; ~ 20/~ 16 °C day/night). The LA of Ppd-H1-carrying accessions was always smaller than in ppd-H1-carrying accessions. We found that nine SNPs from the Ppd-H1 gene were present in the collection of which marker 9 (M9; G/T in the CCT-domain) showed the most significant and consistent effect on LA at all studied developmental stages. Genome-wide association scans (GWAS) showed that the accessions carrying the ppd-H1 allele T/M9 (late heading) possessed more genetic variation in LA than the Ppd-H1 group carrying G/M9 (early heading). Several QTL with major effects on LA variation were found close to plant stature-related heading time, phytohormone- and sugar-related genes. The results provide evidence that natural variation of LA is an important source for improving grain yield, adaptation and canopy architecture of temperate cereals.

  11. Incorporation of Whole, Ancient Grains into a Modern Asian Indian Diet: Practical Strategies to Reduce the Burden of Chronic Disease

    PubMed Central

    Dixit, Anjali A.; Azar, Kristen M. J.; Gardner, Christopher D.; Palaniappan, Latha P.

    2011-01-01

    Refined carbohydrates, such as white rice and white flour, are the mainstay of the modern Asian Indian diet, and may contribute to the rising incidence of type 2 diabetes and cardiovascular disease in this population. Prior to the 1950s, whole grains such as amaranth, barley, brown rice, millet, and sorghum were more commonly used in Asian Indian cooking. These grains and other non-Indian grains such as couscous, quinoa, and spelt are nutritionally advantageous and may be culturally acceptable carbohydrate substitutes for Asian Indians. This review focuses on practical recommendations for culturally sensitive carbohydrate modification in a modern Asian Indian diet, in an effort to reduce type 2 diabetes and cardiovascular disease in this population. PMID:21790614

  12. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development

    PubMed Central

    Chetouhi, Cherif; Lecomte, Philippe; Cambon, Florence; Merlino, Marielle; Biron, David Georges

    2014-01-01

    The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains. PMID:25663750

  13. Analysis of enzyme production by submerged culture of Aspergillus oryzae using whole barley.

    PubMed

    Masuda, Susumu; Kikuchi, Kaori; Matsumoto, Yuko; Sugimoto, Toshikazu; Shoji, Hiroshi; Tanabe, Masayuki

    2009-10-01

    We have reported on high enzyme production by submerged culture of Aspergillus kawachii using barley with the husk (whole barley). To elucidate the mechanism underlying this high enzyme production, we performed a detailed analysis. Aspergillus oryzae RIB40 was submerged-cultured using whole barley and milled whole barley. Enzyme production was analyzed in terms of changes in medium components and gene expression levels. When whole barley was used, high production of glucoamylase and alpha-amylase and high gene expression levels of these enzymes were observed. Low ammonium concentrations were maintained with nitrate ion uptake continuing into the late stage using whole barley. These findings suggest that the sustainability of nitrogen metabolism is related to high enzyme production, and that a mechanism other than that associated with the conventional amylase expression system is involved in this relationship.

  14. Promoting equal opportunity within the transregional Collabortive Research Center "Waves to Weather" (W2W)

    NASA Astrophysics Data System (ADS)

    Laurian, Audine; Craig, George

    2017-04-01

    The promotion of equal opportunity (EO) is a central commitment of the transregional Collaborative Research Center "Waves to Weather" (W2W) funded by the DFG. Intense efforts are made to promote EO measures and to support female scientists and parents of young children throughout their career within the consortium. Since the start of W2W in July 2015, the following actions have been undertaken: - an EO committee has been created, which consists of parents of young children and a PhD student from the main partner institutions in Munich, in Mainz and in Karlsruhe. The EO committee has agreed on a list of EO measures to be offered within the consortium and a flyer advertising these measures has been designed, produced and distributed - childcare has been organized during the meetings organized by W2W - outreach events addressed to school girls and promoting the study of physics and mathematics at the university (e.g. Girls' Day) has been organized in Munich, in Mainz and in Karlsruhe - student helpers have been hired to reduce the workload of female principal investigators with young children - efforts are made to invite female keynote speakers to the annual meetings of W2W - regular meetings with the Women's Officer for the Faculty of Physics at the LMU are taking place, e..g to setup a parent-child office. These measures have received very positive feedback from the W2W community and from the partner institutions. Discussions and exchanges of experience with colleagues from other research programs and institutions regarding EO measures would be greatly beneficial to promote EO further.

  15. Development of DArT-based PCR markers for selecting drought-tolerant spring barley.

    PubMed

    Fiust, Anna; Rapacz, Marcin; Wójcik-Jagła, Magdalena; Tyrka, Mirosław

    2015-08-01

    The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.

  16. Epidemiology and control of rusts of wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Rusts of wheat and barley were monitored throughout the Pacific Northwest (PNW) using trap plots and through field surveys during the 2008 growing season. Through collaborators in other states, stripe rusts of wheat and barley were monitored throughout the US. In 2008, stripe rust occurred in 18 st...

  17. The discovery of resistant sources of spring barley, Hordeum vulgare ssp. spontaneum, and unique greenbug biotypes

    USDA-ARS?s Scientific Manuscript database

    The genetic sources for host-plant resistance to the greenbug (Schiazphis graminum Ronani) in barley (Hordeum vulgare ssp. spontaneum) are limited in that only two single dominant genes Rsg1 and Rsg2 are available for resistance to greenbug biotypes. We evaluated four new barley lines from the Wild...

  18. Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains.

    PubMed

    Sabokbar, Nayereh; Khodaiyan, Faramarz

    2016-01-01

    Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel beverage by kefir grains. The effects of two different variables, fermentation, temperature (19 and 25 °C) and kefir grain amount (5 %w/v and 8 %w/v), on total phenolic content (TPC) and antioxidant activities of beverage were examined during a fermentation time of 32 h. TPC and antioxidant activities including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power, inhibition effect upon linoleic acid autoxidation and inhibition effect upon ascorbate autoxidation increased significantly (p < 0.05) during fermentation, but metal chelating effect showed no significant difference. The highest increases were observed when the temperature of 25 °C and kefir grain amount of 8 %w/v were applied. Results proved antioxidant activities of beverages were desirable and fermentation by kefir grains has the ability to enhance these antioxidant activities, as compared with unfermented beverage. Also pomegranate juice and whey were suitable media for producing a novel dairy-juice beverage.

  19. Characterizing the Pyrenophora teres f. maculata–Barley Interaction Using Pathogen Genetics

    PubMed Central

    Carlsen, Steven A.; Neupane, Anjan; Wyatt, Nathan A.; Richards, Jonathan K.; Faris, Justin D.; Xu, Steven S.; Brueggeman, Robert S.; Friesen, Timothy L.

    2017-01-01

    Pyrenophora teres f. maculata is the cause of the foliar disease spot form net blotch (SFNB) on barley. To evaluate pathogen genetics underlying the P. teres f. maculata–barley interaction, we developed a 105-progeny population by crossing two globally diverse isolates, one from North Dakota and the other from Western Australia. Progeny were phenotyped on a set of four barley genotypes showing a differential reaction to the parental isolates, then genotyped using a restriction site-associated-genotype-by-sequencing (RAD-GBS) approach. Genetic maps were developed for use in quantitative trait locus (QTL) analysis to identify virulence-associated QTL. Six QTL were identified on five different linkage groups and individually accounted for 20–37% of the disease variation, with the number of significant QTL ranging from two to four for the barley genotypes evaluated. The data presented demonstrate the complexity of virulence involved in the P. teres f. maculata–barley pathosystem and begins to lay the foundation for understanding this important interaction. PMID:28659291

  20. Barley Transformation Using Agrobacterium-Mediated Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.