DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Min; Kim, Jinyoung Serena; Apai, Dániel
We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M {sub ⊙}, which harbors a flaring disk. Using the H α emission line, we characterize the accretion activity of themore » sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.« less
NASA Astrophysics Data System (ADS)
Carraro, Giovanni; Sales Silva, Joao Victor; Moni Bidin, Christian; Vazquez, Ruben A.
2017-03-01
We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color-magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations. Based on observations carried out at Las Campanas Observatory, Chile (program ID CN009B-042), and Cerro Tololo Inter-American Observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carraro, Giovanni; Silva, Joao Victor Sales; Bidin, Christian Moni
We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the linemore » of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations.« less
NASA Astrophysics Data System (ADS)
Menu, J.; van Boekel, R.; Henning, Th.; Leinert, Ch.; Waelkens, C.; Waters, L. B. F. M.
2015-09-01
Context. The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Our understanding of the evolution of these disks is rapidly changing. Recent observations suggest that many flaring disks have gaps, whereas flat disks are thought to be gapless. Aims: The different groups of objects can be expected to have different structural signatures in high-angular-resolution data, related to gaps, dust settling, and flaring. We aim to use such data to gain new insight into disk structure and evolution. Methods: Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We modeled the large set of observations with simple geometric models and compared the characteristic sizes among the different objects. A population of radiative-transfer models was synthesized for interpreting the mid-infrared signatures. Results: Objects with similar luminosities show very different disk sizes in the mid-infrared. This may point to an intrinsic diversity or could also hint at different evolutionary stages of the disks. Restricting this to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional (i.e., they have gaps). We find that several group II objects have mid-infrared sizes and colors that overlap with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. Conclusions: Flat disks with gaps are most likely descendants of flat disks without gaps. Potentially related to the formation of massive bodies, gaps may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks or some of them may evolve further into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk. Appendices A and B are available in electronic form at http://www.aanda.org
NEW DEBRIS DISKS IN NEARBY YOUNG MOVING GROUPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moór, A.; Kóspál, Á.; Ábrahám, P.
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μ m observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory . None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data formore » one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μ m Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ∼90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.« less
Constraints on the spin evolution of young planetary-mass companions
NASA Astrophysics Data System (ADS)
Bryan, Marta L.; Benneke, Björn; Knutson, Heather A.; Batygin, Konstantin; Bowler, Brendan P.
2018-02-01
Surveys of young star-forming regions have discovered a growing population of planetary-mass (<13 MJup) companions around young stars1. There is an ongoing debate as to whether these companions formed like planets (that is, from the circumstellar disk)2, or if they represent the low-mass tail of the star-formation process3. In this study, we utilize high-resolution spectroscopy to measure rotation rates of three young (2-300 Myr) planetary-mass companions and combine these measurements with published rotation rates for two additional companions4,5 to provide a picture of the spin distribution of these objects. We compare this distribution to complementary rotation-rate measurements for six brown dwarfs with masses <20 MJup, and show that these distributions are indistinguishable. This suggests that either these two populations formed via the same mechanism, or that processes regulating rotation rates are independent of formation mechanism. We find that rotation rates for both populations are well below their break-up velocities and do not evolve significantly during the first few hundred million years after the end of accretion. This suggests that rotation rates are set during the late stages of accretion, possibly by interactions with a circumplanetary disk. This result has important implications for our understanding of the processes regulating the angular momentum evolution of young planetary-mass objects, and of the physics of gas accretion and disk coupling in the planetary-mass regime.
YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, M.; Debattista, Victor P.; Cole, D. R.
2014-06-01
The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstratemore » that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look.« less
Confusing Binaries: The Role of Stellar Binaries in Biasing Disk Properties in the Galactic Center
NASA Astrophysics Data System (ADS)
Naoz, Smadar; Ghez, Andrea M.; Hees, Aurelien; Do, Tuan; Witzel, Gunther; Lu, Jessica R.
2018-02-01
The population of young stars near the supermassive black hole (SMBH) in the Galactic Center (GC) has presented an unexpected challenge to theories of star formation. Kinematic measurements of these stars have revealed a stellar disk structure (with an apparent 20% disk membership) that has provided important clues regarding the origin of these mysterious young stars. However, many of the apparent disk properties are difficult to explain, including the low disk membership fraction and the high eccentricities given the youth of this population. Thus far, all efforts to derive the properties of this disk have made the simplifying assumption that stars at the GC are single stars. Nevertheless, stellar binaries are prevalent in our Galaxy, and recent investigations suggested that they may also be abundant in the Galactic Center. Here, we show that binaries in the disk can largely alter the apparent orbital properties of the disk. The motion of binary members around each other adds a velocity component, which can be comparable to the magnitude of the velocity around the SMBH in the GC. Thus, neglecting the contribution of binaries can significantly vary the inferred stars’ orbital properties. While the disk orientation is unaffected, the apparent disk’s 2D width will be increased to about 11.°2, similar to the observed width. For a population of stars orbiting the SMBH with zero eccentricity, unaccounted for binaries will create a wide apparent eccentricity distribution with an average of 0.23. This is consistent with the observed average eccentricity of the stars’ in the disk. We suggest that this high eccentricity value, which poses a theoretical challenge, may be an artifact of binary stars. Finally, our results suggest that the actual disk membership might be significantly higher than the one inferred by observations that ignore the contribution of binaries, alleviating another theoretical challenge.
Young Stellar Objects in Lynds 1641: Disks and Accretion
NASA Astrophysics Data System (ADS)
Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin
2013-07-01
We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, 2MASS, and XMM covering 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use this data, along with archival photometric data, to derive spectral types, masses, ages and extinction values. We also use the H_alpha and H_beta lines to derive accretion rates. We calculate the disk fraction as N(II)/N(II+III), where N(II) and N(III) are numbers of Class\\ II and Class\\ III sources, respectively, and obtain a disk fraction of 50% in L1641. We find that the disk frequency is almost constant as a function of stellar mass with a slight peak at log(M_*/M_sun) -0.25. The analysis of multi-epoch data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses in the M_acc vs. M_* plot. Forty-six new transition disk objects are confirmed in our spectroscopic survey and we find that the fraction of transition disks that are actively accreting is lower than for optically thick disks (40-45% vs. 77-79% respectively). We confirm our previous result that the accreting YSOs with transition disks have a similar median accretion rate to normal optically thick disks. Analyzing the age distributions of various populations, we find that the diskless YSOs are statistically older than the YSOs with optically-thick disks and the transition disk objects have a median age which is intermediate between the two populations.
Star formation in the Auriga-California Giant Molecular Cloud and its circumstellar disk population
NASA Astrophysics Data System (ADS)
Broekhoven-Fiene, Hannah
2016-05-01
This thesis presents a multiwavelength analysis, from the infrared to the microwave, of the young, forming stars in the Auriga-California Molecular Cloud and a first look at the disks they host and their potential for forming planetary systems. At the beginning of this thesis, Auriga-Cal had only recently been identified as one contiguous cloud with its distance placing it within the Gould Belt of nearby star-forming regions (Lada et al. 2009). This thesis presents the largest body of work to date on Auriga-Cal's star formation and disk population. Auriga-Cal is one of two nearby giant molecular clouds (GMCs) in the Gould Belt, the other being the Orion A molecular cloud. These two GMCs have similar mass ( 10^5 Msolar), spatial scale ( 80 pc), distance ( 450 pc), and filamentary morphology, yet the two clouds present very different star formation qualities and quantities. Namely, Auriga-Cal is forming far fewer stars and does not exhibit the high-mass star formation seen in Orion A. In this thesis, I present a census of the star forming objects in the infrared with the Spitzer Space Telescope showing that Auriga-Cal contains at least 166 young stellar objects (YSOs), 15-20x fewer stars than Orion A, the majority of which are located in the cluster around LkHalpha 101, NGC 1529, and the filament extending from it. I find the submillimetre census with the James Clerk Maxwell Telescope, sensitive to the youngest objects, arrives at a similar result showing the disparity between the two clouds observed in the infrared continues to the submillimetre. Therefore the relative star formation rate between the two clouds has remained constant in recent times. The final chapter introduces the first study targeted at the disk population to measure the formation potential of planetary systems around the young stars in Auriga-Cal. The dust thermal emission at cm wavelengths is observed to measure the relative amounts of cm-sized grains, indicative of the grain growth processes that take place in disks and are necessary for planet formation. For a subsample of our targets, we are able to measure the spectral slope in the cm to confirm the thermal nature of the observed emission that we detect and characterize the signature of grain growth. The sensitivity of our observations probes masses greater than the minimum mass solar nebula (MMSN), the disk mass required to form the Solar System. We detect 19 disks, representing almost a third of our sample, comparable to the numbers of disks in other nearby star-forming regions with disks masses exceeding the MMSN, suggesting that the disk population in Auriga-Cal possesses similar planet formation potential as populations in other clouds. Confirmation of this result requires future observations with mm interferometry, the wavelength regime where the majority of statistics of disks has been measured.
On the Occurrence of Wide Binaries in the Local Disk and Halo Populations
NASA Astrophysics Data System (ADS)
Hartman, Zachary; Lepine, Sebastien
2018-01-01
We present results from our search for wide binaries in the SUPERBLINK+GAIA all-sky catalog of 2.8 million high proper motion stars (μ>40 mas/yr). Through a Bayesian analysis of common proper motion pairs, we have identified highly probable wide binary/multiple systems based on statistics of their proper motion differences and angular separations. Using a reduced proper motion diagram, we determine whether these wide are part of the young disk, old disk, or Galactic halo population. We examine the relative occurrence rate for very wide companions in these respective populations. All groups are found to contain a significant number of wide binary systems, with about 1 percent of the stars in each group having pairs with separations >1,000 AU.
Chandra/ACIS-I Study of the X-Ray Properties of the NGC 6611 and M16 Stellar Populations
NASA Astrophysics Data System (ADS)
Guarcello, M. G.; Caramazza, M.; Micela, G.; Sciortino, S.; Drake, J. J.; Prisinzano, L.
2012-07-01
Mechanisms regulating the origin of X-rays in young stellar objects and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow us to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC 6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age <=3 Myr. We study an archival 78 ks Chandra/ACIS-I observation of NGC 6611 and two new 80 ks observations of the outer region of M16, one centered on the Column V and the other on a region of the molecular cloud with ongoing star formation. We detect 1755 point sources with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray luminosity function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. Eighty-five percent of the O stars of NGC 6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard components, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.
Indirect and Direct Signatures of Young Planets in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Zhu, Zhaohuan; Stone, James M.; Dong, Ruobing; Rafikov, Roman; Bai, Xue-Ning
2015-12-01
Directly finding young planets around protostars is challenging since protostars are highly variable and obscured by dust. However, young planets will interact with protoplanetary disks, inducing disk features such as gaps, spiral arms, and asymmetric features, which are much easier to be detected. Transitional disks, which are protoplanetary disks with gaps and holes, are excellent candidates for finding young planets. Although these disks have been studied extensively in observations (e.g. using Subaru, VLT, ALMA, EVLA), theoretical models still need to be developed to explain observations. We have constructed numerical simulations, including dust particle dynamics and MHD effects, to study planet-disk interaction, with an emphasis on explaining observations. Our simulations have successfully reproduced spiral arms, gaps and asymmetric features observed in transitional disks. Furthermore, by comparing with observations, we have constrained protoplanetary disk properties and pinpoint potential planets in these disks. We will present progress in constructing global simulations to study transitional disks, including using our recently developed Athena++ code with static-mesh-refinement for MHD. Finally we suggest that accreting circumplanetary disks can release an observable amount of energy and could be the key to detect young planets directly. We will discuss how JWST and next generation telescopes can help to find these young planets with circumplanetary disks.
Spitzer observations of NGC 2264: the nature of the disk population
NASA Astrophysics Data System (ADS)
Teixeira, P. S.; Lada, C. J.; Marengo, M.; Lada, E. A.
2012-04-01
Aims: NGC 2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study the star formation history of NGC 2264 and to analyse the primordial disk evolution of its members. Methods: The study presented is based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope, combined with deep near-infrared (NIR) ground-based FLAMINGOS imaging and previously published optical data. Results: We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1 × 103 M⊙ above an AV of 7 mag. Using a differential Ks-band luminosity function (KLF) of the cluster, we estimate the size of the population of NGC 2264, within the area observed by FLAMINGOS, to be 1436 ± 242 members. The star formation efficiency is ≥ ~25%. We identify the disk population and divide it into 3 groups based on their spectral energy distribution slopes from 3.6 μm to 8 μm and on the 24 μm excess emission: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub-clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (i.e., with AV < 3 mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. Conclusions: NGC 2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population appear to have formed in separate episodes: the sources with anaemic disks are more evolved and have had time to disperse and populate a halo of the cluster. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution, our findings support the emerging disk evolution paradigm of two distinct evolutionary paths for primordial optically thick disks: a homologous one where the disk emission decreases uniformly at NIR and mid-infrared (MIR) wavelengths, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (forming transition disks).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carraro, Giovanni; Vázquez, Rubén A.; Costa, Edgardo
In the third Galactic quadrant (180{sup ∘}⩽l⩽270{sup ∘}) of the Milky Way, the Galactic thin disk exhibits a significant warp—shown both by gas and young stars—bending down a few kiloparsecs below the formal Galactic plane (b=0{sup ∘}). This warp shows its maximum at l∼240{sup ∘}, in the direction of the Canis Major constellation. In a series of papers, we have traced the detailed structure of this region using open star clusters, putting particular emphasis on the spiral structure of the outer disk. We noted a conspicuous accumulation of young star clusters within 2–3 kpc from the Sun and close tomore » b = 0°, which we interpreted as the continuation of the Local (Orion) arm toward the outer disk. While most clusters (and young stars in their background) closely follow the warp of the disk, our decade-old survey of the spiral structure of this region led us to identify three clusters, Haffner 18 (1 and 2) and Haffner 19, which remain very close to b = 0° and lie at distances (4.5, ∼8.0, and 6.4 kpc) where most of the material is already significantly warped. Here, we report on a search for clusters that share the same properties as Haffner 18 and 19, and investigate the possible reasons for such an unexpected occurrence. We present UBVRI photometry of five young clusters, namely NGC 2345, NGC 2374, Trumpler 9, Haffner 20, and Haffner 21, which also lie close to the formal Galactic plane. With the exception of Haffner 20, in the background of these clusters we detected young stars that appear close to b=0{sup ∘} and are located at distances up to ∼8 kpc from the Sun, thus deviating significantly from the warp. These populations define a structure that distributes over almost the entire third Galactic quadrant. We discuss this structure in the context of a possible thin disk flaring, similar to the Galactic thick disk.« less
Cannibals in the thick disk: the young α-rich stars as evolved blue stragglers
NASA Astrophysics Data System (ADS)
Jofré, P.; Jorissen, A.; Van Eck, S.; Izzard, R. G.; Masseron, T.; Hawkins, K.; Gilmore, G.; Paladini, C.; Escorza, A.; Blanco-Cuaresma, S.; Manick, R.
2016-10-01
Spectro-seismic measurements of red giants enabled the recent discovery of stars in the thick disk that are more massive than 1.4 M⊙. While it has been claimed that most of these stars are younger than the rest of the typical thick disk stars, we show evidence that they might be products of mass transfer in binary evolution, notably evolved blue stragglers. We took new measurements of the radial velocities in a sample of 26 stars from APOKASC, including 13 "young" stars and 13 "old" stars with similar stellar parameters but with masses below 1.2 M⊙ and found that more of the young starsappear to be in binary systems with respect to the old stars.Furthermore, we show that the young stars do not follow the expected trend of [C/H] ratios versus mass for individual stars. However, with a population synthesis of low-mass stars including binary evolution and mass transfer, we can reproduce the observed [C/N] ratios versus mass. Our study shows how asteroseismology of solar-type red giants provides us with a unique opportunity to study the evolution of field blue stragglers after they have left the main-sequence.
VizieR Online Data Catalog: Structure of young stellar clusters. II. (Kuhn+, 2015)
NASA Astrophysics Data System (ADS)
Kuhn, M. A.; Getman, K. V.; Feigelson, E. D.
2015-07-01
We investigate the intrinsic stellar populations (estimated total numbers of OB and pre-main-sequence stars down to 0.1Mȯ) that are present in 17 massive star-forming regions (MSFRs) surveyed by the MYStIX project. The study is based on the catalog of >31000 MYStIX Probable Complex Members with both disk-bearing and disk-free populations, compensating for extinction, nebulosity, and crowding effects. Correction for observational sensitivities is made using the X-ray luminosity function and the near-infrared initial mass function --a correction that is often not made by infrared surveys of young stars. The resulting maps of the projected structure of the young stellar populations, in units of intrinsic stellar surface density, allow direct comparison between different regions. Several regions have multiple dense clumps, similar in size and density to the Orion Nebula Cluster. The highest projected density of ~34000 stars/pc2 is found in the core of the RCW 38 cluster. Histograms of surface density show different ranges of values in different regions, supporting the conclusion of Bressert et al. (B10; 2010MNRAS.409L..54B) that no universal surface-density threshold can distinguish between clustered and distributed star formation. However, a large component of the young stellar population of MSFRs resides in dense environments of 200-10000 stars/pc2 (including within the nearby Orion molecular clouds), and we find that there is no evidence for the B10 conclusion that such dense regions form an extreme "tail" of the distribution. Tables of intrinsic populations for these regions are used in our companion study of young cluster properties and evolution. (3 data files).
NASA Astrophysics Data System (ADS)
Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.
2018-01-01
Context. Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. Aims: We aim to explore the structure of the open cluster and star-forming region NGC 2264 ( 3 Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. Methods: We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8 M⊙ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters. Results: We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks along its latitudinal extension. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later. Star formation is likely still ongoing in the most embedded regions of the cluster, while the outer regions host a widespread population of more evolved objects; these may be the result of an earlier star formation episode followed by outward migration on timescales of a few Myr. We find a detectable lag between the typical age of disk-bearing objects and that of accreting objects in the inner regions of NGC 2264: the first tend to be older than the second, but younger than disk-free sources at similar locations within the cluster. This supports earlier findings that the characteristic timescales of disk accretion are shorter than those of disk dispersal, and smaller than the average age of NGC 2264 (i.e., ≲3 Myr). At the same time, we note that disks in the north of the cluster tend to be shorter-lived ( 2.5 Myr) than elsewhere; this may reflect the impact of massive stars within the region (notably S Mon), that trigger rapid disk dispersal. Conclusions: Our results, consistent with earlier studies on NGC 2264 and other young clusters, support the idea of a star formation process that takes place sequentially over a prolonged span in a given region. A complete understanding of the dynamics of formation and evolution of star clusters requires accurate astrometric and kinematic characterization of its population; significant advance in this field is foreseen in the upcoming years thanks to the ongoing Gaia mission, coupled with extensive ground-based surveys like GES. Full Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A10
Subaru SCExAO First-Light Direct Imaging of a Young Debris Disk around HD 36546
NASA Technical Reports Server (NTRS)
Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, TImothy D.; Kuhn, Jonasa; Serabyn, Eugene;
2017-01-01
We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r approximately 0 3 to r approximately 0".3 to r approximately 1" (34-114 au). The disk is oriented in a near east west direction (PA approximately 75deg), is inclined by I approximately 70deg-75deg, and is strongly forward-scattering(g greater than 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disks eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t approximately 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (310 Myr) and a possible connection to Taurus-Aurigas star formation history. SCExAOs planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r greater than 20 au may explain the disks visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet disk interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Z. S.; Bi, S. L.; Liu, K.
2016-12-20
Oxygen and carbon are important elements in stellar populations. Their behavior refers to the formation history of the stellar populations. C and O abundances would also obviously influence stellar opacities and the overall metal abundance Z . With observed high-quality spectroscopic properties, we construct stellar models with C and O elements to give more accurate ages for 70 metal-poor dwarfs, which have been determined to be high- α halo, low- α halo, and thick-disk stars. Our results show that high- α halo stars are somewhat older than low- α halo stars by around 2.0 Gyr. The thick-disk population has anmore » age range in between the two halo populations. The age distribution profiles indicate that high- α halo and low- α halo stars match the in situ accretion simulation by Zolotov et al., and the thick-disk stars might be formed in a relatively quiescent and long-lasting process. We also note that stellar ages are very sensitive to O abundance, since the ages clearly increase with increasing [O/Fe] values. Additionally, we obtain several stars with peculiar ages, including 2 young thick-disk stars and 12 stars older than the universe age.« less
CHANDRA/ACIS-I STUDY OF THE X-RAY PROPERTIES OF THE NGC 6611 AND M16 STELLAR POPULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guarcello, M. G.; Drake, J. J.; Caramazza, M.
2012-07-10
Mechanisms regulating the origin of X-rays in young stellar objects and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow us to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC 6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age {<=}3 Myr. We study an archival 78 ks Chandra/ACIS-I observation of NGC 6611 and two new 80 ks observations of themore » outer region of M16, one centered on the Column V and the other on a region of the molecular cloud with ongoing star formation. We detect 1755 point sources with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray luminosity function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. Eighty-five percent of the O stars of NGC 6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard components, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.« less
Spiral density waves in a young protoplanetary disk.
Pérez, Laura M; Carpenter, John M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G
2016-09-30
Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk. Copyright © 2016, American Association for the Advancement of Science.
Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data
NASA Technical Reports Server (NTRS)
Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.
2013-01-01
HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected
Large Scale Variability Survey of Orion II: mapping the young, low-mass stellar populations
NASA Astrophysics Data System (ADS)
Briceño, C.; Calvet, N.; Hartmann, L. W.; Vivas, A. K.
2000-12-01
We present further results of our ongoing large scale variability survey of the Orion OB1 Association, carried out with the 8k x 8k CCD Mosaic Camera on the 1m Schmidt telescope at the Venezuela National Observatory. In an area of over 60 square degrees we have unveiled new populations of low-mass young stars over a range of environments, from the dense molecular clouds of the Orion belt region, Ori OB 1b, to areas devoid of gas in Orion OB 1a. These new young stars span ages from 1-2 Myr in Ori OB 1b to roughly 10 Myr in Ori OB 1a, a likely scenario of sequential star formation triggered by the first generation of massive stars. Proxy indicators like Hα emission and near-IR excesses show that accretion from circumstellar disks in the 10 Myr stars of Ori OB 1a has mostly stopped. This population is a numerous analog of groups like TW Hya, making it an excellent laboratory to look for debris disks and study the epoch of planet formation in sparse, non-clustered environments. Research reported herein funded by NSF grant No. 9987367, and by CONICIT and Ministerio de Ciencia y Tecnología, Venezuela.
X-ray emission at low-mass end of the MS - Results from an extensive Einstein Observatory survey
NASA Technical Reports Server (NTRS)
Barbera, M.; Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.
1992-01-01
The 0.16-4.0 keV X-ray emission from K and M stars of luminosity classes IV, V, and VI within 25 parsec of the sun was measured using all available Einstein Observatory IPC data and a critical compilation of catalogued optical data. Fifty four of 88 stars were detected, 70 of 138 M stars with Mv less than 13.4 (corresponding to M6) and 15 or 31 fainter M stars. The surveyed stars were grouped, on the basis of U, V, W space velocity components, into old-disk, young-disk, and halo population stars. Then, a subsample was selected which is statistically representative of the population of K and M stars in the solar neighborhood, on the basis of which unbiased Maximum Likelihood X-ray luminosity functions were constructed for K, early M, and late M stars. The investigation revealed a decrease of X-ray luminosity with increasing stellar age in the range of ages of disk population stars.
NASA Astrophysics Data System (ADS)
van der Marel, Nienke; Williams, Jonathan P.; Ansdell, M.; Manara, Carlo F.; Miotello, Anna; Tazzari, Marco; Testi, Leonardo; Hogerheijde, Michiel; Bruderer, Simon; van Terwisga, Sierk E.; van Dishoeck, Ewine F.
2018-02-01
Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brightest disks in the nearby star-forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (≥20 au radius) from a complete disk survey of the Lupus star-forming region, using ALMA Band 7 observations at 0.″3 (22–30 au radius) resolution of the 345 GHz continuum, 13CO and C18O 3–2 observations, and the spectral energy distribution of each source. Gas and dust surface density profiles are derived using the physical–chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star-forming region. The dust cavity sizes range from 20 to 90 au radius, and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is ≳ 11 % , which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities.
A Study of Inner Disk Gas around Young Stars in the Lupus Complex
NASA Astrophysics Data System (ADS)
Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri
2018-06-01
We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.
Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki
We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. Whilemore » HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.« less
Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546
NASA Astrophysics Data System (ADS)
Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, Timothy D.; Kuhn, Jonas; Serabyn, Eugene; Janson, Markus; Carson, Joseph; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Singh, Garima; Uyama, Taichi; Kuzuhara, Masayuki; Akiyama, Eiji; Grady, Carol; Hayashi, Saeko; Knapp, Gillian; Kwon, Jung-mi; Oh, Daehyeon; Wisniewski, John; Sitko, Michael; Yang, Yi
2017-02-01
We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ˜ 0.″3 to r ˜ 1″ (34-114 au). The disk is oriented in a near east-west direction (PA ˜ 75°), is inclined by I ˜ 70°-75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ˜ 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (3-10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet-disk interactions.
Full exploration of the giant planet population around β Pictoris
NASA Astrophysics Data System (ADS)
Lagrange, A.-M.; Keppler, M.; Meunier, N.; Lannier, J.; Beust, H.; Milli, J.; Bonnavita, M.; Bonnefoy, M.; Borgniet, S.; Chauvin, G.; Delorme, P.; Galland, F.; Iglesias, D.; Kiefer, F.; Messina, S.; Vidal-Madjar, A.; Wilson, P. A.
2018-05-01
Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims: This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet-disk interactions. Methods: We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results: We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %. Based on data obtained with the ESO3.6 m/HARPS spectrograph at La Silla, and with NaCO on the VLT.The RV data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A108
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott;
2012-01-01
We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas
2012-01-01
We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, Alan P., E-mail: aboss@carnegiescience.edu
2017-02-10
Observational evidence exists for the formation of gas giant planets on wide orbits around young stars by disk gravitational instability, but the roles of disk instability and core accretion for forming gas giants on shorter period orbits are less clear. The controversy extends to population synthesis models of exoplanet demographics and to hydrodynamical models of the fragmentation process. The latter refers largely to the handling of radiative transfer in three-dimensional (3D) hydrodynamical models, which controls heating and cooling processes in gravitationally unstable disks, and hence dense clump formation. A suite of models using the β cooling approximation is presented here.more » The initial disks have masses of 0.091 M {sub ⊙} and extend from 4 to 20 au around a 1 M {sub ⊙} protostar. The initial minimum Toomre Qi values range from 1.3 to 2.7, while β ranges from 1 to 100. We show that the choice of Q {sub i} is equal in importance to the β value assumed: high Q{sub i} disks can be stable for small β , when the initial disk temperature is taken as a lower bound, while low Q{sub i} disks can fragment for high β . These results imply that the evolution of disks toward low Q{sub i} must be taken into account in assessing disk fragmentation possibilities, at least in the inner disk, i.e., inside about 20 au. The models suggest that if low Q{sub i} disks can form, there should be an as yet largely undetected population of gas giants orbiting G dwarfs between about 6 au and 16 au.« less
NASA Astrophysics Data System (ADS)
Sicilia-Aguilar, Aurora; Kim, Jinyoung Serena; Sobolev, Andrej; Getman, Konstantin; Henning, Thomas; Fang, Min
2013-11-01
Aims: We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr 37. With a well-studied solar-type population, Tr 37 is a benchmark for disk evolution. Methods: We used low-resolution spectroscopy to identify and classify 141 members (78 new ones) and 64 probable members, mostly M-type stars. Hα emission provides information about accretion. Optical, 2MASS, Spitzer, and WISE data are used to trace the spectral energy distributions (SEDs) and search for disks. We construct radiative transfer models to explore the structures of full-disks, pre-transition, transition, and dust-depleted disks. Results: Including the new members and the known solar-type stars, we confirm that a substantial fraction (~2/5) of disks show signs of evolution, either as radial dust evolution (transition/pre-transition disks) or as a more global evolution (with low small-dust masses, dust settling, and weak/absent accretion signatures). Accretion is strongly dependent on the SED type. About half of the transition objects are consistent with no accretion, and dust-depleted disks have weak (or undetectable) accretion signatures, especially among M-type stars. Conclusions: The analysis of accretion and disk structure suggests a parallel evolution of dust and gas. We find several distinct classes of evolved disks, based on SED type and accretion status, pointing to different disk dispersal mechanisms and probably different evolutionary paths. Dust depletion and opening of inner holes appear to be independent processes: most transition disks are not dust-depleted, and most dust-depleted disks do not require inner holes. The differences in disk structure between M-type and solar-type stars in Tr 37 (4 Myr old) are not as remarkable as in the young, sparse, Coronet cluster (1-2 Myr old), suggesting that other factors, like the environment/interactions in each cluster, are likely to play an important role in the disk evolution and dispersal. Finally, we also find some evidence of clumpy star formation or mini-clusters within Tr 37. Observations reported here were obtained at the MMT Observatory, a jointfacility of the Smithsonian Institution and the University of Arizona.Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).Appendices A and B are available in electronic form at http://www.aanda.orgFull Tables A.1-A.5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A3
A debris disk around an isolated young neutron star.
Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L
2006-04-06
Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.
Companions and Environments of Low-Mass Stars: From Star-Forming Regions to the Field
NASA Astrophysics Data System (ADS)
Ward-Duong, Kimberly; Patience, Jenny; De Rosa, Robert J.; Bulger, Joanna; Rajan, Abhijith; Goodwin, Simon; Parker, Richard J.; McCarthy, Donald W.; Kulesa, Craig; van der Plas, Gerrit; Menard, Francois; Pinte, Christophe; Jackson, Alan Patrick; Bryden, Geoffrey; Turner, Neal J.; Harvey, Paul M.; Hales, Antonio
2017-01-01
We present results from two studies probing the multiplicity and environmental properties of low-mass stars: (1) The MinMs (M-dwarfs in Multiples) Survey, a large, volume-limited survey of 245 field M-dwarfs within 15 pc, and (2) the TBOSS (Taurus Boundary of Stellar/Substellar) Survey, an ongoing study of disk properties for the lowest-mass members within the Taurus star-forming region. The MinMs Survey provides new measurements of the companion star fraction, separation distribution, and mass ratio distribution for the nearest K7-M6 dwarfs, utilizing a combination of high-resolution adaptive optics imaging and digitized widefield archival plates to cover an unprecedented separation range of ~1-10,000 AU. Within these data, we also identify companions below the stellar/brown dwarf boundary, enabling characterization of the substellar companion population to low-mass field stars. For the much younger population in Taurus, we present results from ALMA Band 7 continuum observations of low-mass stellar and substellar Class II objects, spanning spectral types from M4-M7.75. The sub-millimeter detections of these disks provide key estimates of the dust mass in small grains, which is then assessed within the context of region age, environment, and viability for planet formation. This young population also includes a number of interesting young binary systems. Covering both young (1-2 Myr) and old (>5 Gyr) populations of low-mass stars, the results from these studies provide benchmark measurements on the population statistics of low-mass field stars, and on the early protoplanetary environments of their younger M-star counterparts.
Exo-comet Detection in Debris Disks Around Young A-type Stars
NASA Astrophysics Data System (ADS)
Welsh, Barry; Montgomery, S. L.
2013-01-01
We present details of the successful search for comet-like bodies (i.e. exo-comets) in orbit around several nearby stars. These objects have been found in young stellar systems that are in the transitional stage of evolution between possession of a gaseous protoplanetary disk to that of a dust-rich debris disk. During this period it is thought that large planetesimals of ~ 1000 km diameter may cause dynamical perturbations in the population of smaller bodies (such as asteroids and comets), such that they are sent on highly eccentric orbits towards their parent star resulting in the liberation of large amounts of evaporating gas and dust. By observing the varying spectral absorption signature of the CaII K-line at 3933Å due to this liberated gas, we have been able to track the trajectory of these exo-comets over a time-frame of several nights as they approach (and sometimes pass around) the central star. The youngest debris disks (1 - 50 Myr) are thought to represent the last stage in the formation of planetary systems and they may resemble our solar system’s own debris disk at the time of the Late Heavy Bombardment when the terrestrial worlds were subject to frequent collisions with asteroids and comets. Collisions with water-rich comets from the outer regions of our solar system may have delivered water to thee Earth’s oceans.
Grand-design Spiral Arms in a Young Forming Circumstellar Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomida, Kengo; Lin, Chia Hui; Machida, Masahiro N.
We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstablemore » again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.« less
Chandra Detection of an Evolved Population of Young Stars in Serpens South
NASA Astrophysics Data System (ADS)
Winston, E.; Wolk, S. J.; Gutermuth, R.; Bourke, T. L.
2018-06-01
We present a Chandra study of the deeply embedded Serpens South star-forming region, examining cluster structure and disk properties at the earliest stages. In total, 152 X-ray sources are detected. Combined with Spitzer and 2MASS photometry, 66 X-ray sources are reliably matched to an IR counterpart. We identify 21 class I, 6 flat spectrum, 16 class II, and 18 class III young stars; 5 were unclassified. Eighteen sources were variable in X-rays, 8 exhibiting flare-like emission and one source being periodic. The cluster’s X-ray luminosity distance was estimated: the best match was to the nearer distance of 260 pc for the front of the Aquila Rift complex. The ratio of N H to A K is found to be ∼0.68 × 1022, similar to that measured in other young low-mass regions, but lower than that measured in the interstellar medium and high-mass clusters (∼(1.6–2) × 1022). We find that the spatial distribution closely follows that of the dense filament from which the stars have formed, with the class II population still strongly associated with the filament. There are four subclusters in the field, with three forming knots in the filament, and a fourth to the west, which may not be associated but may be contributing to the distributed class III population. A high percentage of diskless class IIIs (upper limit 30% of classified X-ray sources) in such a young cluster could indicate that processing of disks is influenced by the cluster environment and is not solely dependent on timescale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruens, R. C.; Kroupa, P.; Fellhauer, M.
In the lenticular galaxy NGC 1023 a third population of globular clusters (GCs), called faint fuzzies (FFs), was discovered next to the blue and red GC populations by Larsen and Brodie. While these FFs have colors comparable to the red population, the new population is fainter, larger (R{sub eff}>7 pc) and, most importantly, shows clear signs of corotation with the galactic disk of NGC 1023. We present N-body simulations verifying the hypothesis that these disk-associated FFs are related to the young massive cluster complexes (CCs) observed by Bastian et al. in M51, who discovered a mass-radius relation for these CCs.more » Our models have an initial configuration based on the observations from M51 and are placed on various orbits in a galactic potential derived for NGC 1023. All computations end up with a stable object containing 10%-60% of the initial CC mass after an integration time of 5 Gyr. A conversion to visual magnitudes demonstrates that the resulting objects cover exactly the observed range for FFs. Moreover, the simulated objects show projected half-mass radii between 3.6 and 13.4 pc, in good agreement with the observed FF sizes. We conclude that objects like the young massive CCs in M51 are likely progenitors of the FFs observed in NGC 1023.« less
Externally Induced Evaporation of Young Stellar Disks in Orion
NASA Technical Reports Server (NTRS)
Johnstone, D.; Hollenbach, D.; Shu, F.
1996-01-01
In this paper we propose a model for the evaporation of disks around young low-mass stars by external sources of high energy photons. Two evaporation techniques are possible. Lyman continuum radiation can ionize hydrogen at the disk surface powering a steady thermal ionized disk-wind, or FUV radiation can heat the disk through photo-electric grain processes powering a slower thermal neutral disk-wind. Applying these two models to the evaporating objects in the Trapezium produces a satisfactory solution to both the mass-loss rate and size of the ionized envelopes.
NASA Astrophysics Data System (ADS)
Alves, D. R.; Alcock, C.; Allsman, R. A.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration
1998-12-01
We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different age and metallicity stellar populations. Young LMC stellar populations are prominent in the 9M CMD. Of these, the red and blue supergiants are potentially useful probes of the late stages of evolution in intermediate mass stars. Old LMC stellar populations are also evident in the 9M CMD. These are used to reconstruct the evolution of the LMC during cosmologically interesting epochs. We first build a plausible model for the old LMC populations consistent with features observed in the 9M CMD. We choose the 1.5 Gyr old cluster NGC 411 and the ancient globular cluster M3, with metal abundances of [Fe/H] = -0.7 and -1.5 dex respectively, as good representations of the giant branch and horizontal branch (HB) stars. The evolved asymptotic giant branch appears bimodal, which supports a model of two discrete older populations in the LMC field. We conclude the old populations in the LMC bar are likely a mix similar to NGC 411 and M3. Next, we infer the old and low metallicity LMC field population has a red HB morphology, which implies this population formed ~ 2 Gyr after the truly ancient LMC clusters formed. We find the surface density profile of this old LMC field population (traced by RRab variable stars) is exponential, favoring a disk-like rather than spheroidal distribution. We conclude the LMC disk formed ~ 10 Gyr ago, at the same time the Milky Way disk formed.
NASA Astrophysics Data System (ADS)
Povich, Matthew S.; Smith, Nathan; Majewski, Steven R.; Getman, Konstantin V.; Townsley, Leisa K.; Babler, Brian L.; Broos, Patrick S.; Indebetouw, Rémy; Meade, Marilyn R.; Robitaille, Thomas P.; Stassun, Keivan G.; Whitney, Barbara A.; Yonekura, Yoshinori; Fukui, Yasuo
2011-05-01
We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24 μm IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 M sun < m <~ 10 M sun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main-sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2 × 104 YSOs and a present-day star formation rate (SFR) of >0.008 M sun yr-1. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.
The Building History of XUV disks of M83& NGC2403 with TRGB Archaeology
NASA Astrophysics Data System (ADS)
Koda, Jin
2015-06-01
We propose deep HSC g & i-band imaging of two extended ultraviolet (XUV) disks of M83 and NGC2403. These galaxies have the prototype XUV disks with the largest size ( 1 deg and 30 arcmin). The Subaru HSC permits unprecedentedly deep imaging over these gigantic XUV disks, including sufficient surrounding areas which are used for sky subtraction and statistical estimation of background contamination. This project probes the building history of the XUV disks using archeological stellar populations, especially the tip of red giant branch (TRGB) stars (age 2-14 Gyr). Their presence and distribution over the XUV disks will reveal any star formation (SF) occurring over the past 2 Gyr, 4-6 Gyr, and beyond - i.e., the epochs preceding the recent (UV-traced) state of SF. Their color depends strongly on metallicity, thus providing an additional measure of star-gas recycling during the evolution of the XUV disks. In addition, we will detect young & massive main sequence stars (<100 Myr) and He-burning stars (100-500 Myr). Comparing various generations of stars, in terms of number densities and spatial distributions, will reveal the much-unexplored SF history in the XUV disks.
Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle
2010-11-01
Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.
Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems
NASA Astrophysics Data System (ADS)
Chandler, C. J.; Shepherd, D. S.
2008-08-01
Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.
On the origin of the 40-120 micron emission of galaxy disks: A comparison with H-alpha fluxes
NASA Technical Reports Server (NTRS)
Persson, Carol J. Lonsdale; Helou, George
1987-01-01
A comparison of 40 to 120 micron Infrared Astronomy Satellite (IRAS) fluxes with published H alpha and UBV photometry shows that the far infrared emission of galaxy disks consists of at least two components: a warm one associated with OB stars in HII-regions and young star-forming complexes, and a cooler one from dust in the diffuse, neutral interstellar medium, heated by the more general interstellar radiation field of the old disk population (a cirrus-like component). Most spiral galaxies are dominated by emission from the cooler component in this model. A significant fraction of the power for the cool component must originate with non-ionizing stars. For a normal spiral disk there is a substantial uncertainty in a star formation rate derived using either the H alpha or the far infrared luminosity.
Hubble Space Telescope discovery of candidate young globular clusters in the merger remnant NGC 7252
NASA Technical Reports Server (NTRS)
Whitmore, Bradley C.; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle
1993-01-01
New, high-resolution images of the central region of NGC 7252 obtained with the Planetary Camera of the HST are presented. NGC 7252 is a prototypical example of a remnant of two merged disk galaxies. Our most striking result is the discovery of a population of about 40 blue pointlike objects in this galaxy. The mean absolute magnitude of these objects is Mv = -13 mag; the mean color is V-I = 0.7 mag; and the mean effective radius is 10 pc. The luminosities, colors, projected spatial distribution, and sizes are all compatible with the hypothesis that these objects formed within the last 1 Gyr following the collision of two spiral galaxies, and that they are young globular clusters. It therefore appears that the number of globular clusters may increase during the merger of gas-rich galaxies. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals do. NGC 7252 shows a single, semistellar nucleus; relatively bright spiral structure is seen within 1.6 kpc of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy.
A Slowly Precessing Disk in the Nucleus of M31 as the Feeding Mechanism for a Central Starburst
NASA Astrophysics Data System (ADS)
Lockhart, K. E.; Lu, J. R.; Peiris, H. V.; Rich, R. M.; Bouchez, A.; Ghez, A. M.
2018-02-01
We present a kinematic study of the nuclear stellar disk in M31 at infrared wavelengths using high spatial resolution integral field spectroscopy. The spatial resolution achieved, FWHM = 0.″12 (0.45 pc at the distance of M31), has only previously been equaled in spectroscopic studies by space-based long-slit observations. Using adaptive-optics-corrected integral field spectroscopy from the OSIRIS instrument at the W. M. Keck Observatory, we map the line-of-sight kinematics over the entire old stellar eccentric disk orbiting the supermassive black hole (SMBH) at a distance of r < 4 pc. The peak velocity dispersion is 381 ± 55 km s‑1, offset by 0.″13 ± 0.″03 from the SMBH, consistent with previous high-resolution long-slit observations. There is a lack of near-infrared (NIR) emission at the position of the SMBH and young nuclear cluster, suggesting a spatial separation between the young and old stellar populations within the nucleus. We compare the observed kinematics with dynamical models from Peiris & Tremaine. The best-fit disk orientation to the NIR flux is [θ l , θ i , θ a ] = [‑33° ± 4°, 44° ± 2°, ‑15° ± 15°], which is tilted with respect to both the larger-scale galactic disk and the best-fit orientation derived from optical observations. The precession rate of the old disk is Ω P = 0.0 ± 3.9 km s‑1 pc‑1, lower than the majority of previous observations. This slow precession rate suggests that stellar winds from the disk will collide and shock, driving rapid gas inflows and fueling an episodic central starburst as suggested in Chang et al.
Young Stellar Objects in Lynds 1641: Disks, Accretion, and Star Formation History
NASA Astrophysics Data System (ADS)
Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin
2013-07-01
We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M */M ⊙) ≈ -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.
Evidence for dust grain growth in young circumstellar disks.
Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J
2001-06-01
Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.
MUSE observations of the counter-rotating nuclear ring in NGC 7742
NASA Astrophysics Data System (ADS)
Martinsson, Thomas P. K.; Sarzi, Marc; Knapen, Johan H.; Coccato, Lodovico; Falcón-Barroso, Jesús; Elmegreen, Bruce G.; de Zeeuw, Tim
2018-04-01
Aims: We present results from MUSE observations of the nearly face-on disk galaxy NGC 7742. This galaxy hosts a spectacular nuclear ring of enhanced star formation, which is unusual in that it is hosted by a non-barred galaxy, and because this star formation is most likely fuelled by externally accreted gas that counter-rotates with respect to its main stellar body. Methods: We used the MUSE data to derive the star-formation history (SFH) and accurately measure the stellar and ionized-gas kinematics of NGC 7742 in its nuclear, bulge, ring, and disk regions. Results: We have mapped the previously known gas counter-rotation well outside the ring region and deduce the presence of a slightly warped inner disk, which is inclined at approximately 6° compared to the outer disk. The gas-disk inclination is well constrained from the kinematics; the derived inclination 13.7° ± 0.4° agrees well with that derived from photometry and from what one expects using the inverse Tully-Fisher relation. We find a prolonged SFH in the ring with stellar populations as old as 2-3 Gyr and an indication that the star formation triggered by the minor merger event was delayed in the disk compared to the ring. There are two separate stellar components: an old population that counter-rotates with the gas, and a young one, concentrated to the ring, that co-rotates with the gas. We recover the kinematics of the old stars from a two-component fit, and show that combining the old and young stellar populations results in the erroneous average velocity of nearly zero found from a one-component fit. Conclusions: The spatial resolution and field of view of MUSE allow us to establish the kinematics and SFH of the nuclear ring in NGC 7742. We show further evidence that this ring has its origin in a minor merger event, possibly 2-3 Gyr ago. Data used for the flux and kinematic maps (Figs. 1 and 3-5) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A66
A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective
NASA Technical Reports Server (NTRS)
Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagne, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R; Bosch, Milton
2016-01-01
We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 microns, is a likely member (approx.90% BANYAN II probability) of the approx.45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.
Mapping a stellar disk into a boxy bulge: The outside-in part of the Milky Way bulge formation
NASA Astrophysics Data System (ADS)
Di Matteo, P.; Haywood, M.; Gómez, A.; van Damme, L.; Combes, F.; Hallé, A.; Semelin, B.; Lehnert, M. D.; Katz, D.
2014-07-01
By means of idealized, dissipationless N-body simulations that follow the formation and subsequent buckling of a stellar bar, we study the characteristics of boxy/peanut-shaped bulges and compare them with the properties of the stellar populations in the Milky Way (MW) bulge. The main results of our modeling, valid for the general family of boxy/peanut shaped bulges, are the following: (i) Because of the spatial redistribution in the disk initiated at the epoch of bar formation, stars from the innermost regions to the outer Lindblad resonance (OLR) of the stellar bar are mapped into a boxy bulge. (ii) The contribution of stars to the local bulge density depends on their birth radius: stars born in the innermost disk tend to dominate the innermost regions of the boxy bulge, while stars originating closer to the OLR are preferably found in the outer regions of the boxy/peanut structure. (iii) Stellar birth radii are imprinted in the bulge kinematics: the larger the birth radii of stars ending up in the bulge, the greater their rotational support and the higher their line-of-sight velocity dispersions (but note that this last trend depends on the bar viewing angle). (iv) The higher the classical bulge-over-disk ratio, the larger its fractional contribution of stars at large vertical distance from the galaxy midplane. Comparing these results with the properties of the stellar populations of the MW bulge recently revealed by the ARGOS survey, we conclude that (I) the two most metal-rich populations of the MW bulge, labeled A and B in the ARGOS survey, originate in the disk, with the population of A having formed on average closer to the Galaxy center than the population of component B; (II) a massive (B/D ~ 0.25) classical spheroid can be excluded for the MW, thus confirming previous findings that the MW bulge is composed of populations that mostly have a disk origin. On the basis of their chemical and kinematic characteristics, the results of our modeling suggest that the populations A, B, and C, as defined by the ARGOS survey, can be associated, respectively, with the inner thin disk, to the young thick and to the old thick disk, following the nomenclature that we recently suggested for stars in the solar neighborhood. Appendix A is available in electronic form at http://www.aanda.org
Studying the inner regions of young stars and their disks with aperture masking interferometry
NASA Astrophysics Data System (ADS)
Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team
2017-01-01
High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.
Kinematic Evidence for an Embedded Protoplanet in a Circumstellar Disk
NASA Astrophysics Data System (ADS)
Pinte, C.; Price, D. J.; Ménard, F.; Duchêne, G.; Dent, W. R. F.; Hill, T.; de Gregorio-Monsalvo, I.; Hales, A.; Mentiplay, D.
2018-06-01
Disks of gas and dust surrounding young stars are the birthplace of planets. However, the direct detection of protoplanets forming within disks has proved elusive to date. We present the detection of a large, localized deviation from Keplerian velocity in the protoplanetary disk surrounding the young star HD 163296. The observed velocity pattern is consistent with the dynamical effect of a two-Jupiter-mass planet orbiting at a radius ≈260 au from the star.
Near-infrared structure of fast and slow-rotating disk galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu
We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but nomore » super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.« less
The SEEDS High-Contrast Imaging Survey of Exoplanets Around Young Stellar Objects
NASA Astrophysics Data System (ADS)
Uyama, Taichi; Hashimoto, Jun; Kuzuhara, Masayuki; Mayama, Satoshi; Akiyama, Eiji; Currie, Thayne; Livingston, John; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kwon, Jungmi; Matsuo, Taro; Mcelwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide
2017-03-01
We present high-contrast observations of 68 young stellar objects (YSOs) that have been explored as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey on the Subaru telescope. Our targets are very young (<10 Myr) stars, which often harbor protoplanetary disks where planets may be forming. We achieve a typical contrast of ˜10-4-10-5.5 at an angular distance of 1″ from the central star, corresponding to typical mass sensitivities (assuming hot-start evolutionary models) of ˜10 M J at 70 au and ˜6 M J at 140 au. We detected a new stellar companion to HIP 79462 and confirmed the substellar objects GQ Lup b and ROXs 42B b. An additional six companion candidates await follow-up observations to check for common proper motion. Our SEEDS YSO observations probe the population of planets and brown dwarfs at the very youngest ages; these may be compared to the results of surveys targeting somewhat older stars. Our sample and the associated observational results will help enable detailed statistical analyses of giant planet formation.
A New Probe of the Planet-Forming Region in T Tauri Disks
2004-10-20
each object finds the presence of inner disk gaps with sizes of a few AU in each of these young (∼1 Myr) stellar systems. We propose that the...young (≤10 Myr) protoplanetary accretion disks (Beckwith et al. 2000; D’Alessio 2003 and references therein). The onset of this evolution lies in the...Gravitational inter- action between the disk and the forming planet results in the formation of a gap as the mass of the planet increases (Bryden 1
Dynamic Balanced Reach: A Temporal and Spectral Analysis Across Increasing Performance Demands
Barton, Joseph E.; Graci, Valentina; Hafer-Macko, Charlene; Sorkin, John D.; F. Macko, Richard
2016-01-01
Standing balanced reach is a fundamental task involved in many activities of daily living that has not been well analyzed quantitatively to assess and characterize the multisegmental nature of the body's movements. We developed a dynamic balanced reach test (BRT) to analyze performance in this activity; in which a standing subject is required to maintain balance while reaching and pointing to a target disk moving across a large projection screen according to a sum-of-sines function. This tracking and balance task is made progressively more difficult by increasing the disk's overall excursion amplitude. Using kinematic and ground reaction force data from 32 young healthy subjects, we investigated how the motions of the tracking finger and whole-body center of mass (CoM) varied in response to the motion of the disk across five overall disk excursion amplitudes. Group representative performance statistics for the cohort revealed a monotonically increasing root mean squared (RMS) tracking error (RMSE) and RMS deviation (RMSD) between whole-body CoM (projected onto the ground plane) and the center of the base of support (BoS) with increasing amplitude (p < 0.03). Tracking and CoM response delays remained constant, however, at 0.5 s and 1.0 s, respectively. We also performed detailed spectral analyses of group-representative response data for each of the five overall excursion amplitudes. We derived empirical and analytical transfer functions between the motion of the disk and that of the tracking finger and CoM, computed tracking and CoM responses to a step input, and RMSE and RMSD as functions of disk frequency. We found that for frequencies less than 1.0 Hz, RMSE generally decreased, while RMSE normalized to disk motion amplitude generally increased. RMSD, on the other hand, decreased monotonically. These findings quantitatively characterize the amplitude- and frequency-dependent nature of young healthy tracking and balance in this task. The BRT is not subject to floor or ceiling effects, overcoming an important deficiency associated with most research and clinical instruments used to assess balance. This makes a comprehensive quantification of young healthy balance performance possible. The results of such analyses could be used in work space design and in fall-prevention instructional materials, for both the home and work place. Young healthy performance represents “exemplar” performance and can also be used as a reference against which to compare the performance of aging and other clinical populations at risk for falling. PMID:27551977
TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K. H.; Watson, Dan M.; Manoj, P.
Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' agemore » 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.« less
NASA Technical Reports Server (NTRS)
Currie, Thayne; Sicilia-Aguilar, Auora
2011-01-01
We present Spitzer 3.6-24 micron photometry and spectroscopy for stars in the 1-3 Myr-old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. (2008). Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. (2008) to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters - IC 348, NGC 2362, and eta Cha -- to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks -- those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from approx.15-20% at 1-2 Myr to > 50% at 5-8 Myr; the mean transitional disk lifetime is closer to approx. 1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. (2009) and Sicilia-Aguilar et al. (2009). In the Coronet Cluster and IC 348, transitional disks are more numerous for very low-mass M3--M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically-thick primordial disks is Mdisk approx. 0.001-0.003 M*. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full SED modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.
NASA Astrophysics Data System (ADS)
Currie, Thayne; Sicilia-Aguilar, Aurora
2011-05-01
We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.
A circumstellar disk associated with a massive protostellar object.
Jiang, Zhibo; Tamura, Motohide; Fukagawa, Misato; Hough, Jim; Lucas, Phil; Suto, Hiroshi; Ishii, Miki; Yang, Ji
2005-09-01
The formation process for stars with masses several times that of the Sun is still unclear. The two main theories are mergers of several low-mass young stellar objects, which requires a high stellar density, or mass accretion from circumstellar disks in the same way as low-mass stars are formed, accompanied by outflows during the process of gravitational infall. Although a number of disks have been discovered around low- and intermediate-mass young stellar objects, the presence of disks around massive young stellar objects is still uncertain and the mass of the disk system detected around one such object, M17, is disputed. Here we report near-infrared imaging polarimetry that reveals an outflow/disk system around the Becklin-Neugebauer protostellar object, which has a mass of at least seven solar masses (M(o)). This strongly supports the theory that stars with masses of at least 7M(o) form in the same way as lower mass stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moór, A.; Ábrahám, P.; Kóspál, Á.
Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10–40 Myr old systems. We used the APEX and IRAM 30 m radio telescopes to search for CO gas in 20 bright debris disks. In one case, around the 16 Myr old A-type star HD 131835, we discovered a new gas-bearing debris disk, where the CO 3–2 transition was successfully detected. No other individual system exhibited a measurable CO signal. Our Herschel Space Observatory far-infrared images of HD 131835 marginally resolved the disk at both 70 and 100 μm, with a characteristic radiusmore » of ∼170 AU. While in stellar properties HD 131835 resembles β Pic, its dust disk properties are similar to those of the most massive young debris disks. With the detection of gas in HD 131835 the number of known debris disks with CO content has increased to four, all of them encircling young (≤40 Myr) A-type stars. Based on statistics within 125 pc, we suggest that the presence of a detectable amount of gas in the most massive debris disks around young A-type stars is a common phenomenon. Our current data cannot conclude on the origin of gas in HD 131835. If the gas is secondary, arising from the disruption of planetesimals, then HD 131835 is a comparably young, and in terms of its disk, more massive analog of the β Pic system. However, it is also possible that this system, similar to HD 21997, possesses a hybrid disk, where the gas material is predominantly primordial, while the dust grains are mostly derived from planetesimals.« less
NASA Technical Reports Server (NTRS)
2006-01-01
The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope. The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons. Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars. Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them. Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist. Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across. This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).Anatomy of a flaring proto-planetary disk around a young intermediate-mass star.
Lagage, Pierre-Olivier; Doucet, Coralie; Pantin, Eric; Habart, Emilie; Duchêne, Gaspard; Ménard, François; Pinte, Christophe; Charnoz, Sébastien; Pel, Jan-Willem
2006-10-27
Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation.
The Exoplant Migration Timescale from K2 Young Clusters
NASA Astrophysics Data System (ADS)
Rizzuto, Aaron C.; Mann, Andrew; Kraus, Adam L.; Ireland, Michael
2017-01-01
Planetary Migration models for close-in exoplanets(a < 0.1 AU, P < 20 days) can be loosely divided into three categories: Disk-driven migration, binary-star planet interaction, and planet-planet interaction. Disk migration, occurs over the lifetime of the protoplanetary disk (<5 Myr), while migration involving dynamical multi-body interactions operate on timescales of ~100’s of Myr to ~1Gyr, a lengthier process than disk migration. It is unclear which of these is the dominating mechanism.The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key pre-main-sequence ages: Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the ˜120 Myr Pleiades, the ˜600-800 Myr Hyades and Praesepe moving groups, to the original Kepler Field. The frequency, orbital and compositional properties of the exoplanet population in these samples of different age, with careful treatment of detection completeness, will be sufficient to address the question of exoplanet migration as their host stars are settling onto the main sequence.We will present the initial results of a program to directly address the question of planet migration with a uniform injection-recovery tests on a new K2 detrending pipeline that is optimized for the particular case of young, rotationally variable stars in K2 to robustly measure the detectability of planets of differing size and orbit. Initial results point towards a migration timescale of 200-700 Myr, which is consistent with the slower planet-planet scattering or Kozai migration models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Thayne; Sicilia-Aguilar, Aurora
We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and thosemore » that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.« less
Disk Detective Follow-Up Program
NASA Astrophysics Data System (ADS)
Kuchner, Marc
As new data on exoplanets and young stellar associations arrive, we will want to know: which of these planetary systems and young stars have circumstellar disks? The vast allsky database of 747 million infrared sources from NASA's Wide-field Infrared Survey Explorer (WISE) mission can supply answers. WISE is a discovery tool intended to find targets for JWST, sensitive enough to detect circumstellar disks as far away as 3000 light years. The vast WISE archive already serves us as a roadmap to guide exoplanet searches, provide information on disk properties as new planets are discovered, and teach us about the many hotly debated connections between disks and exoplanets. However, because of the challenges of utilizing the WISE data, this resource remains underutilized as a tool for disk and planet hunters. Attempts to use WISE to find disks around Kepler planet hosts were nearly scuttled by confusion noise. Moreover, since most of the stars with WISE infrared excesses were too red for Hipparcos photometry, most of the disks sensed by WISE remain obscure, orbiting stars unlisted in the usual star databases. To remedy the confusion noise problem, we have begun a massive project to scour the WISE data archive for new circumstellar disks. The Disk Detective project (Kuchner et al. 2016) engages layperson volunteers to examine images from WISE, NASA's Two Micron All-Sky Survey (2MASS) and optical surveys to search for new circumstellar disk candidates via the citizen science website DiskDetective.org. Fueled by the efforts of > 28,000 citizen scientists, Disk Detective is the largest survey for debris disks with WISE. It has already uncovered 4000 disk candidates worthy of follow-up. However, most host stars of the new Disk Detective disk candidates have no known spectral type or distance, especially those with red colors: K and M stars and Young Stellar Objects. Others require further observations to check for false positives. The Disk Detective project is supported by NASA ADAP funds, which are not allowed to fund a major observational follow-up campaign. So here we propose a campaign of follow-up observations that will turn the unique, growing catalog of Disk Detective disk candidates into a reliable, publically-available treasure trove of new data on nearby disks in time to complement the upcoming new catalogs of planet hosts and stellar moving groups. We will use automated adaptive optics (AO) instruments to image disk candidates and check them for contamination from background objects. We will correlate our discoveries with the vast Gaia and LAMOST surveys to study disks in associations with other young stars. We will follow up disk candidates spectroscopically to remove more false positives. We will search for cold dust around our disk candidates with the James Clerk Maxwell Telescope (JCMT) and analyze data from the Gemini Planet Imager (GPI) to image young, nearby disk candidates. This follow up work will realize the full potential of the WISE mission as a roadmap to future exoplanet discoveries. It will yield contamination rates that will be crucial for interpreting all disk searches done with WISE. Our search will yield 2000 well-vetted nearby disks, including 60 that the Gaia mission will likely find to contain giant planets. This crucial follow-up work should be done now to take full advantage of Gaia during JWST's planned lifetime.
A Survey for Circumstellar Disks around Young Substellar Objects
NASA Astrophysics Data System (ADS)
Liu, Michael C.; Najita, Joan; Tokunaga, Alan T.
2003-03-01
We have completed the first systematic survey for disks around spectroscopically identified young brown dwarfs and very low mass stars. For a sample of 38 very cool objects in IC 348 and Taurus, we have obtained L'-band (3.8 μm) imaging with sufficient sensitivity to detect objects with and without disks. The sample should be free of selection biases for our purposes. Our targets span spectral types from M6 to M9.5, corresponding to masses of ~15-100 MJup and ages of <~5 Myr, based on current models. None appear to be binaries at 0.4" resolution (55-120 AU). Using the objects' measured spectral types and extinctions, we find that most of our sample (77%+/-15%) possess intrinsic IR excesses, indicative of circum(sub)stellar disks. Because the excesses are modest, conventional analyses using only IR colors would have missed most of the sources with excesses. Such analyses inevitably underestimate the disk fraction and will be less reliable for young brown dwarfs than for T Tauri stars. The observed IR excesses are correlated with Hα emission, consistent with a common accretion disk origin. In the same star-forming regions, we find that disks around brown dwarfs and T Tauri stars are contemporaneous; assuming coevality, this demonstrates that the inner regions of substellar disks are at least as long-lived as stellar disks and evolve slowly for the first ~3 Myr. The disk frequency appears to be independent of mass. However, some objects in our sample, including the very coolest (lowest mass) ones, lack IR excesses and may be diskless. The observed excesses can be explained by disk reprocessing of starlight alone; the implied accretion rates are at least an order of magnitude below typical values for classical T Tauri stars. The observed distribution of IR excesses suggests inner disk holes with radii of >~2R*, consistent with the idea that such holes arise from disk-magnetosphere interactions. Altogether, the frequency and properties of young circumstellar disks appear to be similar from the stellar regime down to the substellar and planetary-mass regime. This provides prima facie evidence of a common origin for most stars and brown dwarfs.
The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems
NASA Technical Reports Server (NTRS)
Janson, Markus; Brandt, Timothy; Moro-Martin, Amaya; Usuda, Tomonori; Thalmann, Christian; Carson, Joseph C.; Goto, Miwa; Currie, Thayne; McElwain, M. W.; Itoh, Yoichi;
2013-01-01
Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that beta Pic b-like planets (approximately 10M(sub jup) planets around G-A-type stars) near the gap edges are less frequent than 15-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than beta Pic b.
Blue lobes in the Hydra A cluster central galaxy
NASA Technical Reports Server (NTRS)
Mcnamara, Brian R.
1995-01-01
We present new U- and I-band images of the centrally dominant galaxy in the Hydra A cluster, obtained with the 2.5 m Isaac Newton Telescope at La Palma. The galaxy is centered in a poor, X-ray-luminous cluster whose gaseous intracluster medium is apparently cooling at a rate of m-dot(sub CF) approximately 3000 solar masses/yr. The galaxy's structure is that of a normal giant elliptical galaxy, apart from the central approximately 8 x 6 arcsec (approximately 12 x 9 kpc) region which contains an unusually blue, lobelike structure that is spatially coincident with a luminous emission-line nebula in rotation about the nucleus. Based on near spatial coincidence of the central continuum structure and the emission-line nebula, we suggest that the blue continuum is due to a warm stellar population in a central disk. In order to isolate and study the structure of the disk, we have subtracted a smooth galactic background model from the U-band image. The disk's surface brightness profiles along its major and minor axes decline roughly exponentially with radius. The disk's axial ratio is consistent with a nearly edge-on thick disk or a thin disk that is inclined with respect to the line of sight. The bluest regions, located a few arcsec on either side of the nucleus (giving the lobelike appearance), may be due to locally enhanced star formation or a seeing-blurred ring of young stars embedded in the disk observed nearly edge-on. If star-formation is occurring with the local initial mass function, the central color, surface brightness, and dynamical mass would be consistent with models for star formation at a rate of less than and approximately 1 solar masses/yr which has persisted for the past approximately 10(exp 9) yr, a short burst (10(exp 7) yr) of star formation at a rate of approximately 30 solar masses/yr which occurred less than and approximately 10(exp 8) yr ago, or an instantaneous burst of star formation which occurred approximately 5 x 10(exp 7) yr ago. While the young population contributes approximately 30%-40% of the central U-band luminosity, its mass would be less than and approximately 1% to less than and approximately 10% (10(exp 8) solar masses - 2 x 10(exp 9) solar masses of the galaxy's central dynamical mass. We consider a number of possible origins for the disk material.
NASA Astrophysics Data System (ADS)
Reboussin, L.; Guilloteau, S.; Simon, M.; Grosso, N.; Wakelam, V.; Di Folco, E.; Dutrey, A.; Piétu, V.
2015-06-01
Aims: We attempt to determine the molecular composition of disks around young low-mass stars in the ρ Oph region and to compare our results with a similar study performed in the Taurus-Auriga region. Methods: We used the IRAM 30 m telescope to perform a sensitive search for CN N = 2-1 in 29 T Tauri stars located in the ρ Oph and upper Scorpius regions. 13CO J = 2-1 is observed simultaneously to provide an indication of the level of confusion with the surrounding molecular cloud. The bandpass also contains two transitions of ortho-H2CO, one of SO, and the C17O J = 2-1 line, which provides complementary information on the nature of the emission. Results: Contamination by molecular cloud in 13CO and even C17O is ubiquitous. The CN detection rate appears to be lower than for the Taurus region, with only four sources being detected (three are attributable to disks). H2CO emission is found more frequently, but appears in general to be due to the surrounding cloud. The weaker emission than in Taurus may suggest that the average disk size in the ρ Oph region is smaller than in the Taurus cloud. Chemical modeling shows that the somewhat higher expected disk temperatures in ρ Oph play a direct role in decreasing the CN abundance. Warmer dust temperatures contribute to convert CN into less volatile forms. Conclusions: In such a young region, CN is no longer a simple, sensitive tracer of disks, and observations with other tracers and at high enough resolution with ALMA are required to probe the gas disk population. Based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org
Atlas of low-mass young stellar object disks from mid-infrared interferometry
NASA Astrophysics Data System (ADS)
Varga, J.; Ábrahám, P.; Ratzka, Th.; Menu, J.; Gabányi, K.; Kóspál, Á.; van Boekel, R.; Mosoni, L.; Henning, Th.
We present our approach of visibility modeling of disks around low-mass (< 2 M ⊙) young stellar objects (YSOs). We compiled an atlas based on mid-infrared interferometric observations from the MIDI instrument at the VLTI. We use three different models to fit the data. These models allow us to determine overall sizes (and the extent of the inner gaps) of the modeled circumstellar disks.
Planet Forming Protostellar Disks
NASA Technical Reports Server (NTRS)
Lubow, Stephen
1998-01-01
The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.
Characterizing Protoplanetary Disks in a Young Binary in Orion
NASA Astrophysics Data System (ADS)
Powell, Jonas; Hughes, A. Meredith; Mann, Rita; Flaherty, Kevin; Di Francesco, James; Williams, Jonathan
2018-01-01
Planetary systems form in circumstellar disks of gas and dust surrounding young stars. One open question in the study of planet formation involves understanding how different environments affect the properties of the disks and planets they generate. Understanding the properties of disks in high-mass star forming regions (SFRs) is critical since most stars - probably including our Sun - form in those regions. By comparing the disks in high-mass SFRs to those in better-studied low-mass SFRs we can learn about the role environment plays in planet formation. Here we present 0.5" resolution observations of the young two-disk binary system V2434 Ori in the Orion Nebula from the Atacama Large Millimeter/submillimeter Array (ALMA) in molecular line tracers of CO(3-2), HCN(4-3), HCO+(4-3) and CS(7-6). We model each disk’s mass, radius, temperature structure, and molecular abundances, by creating synthetic images using an LTE ray-tracing code and comparing simulated observations with the ALMA data in the visibility domain. We then compare our results to a previous study of molecular line emission from a single Orion proplyd, modeled using similar methods, and to previously characterized disks in low-mass SFRs to investigate the role of environment in disk chemistry and planetary system formation.
Workshop on Physics of Accretion Disks Around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Liang, E (Editor); Stepinski, T. F. (Editor)
1995-01-01
The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.
Circumstellar disks of the most vigorously accreting young stars.
Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru
2016-02-01
Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood.
Circumstellar disks of the most vigorously accreting young stars
Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I.; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M.; Karr, Jennifer L.; Kusakabe, Nobuhiko; Tsuribe, Toru
2016-01-01
Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood. PMID:26989772
Hot stars in young massive clusters: Mapping the current Galactic metallicity
NASA Astrophysics Data System (ADS)
de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio
2013-06-01
Young Massive Clusters (YMCs) with ages < 6 Myr are ideal tools for mapping the current chemical abundances in the Galactic disk for several reasons. First of all, the locations of these clusters can be known through spectrophotometric distances. Secondly, their young ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.
The Gemini Planet Imager Exoplanet Survey
NASA Astrophysics Data System (ADS)
Nielsen, Eric L.; Macintosh, Bruce; Graham, James R.; Barman, Travis S.; Doyon, Rene; Fabrycky, Daniel; Fitzgerald, Michael P.; Kalas, Paul; Konopacky, Quinn M.; Marchis, Franck; Marley, Mark S.; Marois, Christian; Patience, Jenny; Perrin, Marshall D.; Oppenheimer, Rebecca; Song, Inseok; GPIES Team
2017-01-01
The Gemini Planet Imager Exoplanet Survey (GPIES) is one of the largest most sensitive direct imaging searches for exoplanets conducted to date, and having observed more than 300 stars the survey is halfway complete. We present highlights from the first half of the survey, including the discovery and characterization of the young exoplanet 51 Eri b and the brown dwarf HR 2562 B, new imaging of multiple disks, and resolving the young stellar binary V343 Nor for the first time. GPI has also provided new spectra and orbits of previous known planets and brown dwarfs and polarization measurements of a wide range of disks. Finally, we discuss the constraints placed by the first half of the GPIES campaign on the population of giant planets at orbital separations beyond that of Jupiter. Supported by NSF grants AST-0909188 and AST-1313718, AST-1411868, AST 141378, NNX11AF74G, and DGE-1232825, and by NASA grants NNX15AD95G/NEXSS and NNX11AD21G.
NASA Technical Reports Server (NTRS)
Strom, Stephen E.; Edwards, Suzan
1993-01-01
Recent observations of circumstellar disks and their evolutionary timescales are reviewed. It is concluded that disks appear to be a natural outcome of the star-formation process. The disks surrounding young stars initially are massive, with optically thick structures comprised of gas and micron-sized grains. Disk masses are found to range from 0.01 to 0.2 solar masses for solar-type PMS stars, and from 0.01 to 6 solar masses for young, intermediate mass stars. Massive, optically thick accretion disks have accretion rates between 10 exp -8 and 10 exp -6 solar masses/yr for solar type PMS stars and between 10 exp -6 and 10 exp -4 solar masses/yr for intermediate stars. The results suggest that a significant fraction of the mass comprising the star may have passed through a circumstellar accretion disk.
A 3D Numerical Study of Gravitational Instabilities in Young Circumbinary Disks
NASA Astrophysics Data System (ADS)
Cai, Kai; Michael, Scott; Durisen, Richard
2013-07-01
Gravitational instabilities (GIs) in protoplanetary disks have been suggested as one of the major formation mechanisms of giant planets. Theoretical and computational studies have indicated that certain family of GIs can be excited in a circumbinary disk, which could lead to enhanced protoplanet formation (e.g., Sellwood & Lin 1989, Boss 2006). We have carried out a 3D simulation of a gravitationally unstable circumbinary disk around a young Sun-like star and a 0.02-Msun companion, both inside the central hole of the disk. Here we present a preliminary comparison between this simulation and a similarly simulated circumstellar disk around a solar-mass star but without the low-mass companion. The GIs stimulated by the binary and those that arise spontaneously are quite different in structure and strength. However, no fragmentation is observed, even after many orbital periods as measured in the outer disk.
Herschel Studies of the Evolution and Environs of Young Stars in the DIGIT, WISH, and FOOSH Programs
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OT Key Project Team; WISH GT Key Project Team; FOOSH OT1 Team
2012-01-01
The Herschel Space Observatory has enabled us to probe the physical conditions of outer disks, envelopes, and outflows of young stellar objects, including embedded objects, Herbig Ae/Be disks, and T Tauri disks. We will report on results from three projects, DIGIT, WISH, and FOOSH. The DIGIT (Dust, Ice, and Gas in Time) program (PI: Neal Evans) utilizes the full spectral range of the PACS instrument to explore simultaneously the solid and gas-phase chemistry around sources in all of these stages. WISH (Water in Star Forming Regions with Herschel, PI Ewine van Dishoeck) focuses on observations of key lines with HIFI and line scans of selected spectral regions with PACS. FOOSH (FU Orionis Objects Surveyed with Herschel, PI Joel Green) studies FU Orionis objects with full range PACS and SPIRE scans. DIGIT includes examples of low luminosity protostars, while FOOSH studies the high luminosity objects during outburst states. Rotational ladders of highly excited CO and OH emission are detected in both disks and protostars. The highly excited lines are more commonly seen in the embedded phases, where there appear to be two temperature components. Intriguingly, water is frequently detected in spectra of embedded sources, but not in the disk spectra. In addition to gas features, we explore the extent of the newly detected 69 um forsterite dust feature in both T Tauri and Herbig Ae/Be stars. When analyzed along with the Spitzer-detected dust features, these provide constraints on a population of colder crystalline material. We will present some models of individual sources, as well as some broad statistics of the emission from these stages of star and planet formation.
The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks
NASA Astrophysics Data System (ADS)
Morrison, Sarah Jane
Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.
A hot compact dust disk around a massive young stellar object.
Kraus, Stefan; Hofmann, Karl-Heinz; Menten, Karl M; Schertl, Dieter; Weigelt, Gerd; Wyrowski, Friedrich; Meilland, Anthony; Perraut, Karine; Petrov, Romain; Robbe-Dubois, Sylvie; Schilke, Peter; Testi, Leonardo
2010-07-15
Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.
High-Resolution Optical and Near-Infrared Imaging of Young Circumstellar Disks
NASA Technical Reports Server (NTRS)
McCaughrean, Mark; Stapelfeldt, Karl; Close, Laird
2000-01-01
In the past five years, observations at optical and near-infrared wavelengths obtained with the Hubble Space Telescope and ground-based adaptive optics have provided the first well-resolved images of young circumstellar disks which may form planetary systems. We review these two observational techniques and highlight their results by presenting prototype examples of disks imaged in the Taurus-Auriga and Orion star-forming regions. As appropriate, we discuss the disk parameters that may be typically derived from the observations, as well as the implications that the observations may have on our understanding of, for example, the role of the ambient environment in shaping the disk evolution. We end with a brief summary of the prospects for future improvements in space- and ground-based optical/IR imaging techniques, and how they may impact disk studies.
Selected Papers on Protoplanetary Disks
NASA Technical Reports Server (NTRS)
Bell, K. R.; Cassen, P. M.; Wasson, J. T.; Woolum, D. S.; Klahr, H. H.; Henning, Th.
2004-01-01
Three papers present studies of thermal balances, dynamics, and electromagnetic spectra of protoplanetary disks, which comprise gas and dust orbiting young stars. One paper addresses the reprocessing, in a disk, of photons that originate in the disk itself in addition to photons that originate in the stellar object at the center. The shape of the disk is found to strongly affect the redistribution of energy. Another of the three papers reviews an increase in the optical luminosity of the young star FU Orionis. The increase began in the year 1936 and similar increases have since been observed in other stars. The paper summarizes astronomical, meteoric, and theoretical evidence that these increases are caused by increases in mass fluxes through the inner portions of the protoplanetary disks of these stars. The remaining paper presents a mathematical-modeling study of the structures of protostellar accretion disks, with emphasis on limits on disk flaring. Among the conclusions reached in the study are that (1) the radius at which a disk becomes shadowed from its central stellar object depends on radial mass flow and (2) most planet formation has occurred in environments unheated by stellar radiation.
The Low-mass Population in the Young Cluster Stock 8: Stellar Properties and Initial Mass Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose, Jessy; Herczeg, Gregory J.; Fang, Qiliang
The evolution of H ii regions/supershells can trigger a new generation of stars/clusters at their peripheries, with environmental conditions that may affect the initial mass function, disk evolution, and star formation efficiency. In this paper we study the stellar content and star formation processes in the young cluster Stock 8, which itself is thought to be formed during the expansion of a supershell. We present deep optical photometry along with JHK and 3.6 and 4.5 μ m photometry from UKIDSS and Spitzer -IRAC. We use multicolor criteria to identify the candidate young stellar objects in the region. Using evolutionary models,more » we obtain a median log(age) of ∼6.5 (∼3.0 Myr) with an observed age spread of ∼0.25 dex for the cluster. Monte Carlo simulations of the population of Stock 8, based on estimates for the photometric uncertainty, differential reddening, binarity, and variability, indicate that these uncertainties introduce an age spread of ∼0.15 dex. The intrinsic age spread in the cluster is ∼0.2 dex. The fraction of young stellar objects surrounded by disks is ∼35%. The K -band luminosity function of Stock 8 is similar to that of the Trapezium cluster. The initial mass function (IMF) of Stock 8 has a Salpeter-like slope at >0.5 M {sub ⊙} and flattens and peaks at ∼0.4 M {sub ⊙}, below which it declines into the substellar regime. Although Stock 8 is surrounded by several massive stars, there seems to be no severe environmental effect in the form of the IMF due to the proximity of massive stars around the cluster.« less
NASA Technical Reports Server (NTRS)
Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danichi, W. C.; Hrynevych, M.; Milan-Gabet, R.;
2012-01-01
We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 micrometer wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the Lband and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.
Briceño, C; Vivas, A K; Calvet, N; Hartmann, L; Pacheco, R; Herrera, D; Romero, L; Berlind, P; Sánchez, G; Snyder, J A; Andrews, P
2001-01-05
We are conducting a large-scale, multiepoch, optical photometric survey [Centro de Investigaciones de Astronomia-Quasar Equatorial Survey Team (CIDA-QUEST)] covering about 120 square degrees to identify the young low-mass stars in the Orion OB1 association. We present results for an area of 34 square degrees. Using photometric variability as our main selection criterion, as well as follow-up spectroscopy, we confirmed 168 previously unidentified pre-main sequence stars that are about 0.6 to 0.9 times the mass of the sun (Mo), with ages of about 1 million to 3 million years (Ori OB1b) and about 3 million to 10 million years (Ori OB1a). The low-mass stars are spatially coincident with the high-mass (at least 3 Mo) members of the associations. Indicators of disk accretion such as Halpha emission and near-infrared emission from dusty disks fall sharply from Ori OB1b to Ori OB1a, indicating that the time scale for disk dissipation and possibly the onset of planet formation is a few million years.
Evidence for a dwarf galaxy remnant around M82 from deep Hubble Space Telescope imaging
NASA Astrophysics Data System (ADS)
Suwannajak, Chutipong; Sarajedini, Ata
2018-01-01
We present HST/ACS photometry of an over-dense region of stars in the southern halo of the edge-on galaxy M82. The structure is located at a projected distance of 5 kpc from the disk of the galaxy, and its color-magnitude diagram reveals a population of predominantly young stars, which are largely absent from the surrounding halo. Their ages are similar to those of the young stars formed in the tidal debris between M81, M82, and NGC3077 as a result of their interactions. We derive the mean metallicity of the surrounding stars, which are considered to be the halo population of M82, to be similar to that of the red giant branch (RGB) population of the halo of M81. However, the mean metallicity of the RGB in the over-dense structure is significantly more metal-rich than the halo. We theorize that this over-density existed as a dwarf galaxy prior to its interaction with M82 with the young stars forming later from the gas remaining in its main body.
NASA Astrophysics Data System (ADS)
Zakhozhay, O. V.
2017-07-01
We study spectral energy distributions of two young systems Sz54 and Sz59, that belong to Chameleon II star forming region. The results of the modeling indicate that protoplanetary disks of these systems contain gaps in the dust component. These gaps could be a result of a planetary or brown dwarf companion formation, because the companion would accumulate a disk material, moving along its orbit. In a present work we have determined physical characteristics of the disks. We also discuss possible companion characteristics, based on the geometrical parameters of the gaps.
NASA Astrophysics Data System (ADS)
Wang, K.-S.; van der Tak, F. F. S.; Hogerheijde, M. R.
2012-07-01
Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion process. Aims: This paper explores the kinematics of the gas around a young massive star with millimeter-wave interferometry to improve our understanding of the formation of massive stars though accretion. Methods: We use Plateau de Bure interferometric images to probe the environment of the nearby (~1 kpc) and luminous (~20 000 L⊙) high-mass (10-16 M⊙) young star AFGL 2591-VLA3 in continuum and in lines of HDO, H_218O and SO2 in the 115 and 230 GHz bands. Radiative transfer calculations are employed to investigate the kinematics of the source. Results: At ~0.5″ (500 AU) resolution, the line images clearly resolve the velocity field of the central compact source (diameter of ~800 AU) and show linear velocity gradients in the northeast-southwest direction. Judging from the disk-outflow geometry, the observed velocity gradient results from rotation and radial expansion in the equatorial region of VLA3. Radiative transfer calculations suggest that the velocity field is consistent with sub-Keplerian rotation plus Hubble-law like expansion. The line profiles of the observed molecules suggest a layered structure, with HDO emission arising from the disk mid-plane, H_218O from the warm mid-layer, and SO2 from the upper disk. Conclusions: We propose AFGL 2591-VLA3 as a new massive disk candidate, with peculiar kinematics. The rotation of this disk is sub-Keplerian, probably due to magnetic braking, while the stellar wind may be responsible for the expansion of the disk. The expansion motion may also be an indirect evidence of disk accretion in the very inner region because of the conservation of angular momentum. The sub-Keplerian rotation discovered in our work suggests that AFGL 2591-VLA3 may be a special case linking transition of velocity field of massive disks from pure Keplerian rotation to solid-body rotation though definitely more new detections of circumstellar disks around high-mass YSOs are required to examine this hypothesis. Our results support the idea that early B-type stars could be formed with a circumstellar disk from the point of view of the disk-outflow geometry, though the accretion processes in the disk need to be further investigated.
The Evolution of a Planet-Forming Disk Artist Concept Animation
2004-12-09
This frame from an animation shows the evolution of a planet-forming disk around a star. Initially, the young disk is bright and thick with dust, providing raw materials for building planets. In the first 10 million years or so, gaps appear within the disk as newborn planets coalesce out of the dust, clearing out a path. In time, this planetary "debris disk" thins out as gravitational interactions with numerous planets slowly sweep away the dust. Steady pressure from the starlight and solar winds also blows out the dust. After a few billion years, only a thin ring remains in the outermost reaches of the system, a faint echo of the once-brilliant disk. Our own solar system has a similar debris disk -- a ring of comets called the Kuiper Belt. Leftover dust in the inner portion of the solar system is known as "zodiacal dust." Bright, young disks can be imaged directly by visible-light telescopes, such as NASA's Hubble Space Telescope. Older, fainter debris disks can be detected only by infrared telescopes like NASA's Spitzer Space Telescope, which sense the disks' dim heat. http://photojournal.jpl.nasa.gov/catalog/PIA07099
NASA Astrophysics Data System (ADS)
Long, Zachary C.; Akiyama, Eiji; Sitko, Michael; Fernandes, Rachel B.; Assani, Korash; Grady, Carol A.; Cure, Michel; Danchi, William C.; Dong, Ruobing; Fukagawa, Misato; Hasegawa, Yasuhiro; Hashimoto, Jun; Henning, Thomas; Inutsuka, Shu-Ichiro; Kraus, Stefan; Kwon, Jungmi; Lisse, Carey M.; Baobabu Liu, Hauyu; Mayama, Satoshi; Muto, Takayuki; Nakagawa, Takao; Takami, Michihiro; Tamura, Motohide; Currie, Thayne; Wisniewski, John P.; Yang, Yi
2018-05-01
We present ALMA 0.87 mm continuum, HCO+ J = 4–3 emission line, and CO J = 3–2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ± 0.″05, an azimuthal gap in the HCO+ J = 4–3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.
The Secrets of the Nearest Starburst Cluster. I. Very Large Telescope/ISAAC Photometry of NGC 3603
NASA Astrophysics Data System (ADS)
Stolte, Andrea; Brandner, Wolfgang; Brandl, Bernhard; Zinnecker, Hans; Grebel, Eva K.
2004-08-01
VLT/ISAAC JHKL photometry with subarcsecond resolution of the dense, massive starburst cluster NGC 3603 YC forming the core of the NGC 3603 giant molecular cloud is analyzed to reveal characteristics of the stellar population in unprecedented detail. The color-magnitude plane features a strong pre-main-sequence/main-sequence (PMS/MS) transition region, including the PMS/MS transition point, and reveals a secondary sequence for the first time in a nearby young starburst cluster. Arguments for a possible binary nature of this sequence are given. The resolved PMS/MS transition region allows isochrone fitting below the hydrogen-burning turn-on in NGC 3603 YC, yielding an independent estimate of global cluster parameters. A distance modulus of 13.9 mag, equivalent to d=6.0+/-0.3 kpc, is derived, as well as a line-of-sight extinction of AV=4.5+/-0.6 toward PMS stars in the cluster center. The interpretation of a binary candidate sequence suggests a single age of 1 Myr for NGC 3603 YC, providing evidence for a single burst of star formation without the need to employ an age spread in the PMS population, as argued for in earlier studies. Disk fractions are derived from L-band excesses, indicating a radial increase in the disk frequency from 20% to 40% from the core to the cluster outskirts. The low disk fraction in the cluster core, as compared to the 42% L-band excess fraction found for massive stars in the Trapezium cluster of a comparably young age, indicates strong photoevaporation in the cluster center. The estimated binary fraction of 30%, as well as the low disk fraction, suggest strong impacts on low-mass star formation due to stellar interactions in the dense starburst. The significant differences between NGC 3603 YC and less dense and massive young star clusters in the Milky Way reveal the importance of using local starbursts as templates for massive extragalactic star formation. Based on observations obtained at the ESO VLT on Paranal, Chile, under programs 63.I-0015 and 65.I-0135, and data from the public VLT archive provided by ESO, as well as observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.
VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, L.; Rome, H.; Pinilla, P.
We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-richmore » disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennihy, E.; Dunlap, B. H.; Clemens, J. C.
We report the discovery of a subtle infrared excess associated with the young white dwarf EC 05365–4749 at 3.35 and 4.6 μ m. Follow-up spectroscopic observations are consistent with a hydrogen atmosphere white dwarf of effective temperature 22,800 K and log [ g (cm s{sup −2})] = 8.19. High-resolution spectroscopy reveals atmospheric metal pollution with logarithmic abundances of [Mg/H] = −5.36 and [Ca/H] = −5.75, confirming the white dwarf is actively accreting from a metal-rich source with an intriguing abundance pattern. We find that the infrared excess is well modeled by a flat, opaque debris disk, though disk parameters aremore » not well constrained by the small number of infrared excess points. We further demonstrate that relaxing the assumption of a circular dusty debris disk to include elliptical disks expands the widths of acceptable disks, adding an alternative interpretation to the subtle infrared excesses commonly observed around young white dwarfs.« less
Properties of the Closest Young Binaries. I. DF Tau’s Unequal Circumstellar Disk Evolution
NASA Astrophysics Data System (ADS)
Allen, T. S.; Prato, L.; Wright-Garba, N.; Schaefer, G.; Biddle, L. I.; Skiff, B.; Avilez, I.; Muzzio, R.; Simon, M.
2017-08-01
We present high-resolution, spatially resolved, near-infrared spectroscopy and imaging of the two components of DF Tau, a young, low-mass, visual binary in the Taurus star-forming region. With these data, we provide a more precise orbital solution for the system, determine component spectral types, radial velocity, veiling and v\\sin I values, and construct individual spectral energy distributions. We estimate the masses of both stars to be ˜ 0.6 {M}⊙ . We find markedly different circumstellar properties for DF Tau A and B: evidence for a disk, such as near-infrared excess and accretion signatures, is clearly present for the primary, while it is absent for the secondary. Additionally, the v\\sin I and rotation period measurements show that the secondary is rotating significantly more rapidly than the primary. We interpret these results in the framework of disk-locking and argue that DF Tau A is an example of disk-modulated rotation in a young system. The DF Tau system raises fundamental questions about our assumptions of universal disk formation and evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katkov, Ivan Yu.; Sil'chenko, Olga K.; Moiseev, Alexei V., E-mail: katkov.ivan@gmail.com, E-mail: moisav@gmail.com, E-mail: olga@sai.msu.su
We used deep, long-slit spectra and integral-field spectral data to study the stars, ionized gas kinematics, and stellar population properties in the lenticular barred galaxy NGC 7743. We show that ionized gas at distances larger than 1.5 kpc from the nucleus settles in the disk, which is significantly inclined toward the stellar disk of the galaxy. Making different assumptions about the geometry of the disks and including different sets of emission lines in the fitting, under the assumption of thin, flat-disk circular rotation, we obtain the full possible range of angles between the disks to be 34{sup 0} {+-} 9{supmore » 0} or 77{sup 0} {+-} 9{sup 0}. The most probable origin of the inclined disk is the external gas accretion from a satellite orbiting the host galaxy, with a corresponding angular momentum direction. The published data on the H I distribution around NGC 7743 suggest that the galaxy has a gas-rich environment. The emission-line ratio diagrams imply the domination of shock waves in the ionization state of the gaseous disk, whereas the contribution of photoionization from recent star formation seems to be negligible. In some parts of the disk, a difference between the velocities of the gas emitting from the forbidden lines and Balmer lines is detected. This may be caused by the mainly shock-excited inclined disk, whereas some fraction of the Balmer-line emission is produced by a small amount of gas excited by young stars in the main stellar disk of NGC 7743. In the circumnuclear region (R < 200 pc), some evidence of the active galactic nucleus jet's interaction with an ambient interstellar medium was found.« less
The stellar populations of M 33
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den bergh, S.
1991-07-01
A review is given of present ideas on the evolution and stellar content of the Triangulum nebula = M 33 = NGC 598. The disk of M 33 is embedded in a halo of globular clusters, metal-poor red giants, and RR Lyrae stars. Its nuclear bulge component is weak, suggesting that the halos of galaxies are not extensions of their bulges to large radii. The ages of M 33 clusters do not appear to exhibit a hiatus in their star-forming history like that which is observed in the Large Magellanic Cloud (LMC). Young and intermediate-age clusters with luminosities rivaling themore » populous clusters in the LMC are rare in M 33. The integrated light of the semistellar nucleus of M 33, which contains the strongest X-ray source in the Local Group, is dominated by a young metal-rich population. At optical wavelengths the disk scale length of M 33 is 9.6 arcmin, which is similar to the 9.9 arcmin scale length of OB associations. The ratio of the nova rate in M 33 to that in M 31 is approximately equal to the ratio of their luminosities. This suggests that the nova rate in a galaxy is not determined entirely by the integrated luminosity of old bulge stars. The gas-depletion time scale in the central region of M 33 is found to be about 1.7 {times} 10 to the 9th yr, which is significantly shorter than a Hubble time. 141 refs.« less
M101: Spectral Observations of H II Regions and Their Physical Properties
NASA Astrophysics Data System (ADS)
Hu, Ning; Wang, Enci; Lin, Zesen; Kong, Xu; Cheng, Fuzhen; Fan, Zou; Fang, Guangwen; Lin, Lin; Mao, Yewei; Wang, Jing; Zhou, Xu; Zhou, Zhiming; Zhu, Yinan; Zou, Hu
2018-02-01
By using the Hectospec 6.5 m Multiple Mirror Telescope and the 2.16 m telescope of the National Astronomical Observatories, of the Chinese Academy of Sciences, we obtained 188 high signal-to-noise ratio spectra of {{H}} {{II}} regions in the nearby galaxy M101, which is the largest spectroscopic sample of {{H}} {{II}} regions for this galaxy so far. These spectra cover a wide range of regions on M101, which enables us to analyze two-dimensional distributions of its physical properties. The physical parameters are derived from emission lines or stellar continua, including stellar population age, electron temperature, oxygen abundance, etc. The oxygen abundances are derived using two empirical methods based on O3N2 and R 23 indicators, as well as the direct {T}e method when [{{O}} {{III}}] λ 4363 is available. By applying the harmonic decomposition analysis to the velocity field, we obtained a line-of-sight rotation velocity of 71 {km} {{{s}}}-1 and a position angle of 36°. The stellar age profile shows an old stellar population in the galaxy center and a relatively young stellar population in outer regions, suggesting an old bulge and a young disk. The oxygen abundance profile exhibits a clear break at ∼18 kpc, with a gradient of ‑0.0364 dex kpc‑1 in the inner region and ‑0.00686 dex kpc‑1 in the outer region. Our results agree with the “inside-out” disk growth scenario of M101.
The Genesis of the Milky Way's Thick Disk via Stellar Migration
NASA Astrophysics Data System (ADS)
Loebman, Sarah; Roskar, R.; Debattista, V. P.; Ivezic, Z.; Quinn, T. R.; Wadsley, J.
2011-01-01
The separation of the Milky Way disk into a thin and thick component is supported by differences in kinematics and metallicity. These differences have lead to the predominant view that the thick disk formed early via a cataclysmic event and constitutes fossil evidence of the hierarchical growth of the Milky Way. We show here, using N-body simulations, how a double vertical structure, with stellar populations displaying similar dichotomies can arise purely through internal evolution. Stars migrate radially, while retaining nearly circular orbits, as described by Sellwood & Binney (2002). As stars move outwards their vertical motions carry them to larger heights above the mid-plane, populating a thickened component. Such stars found at present time in the solar neighborhood formed early in the disk’s history at smaller radii where stars are more metal-poor and α-enhanced, leading to exactly the properties observed for thick disk stars. Classifying stars as members of the thin or thick disk by either velocity or metallicity leads to an apparent separation in the other property as observed. This scenario is supported by the SDSS observation that stars in the transition region do not show any correlation between rotation and metallicity. Such a correlation is present in young stars and arises because of epicyclic motions but migration radially mixes stars, washing out the correlation. Using the Geneva Copenhagen Survey, we indeed find a velocity-metallicity correlation in the younger stars and none in the older stars. We predict a similar result when separating stars by [α/Fe]. The good qualitative agreement between our simulation and observations are remarkable because the simulation was not tuned to reproduce the Milky Way, hinting that the thick disk may be dominated by stellar migration. Nonetheless, we cannot exclude that some fraction of the thick disk is a fossil of a past more violent history.
Locating the two black holes in NGC 6240.
Max, Claire E; Canalizo, Gabriela; de Vries, Willem H
2007-06-29
Mergers play an important role in galaxy evolution and are key to understanding the correlation between central-black hole mass and host-galaxy properties. We used the new technology of adaptive optics at the Keck II telescope to observe NGC 6240, a merger between two disk galaxies. Our high-resolution near-infrared images, combined with radio and x-ray positions, revealed the location and environment of two central supermassive black holes. Each is at the center of a rotating stellar disk, surrounded by a cloud of young star clusters. The brightest of these young clusters lie in the plane of each disk, but surprisingly are seen only on the disks' receding side.
NASA Astrophysics Data System (ADS)
Roquette, J.; Bouvier, J.; Alencar, S. H. P.; Vaz, L. P. R.; Guarcello, M. G.
2017-07-01
Context. In recent decades, the picture of early pre-main sequence stellar rotational evolution has been constrained by studies targeting different regions at a variety of ages with respect to young star formation. Observational studies suggest a dependence of rotation with mass, and for some mass ranges a connection between rotation and the presence of a circumstellar disk. The role of environmental conditions on the rotational regulation, however, has still not been fully explored. Aims: We investigate the rotational properties of candidate members of the young massive association Cygnus OB2. By evaluating their rotational properties, we address questions regarding the effect of environment properties on PMS rotational evolution. Methods: We studied JHK-band variability in 5083 candidate members (24% of them are disk-bearing stars). We selected variable stars with the Stetson variability index and performed the period search with the Lomb-Scargle periodogram for periods between 0.83-45 days. Period detections were verified using false alarm probability levels, Saunders statistics, the string and rope length method, and visual verification of folded light curves. Results: We identified 1224 periodic variable stars (24% of the candidate member sample, 8% of the disk-bearing sample, and 28% of the non-disk-bearing sample). Monte Carlo simulations were performed in order to evaluate completeness and contamination of the periodic sample, out of which 894 measured periods were considered reliable. Our study was considered reasonably complete for periods between 2 and 30 days. Conclusions: The general scenario for the rotational evolution of young stars seen in other regions is confirmed by Cygnus OB2 period distributions with disc-bearing stars rotating on average more slowly than non-disk-bearing stars. A mass-rotation dependence was also verified, but as in NGC 6530, very low mass stars (M ≤ 0.4 M⊙) are rotating on average slower than higher mass stars (0.4M⊙
NASA Astrophysics Data System (ADS)
Abraham, Roberto G.
In keeping with the spirit of a meeting on ‘masks,' this talk presents two short stories on the theme of dust. In the first, dust plays the familiar role of the evil obscurer, the enemy to bedefeated by the cunning observer in order to allow a key future technology (adaptive optics) to be exploited fully by heroic astronomers. In the second story, dust itself emerges as the improbable hero, in the form of a circumstellar debris disks. I will present evidence of a puzzling near-infrared excess in the continuum of high-redshift galaxies and will argue that the seemingly improbable origin of this IR excess is a population of young circumstellar disks formed around high-mass stars in distant galaxies. Assuming circumstellar disks extend down to lower masses,as they do in our own Galaxy, the excess emission presents us with an exciting opportunity to measure the formation rate of planetary systems in distant galaxies at cosmic epochs before our own solar system formed.
Young stellar objects & photoevaporating protoplanetary disks in the Orion's sibling NGC 1977.
NASA Astrophysics Data System (ADS)
Kim, J. S.; Fang, M.; Clarke, C. J.; Facchini, S.; Pascucci, I.; Apai, D.; Bally, J.
We present young stellar population in NGC 1977, Orion Nebula's sibling, and the discovery of new photoevaporating protoplanetary disks (proplyds) around a B star, 42 Ori. NGC 1977 (age≲2 Myr) is located at ˜30arcmin north of the Orion Nebula at a distance of ˜400 pc, but it lacks high mass O stars unlike in Orion Nebula Cluster (ONC). Nevertheless, we have identified seven proplyds in vicinity of its most massive star, 42 Ori (B1V). The proplyds show cometary Halpha emission in HST images, with clear ionization front and tails evaporating away from 42 Ori. These are the first proplyds to be found around a B star, while previously known proplyds were found near O stars. The FUV radiation impinging on these proplyds is 10-30 times weaker than that on the proplyds in ONC. We find that observed proplyd sizes are consistent with a model for photoevaporation in weak FUV radiation field. We briefly discuss one of the interesting YSOs found in this lesser-known star forming region in Orion, NGC 1977.
NASA Technical Reports Server (NTRS)
Grady, C. A.; Sitko, M.L.
2013-01-01
Spitzer synoptic monitoring of young stellar associations has demonstrated that variability among young stars and their disks is ubiquitous. The Spitzer studies have been limited by target visibility windows and cover only a short temporal baseline in years. A complementary approach is to focus on stars chosen for high-value observations (e.g. high-contrast imaging, interferometry, or access to wavelengths which are difficult to achieve from the ground) where the synoptic data can augment the imagery or interferometry as well as probing disk structure. In this talk, we discuss how synoptic data for two protoplanetary disks, MWC 480 and HD 163296, constrain the dust disk scale height, account for variable disk illumination, and can be used to locate emission features, such as the IR bands commonly associated with PAHs in the disk, as part of our SOFIA cycle 1 study. Similar variability is now known for several pre-transitional disks, where synoptic data can be used to identify inner disks which are not coplanar with the outer disk, and which may be relicts of giant planet-giant planet scattering events. Despite the logistical difficulties in arranging supporting, coordinated observations in tandem with high-value observations, such data have allowed us to place imagery in context, constrained structures in inner disks not accessible to direct imagery, and may be a tool for identifying systems where planet scattering events have occurred.
The onset of planet formation in brown dwarf disks.
Apai, Dániel; Pascucci, Ilaria; Bouwman, Jeroen; Natta, Antonella; Henning, Thomas; Dullemond, Cornelis P
2005-11-04
The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk mid-plane. Here, we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.
On Magnetic Dynamos in Thin Accretion Disks around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1993-01-01
A variety of geometrically thin accretion disks commonly associated with such astronomical objects as X-ray binaries, cataclysmic variables, and protostars are likely to be seats of MHD dynamo actions. Thin disk geometry and the particular physical environment make accretion disk dynamos different from stellar, planetary, or even galactic dynamos. We discuss those particular features of disk dynamos with emphasis on the difference between protoplanetary disk dynamos and those associated with compact stars. We then describe normal mode solutions for thin disk dynamos and discuss implications for the dynamical behavior of dynamo-magnetized accretion disks.
Silicate Crystal Formation in the Disk of an Erupting Star Artist Concept
2009-05-13
This artist's concept illustrates how silicate crystals like those found in comets can be created by an outburst from a growing star. The image shows a young sun-like star encircled by its planet-forming disk of gas and dust. The silicate that makes up most of the dust would have begun as non-crystallized, amorphous particles. Streams of material are seen spiraling from the disk onto the star increasing its mass and causing the star to brighten and heat up dramatically. The outburst causes temperatures to rise in the star's surrounding disk. The animation (figure 1) zooms into the disk to show close-ups of silicate particles. When the disk warms from the star's outburst, the amorphous particles of silicate melt. As they cool off, they transform into forsterite (figure 2), a type of silicate crystal often found in comets in our solar system. In April 2008, NASA's Spitzer Space Telescope detected evidence of this process taking place on the disk of a young sun-like star called EX Lupi. http://photojournal.jpl.nasa.gov/catalog/PIA12008
Impact of Distance Determinations on Galactic Structure. I. Young and Intermediate-Age Tracers
NASA Astrophysics Data System (ADS)
Matsunaga, Noriyuki; Bono, Giuseppe; Chen, Xiaodian; de Grijs, Richard; Inno, Laura; Nishiyama, Shogo
2018-06-01
Here we discuss impacts of distance determinations on the Galactic disk traced by relatively young objects. The Galactic disk, ˜40 kpc in diameter, is a cross-road of studies on the methods of measuring distances, interstellar extinction, evolution of galaxies, and other subjects of interest in astronomy. A proper treatment of interstellar extinction is, for example, crucial for estimating distances to stars in the disk outside the small range of the solar neighborhood. We'll review the current status of relevant studies and discuss some new approaches to the extinction law. When the extinction law is reasonably constrained, distance indicators found in today and future surveys are telling us stellar distribution and more throughout the Galactic disk. Among several useful distance indicators, the focus of this review is Cepheids and open clusters (especially contact binaries in clusters). These tracers are particularly useful for addressing the metallicity gradient of the Galactic disk, an important feature for which comparison between observations and theoretical models can reveal the evolution of the disk.
Low-temperature crystallization of silicate dust in circumstellar disks.
Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C
1999-10-07
Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.
WL 17: A Young Embedded Transition Disk
NASA Astrophysics Data System (ADS)
Sheehan, Patrick D.; Eisner, Josh A.
2017-05-01
We present the highest spatial resolution ALMA observations to date of the Class I protostar WL 17 in the ρ Ophiuchus L1688 molecular cloud complex, which show that it has a 12 au hole in the center of its disk. We consider whether WL 17 is actually a Class II disk being extincted by foreground material, but find that such models do not provide a good fit to the broadband spectral energy distribution (SED) and also require such high extinction that it would presumably arise from dense material close to the source, such as a remnant envelope. Self-consistent models of a disk embedded in a rotating collapsing envelope can nicely reproduce both the ALMA 3 mm observations and the broadband SED of WL 17. This suggests that WL 17 is a disk in the early stages of its formation, and yet even at this young age the inner disk has been depleted. Although there are multiple pathways for such a hole to be created in a disk, if this hole was produced by the formation of planets it could place constraints on the timescale for the growth of planets in protoplanetary disks.
Externally Induced Evaporation of Young Stellar Disks: The Case for HST 10 in Orion's Trapezium.
NASA Astrophysics Data System (ADS)
Johnstone, D.; Hollenbach, D.; Storzer, H.; Bally, J.; Sutherland, R.
1996-12-01
The Trapezium region in Orion is composed of a few high-mass stars, responsible for the ionization of the surrounding gas, and a plethora of low-mass stars with disks. Observations at infrared, optical, and radio wavelengths have led to the discovery of extended ionized envelopes around many of the young low-mass stars requiring evaporation rates dot M ~ 10(-7) Modot/yr. In this poster we explain these observations through a model for the evaporation of disks around young low-mass stars by an external source of high energy photons. In particular, the externally produced ultraviolet continuum longward of the Lyman limit is used to heat the disk surface and produce a warm neutral flow. The model results in an offset ionization front, where the neutral flow encounters Lyman continuum radiation, and a mass-loss rate which is fixed due to the self-regulating nature of FUV heating. Applying this model to the Trapezium region evaporating objects, particularly HST 10, produces a satisfactory solution to both the mass-loss rate and the size of the ionized envelopes. The resulting short destruction times for these disks constrain the gestation period for planet embryos around stars in dense clusters.
An Icy Kuiper-Belt Around the Young Solar-Type Star HD 181327
NASA Technical Reports Server (NTRS)
Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J.; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Mathews, G. S.;
2011-01-01
HD 181327 is a young Main Sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx 12 Myr). It harbors an optically thin belt of circumstellar material at approx90 AU, presumed to result from collisions in a populat.ion of unseen planetesimals. Aims. We aim to study the dust properties in the belt in great details, and to constrain the gas-to-dust ratio. Methods. We obtained far-IR photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 nun observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST /NICMOS scattered light images that break the degeneracy between the disk geometry and the dust properties. We then use the radiative transfer code GRaTer to compute a large grid of dust models, and we apply a Bayesian inference method to identify the grain models that best reproduce the SED. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an import.ant layer of ice for a total dust mass of approx 0.05 stellar Mass. We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx 17 Stellar Mass Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper Belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.
An x-ray study of massive star forming regions with CHANDRA
NASA Astrophysics Data System (ADS)
Wang, Junfeng
2007-08-01
Massive stars are characterized by powerful stellar winds, strong ultraviolet (UV) radiation, and consequently devastating supernovae explosions, which have a profound influence on their natal clouds and galaxy evolution. However, the formation and evolution of massive stars themselves and how their low-mass siblings are affected in the wind-swept and UV-radiation-dominated environment are not well understood. Much of the stellar populations inside of the massive star forming regions (MSFRs) are poorly studied in the optical and IR wavelengths because of observational challenges caused by large distance, high extinction, and heavy contamination from unrelated sources. Although it has long been recognized that X-rays open a new window to sample the young stellar populations residing in the MSFRs, the low angular resolution of previous generation X-ray telescopes has limited the outcome from such studies. The sensitive high spatial resolution X-ray observations enabled by the Chandra X- ray Observatory and the Advanced CCD Imaging Spectrometer (ACIS) have significantly improved our ability to study the X-ray-emitting populations in the MSFRs in the last few years. In this thesis, I analyzed seven high spatial resolution Chandra /ACIS images of two massive star forming complexes, namely the NGC 6357 region hosting the 1 Myr old Pismis 24 cluster (Chapter 3) and the Rosette Complex including the 2 Myr old NGC 2244 cluster immersed in the Rosette Nebula (Chapter 4), embedded clusters in the Rosette Molecular Cloud (RMC; Chapter 5), and a triggered cluster NGC 2237 (Chapter 6). The X-ray sampled stars were studied in great details. The unique power of X-ray selection of young stellar cluster members yielded new knowledge in the stellar populations, the cluster structures, and the star formation histories. The census of cluster members is greatly improved in each region. A large fraction of the X-ray detections have optical or near-infrared (NIR) stellar counterparts (from 2MASS, SIRIUS and FLAMINGOS JHK images), most of which are previously uncatalogued young cluster members. This provides a reliable probe of the rich intermediate-mass and low-mass young stellar populations accompanying the massive OB stars in each region. For example, In the poorly- studied NGC 6357 region, our study increased the number of known members from optical study by a factor of ~40. As a result, normal initial mass functions (IMFs) for NGC 6357 and NGC 2244 were found, inconsistent with the top-heavy IMFs suspected in previous optical studies. The observed X-ray luminosity functions (XLFs) in NGC 6357 and NGC 2244 are compared to the Orion Nebula Cluster XLF, yielding the first estimate of NGC 6357's total cluster population, a few times the known Orion population. For NGC 2244, a total population of ~2000 X-ray-emitting stars is derived, consistent with previous estimate from IR studies. The morphologies and spatial structures of the clusters are investigated with absorption-stratified stellar surface density maps. Small-scale substructures superposed on the spherical clusters are found in NGC 6357 and NGC 2244. Both of their radial stellar density profiles show a power-law cusp around the density peak surrounded by an isothermal sphere. In NGC 2244, the spatial distribution of X-ray stars is strongly concentrated around the central O5 star, HD 46150. The other O4 star HD 46223 has few companions. The X-ray sources in the RMC show three distinctive structures and substructures within them, which include previously known embedded IR clusters and a new unobscured cluster (RMC A). We do not find clear evidence of sequentially triggered formation. The concentration of X-ray identified young stars implies that [Special characters omitted.] 35% of stars could be in a distributed population throughout the RMC region and clustered star formation is the dominant mode in this cloud. The NGC 2237 cluster, similar to RMC A, may have formed from collapse of pre-existing massive molecular clumps accompanying the formation of the NGC 2244 cluster. The spatial distribution of the NIR counterparts to X-ray stars in the optical dark region northwest of NGC 2237 show little evidence of triggered star formation in the pillar objects. The observed inner disk fraction in the MSFRs as indicated by K-band excess appears lower than the IR-excess disk fractions found in the nearby low-mass star formation regions of similar age. An overall K -excess disk frequency of ~6% for X-ray selected stars in the intermediate- to high-mass range in the NGC 6357 region (Chapter 3), and ~10% for stars with mass M [Special characters omitted.] in NGC 2244 (Chapter 4) are derived, which indicates that the inner disks around higher-mass stars evolve more rapidly. The X-ray stars in these regions provide an important new sample for studies of intermediate-mass PMS stars that are not accreting, in addition to the accreting HAeBe stars. The low K -excess disk frequency for X-ray selected stars in the solar mass range in NGC 2244 is intriguing, which may be attributed to different sensitivities to disk materials, selection effects between X-ray samples and IR samples and/or faster disk dissipation due to photoevaporation in the MSFRs. X-ray properties of stars across the mass spectrum are presented. Diversities in the X-ray spectra of O stars are seen, both soft X-ray emission consistent with the microshocks in stellar winds and hard X-ray components signifying magnetically confined winds or close binarity. X-ray luminosities for a sample of stars earlier than B4 in NGC 6357, NGC 2244, and M 17 confirm the long- standing log( L x /L bol ) ~ -7 relation, although larger scatter is seen among the L x /L bol ratios of B-type stars. Low-mass PMS stars frequently show X-ray flaring, including intense flares with luminosities above L x >= 10 32 ergs s - 1 . Diffuse X-ray emission is present in the NGC 6357 region and in the NGC 2244 cluster. The derived luminosity of diffuse emission in NGC 6357 is consistent with the integrated emission from the unresolved PMS stars. The NGC 2244 diffuse emission is likely originated from the wind termination shocks, and hence is truly diffuse in nature. In summary, Chandra X-ray observations offer multifaceted approaches to study the young stellar clusters in MSFRs in depth. Future perspectives with the Spitzer Space Telescope mid-IR observations for a systematic measurement of disk frequencies in X-ray sampled massive clusters and X-ray observations of the earliest phases of massive star formation are discussed.
A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth
We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less
Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Monnier, J. D.; Berger, J.-P.; Millan-Gabet, R.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Zhao, M.
2006-08-01
Using the three-telescope IOTA interferometer on Mount Hopkins, we report results from the first near-infrared (λ=1.65 μm) closure-phase survey of young stellar objects (YSOs). These closure phases allow us to unambiguously detect departures from centrosymmetry (i.e., skew) in the emission pattern from YSO disks on the scale of ~4 mas, expected from generic ``flared disk'' models. Six of 14 targets showed small, yet statistically significant nonzero closure phases, with largest values from the young binary system MWC 361-A and the (pre-main-sequence?) Be star HD 45677. Our observations are quite sensitive to the vertical structure of the inner disk, and we confront the predictions of the ``puffed-up inner wall'' models of Dullemond, Dominik, & Natta (DDN). Our data support disk models with curved inner rims because the expected emission appears symmetrically distributed around the star over a wide range of inclination angles. In contrast, our results are incompatible with the models possessing vertical inner walls because they predict extreme skewness (i.e., large closure phases) from the near-IR disk emission that is not seen in our data. In addition, we also present the discovery of mysterious H-band ``halos'' (~5%-10% of light on scales 0.01"-0.50") around a few objects, a preliminary ``parametric imaging'' study for HD 45677, and the first astrometric orbit for the young binary MWC 361-A.
Gas in the Terrestrial Planet Region of Disks: CO Fundamental Emission from T Tauri Stars
2003-06-01
planetary systems: protoplanetary disks — stars: variables: other 1. INTRODUCTION As the likely birthplaces of planets, the inner regions of young...both low column density regions, such as disk gaps , and temperature inversion regions in disk atmospheres can produce significant emission. The esti...which planetary systems form. The moti- vation to study inner disks is all the more intense today given the discovery of planets outside the solar system
Selections from 2016: Gaps in HL Tau's Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-12-01
Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Gas Gaps in the Protoplanetary Disk Around the Young Protostar HL TauPublished March 2016The dust (left) and gas (right) emission from HL Tau show that the gaps in its disk match up. [Yen et al. 2016]Main takeaway:At the end of last year, the Atacama Large Millimeter/Submillimeter Array released some of its first data including a spectacular observation of a dusty protoplanetary disk around the young star HL Tau. In this follow-up study, a team led by Hsi-Wei Yen (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan) analyzed the ALMA data and confirmed the presence of two gaps in the gas of HL Taus disk, at radii of 28 and 69 AU.Why its interesting:The original ALMA image of HL Taus disk suggests the presence of gaps in disk, but scientists werent sure if they were caused by effects like gravitational instabilities or dust clumping, or if the gaps were created by the presence of young planets. Yen and collaborators showed that gaps in the disks gas line up with gaps in its dust, supporting the model in which these gaps have been carved out by newly formed planets.Added intrigue:The evidence for planets in this disk came as a bit of a surprise, since it was originally believed that it takes tens of millions of years to form planets from the dust of protoplanetary disks but HL Tau is only a million years old. These observations therefore suggest that planets start to form much earlier than we thought.CitationHsi-Wei Yen et al 2016 ApJL 820 L25. doi:10.3847/2041-8205/820/2/L25
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spezzi, Loredana; Vernazza, Pierre; Merin, Bruno
2011-04-01
We present Gould's Belt (GB) Spitzer IRAC and MIPS observations of the Lupus V and VI clouds and discuss them in combination with near-infrared (2MASS) data. Our observations complement those obtained for other Lupus clouds within the frame of the Spitzer 'Core to Disk' (c2d) Legacy Survey. We found 43 young stellar object (YSO) candidates in Lupus V and 45 in Lupus VI, including two transition disks, using the standard c2d/GB selection method. None of these sources was classified as a pre-main-sequence star from previous optical, near-IR, and X-ray surveys. A large majority of these YSO candidates appear to bemore » surrounded by thin disks (Class III; {approx}79% in Lupus V and {approx}87% in Lupus VI). These Class III abundances differ significantly from those observed for the other Lupus clouds and c2d/GB surveyed star-forming regions, where objects with optically thick disks (Class II) dominate the young population. We investigate various scenarios that can explain this discrepancy. In particular, we show that disk photoevaporation due to nearby OB stars is not responsible for the high fraction of Class III objects. The gas surface densities measured for Lupus V and VI lie below the star formation threshold (A{sub V} {approx} 8.6 mag), while this is not the case for other Lupus clouds. Thus, few Myr older age for the YSOs in Lupus V and VI with respect to other Lupus clouds is the most likely explanation of the high fraction of Class III objects in these clouds, while a higher characteristic stellar mass might be a contributing factor. Better constraints on the age and binary fraction of the Lupus clouds might solve the puzzle but require further observations.« less
HUBBLE SEES DISKS AROUND YOUNG STARS
NASA Technical Reports Server (NTRS)
2002-01-01
[Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA
Disks around stars and the growth of planetary systems.
Greaves, Jane S
2005-01-07
Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.
2017-02-10
We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ∼40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the β Pictoris Moving Group, ρ Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius–Centaurus, and Tucana–Horologium. Our work features: (1) a filtering technique to flag noisy backgrounds; (2) a method based on the probability distribution of deflections, P (more » D ), to obtain statistically valid photometry for faint sources; and (3) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 μ m decays relatively slowly initially and then much more rapidly by ∼10 Myr. However, there is a continuing component until ∼35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12–20 Myr, including ∼13% of the original population, and with a post-peak mean duration of 10–20 Myr.« less
IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Adam; Song, Inseok; Melis, Carl
2012-10-01
It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age {approx}<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics-namely, H{alpha} emission, strong lithium absorption, and low surface gravity featuresmore » consistent with known TWA members. We also detect mid-IR excess-the first unambiguous evidence of a dusty circumstellar disk-around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.« less
Radiative Hydrodynamics and the Formation of Gas Giant Planets
NASA Astrophysics Data System (ADS)
Durisen, Richard H.
2009-05-01
Gas giant planets undoubtedly form from the orbiting gas and dust disks commonly observed around young stars, and there are two principal mechanisms proposed for how this may occur. The core accretion plus gas capture model argues that a solid core forms first and then accretes gas from the surrounding disk once the core becomes massive enough (about 10 Earth masses). The gas accumulation process is comparatively slow but becomes hydrodynamic at later times. The disk instability model alternatively suggests that gas giant planet formation is initiated by gas-phase gravitational instabilities (GIs) that fragment protoplanetary disks into bound gaseous protoplanets rapidly, on disk orbit period time scales. Solid cores then form more slowly by accretion of solid planetesimals and settling. The overall formation time scales for these two mechanisms can differ by orders of magnitude. Both involve multidimensional hydrodynamic flows at some phase, late in the process for core accretion and early on for disk instability. The ability of cores to accrete gas and the ability of GIs to produce bound clumps depend on how rapidly gas can lose energy by radiation. This regulatory process, while important for controlling the time scale for core accretion plus gas capture, turns out to be absolutely critical for disk instability to work at all. For this reason, I will focus in my talk on the use of radiation hydrodynamics simulations to determine whether and where disk instability can actually form gas giant planets in disks. Results remain controversial, but simulations by several different research groups support analytic arguments that disk instability leading to fragmentation probably cannot occur in disks around Sun-like stars at orbit radii of 10's of Earth-Sun distances or less. On the other hand, very recent simulations suggest that very young, rapidly accreting disks with much larger radii (100's of times the Sun-Earth distance) can indeed readily fragment by disk instability into super-Jupiters and brown dwarfs. It is possible that there are two distinct modes of gas giant planet formation in Nature which operate at different times and in different regions of disks around young stars. The application of more radiative hydrodynamics codes with better numerical techniques could play an important role in future theoretical developments.
On Fallback Disks around Young Neutron Stars
NASA Astrophysics Data System (ADS)
Alpar, M. Ali; Ertan, Ü.; Erkut, M. H.
2006-08-01
Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth, which, along with the initial rotation rate and dipole (and higher multipole) magnetic moments, determines the evolution of neutron stars and the categories into which they fall. This talk reviews the possibilities of fallback disk models in explaining properties of isolated neutron stars of different categories. Recent observations of a fallback disk and observational limits on fallback disks will also be discussed.
Hot H2O Emission and Evidence for Turbulence in the Disk of a Young Star
2004-03-01
matter — infrared: stars — planetary systems: protoplanetary disks — stars: formation — stars: pre–main-sequence 1. INTRODUCTION The presence of hot...in disk gaps . Molecules other than CO are expected to exist at the temperatures and densities in the inner few AU of disks . Water should be very... protoplanetary disks . In addition, non-Gaussian line profiles might be ex- pected, given that a characteristic of turbulence seen in both laboratory experiments
Galactic Stellar and Substellar Initial Mass Function
NASA Astrophysics Data System (ADS)
Chabrier, Gilles
2003-07-01
We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy-disk, spheroid, young, and globular clusters-and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form for m>~1 Msolar and a lognormal form below, except possibly for early star formation conditions. The disk IMF for single objects has a characteristic mass around mc~0.08 Msolar and a variance in logarithmic mass σ~0.7, whereas the IMF for multiple systems has mc~0.2 Msolar and σ~0.6. The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, nBD~n*~0.1 pc-3. The IMF of young clusters is found to be consistent with the disk field IMF, providing the same correction for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages >~130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, mc~0.2-0.3 Msolar, excluding a significant population of brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below ~1 Msolar. These results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions. These conclusions, however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvénic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability. The page charges for this Review were partially covered by a generous gift from a PASP supporter.
No evidence of disk destruction by OB stars
NASA Astrophysics Data System (ADS)
Richert, Alexander J. W.; Feigelson, Eric
2015-01-01
It has been suggested that the hostile environments observed in massive star forming regions are inhospitable to protoplanetary disks and therefore to the formation of planets. The Orion Proplyds show disk evaporation by extreme ultraviolet (EUV) photons from Theta1 Orionis C (spectral type O6). In this work, we examine the spatial distributions of disk-bearing and non-disk bearing young stellar objects (YSOs) relative to OB stars in 17 massive star forming regions in the MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey. Any tendency of disky YSOs, identified by their infrared excess, to avoid OB stars would reveal complete disk destruction.We consider a sample of MYStIX that includes 78 O3-O9 stars, 256 B stars, 5,606 disky YSOs, and 5,794 non-disky YSOs. For each OB star, we compare the cumulative distribution functions of distances to disky and non-disky YSOs. We find no significant avoidance of OB stars by disky YSOs. This result indicates that OB stars are not sufficiently EUV-luminous and long-lived to completely destroy a disk within its ordinary lifetime. We therefore conclude that massive star forming regions are not clearly hostile to the formation of planets.
Gravitational Instabilities in Protostellar and Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Durisen, R. H.; Mejia, A. C.; Pickett, B. K.
Self-gravity in fluid and particle systems is the primary mechanism for the creation of structure in the Universe on astronomical scales. The rapidly rotating Solar System-sized disks which orbit stars during the early phases of star and planet formation can be massive and thus susceptible to spontaneous growth of spiral distortions driven by disk self-gravity. These are called gravitational instabilities (GI's). They can be important sources of mass and angular momentum transport due to the long-range torques they generate; and, if strong enough, they may fragment the disk into bound lumps with masses in therange of gas giant planets and brown dwarfs. My research group has been using numerical 3D hydrodynamics techniques to study the growth and nonlinear behavior of GI's in disks around young stars. Our simulations have demonstrated the sensitivity of outcomes to the thermal physics of the disks and have helped to delineate conditions conducive to the formation of dense clumps. We are currently concentrating our efforts on determining how GI's affect the long-term evolution and appearance of young stellar disks, with the hope of finding characteristic GI signatures by which we may recognize their occurrence in real systems.
Search For Debris Disks Around A Few Radio Pulsars
NASA Astrophysics Data System (ADS)
Wang, Zhongxiang; Kaplan, David; Kaspi, Victoria
2007-05-01
We propose to observe 7 radio pulsars with Spitzer/IRAC at 4.5 and 8.0 microns, in an effort to probe the general existence of debris disks around isolated neutron stars. Such disks, probably formed from fallback or pushback material left over from supernova explosions, has been suggested to be associated with various phenomena seen in radio pulsars. Recently, new evidence for such a disk around an isolated young neutron star was found in Spitzer observations of an X-ray pulsar. If they exist, the disks could be illuminated by energy output from central pulsars and thus be generally detectable in the infrared by IRAC. We have selected 40 relatively young, energetic pulsars from the most recent pulsar catalogue as the preliminary targets for our ground-based near-IR imaging survey. Based on the results from the survey observations, 7 pulsars are further selected because of their relatively sparse field and estimated low extinction. Combined with our near-IR images, Spitzer/IRAC observations will allow us to unambiguously identify disks if they are detected at the source positions. This Spitzer observation program we propose here probably represents the best test we can do on the general existence of disks around radio pulsars.
ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng
2018-02-01
Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.
Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity
NASA Astrophysics Data System (ADS)
Orlando, Salvatore; Reale, Fabio; Peres, Giovanni; Mignone, Andrea
2014-11-01
According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a signicant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.
Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model
NASA Technical Reports Server (NTRS)
Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana
1994-01-01
We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a detailed but idealized theory of the magnetocentrifugal acceleration process.
Young stellar population and star formation history ofW4 HII region/Cluster Complex
NASA Astrophysics Data System (ADS)
Panwar, Neelam
2018-04-01
The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xian; Amaro-Seoane, Pau, E-mail: Xian.Chen@aei.mpg.de, E-mail: Pau.Amaro-Seoane@aei.mpg.de
2014-05-10
The existence of ''S-stars'' within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of {sup i}nverse mass segregation{sup :} the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we proposemore » that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 10{sup 6} yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed ''super-thermal'' distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.« less
Molecular Gas in Young Debris Disks
NASA Technical Reports Server (NTRS)
Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.
2011-01-01
Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.
An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b
NASA Astrophysics Data System (ADS)
Wolff, Schuyler G.; Ménard, François; Caceres, Claudio; Lefèvre, Charlene; Bonnefoy, Mickael; Cánovas, Héctor; Maret, Sébastien; Pinte, Christophe; Schreiber, Matthias R.; van der Plas, Gerrit
2017-07-01
DH Tau is a young (˜1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious {{H}}α emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2+/- 1.7 {M}\\oplus , which gives a disk to star mass ratio of 0.014 (assuming the usual gas to dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42 M ⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model, including heating of the circumplanetary disk by DH Tau b and DH Tau A, suggests that a mass-averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09 M ⊕ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models. This work is based on observations carried out under project D15AC with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
The inner-disk and stellar properties of the young stellar object WL 16
NASA Technical Reports Server (NTRS)
Carr, John S.; Tokunaga, Alan T.; Najita, Joan; Shu, Frank H.; Glassgold, Alfred E.
1993-01-01
We present kinematic evidence for a rapidly rotating circumstellar disk around the young stellar object WL 16, based on new high-velocity-resolution data of the v = 2-0 CO bandhead emission. A Keplerian disk provides an excellent fit to the observed profile and requires a projected velocity for the CO-emitting region of roughly 250 km/s at the inner radius and 140 km/s at the outer radius, giving a ratio of the inner to the outer radius of about 0.3. We show that satisfying the constraints imposed by the gas kinematics, the observed CO flux, and the total source luminosity requires the mass of WL 16 to lie between 1.4 and 2.5 solar mass. The inner disk radius for the CO emission must be less than 8 solar radii.
Substantial reservoirs of molecular hydrogen in the debris disks around young stars.
Thi, W F; Blake, G A; van Dishoeck, E F; van Zadelhoff, G J; Horn, J M; Becklin, E E; Mannings, V; Sargent, A I; van Den Ancker, M E; Natta, A
2001-01-04
Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.
A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
McLeod, Anna F.; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D.; Evans, Christopher J.
2018-02-01
Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.
A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud.
McLeod, Anna F; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D; Evans, Christopher J
2018-02-15
Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.
Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT
NASA Astrophysics Data System (ADS)
Cody, Ann Marie; Stauffer, John; Bouvier, Jèrôme
2014-01-01
Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 ("CSI 2264")- a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA-s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
Observational diagnostics of accretion on young stars and brown dwarfs
NASA Astrophysics Data System (ADS)
Stelzer, Beate; Argiroffi, Costanza
I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.
Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qizhou; Claus, Brian; Watson, Linda
Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 αmore » line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banzatti, A.; Meyer, M. R.; Manara, C. F.
2014-01-01
Young stars are known to show variability due to non-steady mass accretion rate from their circumstellar disks. Accretion flares can produce strong energetic irradiation and heating that may affect the disk in the planet formation region, close to the central star. During an extreme accretion outburst in the young star EX Lupi, the prototype of EXor variables, remarkable changes in molecular gas emission from ∼1 AU in the disk have recently been observed. Here, we focus on water vapor and explore how it is affected by variable accretion luminosity in T Tauri stars. We monitored a young highly variable solar-massmore » star, DR Tau, using simultaneously two high/medium-resolution spectrographs at the European Southern Observatory Very Large Telescope: VISIR at 12.4 μm to observe water lines from the disk and X-shooter covering from 0.3 to 2.5 μm to constrain the stellar accretion. Three epochs spanning timescales from several days to several weeks were obtained. The accretion luminosity was estimated to change within a factor of ∼2 and no change in water emission was detected at a significant level. In comparison with EX Lupi and EXor outbursts, DR Tau suggests that the less long-lived and weaker variability phenomena typical of T Tauri stars may leave water at planet-forming radii in the disk mostly unaffected. We propose that these systems may provide evidence for two processes that act over different timescales: ultraviolet photochemistry in the disk atmosphere (faster) and heating of the deeper disk layers (slower).« less
Circumstellar Disk Lifetimes In Numerous Galactic Young Stellar Clusters
NASA Astrophysics Data System (ADS)
Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.
2018-04-01
Photometric detections of dust circumstellar disks around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disk longevity, starting with Haisch, Lada & Lada (2001), use star samples from PMS clusters but do not consider datasets with homogeneous photometric sensitivities and/or ages placed on a uniform timescale. Here we conduct the largest study to date of the longevity of inner dust disks using X-ray and 1-8 {μ m} infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disk-free objects, we impose similar stellar mass sensitivity limits for disk-bearing and disk-free YSOs while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disk longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disk fraction of 100% at zero age, the inferred disk half-life changes significantly, from t1/2 ˜ 1.3 - 2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disk fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disk fraction and star-forming environment are also explored.
Near-Infrared Polarimetric Imaging of Disks around Young Intermediate-mass Stars in SEEDS
NASA Astrophysics Data System (ADS)
Fukagawa, Misato; Hashimoto, Jun; Grady, C. A.; Momose, Munetake; Wisniewski, J. P.; Okamoto, Yoshiko; Muto, Takayuki; Kusakabe, Nobuhiko; Bonnefoy, Mickael; Kotani, Takayuki; Maruta, Yayoi; Tamura, Motohide; Seeds/Hiciao/Ao188 Collaboration,
2013-07-01
We present our recent results to directly image circumstellar disks around Herbig Fe/Ae/Be stars in scattered light with Subaru. Observations of such young disks are critically important to understand how disks evolve possibly under the mutual interaction with new-born planets. One of the observational approaches is direct imaging in scattered light, and the progress in this field since PPV can be found in the ability to prove inner regions of disks. This improvement largely owes to the technique of polarization differential imaging (PDI) which provides higher contrast by extracting scattered light from the disk while suppressing unpolarized stellar light. Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) is the project dedicated to exoplanet hunting and study of circumstellar disks by direct imaging. Since its beginning in 2009, thirteen Herbig Fe/Ae/Be stars have been observed primarily in H band (1.6 micron). The PDI method has been employed with adaptive optics, enabling us to look into the inner region as close as 0.2 arcsec (˜30 AU) in radius with the typical angular resolution of 0.06 arcsec (˜8 AU). As a result, the SEEDS imagery has newly uncovered rich structures such as spiral arms, inner holes, and gaps for (pre-)transitional disks while suggested the variably illuminated disks for primordial systems. The highlight is the discovery of two spiral arms each for SAO 206462 and MWC 758. The spiral feature has been uniquely found toward Herbig Fe/Aes so far, which might be due to their warmer disks producing arms loosely wound and more easily detected. The observed morphology can be interpreted by the density-wave model, and those disks are implied to harbor Jupiter-mass companions as the exciting sources of the spiral structures according to these models.
The Cluster Population of UGC 2885
NASA Astrophysics Data System (ADS)
Holwerda, Benne
2017-08-01
UGC 2885 was discoverd to be the most extended disk galaxy [250 kpc diameter] by Vera Rubin in the 1980's. We ask for HST observations of UGC 2885 as it is close enough to resolve the GC population with HST but it is a substantially more extended disk than any studied before. LCDM galaxy assembly implies that the GC population comes from small accreted systems and the disk -and the clusters associated with it- predominantly from gas accretion (matching angular momentum to the disk). Several scaling relations between the GC population and parent galaxy have been observed but these differ for disk and spheroidal (massive) galaxies.We propose to observe this galaxy with HST in 4 point WFC3 mosaic with coordinated ACS parallels to probe both the disk and outer halo component of the GC population. GC populations have been studied extensively using HST color mosaics of local disk galaxies and these can serve as comparison samples. How UGC 2885 cluster populations relate to its stellar and halo mass, luminosity and with radius will reveal the formation history of extra-ordinary disk.Our goals are twofold: our science goal is to map the luminosity, (some) size, and color distributions of the stellar and globular clusters in and around this disk. In absolute terms, we expect to find many GC but the relative relation of the GC population to this galaxy's mass (stellar and halo) and size will shed light on its formation history; similar to a group or cluster central elliptical or to a field galaxy (albeit one with a disk 10x the Milky Way's size)? Our secondary motive is to make an HST tribute image to the late Vera Rubin.
How robust are our views of Milky Way stellar populations before Gaia?
NASA Astrophysics Data System (ADS)
Haywood, M.
2014-07-01
One year before the first release of the first data from Gaia, how robust are our views of the Milky Way stellar populations? Recent results have shown that limits, differences and/or continuities between populations are not where we thought they were just a few years ago. The outer disk (> 10kpc) has properties essentially different from the inner (thin+thick) disk, while the bulge is best explained in terms of disk populations, with a negligible or inexistent classical bulge, suggesting that the Milky Way is a pure disk galaxy. Much less contingent than previously envisaged, the thick disk is probably the main phase of stellar mass creation in the MW, and the parent population of the thin disk. These results lead to fundamental changes in our views on the stellar mass growth of the Galaxy, secular mass redistribution in the disk, and imply a change of paradigm of the chemical evolution. I review these different advances, and discuss some of the key questions.
Gravitational Instabilities in Disks: From Polytropes to Protoplanets?
NASA Astrophysics Data System (ADS)
Durisen, R. H.
2004-12-01
Gravitational instabilities (GI's) probably occur in disks around young stellar objects during their early embedded phase. This paper reviews what is known about the nonlinear consequences of GI's for planet formation and disk evolution. All researchers agree that, for sufficiently fast cooling, disks fragment into dense clumps or arclike structures, but there is no universal agreement about whether fast enough cooling to cause fragmentation ever occurs and, if it does, whether any clumps that form will become bound protoplanets.
Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk
NASA Technical Reports Server (NTRS)
Yang, Yi; Hashimoto, Jun; Hayashi, Saeko S.; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi;
2016-01-01
By performing non-masked polarization imaging with Subaru HiCIAO, polarized scattered light from the inner region of the disk around the GGTau A system was successfully detected in the H band, with a spatial resolution of approximately0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, these mimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies,the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation 100 au) young binary systems.
Disk Evaporation in Star Forming Regions
NASA Technical Reports Server (NTRS)
Hollenbach, David; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Young stars produce sufficient ultraviolet photon luminosity and mechanical luminosity in their winds to significantly affect the structure and evolution of the accretion disks surrounding them. The Lyman continuum photons create a nearly static, ionized, isothermal 10(exp 4) K atmosphere forms above the neutral disk at small distances from the star. Further out, they create a photoevaporative flow which relatively rapidly destroys the disk. The resulting slow (10-50 km/s) ionized outflow, which persists for approx. greater than 10(exp 5) years for disk masses M(sub d) approx. 0.3M(sub *), may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We apply the results to Ae and Be stars in order to determine the lifetimes of disks around such stars. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star Theta(sup 1) C.
Gas Velocities Reveal Newly Born Planets in a Disk
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-06-01
Occasionally, science comes together beautifully for a discovery and sometimes this happens for more than one team at once! Today we explore how two independent collaborations of scientists simultaneously found the very first kinematic evidence for young planets forming in a protoplanetary disk. Though they explored the same disk, the two teams in fact discovered different planets.Evidence for PlanetsALMAs view of the dust in the protoplanetary disk surrounding the young star HD 163296. Todays studies explore not the dust, but the gas of this disk. [ALMA (ESO/NAOJ/NRAO); A. Isella; B. Saxton (NRAO/AUI/NSF)]Over the past three decades, weve detected around 4,000 fully formed exoplanets. Much more elusive, however, are the young planets still in the early stages of formation; only a handful of these have been discovered. More observations of early-stage exoplanets are needed in order to understand how these worlds are born in dusty protoplanetary-disk environments, how they grow their atmospheres, and how they evolve.Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) have produced stunning images of protoplanetary disks. The unprecedented resolution of these images reveals substructure in the form of gaps and rings, hinting at the presence of planets that orbit within the disk and clear out their paths as they move. But there are also non-planet mechanisms that could produce such substructure, like grain growth around ice lines, or hydrodynamic instabilities in the disk.How can we definitively determine whether there are nascent planets embedded in these disks? Direct direction of a point source in a dust gap would be a strong confirmation, but now we have the next best thing: kinematic evidence for planets, from the motion of a disks gas.Observations of carbon monoxide line emission at +1km/s from the systemic velocity (left) vs. the outcome of a computer simulation (right) in the Pinte et al. study. A visible kink occurs in the flow, which can be reproduced by the presence of a 2-Jupiter-mass planet at 260 AU. [Pinte et al. 2018]Watching Gas MoveIn two papers published today in ApJL one led by Richard Teague (University of Michigan) and the other led by Christophe Pinte (Monash University in Australia and Grenoble Alpes University in France) astronomers have announced the detection of distinctive signs of planets in the gas motion of the disk surrounding HD 163296. This young star, located about 330 light-years away, is only 4 million years old.Unlike studies that hinge on observations of a disks dust which only makes up 1% of the disks mass! both studies here took a new approach: they used detailed ALMA observations revealing the dynamics of the disks carbon monoxide gas. By studying the gass motion, the teams found deviations from the Keplerian velocity that would be expected if there were no planets present. The authors then ran simulations to demonstrate that the deviations are consistent with local pressure perturbations caused by the passage of giant planets.Rotational velocity deviations due to changes in the local pressure, caused in this simulation by the presence of planets. [Teague et al. 2018]Giants FoundWhat did they find? Teague and collaborators, whose technique to identify velocity variations is best suited to explore the inner regions of the disk, discovered evidence for two separate Jupiter-mass planets orbiting at distances of 83 AU and 137 AU in the disk. Pinte and collaborators, whose velocity-measurement technique better explores the outer regions of the disk, found evidence for a two-Jupiter-mass planet orbiting at 260 AU.These results will rely on additional imaging in the coming years to confirm the presence of these newly born planets and a detection of point sources at these radii remains a hopeful goal for the future. Nonetheless, the new techniques explored here by Teague, Pinte, and collaborators are a promising route for young exoplanet discovery and characterization in other disks imaged by ALMA and future instruments.CitationRichard Teague et al 2018 ApJL 860 L12. doi:10.3847/2041-8213/aac6d7C. Pinte et al 2018 ApJL 860 L13. doi:10.3847/2041-8213/aac6dc
NIRCam Coronagraphic Observations of Disks and Planetary Systems
NASA Astrophysics Data System (ADS)
Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team
2017-06-01
The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.
The SEEDS of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks
NASA Technical Reports Server (NTRS)
Grady, Carol
2012-01-01
Circumstellar disks associated with PMS stars are the site where planetesimals form and grow, and ultimately where planets are produced. A key phase in the evolution of such disks is the phase where clearing of the disk has begun, potentially enabling direct detection of giant planets, but the disk retains sufficient material that indirect signatures that these are young planetary systems are also present. After reviewing what has been learned from studies of the IR spectral energy distribution and (sub )mm-interferometry, I will discuss recent results obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS).
The Exoplanet Migration Timescale from K2 Young Clusters
NASA Astrophysics Data System (ADS)
Rizzuto, Aaron
A significant fraction of exoplanets orbit within 0.1 AU of their host star, with periods of <20 days. The discovery of these close-in planets has defied conventional models of planet formation and evolution based on our own solar system. It is widely accepted that these close-in planets did not form in such close proximity to their host stars (both rocky planets and hot Jupiters), but rather that dynamical or interactive processes caused them to migrate inwards from larger orbital semimajor axes and periods. There are multiple planet migration scenarios proposed in the literature, though it is unclear how much of the known planet population is attributable to each mechanism. Planetary migration models can be loosely divided into two categories: disk-driven migration and dynamical migration. Disk migration occurs over the lifetime of the protoplanetary disk (<5 Myr), while migration involving dynamical multi-body interactions operates on timescales of 100 Myr to 1Gyr, a lengthier process than disk migration. The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key ages. Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the <120 Myr Pleiades cluster, to the ,600-800 Myr Hyades and Praesepe clusters. Upcoming data from more recent campaigns include the 2Myr Taurus region and significantly more Upper Scorpius members in C13 and 15. The frequency, orbital properties, and compositions of the exoplanet population in these samples of different age, with careful treatment of detection completeness, distinguish these scenarios of exoplanet migration as their host stars are settling onto the main sequence. We have pioneered efforts to identify transiting exoplanets in the K2 data for young clusters and moving groups, and have developed a new, highly complete, detrending algorithm for rotational induced variability that is commonly seen in the light curves of young, active stars (Rizzuto et al. in prep). We have identified 11 candidate planets in Praesepe, Hyades, Upper Sco, and the Pleiades using these methods, the first of which has now been published with follow-up (Mann et al. 2016abc; Gaidos et al. 2016). This sample of detected planet candidates gives a promising first indication of the timescale over which planet migration occurs, favoring dynamical multi-body processes. However, because rotational activity in young stars makes detection of exoplanet transits more difficult for the younger clusters (e.g, Upper Sco, Pleiades), to robustly prove that these frequencies are true representations of the short-period planet occurrence rate at different PMS ages will require robust determination of detection limits in these highly variable young-star lightcurves. We propose to address the question of planet migration with a uniform injection-recovery test of young cluster members, to robustly measure the detectability of planets of differing size and orbit. This will involve detrending the light curve data of instrumental and rotational systematics, injecting a synthetic transit signature from a grid of planetary and orbital parameters, reversing the detrending, and then executing our transit search pipeline (which is tuned for highly active young stars) and mapping the recovery rate as a function of planet parameters for every individual light curve. With this map of detectability as a function of planet properties for each light curve and a full program of detected exoplanet follow-up, we can then directly confirm any change in the occurrence rates of close-in (P<20 day) planets with cluster age and identify the most significant migration mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson-Robinson, Sarah E.; Salyk, Colette, E-mail: sdr@astro.as.utexas.edu
Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiplemore » planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.« less
Childhood to adolescence: dust and gas clearing in protoplanetary disks
NASA Astrophysics Data System (ADS)
Brown, Joanna Margaret
Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike their classical T Tauri star counterparts. The gaps are cleared of most ~100 μm sized grains as well as the ~10 μm sized grains visible in the mid-infrared as silicate emission features.
IN-SYNC. IV. The Young Stellar Population in the Orion A Molecular Cloud
NASA Astrophysics Data System (ADS)
Da Rio, Nicola; Tan, Jonathan C.; Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Cullen, Nicholas C.; Tobin, John J.; Kim, Jinyoung S.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Chojnowski, S. Drew; Flaherty, Kevin M.; Majewski, Steve; Skrutskie, Michael F.; Zasowski, Gail; Pan, Kaike
2016-02-01
We present the results of the Sloan Digital Sky Survey APOGEE INfrared Spectroscopy of Young Nebulous Clusters program (IN-SYNC) survey of the Orion A molecular cloud. This survey obtained high-resolution near-infrared spectroscopy of about 2700 young pre-main-sequence stars on a ˜ 6^\\circ field of view. We have measured accurate stellar parameters ({T}{{eff}}, {log}g, v{sin}I) and extinctions and placed the sources in the Hertzsprung-Russel diagram (HRD). We have also extracted radial velocities for the kinematic characterization of the population. We compare our measurements with literature results to assess the performance and accuracy of the survey. Source extinction shows evidence for dust grains that are larger than those in the diffuse interstellar medium: we estimate an average RV = 5.5 in the region. Importantly, we find a clear correlation between HRD inferred ages and spectroscopic surface-gravity-inferred ages and between extinction and disk presence; this strongly suggests a real spread of ages larger than a few Myr. Focusing on the young population around NGC 1980/ι Ori, which has previously been suggested to be a separate, foreground, older cluster, we confirm its older (˜5 Myr) age and low AV, but considering that its radial velocity distribution is indistinguishable from Orion A’s population, we suggest that NGC 1980 is part of Orion A’s star formation activity. Based on their stellar parameters and kinematic properties, we identify 383 new candidate members of Orion A, most of which are diskless sources in areas of the region poorly studied by previous works.
An Icy Kuiper Belt Around the Young Solar-type Star HD 181327
NASA Technical Reports Server (NTRS)
Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Matthews, G. S.;
2012-01-01
Context. HD 181327 is a young main sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx.. 12 Myr). It harbors an optically thin belt of circumstellar material at radius approx.. 90 AU, presumed to result from collisions in a population of unseen planetesimals. Aims. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. Methods. We obtained far-infrared photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 mm observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST/NICMOS scattered light images that allow the degeneracy between the disk geometry and the dust properties to be broken. We then use the radiative transfer code GRaTeR to compute a large grid of models, and we identify the grain models that best reproduce the spectral energy distribution (SED) through a Bayesian analysis. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes.We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an important layer of ice, for a total dust mass of approx.. 0.05 Solar Mass (in grains up to 1 mm). We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx. 17 Solar Mass. Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.
Stability and Evolution of Supernova Fallback Disks
NASA Astrophysics Data System (ADS)
Menou, Kristen; Perna, Rosalba; Hernquist, Lars
2001-10-01
We show that thin accretion disks made of carbon or oxygen are subject to the same thermal ionization instability as hydrogen and helium disks. We argue that the instability applies to disks of any metal content. The relevance of the instability to supernova fallback disks probably means that their power-law evolution breaks down when they first become neutral. We construct simple analytical models for the viscous evolution of fallback disks to show that it is possible for these disks to become neutral when they are still young (ages of a few 103 to 104 yr), compact in size (a few 109 to 1011 cm) and generally accreting at sub-Eddington rates (M~a few 1014-1018 g s-1). Based on recent results on the nature of viscosity in the disks of close binaries, we argue that this time may also correspond to the end of the disk activity period. Indeed, in the absence of a significant source of viscosity in the neutral phase, the entire disk will likely turn to dust and become passive. We discuss various applications of the evolutionary model, including anomalous X-ray pulsars and young radio pulsars. Our analysis indicates that metal-rich fallback disks around newly born neutron stars and black holes become neutral generally inside the tidal truncation radius (Roche limit) for planets at ~1011 cm. Consequently, the efficiency of the planetary formation process in this context will mostly depend on the ability of the resulting disk of rocks to spread via collisions beyond the Roche limit. It appears easier for the merger product of a doubly degenerate binary, whether it is a massive white dwarf or a neutron star, to harbor planets because its remnant disk has a rather large initial angular momentum, which allows it to spread beyond the Roche limit before becoming neutral. The early super-Eddington phase of accretion is a source of uncertainty for the disk evolution models presented here.
Accretion Disks and the Formation of Stellar Systems
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin Michelle
2011-02-01
In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods that we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, high mass stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.
Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"
NASA Astrophysics Data System (ADS)
2005-05-01
New results from NASA's Chandra X-ray Observatory imply that X-ray super-flares torched the young Solar System. Such flares likely affected the planet-forming disk around the early Sun, and may have enhanced the survival chances of Earth. By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observation ever taken of this or any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away. These data provide an unparalleled view of 1400 young stars, 30 of which are prototypes of the early Sun. The scientists discovered that these young suns erupt in enormous flares that dwarf - in energy, size, and frequency -- anything seen from the Sun today. Illustration of Large Flares Illustration of Large Flares "We don't have a time machine to see how the young Sun behaved, but the next best thing is to observe Sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form." A key result is that the more violent stars produce flares that are a hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth. "Big X-ray flares could lead to planetary systems like ours where Earth is a safe distance from the Sun," said Eric Feigelson of Penn State University in University Park, and principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star." Animation of X-ray Flares from a Young Sun Animation of X-ray Flares from a "Young Sun" According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they form. Specifically, this turbulence can help prevent planets from rapidly migrating towards the young star. "Although these flares may be creating havoc in the disks, they ultimately could do more good than harm," said Feigelson. "These flares may be acting like a planetary protection program." About half of the young suns in Orion show evidence for disks, likely sites for current planet formation, including four lying at the center of proplyds (proto-planetary disks) imaged by Hubble Space Telescope. X-ray flares bombard these planet-forming disks, likely giving them an electric charge. This charge, combined with motion of the disk and the effects of magnetic fields should create turbulence in the disk. handra X-ray Image of Orion Nebula, Full-Field Chandra X-ray Image of Orion Nebula, Full-Field The numerous results from the Chandra Orion Ultradeep Project will appear in a dedicated issue of The Astrophysical Journal Supplement in October, 2005. The team contains 37 scientists from institutions across the world including the US, Italy, France, Germany, Taiwan, Japan and the Netherlands. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
The Vela pulsar with an active fallback disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özsükan, Gökçe; Ekşi, K. Yavuz; Hambaryan, Valeri
2014-11-20
Fallback disks are expected to form around young neutron stars. The presence of these disks can be revealed by their blackbody spectrum in the infrared, optical, and UV bands. We present a re-reduction of the archival optical and infrared data of the Vela pulsar, together with the existing infrared and UV spectrum of Vela, and model their unpulsed components with the blackbody spectrum of a supernova debris disk. We invoke the quiescent disk solution of Sunyaev and Shakura for the description of the disk in the propeller stage and find the inner radius of the disk to be inside themore » light cylinder radius. We perform a high-resolution X-ray analysis with XMM-Newton and find a narrow absorption feature at 0.57 keV that can be interpreted as the K {sub α} line of He-like oxygen (O VII). The strength of the line indicates an element over-abundance in our line of sight exceeding the amounts that would be expected from interstellar medium. The spectral feature may originate from the pulsar wind nebula and may be partly caused by the reprocessed X-ray radiation by the fallback disk. We discuss the lower-than-three braking index of Vela as partially due to the contribution of the propeller torques. Our results suggest that the pulsar mechanism can work simultaneously with the propeller processes and that the debris disks can survive the radiation pressure for at least ∼10{sup 4} yr. As Vela is a relatively close object, and a prototypical pulsar, the presence of a disk, if confirmed, may indicate the ubiquity of debris disks around young neutron stars.« less
First Detection of Methanol in a Class O Protostellar Disk
NASA Technical Reports Server (NTRS)
Velusamy, T.; Langer, William D.; Goldsmith, Paul F.
2000-01-01
We report the detection of emission from methanol in a compact source coincident with the position of the L1157 infrared source, which we attribute to molecules in the disk surrounding this young, Class O protostellar object. In addition, we identify a spectral feature in the outflow corresponding to an ethanol transition. Using the Caltech Owens Valley Millimeter Array with a synthesized beam size of 2", we detect spatially unresolved methanol in the 2(sub k) - 1(sub k) transitions at 3mm, which is coincident in position with the peak of the continuum emission. The gas phase methanol could be located in the central region (< 100 AU radius) of a flat disk, or in an extended heated surface layer (approx. 200 AU radius) of a flared disk. The fractional abundance of methanol X(CH3OH) is approx. 2 x l0(exp -8) in the flat disk model, and 3 x l0(exp -7) for the flared disk. The fractional abundance is small in the disk as a whole, but considerably larger in the warm portions. This difference indicates that substantial chemical processing probably takes place in the disk via depletion and desorption. The methanol desorbed from the grains in the warm surface layers returns to the icy grain mantles in the cooler interior of the disk, where it is available to become part of the composition of solar system-like bodies, such as comets, formed in the outer circumstellar region. This first millimeter-wavelength detection of a complex organic molecule in a young protostellar disk has implications for disk structure and chemical evolution and for potential use as a temperature probe. The research of TV and WL was conducted at the Jet Propulsion Laboratory, California Institute of Technology with support from the National Aeronautics and Space Administration.
THE YOUNG STELLAR POPULATION OF THE CYGNUS-X DR15 REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Gálvez, S.; Román-Zúñiga, C. G.; Jiménez-Bailón, E.
We present a multi-wavelength study of the young stellar population in the Cygnus-X DR15 region. We studied young stars that were forming or recently formed at and around the tip of a prominent molecular pillar and an infrared dark cloud. Using a combination of ground-based near-infrared, space-based infrared, and X-ray data, we constructed a point source catalog from which we identified 226 young stellar sources, which we classified into evolutionary classes. We studied their spatial distributions across the molecular gas structures and identified several groups that possibly belong to distinct young star clusters. We obtained samples of these groups andmore » constructed K-band luminosity functions that we compared with those of artificial clusters, allowing us to make first order estimates of the mean ages and age spreads of the groups. We used a {sup 13}CO(1-0) map to investigate the gas kinematics at the prominent gaseous envelope of the central cluster in DR15, and we inferred that the removal of this envelope is relatively slow compared to other cluster regions, in which the gas dispersal timescale could be similar or shorter than the circumstellar disk dissipation timescale. The presence of other groups with slightly older ages, associated with much less prominent gaseous structures, may imply that the evolution of young clusters in this part of the complex proceeds in periods that last 3–5 Myr, perhaps after a slow dissipation of their dense molecular cloud birthplaces.« less
Life Starting Materials Found in Dusty Disk
2005-12-20
This graph, or spectrum, from NASA Spitzer Space Telescope tells astronomers that some of the most basic ingredients of DNA and protein are concentrated in a dusty planet-forming disk circling a young sun-like star called IRS 46.
ALMA 1.3 mm Map of the HD 95086 System
NASA Astrophysics Data System (ADS)
Su, Kate Y. L.; MacGregor, Meredith A.; Booth, Mark; Wilner, David J.; Flaherty, Kevin; Hughes, A. Meredith; Phillips, Neil M.; Malhotra, Renu; Hales, Antonio S.; Morrison, Sarah; Ertel, Steve; Matthews, Brenda C.; Dent, William R. F.; Casassus, Simon
2017-12-01
Planets and minor bodies such as asteroids, Kuiper-Belt objects, and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is most prominent through observations of its debris disk at millimeter wavelengths where emission is dominated by the population of large grains that stay close to their parent bodies. Here we present ALMA 1.3 mm observations of HD 95086, a young early-type star that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-Belt analogs. The location of the Kuiper-Belt analog is resolved for the first time. The system can be depicted as a broad (ΔR/R ˜ 0.84), inclined (30° ± 3°) ring with millimeter emission peaked at 200 ± 6 au from the star. The 1.3 mm disk emission is consistent with a broad disk with sharp boundaries from 106 ± 6 to 320 ± 20 au with a surface density distribution described by a power law with an index of -0.5 ± 0.2. Our deep ALMA map also reveals a bright source located near the edge of the ring, whose brightness at 1.3 mm and potential spectral energy distribution are consistent with it being a luminous star-forming galaxy at high redshift. We set constraints on the orbital properties of planet b assuming coplanarity with the observed disk.
Circumstellar Material on and off the Main Sequence
NASA Astrophysics Data System (ADS)
Steele, Amy; Debes, John H.; Deming, Drake
2017-06-01
There is evidence of circumstellar material around main sequence, giant, and white dwarf stars that originates from the small-body population of planetary systems. These bodies tell us something about the chemistry and evolution of protoplanetary disks and the planetary systems they form. What happens to this material as its host star evolves off the main sequence, and how does that inform our understanding of the typical chemistry of rocky bodies in planetary systems? In this talk, I will discuss the composition(s) of circumstellar material on and off the main sequence to begin to answer the question, “Is Earth normal?” In particular, I look at three types of debris disks to understand the typical chemistry of planetary systems—young debris disks, debris disks around giant stars, and dust around white dwarfs. I will review the current understanding on how to infer dust composition for each class of disk, and present new work on constraining dust composition from infrared excesses around main sequence and giant stars. Finally, dusty and polluted white dwarfs hold a unique key to our understanding of the composition of rocky bodies around other stars. In particular, I will discuss WD1145+017, which has a transiting, disintegrating planetesimal. I will review what we know about this system through high speed photometry and spectroscopy and present new work on understanding the complex interplay of physics that creates white dwarf pollution from the disintegration of rocky bodies.
Forming Planets in the Hostile Carina Nebula
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are Hubble images of the globules; the bottom panels are ALMA images of the disks detected within them. [Mesa-Delgado et al. 2016]In searching regions outside of the densest, most luminous clusters, the team succeeded in detecting two protoplanetary disks. This region in Carina now marks the most distant massive cluster in which disks have ever been imaged! The discovered disks have radii of roughly 60 AU and masses of 30 and 50 Jupiter masses and given their ages, its entirely plausible that planets are actively forming in these disks.Equally important: Mesa-Delgado and collaborators failed to detect any indication of disks in the core of Trumpler 14, a cluster in Carina that is home to some of the most massive and luminous stars in the Galaxy. This non-detection suggests that the particularly harsh environment of Trumpler 14 is too brutal for disks within it to survive.These observations provide new clues as to where we should be looking to study planet formation: less dense regions in star-forming nebulae seem to be locations that can support giant-planet-forming disks, whereas the harsh radiation fields of especially dense subclusters seem to cause the rapid destruction of such disks.CitationA. Mesa-Delgado et al 2016 ApJ 825 L16. doi:10.3847/2041-8205/825/1/L16
Young stars in ɛ Chamaleontis and their disks: disk evolution in sparse associations
NASA Astrophysics Data System (ADS)
Fang, M.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lawson, W. A.; Sicilia-Aguilar, A.
2013-01-01
Context. The nearby young stellar association ɛ Cha has an estimated age of 3-5 Myr, making it an ideal laboratory to study the disk dissipation process and provide empirical constraints on the timescale of planet formation. Aims: We wish to complement existing optical and near-infrared data of the ɛ Cha association, which provide the stellar properties of its members, with mid-infrared data that probe the presence, geometry, and mineralogical composition of protoplanetary disks around individual stars. Methods: We combine the available literature data with our Spitzer/IRS spectroscopy and VLT/VISIR imaging data. We use proper motions to refine the membership of ɛ Cha. Masses and ages of individual stars are estimated by fitting model atmospheres to the optical and near-infrared photometry, followed by placement in the Hertzsprung-Russell diagram. The Spitzer/IRS spectra are analyzed using the two-layer temperature distribution spectral decomposition method. Results: Two stars previously identified as members, CXOU J120152.8 and 2MASS J12074597, have proper motions that are very different from those of the other stars. But other observations suggest that the two stars are still young and thus might still be related to ɛ Cha. HD 104237C is the lowest mass member of ɛ Cha with an estimated mass of ~13-15 Jupiter masses. The very low mass stars USNO-B120144.7 and 2MASS J12005517 show globally depleted spectral energy distributions, pointing at strong dust settling. 2MASS J12014343 may have a disk with a very specific inclination, where the central star is effectively screened by the cold outer parts of a flared disk, but the 10 μm radiation of the warm inner disk can still reach us. We find that the disks in sparse stellar associations are dissipated more slowly than those in denser (cluster) environments. We detect C2H2 rovibrational band around 13.7 μm on the IRS spectrum of USNO-B120144.7. We find strong signatures of grain growth and crystallization in all ɛ Cha members with 10 μm features detected in their IRS spectra. We combine the dust properties derived in the ɛ Cha sample with those found using identical or similar methods in the MBM 12, Coronet, η Cha associations, and in the cores-to-disks legacy program. We find that disks around low-mass young stars show a negative radial gradient in the mass-averaged grain size and mass fraction of crystalline silicates. A positive correlation exists between the mass-averaged grain sizes of amorphous silicates and the accretion rates if the latter is above ~10-9 M⊙ yr-1, possibly indicating that those disks are sufficiently turbulent to prevent grains of several microns in size to sink into the disk interior. Based on observations performed at ESO's La Silla-Paranal observatory under programme 076.C-0470.
Massive pre-main-sequence stars in M17
NASA Astrophysics Data System (ADS)
Ramírez-Tannus, M. C.; Kaper, L.; de Koter, A.; Tramper, F.; Bik, A.; Ellerbroek, L. E.; Ochsendorf, B. B.; Ramírez-Agudelo, O. H.; Sana, H.
2017-08-01
The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied H II regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the H II region are on their way to become main-sequence stars ( 6-20 M⊙) after having undergone high mass accretion rates (Ṁacc 10-4-10-3M⊙yr-1). Their spin distribution upon arrival at the zero age main-sequence is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO programmes 60.A-9404(A), 085.D-0741, 089.C-0874(A), and 091.C-0934(B)).The full normalised X-shooter spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A78
On the analysis of large data sets
NASA Astrophysics Data System (ADS)
Ruch, Gerald T., Jr.
We present a set of tools and techniques for performing detailed comparisons between computational models with high dimensional parameter spaces and large sets of archival data. By combining a principal component analysis of a large grid of samples from the model with an artificial neural network, we create a powerful data visualization tool as well as a way to robustly recover physical parameters from a large set of experimental data. Our techniques are applied in the context of circumstellar disks, the likely sites of planetary formation. An analysis is performed applying the two layer approximation of Chiang et al. (2001) and Dullemond et al. (2001) to the archive created by the Spitzer Space Telescope Cores to Disks Legacy program. We find two populations of disk sources. The first population is characterized by the lack of a puffed up inner rim while the second population appears to contain an inner rim which casts a shadow across the disk. The first population also exhibits a trend of increasing spectral index while the second population exhibits a decreasing trend in the strength of the 20 mm silicate emission feature. We also present images of the giant molecular cloud W3 obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) on board the Spitzer Space Telescope. The images encompass the star forming regions W3 Main, W3(OH), and a region that we refer to as the Central Cluster which encloses the emission nebula IC 1795. We present a star count analysis of the point sources detected in W3. The star count analysis shows that the stellar population of the Central Cluster, when compared to that in the background, contains an over density of sources. The Central Cluster also contains an excess of sources with colors consistent with Class II Young Stellar Objects (YSOs). A analysis of the color-color diagrams also reveals a large number of Class II YSOs in the Central Cluster. Our results suggest that an earlier epoch of star formation created the Central Cluster, created a cavity, and triggered the active star formation in the W3 Main and W3(OH) regions. We also detect a new outflow and its candidate exciting star.
Star Formation at the Galactic Center
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-08-01
Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh ultraviolet radiation streaming from hot stars orbiting close to Sgr A*. The gas of the proplyds is heated and stripped away by this radiation, forming bow shocks around the disks. Both the proplyds themselves and the bow shocks surrounding them are visible in Yusef-Zadeh’s observations. Potential for Planet Formation: Unlike the young massive stars that have previously been identified in the galactic center, the proplyd candidates in this study are associated with low-mass stars. This has led to speculation that it may in fact be easier for low-mass stars to form in the hostile surroundings of the black hole than it is for them to form elsewhere in the Milky Way. In addition, the rate at which material is lost from such proplyds is expected to be low, so there is a chance for the disk to eventually form planets. With that comes the tantalizing possibility that as telescope resolution and data-analysis techniques improve, we may even be able to watch planet formation occur near Sgr A*. Citation: F. Yusef-Zadeh et al. 2015, ApJ, 801, L26, doi:10.088/2041-8205/801/2/L26 Bonus: Check out the authors' video abstract below, which shows the locations of the proplyd candidates relative to Sgr A* and provides more information about how the observations were made and analyzed.
A disk wind in AB Aurigae traced with Hα interferometry
NASA Astrophysics Data System (ADS)
Perraut, K.; Dougados, C.; Lima, G. H. R. A.; Benisty, M.; Mourard, D.; Ligi, R.; Nardetto, N.; Tallon-Bosc, I.; ten Brummelaar, T.; Farrington, C.
2016-11-01
Context. A crucial issue in star formation is understanding the physical mechanism by which mass is accreted onto and ejected by a young star, then collimated into jets. Hydrogen lines are often used to trace mass accretion in young stars, but recent observations suggest that they could instead trace mass outflow in a disk wind. Aims: Obtaining direct constraints on the HI line formation regions is crucial in order to disentangle the different models. We present high angular and spectral resolution observations of the Hα line of the Herbig Ae star AB Aur to probe the origin of this line at sub-AU scales, and to place constraints on the geometry of the emitting region. Methods: We use the visible spectrograph VEGA at the CHARA long-baseline optical array to resolve the AB Aur circumstellar environment from spectrally resolved interferometric measurements across the Hα emission line. We developed a 2D radiative transfer model to fit the emission line profile and the spectro-interferometric observables. The model includes the combination of a Blandford & Payne magneto-centrifugal disk wind and a magnetospheric accretion flow. Results: We measure a visibility decrease within the Hα line, indicating that we clearly resolve the Hα formation region. We derive a Gaussian half width at half maximum between 0.05 and 0.15 AU in the core of the line, which indicates that the bulk of the Hα emission has a size scale intermediate between the disk inner truncation radius and the dusty disk inner rim. A clear asymmetric differential phase signal is found with a minimum of -30° ± 15° towards the core of the line. We show that these observations are in general agreement with predictions from a magneto-centrifugal disk wind arising from the innermost regions of the disk. Better agreement, in particular with the differential phases, is found when a compact magnetospheric accretion flow is included. Conclusions: We resolve the Hα formation region in a young accreting intermediate mass star and show that both the spectroscopic and interferometric measurements can be reproduced well by a model where the bulk of Hα forms in a MHD disk wind arising from the innermost regions of the accretion disk. These findings support similar results recently obtained in the Brγ line and confirm the importance of outflows in the HI line formation processes in young intermediate mass stars. Based on observations made with the VEGA/CHARA instrument.
NASA Technical Reports Server (NTRS)
Ho, Paul
1997-01-01
The research concentrated on high angular resolution (arc-second scale) studies of molecular cloud cores associated with very young star formation. New ways to study disks and protoplanetary systems were explored. Findings from the areas studied are briefly summarized: (1) molecular clouds; (2) gravitational contraction; (3) jets, winds, and outflows; (4) Circumstellar Disks (5) Extrasolar Planetary Systems. A bibliography of publications and submitted papers produced during the grant period is included.
Photoevaporating Disks around Young Stars: Ultracompact HII Regions and Protoplanetary Disks.
NASA Astrophysics Data System (ADS)
Johnstone, Douglas Ian
1995-01-01
Newly formed stars produce sufficient Lyman continuum luminosity phi to significantly alter the structure and evolution of the accretion disk surrounding them. In the absence of a stellar wind, a nearly static, photoionized, 10^4 K, disk atmosphere, with a scale height that increases with disk radius varpi as varpi^{3/2 }, forms inside the gravitational radius varpig ~ 1014(M_*/ M_odot) cm where M _* is the mass of the central star. This ionized atmosphere is maintained by both the direct radiation from the central star and the diffuse field produced in the disk atmosphere by the significant fraction of hydrogen recombinations directly to the ground state. Beyond varpig the material evaporated from the disk is capable of escaping from the system and produces an ionized disk wind. The mass-loss due to this disk wind peaks at varpig . The inclusion of a stellar wind into the basic picture reduces the height of the inner disk atmosphere and introduces a new scale radius varpi_ {w} where the thermal pressure of the material evaporated from the disk balances the ram pressure in the wind. In this case the mass-loss due to the disk wind peaks at varpiw and is enhanced over the no-wind case. The photoevaporation of disks around newly formed stars has significance to both ultracompact HII regions and the dispersal of solar-type nebulae. High mass stars are intrinsically hot and thus yield sufficient Lyman luminosity to create, even without a stellar wind, disk mass-loss rates of order 2 times 10 ^{-5}phi_sp{49} {1/2} M_odotyr ^{-1}, where phi 49 = phi/(10 49 Lyman continuum photons s^{-1}). This wind, which will last until the disk is dispersed, ~ 10^5 yrs if the disk mass is M_ {d}~0.3M_*, yields sizes, emission measures and ages consistent with observations of ultracompact HII regions. The well-observed high mass star MWC 349 may be the best example to date of an evaporating disk around a high mass star. On the other end of the stellar scale, many newly formed low-mass stars are known to have enhanced extreme ultraviolet luminosity suggested to be due to boundary layer accretion. Assuming that most low mass stars have such an enhanced Lyman luminosity phi ~ 1041 s ^{-1}, for ~ 3 times 10^7 yrs it is possible to remove most of the gas in the outer disk. A diagnostic of this mass loss may be the low-velocity forbidden oxygen, nitrogen, and sulphur line emission observed around young stars with disks. Photoevaporating disk models yield reasonable agreement with the flux seen in these lines. The process of photoevaporation also has implications for the formation of the giant planets within the solar nebula. Within young stellar clusters a few high mass stars may overwhelm the internal Lyman continuum flux from low mass stars and externally evaporated disks may result. The Trapezium region presents the best studied example of such a cluster. Photoionization due to high energy photons from the high mass stars erode the disks around nearby low mass stars. The resulting short destruction times for these disks constrain the gestation period for creating planets.
X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields
NASA Astrophysics Data System (ADS)
Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.
2018-01-01
Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to their location within the cluster). For the majority of the cluster members, the X-ray background field has relatively little impact on the disk chemical structure.
Evolution of dynamo-generated magnetic fields in accretion disks around compact and young stars
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1994-01-01
Geometrically thin, optically thick, turbulent accretion disks are believed to surround many stars. Some of them are the compact components of close binaries, while the others are throught to be T Tauri stars. These accretion disks must be magnetized objects because the accreted matter, whether it comes from the companion star (binaries) or from a collapsing molecular cloud core (single young stars), carries an embedded magnetic field. In addition, most accretion disks are hot and turbulent, thus meeting the condition for the MHD turbulent dynamo to maintain and amplify any seed field magnetic field. In fact, for a disk's magnetic field to persist long enough in comparison with the disk viscous time it must be contemporaneously regenerated because the characteristic diffusion time of a magnetic field is typically much shorter than a disk's viscous time. This is true for most thin accretion disks. Consequently, studying magentic fields in thin disks is usually synonymous with studying magnetic dynamos, a fact that is not commonly recognized in the literature. Progress in studying the structure of many accretion disks was achieved mainly because most disks can be regarded as two-dimensional flows in which vertical and radial structures are largely decoupled. By analogy, in a thin disk, one may expect that vertical and radial structures of the magnetic field are decoupled because the magnetic field diffuses more rapidly to the vertical boundary of the disk than along the radius. Thus, an asymptotic method, called an adiabatic approximation, can be applied to accretion disk dynamo. We can represent the solution to the dynamo equation in the form B = Q(r)b(r,z), where Q(r) describes the field distribution along the radius, while the field distribution across the disk is included in the vector function b, which parametrically depends on r and is normalized by the condition max (b(z)) = 1. The field distribution across the disk is established rapidly, while the radial distribution Q(r) evolves on a considerably longer timescale. It is this evolution that is the subject of this paper.
Possibility that the far ultraviolet excess in M31 is due to main sequence stars
NASA Technical Reports Server (NTRS)
Tinsley, B. M.
1972-01-01
The far ultraviolet excess in the central region of M31, observed by OAO-2, could be due to young main sequence stars. More than enough such stars are present in the model for the M31 inner disk population derived by Tinsley and Spinrad (1971) to match line- and color-indices at longer wavelengths. If the far ultraviolet radiation of typical galaxies arises from young stars, the theoretical ultraviolet background is enhanced greatly by evolutionary effects. For evolution at the rate of Tinsley and Spinrad's model for M31, or of Arnett's (1971) linear model for our galaxy, the enhancement is a factor 2.5 to 14, depending on the Hubble constant and the spectrum at wavelengths below 1700 A.
A Panchromatic Study of Molecular Gas in the Protoplanetary System RY Lupi
NASA Astrophysics Data System (ADS)
Arulanantham, Nicole; France, Kevin; Hoadley, Keri
2018-01-01
To understand how planet formation occurs in protoplanetary disks, we must first characterize the behavior of material within 10 AU of the central star. We present a study of molecular gas at these radii in the disk around the young star RY Lupi, through spectra from HST-COS, HST-STIS, and VLT-CRIRES. We model the radial distribution of flux from hot (T ~ 2000 K) molecular gas in a surface layer between r = 0.1-10 AU, as traced by LyA-pumped H2. The result indicates that the H2 emission originates in a narrow ring centered at 1 AU, with a sharp decline in flux at r < 0.1 AU that is consistent with what is expected for transitional disks. When we adopt a more basic approach to evaulate the shapes of the emission lines, we find that a two-component Gaussian profile assuming two rings of gas in the inner disk provides a statistically better fit to the H2 emission lines than the single-component model of a smooth disk. This two-component profile includes broad (FWHMbroad, H2 = 105 +/- 15 km/s) and narrow (FWHMnarrow, H2 = 43 +/- 13 km/s) lines, corresponding to average gas radii of
OUTER-DISK POPULATIONS IN NGC 7793: EVIDENCE FOR STELLAR RADIAL MIGRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radburn-Smith, David J.; Dalcanton, Julianne J.; Roskar, Rok
2012-07-10
We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280'' ({approx}5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars ofmore » NGC 7793 extend significantly farther than the underlying H I disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surfacemore » density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.« less
An Explanation of the Very Low Radio Flux of Young Planet-mass Companions
NASA Astrophysics Data System (ADS)
Wu, Ya-Lin; Close, Laird M.; Eisner, Josh A.; Sheehan, Patrick D.
2017-12-01
We report Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum upper limits for five planetary-mass companions DH Tau B, CT Cha B, GSC 6214-210 B, 1RXS 1609 B, and GQ Lup B. Our survey, together with other ALMA studies, have yielded null results for disks around young planet-mass companions and placed stringent dust mass upper limits, typically less than 0.1 M ⊕, when assuming dust continuum is optically thin. Such low-mass gas/dust content can lead to a disk lifetime estimate (from accretion rates) much shorter than the age of the system. To alleviate this timescale discrepancy, we suggest that disks around wide companions might be very compact and optically thick in order to sustain a few Myr of accretion, yet have very weak (sub)millimeter flux so as to still be elusive to ALMA. Our order-of-magnitude estimate shows that compact optically thick disks might be smaller than 1000 R Jup and only emit ∼μJy of flux in the (sub)millimeter, but their average temperature can be higher than that of circumstellar disks. The high disk temperature could impede satellite formation, but it also suggests that mid- to far-infrared might be more favorable than radio wavelengths to characterize disk properties. Finally, the compact disk size might imply that dynamical encounters between the companion and the star, or any other scatterers in the system, play a role in the formation of planetary-mass companions.
A Deep NuSTAR Survey of M31: Compact object types in our Nearest Neighbor Galaxy
NASA Astrophysics Data System (ADS)
Hornschemeier, Ann E.; Wik, Daniel R.; Yukita, Mihoko; Ptak, Andrew; Venters, Tonia M.; Lehmer, Bret; Maccarone, Thomas J.; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Williams, Benjamin F.; Vulic, Neven
2017-08-01
X-ray binaries (XRBs) trace young and old stellar populations in galaxies, and thus star formation rate and star formation history/stellar mass. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium at Cosmic Dawn and may also play a significant role in reionization. Until recently, the E>10 keV (hard X-ray) emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. We have observed M31 in 4 NuSTAR fields for a total exposure of 1.4 Ms, covering the young stellar population in a swath of the disk (within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey) and older populations in the bulge. We detected more than 100 sources in the 4-25 keV band, where hard band (12-25 keV) emission has allowed us to discriminate between black holes and neutron stars in different accretion states. The luminosity function of the hard band detected sources are compared to Swift/BAT and INTEGRAL-derived luminosity functions of the Milky Way population, which reveals an excess of luminous sources in M31 when correcting for star formation rate and stellar mass.
NICMOS PEERS THROUGH DUST TO REVEAL YOUNG STELLAR DISKS
NASA Technical Reports Server (NTRS)
2002-01-01
The following images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four 'wings' of light extending as much as 75 billion miles from the pair. The 'wings' outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star still deep within the dusty cocoon from which it formed is shown in this image of IRAS 04016+2610. The star is visible as a bright reddish spot at the base of a bowl-shaped nebula about 100 billion miles across at the widest point. The nebula arises from dusty material falling onto a forming circumstellar disk, seen as a partial dark band to the left of the star. The necklace of bright spots above the star is an image artifact. [Bottom center]: I04248 - In this image of IRAS 04248+2612, the infrared eyes of NICMOS peer through a dusty cloud to reveal a double-star system in formation. A nebula extends at least 65 billion miles in opposite directions from the twin stars, and is illuminated by them. This nebula was formed from material ejected by the young star system. The apparent 'pinching' of this nebula close to the binary suggests that a ring or disk of dust and gas surrounds the two stars. [Bottom right]: I04302 - This image shows IRAS 04302+2247, a star hidden from direct view and seen only by the nebula it illuminates. Dividing the nebula in two is a dense, edge-on disk of dust and gas which appears as the thick, dark band crossing the center of the image. The disk has a diameter of 80 billion miles (15 times the diameter of Neptune's orbit), and has a mass comparable to the Solar Nebula, which gave birth to our planetary system. Dark clouds and bright wisps above and below the disk suggest that it is still building up from infalling dust and gas.
WATER VAPOR IN THE PROTOPLANETARY DISK OF DG Tau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podio, L.; Dougados, C.; Thi, W.-F.
2013-03-20
Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high-excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most water ice reservoirs are stored, was only reported in the nearby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para-water ground-state transitions at 557 and 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are {approx}19-26more » times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H{sub 2}O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 M{sub Sun }, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of {approx}10{sup 2}-10{sup 3} Earth oceans in vapor and {approx}100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by the impact of icy bodies forming in the outer disk.« less
ALMA Survey of Class II Disks in the Young Stellar Cluster IC 348
NASA Astrophysics Data System (ADS)
Ruiz, Dary; Cieza, Lucas; Williams, Jonathan; Andrews, Sean; Principe, David
2018-01-01
We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster IC 348 at a distance of 270 pc, which is dominated by low-mass stars. We observed 146 Class II sources (disks that are optically thick in the infrared) at 0.8 '' (200 au) resolution with a 3σ sensitivity of 0.2 MEarth. We detect 46 of the targets and construct a disk luminosity function. We compare the disk mass distribution in IC 348 to those of younger and older regions, taking into account the dependence on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those in Taurus (1-2 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon I, (2-3 Myr) and σ-Ori (3-5 Myr) and significantly higher than in Upper Scorpius (5-10 Myr). About 20 disks in our sample (~5% of the cluster members) have estimated masses (dust + gas) of >1 MJUP. and might be the precursors of giant planets in the cluster. Some of the most massive disks include transition objects with inner opacity holes based on their infrared SEDs. From an stacking analysis of the 90 non-detections, we find that these disks have a typical dust mass of just ≤ 0.1 MEarth, even though the vast majority of their infrared SEDs remain optically thick and show little signs of evolution. Such low-mass disks are likely to be the precursors of the small rocky planets found by Kepler around M-type stars.
NASA Astrophysics Data System (ADS)
Tsukamoto, Y.; Okuzumi, S.; Kataoka, A.
2017-04-01
We investigate the dust structure of gravitationally unstable disks undergoing mass accretion from the envelope, envisioning its application to Class 0/I young stellar objects (YSOs). We find that the dust disk quickly settles into a steady state and that, compared to a disk with interstellar medium (ISM) dust-to-gas mass ratio and micron-sized dust, the dust mass in the steady state decreases by a factor of 1/2 to 1/3, and the dust thermal emission decreases by a factor of 1/3 to 1/5. The latter decrease is caused by dust depletion and opacity decrease owing to dust growth. Our results suggest that the masses of gravitationally unstable disks in Class 0/I YSOs are underestimated by a factor of 1/3 to 1/5 when calculated from the dust thermal emission assuming an ISM dust-to-gas mass ratio and micron-sized dust opacity, and that a larger fraction of disks in Class 0/I YSOs is gravitationally unstable than was previously believed. We also investigate the orbital radius {r}{{P}} within which planetesimals form via coagulation of porous dust aggregates and show that {r}{{P}} becomes ˜20 au for a gravitationally unstable disk around a solar mass star. Because {r}{{P}} increases as the gas surface density increases and a gravitationally unstable disk has maximum gas surface density, {r}{{P}}˜ 20 {au} is the theoretical maximum radius for planetesimal formation. We suggest that planetesimal formation in the Class 0/I phase is preferable to that in the Class II phase because a large amount of dust is supplied by envelope-to-disk accretion.
NTT Observations Indicate that Brown Dwarfs Form Like Stars
NASA Astrophysics Data System (ADS)
2001-06-01
Dusty Disks Detected around Very Young Substellar Objects in the Orion Nebula Summary An international team of astronomers [2] is announcing today the discovery of dusty disks surrounding numerous very faint objects that are believed to be recently formed Brown Dwarfs in the Orion Nebula [3]. This finding is based on detailed observations with SOFI, a specialised infrared-sensitive instrument at the ESO 3.5-m New Technology Telescope at the La Silla Observatory. It is of special interest because it sheds light on the origin and nature of substellar objects, known as "Brown Dwarfs" . In particular, these results suggest that Brown Dwarfs share a common origin with stars and that Brown Dwarfs are more similar in nature to stars than to planets and, like stars, have the potential to form with accompanying systems of planets. Moreover, the presence of dusty protoplanetary disks around the faintest objects in the Orion Nebula cluster confirms both the membership of these faint stars in the cluster and their nature as bona-fide substellar objects, making this the largest population of Brown Dwarf objects yet known . These important results are being reported today to the American Astronomical Society Meeting in Pasadena (California, USA). PR Photo 22a/01 : Infrared picture of the Orion Nebula (NTT + SOFI). PR Photo 22b/01 : "Finding Chart" for Very Young Brown Dwarfs in the Orion Nebula. PR Photo 22c/01 : Animated GIF presentation of PR Photos 22a+b/01. Faint substellar objects in the Milky Way Over the past 5 years, several groups of astronomers have identified a type of very faint, substellar objects within our Milky Way galaxy. These gaseous objects have very low masses and will never shine like normal stars because they cannot achieve central temperatures high enough for sustained thermal nuclear reactions to occur in their cores. Such objects weigh less than about 7% of our Sun and have been variously called "Brown Dwarfs" , "Failed Stars" or "Super Planets" . Indeed, since they have no sustained energy generation by thermal nuclear reactions, many of their properties are more similar to those of giant gas planets in our own solar system such as Jupiter, than to stars like the Sun. For example, even though their masses range between 10-70 times that of Jupiter (the largest and most massive planet in our solar system), the sizes of Brown Dwarfs are still comparable to that of Jupiter, approximately 140,000 km, or roughly 10 times smaller than the Sun. Are Brown Dwarfs giant planets or failed stars? Among the most fundamental issues raised by the existence of Brown Dwarfs is the question of their origin and genetic relationship to planets and stars. Are Brown Dwarfs giant planets or small, failed stars, or perhaps something completely different? The critical test needed to resolve this very basic question is to learn whether Brown Dwarfs form by a process similar to what produces stars or rather to one which produces planets. Stars are thought to form when gravity causes a cold, dusty and rarefied cloud of gas to contract. Such clouds are inevitably rotating so the gas naturally collapses into a rotating disk before it falls onto the forming star. These disks are called circumstellar or protoplanetary disks . They have been found around virtually all young stars and are considered to be sites of planet formation. Gravity helps planets form too, but this occurs by condensation and agglomeration of material contained in the circumstellar disk around a young star. Thus, stars form with a disk around them while planets form within disks around young stars . The planets in our own solar system were formed in such a circumstellar disk around the young Sun about 4.6 billion years ago. To date, the most important observations bearing on the question of Brown Dwarf origin have been: * the observed lack of Brown Dwarf companions to normal stars (something astronomers have called the "Brown Dwarf desert"), and * the existence of free-floating Brown Dwarfs in the Milky Way galaxy. Both facts would appear to imply a stellar, rather than a planet-like origin for these objects. However, one might also explain these observations if most Brown Dwarfs initially formed as companions to stars (within circumstellar disks), but were later ejected from the systems, e.g., because of gravitational effects during encounters with other stars. So the issue of Brown Dwarf origin is still unsettled. NTT observations of substellar objects in the Orion Nebula ESO PR Photo 22a/01 ESO PR Photo 22a/01 [Preview - JPEG: 400 x 434 pix - 192k] [Normal - JPEG: 800 x 877 pix - 496k] [Full Resolution - JPEG: 1772 x 1943 pix - 1.2Mb Caption : PR Photo 22a/01 shows a colour composite of near-infrared images of the central regions of the Orion Nebula, obtained on March 14, 2000, with the SOFI instrument at the ESO 3.5-m New Technology Telescope (NTT) at La Silla. Three exposures were made through J- (wavelength 1.25 µm here colour-coded as "blue"), H- (1.65 µm; "green") and Ks-filters (2.16 µm; "red"), respectively. The central group of bright stars is the famous "Trapezium" . The total effective exposure time was 86.4 seconds per band. The sky field measures about 4.9 x 4.9 arcmin 2 (1024 x 1024 pix 2 ). North is up and East is left. ESO PR Photo 22b/01 ESO PR Photo 22b/01 [Preview - JPEG: 400 x 439 pix - 35k] [Normal - JPEG: 800 x 877 pix - 90k] Caption : PR Photo 22b/01 contains the corresponding "finding chart" with the positions of the very young Brown Dwarfs in the Orion Nebula that were studied during the present investigation. The starlike symbols represent the brightest stars in PR Photo 22a/01 and are plotted for reference. In this chart, very young Brown Dwarfs are represented by a double open circle (if a dusty disk was detected) or with a single open circle (if no dusty disk was detected). The scale is exactly as in PR Photo 22a/01 . ESO PR Photo 22c/01 ESO PR Photo 22c/01 [Animated GIF: 482 x 465 pix - 248k] Caption : PR Photo 22c/01 is an animated GIF-composite of PR Photo 22a/01 and PR Photo 22b/01 for easy comparison. To resolve this mystery, an international team of astronomers [2] has obtained sensitive near-infrared observations of young Brown Dwarf candidates in the Trapezium cluster , at the centre of the Orion Nebula. For this, they used the state-of-the-art near-infrared SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory (Chile). The Trapezium Cluster is a group of young stars that appears to the unaided eye as a faint central 'star' in the Orion Nebula . This cluster is located at a distance of about 1200 light-years and contains nearly 1000 stars, most of which are younger than 1 million years. The stars in this cluster are in their infancy when compared to our middle-aged Sun that is about 4.6 billion years old (reduced to a human timescale, they would be just 3 days old, compared to the Sun's 40 years). Among the hundreds of normal stars in the Trapezium Cluster, astronomers have previously identified a population of objects so faint that they have been considered as prime candidates for very young Brown Dwarfs. The observations obtained with the NTT benefitted from superb atmospheric conditions (e.g., a seeing of 0.5 arcsec) and allowed the astronomers to examine the near-infrared light of more than 100 of the Brown Dwarf candidates in the cluster. More than half of them were found to have excess near-infrared light , compared to that a normal young Brown Dwarf should emit. The only plausible explanation is that this extra light originates from glowing, hot dust within protoplanetary disks surrounding these objects . It was the same method, albeit at longer infrared wavelengths, that first led to the discovery of dust disks around several normal stars, some of which have later been studied in much detail, e.g., that at the southern star Beta Pictoris. In fact, and strongly supporting this explanation, twenty-one of the Brown Dwarf candidates detected via the NTT observations are also identified with optical "proplyds" , the famous dusty disks first imaged in 1994 by the Hubble Space Telescope (HST) at optical wavelengths, cf. the corresponding HST Press Release and images [4]. Dusty disks The presence of such hot and dusty disks around these objects is a clear sign of their extreme youth - this in turn confirms both their membership in the young cluster and their nature as bona-fide substellar objects . Thus, the Trapezium Cluster contains the largest population (approximately 100) of Brown Dwarfs yet known. Indeed, only about 80 freely floating Brown Dwarfs have so far been positively identified outside this cluster. " Brown Dwarfs are considerably easier to detect and study when they are young, because they are ten times larger and thousands of times brighter during their early youth than during their middle age " says Elizabeth Lada from the University of Florida and a member of the team. Her colleague August Muench explains that " even at their brightest, however, most Brown Dwarfs are still 100 or more times intrinsically fainter than our Sun, explaining why astronomers have great difficulties in detecting such objects ". A common origin of normal stars and Brown Dwarfs " The high incidence of disks around both young stars and Brown Dwarfs in this cluster strongly suggests that both stars and Brown Dwarfs trace their origin to a common physical process and that Brown Dwarfs are more similar in nature to stars than to planets " says Charles Lada from the Smithsonian Astrophysical Observatory. Moreover, as is the case for stars, the disks that surround Brown Dwarfs may be capable of forming systems of planets. According to João Alves from ESO, " it is entirely possible that the Milky Way Galaxy contains numerous planetary systems that orbit cold and dark, failed stars. Whether these disks can indeed form planetary systems, however, still remains to be determined ". Even if Brown Dwarfs do have planetary systems, their planets would not have a stable climate and thus would be inhospitable to life as we know it. This is because Brown Dwarfs do not generate their own energy for any substantial period of time but instead fade rapidly as they age. The next steps For the moment being, the detection of disks around the Brown Dwarf candidates in the Trapezium Cluster rests entirely on the measurements of the near-infrared colours of these objects. Additional confirmation of the presence of such dust disks can be obtained with sensitive infrared observations made at longer wavelengths. Such observations are possible with the largest ground-based telescopes like the VLT [5] or with the upcoming NASA infrared satellite mission ( SIRTF ). Notes [1]: This ESO Press Release is issued in parallel with a Press Release on the same subject by the American Astronomical Society (AAS). The indicated embargo corresponds to the time of release at the AAS meting in Pasadena. [2]: The team consists of João F. Alves (ESO, Garching, Germany), Charles J. Lada (Smithsonian Astrophysical Observatory, Cambridge MA, USA), Elizabeth A. Lada and August A. Muench (both Department of Astronomy, University of Florida, Gainesville FL, USA). The research reported here was supported in part by the US National Science Foundation. [3]: Other ESO Press Communications about Brown Dwarfs include PR 07/97 , PR 14/99 and PR 16/00. Discoveries of exoplanets and other small objects, some of which have masses near the borderline between Brown Dwarfs and planets, are reported in PR 18/98 , PR 13/00 and PR 07/01. A spectacular infrared image of the Orion Nebula with the VLT and the ISAAC instrument was published earlier this year ( PR Photo 03a/01 ) with a discussion about small objects within this nebula. [4]: More information about "proplyds" (PROto-PLanetarY DiskS) is available in ESO PR 06/97 that discusses the discovery of the first such object outside the Orion Nebula. [5]: The VLT is already equipped with one instrument suited for such measurements, the Infrared Spectrometer And Array Camera (ISAAC) - examples of mid-infrared observations of the giant planet Jupiter have just been published as ESO PR Photos 21a-f/01. The NAOS-CONICA adaptive optics multi-mode instrument will enter into operation later in 2001, to be followed by the VLT Mid Infrared Spectrometer/Imager (VISIR). Another powerful mid-infrared facility at ESO is the Thermal Infrared Multimode Instrument (TIMMI2) , now in operation at the ESO 3.6-m telescope on La Silla and with which observations of the central part of the Orion Nebula were recently made, cf. PR Photos 12a-e/01.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trappitsch, R.; Ciesla, F. J., E-mail: trappitsch@uchicago.edu
2015-05-20
Solar cosmic-ray (SCR) interactions with a protoplanetary disk have been invoked to explain several observations of primitive planetary materials. In our own Solar System, the presence of short-lived radionuclides (SLRs) in the oldest materials has been attributed to spallation reactions induced in phases that were irradiated by energetic particles in the solar nebula. Furthermore, observations of other protoplanetary disks show a mixture of crystalline and amorphous grains, though no correlation between grain crystallinity and disk or stellar properties have been identified. As most models for the origin of crystalline grains would predict such correlations, it was suggested that amorphization bymore » stellar cosmic-rays may be masking or erasing such correlations. Here we quantitatively investigate these possibilities by modeling the interaction of energetic particles emitted by a young star with the surrounding protoplanetary disk. We do this by tracing the energy evolution of SCRs emitted from the young star through the disk and model the amount of time that dust grains would spend in regions where they would be exposed to these particles. We find that this irradiation scenario cannot explain the total SLR content of the solar nebula; however, this scenario could play a role in the amorphization of crystalline material at different locations or epochs of the disk over the course of its evolution.« less
NASA Astrophysics Data System (ADS)
Nagasawa, M.; Lin, D. N. C.; Ida, S.
2003-04-01
Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semimajor axis ratios. However, prior to the disk depletion, self-gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self-gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapsis is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around υ Andromedae and HD 168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.
Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation
NASA Astrophysics Data System (ADS)
Keel, William C.; Borne, Kirk D.
2003-09-01
We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
DM ORI: A YOUNG STAR OCCULTED BY A DISTURBANCE IN ITS PROTOPLANETARY DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.
In some planet formation theories, protoplanets grow gravitationally within a young star’s protoplanetary disk, a signature of which may be a localized disturbance in the disk’s radial and/or vertical structure. Using time-series photometric observations by the Kilodegree Extremely Little Telescope South project and the All-Sky Automated Survey for SuperNovae, combined with archival observations, we present the discovery of two extended dimming events of the young star, DM Ori. This young system faded by ∼1.5 mag from 2000 March to 2002 August and then again in 2013 January until 2014 September (depth ∼1.7 mag). We constrain the duration of the 2000–2002more » dimming to be < 860 days, and the event in 2013–2014 to be < 585 days, separated by ∼12.5 years. A model of the spectral energy distribution indicates a large infrared excess consistent with an extensive circumstellar disk. Using basic kinematic arguments, we propose that DM Ori is likely being periodically occulted by a feature (possibly a warp or perturbation) in its circumstellar disk. In this scenario, the occulting feature is located >6 au from the host star, moving at ∼14.6 km s{sup −1} and is ∼4.9 au in width. This localized structure may indicate a disturbance such as that which may be caused by a protoplanet early in its formation.« less
From dust to light: a study of star formation in NGC2264
NASA Astrophysics Data System (ADS)
Teixeira, P. S.
2008-10-01
The goal of this dissertation is to characterize the star formation history of the young cluster NGC2264 using the unique observational capabilities of the Spitzer Space Telescope. The motivation to conduct this study stems from the fact that most stars are formed within clusters, so the formation and evolution of the latter will effect the stellar mass distribution in the field. Detailed observational studies of young stellar clusters are therefore crucial to provide necessary constraints for theoretical models of cloud and cluster formation and evolution. This study also addresses the evolution of circumstellar disks in NGC2264; empirical knowledge of protoplanetary disk evolution is required for the understanding of how planetary systems such as our own form. The first result obtained from this study was both completely new and unexpected. A dense region within NGC2264 was found to be teeming with bright 24 μm Class I protostars; these sources are embedded within dense submillimeter cores and are spatially distributed along dense filamentary fingers of gas and dust that radially converge on a B-type binary Class I source. This cluster of protostars was baptized the "Spokes cluster" and its analysis provided further insight into the role of thermal support during core formation, collapse and fragmentation. The nearest neighbor projected separation distribution of these Class I sources shows a characteristic spacing that is similar to the Jeans length for the region, indicating that the dusty filaments may have undergone thermal fragmentation. The submillimeter cores of the Spokes cluster were observed at 230GHz using the SubMillimeter Array (SMA) and the resulting high resolution (~1.3") continuum observations revealed a dense grouping of 7 Class 0 sources embedded within a particular core, D-MM1 (~20"x20"). The compact sources have masses ranging between 0.4M and 1.2M, and radii of ~600AU. The mean separation of the Class 0 sources within D-MM1 is considerably smaller than the characteristic spacing between the Class I sources in the larger Spokes cluster and is consistent with hierarchical thermal fragmentation of the dense molecular gas in this region. The results obtained by the study of the Spokes cluster show that the spatial substructuring of a cluster or subcluster is correlated with age, i.e., groupings of very young protostars have clearly more concentrated and substructured spatial distributions. The Spokes cluster could thus be one of several building blocks of NGC2264, and will likely expand and disperse its members through the surrounding region, adding to the rest of NGC2264's stellar population.To further explore this scenario, I identified Pre-Main Sequence (PMS) disk bearing sources in the whole region of NGC2264, as surveyed by InfraRed Array Camera (IRAC) analyzing both their spatial distributions and ages. Of the 1404 sources detected in all four IRAC bands, 116 sources were found to have anemic IRAC disks and 217 sources were found to have thick IRAC disks; the disk fraction was calculated to be 37.5%±6.3% and found to be a function of spectral type, increasing for later type sources. I identified 4 candidate sources with transition disks (disks with inner holes), as well as 6 sources with anemic inner disks and thick outer disks that could be the immediate precursors of transition disks. This is a relevant result for it suggests planet formation may be occurring in the inner disk at very early ages. I found that the spatial distribution of the disk-bearing sources was a function of both disk type and amount of reddening. This spatial analysis enabled the identification of three groups of sources, namely, (i) embedded (AV> 3 magnitudes) sources with thick disks, (ii) unembedded sources with thick disks, and (iii) sources with anemic disks. The first group was found to have a median age of 1 Myr and its spatial distribution is highly concentrated and substructured. The second group, (ii), has a median age of 2 Myr and its spatial distribution is less concentrated and substructured than group (i), but more than the group of sources with anemic disks - the spatial distribution of this third group (age ~ 2 Myr) is not substructured and is more distributed, showing no particular peak or concentration. The star formation history of NGC2264 appears to be as follows: the northern region appears to have undergone the first epoch or episode of star formation, while the second epoch is currently occurring in the center (Spokes cluster) and south (near Allen's source). Status: RO
HD139614: the Interferometric Case for a Group-Ib Pre-Transitional Young Disk
NASA Technical Reports Server (NTRS)
Labadie, Lucas; Matter, Alexis; Kreplin, Alexander; Lopez, Bruno; Wolf, Sebastian; Weigelt, Gerd; Ertel, Steve; Berger, Jean-Philippe; Pott, Jorg-Uwe; Danchi, William C.
2014-01-01
The Herbig Ae star HD139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid- and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the aim of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI.
The comet-like composition of a protoplanetary disk as revealed by complex cyanides.
Öberg, Karin I; Guzmán, Viviana V; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M; Loomis, Ryan; Wilner, David J
2015-04-09
Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.
The comet-like composition of a protoplanetary disk as revealed by complex cyanides
NASA Astrophysics Data System (ADS)
Öberg, Karin I.; Guzmán, Viviana V.; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M.; Loomis, Ryan; Wilner, David J.
2015-04-01
Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.
Outward transport of high-temperature materials around the midplane of the solar nebula.
Ciesla, Fred J
2007-10-26
The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.
The structure of protostellar accretion disks and the origin of bipolar flows
NASA Technical Reports Server (NTRS)
Wardle, Mark; Koenigl, Arieh
1993-01-01
Equations are obtained which govern the disk-wind structure and identify the physical parameters relevant to circumstellar disks. The system of equations is analyzed in the thin-disk approximation, and it is shown that the system can be consistently reduced to a set of ordinary differential equations in z. Representative solutions are presented, and it is shown that the apparent paradox discussed by Shu (1991) is resolved when the finite thickness of the disk is taken into account. Implications of the results for the origin of bipolar flows in young stellar objects and possible application to active galactic nuclei are discussed.
Giant Exoplanet and Debris Disk (Artist's Concept)
2017-10-11
This artist's rendering shows a giant exoplanet causing small bodies to collide in a disk of dust. A study in The Astronomical Journal finds that giant exoplanets with long-period orbits are more likely to be found around young stars that have a disk of dust and debris than those without disks. The study focused on planets more than five times the mass of Jupiter. The astronomers are conducting the largest survey to date of stars with dusty debris disks, and finding the best evidence yet that giant planets are responsible for keeping that material in check. https://photojournal.jpl.nasa.gov/catalog/PIA22082
Limits on coronal material in normal galaxies
NASA Technical Reports Server (NTRS)
Mccammon, D.
1986-01-01
Measurements of the X-ray surface brightness of a face on disk galaxy M101, have previously been used to place upper limits on the power radiated by a hot corona. Such analysis contrains the effective density of the disk; either it must be so low that the remnants drive a fast hot wind (low radiated power) or so high that the remnant temperature at overlap is low (low X-ray power). These X-ray measurements are here used to constrain the properties of the population of supernova remnants evolving in the disk. This adds a further constraint since young remnants evolving in higher density radiate more of their energy in X-rays, whether or not they eventually overlap to generate a hot corona. The strength of this second limit depends strongly on the density history of the remnants and on the assumed supernova rate. For evaporative evolution the analysis rules out McKee and Ostriker ISM model in particular and evaporative evolution in general unless the supernova rate is at least several times lower than current expectations. For standard Sedov evolutions, the density limit marginally admits evolution in 0.2 cu m, a popular alternative to the McKee and Ostriker model.
NASA Astrophysics Data System (ADS)
Close, L. M.; Dutrey, A.; Roddier, F.; Guilloteau, S.; Roddier, C.; Northcott, M.; Ménard, F.; Duvert, G.; Graves, J. E.; Potter, D.
1998-05-01
We have obtained high-resolution (FWHM = 0.15") deep images of the UY Aur binary at J, H, and K' with the University of Hawaii adaptive optics instrument. We clearly detect an R ~ 500 AU circumbinary disk discovered with millimeter interferometry, making UY Aur the second young binary with a confirmed circumbinary disk. It appears that the disk is inclined ~42° from face on. We find that the near side of the disk is brighter than the far side by factors of 2.6, 2.7, and 6.5 times at K', H, and J, respectively. The original GG Tau circumbinary disk has been reexamined and is found to have similar flux ratios of 1.5, 2.6, and 3.6 at K', H, and J, respectively. A realistic power-law distribution (p = 4.7) of spherical dust aggregates (composed of silicates, amorphous carbon, and graphite) that reproduces the observed ISM extinction curve also predicts these observed flux ratios from Mie scattering theory. We find the observed preference of forward-scattering over back-scattering is well fitted (global χ2 minimization) by Mie scattering off particles in the range amin = 0.03 μm to amax = 0.5-0.6 μm. The existence of a significant population of grain radii larger than 0.6 μm is not supported by the scattering observations. Based on the observed disk inclination we derive an orbit for UY Aur where the mass for the binary is 1.6+0.47-0.67 M⊙. Based on the observed K7 and M0 spectral types for UY Aur A and B, accretion disk models for the inner disks around the central stars were constructed. The models suggest that small (lower limit R ~ 5-10 AU) inner disks exist around B and A. It appears that B is accreting ~5 times faster than A, and that both inner disks may be exhausted in ~102-103 yr without replenishment from the outer circumbinary disk. Our images suggest that these inner disks may indeed be resupplied with material through thin streamers of material that penetrate inside the circumbinary disk. Currently it appears that such a streamer may be a close to UY Aur B. Comparison of our IR images and the millimeter images of the gas clearly show that the dust seen in our IR images traces the gas in the circumbinary disk, as was also the case with GG Tau.
X-ray insights into star and planet formation.
Feigelson, Eric D
2010-04-20
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.
X-ray insights into star and planet formation
Feigelson, Eric D.
2010-01-01
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197
Abundances and Evolution of Lithium in the Galactic Halo and Disk
NASA Astrophysics Data System (ADS)
Ryan, Sean G.; Kajino, Toshitaka; Beers, Timothy C.; Suzuki, Takeru Ken; Romano, Donatella; Matteucci, Francesca; Rosolankova, Katarina
2001-03-01
We have measured the Li abundance of 18 stars with -2<~[Fe/H]<~-1 and 6000<~Teff<~6400 K, a parameter range that was poorly represented in previous studies. We examine the Galactic chemical evolution (GCE) of this element, combining these data with previous samples of turnoff stars over the full range of halo metallicities. We find that A(Li) increases from a level of ~2.10 at [Fe/H]=-3.5 to ~2.40 at [Fe/H]=-1.0, where A(Li)=log10(n(Li)/n(H))+12.00. We compare the observations with several GCE calculations, including existing one-zone models and a new model developed in the framework of inhomogeneous evolution of the Galactic halo. We show that Li evolved at a constant rate relative to iron throughout the halo and old disk epochs but that during the formation of young disk stars, the production of Li relative to iron increased significantly. These observations can be understood in the context of models in which postprimordial Li evolution during the halo and old disk epochs is dominated by Galactic cosmic-ray fusion and spallation reactions, with some contribution from the ν-process in supernovae. The onset of more efficient Li production (relative to iron) in the young disk coincides with the appearance of Li from novae and asymptotic giant branch (AGB) stars. The major challenge facing the models is to reconcile the mild evolution of Li during the halo and old disk phases with the more efficient production (relative to iron) at [Fe/H]>-0.5. We speculate that cool-bottom processing (production) of Li in low-mass stars may provide an important late-appearing source of Li, without attendant Fe production, that might explain the Li production in the young disk. Based on observations obtained with the University College London échelle spectrograph (UCLES) on the Anglo-Australian Telescope (AAT) and the Utrecht échelle spectrograph (UES) on the William Herschel Telescope (WHT).
Radial Velocity Survey of T Tauri Stars in Taurus-Auriga
NASA Astrophysics Data System (ADS)
Crockett, Christopher; Mahmud, N.; Huerta, M.; Prato, L.; Johns-Krull, C.; Hartigan, P.; Jaffe, D.
2009-01-01
Is the frequency of giant planet companions to young stars similar to that seen around old stars? Is the "brown dwarf desert" a product of how low-mass companion objects form, or of how they evolve? Some models indicate that both giant planets and brown dwarfs should be common at young ages within 3 AU of a primary star, but migration induced by massive disks drive brown dwarfs into the parent stars, leaving behind proportionally more giant planets. Our radial velocity survey of young stars will provide a census of the young giant planet and brown dwarf population in Taurus-Auriga. In this poster we present our progress in quantifying how spurious radial velocity signatures are caused by stellar activity and in developing models to help distinguish between companion induced and spot induced radial velocity variations. Early results stress the importance of complementary observations in both visible light and NIR. We present our technique to determine radial velocities by fitting telluric features and model stellar features to our observed spectra. Finally, we discuss ongoing observations at McDonald Observatory, KPNO, and the IRTF, and several new exoplanet host candidates.
Inner Structure in the TW Hya Circumstellar Disk
NASA Astrophysics Data System (ADS)
Akeson, Rachel L.; Millan-Gabet, R.; Ciardi, D.; Boden, A.; Sargent, A.; Monnier, J.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.
2011-05-01
TW Hya is a nearby (50 pc) young stellar object with an estimated age of 10 Myr and signs of active accretion. Previous modeling of the circumstellar disk has shown that the inner disk contains optically thin material, placing this object in the class of "transition disks". We present new near-infrared interferometric observations of the disk material and use these data, as well as previously published, spatially resolved data at 10 microns and 7 mm, to constrain disk models based on a standard flared disk structure. Our model demonstrates that the constraints imposed by the spatially resolved data can be met with a physically plausible disk but this requires a disk containing not only an inner gap in the optically thick disk as previously suggested, but also some optically thick material within this gap. Our model is consistent with the suggestion by previous authors of a planet with an orbital radius of a few AU. This work was conducted at the NASA Exoplanet Science Institute, California Institute of Technology.
Alma Survey of Circumstellar Disks in the Young Stellar Cluster IC 348
NASA Astrophysics Data System (ADS)
Ruíz-Rodríguez, D.; Cieza, L. A.; Williams, J. P.; Andrews, S. M.; Principe, D. A.; Caceres, C.; Canovas, H.; Casassus, S.; Schreiber, M. R.; Kastner, J. H.
2018-05-01
We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster IC 348, which lies at a distance of 310 pc, and is dominated by low-mass stars (M⋆ ˜ 0.1-0.6 M⊙). We observed 136 Class II sources (disks that are optically thick in the infrared) at 0.8″ (200 au) resolution with a 3σ sensitivity of ˜ 0.45 mJy (Mdust ˜ 1.3 M⊕). We detect 40 of the targets and construct a mm-continuum luminosity function. We compare the disk mass distribution in IC 348 to those of younger and older regions, taking into account the dependence on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those in Taurus (1-3 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon I, (2-3 Myr) and σ Ori (3-5 Myr) and significantly higher than in Upper Scorpius (5-10 Myr). About 20 disks in our sample (˜5% of the cluster members) have estimated masses (dust + gas) >1 MJup and hence might be the precursors of giant planets in the cluster. Some of the most massive disks include transition objects with inner opacity holes based on their infrared SEDs. From a stacking analysis of the 96 non-detections, we find that these disks have a typical dust mass of just ≲ 0.4 M⊕, even though the vast majority of their infrared SEDs remain optically thick and show little signs of evolution. Such low-mass disks may be the precursors of the small rocky planets found by Kepler around M-type stars.
Formation of Sharp Eccentric Rings in Debris Disks with Gas but Without Planets
NASA Technical Reports Server (NTRS)
Lyra, W.; Kuchner, M.
2013-01-01
'Debris disks' around young stars (analogues of the Kuiper Belt in our Solar System) show a variety of non-trivial structures attributed to planetary perturbations and used to constrain the properties of those planets. However, these analyses have largely ignored the fact that some debris disks are found to contain small quantities of gas, a component that all such disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio of about unity, at which the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report linear and nonlinear modelling that shows that dust-gas interactions can produce some of the key patterns attributed to planets. We find a robust clumping instability that organizes the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The conclusion that such disks might contain planets is not necessarily required to explain these systems.
DIRECT IMAGING AND SPECTROSCOPY OF A YOUNG EXTRASOLAR KUIPER BELT IN THE NEAREST OB ASSOCIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Thayne; Lisse, Carey M.; Kuchner, Marc
2015-07-01
We describe the discovery of a bright, young Kuiper belt–like debris disk around HD 115600, a ∼1.4–1.5 M{sub ⊙}, ∼15 Myr old member of the Sco–Cen OB Association. Our H-band coronagraphy/integral field spectroscopy from the Gemini Planet Imager shows the ring has a (luminosity-scaled) semimajor axis of (∼22 AU) ∼ 48 AU, similar to the current Kuiper belt. The disk appears to have neutral-scattering dust, is eccentric (e ∼ 0.1–0.2), and could be sculpted by analogs to the outer solar system planets. Spectroscopy of the disk ansae reveal a slightly blue to gray disk color, consistent with major Kuiper beltmore » chemical constituents, where water ice is a very plausible dominant constituent. Besides being the first object discovered with the next generation of extreme adaptive optics systems (i.e., SCExAO, GPI, SPHERE), HD 115600's debris ring and planetary system provide a key reference point for the early evolution of the solar system, the structure, and composition of the Kuiper belt and the interaction between debris disks and planets.« less
NASA Astrophysics Data System (ADS)
Millan-Gabet, R.; Monnier, J. D.; Berger, J.-P.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Thureau, N.
2006-07-01
We report on the detection of localized off-center emission at 1-4 AU in the circumstellar environment of the young stellar object AB Aurigae. We used closure-phase measurements in the near-infrared that were made at the long-baseline interferometer IOTA, the first obtained on a young stellar object using this technique. When probing sub-AU scales, all closure phases are close to zero degrees, as expected given the previously determined size of the AB Aurigae inner-dust disk. However, a clear closure-phase signal of -3.5d +/- 0.5d is detected on one triangle containing relatively short baselines, requiring a high degree of non-point symmetry from emission at larger (AU-sized) scales in the disk. We have not identified any alternative explanation for these closure-phase results, and we demonstrate that a ``disk hot spot'' model can fit our data. We speculate that such detected asymmetric near-infrared emission might arise as a result of localized viscous heating due to a gravitational instability in the AB Aurigae disk, or to the presence of a close stellar companion or accreting substellar object.
New Clues to the Mysterious Origin of Wide-Separation Planetary-Mass Companions
NASA Astrophysics Data System (ADS)
Bryan, Marta
2018-01-01
Over the past decade, direct imaging searches for young gas giant planets have revealed a new population of young planetary-mass companions with extremely wide orbital separations (>50 AU) and masses near or at the deuterium-burning limit. These companions pose significant challenges to standard formation models, including core accretion, disk instability, and turbulent fragmentation. In my talk I will discuss new results from high-contrast imaging and high-resolution infrared spectroscopy of a sample of directly imaged wide-separation companions that can be used to directly test these three competing formation mechanisms. First, I use high-contrast imaging to strongly discount scattering as a hypothesis for the origin of wide-separation companions. Second, I measure rotation rates of a subset of these companions using their near-IR spectra, and place the first constraints on the angular momentum evolution of young planetary-mass objects. Finally, I explore the ability of high-resolution spectroscopy to constrain the atmospheric C/O ratios of these companions, providing a complementary test of competing formation scenarios.
Rotation of Low-mass Stars in Upper Scorpius and ρ Ophiuchus with K2
NASA Astrophysics Data System (ADS)
Rebull, L. M.; Stauffer, J. R.; Cody, A. M.; Hillenbrand, L. A.; David, T. J.; Pinsonneault, M.
2018-05-01
We present an analysis of K2 light curves (LCs) for candidate members of the young Upper Sco (USco) association (∼8 Myr) and the neighboring ρ Oph embedded cluster (∼1 Myr). We establish ∼1300 stars as probable members, ∼80% of which are periodic. The phased LCs have a variety of shapes which can be attributed to physical causes ranging from stellar pulsation and stellar rotation to disk-related phenomena. We identify and discuss a number of observed behaviors. The periods are ∼0.2–30 days with a peak near 2 days and the rapid period end nearing breakup velocity. M stars in the young USco region rotate systematically faster than GK stars, a pattern also present in K2 data for the older Pleiades and Praesepe systems. At higher masses (types FGK), the well-defined period–color relationship for slowly rotating stars seen in the Pleiades and Praesepe systems is not yet present in USco. Circumstellar disks are present predominantly among the more slowly rotating M stars in USco, with few disks in the subday rotators. However, M dwarfs with disks rotate faster on average than FGK systems with disks. For four of these disked M dwarfs, we provide direct evidence for disk locking based on the K2 LC morphologies. Our preliminary analysis shows a relatively mass-independent spin-up by a factor of ∼3.5 between USco and the Pleiades, then mass-dependent spin-down between Pleiades and Praesepe.
The Gaseous Disks of Young Stellar Objects
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
2006-01-01
Disks represent a crucial stage in the formation of stars and planets. They are novel astrophysical systems with attributes intermediate between the interstellar medium and stars. Their physical properties are inhomogeneous and are affected by hard stellar radiation and by dynamical evolution. Observing disk structure is difficult because of the small sizes, ranging from as little as 0.05 AU at the inner edge to 100-1000 AU at large radial distances. Nonetheless, substantial progress has been made by observing the radiation emitted by the dust from near infrared to mm wavelengths, i.e., the spectral energy distribution of an unresolved disk. Many fewer results are available for the gas, which is the main mass component of disks over much of their lifetime. The inner disk gas of young stellar objects (henceforth YSOs) have been studied using the near infrared rovibrational transitions of CO and a few other molecules, while the outer regions have been explored with the mm and sub-mm lines of CO and other species. Further progress can be expected in understanding the physical properties of disks from observations with sub-mm arrays like SMA, CARMA and ALMA, with mid infrared measurements using Spitzer, and near infrared spectroscopy with large ground-based telescopes. Intense efforts are also being made to model the observations using complex thermal-chemical models. After a brief review of the existing observations and modeling results, some of the weaknesses of the models will be discussed, including the absence of good laboratory and theoretical calculations for essential microscopic processes.
AN UNBIASED 1.3 mm EMISSION LINE SURVEY OF THE PROTOPLANETARY DISK ORBITING LkCa 15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punzi, K. M.; Kastner, J. H.; Hily-Blant, P.
2015-06-01
The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ∼2–5 Myr old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210–270 GHz (1.4–1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimétrique (IRAM) 30 m telescope. The survey demonstrates that in this spectral region, the most readily detectable lines are those of CO andmore » its isotopologues {sup 13}CO and C{sup 18}O, as well as HCO{sup +}, HCN, CN, C{sub 2}H, CS, and H{sub 2}CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2–1) and C{sub 2}H (3–2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C{sub 2}H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high-resolution interferometric imaging of disks.« less
Formation of new stellar populations from gas accreted by massive young star clusters.
Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André
2016-01-28
Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.
Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-04-01
Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.
Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure .
NASA Astrophysics Data System (ADS)
Ábrahám, P.; Varga, J.; Gabányi, K. É.; Chen, L.; Kóspál, Á.; Ratzka, Th.; van Boekel, R.; Mosoni, L.; Henning, Th.
DG Tau is a low-mass young star whose strongly accreting disk shows a variable 10 mu m silicate feature, that may even turn temporarily from emission to absorption. Aiming to find the physical reason of this variability, we analysed multiepoch VLTI/MIDI interferometric observations. We found that the inner disk within 3 au radius exhibits a 10 mu m absorption feature related to amorphous silicate grains, while the outer disk displays a variable crystalline feature in emission, similar in shape to the spectrum of comet Hale-Bopp. The variability may be related to a fluctuating amount of dusty material above the disk surface, possibly due to turbulence.
THE VERTICAL MOTIONS OF MONO-ABUNDANCE SUB-POPULATIONS IN THE MILKY WAY DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Rix, Hans-Walter; Hogg, David W.
2012-08-20
We present the vertical kinematics of stars in the Milky Way's stellar disk inferred from Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE) G-dwarf data, deriving the vertical velocity dispersion, {sigma}{sub z}, as a function of vertical height |z| and Galactocentric radius R for a set of 'mono-abundance' sub-populations of stars with very similar elemental abundances [{alpha}/Fe] and [Fe/H]. We find that all mono-abundance components exhibit nearly isothermal kinematics in |z|, and a slow outward decrease of the vertical velocity dispersion: {sigma}{sub z}(z, R | [{alpha}/Fe], [Fe/H]) Almost-Equal-To {sigma}{sub z}([{alpha}/Fe], [Fe/H]) Multiplication-Sign exp (- (R - R{submore » 0})/7 kpc). The characteristic velocity dispersions of these components vary from {approx}15 km s{sup -1} for chemically young, metal-rich stars with solar [{alpha}/Fe], to {approx}> 50 km s{sup -1} for metal-poor stars that are strongly [{alpha}/Fe]-enhanced, and hence presumably very old. The mean {sigma}{sub z} gradient (d{sigma}{sub z}/dz) away from the mid-plane is only 0.3 {+-} 0.2 km s{sup -1} kpc{sup -1}. This kinematic simplicity of the mono-abundance components mirrors their geometric simplicity; we have recently found their density distribution to be simple exponentials in both the z- and R-directions. We find a continuum of vertical kinetic temperatures ({proportional_to}{sigma}{sup 2}{sub z}) as a function of ([{alpha}/Fe], [Fe/H]), which contribute to the total stellar surface-mass density approximately as {Sigma}{sub R{sub 0}}({sigma}{sup 2}{sub z}){proportional_to} exp(-{sigma}{sup 2}{sub z}). This and the existence of isothermal mono-abundance populations with intermediate dispersions (30-40 km s{sup -1}) reject the notion of a thin-thick-disk dichotomy. This continuum of disk components, ranging from old, 'hot', and centrally concentrated ones to younger, cooler, and radially extended ones, argues against models where the thicker disk portions arise from massive satellite infall or heating; scenarios where either the oldest disk portion was born hot, or where internal evolution plays a major role, seem the most viable. In addition, the wide range of {sigma}{sub z}([{alpha}/Fe], [Fe/H]) combined with a constant {sigma}{sub z}(z) for each abundance bin provides an independent check on the precision of the SEGUE-derived abundances: {delta}{sub [{alpha}/Fe]} Almost-Equal-To 0.07 dex and {delta}{sub [Fe/H]} Almost-Equal-To 0.15 dex. The slow radial decline of the vertical dispersion presumably reflects the decrease in disk surface-mass density. This measurement constitutes a first step toward a purely dynamical estimate of the mass profile of the stellar and gaseous disk in our Galaxy.« less
ALMA Studies of the Disk-Jet-Outflow Connection
NASA Astrophysics Data System (ADS)
Dougados, Catherine; Louvet, F.; Mardones, D.; Cabrit, S.
2017-06-01
I will describe in this contribution recent results obtained with ALMA on the origin of the disk/jet/outflow connexion in T Tauri stars. I will first present ALMA observations of the disk associated with the jet source Th 28, which question previous jet rotation measurements in this source and the implications drawn from them. I will then discuss Cycle 2 ALMA observations of the disk and small scale CO outflow associated with the prototypical edge-on HH 30 source. The unprecedented angular resolution of this dataset brings new constraints on the origin of the CO outflows in young stars.
ROTATION PERIODS OF YOUNG BROWN DWARFS: K2 SURVEY IN UPPER SCORPIUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholz, Alexander; Kostov, Veselin; Jayawardhana, Ray
2015-08-20
We report rotational periods for 16 young brown dwarfs in the nearby Upper Scorpius association, based on 72 days of high-cadence, high-precision photometry from the Keplerspace telescope’s K2 mission. The periods range from a few hours to two days (plus one outlier at five days), with a median just above one day, confirming that brown dwarfs, except at the very youngest ages, are fast rotators. Interestingly, four of the slowest rotators in our sample exhibit mid-infrared excess emission from disks; at least two also show signs of disk eclipses and accretion in the light curves. Comparing these new periods withmore » those for two other young clusters and simple angular momentum evolution tracks, we find little or no rotational braking in brown dwarfs between 1–10 Myr, in contrast to low-mass stars. Our findings show that disk braking, while still at work, is inefficient in the substellar regime, thus providing an important constraint on the mass dependence of the braking mechanism.« less
Optical Monitoring of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.
2018-06-01
Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.
GALEX Wide-field Ultraviolet Imaging of NGC 5128 (Centaurus-A)
NASA Technical Reports Server (NTRS)
Neff, S. G.; Shiminovich, D.; Martin, C. D.
2004-01-01
We present new wide-field ultraviolet (UV) observations of the nearby active galaxy NGC 5128 (Centaurus A). The GALEX images provide 3.5 sec - 5.5 sec resolution over a 1.2 degree field, in two broad bands (1350- 1800A and 1800-3000A, centered at 1550A and 2200A). We detect ultraviolet emission associated with the radio and X-ray jets in both bands, extending out to a distance of approx. 40kpc from the galaxy nucleus. We compare the radio, X-ray, and UV jets, and discuss the feasibility of jet-induced star formation. We show how the UV emission relates to the optical filaments: HI and CO clouds, stellar shells, X-ray arcs, and young star chains previously reported by other authors. In the central region of NGC 5128, we detect UV emission from young super-star-clusters and associated ionized gas located along the near edge and on the upper surface of the dusty warped disk. All of the UV emission in the galaxy appears to result from intense star formation in the disk; none appears to be associated with the old stellar population of the main galaxy body, and no UV emission from the AGN is detected. We estimate the numbers and ages of the massive young stars present, and the associated ionized gas masses. Finally, we compare Cen-A to high redshift radio galaxies which were much more numerous in the earlier universe. The GALEX satellite is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission.
NASA Astrophysics Data System (ADS)
Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.; Alencar, S. H. P.
2016-02-01
Context. Rotational evolution in young stars is described by pre-main sequence evolutionary tracks including non-gray boundary conditions, rotation, conservation of angular momentum, and simulations of disk-locking. Aims: By assuming that disk-locking is the regulation mechanism for the stellar angular velocity during the early stages of pre-main sequence evolution, we use our rotating models and observational data to constrain disk lifetimes (Tdisk) of a representative sample of low-mass stars in two young clusters, the Orion Nebula cluster (ONC) and NGC 2264, and to better understand their rotational evolution. Methods: The period distributions of the ONC and NGC 2264 are known to be bimodal and to depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated sets of evolutionary tracks from a fully convective configuration with low central temperatures (before D- and Li-burning). We assumed that the evolution of fast rotators can be represented by models considering conservation of angular momentum during all stages and of moderate rotators by models considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. Results: The resulting mass distribution for the bulk of the cluster population is in the ranges of 0.2-0.4 M⊙ and 0.1-0.6 M⊙ for the ONC and NGC 2264, respectively. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects still locked in their disks, with a locking period (Plock) of ~8 days. For NGC 2264 we make two hypotheses: (1) the stars in the secondary peak are still locked with Plock = 5 days, and (2) NGC 2264 is in a later stage in the rotational evolution. Hypothesis 2 implies in a disk-locking scenario with Plock = 8 days, a disk lifetime of 1 Myr and, after that, constant angular momentum evolution. We then simulated the period distribution of NGC 2264 when the mean age of the cluster was 1 Myr. Dichotomy and bimodality appear in the simulated distribution, presenting one peak at 2 days and another one at 5-7 days, indicating that the assumption of Plock = 8 days is plausible. Our hypotheses are compared with observational disk diagnoses available in the literature for the ONC and NGC 2264, such as near-infrared excess, Hα emission, and spectral energy distribution slope in the mid-infrared. Conclusions: Disk-locking models with Plock = 8 days and 0.2 Myr ≤ Tdisk ≤ 3 Myr are consistent with observed periods of moderate rotators of the ONC. For NGC 2264, the more promising explanation for the observed period distribution is an evolution with disk-locking (with Plock near 8 days) during the first 1 Myr, approximately, but after this, the evolution continued with constant angular momentum. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A96
Shaping Disk Galaxy Stellar Populations via Internal and External Processes
NASA Astrophysics Data System (ADS)
Roškar, Rok
2015-03-01
In recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.
The Evolution of Gas in Protoplanetary Systems: The Herschel GASPS Open Time Key Programme
NASA Technical Reports Server (NTRS)
Roberge, A.; Dent, W.
2010-01-01
The Gas in Protoplanetary Systems (GASPS) Open Time Key Programme for the Herschel Space Observatory will be the first extensive, systematic survey of gas in circumstellar disks over the critical transition from gas-rich protoplanetary through to gas-poor debris. The brightest spectral lines from disks lie in the far-infrared and arise from radii spanning roughly 10 to 100 AU, where giant planets are expected to form. Herschel is uniquely able to observe this wavelength regime with the sensitivity to allow a large scale survey. We will execute a 2-phase study using the PACS instrument. Phase I is a spectroscopic survey about 250 young stars for fine structure emission lines of [CII] (at 157 microns) and [OI] (at 63 microns). In Phase II, the brightest sources will be followed up with additional PACS spectroscopy ([OI] at 145 microns and some rotational lines of water). We expect that the gas mass sensitivity will be more than an order of magnitude lower than that achieved by ISO and Spitzer or expected for SOFIA. We will also measure the dust continuum to an equivalent mass sensitivity. We will observe several nearby clusters with ages from 1 to 30 Myr, encompassing a wide range of disk masses and stellar luminosities. The sample covers disk evolution from protoplanetary disks through to young debris disks, i.e. the main epoch of planet formation. With this extensive dataset, the GASPS project will: 1) trace gas and dust in the planet formation region across a large multivariate parameter space, 2) provide the first definitive measurement of the gas dissipation timescale in disks, 3) elucidate the evolutionary link between protoplanetary and debris disks, 4) investigate water abundances in the planetforming regions of disks, and 5) provide a huge database of disk observations and models with long-lasting legacy value for follow-up studies.
Possible Analog for Early Solar System Disk Found
NASA Astrophysics Data System (ADS)
1998-10-01
SOCORRO, NM -- The smallest protoplanetary disk ever seen rotating around a young star has been detected by an international team of astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope. If confirmed, this result could provide an "ideal laboratory" for studying potential planet-forming disks of a size similar to the one that formed our Solar System. The researchers used the VLA to image the core of an object known as NGC 2071, some 1300 light years from Earth. The team of astronomers was able to measure the rotation of a disk seen around a young star by tracking water masers - clusters of super-heated molecules that amplify radio emission -- within it. This is the first direct evidence of such motion in a protoplanetary disk. "This result is exciting because only through understanding protoplanetary disks can scientists answer the question of how easy - or hard - it is to create planets," said Jose M. Torrelles of the Institute for Astrophysics of Andalucia in Granada, Spain, leader of the research team. "Other protoplanetary disks have been found, but the system in NGC 2071 is the first that may be comparable to the disk that created our own Solar System. Its size is similar to the orbit of the planet Neptune around our Sun." "Because there is very little matter in one of these protoplanetary disks -- typically less than one hundredth the mass of our Sun -- they are extremely difficult to detect and study" said Paul Ho of the Harvard-Smithsonian Center for Astrophysics and another team member. "We needed the highest possible resolution of the VLA to do this work." The VLA is an array of twenty-seven radio dishes, each 25 meters in diameter, located outside of Socorro. The individual antennas can be moved along tracks to change the array's alignment. The work on NGC 2071 was done when the array was stretched out to over 36 kilometers, thus providing the extremely high resolution necessary to image the system. This disk, although tiny when compared to some suspected planet-forming systems recently discovered by other astronomical techniques, contains several compact clusters of water molecules that amplify microwave radio emissions in a manner similar to the way a laser amplifies light. By tracking the motions of these powerful, naturally occurring amplifiers, or "masers," the researchers could determine that a mass about the size of our Sun lies at the center of this disk. The researchers also detected a powerful radio jet, centered on the disk of water masers but perpendicular to it, shooting out of NGC 2071. Theorists have speculated that such jets are produced by accretion disks around very young stars, where flowing winds are driven outward by material that fails to fall onto the star. This may represent the smallest -- and perhaps earliest -- example of this disk-jet phenomenon seen to date. "We're pretty sure that systems like this, with disks of gas and dust surrounding a young star, turn into solar systems containing planets, moons and comets, but we don't know exactly how they do it," said Dr. Luis Rodriguez of the National Autonomous University of Mexico. "This particular object, because we can see all these phenomena and measure the rotation speeds and masses, is going to provide us an ideal laboratory for studying the mysterious process of planet formation." In addition to Torrelles and Ho, the other authors of the report published in the 1 October 1998 issue of the Astrophysical Journal were Drs. Jose F. Gomez of the Laboratory for Space and Astrophysics, Guillem Anglada of the Institute of Astrophysics of Andalucia, Spain, and Rodriguez and Dr. Salvador Curiel of the National Autonomous University of Mexico. The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by the Associated Universities, Inc.
GASPS—A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
NASA Astrophysics Data System (ADS)
Dent, W. R. F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.; Brittain, S.; Carmona, A.; Ciardi, D.; Danchi, W.; Donaldson, J.; Duchene, G.; Eiroa, C.; Fedele, D.; Grady, C.; de Gregorio-Molsalvo, I.; Howard, C.; Huélamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mathews, G.; Meeus, G.; Mendigutía, I.; Montesinos, B.; Morales-Calderon, M.; Mora, A.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Pinte, C.; Podio, L.; Ramsay, S. K.; Riaz, B.; Riviere-Marichalar, P.; Roberge, A.; Sandell, G.; Solano, E.; Tilling, I.; Torrelles, J. M.; Vandenbusche, B.; Vicente, S.; White, G. J.; Woitke, P.
2013-05-01
We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted ~250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 μm the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 μm, [CII] at 157 μm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 μm. Additionally, GASPS included continuum photometry at 70, 100 and 160 μm, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 μm was the brightest line seen in almost all objects, by a factor of ~10. Overall [OI]63 μm detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI]63 μm detection of ~10-5 Msolar. Normalising to a distance of 140 pc, 84% of objects with dust masses >=10-5 Msolar can be detected in this line in the present survey; 32% of those of mass 10-6-10-5 Msolar, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were ~50%. For each association in the 5-20 Myr age range, ~2 stars remain detectable in [OI]63 μm, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that ~18% of stars retain a gas-rich disk of total mass ~1 MJupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 μm, [CII]157 μm and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
Stellar metallicity variations across spiral arms in disk galaxies with multiple populations
NASA Astrophysics Data System (ADS)
Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F.
2018-03-01
This Letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution N-body simulations, we model composite stellar discs, made of kinematically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.
NASA Astrophysics Data System (ADS)
Durisen, Richard H.; Mejia, Annie C.; Pickett, Brian K.; Hartquist, Thomas W.
2001-12-01
Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large disks, at radii of hundreds to thousands of AU from the central mass. This is particularly true for methanol (CH3OH), for which linear distributions of masers are found with disklike kinematics. In three-dimensional hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on.
Modeling Protoplanetary Disks to Characterize the Evolution of their Structure
NASA Astrophysics Data System (ADS)
Allen, Magdelena; van der Marel, Nienke; Williams, Jonathan
2018-01-01
Stars form from gravitationally collapsing clouds of gas and dust. Most young stars retain a protoplanetary disk for a few million years. This disk’s dust reemits stellar flux in the infrared, producing a spectral energy distribution (SED) observable by Spitzer and other telescopes. To understand the inner clearing of dust cavities and evolution in the SED, we used the Chiang & Goldreich two-layer approximation. We first wrote a python script based on refinements by Dullemond that includes a hot, puffed inner rim, shadowed mid region, flaring outer disk, and a variable inner cavity. This was then coupled with a Markov Chain Monte Carlo procedure to fit the observed SEDs of disks in the star forming Lupus region. The fitting procedure recovers physical characteristics of the disk including temperature, size, mass, and surface density. We compare the characteristics of circumstellar disks without holes and more evolved transition disks with cleared inner regions.
ALICE Data Release: A Revaluation of HST-NICMOS Coronagraphic Images
NASA Astrophysics Data System (ADS)
Hagan, J. Brendan; Choquet, Élodie; Soummer, Rémi; Vigan, Arthur
2018-04-01
The Hubble Space Telescope NICMOS instrument was used from 1997 to 2008 to perform coronagraphic observations of about 400 targets. Most of them were part of surveys looking for substellar companions or resolved circumstellar disks to young nearby stars, making the NICMOS coronagraphic archive a valuable database for exoplanets and disks studies. As part of the Archival Legacy Investigations of Circumstellar Environments program, we have consistently reprocessed a large fraction of the NICMOS coronagrahic archive using advanced starlight subtraction methods. We present here the high-level science products of these re-analyzed data, which we delivered back to the community through the Mikulski Archive for Space Telescopes: doi:10.17909/T9W89V. We also present the second version of the HCI-FITS format (for High-Contrast Imaging FITS format), which we developed as a standard format for data exchange of imaging reduced science products. These re-analyzed products are openly available for population statistics studies, characterization of specific targets, or detected point-source identification.
High Energy (X-ray/UV) Radiation Fields of Young, Low-Mass Stars Observed with Chandra and HST
NASA Astrophysics Data System (ADS)
Brown, Alexander; Brown, J. M.; Herczeg, G.; Bary, J.; Walter, F. M.; Ayres, T. R.
2010-01-01
Pre-main-sequence (PMS) stars are strong UV and X-ray emitters and the high energy (UV/X-ray) radiation from the central stars directly influences the physical and chemical processes in their protoplanetary disks. Gas and dust in protoplanetary systems are excited by these photons, which are the dominant ionization source for hundreds of AU around the star. X-rays penetrate deep into disks and power complex chemistry on grain surfaces. ``Transitional disks'' are a crucial and important evolutionary stage for PMS stars and protoplanetary systems. These disks have transformed most of the dust and gas in their inner regions into planetesimals or larger solid bodies. The disks show clear inner ``holes'' that almost certainly harbor infant planetary systems, given the very sharp gap boundaries inferred. Transitional disks are rare and represent a short-lived phase of PMS disk evolution. We have observed a sample of PMS stars at a variety of evolutionary stages, including the transitional disk stars GM Aur (K5) and HD135344B (F4). Chandra ACIS CCD-resolution X-ray spectra and HST STIS and COS FUV spectra are being used to reconstruct the full high energy (X-ray/EUV/FUV/NUV) spectra of these young stars, so as to allow detailed modeling of the physics and chemistry of their circumstellar environments, thereby providing constraints on the formation process of planetary systems. This work is supported by Chandra grants GO8-9024X, GO9-0015X and GO9-0020B and HST grants for GO projects 11336, 11828, and 11616 to the University of Colorado.
A High Resolution View of Galactic Centers: Arp 220 and M31
NASA Astrophysics Data System (ADS)
Lockhart, Kelly E.
The centers of galaxy are small in size and yet incredibly complex. They play host to supermassive black holes and nuclear star clusters (NSCs) and are subject to large gas inows, nuclear starbursts, and active galactic nuclear (AGN) activity. They can also be the launching site for large-scale galactic outows. However, though these systems are quite important to galactic evolution, observations are quite difficult due to their small size. Using high spatial resolution narrowband imaging with HST/WFC3 of Arp 220, a latestage galaxy merger, I discover an ionized gas bubble feature ( r = 600 pc) just off the nucleus. The bubble is aligned with both the western nucleus and with the large-scale galactic outflow. Using energetics arguments, I link the bubble with a young, obscured AGN or with an intense nuclear starburst. Given its alignment along the large-scale outflow axis, I argue that the bubble presents evidence for a link between the galactic center and the large-scale outflow. I also present new observations of the NSC in M31, the closest large spiral galaxy to our own. Using the OSIRIS near-infrared integral field spectrograph (IFS) on Keck, I map the kinematics of the old stellar population in the eccentric disk of the NSC. I compare the observations to models to derive a precession speed of the disk of 0+/-5 km s-1 pc-1 , and hence confirm that winds from the old stellar population may be the source of gas needed to form the young stellar population in the NSC. Studies of galactic centers are dependent on high spatial resolution observations. In particular, IFSs are ideal instruments for these studies as they provide two-dimensional spectroscopy of the field of view, enabling 2D kinematic studies. I report on work to characterize and improve the data reduction pipeline of the OSIRIS IFS, and discuss implications for future generations of IFS instrumentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soummer, Rémi; Perrin, Marshall D.; Pueyo, Laurent
We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943, HD 191089, and HD 202917) for the first time in near-infrared scattered light by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic images obtained between 1999 and 2006. One of these disks (HD 202917) was previously resolved at visible wavelengths using the HST/Advanced Camera for Surveys. To obtain these new disk images, we performed advanced point-spread function subtraction based on the Karhunen-Loève Image Projection algorithm on recently reprocessed NICMOS data with improved detector artifact removal (Legacy Archive PSF Library And Circumstellar Environments (LAPLACE) Legacy program). Three of themore » disks (HD 30447, HD 35841, and HD 141943) appear edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The inclined disks have been sculpted into rings; in particular, the disk around HD 202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr), nearby (40-100 pc) F and G stars, and one (HD 141943) is a close analog to the young Sun during the epoch of terrestrial planet formation. Our discoveries increase the number of debris disks resolved in scattered light from 19 to 23 (a 21% increase). Given their youth, proximity, and brightness (V = 7.2-8.5), these targets are excellent candidates for follow-up investigations of planet formation at visible wavelengths using the HST/Space Telescope Imaging Spectrograph coronagraph, at near-infrared wavelengths with the Gemini Planet Imager and Very Large Telescope/SPHERE, and at thermal infrared wavelengths with the James Webb Space Telescope NIRCam and MIRI coronagraphs.« less
A hybrid scenario for gas giant planet formation in rings
NASA Astrophysics Data System (ADS)
Durisen, Richard H.; Cai, Kai; Mejía, Annie C.; Pickett, Megan K.
2005-02-01
The core-accretion mechanism for gas giant formation may be too slow to create all observed gas giant planets during reasonable gas disk lifetimes, but it has yet to be firmly established that the disk instability model can produce permanent bound gaseous protoplanets under realistic conditions. Based on our recent simulations of gravitational instabilities in disks around young stars, we suggest that, even if instabilities due to disk self-gravity do not produce gaseous protoplanets directly, they may create persistent dense rings that are conducive to accelerated growth of gas giants through core accretion. The rings occur at and near the boundary between stable and unstable regions of the disk and appear to be produced by resonances with discrete spiral modes on the unstable side.
Heating the Primordial Soup: X-raying the Circumstellar Disk of T Cha
NASA Astrophysics Data System (ADS)
Principe, David
2012-09-01
T Cha is the only known example of a nearly edge-on actively accreting young star-disk system within 100 pc, and is likely orbited by a very low-mass companion or massive planet that has cleared an inner hole in its disk. We propose to obtain a 150 ks observation of T Cha with Chandra's HETGS with twin goals of (a) determining the intrinsic X-ray spectrum of T Cha so as to establish whether its X-ray emission can be attributed to accretion shocks or coronal emission, and (b) model the spectrum of X-rays absorbed by its gaseous disk. These results will serve as essential input to models of irradiated, planet-forming disks.
Dynamical evolution of dense star clusters in galactic nuclei
NASA Astrophysics Data System (ADS)
Haas, Jaroslav; Šubr, Ladislav
2014-05-01
By means of direct numerical N-body modeling, we investigate the orbital evolution of an initially thin, central mass dominated stellar disk. We include the perturbative gravitational influence of an extended spherically symmetric star cluster and the mutual gravitational interaction of the stars within the disk. Our results show that the two-body relaxation of the disk leads to significant changes of its radial density profile. In particular, the disk naturally evolves, for a variety of initial configurations, a similar broken power-law surface density profile. Hence, it appears that the single power-law surface density profile ∝R -2 suggested by various authors to describe the young stellar disk observed in the Sgr A* region does not match theoretical expectations.
NASA Astrophysics Data System (ADS)
Follette, Katherine Brutlag
What processes are responsible for the dispersal of protoplanetary disks? In this dissertation, beginning with a brief Introduction to planet detection, disk dispersal and high-contrast imaging in Chapter 1, I will describe how ground-based adaptive optics (AO) imaging can help to inform these processes. Chapter 2 presents Polarized Differential Imaging (PDI) of the transitional disk SR21 at H-band taken as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS). These observations were the first to show that transition disk cavities can appear markedly different at different wavelengths. The observation that the sub-mm cavity is absent in NIR scattered light is consistent with grain filtration at a planet-induced gap edge. Chapter 3 presents SEEDS data of the transition disk Oph IRS 48. This highly asymmetrical disk is also most consistent with a planet-induced clearing mechanism. In particular, the images reveal both the disk cavity and a spiral arm/divot that had not been imaged previously. This study demonstrates the power of multiwavelength PDI imaging to verify disk structure and to probe azimuthal variation in grain properties. Chapter 4 presents Magellan visible light adaptive optics imaging of the silhouette disk Orion 218-354. In addition to its technical merits, these observations reveal the surprising fact that this very young disk is optically thin at H-alpha. The simplest explanation for this observation is that significant grain growth has occurred in this disk, which may be responsible for the pre-transitional nature of its SED. Chapter 5 presents brief descriptions of several other works-in-progress that build on my previous work. These include the MagAO Giant Accreting Protoplanet Survey (GAPlanetS), which will probe the inner regions of transition disks at unprecedented resolution in search of young planets in the process of formation. Chapters 6-8 represent my educational research in quantitative literacy, beginning with an introduction to the literature and study motivation in Chapter 6. Chapter 7 describes the development and validation of the Quantitative Reasoning for College Science (QuaRCS) Assessment instrument. Chapter 8 briefly describes the next steps for Phase II of the QuaRCS study.
NASA Astrophysics Data System (ADS)
Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.
2018-04-01
We present observations of an Hα-emitting knot in the thick disk of NGC 4013, demonstrating it is an H II region surrounding a cluster of young hot stars z = 860 pc above the plane of this edge-on spiral galaxy. With LBT/MODS spectroscopy we show that this H II region has an Hα luminosity ∼4–7 times that of the Orion nebula, with an implied ionizing photon production rate log Q 0 ≈ 49.4 (photons s‑1). HST/WFPC2 imaging reveals an associated blue continuum source with M V = ‑8.21 ± 0.24. Together, these properties demonstrate that the H II region is powered by a young cluster of stars formed in situ in the thick disk, with an ionizing photon flux equivalent to ∼6 O7 V stars. If we assume ≈6 other extraplanar Hα-emitting knots are H II regions, the total thick disk star formation rate of NGC 4013 is ∼5 × 10‑4 M ⊙ yr‑1. The star formation likely occurs in the dense clouds of the interstellar thick disk seen in optical images of dust extinction and CO emission.
Obscuring and Feeding Supermassive Black Holes with Evolving Nuclear Star Clusters
NASA Astrophysics Data System (ADS)
Schartmann, M.; Burkert, A.; Krause, M.; Camenzind, M.; Meisenheimer, K.; Davies, R. I.
2010-05-01
Recently, high-resolution observations made with the help of the near-infrared adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centers of a sample of Seyfert galaxies. With the help of high-resolution hydrodynamical simulations with the pluto code, we follow the evolution of such clusters, especially focusing on mass and energy feedback from young stars. This leads to a filamentary inflow of gas on large scales (tens of parsecs), whereas a turbulent and very dense disk builds up on the parsec scale. Here we concentrate on the long-term evolution of the nuclear disk in NGC 1068 with the help of an effective viscous disk model, using the mass input from the large-scale simulations and accounting for star formation in the disk. This two-stage modeling enables us to connect the tens-of-parsecs scale region (observable with SINFONI) with the parsec-scale environment (MIDI observations). At the current age of the nuclear star cluster, our simulations predict disk sizes of the order 0.8 to 0.9 pc, gas masses of order 106 M⊙, and mass transfer rates through the inner boundary of order 0.025 M⊙ yr-1, in good agreement with values derived from observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choquet, Élodie; Perrin, Marshall D.; Chen, Christine H.
We present the first images of four debris disks observed in scattered light around the young (4–250 Myr old) M dwarfs TWA 7 and TWA 25, the K6 star HD 35650, and the G2 star HD 377. We obtained these images by reprocessing archival Hubble Space Telescope NICMOS coronagraph data with modern post-processing techniques as part of the Archival Legacy Investigation of Circumstellar Environments program. All four disks appear faint and compact compared with other debris disks resolved in scattered light. The disks around TWA 25, HD 35650, and HD 377 appear very inclined, while TWA 7's disk is viewed nearly face-on. The surface brightness of HD 35650's diskmore » is strongly asymmetric. These new detections raise the number of disks resolved in scattered light around M and late-K stars from one (the AU Mic system) to four. This new sample of resolved disks enables comparative studies of heretofore scarce debris disks around low-mass stars relative to solar-type stars.« less
Radiative Transfer Modeling in Proto-planetary Disks
NASA Astrophysics Data System (ADS)
Kasper, David; Jang-Condell, Hannah; Kloster, Dylan
2016-01-01
Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.
Masers in Disks due to Gravitational Instabilities
NASA Astrophysics Data System (ADS)
Mejia, A. C.; Durisen, R. H.; Pickett, B. K.; Hartquist, T. W.
2001-12-01
Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large circumstellar disks, at radii of 100's to 1000's of AU from the central mass. This is particularly true for methanol (CH3OH), where linear distributions of masers are found with disk-like kinematics. In 3D hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on. This work was supported by NASA Origins Program Grant NAGW5-4342, by the Alexander von Humboldt Foundation, and by NASA Planetary Geology and Geophysics Program Grant NAG5-10262.
Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets
Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin
2014-01-01
We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The Drift cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models. PMID:25370190
Disk evolution, element abundances and cloud properties of young gas giant planets.
Helling, Christiane; Woitke, Peter; Rimmer, Paul B; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin
2014-04-14
We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.
Young Debris Disks With Newly Discovered Emission Features
NASA Astrophysics Data System (ADS)
Ballering, N.
2014-04-01
We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90
SED Modeling of 20 Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Tanti, Kamal Kumar
In this paper, we present the spectral energy distributions (SEDs) modeling of twenty massive young stellar objects (MYSOs) and subsequently estimated different physical and structural/geometrical parameters for each of the twenty central YSO outflow candidates, along with their associated circumstellar disks and infalling envelopes. The SEDs for each of the MYSOs been reconstructed by using 2MASS, MSX, IRAS, IRAC & MIPS, SCUBA, WISE, SPIRE and IRAM data, with the help of a SED Fitting Tool, that uses a grid of 2D radiative transfer models. Using the detailed analysis of SEDs and subsequent estimation of physical and geometrical parameters for the central YSO sources along with its circumstellar disks and envelopes, the cumulative distribution of the stellar, disk and envelope parameters can be analyzed. This leads to a better understanding of massive star formation processes in their respective star forming regions in different molecular clouds.
Massive Young Star and its Cradle
2010-07-14
This star-forming region, captured by NASA Spitzer Space Telescope, is dominated by the bright, young star IRAS 13481-6124; it is the first massive baby star for which astronomers could obtain a detailed look at the dusty disk closely encircling it.
A gaseous metal disk around a white dwarf.
Gänsicke, B T; Marsh, T R; Southworth, J; Rebassa-Mansergas, A
2006-12-22
The destiny of planetary systems through the late evolution of their host stars is very uncertain. We report a metal-rich gas disk around a moderately hot and young white dwarf. A dynamical model of the double-peaked emission lines constrains the outer disk radius to just 1.2 solar radii. The likely origin of the disk is a tidally disrupted asteroid, which has been destabilized from its initial orbit at a distance of more than 1000 solar radii by the interaction with a relatively massive planetesimal object or a planet. The white dwarf mass of 0.77 solar mass implies that planetary systems may form around high-mass stars.
Chandra Adds to Story of the Way We Were
NASA Astrophysics Data System (ADS)
2003-05-01
Data from NASA's Chandra X-ray Observatory have enabled astronomers to use a new way to determine if a young star is surrounded by a planet-forming disk like our early Sun. These results suggest that disks around young stars can evolve rapidly to form planets, or they can be disrupted by close encounters with other stars. Chandra observed two young star systems, TW Hydrae and HD 98800, both of which are in the TW Hydrae Association, a loose cluster of 10 million-year-old stars. Observations at infrared and other wavelengths have shown that several stars in the TW Hydrae Association are surrounded by disks of dust and gas. At a distance of about 180 light years from Earth, these systems are among the nearest analogs to the early solar nebula from which Earth formed. "X-rays give us an excellent new way to probe the disks around stars," said Joel Kastner of the Rochester Institute of Technology in Rochester, NY during a press conference today in Nashville, Tenn. at a meeting of the American Astronomical Society. "They can tell us whether a disk is very near to its parent star and dumping matter onto it, or whether such activity has ceased to be important. In the latter case, presumably the disk has been assimilated into larger bodies - perhaps planets--or disrupted." TW Hydrae and HD 98800A Chandra 0th Order Image of HD98800 Kastner and his colleagues found examples of each type of behavior in their study. One star, TW Hydrae, namesake of the TW Hydrae Association, exhibited features in its X-ray spectrum that provide strong, new evidence that matter is accreting onto the star from a circumstellar disk. They concluded that matter is guided by the star's magnetic field onto one or more hot spots on the surface of the star. In contrast, Chandra observations of the young multiple star system HD 98800 revealed that its brightest star, HD 98800A, is producing X-rays much as the Sun does, from a hot upper atmosphere or corona. HD 98800 is a complex multiple-star system consisting of two pairs of stars, called HD 98800A and HD 98800B. These pairs, each of which is about an Earth-Sun distance apart, orbit each other at about the same distance as Pluto orbits the Sun. "Our X-ray results are fully consistent with other observations that show that accretion of matter from a disk in HD 98800A has dropped to a low level," said Kastner. "So Chandra has thrown new weight behind the evidence that any disk in this system has been greatly diminished or destroyed in ten million years, perhaps by the ongoing formation of planets or by the companion stars." The new X-ray technique for studying disks around stars relies on the ability of Chandra's spectrometers to measure the energies of individual X-rays very precisely. By comparing the number of X-rays emitted by hot gas at specific energies from ions such as oxygen and neon, the temperature and density of particles can be determined. This new technique will help astronomers to distinguish between an accretion disk and a stellar corona as the origin of intense X-ray emission from a young star. Other members of the research team are David Huenemoerder, Norbert Schulz, and Claude Canizares from the Massachusetts Institute of Technology, and David Weintraub from Vanderbilt University. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass., for the Office of Space Science at NASA Headquarters, Washington. The image and additional information are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
The Birth of Disks Around Protostars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
The dusty disks around young stars make the news regularly due to their appeal as the birthplace of early exoplanets. But how do disks like these first form and evolve around their newly born protostars? New observations from the Atacama Large Millimeter/submillimeter Array (ALMA) are helping us to better understand this process.Formation from CollapseStars are born from the gravitational collapse of a dense cloud of molecular gas. Long before they start fusing hydrogen at their centers when they are still just hot overdensities in the process of contracting we call them protostars. These low-mass cores are hidden at the hearts of the clouds of molecular gas from which they are born.Aerial image of the Atacama Large Millimeter/submillimeter Array. [EFE/Ariel Marinkovic]During this contraction phase, before a protostar transitions to a pre-main-sequence star (which it does by blowing away its outer gas envelope, halting the stars growth), much of the collapsing material will spin into a centrifugally supported Keplerian disk that surrounds the young protostar. Later, these circumstellar disks will become the birthplace for young planets something for which weve seen observational evidence in recent years.But how do these Keplerian disks which eventually have scales of hundreds of AU first form and grow around protostars? We need observations of these disks in their early stages of formation to understand their birth and evolution a challenging prospect, given the obscuring molecular gas that hides them at these stages. ALMA, however, is up to the task: it can peer through to the center of the gas clouds to see the emission from protostellar cores and their surroundings.ALMA observations of the protostar Lupus 3 MMS. The molecular outflows from the protostar are shown in panel a. Panel b shows the continuum emission, which has a compact component that likely traces a disk surrounding the protostar. [Adapted from Yen et al. 2017]New Disks Revealed?In a recent publication led by Hsi-Wei Yen (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists presents results from ALMAs observations of three very early-stage protostars: Lupus 3 MMS, IRAS 153983559, and IRAS 153982429. ALMAs spectacular resolution allowed Yen and collaborators to infer the presence of a 100-AU Keplerian disk around Lupus 3 MMS, and signatures of infall on scales of 30 AU around the other two sources.The authors construct models of the sources and show that the observations are consistent with the presence of disks around all three sources: a 100-AU disk around a 0.3 solar-mass protostar in the Lupus system, a 20-AU disk around a 0.01 solar-mass protostar in IRAS 153983559, and 6-AU disk around a 0.03 solar-mass protostar in IRAS 153982429.By comparing their observations to those of other early-stage protostars, the authors conclude that in the earliest protostar stage, known as the Class 0 stage, the protostars disk grows rapidly in radius. As the protostar ages and enters the Class I stage, the disk growth stagnates, changing only very slowly after this.These observations mark an important step in our ability to study the gas motions on such small scales at early stages of stellar birth. Additional future studies will hopefully allow us to continue to buildthis picture!CitationHsi-Wei Yen et al 2017 ApJ 834 178. doi:10.3847/1538-4357/834/2/178
Gemini Planet Imager Exoplanet Survey: Key Results Two Years Into The Survey
NASA Astrophysics Data System (ADS)
Marchis, Franck; Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; Esposito, Thomas; Draper, Zachary H.; Macintosh, Bruce; Graham, James R.; GPIES
2016-10-01
The Gemini Planet Imager Exoplanet Survey (GPIES) is targeting 600 young, nearby stars using the GPI instrument. We report here on recent results obtained with this instrument from our team.Rameau et al. (ApJL, 822 2, L2, 2016) presented astrometric monitoring of the young exoplanet HD 95086 b obtained with GPI between 2013 and 2016. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. Under the assumption of a coplanar planet-disk system, the periastron of HD 95086 b is beyond 51 AU. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. Additional photometric and spectroscopic measurements reported by de Rosa et al. (2016, apJ, in press) showed that the spectral energy distribution of HD 95086 b is best fit by low temperature (T~800-1300 K), low surface gravity spectra from models which simulate high photospheric dust content. Its temperature is typical to L/T transition objects, but the spectral type is poorly constrained. HD 95086 b is an important exoplanet to test our models of atmospheric properties of young extrasolar planets.Direct detections of debris disk are keys to infer the collisional past and understand the formation of planetary systems. Two debris disks were recently studied with GPI:- Draper et al. (submitted to ApJ, 2016) show the resolved circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU using both total and polarized H-band intensity. Structures in the disks such as a large brightness asymmetry and symmetric polarization fraction are seen. Additional data would confirm if a large disruption event from a stellar fly-by or planetary perturbations altered the disk density- Esposito et al. (submitted to ApJ, 2016) combined Keck NIRC2 data taken at 1.2-2.3 microns and GPI 1.6 micron total intensity and polarized light detections that probes down to projected separations less than 10 AU to show that the HD 61005 debris disk ("The Moth") support the premise of a planet-perturbed disk.These new data, and additional interesting targets, will be presented and discussed. This work is partially supported by NASA NNX14AJ80G.
NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, A. K.; Dotter, A.; Johnson, C. I.
High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}).more » The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.« less
Stellar populations in spiral galaxies: Broadband versus spectroscopic viewpoints
NASA Astrophysics Data System (ADS)
MacArthur, Lauren Anne
This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful indices are only weakly affected by dust extinction (especially relative to typical measurement uncertainties), and can thus be safely used in spectroscopic studies of dusty systems. Motivated by our previous results, we embarked on a long-term project to determine age and metallicity gradients from absorption features in spiral galaxy spectra from their centers and extending well into their disks for the first time. A pilot sample of 8 barred and unbarred nearby spiral galaxies was observed with Gemini/GMOS and line indices with S/N > 40 per Å were extracted out to ~1-1.5 disk scale lengths. Emission contamination and a suite of instrumental effects were fully taken into account. Reliable line-indices compared with the latest SPS models reveal that; (i) late-type bulges and inner disks are generally young (light-weighted SSP ages <1 to 6 Gyr) with no age gradients, and (ii) late-type spirals have metallicities close to solar at their center decreasing rapidly outward (with gradients of ~-0.3 to -0.7 dex per r d ). Disk contamination into the bulge is an issue but the inferred young ages exclude the interpretation of early rapid collapse or merger origin of late-type bulges. While secular evolution processes are likely the predominant mechanism for the bulge build-up, the strong observed metallicity gradients are not currently supported by such models. Our analysis has demonstrated the feasibility of age and metallicity determinations from longslit spectroscopy of gas rich, star-forming systems. However, a systematic comparison with galaxy properties requires a larger statistical sample. New GMOS longslit spectra acquired recently will augment our data base and contribute to the build-up of this instrumental data base for the study of bulge and disk formation models.
Stellar populations in spiral galaxies: broadband versus spectroscopic viewpoints
NASA Astrophysics Data System (ADS)
MacArthur, Lauren Anne
2006-06-01
This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful indices are only weakly affected by dust extinction (especially relative to typical measurement uncertainties), and can thus be safely used in spectroscopic studies of dusty systems. Motivated by our previous results, we embarked on a long-term project to determine age and metallicity gradients from absorption features in spiral galaxy spectra from their centers and extending well into their disks for the first time. A pilot sample of 8 barred and unbarred nearby spiral galaxies was observed with Gemini/GMOS and line indices with S/N > 40 per Å were extracted out to ~1-1.5 disk scale lengths. Emission contamination and a suite of instrumental effects were fully taken into account. Reliable line-indices compared with the latest SPS models reveal that; (i) late-type bulges and inner disks are generally young (light-weighted SSP ages <= 1 to 6 Gyr) with no age gradients, and (ii) late-type spirals have metallicities close to solar at their center decreasing rapidly outward (with gradients of ~-0.3 to -0.7 dex per r d ). Disk contamination into the bulge is an issue but the inferred young ages exclude the interpretation of early rapid collapse or merger origin of late-type bulges. While secular evolution processes are likely the predominant mechanism for the bulge build-up, the strong observed metallicity gradients are not currently supported by such models. Our analysis has demonstrated the feasibility of age and metallicity determinations from longslit spectroscopy of gas rich, star-forming systems. However, a systematic comparison with galaxy properties requires a larger statistical sample. New GMOS longslit spectra acquired recently will augment our data base and contribute to the build-up of this instrumental data base for the study of bulge and disk formation models.
NASA Astrophysics Data System (ADS)
Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho
2018-02-01
We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.
The protoplanetary disk of FT Tauri: multiwavelength data analysis and modeling
NASA Astrophysics Data System (ADS)
Garufi, A.; Podio, L.; Kamp, I.; Ménard, F.; Brittain, S.; Eiroa, C.; Montesinos, B.; Alonso-Martínez, M.; Thi, W. F.; Woitke, P.
2014-07-01
Context. Investigating the evolution of protoplanetary disks is crucial for our understanding of star and planet formation. There have been several theoretical and observational studies in past decades to advance this knowledge. The launch of satellites operating at infrared wavelengths, such as the Spitzer Space Telescope and the Herschel Space Observatory, has provided important tools for investigating the properties of circumstellar disks. Aims: FT Tauri is a young star in the Taurus star forming region that was included in a number of spectroscopic and photometric surveys. We investigate the properties of the star, the circumstellar disk, and the accretion/ejection processes and propose a consistent gas and dust model also as a reference for future observational studies. Methods: We performed a multiwavelength data analysis to derive the basic stellar and disk properties, as well as mass accretion/outflow rate from TNG/DOLoRes, WHT/LIRIS, NOT/NOTCam, Keck/NIRSpec, and Herschel/PACS spectra. From the literature, we compiled a complete spectral energy distribution. We then performed detailed disk modeling using the MCFOST and ProDiMo codes. Multiwavelength spectroscopic and photometric measurements were compared with the reddened predictions of the codes in order to constrain the disk properties. Results: We have determined the stellar mass (~ 0.3 M⊙), luminosity (~ 0.35 L⊙), and age (~ 1.6 Myr), as well as the visual extinction of the system (1.8 mag). We estimate the mass accretion rate (~ 3 × 10-8 M⊙/yr) to be within the range of accreting objects in Taurus. The evolutionary state and the geometric properties of the disk are also constrained. The radial extent (0.05 to 200 AU), flaring angle (power law with exponent =1.15), and mass (0.02 M⊙) of the circumstellar disk are typical of a young primordial disk. This object can serve as a benchmark for primordial disks with significant mass accretion rate, high gas content, and typical size. Based on Herschel data. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 3, 4 and Appendix A are available in electronic form at http://www.aanda.org
KINEMATICS OF THE OUTFLOW FROM THE YOUNG STAR DG TAU B: ROTATION IN THE VICINITIES OF AN OPTICAL JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata, Luis A.; Lizano, Susana; Rodríguez, Luis F.
2015-01-10
We present {sup 12}CO(2-1) line and 1300 μm continuum observations made with the Submillimeter Array of the young star DG Tau B. We find, in the continuum observations, emission arising from the circumstellar disk surrounding DG Tau B. The {sup 12}CO(2-1) line observations, on the other hand, revealed emission associated with the disk and the asymmetric outflow related with this source. Velocity asymmetries about the flow axis are found over the entire length of the flow. The amplitude of the velocity differences is of the order of 1-2 km s{sup –1} over distances of about 300-400 AU. We interpret themmore » as a result of outflow rotation. The sense of the outflow and disk rotation is the same. Infalling gas from a rotating molecular core cannot explain the observed velocity gradient within the flow. Magneto-centrifugal disk winds or photoevaporated disk winds can produce the observed rotational speeds if they are ejected from a Keplerian disk at radii of several tens of AU. Nevertheless, these slow winds ejected from large radii are not very massive, and cannot account for the observed linear momentum and angular momentum rates of the molecular flow. Thus, the observed flow is probably entrained material from the parent cloud. DG Tau B is a good laboratory to model in detail the entrainment process and see if it can account for the observed angular momentum.« less
How Do Multiple-Star Systems Form? VLA Study Reveals "Smoking Gun"
NASA Astrophysics Data System (ADS)
2006-12-01
Astronomers have used the National Science Foundation's Very Large Array (VLA) radio telescope to image a young, multiple-star system with unprecedented detail, yielding important clues about how such systems are formed. Most Sun-sized or larger stars in the Universe are not single, like our Sun, but are members of multiple-star systems. Astronomers have been divided on how such systems can form, producing competing theoretical models for this process. Multiple Star Formation Graphic Proposed Formation Process for L1551 IRS5 CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and full information The new VLA study produced a "smoking gun" supporting one of the competing models, said Jeremy Lim, of the Institute of Astronomy & Astrophysics, Academia Sinica, in Taipei, Taiwan, whose study, done with Shigehisa Takakuwa of the National Astronomical Observatory of Japan, is published in the December 10 issue of the Astrophysical Journal. Ironically, their discovery of a third, previously-unknown, young star in the system may support a second theoretical model. "There may be more than one way to make a multiple-star system," Lim explained. The astronomers observed an object called L1551 IRS5, young, still-forming protostars enshrouded in a cloud of gas and dust, some 450 light-years from Earth in the direction of the constellation Taurus. Invisible to optical telescopes because of the gas and dust, this object was discovered in 1976 by astronomers using infrared telescopes. A VLA study in 1998 showed two young stars orbiting each other, each surrounded by a disk of dust that may, in time, congeal into a system of planets. Lim and Takakuwa re-examined the system, using improved technical capabilities that greatly boosted the quality of their images. "In the earlier VLA study, only half of the VLA's 27 antennas had receivers that could collect the radio waves, at a frequency of 43 GigaHertz (GHz), coming from the dusty disks. When we re-observed this system, all the antennas could provide data for us. In addition, we improved the level of detail by using the Pie Town, NM, antenna of the Very Long Baseline Array, as part of an expanded system," Lim said. The implementation and improvement of the 43 GHz receiving system was a collaborative program among the German Max Planck Institute, the Mexican National Autonomous University, and the U.S. National Radio Astronomy Observatory. Two popular theoretical models for the formation of multiple-star systems are, first, that the two protostars and their surrounding dusty disks fragment from a larger parent disk, and, second, that the protostars form independently and then one captures the other into a mutual orbit. "Our new study shows that the disks of the two main protostars are aligned with each other, and also are aligned with the larger, surrounding disk. In addition, their orbital motion resembles the rotation of the larger disk. This is a 'smoking gun' supporting the fragmentation model," Lim said. However, the new study also revealed a third young star with a dust disk. "The disk of this one is misaligned with those of the other two, so it may be the result of either fragmentation or capture," Takakuwa said. The misalignment of the third disk could have come through gravitational interactions with the other two, larger, protostars, the scientists said. They plan further observations to try to resolve the question. "We have a very firm indication that two of these protostars and their dust disks formed from the same, larger disk-like cloud, then broke out from it in a fragmentation process. That strongly supports one theoretical model for how multiple-star systems are formed. The misalignment of the third protostar and its disk leaves open the possibility that it could have formed elsewhere and been captured, and we'll continue to work on reconstructing the history of this fascinating system," Lim summarized. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Understanding Gas-Phase Ammonia Chemistry in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Chambers, Lauren; Oberg, Karin I.; Cleeves, Lauren Ilsedore
2017-01-01
Protoplanetary disks are dynamic regions of gas and dust around young stars, the remnants of star formation, that evolve and coagulate over millions of years in order to ultimately form planets. The chemical composition of protoplanetary disks is affected by both the chemical and physical conditions in which they develop, including the initial molecular abundances in the birth cloud, the spectrum and intensity of radiation from the host star and nearby systems, and mixing and turbulence within the disk. A more complete understanding of the chemical evolution of disks enables a more complete understanding of the chemical composition of planets that may form within them, and of their capability to support life. One element known to be essential for life on Earth is nitrogen, which often is present in the form of ammonia (NH3). Recent observations by Salinas et al. (2016) reveal a theoretical discrepancy in the gas-phase and ice-phase ammonia abundances in protoplanetary disks; while observations of comets and protostars estimate the ice-phase NH3/H2O ratio in disks to be 5%, Salinas reports a gas-phase NH3/H2O ratio of ~7-84% in the disk surrounding TW Hydra, a young nearby star. Through computational chemical modeling of the TW Hydra disk using a reaction network of over 5000 chemical reactions, I am investigating the possible sources of excess gas-phase NH3 by determining the primary reaction pathways of NH3 production; the downstream chemical effects of ionization by ultraviolet photons, X-rays, and cosmic rays; and the effects of altering the initial abundances of key molecules such as N and N2. Beyond providing a theoretical explanation for the NH3 ice/gas discrepancy, this new model may lead to fuller understanding of the gas-phase formation processes of all nitrogen hydrides (NHx), and thus fuller understanding of the nitrogen-bearing molecules that are fundamental for life as we know it.
Stars Can't Spin Out of Control (Artist's Animation)
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Click on the image for QuickTime Movie of Stars Can't Spin Out of Control This artist's animation demonstrates how a dusty planet-forming disk can slow down a whirling young star, essentially saving the star from spinning itself to death. Evidence for this phenomenon comes from NASA's Spitzer Space Telescope. The movie begins by showing a developing star (red ball). The star is basically a giant ball of gas that is collapsing onto itself. As it shrinks, it spins faster and faster, like a skater folding in his or her arms. The green lines represent magnetic fields. As gravity continues to pull matter inward, the star spins so fast, it starts to flatten out. The same principle applies to the planet Saturn, whose spin has caused it to be slightly squashed or oblate. A forming star can theoretically whip around fast enough to overcome gravity and flatten itself into a state where it can no longer become a full-fledged star. But stars don't spin out of control, possibly because swirling disks of dust slow them down. Such disks can be found orbiting young stars, and are filled with dust that might ultimately stick together to form planets. The second half of the animation demonstrates how a disk is thought to keep its star's speed in check. A developing star is shown twirling inside its disk. As it turns, its magnetic fields pass through the disk and get bogged down like a spoon in molasses. This locks the star's rotation to the slower-turning disk, so the star, while continuing to shrink, does not spin faster. Spitzer found evidence for star-slowing disks in a survey of nearly 500 forming stars in the Orion nebula. It observed that slowly spinning stars are five times more likely to host disks than rapidly spinning stars.The Photometric Properties of a Vast Stellar Substructure in the Outskirts of M33
NASA Astrophysics Data System (ADS)
McConnachie, Alan W.; Ferguson, Annette M. N.; Irwin, Michael J.; Dubinski, John; Widrow, Lawrence M.; Dotter, Aaron; Ibata, Rodrigo; Lewis, Geraint F.
2010-11-01
We have surveyed approximately 40 deg2 surrounding M33 with Canada-France-Hawaii Telescope MegaCam/MegaPrime in the g and i filters out to a maximum projected radius from this galaxy of 50 kpc, as part of the Pan-Andromeda Archaeological Survey (PAndAS). Our observations are deep enough to resolve the top ~4 mag of the red giant branch population in this galaxy. We have previously shown that the disk of M33 is surrounded by a large, irregular, low surface brightness substructure. Here, we quantify the stellar populations and structure of this feature using the PAndAS data. We show that the stellar populations of this feature are consistent with an old population with lang[Fe/H]rang ~ -1.6 dex and an interquartile range in metallicity of ~0.5 dex. We construct a surface brightness map of M33 that traces this feature to μ V ~= 33 mag arcsec-2. At these low surface brightness levels, the structure extends to projected radii of ~40 kpc from the center of M33 in both the northwest and southeast quadrants of the galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns with the orientation of the H I disk warp. We calculate a lower limit to the integrated luminosity of the structure of -12.7 ± 0.5 mag, comparable to a bright dwarf galaxy such as Fornax or Andromeda II and slightly less than 1% of the total luminosity of M33. Further, we show that there is tentative evidence for a distortion in the distribution of young stars near the edge of the H I disk that occurs at similar azimuth to the warp in H I. The data also hint at a low-level, extended stellar component at larger radius that may be an M33 halo component. We revisit studies of M33 and its stellar populations in light of these new results and discuss possible formation scenarios for the vast stellar structure. Our favored model is that of the tidal disruption of M33 in its orbit around M31.
Molecular Gas in Disks around Young Stars with ALMA
NASA Astrophysics Data System (ADS)
Hughes, A. Meredith; Factor, Samuel; Lieman-Sifry, Jesse; Flaherty, Kevin; Daley, Cail; Mann, Rita; Roberge, Aki; Di Francesco, James; Williams, Jonathan; Ricci, Luca; Matthews, Brenda; Bally, John; Johnstone, Doug; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David; Andrews, Sean; Kastner, Joel H.; Abraham, Peter
2018-01-01
Molecular gas is a critical component of the planet formation process. In this poster, we present two analyses of the molecular gas component of circumstellar disks at extremes (young, old) of the pre-main sequence phase.(1) We characterize the molecular gas content of the disk around d216-0939, a pre-main sequence star in the Orion Nebula Cluster, using ALMA observations of CO(3-2), HCO+(4-3), and HCN(4-3) observed at 0.5" resolution. We model the density and temperature structure of the disk, returning abundances generally consistent with chemical modeling of protoplanetary disks, and obtain a dynamical mass measurement of the central star of 2.2+/-0.4 M_sun, which is inconsistent with the previously determined spectral type of K5. We also report the detection of a spatially unresolved high-velocity blue-shifted excess emission feature with a measurable position offset from the central star, consistent with an object in Keplerian orbit at 60+/-20 au. The feature is due to a local temperature and/or density enhancement consistent with either a hydrodynamic vortex or the expected signature of the envelope of a forming protoplanet within the disk, providing evidence that planet formation is ongoing within this massive and relatively isolated Orion proplyd. This work is published in Factor et al. (2017). (2) We present ~0.4" resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with ALMA. We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The radial extent of the gas disk (~220 au) is smaller than that of the dust disk (~300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different. This work is published in Hughes et al. (2017).
Collisional Time Scales in the Kuiper Disk and Their Implications
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1995-01-01
We explore the rate of collisions among bodies in the present-day Kuiper Disk as a function of the total mass and population size structure of the disk. We find that collisional evolution is an important evolutionary process in the disk as a whole, and indeed, that it is likely the dominant evolutionary process beyond approx. 42 AU, where dynamical instability time scales exceed the age of the solar system. Two key findings we report from this modeling work are: that unless the disk's population structure is sharply truncated for radii smaller than approx. 1-2 km, collisions between comets and smaller debris are occurring so frequently in the disk, and with high enough velocities, that the small body (i.e., KM-class object) population in the disk has probably developed into a collisional cascade, thereby implying that the Kuiper Disk comets may not all be primordial, and that the rate of collisions of smaller bodies with larger 100 less R less 400 km objects (like 1992QB(sub 1) and its cohorts) is so low that there appears to be a dilemma in explaining how QB(sub 1)s could have grown by binary accretion in the disk as we know it. Given these findings, it appears that either the present-day paradigm for the formation of Kuiper Disk is failed in some fundamental respect, or that the present-day disk is no longer representative of the ancient structure from which it evolved. This in turn suggests the intriguing possibility that the present-day Kuiper Disk evolved through a more erosional stage reminiscent of the disks around the stars Beta Pictorus, alpha PsA, and alpha Lyr.
2017-01-30
This image shows the dusty disk of planetary material surrounding the young star HD 141569, located 380 light-years away from Earth. It was taken using the vortex coronagraph on the W.M. Keck Observatory. The vortex suppressed light from the star in the center, revealing light from the innermost ring of planetary material around the star (blue). The disk around the star, made of olivine particles, extends from 23 to 70 astronomical units from the star. By comparison, Uranus is over 19 astronomical units from our sun, and Neptune about 30 astronomical units. One astronomical unit is the distance between Earth and our sun. http://photojournal.jpl.nasa.gov/catalog/PIA21090
Imaging accretion sources and circumbinary disks in young brown dwarfs
NASA Astrophysics Data System (ADS)
Reiners, Ansgar
2010-09-01
We propose to obtain deep WFC3/UVIS imaging observations of two accreting, nearby, young brown dwarf binaries. The first, 2M1207, is a brown dwarf with a planetary mass companion that became a benchmark in low-mass star formation and low-mass evolutionary models. The second, 2M0041, is a nearby young brown dwarf with clear evidence for accretion, but its space motion suggests a slightly higher age than the canonical accretion lifetime of 5-10 Myr. It has recently been discovered to be a binary and is likely to become a second benchmark object in this field. With narrow band images centered on the Halpha line that is indicative of accretion, we aim to determine the accretion ratio between the two components in each system. Halpha was observed in both systems but so far not spatially resolved. In particular, we want to search for accretion in the planetary mass companion of 2M1207. The evidence for accretion in 2M0041 and the possibility that it is in fact older than 10Myr suggests that the accretion lifetime is longer in brown dwarfs than in stars, and in particular that it is longer in brown dwarf binaries. Accretion could be sustained for a longer time if the accreting material is replenished by a circumbinary disk that might exist in both systems. We propose deep WFC/UVIS observations in the optical to search for circumbinary disks, similar to the famous disk around the binary TTauri system GG Tau.
Near-infrared Variability in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Rice, Thomas S.; Reipurth, Bo; Wolk, Scott J.; Vaz, Luiz Paulo; Cross, N. J. G.
2015-10-01
Using UKIRT on Mauna Kea, we have carried out a new near-infrared J, H, K monitoring survey of almost a square degree of the star-forming Orion Nebula Cluster with observations on 120 nights over three observing seasons, spanning a total of 894 days. We monitored ˜15,000 stars down to J≈ 20 using the WFCAM instrument, and have extracted 1203 significantly variable stars from our data. By studying variability in young stellar objects (YSOs) in the H - K, K color-magnitude diagram, we are able to distinguish between physical mechanisms of variability. Many variables show color behavior indicating either dust-extinction or disk/accretion activity, but we find that when monitored for longer periods of time, a number of stars shift between these two variability mechanisms. Further, we show that the intrinsic timescale of disk/accretion variability in young stars is longer than that of dust-extinction variability. We confirm that variability amplitude is statistically correlated with evolutionary class in all bands and colors. Our investigations of these 1203 variables have revealed 73 periodic AA Tau type variables, many large-amplitude and long-period (P\\gt 15 days) YSOs, including three stars showing widely spaced periodic brightening events consistent with circumbinary disk activity, and four new eclipsing binaries. These phenomena and others indicate the activity of long-term disk/accretion variability processes taking place in young stars. We have made the light curves and associated data for these 1203 variables available online.
Galactic gamma-ray observations and galactic structure
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1975-01-01
Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.
The Role of Comets as Possible Contributors of Water and Prebiotic Organics to Terrestrial Planets
NASA Technical Reports Server (NTRS)
Mumma, Michael J.; Charnley, S. B.
2011-01-01
The question of exogenous delivery of organics and water to Earth and other young planets is of critical importance for understanding the origin of Earth's water, and for assessing the prospects for existence of Earth-like exo-planets. Viewed from a cosmic perspective, Earth is a dry planet yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen. Can comets have delivered Earth's water? The deuterium content of comets is key to ,assessing their role as contributors of water to Earth. Icy bodies today reside in two distinct reservoirs, the Oort Cloud and the Kuiper Disk (divided into the classical disk, the scattered disk, and the detached or extended disk populations). Orbital parameters can indicate the cosmic storage reservoir for a given comet. Knowledge of the diversity of comets within a reservoir assists in assessing their possible contribution to early Earth, but requires quantitative knowledge of their components - dust and ice. Strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical dispersion of an outer disk of icy planetesimals, imply that comets from KD and OC reservoirs should have diverse composition. The primary volatiles (native to the nucleus) provide the preferred metric for building a taxonomy for comets, and the number of comets so quantified is growing rapidly. Taxonomies based on native species (primary volatiles) are now beginning to emerge [1, 2, 3]. The measurement of cosmic parameters such as the nuclear spin temperatures for H2O, NH3 and CH4, and of enrichment factors for isotopologues (D/H in water and hydrogen cyanide, N-14/N-15 in CN and hydrogen cyanide) provide additional tests of the origin of cometary material. I will provide an overview of these aspects, and implications for the origin of Earth's water and prebiotic organics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katkov, Ivan Yu.; Sil'chenko, Olga K.; Afanasiev, Victor L., E-mail: katkov.ivan@gmail.com, E-mail: olga@sai.msu.su, E-mail: vafan@sao.ru
We have obtained and analyzed long-slit spectral data for the lenticular galaxy IC 719. In this gas-rich S0 galaxy, its large-scale gaseous disk counterrotates the global stellar disk. Moreover, in the IC 719 disk, we have detected a secondary stellar component corotating the ionized gas. By using emission line intensity ratios, we have proven the gas excitation by young stars and thus claim current star formation, the most intense in a ring-like zone at a radius of 10'' (1.4 kpc). The oxygen abundance of the gas in the star-forming ring is about half of the solar abundance. Since the stellarmore » disk remains dynamically cool, we conclude that smooth prolonged accretion of the external gas from a neighboring galaxy provides the current building of the thin large-scale stellar disk.« less
Comparison Simulations of Gas Giant Planet Formation via Disk Instability
NASA Astrophysics Data System (ADS)
Pickett, Megan K.; Cai, K.; Durisen, R.; Milne, M.
2011-01-01
There has been disagreement about whether cooling in protoplanetary disks can be sufficiently fast to induce the formation of gas giant protoplanets via gravitational instabilities. Simulations by our own group and others indicate that this method of planet formation does not work for disks around young, low-mass stars inside several tens of AU, while simulations by other groups show fragmentation into protoplanetary clumps in this region. To allow direct comparison in hopes of isolating the cause of the differences, we here present a comparison high-resolution three-dimensional hydrodynamics simulation of a protoplanetary disk,using an improved version of one of our own radiative schemes. We find that the disk does not fragment in our code but instead quickly settles into a state with only low amplitude nonaxisymmetric structure, which persists for at least several outer disk rotations. Further, we see no rapid radiative or convective cooling.
DiskDetective.org: Finding Homes for Exoplanets Through Citizen Science
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.
2016-01-01
The Disk Detective project is scouring the data archive from the WISE all-sky survey to find new debris disks and protoplanetary disks-the dusty dens where exoplanets form and dwell. Volunteers on this citizen science website have already performed 1.6 million classifications, searching a catalog 8x the size of any published WISE survey. We follow up candidates using ground based telescopes in California, Arizona, Chile, Hawaii, and Argentina. We ultimately expect to increase the pool of known debris disks by approx. 400 and triple the solid angle in clusters of young stars examined with WISE, providing a unique new catalog of isolated disk stars, key planet-search targets, and candidate advanced extraterrestrial civilizations. Come to this talk to hear the news about our latest dusty discoveries and the trials and the ecstasy of launching a new citizen science project. Please bring your laptop or smartphone if you like!
NASA Technical Reports Server (NTRS)
Wisniewski, J. P.; Bjorkman, K. S.; Magalhaes, A. M.; Bjorkman, J. E.; Meade, M. R.; Pereyra, Antonio
2007-01-01
Photometric 2-color diagram (2-CD) surveys of young cluster populations have been used to identify populations of B-type stars exhibiting excess Ha emission. The prevalence of these excess emitters, assumed to be "Be stars". has led to the establishment of links between the onset of disk formation in classical Be stars and cluster age and/or metallicity. We have obtained imaging polarization observations of six SMC and six LMC clusters whose candidate Be populations had been previously identified via 2-CDs. The interstellar polarization (ISP) associated with these data has been identified to facilitate an examination of the circumstellar environments of these candidate Be stars via their intrinsic polarization signatures, hence determine the true nature of these objects. We determined that the ISP associated with the SMC cluster NGC 330 was characterized by a modified Serkowski law with a lambda(sub max) of approx. 4500Angstroms, indicating the presence of smaller than average dust grains. The morphology of the ISP associated with the LMC cluster NGC 2100 suggests that its interstellar environment is characterized by a complex magnetic field. Our intrinsic polarization results confirm the suggestion of Wisniewski et al. that a substantial number of bona-fide classical Be stars are present in clusters of age 5-8 Myr. Hence, our data contradict recent assertions that the Be phenomenon develops in the second half of a B star's main sequence lifetime, i.e. no earlier than 10 Myr. These data imply that a significant number of B-type stars must emerge onto the zero-age-main-sequence rotating at near-critical rotation rates, although we can not rule out the possibility that these data instead reveal the presence of a sub-group of the Be phenomenon characterized by sub-critically rotating objects. Comparing the polarimetric properties of our dataset to a similar survey of Galactic classical Be stars, we find that the prevalence of polarimetric Balmer jump signatures decreases with metallicity. We speculate that these results might indicate that either it is more difficult to form large disk systems in low metallicity environments, or that the average disk temperature is higher in these low metallicity environments. We have characterized the polarimetric signatures of all candidate Be stars in our data sample and find approx. 25% are unlikely to arise from true classical Be star-disk systems. This detection of such a substantial number "contaminants" suggests one should proceed with caution when attempting to determine the role of evolutionary age and/or metallicity in the Be phenomenon purely via 2-CD results.
A giant planet imaged in the disk of the young star beta Pictoris.
Lagrange, A-M; Bonnefoy, M; Chauvin, G; Apai, D; Ehrenreich, D; Boccaletti, A; Gratadour, D; Rouan, D; Mouillet, D; Lacour, S; Kasper, M
2010-07-02
Here, we show that the approximately 10-million-year-old beta Pictoris system hosts a massive giant planet, beta Pictoris b, located 8 to 15 astronomical units from the star. This result confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets. Among the few planets already imaged, beta Pictoris b is the closest to its parent star. Its short period could allow for recording of the full orbit within 17 years.
SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni
2010-05-10
We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less
OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements
NASA Astrophysics Data System (ADS)
Pascucci, I.
2010-07-01
Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.
Probing Protoplanetary Disks: From Birth to Planets
NASA Astrophysics Data System (ADS)
Cox, Erin Guilfoil
2018-01-01
Disks are very important in the evolution of protostars and their subsequent planets. How early disks can form has implications for early planet formation. In the youngest protostars (i.e., Class 0 sources) magnetic fields can control disk growth. When the field is parallel to the collapsing core’s rotation axis, infalling material loses angular momentum and disks form in later stages. Sub-/millimeter polarization continuum observations of Class 0 sources at ~1000 au resolution support this idea. However, in the inner (~100 au), denser regions, it is unknown if the polarization only traces aligned dust grains. Recent theoretical studies have shown that self-scattering of thermal emission in the disk may contribute significantly to the polarization. Determining the scattering contribution in these sources is important to disentangle the magnetic field. At older times (the Class II phase), the disk structure can both act as a modulator and signpost of planet formation, if there is enough of a mass reservoir. In my dissertation talk, I will present results that bear on disk evolution at both young and late ages. I will present 8 mm polarization results of two Class 0 protostars (IRAS 4A and IC348 MMS) from the VLA at ~50 au resolution. The inferred magnetic field of IRAS 4A has a circular morphology, reminiscent of material being dragged into a rotating structure. I will show results from SOFIA polarization data of the area surrounding IRAS 4A at ~4000 au. I will also present ALMA 850 micron polarization data of ten protostars in the Perseus Molecular Cloud. Most of these sources show very ordered patterns and low (~0.5%) polarization in their inner regions, while having very disordered patterns and high polarization patterns in their extended emission that may suggest different mechanisms in the inner/outer regions. Finally, I will present results from our ALMA dust continuum survey of protoplanetary disks in Rho Ophiuchus; we measured both the sizes and fluxes of 49 pre main-sequence stellar systems and detected either gaps or cavities in ~6 of these sources. Combined, these results build upon how early protoplanetary disks can form around young protostars and thus how early planets can begin to form.
Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects
NASA Astrophysics Data System (ADS)
Fatuzzo, Marco; Adams, Fred C.
2018-04-01
External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.
HUNTING FOR PLANETS IN THE HL TAU DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Testi, L.; Skemer, A.; Bailey, V.
2015-10-20
Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused by planetary bodies. Given the young age of this system, if confirmed, this finding would imply very short timescales for planet formation, probably in a gravitationally unstable disk. To test this scenario, we searched for young planets by means of direct imaging in the L′ band using the Large Binocular Telescope Interferometer mid-infrared camera. At the location of two prominent dips in the dust distribution at ∼70 AU (∼0.″5) from the central star, we reach a contrast level of ∼7.5 mag. We did notmore » detect any point sources at the location of the rings. Using evolutionary models we derive upper limits of ∼10–15 M{sub Jup} at ≤0.5–1 Ma for the possible planets. With these sensitivity limits we should have been able to detect companions sufficiently massive to open full gaps in the disk. The structures detected at millimeter wavelengths could be gaps in the distributions of large grains on the disk midplane caused by planets not massive enough to fully open the gaps. Future ALMA observations of the molecular gas density profile and kinematics as well as higher contrast infrared observations may be able to provide a definitive answer.« less
Reprocessing of Archival Direct Imaging Data of Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Safsten, Emily; Stephens, Denise C.
2017-01-01
Herbig Ae/Be (HAeBe) stars are intermediate mass (2-10 solar mass) pre-main sequence stars with circumstellar disks. They are the higher mass analogs of the better-known T Tauri stars. Observing planets within these young disks would greatly aid in understanding planet formation processes and timescales, particularly around massive stars. So far, only one planet, HD 100546b, has been confirmed to orbit a HAeBe star. With over 250 HAeBe stars known, and several observed to have disks with structures thought to be related to planet formation, it seems likely that there are as yet undiscovered planetary companions within the circumstellar disks of some of these young stars.Direct detection of a low-luminosity companion near a star requires high contrast imaging, often with the use of a coronagraph, and the subtraction of the central star's point spread function (PSF). Several processing algorithms have been developed in recent years to improve PSF subtraction and enhance the signal-to-noise of sources close to the central star. However, many HAeBe stars were observed via direct imaging before these algorithms came out. We present here current work with the PSF subtraction program PynPoint, which employs a method of principal component analysis, to reprocess archival images of HAeBe stars to increase the likelihood of detecting a planet in their disks.
The AMBRE project: The thick thin disk and thin thick disk of the Milky Way
NASA Astrophysics Data System (ADS)
Hayden, M. R.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, S.; Worley, C. C.
2017-11-01
We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from Gaia DR1, providing reliable age estimates with relative uncertainties of ±1 or 2 Gyr and allowing precise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and high-[Mg/Fe] sequence, which are often associated with thick disk stellar populations. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. We find that the high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for the low- and high-[Mg/Fe] sequences, the high-[Mg/Fe] sequence has lower vertical velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. This means that identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-[Mg/Fe] and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations, respectively; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external galaxies.
Rotationally-supported disks around Class I sources in Taurus: disk formation constraints
NASA Astrophysics Data System (ADS)
Harsono, D.; Jørgensen, J. K.; van Dishoeck, E. F.; Hogerheijde, M. R.; Bruderer, S.; Persson, M. V.; Mottram, J. C.
2014-02-01
Context. Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecular line observations are needed to determine their nature. Only a handful of embedded rotationally supported disks have been identified to date. Aims: We identify and characterize rotationally supported disks near the end of the main accretion phase of low-mass protostars by comparing their gas and dust structures. Methods: Subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus are presented at significantly higher sensitivity than previous studies. The 13CO and C18O J = 2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ≤0.8″ (56 AU radius at 140 pc) and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity gradient. Results: Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are ≤100 AU. The lack of on-source C18O emission for TMR1 puts an upper limit of 50 AU on its size. Flattened structures at radii >100 AU around these sources are dominated by infalling motion (υ ∝ r-1). A large-scale envelope model is required to estimate the basic parameters of the flattened structure from spatially resolved continuum data. Similarities and differences between the gas and dust disk are discussed. Combined with literature data, the sizes of the RSDs around Class I objects are best described with evolutionary models with an initial rotation of Ω = 10-14 Hz and slow sound speeds. Based on the comparison of gas and dust disk masses, little CO is frozen out within 100 AU in these disks. Conclusions: Rotationally supported disks with radii up to 100 AU are present around Class I embedded objects. Larger surveys of both Class 0 and I objects are needed to determine whether most disks form late or early in the embedded phase. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNBRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org
UIT Observations of Early-Type Galaxies and Analysis of the FUSE Spectrum of a Subdwarf B Star
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Krebs, Carolyn (Technical Monitor)
2001-01-01
This work covers Ultraviolet Imaging Telescope (UIT) observations of early-type galaxies (155 nm) and Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of a Galactic subdwarf B star (sdB). Early UV space astronomy missions revealed that early-type galaxies harbor a population of stars with effective temperatures greater than that of the main sequence turn-off (about 6,000 K) and UV emission that is very sensitive to characteristics of the stellar population. We present UV (155 nm) surface photometry and UV-B color profiles for 8 E and SO galaxies observed by UIT. Some objects have de Vaucouleurs surface brightness profiles, while others have disk-like profiles, but we find no other evidence for the presence of a disk or young, massive stars. There is a wide range of UV-B color gradients, but there is no correlation with metallicity gradients. SdB stars are the leading candidate UV emitters in old, high metallicity stellar populations (e.g., early-type galaxies). We observed the Galactic sdB star PG0749+658 with FUSE and derived abundances with the aim of constraining models of the heavy element distribution in sdB atmospheres. All of the elements measured are depleted with respect to solar, except for Cr and Mn, which are about solar, and Ni, which is enhanced. This work was supported in part by NASA grants NAG5-700 and NAG5-6403 to the University of Virginia and NAS5-32985 to Johns Hopkins University.
A Theoretical Model of X-Ray Jets from Young Stellar Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takasao, Shinsuke; Suzuki, Takeru K.; Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp
There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot coronamore » with a temperature of ≳10{sup 6} K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, Amy; Hughes, A. Meredith; Carpenter, John
The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HDmore » 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.« less
2010-01-01
Background Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. Results In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII photosynthetic capabilities might be due to the differences in cell functions. PMID:20426804
Spitzer c2d Legacy, Circumstellar Disks around wTT Stars
NASA Astrophysics Data System (ADS)
Wahhaj, Zahed; c2d Legacy Team
2007-05-01
The Spitzer Legacy Project From "Molecular Cores to Planet-forming Disks" conducted a 3.6 to 70um photometric survey of roughly 160 weak- line TTauri Stars (wTTs) and 20 classical TTauri stars (cTTs) in the nearby star-forming regions Chamaeleon, Lupus, Ophiuchus and Taurus. WTTs are so named because they possess weaker H-alpha emission lines signifying weaker disk accretion on to the star than cTTs. The evolution of dust disks around these young stars (Age 10 Myrs) is key to understanding planet formation. From the observed infrared excesses, we infer the presence of circumstellar disks around 12% of wTTs and 75% of cTTs. However, when considering on-cloud sources only, the wTTs disk fraction is 22%, while it is only 6% for off- cloud sources, suggesting an older age for the latter. WTTs, while not discernibly younger than cTTs in age diagnostics, in general have disks which exhibit lower fractional luminosities and larger inner clearings. However, quite a few wTTs systems have fractional disk luminosities as high as cTTs systems. In light of these findings, wTTs seem to be transitional objects between cTTs and debris disks.
NASA Astrophysics Data System (ADS)
Faramaz, V.; Beust, H.; Augereau, J.-C.; Bonsor, A.; Thébault, P.; Wu, Y.; Marshall, J. P.; del Burgo, C.; Ertel, S.; Eiroa, C.; Montesinos, B.; Mora, A.
2014-01-01
We present some highlights of two ongoing investigations that deal with the dynamics of planetary systems. Firstly, until recently, observed eccentric patterns in debris disks were found in young systems. However recent observations of Gyr-old eccentric debris disks leads to question the survival timescale of this type of asymmetry. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. Secondly, as a binary companion orbits a circumprimary disk, it creates regions where planet formation is strongly handicapped. However, some planets were detected in this zone in tight binary systems (γ Cep, HD 196885). We aim to determine whether a binary companion can affect migration such that planets are brought in these regions and focus in particular on the planetesimal-driven migration mechanism.
THE MILKY WAY HAS NO DISTINCT THICK DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Rix, Hans-Walter; Hogg, David W., E-mail: bovy@ias.edu
2012-06-01
Different stellar sub-populations of the Milky Way's stellar disk are known to have different vertical scale heights, their thickness increasing with age. Using SEGUE spectroscopic survey data, we have recently shown that mono-abundance sub-populations, defined in the [{alpha}/Fe]-[Fe/H] space, are well described by single-exponential spatial-density profiles in both the radial and the vertical direction; therefore, any star of a given abundance is clearly associated with a sub-population of scale height h{sub z} . Here, we work out how to determine the stellar surface-mass density contributions at the solar radius R{sub 0} of each such sub-population, accounting for the survey selectionmore » function, and for the fraction of the stellar population mass that is reflected in the spectroscopic target stars given populations of different abundances and their presumed age distributions. Taken together, this enables us to derive {Sigma}{sub R{sub 0}}(h{sub z}), the surface-mass contributions of stellar populations with scale height h{sub z} . Surprisingly, we find no hint of a thin-thick disk bi-modality in this mass-weighted scale-height distribution, but a smoothly decreasing function, approximately {Sigma}{sub R{sub 0}}(h{sub z}){proportional_to} exp(-h{sub z}), from h{sub z} Almost-Equal-To 200 pc to h{sub z} Almost-Equal-To 1 kpc. As h{sub z} is ultimately the structurally defining property of a thin or thick disk, this shows clearly that the Milky Way has a continuous and monotonic distribution of disk thicknesses: there is no 'thick disk' sensibly characterized as a distinct component. We discuss how our result is consistent with evidence for seeming bi-modality in purely geometric disk decompositions or chemical abundances analyses. We constrain the total visible stellar surface-mass density at the solar radius to be {Sigma}{sub R{sub 0}}* = 30 {+-} 1 M{sub Sun} pc{sup -2}.« less
Spectral evolution in young active galactic nuclei
NASA Technical Reports Server (NTRS)
Boldt, E.; Leiter, D.
1986-01-01
The spectral evolution of AGNs is discussed within the context of a scenario where the cosmic X-ray background (CXB) is dominated by these sources. Attention is draqwn to the fact that the individually observed AGN X-ray spectra are significantly steeper than that of the CXB. The remarkably flat spectrum thereby required for the 'as-yet' unresolved sources of the residual CXB is interpreted as an observational constraint on an earlier stage of AGN evolution. Assuming black hole disk accretion, a picture emerges where young AGNs are compact Eddington limited thermal X-ray sources and where canonical AGNs represent later stages in which they have become appreciably less compact, exhibiting the importance of nonthermal disk-dynamo processes.
X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets
NASA Astrophysics Data System (ADS)
Skinner, Stephen
A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.
Featured Image: A Gap in TW Hydrae
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
This remarkable image (click for the full view!) is a high-resolution map of the 870 m light emitted by the protoplanetary disk surrounding the young solar analog TW Hydrae. A recent study led by Sean Andrews (Harvard-Smithsonian Center for Astrophysics) presents these observations, obtained with the long-baseline configuration of the Atacama Large Millimeter/submillimeter Array (ALMA) at an unprecedented spatial resolution of ~1 AU. The data represent the distribution of millimeter-sized dust grains in this disk, revealing a beautiful concentric ring structure out to a radial distance of 60 AU from the host star. The apparent gaps in the disk could have anyof three origins:Chemical: apparent gaps can becaused by condensation fronts of volatilesMagnetic: apparent gaps can becaused by radial magnetic pressure variationsDynamic: actual gaps can becaused by the clearing of dust by young planets.For more information, check out the paper below!CitationSean M. Andrews et al 2016 ApJ 820 L40. doi:10.3847/2041-8205/820/2/L40
Tracing the potential planet-forming regions around seven pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Schegerer, A. A.; Wolf, S.; Hummel, C. A.; Quanz, S. P.; Richichi, A.
2009-07-01
Aims: We investigate the nature of the innermost regions with radii of several AUs of seven circumstellar disks around pre-main-sequence stars, T Tauri stars in particular. Our object sample contains disks apparently at various stages of their evolution. Both single stars and spatially resolved binaries are considered. In particular, we search for inner disk gaps as proposed for several young stellar objects (YSOs). When analyzing the underlying dust population in the atmosphere of circumstellar disks, the shape of the 10 μm feature should additionally be investigated. Methods: We performed interferometric observations in N band (8-13 μm) with the Mid-Infrared Interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) using baseline lengths of between 54 m and 127 m. The data analysis is based on radiative-transfer simulations using the Monte Carlo code MC3D by modeling simultaneously the spectral energy distribution (SED), N band spectra, and interferometric visibilities. Correlated and uncorrelated N band spectra are compared to investigate the radial distribution of the dust composition of the disk atmosphere. Results: Spatially resolved mid-infrared (MIR) emission was detected in all objects. For four objects (DR Tau, RU Lup, S CrA N, and S CrA S), the observed N band visibilities and corresponding SEDs could be simultaneously simulated using a parameterized active disk-model. For the more evolved objects of our sample, HD 72106 and HBC 639, a purely passive disk-model provides the closest fit. The visibilities inferred for the source RU Lup allow the presence of an inner disk gap. For the YSO GW Ori, one of two visibility measurements could not be simulated by our modeling approach. All uncorrelated spectra reveal the 10 μm silicate emission feature. In contrast to this, some correlated spectra of the observations of the more evolved objects do not show this feature, indicating a lack of small silicates in the inner versus the outer regions of these disks. We conclude from this observational result that more evolved dust grains can be found in the more central disk regions. Based on observations made with Telescopes of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) at the Paranal Observatory, Chile, under the programs 074.C-0342(A), 075.C-0064(A,B), 075.C-0413(A,B), and 076.C-0356(A). Appendix A is only available in electronic form at http://www.aanda.org
THE HAWAII INFRARED PARALLAX PROGRAM. II. YOUNG ULTRACOOL FIELD DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Michael C.; Dupuy, Trent J.; Allers, Katelyn N., E-mail: mliu@ifa.hawaii.edu
We present a large, uniform analysis of young (≈10–150 Myr) ultracool dwarfs, based on new high-precision infrared (IR) parallaxes for 68 objects. We find that low-gravity (vl-g) late-M and L dwarfs form a continuous sequence in IR color–magnitude diagrams, separate from the field population and from current theoretical models. These vl-g objects also appear distinct from young substellar (brown dwarf and exoplanet) companions, suggesting that the two populations may have a different range of physical properties. In contrast, at the L/T transition, young, old, and spectrally peculiar objects all span a relatively narrow range in near-IR absolute magnitudes. At a given spectralmore » type, the IR absolute magnitudes of young objects can be offset from ordinary field dwarfs, with the largest offsets occurring in the Y and J bands for late-M dwarfs (brighter than the field) and mid-/late-L dwarfs (fainter than the field). Overall, low-gravity (vl-g) objects have the most uniform photometric behavior, while intermediate gravity (int-g) objects are more diverse, suggesting a third governing parameter beyond spectral type and gravity class. We examine the moving group membership for all young ultracool dwarfs with parallaxes, changing the status of 23 objects (including 8 previously identified planetary-mass candidates) and fortifying the status of another 28 objects. We use our resulting age-calibrated sample to establish empirical young isochrones and show a declining frequency of vl-g objects relative to int-g objects with increasing age. Notable individual objects in our sample include high-velocity (≳100 km s{sup −1}) int-g objects, very red late-L dwarfs with high surface gravities, candidate disk-bearing members of the MBM20 cloud and β Pic moving group, and very young distant interlopers. Finally, we provide a comprehensive summary of the absolute magnitudes and spectral classifications of young ultracool dwarfs, using a combined sample of 102 objects found in the field and as substellar companions to young stars.« less
GASPS--A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
NASA Technical Reports Server (NTRS)
Dent, W.R.F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.;
2013-01-01
We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted approx. 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 micron the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 micron, [CII] at 157 µm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 micron. Additionally, GASPS included continuum photometry at 70, 100 and 160 micron, around the peak of the dust emission. The targets were SED Class II– III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarize some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 micron was the brightest line seen in almost all objects, by a factor of 10. Overall [OI] 63 micron detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 µm detection of approx.10(exp -5) Solar M.. Normalizing to a distance of 140 pc, 84% of objects with dust masses =10 (exp -5) Solar M can be detected in this line in the present survey; 32% of those of mass 10(exp -6) – 10 (exp -5) Solar M, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centered on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3–4 Myr age range were approx. 50%. For each association in the 5–20 Myr age range, approx. 2 stars remain detectable in [OI] 63 micron, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that approx. 18% of stars retain a gas-rich disk of total mass approx. Jupiter- M for 1–4 Myr, 1–7% keep such disks for 5–10 Myr, but none are detected beyond 10–20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 micron, [CII]157 micron and CO J = 18- 17, with detection rates of 20–40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
ALMA Observations of the Molecular Gas in the Debris Disk of the 30 Myr Old Star HD 21997
NASA Technical Reports Server (NTRS)
Kospal, A.; Moor, A.; Juhasz, A.; Abraham, P.; Apai, D.; Csengeri, T.; Grady, C. A.; Henning, Th.; Hughes, A. M.; Kiss, Cs.;
2013-01-01
The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of (12)CO and (13)CO in the J = 2-1 and J = 3-2 transitions and C(18)O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r(sub in) < 26 AU, r(sub out) = 138 +/- 20 AU, Stellar M = 1.8 +0.5/-0.2 Solar M, and i = 32. Deg. 6 +/- 3 deg..1. The total CO mass, as calculated from the optically thin C(18)O line, is about (4-8) ×10(exp -2 ) Solar M, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moor et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.
NASA Astrophysics Data System (ADS)
Cai, Kai; Durisen, Richard H.; Boley, Aaron C.; Pickett, Megan K.; Mejía, Annie C.
2008-02-01
It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamic simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 M⊙ around a young star of 0.5 M⊙, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower order modes, and irradiation preferentially suppresses higher order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated planetary core formation. Preliminary results from a simulation of a massive embedded disk with physical characteristics similar to one of the disks in the embedded source L1551 IRS 5 indicate a long radiative cooling time and no fragmentation. The GIs in this disk are dominated by global two- and three-armed modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Changshuo; Wang Jianmin, E-mail: wangjm@ihep.ac.c
High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the H{alpha}, H{beta}, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can bemore » intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to {approx}1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of {approx}10{sup 8} yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as {approx}100 km s{sup -1} in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of H{alpha}, H{beta}, [O III], and [N II], and H{alpha} brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive rings independently evolving are able to reproduce the main dynamical and emission properties of the two galaxies, such as the Baldwin-Phillips-Terlevich diagram, the relation between line ratios, and H{alpha} brightness. The observed relation between turbulent velocity and the H{alpha} brightness can be explained by the present model. High viscosity excited by SNexp is able to efficiently transport the gas into a bulge to maintain high SFRs or to form a stellar ring close enough to the bulge so that it immigrates into the bulge of its host galaxy. This leads to a fast growing bulge. Implications and future work of the present models have been extensively discussed for galaxy formation in high-z universe.« less
Modélisation des disques de débris
NASA Astrophysics Data System (ADS)
Beust, H.; Halbwachs, J.-L.
2006-03-01
Debris disks are dusty and gaseous circumstellar disks orbiting stars with ages ranging from 10(7 ) yr to a few 10(8 ) yr. In contrast to genuine protoplanetary disk, they are optically thin, and are characterized by a very small amount of gas. As a consequence, their dynamics is basically gravitational. They are mainly observed in scattered light in the near infrared and/or in thermal emission at longer wavelengths. About 12 disks of this kind are known today, but their number increases rapidly thanks to the improvement of the detection techniques and instruments. What is seen in these disks is dust. Observing a scattered light profile in a debris disk, one wants to derive the spatial distribution of the dust particles. The inversion method is close to a deprojection technique. Typically (e.g., in the bp\\ disk), the surface density decreases as r(-1) up to a given distance (120 AU in the bp\\ disk) and falls off more steeply (˜~ r(-4) ) further out. Dust particles in debris disks are usually subject to an intense radiation pressure that drastically affects their dynamics. Combined with collisions, it contributes to quickly erode the dust population by removing the smallest grains. Hence the dust population must be sustained by a large population of colliding and/or evaporating planetesimals. Once produced by the parent bodies, the dust particles diffuse further out in the disk thanks to radiation pressure, or wind pressure in disks orbiting late-type stars. Nearly all debris disks that have been imaged exhibit various structures and asymetries, such as gaps, clumps, warps, and spiral arms. These structures are usually thought to originate in the distribution of the parent bodies, and to be due to gravitational perturbations by hidden planets and/or stellar companions, involving direct or secular perturbations, or interaction with mean-motion resonances. A detailed analysis of the observed structures in a given disk combined with dynamical simulations can in principle give access to the suspected planetary system. Valuable constraints have been derived in some cases. The solution is nevertheless not unique in general and the analysis is complicated by the fact that we only observe the dust particles and not the planetesimal population directly.
Characterizing Dusty Debris Disks with the Gemini Planet Imager
NASA Astrophysics Data System (ADS)
Chen, Christine; Arriaga, Pauline; Bruzzone, Sebastian; Choquet, Elodie; Debes, John H.; Donaldson, Jessica; Draper, Zachary; Duchene, Gaspard; Esposito, Thomas; Fitzgerald, Michael P.; Golimowski, David A.; Hines, Dean C.; Hinkley, Sasha; Hughes, A. Meredith; Kalas, Paul; Kolokolova, Ludmilla; Lawler, Samantha; Matthews, Brenda C.; Mazoyer, Johan; Metchev, Stanimir A.; Millar-Blanchaer, Max; Moro-Martin, Amaya; Nesvold, Erika; Padgett, Deborah; Patience, Jenny; Perrin, Marshall D.; Pueyo, Laurent; Rantakyro, Fredrik; Rodigas, Timothy; Schneider, Glenn; Soummer, Remi; Song, Inseok; Stark, Chris; Weinberger, Alycia J.; Wilner, David J.
2017-01-01
We have been awarded 87 hours of Gemini Observatory time to obtain multi-wavelength observations of HST resolved debris disks using the Gemini Planet Imager. We have executed ~51 hours of telescope time during the 2015B-2016B semesters observing 12 nearby, young debris disks. We have been using the GPI Spec and Pol modes to better constrain the properties of the circumstellar dust, specifically, measuring the near-infrared total intensity and polarization fraction colors, and searching for solid-state spectral features of nearby beta Pic-like disks. We expect that our observations will allow us to break the degeneracy among the particle properties such as composition, size, porosity, and shape. We present some early results from our observations.
Meakin, J R
2001-03-01
An axisymmetric finite element model of a human lumbar disk was developed to investigate the properties required of an implant to replace the nucleus pulposus. In the intact disk, the nucleus was modeled as a fluid, and the annulus as an elastic solid. The Young's modulus of the annulus was determined empirically by matching model predictions to experimental results. The model was checked for sensitivity to the input parameter values and found to give reasonable behavior. The model predicted that removal of the nucleus would change the response of the annulus to compression. This prediction was consistent with experimental results, thus validating the model. Implants to fill the cavity produced by nucleus removal were modeled as elastic solids. The Poisson's ratio was fixed at 0.49, and the Young's modulus was varied from 0.5 to 100 MPa. Two sizes of implant were considered: full size (filling the cavity) and small size (smaller than the cavity). The model predicted that a full size implant would reverse the changes to annulus behavior, but a smaller implant would not. By comparing the stress distribution in the annulus, the ideal Young's modulus was predicted to be approximately 3 MPa. These predictions have implications for current nucleus implant designs. Copyright 2001 Kluwer Academic Publishers
Young chondrules in CB chondrites from a giant impact in the early Solar System.
Krot, Alexander N; Amelin, Yuri; Cassen, Patrick; Meibom, Anders
2005-08-18
Chondrules, which are the major constituent of chondritic meteorites, are believed to have formed during brief, localized, repetitive melting of dust (probably caused by shock waves) in the protoplanetary disk around the early Sun. The ages of primitive chondrules in chondritic meteorites indicate that their formation started shortly after that of the calcium-aluminium-rich inclusions (4,567.2 +/- 0.7 Myr ago) and lasted for about 3 Myr, which is consistent with the dissipation timescale for protoplanetary disks around young solar-mass stars. Here we report the 207Pb-206Pb ages of chondrules in the metal-rich CB (Bencubbin-like) carbonaceous chondrites Gujba (4,562.7 +/- 0.5 Myr) and Hammadah al Hamra 237 (4,562.8 +/- 0.9 Myr), which formed during a single-stage, highly energetic event. Both the relatively young ages and the single-stage formation of the CB chondrules are inconsistent with formation during a nebular shock wave. We conclude that chondrules and metal grains in the CB chondrites formed from a vapour-melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated. These findings therefore provide evidence for planet-sized objects in the earliest asteroid belt, as required by current numerical simulations of planet formation in the inner Solar System.
Chemical Soups Around Cool Stars
NASA Technical Reports Server (NTRS)
2009-01-01
This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth. Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth. Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.Disks and Outflows Around Young Stars
NASA Astrophysics Data System (ADS)
Beckwith, Steven; Staude, Jakob; Quetz, Axel; Natta, Antonella
The subject of the book, the ubiquitous circumstellar disks around very young stars and the corresponding jets of outflowing matter, has recently become one of the hottest areas in astrophysics. The disks are thought to be precursors to planetary systems, and the outflows are thought to be a necessary phase in the formation of a young star, helping the star to get rid of angular momentum and energy as it makes its way onto the main sequence. The possible connections to planetary systems and stellar astrophysics makes these topics especially broad, appealing to generalists and specialists alike. The CD not only contains papers that could not be printed in the book but allows the authors to include a fair amount of data, often displayed as color images. The CD-ROM contains all the contributions printed in the corresponding book (Lecture Notes in Physics Vol. 465) and, in addition, those presented exclusively in digital form. Each contribution consists of a file in portable document format (PDF). The electronic version allows full-text searching within each file using Adobe's Acrobat Reader providing instructions for installation on Unix (Sun), PC and Macintosh computers, respectively. All contributions can be printed out; the color diagrams and color frames, which are printed in black and white in the book, can be viewed in color on screen.
Ice-gas interactions during planet formation
NASA Astrophysics Data System (ADS)
Öberg, Karin I.
2016-10-01
Planets form in disks around young stars. In these disks, condensation fronts or snowlines of water, CO2, CO and other abundant molecules regulate the outcome of planet formation. Snowline locations determine how the elemental and molecular compositions of the gaseous and solid building blocks of planets evolve with distance from the central star. Snowlines may also locally increase the planet formation efficiency. Observations of snowlines have only become possible in the past couple of years. This proceeding reviews these observations as well as the theory on the physical and chemical processes in disks that affect snowline locations.
THE STELLAR SPHEROID, THE DISK, AND THE DYNAMICS OF THE COSMIC WEB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.
Models of the advanced stages of gravitational instability predict that baryons that form the stellar populations of current galaxies at z = 0 displayed a web-like structure at high z, as part of the cosmic web (CW). We explore details of these predictions using cosmological hydrodynamical simulations. When the stellar populations of the spheroid and disk components of simulated late-type galaxies are traced back separately to high zs we found CW-like structures where spheroid progenitors are more evolved than disk progenitors. The distinction between the corresponding stellar populations, as driven by their specific angular momentum content j, can be explainedmore » in terms of the CW evolution, extended to two processes occurring at lower z. First, the spheroid progenitors strongly lose j at collapse, which contrasts with the insignificant j loss of the disk progenitors. The second is related to the lack of alignment, at assembly, between the spheroid-to-be material and the already settled proto-disk, in contrast to the alignment of disk-to-be material, in some cases resulting from circumgalactic, disk-induced gravitational torques. The different final outcomes of these low-z processes have their origins in the different initial conditions driven by the CW dynamics.« less
Inferring a Gap in the Group II Disk of the Herbig Ae/Be Star HD 142666
NASA Astrophysics Data System (ADS)
Ezra Rubinstein, Adam; Macías, Enrique; Espaillat, Catherine; Calvet, Nuria; Robinson, Connor; Zhang, Ke
2018-01-01
Disks around Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, which are thought to be flared and flat disks respectively. Most Group I disks have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in Group II disks. We analyzed the Group II disk of HD 142666 using irradiated accretion disk modeling of the broad-band spectral energy distribution along with the 1.3 millimeter spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model is able to reproduce the available data, predicting a high degree of settling in the disk, which is consistent with the Group II classification of HD 142666. Although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk, the observed visibilities and synthesized image can only be reproduced when including a gap between ~5 to 12 au in our disk model. In addition, we also infer that the disk has an outer radius of ~65 au, which may be evidence of radial migration of dust or an unseen, low-mass companion that is truncating the outer disk. These results may suggest that Group II disks around HAeBe stars have gaps, possibly carved by young giant planets in the disk. Further ALMA observations of HD 142666 and other Group II disks are needed to discern if gaps are common in this class of objects, as well as to reveal their possible origin.
COLD CO GAS IN THE DISK OF THE YOUNG ERUPTIVE STAR EX LUP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kóspál, Á.; Ábrahám, P.; Moór, A.
EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1–5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the {sup 12}CO J = 3−2 and 4–3 lines, and themore » {sup 13}CO 3–2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meru, Farzana; Juhász, Attila; Ilee, John D.
The young star Elias 2–27 has recently been observed to posses a massive circumstellar disk with two prominent large-scale spiral arms. In this Letter, we perform three-dimensional Smoothed Particle Hydrodynamics simulations, radiative transfer modeling, synthetic ALMA imaging, and an unsharped masking technique to explore three possibilities for the origin of the observed structures—an undetected companion either internal or external to the spirals, and a self-gravitating disk. We find that a gravitationally unstable disk and a disk with an external companion can produce morphology that is consistent with the observations. In addition, for the latter, we find that the companion couldmore » be a relatively massive planetary-mass companion (≲10–13 M {sub Jup}) and located at large radial distances (between ≈300–700 au). We therefore suggest that Elias 2–27 may be one of the first detections of a disk undergoing gravitational instabilities, or a disk that has recently undergone fragmentation to produce a massive companion.« less
Tracing Interactions of a Protoplanet with its Circumstellar Disk
NASA Astrophysics Data System (ADS)
Stapelfeldt, Karl
2017-08-01
A candidate companion to a very young star has been discovered in HST snapshot optical images. The object is projected at the outer radius of an edge-on protoplanetary disk and is aligned with the disk plane. Keck LGS photometry results indicate the object has the same temperature as brown dwarf GQ Lupi b but with 10x less luminosity - consistent with a planetary mass companion. Because the edge-on disk suppresses the light of the central star, the companion is uniquely accessible to follow-up studies with minimal starlight residuals. We propose HST/WFC3 imaging and spectroscopy of the system to 1) fully define the morphology of the disk scattered light, particularly at the disk outer edge near the companion; 2) search for Halpha emission from the companion as evidence that it is actively accreting; and 3) complete spectral characterization of the companion using G141 spectroscopy. Confirmation of a substellar spectrum, accretion, and disk interaction action would establish this object as a leading example of an accreting protoplanet at 100 AU and offer support to models for planet formation by gravitational instability.
Hiramatsu, Reiji; Matsumoto, Masakado; Sakae, Kenji; Miyazaki, Yutaka
2005-01-01
In order to determine desiccation tolerances of bacterial strains, the survival of 58 diarrheagenic strains (18 salmonellae, 35 Shiga toxin-producing Escherichia coli [STEC], and 5 shigellae) and of 15 nonpathogenic E. coli strains was determined after drying at 35°C for 24 h in paper disks. At an inoculum level of 107 CFU/disk, most of the salmonellae (14/18) and the STEC strains (31/35) survived with a population of 103 to 104 CFU/disk, whereas all of the shigellae (5/5) and the majority of the nonpathogenic E. coli strains (9/15) did not survive (the population was decreased to less than the detection limit of 102 CFU/disk). After 22 to 24 months of subsequent storage at 4°C, all of the selected salmonellae (4/4) and most of the selected STEC strains (12/15) survived, keeping the original populations (103 to 104 CFU/disk). In contrast to the case for storage at 4°C, all of 15 selected strains (5 strains each of Salmonella spp., STEC O157, and STEC O26) died after 35 to 70 days of storage at 25°C and 35°C. The survival rates of all of these 15 strains in paper disks after the 24 h of drying were substantially increased (10 to 79 times) by the presence of sucrose (12% to 36%). All of these 15 desiccated strains in paper disks survived after exposure to 70°C for 5 h. The populations of these 15 strains inoculated in dried foods containing sucrose and/or fat (e.g., chocolate) were 100 times higher than those in the dried paper disks after drying for 24 h at 25°C. PMID:16269694
First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength
Lee, Chin-Fei; Li, Zhi-Yun; Ho, Paul T. P.; Hirano, Naomi; Zhang, Qizhou; Shang, Hsien
2017-01-01
In the earliest (so-called “Class 0”) phase of Sun-like (low-mass) star formation, circumstellar disks are expected to form, feeding the protostars. However, these disks are difficult to resolve spatially because of their small sizes. Moreover, there are theoretical difficulties in producing these disks in the earliest phase because of the retarding effects of magnetic fields on the rotating, collapsing material (so-called “magnetic braking”). With the Atacama Large Millimeter/submillimeter Array (ALMA), it becomes possible to uncover these disks and study them in detail. HH 212 is a very young protostellar system. With ALMA, we not only detect but also spatially resolve its disk in dust emission at submillimeter wavelength. The disk is nearly edge-on and has a radius of ~60 astronomical unit. It shows a prominent equatorial dark lane sandwiched between two brighter features due to relatively low temperature and high optical depth near the disk midplane. For the first time, this dark lane is seen at submillimeter wavelength, producing a “hamburger”-shaped appearance that is reminiscent of the scattered-light image of an edge-on disk in optical and near infrared light. Our observations open up an exciting possibility of directly detecting and characterizing small disks around the youngest protostars through high-resolution imaging with ALMA, which provides strong constraints on theories of disk formation. PMID:28439561
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael
2017-03-20
We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y , J , and K 1 bands that reveals an inner gap (9–18 au), an outer disk (18–39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using themore » Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alig, C.; Schartmann, M.; Burkert, A.
2013-07-10
We present a high-resolution simulation of an idealized model to explain the origin of the two young, counterrotating, sub-parsec scale stellar disks around the supermassive black hole SgrA* at the center of the Milky Way. In our model, the collision of a single molecular cloud with a circumnuclear gas disk (similar to the one observed presently) leads to multiple streams of gas flowing toward the black hole and creating accretion disks with angular momentum depending on the ratio of cloud and circumnuclear disk material. The infalling gas creates two inclined, counterrotating sub-parsec scale accretion disks around the supermassive black holemore » with the first disk forming roughly 1 Myr earlier, allowing it to fragment into stars and get dispersed before the second counterrotating disk forms. Fragmentation of the second disk would lead to the two inclined, counterrotating stellar disks which are observed at the Galactic center. A similar event might be happening again right now at the Milky Way Galactic center. Our model predicts that the collision event generates spiral-like filaments of gas, feeding the Galactic center prior to disk formation with a geometry and inflow pattern that is in agreement with the structure of the so-called mini spiral that has been detected in the Galactic center.« less
NASA Astrophysics Data System (ADS)
Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; Kluska, Jacques; Kraus, Stefan; Mayama, Satoshi; McElwain, Michael W.; Oh, Daehyon; Tamura, Motohide; Uyama, Taichi; Wisniewski, John P.; Yang, Yi
2017-03-01
We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.
NASA Technical Reports Server (NTRS)
Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro;
2017-01-01
We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45deg) and their major axes, PA = 140deg east of north for the outer disk, and 100deg for the inner disk. We find an outer-disk inclination of 25deg +/- 10deg from face-on, in broad agreement with the Wagner et al. measurement of 34deg. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.
GHOSTS: The Stellar Populations in the Outskirts of Massive Disk Galaxies
NASA Astrophysics Data System (ADS)
De Jong, Roelof; Radburn-Smith, D. J.; Seth, A. C.; GHOSTS Team
2007-12-01
In recent years we have started to appreciate that the outskirts of galaxies contain valuable information about the formation process of galaxies. In hierarchical galaxy formation the stellar halos and thick disks of galaxies are thought to be the result of accretion of minor satellites, predominantly in the earlier assembly phases. The size, metallicity, and amount of substructure in current day halos are therefore directly related to issues like the small scale properties of the primordial power spectrum of density fluctuations and the suppression of star formation in small dark matter halos. I will show highlights from our ongoing HST/ACS/WFPC2 GHOSTS survey of the resolved stellar populations of 14 nearby, massive disk galaxies. I will show that the smaller galaxies (Vrot 100 km/s) have very small halos, but that most massive disk galaxies (Vrot 200 km/s) have very extended stellar envelopes. The luminosity of these envelopes seems to correlate with Hubble type and bulge-to-disk ratio, calling into question whether these are very extended bulge populations or inner halo populations. The amount of substructure varies strongly between galaxies. Finally, I will present the stellar populations of a very low surface brightness stream around M83, showing that it is old and fairly metal rich.
MIR imaging of the transitional disk source Oph IRS48
NASA Astrophysics Data System (ADS)
Honda, Mitsuhiko
2015-06-01
We propose to make 25 mum mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 mum) and radio (440 mum) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 mum imaging can provide some clues, since it is the wavelength between the previous 18.7 mum and the 440 mum observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 mum image can be complemental to forthecoming ALMA and NIR polarimetric data.
MIR imaging of the transitional disk source Oph IRS48
NASA Astrophysics Data System (ADS)
Honda, Mitsuhiko
2014-01-01
We propose to make 25 micron mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 micron) and radio (440 micron) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 micron imaging can provide some clues, since it is the wavelength between previous 18.7 micron and 440 micron observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 micron image can be complemental to forthecoming ALMA and NIR polarimetric data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Kate Y. L.; Smith, Paul S.; Rieke, George H.
HD 95086 is a young early-type star that hosts (1) a 5 M{sub J} planet at the projected distance of 56 AU revealed by direct imaging, and (2) a prominent debris disk. Here we report the detection of 69 μm crystalline olivine feature from the disk using the Spitzer/MIPS-SED data covering 55-95 μm. Due to the low resolution of the MIPS-SED mode, this feature is not spectrally resolved, but is consistent with the emission from crystalline forsterite contributing ∼5% of the total dust mass. We also present detailed analysis of the disk spectral energy distribution and re-analysis of resolved images obtained bymore » Herschel. Our results suggest that the debris structure around HD 95086 consists of a warm (∼175 K) belt, a cold (∼55 K) disk, and an extended disk halo (up to ∼800 AU), and is very similar to that of HR 8799. We compare the properties of the three debris components, and suggest that HD 95086 is a young analog of HR 8799. We further investigate and constrain single-planet, two-planet, three-planet, and four-planet architectures that can account for the observed debris structure and are compatible with dynamical stability constraints. We find that equal-mass four-planet configurations of geometrically spaced orbits, with each planet of mass ∼ 5 M{sub J} , could maintain the gap between the warm and cold debris belts, and also be just marginally stable for timescales comparable to the age of the system.« less
On the jet of a young star RWAurA and related problems
NASA Astrophysics Data System (ADS)
Berdnikov, L. N.; Burlak, M. A.; Vozyakova, O. V.; Dodin, A. V.; Lamzin, S. A.; Tatarnikov, A. M.
2017-07-01
Having compared images of a jet of the young star RWAurA obtained with an interval of 21.3 yr, we have found that the outermost knots of the jet have emerged approximately 350 years ago. We come up with arguments that the jet itself has appeared at the same time, and intensive accretion onto the star has begun due to rearrangement of its protoplanetary disk structure caused by the tidal effect of the companion RWAur B. More precisely suppose that intensification of accretion is a response to changing conditions in the outer-disk regions which has followed after the sound wave, generated by these changes, has passed the disk in the radial direction. In our opinion difference in the parameters of blue and red lobes of the RWAurA jet is a result of the asymmetric distribution of the circumstellar matter above and below the disk due to companion's passage. It was found from the analysis of the RWAur historical light curve that deep and long-term (Δ t > 150 days) light attenuations of RWAurA observed after 2010 had no precedents in the previous 110 years.We also associate the change in the character of photometric variability of the star with the rearrangement of the structure of inner ( r < 1 AU) regions of its protoplanetary disk, and discuss why these changes have begun only 350 years after the beginning of the active accretion phase.
A search for debris disks in the Herschel-ATLAS
NASA Astrophysics Data System (ADS)
Thompson, M. A.; Smith, D. J. B.; Stevens, J. A.; Jarvis, M. J.; Vidal Perez, E.; Marshall, J.; Dunne, L.; Eales, S.; White, G. J.; Leeuw, L.; Sibthorpe, B.; Baes, M.; González-Solares, E.; Scott, D.; Vieiria, J.; Amblard, A.; Auld, R.; Bonfield, D. G.; Burgarella, D.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.; Dariush, A.; de Zotti, G.; Dye, S.; Eales, S.; Frayer, D.; Fritz, J.; Gonzalez-Nuevo, J.; Herranz, D.; Ibar, E.; Ivison, R. J.; Lagache, G.; Lopez-Caniego, M.; Maddox, S.; Negrello, M.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Samui, S.; Serjeant, S.; Temi, P.; Valtchanov, I.; Verma, A.
2010-07-01
Aims: We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods: We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results: We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Astrophysics Data System (ADS)
Currie, Thayne
2015-06-01
We propose a unique, first-of-its-kind combined near-IR high-contrast imaging and optical interferometry study of 20 young, debris disk-bearing stars with SCExAO + HiCIAO/VAMPIRES. Our sample includes the benchmark imaged exoplanets HR 8799 bcde; luminous, resolvable debris disks; stars with asteroid belts that have yet to be resolved in scattered light; poorly-studied stars whose disks may be resolvable; and stars with compelling planet candidates requiring rapid follow-up. From proven VAMPIRES performance, SCExAO near-IR advances and HiCIAO software and hardware upgrades from our team, our data will 1) resolve known debris belts and possible hitherto unseen asteroid belts and 2) yield significantly deeper contrasts at small (r = 0.1"-0.5") separations than typical HiCIAO data (e.g. 10^{-5} at 0.4"). With the likely-operational Pyramid WFS, we will achieve extreme contrasts (< 10^{-6} at r > 0.25") and planet detection capabilities rivaling/exceeding those from GPI and SPHERE. Our program is guaranteed to result in many publications reporting new insights on known exoplanets and disks, may yield the first optical/IR images of exo-asteroid belts/other exoplanets, and could firmly establish Subaru/SCExAO as the premier extreme-AO exoplanet imaging facility.
NASA Technical Reports Server (NTRS)
Stauffer, John; Cody, Ann Marie; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan;
2015-01-01
We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow, periodic flux dips. All of these stars have infrared (IR) excesses that are consistent with their having inner disk walls near the Keplerian corotation radius. The repeating photometric dips have FWHM generally less than one day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected on successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard \\disk-locking" models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSO in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel- ow accretion columns arising near the inner disk wall.
Magnetic Coupling in the Disks around Young Gas Giant Planets
NASA Astrophysics Data System (ADS)
Turner, N. J.; Lee, Man Hoi; Sano, T.
2014-03-01
We examine the conditions under which the disks of gas and dust orbiting young gas giant planets are sufficiently conducting to experience turbulence driven by the magneto-rotational instability. By modeling the ionization and conductivity in the disk around proto-Jupiter, we find that turbulence is possible if the X-rays emitted near the Sun reach the planet's vicinity and either (1) the gas surface densities are in the range of the minimum-mass models constructed by augmenting Jupiter's satellites to solar composition, while dust is depleted from the disk atmosphere, or (2) the surface densities are much less, and in the range of gas-starved models fed with material from the solar nebula, but not so low that ambipolar diffusion decouples the neutral gas from the plasma. The results lend support to both minimum-mass and gas-starved models of the protojovian disk. (1) The dusty minimum-mass models have internal conductivities low enough to prevent angular momentum transfer by magnetic forces, as required for the material to remain in place while the satellites form. (2) The gas-starved models have magnetically active surface layers and a decoupled interior "dead zone." Similar active layers in the solar nebula yield accretion stresses in the range assumed in constructing the circumjovian gas-starved models. Our results also point to aspects of both classes of models that can be further developed. Non-turbulent minimum-mass models will lose dust from their atmospheres by settling, enabling gas to accrete through a thin surface layer. For the gas-starved models it is crucial to learn whether enough stellar X-ray and ultraviolet photons reach the circumjovian disk. Additionally, the stress-to-pressure ratio ought to increase with distance from the planet, likely leading to episodic accretion outbursts.
ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii
NASA Astrophysics Data System (ADS)
Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.
2018-05-01
We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
Investigating FP Tau’s protoplanetary disk structure through modeling
NASA Astrophysics Data System (ADS)
Brinjikji, Marah; Espaillat, Catherine
2017-01-01
This project presents a study aiming to understand the structure of the protoplanetary disk around FP Tau, a very young, very low mass star in the Taurus star-forming region. We have gathered existing optical, Spitzer, Herschel and submillimeter observations to construct the spectral energy distribution (SED) of FP Tau. We have used the D’Alessio et al (2006) physically self-consistent irradiated accretion disk model including dust settling to model the disk of FP Tau. Using this method, the best fit for the SED of FP Tau is a model that includes a gap located 10-20 AU away from the star. This gap is filled with optically thin dust that separates the optically thick dust in the outer disk from the optically thick dust in the inner disk. These characteristics indicate that FP Tau’s protostellar system is best classified as a pre-transitional disk. Near-infrared interferometry in the K-Band from Willson et al 2016 indicates that FP Tau has a small gap located 10-20 AU from the star, which is consistent with the model we produced, lending further support to the pre-transitional disk interpretation. The most likely explanation for the existence of a gap in the disk is a forming planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K. H.; Watson, Dan M.; Manoj, P.
We present 5-40 {mu}m Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleonmore » I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.« less
Photo-reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri Star
NASA Astrophysics Data System (ADS)
Meng, Huan; Plavchan, Peter; Rieke, George
2016-01-01
Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner "wall" at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1-AU scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H and K bands were synchronized while the 4.5 μm emission lagged by 74.5±3.2 seconds. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084±0.004 AU from the protostar on average. This size is likely larger than the range of magnetospheric truncations, but consistent with an optically and geometrically thick disk front at the dust sublimation radius at ~1500 K. The detection of a definite time lag places new constraints on the geometry of the disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espaillat, C.; Andrews, S.; Qi, C.
Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We findmore » that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieman-Sifry, Jesse; Hughes, A. Meredith; Flaherty, Kevin M.
We present a CO(2-1) and 1240 μ m continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3 σ) CO detections. Twenty disks were detected in the continuum at the >3 σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independentmore » analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dékány, I.; Minniti, D.; Majaess, D.
2015-10-20
Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the lastmore » 100 million years.« less
Nearby stars of the Galactic disk and halo. III.
NASA Astrophysics Data System (ADS)
Fuhrmann, K.
2004-01-01
High-resolution spectroscopic observations of about 150 nearby stars or star systems are presented and discussed. The study of these and another 100 objects of the previous papers of this series implies that the Galaxy became reality 13 or 14 Gyr ago with the implementation of a massive, rotationally-supported population of thick-disk stars. The very high star formation rate in that phase gave rise to a rapid metal enrichment and an expulsion of gas in supernovae-driven Galactic winds, but was followed by a star formation gap for no less than three billion years at the Sun's galactocentric distance. In a second phase, then, the thin disk - our ``familiar Milky Way'' - came on stage. Nowadays it traces the bright side of the Galaxy, but it is also embedded in a huge coffin of dead thick-disk stars that account for a large amount of baryonic dark matter. As opposed to this, cold-dark-matter-dominated cosmologies that suggest a more gradual hierarchical buildup through mergers of minor structures, though popular, are a poor description for the Milky Way Galaxy - and by inference many other spirals as well - if, as the sample implies, the fossil records of its long-lived stars do not stick to this paradigm. Apart from this general picture that emerges with reference to the entire sample stars, a good deal of the present work is however also concerned with detailed discussions of many individual objects. Among the most interesting we mention the blue straggler or merger candidates HD 165401 and HD 137763/HD 137778, the likely accretion of a giant planet or brown dwarf on 59 Vir in its recent history, and HD 63433 that proves to be a young solar analog at \\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspected non-single from the Hipparcos astrometry, is directly detectable in the high-resolution spectroscopic tracings, whereas the visual binary \\chi Cet is instead at least triple, and presumably even quadruple. With respect to the nearby young stars a complete account of the Ursa Major Association is presented, and we provide as well plain evidence for another, the ``Hercules-Lyra Association'', the likely existence of which was only realized in recent years. On account of its rotation, chemistry, and age we do confirm that the Sun is very typical among its G-type neighbors; as to its kinematics, it appears however not unlikely that the Sun's known low peculiar space velocity could indeed be the cause for the weak paleontological record of mass extinctions and major impact events on our parent planet during the most recent Galactic plane passage of the solar system. Although the significance of this correlation certainly remains a matter of debate for years to come, we point in this context to the principal importance of the thick disk for a complete census with respect to the local surface and volume densities. Other important effects that can be ascribed to this dark stellar population comprise (i) the observed plateau in the shape of the luminosity function of the local FGK stars, (ii) a small though systematic effect on the basic solar motion, (iii) a reassessment of the term ``asymmetrical drift velocity'' for the remainder (i.e. the thin disk) of the stellar objects, (iv) its ability to account for the bulk of the recently discovered high-velocity blue white dwarfs, (v) its major contribution to the Sun's ˜220 km s-1 rotational velocity around the Galactic center, and (vi) the significant flattening that it imposes on the Milky Way's rotation curve. Finally we note a high multiplicity fraction in the small but volume-complete local sample of stars of this ancient population. This in turn is highly suggestive for a star formation scenario wherein the few existing single stellar objects might only arise from either late mergers or the dynamical ejection of former triple or higher level star systems.
CCD photometry of Andromeda IV - Dwarf irregular galaxy or M31 open cluster?
NASA Technical Reports Server (NTRS)
Jones, Joseph H.
1993-01-01
CCD photometry of Andromeda IV was obtained during discretionary time in August of 1989 at the Canada-France-Hawaii Telescope on Mauna Kea and the data were reduced at CFHT during the summer of 1991. And IV has been catalogued both as a dwarf galaxy and as an open star cluster in M31. The color-magnitude diagrams presented indicate that this object has a young population of stars with a narrow age range, consistent with the characteristics of an open star cluster or stellar association. A radial velocity measurement taken from the literature and analyzed with respect to the rotation curve of M31 indicates this object resides in the disk of the Andromeda Galaxy, strengthening the conclusion that it is indeed a very large open star cluster or a densely populated stellar association rather than a dwarf irregular galaxy.
Formation of Planetary Populations I: Metallicity & Envelope Opacity Effects
NASA Astrophysics Data System (ADS)
Alessi, Matthew; Pudritz, Ralph E.
2018-05-01
We present a comprehensive body of simulations of the formation of exoplanetary populations that incorporate the role of planet traps in slowing planetary migration. The traps we include in our model are the water ice line, the disk heat transition, and the dead zone outer edge. We reduce our model parameter set to two physical parameters: the opacity of the accreting planetary atmospheres (κenv) and a measure of the efficiency of planetary accretion after gap opening (fmax). We perform planet population synthesis calculations based on the initial observed distributions of host star and disk properties - their disk masses, lifetimes, and stellar metallicities. We find the frequency of giant planet formation scales with disk metallicity, in agreement with the observed Jovian planet frequency-metallicity relation. We consider both X-ray and cosmic ray disk ionization models, whose differing ionization rates lead to different dead zone trap locations. In both cases, Jovian planets form in our model out to 2-3 AU, with a distribution at smaller radii dependent on the disk ionization source and the setting of envelope opacity. We find that low values of κenv (0.001-0.002 cm2 g-1) and X-ray disk ionization are necessary to obtain a separation between hot Jupiters near 0.1 AU, and warm Jupiters outside 0.6 AU, a feature present in the data. Our model also produces a large number of super Earths, but the majority are outside of 2 AU. As our model assumes a constant dust to gas ratio, we suggest that radial dust evolution must be taken into account to reproduce the observed super Earth population.
The Mass Dependence between Protoplanetary Disks and their Stellar Hosts
NASA Astrophysics Data System (ADS)
Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J.
2013-07-01
We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new "snapshot" λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L mm), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L mm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L mm and the disk mass, Md , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ~25 mJy for 1 M ⊙ hosts and a power-law scaling L_mm ∝ M_{\\ast}^{1.5-2.0}. We suggest that a reasonable treatment of dust temperature in the conversion from L mm to Md favors an inherently linear Md vpropM * scaling, with a typical disk-to-star mass ratio of ~0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ~40 on the inferred Md (or L mm) at any given host mass. We argue that this relationship between Md and M * likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and provides some basic support for the core accretion model for planet formation. Moreover, we caution that the effects of incompleteness and selection bias must be considered in comparative studies of disk evolution, and illustrate that fact with statistical comparisons of f(L mm) between the Taurus catalog presented here and incomplete subsamples in the Ophiuchus, IC 348, and Upper Sco young clusters.
Classifying the embedded young stellar population in Perseus and Taurus and the LOMASS database
NASA Astrophysics Data System (ADS)
Carney, M. T.; Yıldız, U. A.; Mottram, J. C.; van Dishoeck, E. F.; Ramchandani, J.; Jørgensen, J. K.
2016-02-01
Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims: We aim to separate the truly embedded YSOs from more evolved sources. Methods: Maps of HCO+J = 4-3 and C18O J = 3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize the presence and morphology of emission from high density (ncrit > 106 cm-3) and high column density gas, respectively. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+J = 4-3 and 850 μm dust emission are used to classify the embedded nature of YSOs. Results: Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Outflows are found to make a negligible contribution to the integrated HCO+ intensity for the majority of sources in this study. Conclusions: Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales down to 0.38 Myr for the embedded phase.
X-rays from Young Low-Mass Stars: Inhospitable Habitable Zones?
NASA Astrophysics Data System (ADS)
Kastner, Joel
2016-09-01
The irradiation of protoplanetary disks by high-energy radiation from magnetic and accretion activity at low-mass, pre-MS stars likely plays an essential role in regulating exoplanet formation around such stars. To provide the X-ray data necessary to address the problem of the dissipation of protoplanetary disks around the lowest-mass stars, we propose a survey of a sample of previously established and newly-discovered mid- to late-type M type members of the nearby TW Hya Association (age 8 Myr), most of which were the subjects of our recent ALMA survey to detect dusty disks. The combined Chandra and ALMA survey of the TWA will provide a unique resource with which to investigate X-ray-induced photoevaporation of disks orbiting very low-mass stars and massive brown dwarfs.
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Ciardi, David R.
2015-01-01
Most stars are born in binaries, and the evolution of protostellar disks in pre-main sequence (PMS) binary stars is a current frontier of star formation research. PMS binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces. Thus, accretion in PMS binaries is controlled by not only radiation, disk viscosity, and magnetic fields, but also by orbital dynamics.As part of a larger, ongoing effort to characterize mass accretion in young binary systems, we test the predictions of the binary accretion stream theory through continuous, multi-orbit, multi-color optical and near-infrared (NIR) time-series photometry. Observations such as these are capable of detecting and characterizing these modulated accretion streams, if they are generally present. Broad-band blue and ultraviolet photometry trace the accretion luminosity and photospheric temperature while NIR photometry provide a measurement of warm circumstellar material, all as a function of orbital phase. The predicted phase and magnitude of enhanced accretion are highly dependent on the binary orbital parameters and as such, our campaign focuses on 10 PMS binaries of varying periods and eccentricities. Here we present multi-color optical (U, B,V, R), narrowband (Hα), and multi-color NIR (J, H) lightcurves of the PMS binary V4046 Sgr (P=2.42 days) obtained with the SMARTS 1.3m telescope and LCOGT 1m telescope network. These results act to showcase the quality and breadth of data we have, or are currently obtaining, for each of the PMS binaries in our sample. With the full characterization of our sample, these observations will guide an extension of the accretion paradigm from single young stars to multiple systems.
THE PHOTOMETRIC PROPERTIES OF A VAST STELLAR SUBSTRUCTURE IN THE OUTSKIRTS OF M33
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnachie, Alan W.; Ferguson, Annette M. N.; Irwin, Michael J.
2010-11-10
We have surveyed approximately 40 deg{sup 2} surrounding M33 with Canada-France-Hawaii Telescope MegaCam/MegaPrime in the g and i filters out to a maximum projected radius from this galaxy of 50 kpc, as part of the Pan-Andromeda Archaeological Survey (PAndAS). Our observations are deep enough to resolve the top {approx}4 mag of the red giant branch population in this galaxy. We have previously shown that the disk of M33 is surrounded by a large, irregular, low surface brightness substructure. Here, we quantify the stellar populations and structure of this feature using the PAndAS data. We show that the stellar populations ofmore » this feature are consistent with an old population with ([Fe/H]) {approx} -1.6 dex and an interquartile range in metallicity of {approx}0.5 dex. We construct a surface brightness map of M33 that traces this feature to {mu}{sub V} {approx_equal} 33 mag arcsec{sup -2}. At these low surface brightness levels, the structure extends to projected radii of {approx}40 kpc from the center of M33 in both the northwest and southeast quadrants of the galaxy. Overall, the structure has an 'S-shaped' appearance that broadly aligns with the orientation of the H I disk warp. We calculate a lower limit to the integrated luminosity of the structure of -12.7 {+-} 0.5 mag, comparable to a bright dwarf galaxy such as Fornax or Andromeda II and slightly less than 1% of the total luminosity of M33. Further, we show that there is tentative evidence for a distortion in the distribution of young stars near the edge of the H I disk that occurs at similar azimuth to the warp in H I. The data also hint at a low-level, extended stellar component at larger radius that may be an M33 halo component. We revisit studies of M33 and its stellar populations in light of these new results and discuss possible formation scenarios for the vast stellar structure. Our favored model is that of the tidal disruption of M33 in its orbit around M31.« less
Boundary Conditions of Radiative Cooling in Gravitationally Unstable Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Cai, K.; Durisen, R. H.; Mejía, A. C.
2004-05-01
In order to create 3D hydrodynamic disk simulations which reproduce the observable properties of young stellar disks and which realistically probe the possibility of planet formation by gravitational instabilities, it is crucial to include a proper treatment of the radiative energy transport within the disk. Our recent simulations (Mejía 2004, Ph.D. dissertation) suggest that the boundary conditions between optically thin and thick regions are important in treating radiative cooling in protoplanetary disks. Although the initial cooling times are shorter than one rotation period, these disks adjust their structures over a few rotations to much longer cooling times, at which Gammie's (2001) criterion predicts they are stable against fragmentation into dense clumps. In fact, the disks do not fragment in Mejía's calculations. Boss (2001, 2002), on the other hand, using different boundary conditions, finds rapid cooling and fragmentation in his own disk simulations with radiative cooling. He attributes the rapid cooling to convection, which does not occur in Mejía's calculations. This apparent disagreement is critical because disk fragmentation has been proposed as a gas giant planet formation mechanism. To test the importance of boundary conditions, we are running simulations which compare a Boss-like treatment of boundary conditions with Mejía's for the case of a disk heated from above by a hot envelope. Preliminary results will be presented.
An UXor among FUors: Extinction-related Brightness Variations of the Young Eruptive Star V582 Aur
NASA Astrophysics Data System (ADS)
Ábrahám, P.; Kóspál, Á.; Kun, M.; Fehér, O.; Zsidi, G.; Acosta-Pulido, J. A.; Carnerero, M. I.; García-Álvarez, D.; Moór, A.; Cseh, B.; Hajdu, G.; Hanyecz, O.; Kelemen, J.; Kriskovics, L.; Marton, G.; Mező, Gy.; Molnár, L.; Ordasi, A.; Rodríguez-Coira, G.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Szegedi-Elek, E.; Szing, A.; Farkas-Takács, A.; Vida, K.; Vinkó, J.
2018-01-01
V582 Aur is an FU Ori-type young eruptive star in outburst since ∼1985. The eruption is currently in a relatively constant plateau phase, with photometric and spectroscopic variability superimposed. Here we will characterize the progenitor of the outbursting object, explore its environment, and analyze the temporal evolution of the eruption. We are particularly interested in the physical origin of the two deep photometric dips, one that occurred in 2012 and one that is ongoing since 2016. We collected archival photographic plates and carried out new optical, infrared, and millimeter-wave photometric and spectroscopic observations between 2010 and 2018, with a high sampling rate during the current minimum. Besides analyzing the color changes during fading, we compiled multiepoch spectral energy distributions and fitted them with a simple accretion disk model. Based on pre-outburst data and a millimeter continuum measurement, we suggest that the progenitor of the V582 Aur outburst is a low-mass T Tauri star with average properties. The mass of an unresolved circumstellar structure, probably a disk, is 0.04 M ⊙. The optical and near-infrared spectra demonstrate the presence of hydrogen and metallic lines, show the CO band head in absorption, and exhibit a variable Hα profile. The color variations strongly indicate that both the ∼1 yr long brightness dip in 2012 and the current minimum since 2016 are caused by increased extinction along the line of sight. According to our accretion disk models, the reddening changed from A V = 4.5 to 12.5 mag, while the accretion rate remained practically constant. Similarly to the models of the UXor phenomenon of intermediate- and low-mass young stars, orbiting disk structures could be responsible for the eclipses.
NASA Astrophysics Data System (ADS)
Konishi, Mihoko; Hashimoto, Jun; Hori, Yasunori
2018-06-01
We search for signatures of a distant planet around the two million-year-old classical T-Tauri star CI Tau hosting a hot-Jupiter candidate ({M}{{p}}\\sin i∼ 8.1 {M}Jupiter}) in an eccentric orbit (e ∼ 0.3). To probe the existence of an outer perturber, we reanalyzed 1.3 mm dust continuum observations of the protoplanetary disk around CI Tau obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). We found a gap structure at ∼0.″8 in CI Tau’s disk. Our visibility fitting assuming an axisymmetric surface brightness profile suggested that the gap is located at a deprojected radius of 104.5 ± 1.6 au and has a width of 36.9 ± 2.9 au. The brightness temperature around the gap was calculated to be ∼2.3 K lower than that of the ambient disk. Gap-opening mechanisms such as secular gravitational instability (GI) and dust trapping can explain the gap morphology in the CI Tau disk. The scenario that an unseen planet created the observed gap structure cannot be ruled out, although the coexistence of an eccentric hot Jupiter and a distant planet around the young CI Tau would be challenging for gravitational scattering scenarios. The mass of the planet was estimated to be between ∼0.25 M Jupiter and ∼0.8 M Jupiter from the gap width and depth ({0.41}-0.06+0.04) in the modeled surface brightness image, which is lower than the current detection limits of high-contrast direct imaging. The young classical T-Tauri CI Tau may be a unique system for exploring the existence of a potential distant planet as well as the origin of an eccentric hot Jupiter.
The Long-Lived Disks in the η Chamaeleontis Cluster
NASA Astrophysics Data System (ADS)
Sicilia-Aguilar, Aurora; Bouwman, Jeroen; Juhász, Attila; Henning, Thomas; Roccatagliata, Veronica; Lawson, Warrick A.; Acke, Bram; Feigelson, Eric D.; Tielens, A. G. G. M.; Decin, Leen; Meeus, Gwendolyn
2009-08-01
We present Infrared Spectrograph spectra and revised Multiband Imaging Photometer photometry for the 18 members of the η Chamaeleontis cluster. Aged 8 Myr, the η Cha cluster is one of the few nearby regions within the 5-10 Myr age range, during which the disk fraction decreases dramatically and giant planet formation must come to an end. For the 15 low-mass members, we measure a disk fraction ~50%, high for their 8 Myr age, and four of the eight disks lack near-IR excesses, consistent with the empirical definition of "transition" disks. Most of the disks are comparable to geometrically flat disks. The comparison with regions of different ages suggests that at least some of the "transition" disks may represent the normal type of disk around low-mass stars. Therefore, their flattened structure and inner holes may be related to other factors (initial masses of the disk and the star, environment, binarity), rather than to pure time evolution. We analyze the silicate dust in the disk atmosphere, finding moderate crystalline fractions (~10%-30%) and typical grain sizes ~1-3 μm, without any characteristic trend in the composition. These results are common to other regions of different ages, suggesting that the initial grain processing occurs very early in the disk lifetime (<1 Myr). Large grain sizes in the disk atmosphere cannot be used as a proxy for age, but are likely related to higher disk turbulence. The dust mineralogy varies between the 8-12 μm and the 20-30 μm features, suggesting high temperature dust processing and little radial mixing. Finally, the analysis of IR and optical data on the B9 star η Cha reveals that it is probably surrounded by a young debris disk with a large inner hole, instead of being a classical Be star.
HD 100453: An evolutionary link between protoplanetary disks and debris disks
NASA Astrophysics Data System (ADS)
Collins, Karen
2008-12-01
Herbig Ae stars are young stars usually surrounded by gas and dust in the form of a disk and are thought to evolve into planetary systems similar to our own. We present a multi-wavelength examination of the disk and environment of the Herbig Ae star HD 100453A, focusing on the determination of accretion rate, system age, and disk evolution. We show that the accretion rate is characterized by Chandra X-ray imagery that is inconsistent with strongly accreting early F stars, that the disk lacks the conspicuous Fe II emission and continuum seen in FUV spectra of actively accreting Herbig Ae stars, and that FUSE, HST, and FEROS data suggest an accretion rate below ˜ 2.5×10 -10 [Special characters omitted.] M⊙ yr -1 . We confirm that HD 100453B is a common proper motion companion to HD 100453A, with spectral type M4.0V - M4.5V, and derive an age of 14 ± 4 Myr. We examine the Meeus et al. (2001) hypothesis that Meeus Group I sources, which have a mid-IR bump which can be fitted by a black body component, evolve to Meeus Group II sources, which have no such mid-IR bump. By considering stellar age and accretion rate evidence, we find the hypothesis to be invalid. Furthermore, we find that the disk characteristics of HD 100453A do not fit the traditional definition of a protoplanetary disk, a transitional disk, or a debris disk, and they may suggest a new class of disks linking gas-rich protoplanetary disks and gas-poor debris disks.
Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33
NASA Astrophysics Data System (ADS)
Mineikis, T.; Vansevičius, V.
We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.
Classical Accreting Pulsars with NICER
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2014-01-01
Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.
Multiwavelength Imaging Of YSOs With Disk In South Pillars Of Eta Carina
NASA Astrophysics Data System (ADS)
Reyes, J. A.; Porras, B. A.
2013-04-01
We present multiwavelength imaginery and spectral energy distributions (SEDs) of 15 Young Stellar Objects (YSOs) with disk components lying on the South Pillars region close to Eta Carina (η Car). The SEDs include IR fluxes from 2MASS, IRAC, MSX, AKARI, and MIPS-24 μm, and 1.1 mm flux from AzTEC camera at the ASTE antenna. Millimeter fluxes help to constrain the number of fitted models, which provide the list of physical parameters for the star, the disk and the envelope. We then compare the parameters of the YSOs and their spatial location within the star forming region.
Bei, Thalia; Tilkeridis, Constantinos; Garantziotis, Stavros; Boikos, Sosipatros A.; Kazakos, Konstantinos; Simopoulos, Constantinos; Stratakis, Constantine A.
2011-01-01
OBJECTIVE We recently reported the association of the Sp1 site polymorphism of the COL1A1 gene with lumbar disk disease (LDD). In the present study we searched for a different polymorphism of the COL1A1 gene (which is usually not in linkage disequilibrium with the Sp1 site) in subjects with LDD. DESIGN Blood was collected from 24 Greek army recruits, aged 29±7.6 years, with LDD, and 66 healthy men, aged 26±4.38 years, matched for body mass index (BMI) and age, with normal BMD and with no history of trauma or fractures, who served as controls. DNA was extracted and the COL1A1 gene was sequenced. Of the control subjects, 12 were army recruits and 54 were selected from the general population. RESULTS The four base-pair insertion polymorphism in the COL1A1 gene analyzed by polymerase chain reaction amplification of DNA produces two different fragments (alleles A1 and A2): 14 patients (58.3%) were homozygous for A2A2, versus 35 controls (53%), while 3 patients (12.5%) were A1A1, and 8 of the control subjects (12%) had this genotype. There were no statistically significant differences in the presence of the two alleles of this polymorphism between patients with LDD and control subjects. CONCLUSIONS A four base-pair insertion polymorphism of the COL1A1 gene is not associated with the presence of LDD in young males, unlike the Sp1 site polymorphism of the same gene. These data reinforce the association between LDD and the functional polymorphisms of the Sp1 site by showing that other polymorphic sites of the of the COL1A1 gene in the same population of patients are not linked to the disease. PMID:18694864
Studies of Young, Star-forming Circumstellar Disks
NASA Astrophysics Data System (ADS)
Bae, Jaehan
2017-08-01
Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks. When a planet forms in a disk, the gravitational interaction between the planet and disk can create structures, such as spiral arms and gaps. In Chapter 5, I compared the disk structures formed by planetary companions in numerical simulations with the observed structures in the disk surrounding an 8 Myr-old Herbig Ae star SAO 206462. Based on the experiments, I made predictions for the mass and position of a currently unrevealed planet, which can help guide future observations to search for more conclusive evidence for the existence of a planetary companion in the system. In Chapter 6, I showed for the first time in global simulation domains that spiral waves, driven for instance by planets or gravitational instability, can be unstable due to resonant interactions with inertial modes, breaking into turbulence. In Chapter 7, I showed that the spiral wave instability operates on the waves launched by planets and that the resulting turbulence can significantly stir up solid particles from the disk midplane. The stirring of solid particles can have influences on the observation appearance of the parent disk and on the subsequent assembly of planetary bodies in the disk. Finally, in Chapter 8, I investigated the dispersal of circumstellar disks via photoevaporative winds, finding that the photoevaporative loss alone, coupled with a range of initial angular momenta of protostellar clouds, can explain the observed decline of the disk frequency with increasing age. The findings and future possibilities are summarized in Chapter 9.
ALMA 1.3 Millimeter Map of the HD 95086 System -- A Young Analog of the HR 8799 System
NASA Astrophysics Data System (ADS)
Su, Kate; MacGregor, Meredith Ann; Booth, Mark; Wilner, David; Malhotra, Renu; Morrison, Sarah; OST STDT
2018-01-01
Planets and minor bodies such as asteroids, Kuiper-belt objects and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is best illustrated through resolved observations of its debris disk. Here we present ALMA 1.3 mm observations of HD 95086, a young analog of the HR 8799 system, that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-belt analogs. The location of the Kuiper-belt analog is resolved for the first time. Our deep ALMA map also reveals a bright source located near the edge of the ring. The properties of the source, based on limited data, are consistent with it being a luminous star-forming galaxy at high redshift. We will discuss future, resolved observations of debris disks, highlighting the potential of the Origins Space Telescope (OST), one of the four science and technology definition studies commissioned by NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.
Quartz-like Crystals Found in Planetary Disks
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Spitzer Space Telescope has, for the first time, detected tiny quartz-like crystals sprinkled in young planetary systems. The crystals, which are types of silica minerals called cristobalite and tridymite, can be seen close-up in the black-and-white insets (cristobalite is on the left, and tridymite on the right). The main picture is an artist's concept of a young star and its swirling disk of planet-forming materials. Cristobalite and tridymite are thought to be two of many planet ingredients. On Earth, they are normally found as tiny crystals in volcanic lava flows and meteorites from space. These minerals are both related to quartz. For example, if you were to heat the familiar quartz crystals often sold as mystical tokens, the quartz would transform into cristobalite and tridymite. Because cristobalite and tridymite require rapid heating and cooling to form, astronomers say they were most likely generated by shock waves traveling through the planetary disks. The insets are Scanning Electron Microscope pictures courtesy of George Rossman of the California Institute of Technology, Pasadena, Calif.New Parallaxes for the Upper Scorpius OB Association
NASA Astrophysics Data System (ADS)
Donaldson, J. K.; Weinberger, A. J.; Gagné, J.; Boss, A. P.; Keiser, S. A.
2017-11-01
Upper Scorpius is a subgroup of the nearest OB association, Scorpius-Centaurus. Its young age makes it an important association to study star and planet formation. We present parallaxes to 52 low-mass stars in Upper Scorpius, 28 of which have full kinematics. We measure ages of the individual stars by combining our measured parallaxes with pre-main-sequence evolutionary tracks. We find a significant difference in the ages of stars with and without circumstellar disks. The stars without disks have a mean age of 4.9 ± 0.8 Myr and those with disks have an older mean age of 8.2 ± 0.9 Myr. This somewhat counterintuitive result suggests that evolutionary effects in young stars can dominate their apparent ages. We also attempt to use the 28 stars with full kinematics (I.e., proper motion, radial velocity (RV), and parallax) to trace the stars back in time to their original birthplace to obtain a trackback age. As expected, given the large measurement uncertainties on available RV measurements, we find that measurement uncertainties alone cause the group to diverge after a few Myr.
SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.
2012-01-20
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less
Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds
NASA Astrophysics Data System (ADS)
Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.
2012-01-01
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.
NASA Astrophysics Data System (ADS)
Brandeker, Alexis; Liseau, René; Artymowicz, Pawel; Jayawardhana, Ray
2001-11-01
Since a majority of young low-mass stars are members of multiple systems, the study of their stellar and disk configurations is crucial to our understanding of both star and planet formation processes. Here we present near-infrared adaptive optics observations of the young multiple star system VW Chamaeleon. The previously known 0.7" binary is clearly resolved already in our raw J- and K-band images. We report the discovery of a new faint companion to the secondary, at an apparent separation of only 0.1", or 16 AU. Our high-resolution photometric observations also make it possible to measure the J-K colors of each of the three components individually. We detect an infrared excess in the primary, consistent with theoretical models of a circumprimary disk. Analytical and numerical calculations of orbital stability show that VW Cha may be a stable triple system. Using models for the age and total mass of the secondary pair, we estimate the orbital period to be 74 yr. Thus, follow-up astrometric observations might yield direct dynamical masses within a few years and constrain evolutionary models of low-mass stars. Our results demonstrate that adaptive optics imaging in conjunction with deconvolution techniques is a powerful tool for probing close multiple systems. Based on observations collected at the European Southern Observatory, Chile.
Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis
NASA Astrophysics Data System (ADS)
Sullivan, Kendall; Prato, Lisa; Avilez, Ian
2018-01-01
S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.
Observing Star and Planet Formation in the Submillimeter and Far Infrared
NASA Technical Reports Server (NTRS)
Yorke, Harold W.
2004-01-01
Stars from in the densest parts of cold interstellar clouds which-due to presence of obscuring dust-cannot be observed with optical telescopes. Recent rapid progress in understanding how stars and planets are formed has gone hand in hand with our ability to observe extremely young systems in the infrared and (submillimeter) spectral regimes. The detections and silhouetted imaging of disks around young objects in the visible and NIR have demonstrated the common occurrence of circumstellar disks and their associated jets and outflows in star forming regions. However, in order to obtain quantitative information pertaining to even earlier evolutionary phases, studies at longer wavelengths are necessary. From spectro-photometric imaging at all wavelengths we learn about the temperature and density structure of the young stellar environment. From narrow band imaging in the far infrared and submillimeter spectral regimes we can learn much about the velocity structure and the chemical makeup (pre-biotic material) of the planet-forming regions.
Accretion as a function of Orbital Phase in Young Close Binaries
NASA Astrophysics Data System (ADS)
Ardila, David R.; Herczeg, G.; Johns-Krull, C. M.; Mathieu, R. D.; Vodniza, A.; Tofflemire, B. M.
2014-01-01
Many planets are known to reside around binaries and the study of young binary systems is crucial to understand their formation. Young ($<10$ Myrs) low-mass binaries are generally surrounded by circumbinary disk with an inner gap. Gas from the disk must cross this gap for accretion to take place and here we present observations of this process as a function of orbital phase. We have obtained time-resolved FUV and NUV spectroscopy (1350 to 3000 A) of DQ Tau and UZ Tau E, using the Cosmic Origins Spectrograph on-board the Hubble Space Telescope. Each target was observed 2 to 4 times per binary orbit, over three or four consecutive orbits. For DQ Tau, we find some evidence that accretion occurs equally into both binary members, while for UZ Tau E this is not the case. H2 emission for DQ Tau most likely originates within the circumbinary gap, while for UZ Tau E no 1000 K gas is detected within the gap, although magnetospheric accretion does take place.
Inner Disk Structure and Transport Mechanisms in the Transitional Disk around T Cha
NASA Astrophysics Data System (ADS)
Brown, Alexander
2017-08-01
To better understand how Earth-like planets form around low-mass stars, we propose to study the UV (HST), X-ray (XMM), and optical (LCOGT) variability of the young star T Cha. This variability is caused by obscuration of the star by clumpy material in the rim of its inner disk. Changing sight lines through the disk allow measurement of the temperature and column density of both molecular and atomic gas and the physical properties of the dust grains in the well-mixed inner disk, as well as determining the gas-to-dust ratio. The gas-to-dust ratio affects planetesimal growth and disk stability but is difficult to measure in local regions of disks. Three 5 orbit visits, separated by 3-7 days, are required for use of analysis techniques comprising both differential pair-method comparison of spectra with differing A_v (particularly important for determining the dust extinction curve, A_lambda, where removal of the foreground extinction requires multiple epochs) and detailed spectral fitting of gas absorption features at each epoch. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. Characterizing the high energy (UV/X-ray) radiation field is also essential for in-depth studies of the disk in other spectral regions. Results from these observations will have wide relevance to the modeling and understanding of protoplanetary disk structure and evolution, and the complex gas and dust physics and chemistry in disk surface layers.
GW Orionis: Inner disk readjustments in a triple system
NASA Astrophysics Data System (ADS)
Fang, M.; Sicilia-Aguilar, A.; Roccatagliata, V.; Fedele, D.; Henning, Th.; Eiroa, C.; Müller, A.
2014-10-01
Context. Disks are expected to dissipate quickly in binary or multiple systems. Investigating such systems can improve our knowledge of the disk dispersal. The triple system GW Ori, still harboring a massive disk, is an excellent target. Aims: We study the young stellar system GW Ori, concentrating on its accretion, wind activity and disk properties. Methods: We use high-resolution optical spectra of GW Ori to do spectral classification and derive the radial velocities (RV). We analyze the wind and accretion activity using the emission lines in the spectra. We also use U-band photometry, which has been collected from the literature, to study the accretion variability of GW Ori. We characterize the disk properties of GW Ori by modeling its spectral energy distribution (SED). Results.By comparing our data to the synthetical spectra, we classify GW Ori as a G8 star. Based on the RVs derived from the optical spectra, we confirm the previous result as a close companion in GW Ori with a period of ~242 days and an orbital semi-major axis of ~1 AU. The RV residuals after the subtraction of the orbital solution with the equivalent widths (EW) of accretion-related emission lines vary with periods of 5-6.7 days during short-time intervals, which are caused by the rotational modulation. The Hα and Hβ line profiles of GW Ori can be decomposed in two central-peaked emission components and one blue-shifted absorption component. The blue-shifted absorption components are due to a disk wind modulated by the orbital motion of the close companion. Therefore, the systems like GW Ori can be used to study the extent of disk winds. We find that the accretion rates of GW Ori are rather constant but can occasionally be enhanced by a factor of 2-3. We reproduce the SED of GW Ori by using disk models with gaps ~25-55 AU in size. A small population of tiny dust particles within the gap produces the excess emission at near-infrared bands and the strong and sharp silicate feature at 10 μm. The SED of GW Ori exhibits dramatic changes on timescales of ~20 yr in the near-infrared bands, which can be explained as the change in the amount and distribution of small dust grains in the gap. We collect a sample of binary/multiple systems with disks in the literature and find a strong positive correlation between their gap sizes and separations from the primaries to companions, which is generally consistent with the prediction from the theory. Table 4 is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.
2009-09-01
We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.
Wang, Jason J.; Graham, James R.; Pueyo, Laurent; ...
2015-09-23
We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less
The properties of the gas around beta Pictoris
NASA Astrophysics Data System (ADS)
Roberge, A.
2014-09-01
Debris disks are often described as gas-free. Compared to protoplanetary disks, they do in general have low gas abundances, as evidenced by the very few detections of sub-mm CO emission from bona fide debris disks to date. However, some debris disks do contain low levels of detectable gas, typically seen in absorption against the stellar spectrum at UV and optical wavelengths. Of all debris disks, the gas in the Beta Pic disk is the best characterized and understood. Here, I describe those characteristics and explain our current understanding of the nature of the gas. Like the dust, the gas is secondary material coming from planetesimal destruction, and provides opportunities for sensitive probes of the bulk composition of young planetary bodies. The gas can also be a sensitive tracer of disk asymmetries and dynamical interactions, as shown by new ALMA observations of CO emission from Beta Pic (see attached infographic and YouTube video explaining the discovery). Very likely, every debris disk contains its due portion of gas, but how much that is, we do not yet know. We are poised to answer this question with the advent of ALMA. With its unprecedented sensitivity and spatial resolution, ALMA may usher in a golden age for general studies of debris gas.
No Evidence for Protoplanetary Disk Destruction By OB Stars in the MYStIX Sample
NASA Astrophysics Data System (ADS)
Richert, Alexander J. W.; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.
2015-09-01
Hubble Space Telescope images of proplyds in the Orion Nebula, as well as submillimeter/radio measurements, show that the dominant O7 star {θ }1Ori C photoevaporates nearby disks around pre-main-sequence stars. Theory predicts that massive stars photoevaporate disks within distances of the order of 0.1 pc. These findings suggest that young, OB-dominated massive H ii regions are inhospitable to the survival of protoplanetary disks and, subsequently, to the formation and evolution of planets. In the current work, we test this hypothesis using large samples of pre-main-sequence stars in 20 massive star-forming regions selected with X-ray and infrared photometry in the MYStIX survey. Complete disk destruction would lead to a deficit of cluster members with an excess in JHKS and Spitzer/IRAC bands in the vicinity of O stars. In four MYStIX regions containing O stars and a sufficient surface density of disk-bearing sources to reliably test for spatial avoidance, we find no evidence for the depletion of inner disks around pre-main-sequence stars in the vicinity of O-type stars, even very luminous O2-O5 stars. These results suggest that massive star-forming regions are not very hostile to the survival of protoplanetary disks and, presumably, to the formation of planets.
Photo-Reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri star
NASA Astrophysics Data System (ADS)
Meng, Huan; Plavchan, Peter; Rieke, George
2015-12-01
Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner "wall", where material is depleted by sublimation and/or magnetospheric accretion. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1-AU scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H and K bands were synchronized while the 4.5 μm emission lagged by 74.5 ± 3.2 seconds. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 ± 0.004 AU from the protostar on average. This size is likely larger than the range of magnetospheric truncations, but consistent with an optically and geometrically thick disk front at the dust sublimation radius of ~1500 K. The detection of a definite time lag places constraints on the geometry of the disk.
NASA Technical Reports Server (NTRS)
Butner, Harold M.
1999-01-01
Our understanding about the inter-relationship between the collapsing cloud envelope and the disk has been greatly altered. While the dominant star formation models invoke free fall collapse and r(sup -1.5) density profile, other star formation models are possible. These models invoke either different cloud starting conditions or the mediating effects of magnetic fields to alter the cloud geometry during collapse. To test these models, it is necessary to understand the envelope's physical structure. The discovery of disks, based on millimeter observations around young stellar objects, however makes a simple interpretation of the emission complicated. Depending on the wavelength, the disk or the envelope could dominate emission from a star. In addition, the discovery of planets around other stars has made understanding the disks in their own right quite important. Many star formation models predict disks should form naturally as the star is forming. In many cases, the information we derive about disk properties depends implicitly on the assumed envelope properties. How to understand the two components and their interaction with each other is a key problem of current star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espaillat, C.; D'Alessio, P.; Hernandez, J.
In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thickmore » inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.« less
TW HYA ASSOCIATION MEMBERSHIP AND NEW WISE-DETECTED CIRCUMSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Adam; Song, Inseok; Melis, Carl, E-mail: aschneid@physast.uga.edu, E-mail: song@physast.uga.edu, E-mail: cmelis@ucsd.edu
2012-07-20
We assess the current membership of the nearby, young TW Hydrae association and examine newly proposed members with the Wide-field Infrared Survey Explorer (WISE) to search for infrared excess indicative of circumstellar disks. Newly proposed members TWA 30A, TWA 30B, TWA 31, and TWA 32 all show excess emission at 12 and 22 {mu}m providing clear evidence for substantial dusty circumstellar disks around these low-mass, {approx}8 Myr old stars that were previously shown to likely be accreting circumstellar material. TWA 30B shows large amounts of self-extinction, likely due to an edge-on disk geometry. We also confirm previously reported circumstellar disksmore » with WISE and determine a 22 {mu}m excess fraction of 42{sup +10}{sub -{sub 9}}% based on our results.« less
The Anemic Stellar Halo of M101
NASA Astrophysics Data System (ADS)
Holwerda, Benne
2014-10-01
Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.
Uncovering the Detailed Structure and Dynamics of Andromeda's Complex Stellar Disk
NASA Astrophysics Data System (ADS)
Dorman, Claire; Guhathakurta, Puragra; Seth, Anil; Dalcanton, Julianne; Widrow, Larry; Splash Team, Phat Team
2015-01-01
Lambda cold dark matter (LCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion ~150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with LCDM cosmological predictions.This research was funded by grants from the NSF and NASA/STScI.
Structure and dynamics of Andromeda's stellar disk
NASA Astrophysics Data System (ADS)
Dorman, Claire Elise
2015-10-01
Lambda cold dark matter (LambdaCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LambdaCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar 0Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion 150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with LambdaCDM cosmological predictions.
Discovery of Methanol in a Planetary Birthplace
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
Data from the Atacama Large Millimeter/submillimeter Array (ALMA) has recently revealed the first detection of gas-phase methanol, a derivative of methane, in a protoplanetary disk. This milestone discovery is an important step in understanding the conditions for planet formation that can lead to life-supporting planets like Earth.Planetary ChemistryOne major goal in the study of exoplanets is to find planets that orbit in their host stars habitable zones, a measure that determines whether the planet receives the right amount of sunlight to support liquid water. But theres another crucial element in the formation of a life-supporting planet: chemistry.To understand the chemistry of newly born planets, we need to study protoplanetary disks because its from these that young planets form. The elements and molecules contained in these dusty disks are what initially make up the atmospheres of planets forming within the disks.The Atacama Large Millimeter/submillimeter Array under the southern sky. [ESO/B. Tafreshi]The Hunt for ComplexityThe detection of complex molecules in protoplanetary disks is an important milestone, because complex molecules are necessary to build the correct chemistry to support life. Unfortunately, detecting these molecules is very difficult, requiring observations with both high spatial resolution and high sensitivity. Thus far, though weve observed elements and simple molecules in protoplanetary disks, detections of complex molecules have been elusive with only one success before now.Luckily, we now have an observatory up to the challenge! ALMAs unprecedented spatial resolution and sensitivity has recently allowed a team of scientists led by Catherine Walsh (Leiden University) to observe gas-phase methanol in a protoplanetary disk for the first time. This detection was made in the disk around the young star TW Hya, and it represents one of the largest molecules that has ever been observed in a disk to date.Locating IcesThe model (purple line) and data (dashed line) showing the methanol line detection. [Adapted from Walsh et al. 2016]Since TW Hyas disk has temperatures of less than ~100K (-173C), we would expect most of the disks methanol to be frozen. The gas-phase methanol observed by Walsh and collaborators was likely released from a larger reservoir of frozen methanol residing on dust grains in the disk. The peak of the methanol emission was detectedfroma ring located about 30 AU out from the central star, which suggests that the larger dust grains in the disk located in the inner 50 AU may host the bulk of the disk ice reservoir.Walsh and collaborators important detection opens a window into studying complex organic chemistry during planetary system formation. This stepping stone can help us to better understand the conditions when Earth formed and what we should look for in the search for life-supporting planets.CitationCatherine Walsh et al 2016 ApJ 823 L10. doi:10.3847/2041-8205/823/1/L10
Circumstellar Structure Properties of Young Stellar Objects: Envelopes, Bipolar Outflows, and Disks
NASA Astrophysics Data System (ADS)
Kwon, Woojin
2009-12-01
Physical properties of the three main structures in young stellar objects (YSOs), envelopes, bipolar outflows, and circumstellar disks, have been studied using radio interferometers: the Berkeley-Illinois-Maryland Association (BIMA) array and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). (1) Envelopes. Three Class 0 YSOs (L1448 IRS 2, L1448 IRS 3, and L1157) have been observed by CARMA at λ = 1.3 mm and 2.7 mm continuum. Through visibility modeling to fit the two wavelength continuum data simultaneously, we found that the dust opacity spectral index (β) of Class 0 YSOs is around unity, which implies that dust grains have significantly grown already at the earliest stage. In addition, we discussed the radial dependence of β detected in L1448 IRS 3B and also estimated the density distribution of the three targets. (2) Bipolar outflows. Polarimetric observations in the λ = 1.3 mm continuum and CO, as well as spectral line observations in 13CO and C18O have been carried out toward L1448 IRS 3, which has three Class 0 YSOs, using BIMA. We clearly identified two interacting bipolar outflows from the "binary system" of IRS 3A and 3B and estimated the velocity, inclination, and opening angle of the 3B bipolar outflow, using Bayesian inference. Also, we showed that the "binary system" can be bound gravitationally and we estimated the specific angular momentum, which is between those of binary stars and molecular cloud cores. In addition, we marginally detected linear polarizations at the center of IRS 3B (implying a toroidal magnetic field) in continuum and at the bipolar outflow region in CO. (3) Circumstellar disks. We present the results of 6 objects (CI Tau, DL Tau, DO Tau, FT Tau, Haro 6-13, and HL Tau) in our T Tauri disk survey using CARMA. The data consist of λ = 1.3 mm and 2.7 mm continuum with an angular resolution up to 0.13". Through visibility modeling of two disk models (power-law disk with a Gaussian edge and viscous accretion disk) to fit the two wavelength data simultaneously in Bayesian inference, we constrained disk properties. In addition, we detected a dust lane at 100 AU radius of HL Tau, which is gravitationally unstable and can be fragmented. Besides, CI Tau and DL Tau appear to have a spiral pattern. Moreover, we found that more evolved disks have a shallower density gradient and that disks with a smaller β are less massive, which implies "hidden" masses in the cold midplane and/or in large grains. Finally, we found that the accretion disk model is preferred by HL Tau, which has a strong bipolar outflow and accretion, while the power-law disk model is preferred by DL Tau, which has experienced dust settlement and has weak accretion. This implies that the accretion disk model could be applied to disks only in a limited age range.
The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362
NASA Astrophysics Data System (ADS)
Currie, Thayne; Lada, Charles J.; Plavchan, Peter; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.
2009-06-01
Expanding upon the Infrared Array Camera (IRAC) survey from Dahm & Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ >= 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical "transition disks") and "homologously depleted" disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these "evolved primordial disks" greatly outnumber primordial disks, our results undermine standard arguments in favor of a lsim105 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 105 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ≈10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (gsim1.4 M sun) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer have SEDs that indicate their disks may be actively leaving the primordial disk phase. Thus, gas giant planet formation may also occur by ~5 Myr around solar/subsolar-mass stars as well.
ABSENCE OF SIGNIFICANT COOL DISKS IN YOUNG STELLAR OBJECTS EXHIBITING REPETITIVE OPTICAL OUTBURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hauyu Baobab; Hirano, Naomi; Takami, Michihiro
2016-01-10
We report Submillimeter Array 1.3 mm high angular resolution observations toward the four EXor-type outbursting young stellar objects VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses M{sub dust} in the associated circumstellar disks. Among the sources, NY Ori possesses a relatively massive disk with M{sub dust} ∼ 9 × 10{sup −4}M{sub ⊙}. V1118 Ori has a marginal detection equivalent to M{sub dust} ∼ 6 × 10{sup −5}M{sub ⊙}. V1143 Ori has a non-detection also equivalent to M{sub dust} < 6 × 10{sup −5}M{sub ⊙}. For the nearest source, VY Tau, we get a surprising non-detection that provides a stringent upper limit M{sub dust} < 6 × 10{sup −6}M{sub ⊙}.more » We interpret our findings as suggesting that the gas and dust reservoirs that feed the short-duration, repetitive optical outbursts seen in some EXors may be limited to the small-scale, innermost region of their circumstellar disks. This hot dust may have escaped our detection limits. Follow-up, more sensitive millimeter observations are needed to improve our understanding of the triggering mechanisms of EXor-type outbursts.« less
NASA Astrophysics Data System (ADS)
Shuping, Ralph; Keller, Luke D.; Adams, Joseph D.; Petkova, Maya; Wood, Kenneth; Herter, Terry; Sloan, Greg; Jaffe, Daniel Thomas; Greene, Thomas P.; Ennico, Kimberly
2017-01-01
The Becklin-Neugebauer (BN) Object—one of the brightest infrared obejcts in the sky—is a highly luminous young stellar object (YSO) deeply embedded in Orion Molecular Cloud 1 (OMC-1), which sits behind the Orion Nebula (M42). The BN object is likely a 8—15 M⊙ star and has no obvious optical counterpart due to high visual extinction on the line of sight. Furthermore, recent radio studies show that BN is moving towards the northwest at approximately 26 km/s with respect to the Orion Nebula Cluster (ONC), which may indicate that BN was dynamically ejected from either the Trapezium or from within OMC-1 itself. Near-IR polarimetry suggests that BN is surrounded by a large (R=800 AU) disk, which is surprising since a close encounter leading to an ejection would likely disrupt and/or truncate a disk of this size. In this poster presentation, we present new SOFIA-FORCAST grism spectroscopy of BN from 10—40 μm. In conjunction with previous SOFIA-FORCAST photometry and data form the literature, we present the full 1—40 μm SED of BN which we compare to theoretical models using the HOCHUNK-3D radiative equilibrium code. We report constraints on disk parameters and discuss implications for dynamical ejection scenarios.
NASA Astrophysics Data System (ADS)
Windhorst, Rogier A.; Wyithe, Stuart; Alpaslan, Mehmet; Timmes, F. X.; Andrews, Stephen K.; Kim, Duho; Kelly, Patrick; Coe, Dan A.; Diego, Jose M.; Driver, Simon P.; Dijkstra, Mark
2018-06-01
We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-IR surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z=7-17.We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z>7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions.We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be 10^4-10^5x, with rise times of hours and decline times of z~<1 year for cluster transverse velocities of v_T<~1000 km/s.Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3-30 lensing clusters to AB<29 mag over a decade (see Windhorst et al. 2018, ApJS, 234, 41; astro-ph/1801.03584).This work was supported by NASA JWST Interdisciplinary Scientist grants NAG5-12460, NX14AN10G, and 80NSSC18K0200, NASA Theoretical and Computational Astrophysics Networks grant NNX14AB53G, NSF Software Infrastructure for Sustained Innovation grant 1339600, NSF Physics Frontier Center JINA-CEE grant PHY-1430152, Australian Research Council projects AYA2015-64508-P, AYA2012-39475-C02-01, and Ministerio de Economia y Competitividad of Spain Consolider Project CSD2010-00064.
HIDING IN THE SHADOWS: SEARCHING FOR PLANETS IN PRE-TRANSITIONAL AND TRANSITIONAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobinson, Jack; Leinhardt, Zoë M.; Dodson-Robinson, Sarah E.
Transitional and pre-transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to predict the dust distribution and resulting observable markers with greater accuracy than previous works. Dynamical influences from a planet on a circular orbit aremore » shown to enhance dust production in the disk interior and exterior to the planet orbit, while removing planetesimals from the orbit itself, creating a clearly defined gap. In the case of an eccentric planet, the gap opened by the planet is not as clear as the circular case, but there is a detectable asymmetry in the dust disk.« less
NASA Technical Reports Server (NTRS)
Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc
2011-01-01
We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk
Accretions Disks Around Class O Protostars: The Case of VLA 1623
NASA Astrophysics Data System (ADS)
Pudritz, Ralph E.; Wilson, Christine D.; Carlstrom, John E.; Lay, Oliver P.; Hills, Richard E.; Ward-Thompson, Derek
1996-10-01
Continuum emission at 220 and 355 GHz from the prototype class 0 source VLA 1623 has been detected using the James Clerk Maxwell Telescope-Caltech Submillimeter Observatory interferometer. Gaussian fits to the data place an upper limit of 70 AU on the half-width at half-maximum radius of the emission, which implies an upper limit of ~175 AU for the cutoff radius of the circumstellar disk in the system. In the context of existing collapse models, this disk could be magnetically supported on the largest scales and have an age of ~6 x 104 yr, consistent with previous suggestions that class 0 sources are quite young. The innermost region of the disk within ~6 AU is likely to be in centrifugal support, which is likely large enough to provide a drive for the outflow according to current theoretical models. Alternatively, if 175 AU corresponds to the centrifugal radius of the disk, the age of the system is ~2 x 105 yr, closer to age estimates for class I sources.
Low-Mass Star Formation and the Initial Mass Function in Young Clusters
NASA Astrophysics Data System (ADS)
Luhman, Kevin Lee
I have used optical and near-infrared spectroscopy and imaging to measure spectral types and luminosities for young (/tau<10 Myr), embedded (AV=0[-]50), low-mass (0.1-1 Msolar) stars in three nearby (d<300 pc) clusters: L1495E, IC 348, and ρ Ophiuchi. In conjunction with theoretical evolutionary tracks, I have derived the star formation history and initial mass function for each stellar population. A large number of brown dwarf candidates have been identified in the photometry, several of which are confirmed through spectroscopy. Finally, I have measured the frequency and survival times of circumstellar disks and investigated the photometric and spectroscopic properties of protostars. In S 2, I apply observational tests to the available sets of evolutionary models for low-mass stars, concluding that the calculations of D'Antona & Mazzitelli are preferred for the range of masses and ages considered here. In S 3 and S 4, I examine in detail the spectroscopic characteristics and substellar nature of two brown dwarf candidates. The study then expands to include the populations within the clusters L1495E (S 5), IC 348 (S 6), and ρ Ophiuchi (S 7). In S 8, I briefly discuss the past, present, and future of scientific research related to this thesis.
Young Stellar Populations in MYStIX Star-forming Regions: Candidate Protostars
NASA Astrophysics Data System (ADS)
Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.; Povich, Matthew S.
2016-12-01
The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra-based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.
NASA Astrophysics Data System (ADS)
Smith, Rachel L.; Pontoppidan, Klaus M.; Young, Edward D.; Morris, Mark R.; van Dishoeck, Ewine F.
2009-08-01
Using very high resolution (λ/Δλ ≈ 95 000) 4.7 μm fundamental and 2.3 μm overtone rovibrational CO absorption spectra obtained with the Cryogenic Infrared Echelle Spectrograph infrared spectrometer on the Very Large Telescope (VLT), we report detections of four CO isotopologues—C16O, 13CO, C18O, and the rare species, C17O—in the circumstellar environment of two young protostars: VV CrA, a binary T Tauri star in the Corona Australis molecular cloud, and Reipurth 50, an intermediate-mass FU Ori star in the Orion Molecular Cloud. We argue that the observed CO absorption lines probe a protoplanetary disk in VV CrA, and a protostellar envelope in Reipurth 50. All CO line profiles are spectrally resolved, with intrinsic line widths of ≈3-4 km s-1 (FWHM), permitting direct calculation of CO oxygen isotopologue ratios with 5%-10% accuracy. The rovibrational level populations for all species can be reproduced by assuming that CO absorption arises in two temperature regimes. In the higher temperature regime, in which the column densities are best determined, the derived oxygen isotope ratios in VV CrA are: [C16O]/[C18O] =690 ± 30; [C16O]/[C17O] =2800 ± 300, and [C18O]/[C17O]=4.1 ± 0.4. For Reipurth 50, we find [C16O]/[C18O] =490 ± 30; [C16O]/[C17O] =2200 ± 150, [C18O]/[C17O] = 4.4 ± 0.2. For both objects, 12C/13C are on the order of 100, nearly twice the expected interstellar medium (ISM) ratio. The derived oxygen abundance ratios for the VV CrA disk show a significant mass-independent deficit of C17O and C18O relative to C16O compared to ISM baseline abundances. The Reipurth 50 envelope shows no clear differences in oxygen CO isotopologue ratios compared with the local ISM. A mass-independent fractionation can be interpreted as being due to selective photodissociation of CO in the disk surface due to self-shielding. The deficits in C17 O and C18 O in the VV CrA protoplanetary disk are consistent with an analogous origin of the 16O variability in the solar system by isotope selective photodissociation, confirmation of which may be obtained via study of additional sources. The higher fractionation observed for the VV CrA disk compared with the Reipurth 50 envelope is likely due to a combination of disk geometry, grain growth, and vertical mixing processes. This work is based on observations collected at the European Southern Observatory Very Large Telescope under program ID 179.C-0151.
Astronomers Gain Important Insight on How Massive Stars Form
NASA Astrophysics Data System (ADS)
2006-09-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered key evidence that may help them figure out how very massive stars can form. Young Star Graphic Artist's Conception of Young Star Showing Motions Detected in G24 A1: (1) Infall toward torus, (2) Rotation and (3) outflow. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for larger graphic file (JPEG, 129K) "We think we know how stars like the Sun are formed, but there are major problems in determining how a star 10 times more massive than the Sun can accumulate that much mass. The new observations with the VLA have provided important clues to resolving that mystery," said Maria Teresa Beltran, of the University of Barcelona in Spain. Beltran and other astronomers from Italy and Hawaii studied a young, massive star called G24 A1 about 25,000 light-years from Earth. This object is about 20 times more massive than the Sun. The scientists reported their findings in the September 28 issue of the journal Nature. Stars form when giant interstellar clouds of gas and dust collapse gravitationally, compacting the material into what becomes the star. While astronomers believe they understand this process reasonably well for smaller stars, the theoretical framework ran into a hitch with larger stars. "When a star gets up to about eight times the mass of the Sun, it pours out enough light and other radiation to stop the further infall of material," Beltran explained. "We know there are many stars bigger than that, so the question is, how do they get that much mass?" One idea is that infalling matter forms a disk whirling around the star. With most of the radiation escaping without hitting the disk, material can continue to fall into the star from the disk. According to this model, some material will be flung outward along the rotation axis of the disk into powerful outflows. "If this model is correct, there should be material falling inward, rushing outward and rotating around the star all at the same time," Beltran said. "In fact, that's exactly what we saw in G24 A1. It's the first time all three types of motion have been seen in a single young massive star," she added. The scientists traced motions in gas around the young star by studying radio waves emitted by ammonia molecules at a frequency near 23 GHz. The Doppler shift in the frequency of the radio waves gave them the information on the motions of the gas. This technique allowed them to detect gas falling inward toward a large "doughnut," or torus, surrounding the disk presumed to be orbiting the young star. "Our detection of gas falling inward toward the star is an important milestone," Beltran said. The infall of the gas is consistent with the idea of material accreting onto the star in a non-spherical manner, such as in a disk. This supports that idea, which is one of several proposed ways for massive stars to accumulate their great bulk. Others include collisions of smaller stars. "Our findings suggest that the disk model is a plausible way to make stars up to 20 times the mass of the Sun. We'll continue to study G24 A1 and other objects to improve our understanding," Beltran said. Beltran worked with Riccardo Cesaroni and Leonardo Testi of the Astrophysical Observatory of Arcetri of INAF in Firenze, Italy, Claudio Codella and Luca Olmi of the Institute of Radioastronomy of INAF in Firenze, Italy, and Ray Furuya of the Japanese Subaru Telescope in Hawaii. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk
NASA Astrophysics Data System (ADS)
Ferguson, Deborah; Gardner, Susan; Yanny, Brian
2017-07-01
We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.
Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, Deborah; Gardner, Susan; Yanny, Brian
2017-07-10
We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in verticalmore » distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.« less
Milky Way tomography with K and M dwarf stars: The vertical structure of the galactic disk
Ferguson, Deborah; Gardner, Susan; Yanny, Brian
2017-06-02
Here, we use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey (SDSS), to probe the structure of the Milky Way disk across the survey's footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin and thick disk subsamples in regions of some 200 square degrees within 2more » kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the compared latitude regions, possibly allowing access to the systematic metallicity difference between thin and thick disk populations through photometry.« less
NASA Astrophysics Data System (ADS)
Meyer, Michael R.
2009-11-01
Anyone who has ever used baking soda instead of baking powder when trying to make a cake knows a simple truth: ingredients matter. The same is true for planet formation. Planets are made from the materials that coalesce in a rotating disk around young stars - essentially the "leftovers" from when the stars themselves formed through the gravitational collapse of rotating clouds of gas and dust. The planet-making disk should therefore initially have the same gas-to-dust ratio as the interstellar medium: about 100 to 1, by mass. Similarly, it seems logical that the elemental composition of the disk should match that of the star, reflecting the initial conditions at that particular spot in the galaxy.
X-Ray Outburst from Young Star in McNeil's Nebula
NASA Astrophysics Data System (ADS)
2004-07-01
Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the sudden infall of matter onto the surface of the star from an orbiting disk of gas. In general, the coupling of the magnetic field of the star and the magnetic field of its circumstellar disk regulates the inflow of gas from the disk onto the star. This slow, steady inflow suddenly can become much more rapid if a large amount of gas accumulates in the disk, and the disk and the star are rotating at different rates. The differing rotation rates would twist and shear the magnetic field, storing up energy. This energy is eventually released in an energetic, X-ray producing outburst as the magnetic field violently rearranges back to a more stable state. During this period, a large amount of gas can fall onto the star, producing the observed optical and infrared outburst. A new buildup of gas in the disk could lead to a new outburst in the future. Such a scenario may explain why the brightness of McNeil's Nebula appears to vary with time. It is faintly present in surveys of this region of Orion in images taken in the 1960s, but absent from images taken in the 1950s and 1990s. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Quartz-like Crystals Found in Planetary Disks
2008-11-11
NASA Spitzer Space Telescope has, for the first time, detected tiny quartz-like crystals sprinkled in young planetary systems. The crystals, which are types of silica minerals called cristobalite and tridymite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jason J.; Graham, James R.; Pueyo, Laurent
We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less
Multiwavelength search for protoplanetary disks
NASA Technical Reports Server (NTRS)
Neuhaeuser, Ralph; Schmidt-Kaler, Theodor
1994-01-01
Infrared emission of circumstellar dust was observed for almost one hundred T Tauri stars. This dust is interpreted to be part of a protoplanetary disk orbiting the central star. T Tauri stars are young stellar objects and evolve into solar type stars. Planets are believed to form in these disks. The spectral energy distribution of a disk depends on its temperature profile. Different disk regions emit at different wavelengths. The disk-star boundary layer is hot and emits H(alpha) radiation. Inner disk regions at around 1 AU with a temperature of a few hundred Kelvin can be probed in near infrared wavelength regimes. Outer disk regions at around 100 AU distance from the star are colder and emit far infrared and sub-millimeter radiation. Also, X-ray emission from the stellar surface can reveal information on disk properties. Emission from the stellar surface and the boundary layer may be shielded by circumstellar gas and dust. T Tauri stars with low H(alpha) emission, i.e. no boundary layer, show stronger X-ray emission than classical T Tauri stars, because the inner disk regions of weak emission-line T Tauri stars may be clear of material. In this paper, first ROSAT all sky survey results on the X-ray emission of T Tauri stars and correlations between X-ray luminosity and properties of T Tauri disks are presented. Due to atmospheric absorption, X-ray and most infrared observations cannot be carried out on Earth, but from Earth orbiting satellites (e.g. IRAS, ROSAT, ISO) or from lunar based observatories, which would have special advantages such as a stable environment.
High-Resolution Submillimeter and Near-Infrared Studies of the Transition Disk around Sz 91
NASA Technical Reports Server (NTRS)
Tsukagoshi, Takashi; Momose, Munetake; Hashimoto, Jun; Kudo, Tomoyuki; Andrews, Sean; Saito, Masao; Kitamura, Yoshimi; Ohashi, Nagayoshi; Wilner, David; Kawabe, Ryohei;
2014-01-01
To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91, we have performed aperture synthesis 345 GHz continuum and CO(32) observations with the Submillimeter Array ( 13 resolution), and high-resolution imaging of polarized intensity at the Ks-band by using the Hi-CIAO instrument on the Subaru Telescope (0.25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H2 mass of 2.4 103 M in the cold (T 30 K) outer part at 65 r 170 AU by assuming a canonical gas-to-dust mass ratio of 100, although a small amount ( 3109 M) of hot (T 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(32) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jason J.; Graham, James R.; De Rosa, Robert J.
We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 M{sub Jup} planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less
Mid-infrared interferometry towards the massive young stellar object CRL 2136: inside the dust rim
NASA Astrophysics Data System (ADS)
de Wit, W. J.; Hoare, M. G.; Oudmaijer, R. D.; Nürnberger, D. E. A.; Wheelwright, H. E.; Lumsden, S. L.
2011-02-01
Context. Establishing the importance of circumstellar disks and their properties is crucial to fully understand massive star formation. Aims: We aim to spatially resolve the various components that make-up the accretion environment of a massive young stellar object (⪉100 AU), and reproduce the emission from near-infrared to millimeter wavelengths using radiative transfer codes. Methods: We apply mid-infrared spectro-interferometry to the massive young stellar object CRL 2136. The observations were performed with the Very Large Telescope Interferometer and the MIDI instrument at a 42 m baseline probing angular scales of 50 milli-arcseconds. We model the observed visibilities in parallel with diffraction-limited images at both 24.5 μm and in the N-band (with resolutions of 0.6´´and 0.3´´, respectively), as well as the spectral energy distribution. Results: The arcsec-scale spatial information reveals the well-resolved emission from the dusty envelope. By simultaneously modelling the spatial and spectral data, we find that the bulk of the dust emission occurs at several dust sublimation radii (approximately 170 AU). This reproduces the high mid-infrared fluxes and at the same time the low visibilities observed in the MIDI data for wavelengths longward of 8.5 μm. However, shortward of this wavelength the visibility data show a sharp up-turn indicative of compact emission. We discuss various potential sources of this emission. We exclude a dust disk being responsible for the observed spectral imprint on the visibilities. A cool supergiant star and an accretion disk are considered and both shown to be viable origins of the compact mid-infrared emission. Conclusions: We propose that CRL 2136 is embedded in a dusty envelope, which truncates at several times the dust sublimation radius. A dust torus is manifest in the equatorial region. We find that the spectro-interferometric N-band signal can be reproduced by either a gaseous disk or a bloated central star. If the disk extends to the stellar surface, it accretes at a rate of 3.0 × 10-3 M⊙ yr-1. Based on observations with the VLTI, proposal 381.C-0607.
Constraints on planetesimal disk mass from the cratering record and equatorial ridge on Iapetus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Valentin, E. G.; Barr, A. C.; Lopez Garcia, E. J.
2014-09-10
Iapetus, the outermost regular satellite of Saturn, has a drastic albedo dichotomy and an equatorial circumferential ridge that reaches heights of 20 km and widths of 70 km. This moon is thought to have formed concurrently with Saturn, and so would have experienced an intense bombardment after its formation. The ridge, which has been inferred to be one of the most ancient features on Iapetus' surface, could reasonably be expected to have been eroded by impacts; however, it has retained long continuous sections and a nearly pristine triangular shape with ridge slopes reaching ∼40°. We use these observations, along withmore » crater counts on Iapetus' surface, to constrain the total bombardment mass experienced by the satellite since its formation. The ridge morphology and the global crater population recorded on Iapetus both suggest similar bombardment masses, indicating the ridge is indeed ancient. We find that the inferred total bombardment mass incident on Iapetus is less than 20% of the bombardment predicted by the classic Nice model for early solar system evolution. Our results, though, support the recently proposed scenarios of planetesimal-driven migration of the young outer planets including more realistic disk conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.
2014-04-01
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variabilitymore » census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.« less
Tests and consequences of disk plus halo models of gamma-ray burst sources
NASA Technical Reports Server (NTRS)
Smith, I. A.
1995-01-01
The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.
Planet Imager Discovers Young Kuiper Belt
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-07-01
A debris disk just discovered around a nearby star is the closest thing yet seen to a young version of the Kuiper belt. This disk could be a key to better understanding the interactions between debris disks and planets, as well as how our solar system evolved early on in its lifetime. Hunting for an analog The best way to understand how the Kuiper belt — home to Pluto and thousands of other remnants of early icy planet formation in our solar system — developed would be to witness a similar debris disk in an earlier stage of its life. But before now, none of the disks we've discovered have been similar to our own: the rings are typically too large, the central star too massive, or the stars exist in regions very unlike what we think our Sun's birthplace was like. A collaboration led by Thayne Currie (National Astronomical Observatory of Japan) has changed this using the Gemini Planet Imager (GPI), part of a new generation of extreme adaptive-optics systems. The team discovered a debris disk of roughly the same size as the Kuiper belt orbiting the star HD 115600, located in the nearest OB association. The star is only slightly more massive than our Sun, and it lives in a star-forming region similar to the early Sun's environment. HD 115600 is different in one key way, however: it is only 15 million years old. This means that observing it gives us the perfect opportunity to observe how our solar system might have behaved when it was much younger. A promising future GPI's spatially-resolved spectroscopy, combined with measurements of the reflectivity of the disk, have led the team to suspect that the disk might be composed partly of water ice, just as the Kuiper belt is. The disk also shows evidence of having been sculpted by the motions of giant planets orbiting the central star, in much the same way as the outer planets of our solar system may have shaped the Kuiper belt. The observations of HD 115600 are some of the very first to emerge from GPI and the new generation of planet-hunting instruments. The detection of this disk provides a promising outlook on what we can expect to discover in the future with these systems. Citation: Thayne Currie et al. 2015 ApJ 807 L7 doi:10.1088/2041-8205/807/1/L7
YOUNG STELLAR CLUSTERS CONTAINING MASSIVE YOUNG STELLAR OBJECTS IN THE VVV SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borissova, J.; Alegría, S. Ramírez; Kurtev, R.
The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 M {sub ⊙}), the slope Γ of themore » obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M {sub ⊙}). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.« less
Young Stellar Objects from Soft to Hard X-rays
NASA Astrophysics Data System (ADS)
Güdel, Manuel
2009-05-01
Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.
Probing circumplanetary disks with MagAO and ALMA
NASA Astrophysics Data System (ADS)
Wu, Ya-Lin
2018-01-01
The dedication of the Magellan Adaptive Optics (MagAO) on the 6.5 m Clay Telescope has opened a new era in high-contrast imaging. Its unique diffraction-limited wavelengths of 0.6 to 1 micron helps to probe circumplanetary disks by measuring the amount of dust reddening as well as by searching for the strongest gas accretion indicator H-alpha (0.65 micron). Using MagAO, I found that two wide-orbit planetary-mass companions CT Cha B and 1RXS 1609 B have a significant dust extinction of Av ~ 3 to 5 mag likely from their disks. For GQ Lup B, I found that it is actively accreting material from its disk and emitting strong H-alpha emission. My research with MagAO demonstrates that circumplanetary disks could be ubiquitous among young giant planets. I later carried out a survey using ALMA to image accretion disks around several wide planet-mass companions at 1.3 mm continuum and CO (2-1). This is the first systematic study aiming to measure the size, mass, and structure of planetary disks. However, except for FW Tau C (which was shown to actually be a low-mass star from the dynamical mass measurement) no disks around the companions were found in my ALMA survey. This surprising null result implies that circumplanetary disks are much more compact and denser than expected, so they are faint and optically thick in the radio wavelengths. Therefore, mid- to far-infrared may be more favorable to characterize disk properties. The MIRI camera on the JWST can test this compact optically-thick disk hypothesis by probing disk thermal emission between 10 and 25 micron.
NASA Astrophysics Data System (ADS)
Hillen, M.; Van Winckel, H.; Menu, J.; Manick, R.; Debosscher, J.; Min, M.; de Wit, W.-J.; Verhoelst, T.; Kamath, D.; Waters, L. B. F. M.
2017-03-01
Aims: We present a mid-IR interferometric survey of the circumstellar environment of a specific class of post-asymptotic giant branch (post-AGB) binaries. For this class the presence of a compact dusty disk has been postulated on the basis of various spatially unresolved measurements. The aim is to determine the angular extent of the N-band emission directly and to resolve the compact circumstellar structures. Methods: Our interferometric survey was performed with the MIDI instrument on the VLTI. In total 19 different systems were observed using variable baseline configurations. Combining all the visibilities at a single wavelength at 10.7 μm, we fitted two parametric models to the data: a uniform disk and a ring model mimicking a temperature gradient. We compared our observables of the whole sample, with synthetic data computed from a grid of radiative transfer models of passively irradiated disks in hydrostatic equilibrium. These models are computed with a Monte Carlo code that has been widely applied to describe the structure of protoplanetary disks around young stellar objects (YSO). Results: The spatially resolved observations show that the majority of our targets cluster closely together in the distance-independent size-colour diagram, and have extremely compact N-band emission regions. The typical uniform disk diameter of the N-band emission region is 40 mas, which corresponds to a typical brightness temperature of 400-600 K. The resolved objects display very similar characteristics in the interferometric observables and in the spectral energy distributions. Therefore, the physical properties of the disks around our targets must be similar. Our results are discussed in the light of recently published sample studies of YSOs to compare quantitatively the secondary discs around post-AGB stars to the ones around YSOs. Conclusions: Our high-angular-resolution survey further confirms the disk nature of the circumstellar structures present around wide post-AGB binaries. The grid of protoplanetary disk models covers very well the observed objects. Much like for young stars, the spatially resolved N-band emission region is determined by the hot inner rim of the disk. Continued comparisons between post-AGB and protoplanetary disks will help to understand grain growth and disk evolution processes, and to constrain planet formation theories. These second-generation disks are an important missing ingredient in binary evolution theory of intermediate-mass stars. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes ID 073.A-9002, 073.A-9014, 073.D-0610, 075.D-0605, 077.D-0071, 078.D-0113, 079.D-0013, 080.D-0059, 081.D-0089, 082.D-0066, 083.D-0011, 083.D-0013, 084.D-0009, 093.D-0914, and 094.D-0778. Some observations were obtained in the framework of the Belgian Guaranteed Time allocation on VISA.
Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects
NASA Astrophysics Data System (ADS)
Desai, Karna M.
Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In this dissertation, I analyze GIs by inserting different objects in a disk by employing 3D hydrodynamics simulations. GIs in a circumbinary disks are studied to determine how the presence of the companion affects the nature and strength of GIs in the disk. The circumbinary disk achieves a state of sustained marginal instability similar to an identical disk without the companion. A realistic evolution of the binary is detected. Planet and disk interactions play an important role in the evolution of planetary systems. To study this interaction during the early phases of planet formation, a migration study of Jovian planets in a GI-active disk is conducted. I find the migration timescales to be longer in a GI-active disk, when compared to laminar disks. The 3 MJupiter planet controls its own orbital evolution, while the migration of a 0.3 MJupiter planet is stochastic in nature. I define a 'critical mass' as the mass of an arm of the dominant two-armed spiral density wave within the planet's Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks. To understand the stochastic migration of low-mass planets, I perform a simulation of 240 zero-mass planet-tracers by inserting these at a range of locations in the disk. A Diffusion Coefficient is calculated to characterize the stochastic migration of low-mass objects. The eccentricity dispersion for the sample is also studied. I find that the diffusion of planets can be a slow process, resulting in the survival of small planetary cores.
NASA Astrophysics Data System (ADS)
Popescu, C. C.; Tuffs, R. J.; Dopita, M. A.; Fischera, J.; Kylafis, N. D.; Madore, B. F.
2011-03-01
We present a self-consistent model of the spectral energy distributions (SEDs) of spiral galaxies from the ultraviolet (UV) to the mid-infrared (MIR)/far-infrared (FIR)/submillimeter (submm) based on a full radiative transfer calculation of the propagation of starlight in galaxy disks. This model predicts not only the total integrated energy absorbed in the UV/optical and re-emitted in the infrared/submm, but also the colours of the dust emission based on an explicit calculation of the strength and colour of the UV/optical radiation fields heating the dust, and incorporating a full calculation of the stochastic heating of small dust grains and PAH molecules. The geometry of the translucent components of the model is empirically constrained using the results from the radiation transfer analysis of Xilouris et al. on spirals in the middle range of the Hubble sequence, while the geometry of the optically thick components is constrained from physical considerations with a posteriori checks of the model predictions with observational data. Following the observational constraints, the model has both a distribution of diffuse dust associated with the old and young disk stellar populations as well as a clumpy component arising from dust in the parent molecular clouds in star forming regions. In accordance with the fragmented nature of dense molecular gas in typical star-forming regions, UV light from massive stars is allowed to either freely stream away into the diffuse medium in some fraction of directions or be geometrically blocked and locally absorbed in clumps. These geometrical constraints enable the dust emission to be predicted in terms of a minimum set of free parameters: the central face-on dust opacity in the B-band τ^f_B, a clumpiness factor F for the star-forming regions, the star-formation rate SFR, the normalised luminosity of the old stellar population old and the bulge-to-disk ratio B/D. We show that these parameters are almost orthogonal in their predicted effect on the colours of the dust/PAH emission. In most practical applications B/D will actually not be a free parameter but (together with the angular size θgal and inclination i of the disk) act as a constraint derived from morphological decomposition of higher resolution optical images. This also extends the range of applicability of the model along the Hubble sequence. We further show that the dependence of the dust emission SED on the colour of the stellar photon field depends primarily on the ratio between the luminosities of the young and old stellar populations (as specified by the parameters SFR and old) rather than on the detailed colour of the emissions from either of these populations. The model is thereby independent of a priori assumptions of the detailed mathematical form of the dependence of SFR on time, allowing UV/optical SEDs to be dereddened without recourse to population synthesis models. Utilising these findings, we show how the predictive power of radiative transfer calculations can be combined with measurements of θgal, i and B/D from optical images to self-consistently fit UV/optical-MIR/FIR/submm SEDs observed in large statistical surveys in a fast and flexible way, deriving physical parameters on an object-by-object basis. We also identify a non-parametric test of the fidelity of the model in practical applications through comparison of the model predictions for FIR colour and surface brightness with the corresponding observed quantities. This should be effective in identifying objects such as AGNs or star-forming galaxies with markedly different geometries to those of the calibrators of Xilouris et al. The results of the calculations are made available in the form of a large library of simulated dust emission SEDs spanning the whole parameter space of our model, together with the corresponding library of dust attenuation calculated using the same model. We dedicate this paper to the memory of Angelos Misiriotis, sorely missed as a friend, collaborator and exceptional scientist.Appendices are only available in electronic form at http://www.aanda.orgThe data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/527/A109
ALMA Measurements of Circumstellar Material in the GQ Lup System
NASA Astrophysics Data System (ADS)
Wilner, David J.; MacGregor, Meredith A.; Czekala, Ian; Andrews, Sean M.; Dai, Yu Sophia; Herczeg, Gregory; Kratter, Kaitlin M.; Kraus, Adam L.; Ricci, Luca; Testi, Leonardo
2017-01-01
We present ALMA observations of the GQ Lup system, a young Sun-like star with a substellar mass companion in a wide-separation orbit. These observations of 870 micron continuum and CO J=3-2 line emission with beam 0.3 arcsec (45 AU) resolve the disk of dust and gas surrounding the primary star, GQ Lup A, and provide deep limits on any circumplanetary disk surrounding the companion, GQ Lup b. The 3 sigma upper limit on the 870 micron flux density of < 0.15 mJy implies an upper limit on the GQ Lup b disk mass of about 0.04 solar masses for standard assumptions about optically thin dust emission. Given the non-detection of a circumplanetary disk around GQ Lup b, and other similar systems observed by ALMA, we discuss implications for formation mechanisms of wide-separation substellar companions.
SOFIA (+FORCAST) Infrared Spectrophotometry of Comet C/2012 K1 (PanStarrs)
NASA Astrophysics Data System (ADS)
Woodward, Charles E.; Kelley, Michael S.P.; Wooden, Diane H.; Harker, David E.; De Buizer, James M.; Gicquel, Adeline
2014-11-01
Observing and modeling the properties of small, primitive bodies in the solar system whose origins lie beyond the frost line (> 5 AU) provides critical insight into the formation of the first Solar System solids and establishes observation constraints for planetary system formation invoking migration - the ‘Grand Tack’ epoch followed by the ‘Nice Model’ events - that yielded terrestrial planets in the habitable zone. The characteristics of comet dust can provide evidence to validate the new, emerging picture of small body populations - including comet families - resulting from planetary migration in the early Solar System. Here we present preliminary results of infrared 8 to 27 micron spectrophotometric observations of comet C/2012 K1 (PanStarrs), a dynamically new (1/a0 < 50e-6) Oort Cloud comet, conducted with the NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) facility during a series of three flights over the period from 2014 June 06-11 UT. During this interval comet C/2012 K1 (PanStarrs) was at a heliocentric distance of ~1.64 AU and a geocentric distance of ~1.74 AU (pre-perihelion). As a "new" comet (first inner solar system passage), the coma grain population may be extremely pristine, unencumbered by a rime and insufficiently irradiated by the Sun to carbonize its surface organics. We will discuss the derived coma grain properties inferred from modeling of the spectral energy distribution derived from the SOFIA (+FORCAST) data and highlight our preliminary conclusions. Continued observations of comets, especially dynamically young Oort Cloud targets, in the 5-37 micron infrared spectral range accessible with SOFIA (+FORCAST) will provide key observational clues to ascertaining the origins of silicates within our protoplanetary disk, and will serve to place our early disk evolution within the context of other circumstellar disks observed today that may contain the seeds of rocky, terrestrial planets.
A companion candidate in the gap of the T Chamaeleontis transitional disk
NASA Astrophysics Data System (ADS)
Huélamo, N.; Lacour, S.; Tuthill, P.; Ireland, M.; Kraus, A.; Chauvin, G.
2011-04-01
Context. T Cha is a young star surrounded by a cold disk. The presence of a gap within its disk, inferred from fitting to the spectral energy distribution, has suggested on-going planetary formation. Aims: The aim of this work is to look for very low-mass companions within the disk gap of T Cha. Methods: We observed T Cha in L' and Ks with NAOS-CONICA, the adaptive optics system at the VLT, using sparse aperture masking. Results: We detected a source in the L' data at a separation of 62 ± 7 mas, position angle of ~78 ± 1 degrees, and a contrast of ΔL' = 5.1 ± 0.2 mag. The object is not detected in the Ks band data, which show a 3-σ contrast limit of 5.2 mag at the position of the detected L' source. For a distance of 108 pc, the detected companion candidate is located at 6.7 AU from the primary, well within the disk gap. If T Cha and the companion candidate are bound, the comparison of the L' and Ks photometry with evolutionary tracks shows that the photometry is inconsistent with any unextincted photosphere at the age and distance of T Cha. The detected object shows a very red Ks - L' color, for which a possible explanation would be a significant amount of dust around it. This would imply that the companion candidate is young, which would strengthen the case for a physical companion, and moreover that the object would be in the substellar regime, according to the Ks upper limit. Another exciting possibility would be that this companion is a recently formed planet within the disk. Additional observations are mandatory to confirm that the object is bound and to properly characterize it. Based on observations obtained at the European Southern Observatory using the Very Large Telescope in Cerro Paranal, Chile, under program 84.C-0755(A).
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OTKP Team
2010-01-01
The DIGIT (Dust, Ice, and Gas In Time) Open Time Key Project utilizes the PACS spectrometer (57-210 um) onboard the Herschel Space Observatory to study the colder regions of young stellar objects and protostellar cores, complementary to recent observations from Spitzer and ground-based observatories. DIGIT focuses on 30 embedded sources and 64 disk sources, and includes supporting photometry from PACS and SPIRE, as well as spectroscopy from HIFI, selected from nearby molecular clouds. For the embedded sources, PACS spectroscopy will allow us to address the origin of [CI] and high-J CO lines observed with ISO-LWS. Our observations are sensitive to the presence of cold crystalline water ice, diopside, and carbonates. Additionally, PACS scans are 5x5 maps of the embedded sources and their outflows. Observations of more evolved disk sources will sample low and intermediate mass objects as well as a variety of spectral types from A to M. Many of these sources are extremely rich in mid-IR crystalline dust features, enabling us to test whether similar features can be detected at larger radii, via colder dust emission at longer wavelengths. If processed grains are present only in the inner disk (in the case of full disks) or from the emitting wall surface which marks the outer edge of the gap (in the case of transitional disks), there must be short timescales for dust processing; if processed grains are detected in the outer disk, radial transport must be rapid and efficient. Weak bands of forsterite and clino- and ortho-enstatite in the 60-75 um range provide information about the conditions under which these materials were formed. For the Science Demonstration Phase we are observing an embedded protostar (DK Cha) and a Herbig Ae/Be star (HD 100546), exemplars of the kind of science that DIGIT will achieve over the full program.
NASA Astrophysics Data System (ADS)
Saylor, Dicy; Lepine, Sebastien; Crossfield, Ian; Petigura, Erik A.
2018-01-01
The K2 mission is targeting large numbers of nearby (d < 100 pc) GKM dwarfs selected from the SUPERBLINK proper motion survey (μ > 40 mas yr‑1, V < 20). Additionally, the mission is targeting low-mass, high proper motion stars associated with the local (d < 500 pc) Galactic halo population also selected from SUPERBLINK. K2 campaigns 0 through 8 monitored a total of 26,518 of these cool main-sequence stars. We used the auto-correlation function to search for fast rotators by identifying short-period photometric modulations in the K2 light curves. We identified 481 candidate fast rotators with rotation periods <4 days that show light-curve modulations consistent with starspots. Their kinematics show low average transverse velocities, suggesting that they are part of the young disk population. A subset (13) of the fast rotators is found among those targets with colors and kinematics consistent with the local Galactic halo population and may represent stars spun up by tidal interactions in close binary systems. We further demonstrate that the M dwarf fast rotators selected from the K2 light curves are significantly more likely to have UV excess and discuss the potential of the K2 mission to identify new nearby young GKM dwarfs on the basis of their fast rotation rates. Finally, we discuss the possible use of local halo stars as fiducial, non-variable sources in the Kepler fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, L. Clifton; Sandstrom, Karin; Seth, Anil C.
We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studiedmore » galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.« less
SPITZER OBSERVATIONS OF LONG-TERM INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN CHAMAELEON I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaherty, Kevin M.; Herbst, William; DeMarchi, Lindsay
Infrared variability is common among young stellar objects, with surveys finding daily to weekly fluctuations of a few tenths of a magnitude. Space-based observations can produce highly sampled infrared light curves, but are often limited to total baselines of about 1 month due to the orientation of the spacecraft. Here we present observations of the Chameleon I cluster, whose low declination makes it observable by the Spitzer Space Telescope over a 200-day period. We observe 30 young stellar objects with a daily cadence to better sample variability on timescales of months. We find that such variability is common, occurring inmore » ∼80% of the detected cluster members. The change in [3.6]–[4.5] color over 200 days for many of the sources falls between that expected for extinction and fluctuations in disk emission. With our high cadence and long baseline we can derive power spectral density curves covering two orders of magnitude in frequency and find significant power at low frequencies, up to the boundaries of our 200-day survey. Such long timescales are difficult to explain with variations driven by the interaction between the disk and stellar magnetic field, which has a dynamical timescale of days to weeks. The most likely explanation is either structural or temperature fluctuations spread throughout the inner ∼0.5 au of the disk, suggesting that the intrinsic dust structure is highly dynamic.« less
Young Brown Dwarfs and Giant Planets as Companions to Weak-Line T Tauri Stars
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang; Frink, Sabine; Kohler, Rainer; Kunkel, Michael
Weak-line T Tauri stars, contrary to classical T Tauri stars, no longer possess massive circumstellar disks. In weak-line T Tauri stars, the circumstellar matter was either accreted onto the T Tauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association. In the course of follow-up observations, we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line T Tauri stars. We have initiated a program to spatially resolve young brown dwarfs and young giant planets as companions to single weak-line T Tauri stars using adaptive optics at the ESO 3.6 m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations. An update on the program status can be found at http://www.astro.uiuc.edu/~brandner/text/bd/bd.html
The Architecture of the LkCa 15 Transitional Disk Revealed by High-contrast Imaging
NASA Technical Reports Server (NTRS)
Thalmann, C.; Mulders, G. D.; Hodapp, K.; Janson, M.; Grady, C. A.; Min, M.; deJuanOvelar, M.; Carson, J.; Brandt, T.; Bonnefoy, M.;
2014-01-01
We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15, and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Greenstein g = 0.67+0.18 -0.11) and a significantly tapered gap edge ('round wall'), but see no evidence that the inner disk, whose existence is predicted by the spectral energy distribution, shadows the outer regions of the disk visible in our images. We marginally confirm the existence of an offset between the disk center and the star along the line of nodes; however, the magnitude of this offset (x = 27+19 -20 mas) is notably lower than that found in our earlier H-band images (Thalmann et al. 2010). Intriguingly, we also find, at high significance, an offset of y = 69+49 -25 mas perpendicular to the line of nodes. If confirmed by future observations, this would imply a highly elliptical- or otherwise asymmetric-disk gap with an effective eccentricity of e ˜ 0.3. Such asymmetry would most likely be the result of dynamical sculpting by one or more unseen planets in the system. Finally, we find that the bright arc of scattered light we see in direct imaging observations originates from the near side of the disk, and appears brighter than the far side because of strong forward scattering.
The Architecture of the LkCa 15 Transitional Disk Revealed By High-Contrast Imaging
NASA Technical Reports Server (NTRS)
Thalmann, C.; Mulders, G. D.; Hodapp, K.; Janson, M.; Grady, C.A.; Min, M.; de Juan Ovelar, M.; Carson, J.; Brandt, T.; Bonnefoy, M.;
2014-01-01
We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15 and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Greenstein g = 0.67 (+0.18/-0.11)) and a significantly tapered gap edge ("round wall") but see no evidence that the inner disk, whose existence is predicted by the spectral energy distribution, shadows the outer regions of the disk visible in our images.We marginally confirm the existence of an offset between the disk center and the star along the line of nodes; however, the magnitude of this offset (x = 27 (+19/-20) mas) is notably lower than that found in our earlier H-band images. Intriguingly, we also find an offset of y = 69 (+49/-25) mas perpendicular to the line of nodes at high significance. If confirmed by future observations, this would imply a highly elliptical - or otherwise asymmetric - disk gap with an effective eccentricity of e ˜ 0.3. Such asymmetry would most likely be the result of dynamical sculpting by one or more unseen planets in the system. Finally, we find that the bright arc of scattered light we see in direct imaging observations originates from the near side of the disk and appears brighter than the far side because of strong forward scattering.
A multi-wavelength interferometric study of the massive young stellar object IRAS 13481-6124
NASA Astrophysics Data System (ADS)
Boley, Paul A.; Kraus, Stefan; de Wit, Willem-Jan; Linz, Hendrik; van Boekel, Roy; Henning, Thomas; Lacour, Sylvestre; Monnier, John D.; Stecklum, Bringfried; Tuthill, Peter G.
2016-02-01
We present new mid-infrared interferometric observations of the massive young stellar object IRAS 13481-6124, using VLTI/MIDI for spectrally-resolved, long-baseline measurements (projected baselines up to ~120 m) and GSO/T-ReCS for aperture-masking interferometry in five narrow-band filters (projected baselines of ~1.8-6.4 m) in the wavelength range of 7.5-13μm. We combine these measurements with previously-published interferometric observations in the K and N bands in order to assemble the largest collection of infrared interferometric observations for a massive YSO to date. Using a combination of geometric and radiative-transfer models, we confirm the detection at mid-infrared wavelengths of the disk previously inferred from near-infrared observations. We show that the outflow cavity is also detected at both near- and mid-infrared wavelengths, and in fact dominates the mid-infrared emission in terms of total flux. For the disk, we derive the inner radius (~1.8 mas or ~6.5 AU at 3.6 kpc), temperature at the inner rim (~1760 K), inclination (~48°) and position angle (~107°). We determine that the mass of the disk cannot be constrained without high-resolution observations in the (sub-)millimeter regime or observations of the disk kinematics, and could be anywhere from ~10-3 to 20M⊙. Finally, we discuss the prospects of interpreting the spectral energy distributions of deeply-embedded massive YSOs, and warn against attempting to infer disk properties from the spectral energy distribution. Based in part on observations with the Very Large Telescope Interferometer of the European Southern Observatory, under program IDs 384.C-0625, 086.C-0543, 091.C-0357.
Fast-moving features in the debris disk around AU Microscopii.
Boccaletti, Anthony; Thalmann, Christian; Lagrange, Anne-Marie; Janson, Markus; Augereau, Jean-Charles; Schneider, Glenn; Milli, Julien; Grady, Carol; Debes, John; Langlois, Maud; Mouillet, David; Henning, Thomas; Dominik, Carsten; Maire, Anne-Lise; Beuzit, Jean-Luc; Carson, Joseph; Dohlen, Kjetil; Engler, Natalia; Feldt, Markus; Fusco, Thierry; Ginski, Christian; Girard, Julien H; Hines, Dean; Kasper, Markus; Mawet, Dimitri; Ménard, François; Meyer, Michael R; Moutou, Claire; Olofsson, Johan; Rodigas, Timothy; Sauvage, Jean-Francois; Schlieder, Joshua; Schmid, Hans Martin; Turatto, Massimo; Udry, Stephane; Vakili, Farrokh; Vigan, Arthur; Wahhaj, Zahed; Wisniewski, John
2015-10-08
In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballering, Nicholas P.; Rieke, George H.; Gáspár, András, E-mail: ballerin@email.arizona.edu
Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here, we characterize the Spitzer Infrared Spectrograph spectra of 22 debris disks exhibiting 10 μm silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by themore » presence of an additional dust component in the terrestrial zones of the planetary systems, i.e., an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems of a range of ages, though the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.« less
PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapson, Valerie A.; Kastner, Joel H.; Millar-Blanchaer, Maxwell A.
2015-12-20
We present Gemini Planet Imager (GPI) adaptive optics near-infrared images of the giant-planet-forming regions of the protoplanetary disk orbiting the nearby (D = 54 pc), pre-main-sequence (classical T Tauri) star TW Hydrae. The GPI images, which were obtained in coronagraphic/polarimetric mode, exploit starlight scattered off small dust grains to elucidate the surface density structure of the TW Hya disk from ∼80 AU to within ∼10 AU of the star at ∼1.5 AU resolution. The GPI polarized intensity images unambiguously confirm the presence of a gap in the radial surface brightness distribution of the inner disk. The gap is centered near ∼23 AU,more » with a width of ∼5 AU and a depth of ∼50%. In the context of recent simulations of giant-planet formation in gaseous, dusty disks orbiting pre-main-sequence stars, these results indicate that at least one young planet with a mass ∼0.2 M{sub J} could be present in the TW Hya disk at an orbital semimajor axis similar to that of Uranus. If this (proto)planet is actively accreting gas from the disk, it may be readily detectable by GPI or a similarly sensitive, high-resolution infrared imaging system.« less
NASA Astrophysics Data System (ADS)
Cai, Kai; Pickett, Megan K.; Durisen, Richard H.; Milne, Anne M.
2010-06-01
There has been disagreement about whether cooling in protoplanetary disks can be sufficiently fast to induce the formation of gas giant protoplanets via gravitational instabilities. Simulations by our own group and others indicate that this method of planet formation does not work for disks around young, low-mass stars inside several tens of AU, while simulations by other groups show fragmentation into protoplanetary clumps in this region. To allow direct comparison in hopes of isolating the cause of the differences, we here present a high-resolution three-dimensional hydrodynamics simulation of a protoplanetary disk, where the disk model, initial perturbation, and simulation conditions are essentially identical to those used in a recent set of simulations by Boss in 2007, hereafter B07. As in earlier papers by the same author, B07 purports to show that cooling is fast enough to produce protoplanetary clumps. Here, we evolve the same B07 disk using an improved version of one of our own radiative schemes and find that the disk does not fragment in our code but instead quickly settles into a state with only low amplitude nonaxisymmetric structure, which persists for at least several outer disk rotations. We see no rapid radiative or convective cooling. We conclude that the differences in results are due to different treatments of regions at and above the disk photosphere, and we explain at least one way in which the scheme in B07 may lead to artificially fast cooling.
Photo-reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri Star
NASA Astrophysics Data System (ADS)
Meng, Huan Y. A.; Plavchan, Peter; Rieke, George H.; Cody, Ann Marie; Güth, Tina; Stauffer, John; Covey, Kevin; Carey, Sean; Ciardi, David; Duran-Rojas, Maria C.; Gutermuth, Robert A.; Morales-Calderón, María; Rebull, Luisa M.; Watson, Alan M.
2016-05-01
Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner “wall” at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 μm) and K (2.2 μm) bands were synchronized while the 4.5 μm emission lagged by 74.5 ± 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ˜1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.
The Size Distribution Of Cluster Galaxies
NASA Astrophysics Data System (ADS)
Kuchner, U.; Ziegler, B.; Bamford, S.; Verdugo, M.; Haeussler, B.
2017-06-01
We establish a sample of 560 spectroscopically confirmed cluster members of MACS J1206.2- 0847 at z = 0.45 and utilize multi-wavelength and multi-component Sersic profile fitting to provide luminosities and sizes for the key structural components bulge and disk. While the difference between field and cluster galaxy properties are mostly due to a preference for cluster members to be early-type (quiescent, bulge-dominated), we see evidence for an outer disk fading and a sharp rise in the number of red disks with smaller effective radii at the tidally active cluster region around R200. Even though red disks are already virialized according to their velocity distribution, they are clearly not part of the old population found in the innermost region; they represent an important population of transitional objects in clusters.
On the AU Microscopii debris disk. Density profiles, grain properties, and dust dynamics
NASA Astrophysics Data System (ADS)
Augereau, J.-C.; Beust, H.
2006-09-01
Context: . AU Mic is a young M-type star surrounded by an edge-on optically thin debris disk that shares many common observational properties with the disk around β Pictoris. In particular, the scattered light surface brightness profile falls off as ˜ r-5 outside 120 AU for β Pictoris and 35 AU for AU Mic. In both cases, the disk color rises as the distance increases beyond these reference radii. Aims: . In this paper, we present the first comprehensive analysis of the AU Mic disk properties since the system was resolved by Kalas et al. (2004, Science, 303, 1990). We explore whether the dynamical model, which successfully reproduces the β Pictoris brightness profile (e.g., Augereau et al. 2001, A&A, 370, 447), could apply to AU Mic. Methods: . We calculate the surface density profile of the AU Mic disk by performing the inversion of the near-IR and visible scattered light brightness profiles measured by Liu (2004, Science, 305, 1442) and Krist et al. (2005, AJ, 129, 1008), respectively. We discuss the grain properties by analysing the blue color of the disk in the visible (Krist et al. 2005) and by fitting the disk spectral energy distribution. Finally, we evaluate the radiation and wind forces on the grains. The impact of the recurrent X-ray and UV-flares on the dust dynamics is also discussed. Results: . We show that irrespective of the mean scattering asymmetry factor of the grains, most of the emission arises from an asymmetric, collisionally-dominated region that peaks close to the surface brightness break around 35 AU. The elementary scatterers at visible wavelengths are found to be sub-micronic, but the inferred size distribution underestimates the number of large grains, resulting in sub-millimeter emissions that are too low compared to the observations. From our inversion procedure, we find that the V- to H-band scattering cross sections ratio increases outside 40 AU, in line with the observed color gradient of the disk. This behavior is expected if the grains have not been produced locally, but placed in orbits of high eccentricity by a size-dependent pressure force, resulting in a paucity of large grains beyond the outer edge of the parent bodies' disk. Because of the low luminosity of AU Mic, radiation pressure is inefficient to diffuse the smallest grains in the outer disk, even when the flares are taken into account. Conversely, we show that a standard, solar-like stellar wind generates a pressure force onto the dust particles that behaves much like a radiation pressure force. With an assumed dot{M} ≃ 3×102 dot{M}⊙, the wind pressure overcomes the radiation pressure, and this effect is enhanced by the stellar flares. This greatly contributes to populating the extended AU Mic debris disk and explains the similarity between the β Pictoris and AU Mic brightness profiles. In both cases, the color gradient beyond 120 AU for β Pictoris and 35 AU for AU Mic, is believed to be a direct consequence of the dust dynamics.
NASA Astrophysics Data System (ADS)
Venuti, L.; Bouvier, J.; Cody, A. M.; Stauffer, J. R.; Micela, G.; Rebull, L. M.; Alencar, S. H. P.; Sousa, A. P.; Hillenbrand, L. A.; Flaccomio, E.
2017-03-01
Context. The low spin rates measured for solar-type stars at an age of a few Myr ( 10% of the break-up velocity) indicate that some mechanism of angular momentum regulation must be at play in the early pre-main sequence. This may be associated with magnetospheric accretion and star-disk interaction, as suggested by observations that disk-bearing objects (CTTS) are slower rotators than diskless sources (WTTS) in young star clusters. Aims: We characterize the rotation properties for members of the star-forming region NGC 2264 ( 3 Myr) as a function of mass, and investigate the accretion-rotation connection at an age where about 50% of the stars have already lost their disks. Methods: We examined a sample of 500 cluster members (40% with disks, 60% without disks), distributed in mass between 0.15 and 2 M⊙, whose photometric variations were monitored in the optical for 38 consecutive days with the CoRoT space observatory. Light curves were analyzed for periodicity using three different techniques: the Lomb-Scargle periodogram, the autocorrelation function and the string-length method. Periods were searched in the range between 0.17 days (I.e., 4 h, twice the data sampling adopted) and 19 days (half the total time span). Period detections were confirmed using a variety of statistical tools (false alarm probability, Q-statistics), as well as visual inspection of the direct and phase-folded light curves. Results: About 62% of sources in our sample were found to be periodic; the period detection rate is 70% among WTTS and 58% among CTTS. The vast majority of periodic sources exhibit rotational periods shorter than 13 d. The period distribution obtained for the cluster consists of a smooth distribution centered around P = 5.2 d with two peaks, located respectively at P = 1-2 d and at P = 3-4 d. A separate analysis of the rotation properties for CTTS and WTTS indicates that the P = 1-2 d peak is associated with the latter, while both groups contribute to the P = 3-4 d peak. The comparison between CTTS and WTTS supports the idea of a rotation-accretion connection: their respective rotational properties are statistically different, and CTTS rotate on average more slowly than WTTS. We also observe that CTTS with the strongest signatures of accretion (largest UV flux excesses) tend to exhibit slow rotation rates; a clear dearth of fast rotators with strong accretion signatures emerges from our sample. This connection between rotation properties and accretion traced via UV excess measurements is consistent with earlier findings, revealed by IR excess measurements, that fast rotators in young star clusters are typically devoid of dusty disks. On the other hand, WTTS span the whole range of rotation periods detected across the cluster. We also investigated whether the rotation properties we measure for NGC 2264 members show any dependence on stellar mass or on stellar inner structure (radiative core mass to total mass ratio). No statistically significant correlation emerged from our analysis regarding the second issue; however, we did infer some evidence of a period-mass trend, lower-mass stars spinning on average faster than higher-mass stars, although our data did not allow us to assess the statistical significance of such a trend beyond the 10% level. Conclusions: This study confirms that disks impact the rotational properties of young stars and influence their rotational evolution. The idea of disk-locking, recently tested in numerical models of the rotational evolution of young stars between 1 and 12 Myr, may be consistent with the pictures of rotation and rotation-accretion connection that we observe for the NGC 2264 cluster. However, the origin of the several substructures that we observe in the period distribution, notably the multiple peaks, deserves further investigation. Based on observations obtained with the CoRoT space telescope, and with the wide-field imager MegaCam at the Canada-France-Hawaii Telescope (CFHT).Table F.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A23
VLA's Sharpened Vision Shows Details of Still-Forming Star
NASA Astrophysics Data System (ADS)
2001-01-01
Using a new observing capability of the National Science Foundation's Very Large Array (VLA) radio telescope, astronomers have discovered a solar-system-sized disk of gas and dust feeding material onto a young star with 8 to 10 times the mass of the Sun. This is the first time an inner "accretion disk" has been seen around such a massive star. The VLA images also revealed the inner portion of an energetic outflow of material powered by the accretion disk. Artist's conception "Disks and outflows in young stars increase dramatically in mass and energy as the mass of the young star increases. We don't know if the same process is at work in all young stars or how the disks can both power an outflow that extends more than 15 light-years and also start the process of forming planets," said Debra Shepherd, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. "By studying the birth of massive young stars, we're pushing the limits of our understanding and trying to learn if there are critical differences between the outflows from high and low mass young stars," she added Shepherd and Mark Claussen, also from the NRAO in Socorro, and Stan Kurtz of the National Autonomous University in Mexico, presented their findings today at the American Astronomical Society's meeting in San Diego, CA. The scientists made the discovery using the VLA connected by a newly- operational fiber-optic link to one of the radio-telescope antennas of the NSF's Very Long Baseline Array (VLBA), located at Pie Town, NM, 32 miles away from the VLA. Linking the VLA to the Pie Town antenna almost doubled the resolving power, or ability to see fine detail, available to the astronomers. "We could not have seen these structures without using the Pie Town antenna connected to the VLA," said Claussen. Work on the VLA-Pie Town fiber-optic link, financed by the NSF and Associated Universities, Inc., which operates NRAO for the NSF, began in late 1997. The linked facilities first were available for routine astronomical observations last autumn. In late November, the scientists pointed the sharpened vision of the combined telescopes at an object called G192.16-3.82, more than 6,000 light-years distant in the constellation Orion. First observed in 1990, G192.16-3.82 was found to be a massive young star powering one of the largest stellar outflows -- extending more than 30 light years from end to end -- in the entire Milky Way Galaxy. Earlier observations showed the young star is surrounded by a large, rotating disk with a diameter greater than 1,000 times the Sun-Earth distance. Astronomers, however, believed that the outflow had to originate from a structure much smaller than this disk. The VLA-Pie Town system gave them their first glimpse of the suspected smaller structure, another disk slightly larger than our own Solar System containing enough gas and dust to make 20 Suns. In addition, they saw the inner portion of the outflow of material powered by that disk. The new observations also showed that the smaller disk probably is truncated by the gravitational pull of another, previously-unseen young star less massive than the first. Close to the larger protostar, the outflow is wide, covering an angle of about 40 degrees. "With smaller protostars, the outflow begins wide but then is narrowed down to a thin jet relatively close to its origin. However, when the protostar is more massive, the outflow tends to remain wide," Shepherd said. "We think that magnetic fields narrow down the flow from the smaller protostars. It's possible that when the flow contains much more mass, such as in this system, the magnetic fields may be just too weak in most cases to get this done," she said. "Our new observations now make it possible to test this idea by comparing computer simulations to what we see in the real universe," Shepherd said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials, magazine articles and numerous published photos, the VLA has been one of the world's most versatile and productive astronomical observatories since its dedication in 1980. VLA image and model of system The VLBA is a continent-wide system of 10 radio telescopes distributed across the continental United States, Hawaii and St. Croix in the U.S. Virgin Islands. Dedicated in 1993, the VLBA has made important contributions to the understanding of stars in the Milky Way, the workings of distant galaxies, and to calibrating the distance scale of the universe. Both the VLA and the VLBA use multiple radio-telescope antennas to produce greater resolving power than is possible with an individual antenna. Because of the different sizes of these two arrays of antennas, they produce images showing different levels of detail. NRAO scientists and engineers have developed plans to combine the VLA with the VLBA antennas closest to it, in New Mexico, Texas and Arizona, along with a number of new antennas, to fill in a gap in resolving power that exists between the VLA and VLBA. If this plan is funded, the closer VLBA antennas and the new antennas will be connected to the VLA by fiber-optic links to produce the Expanded VLA (EVLA). "The successful linking of the Pie Town VLBA antenna to the VLA shows that we can connect these radio-telescope antennas with fiber-optic cable over long distances and make them work as a single instrument," said Claussen, who worked extensively on the project. "This has produced a valuable new capability for astronomers to use now -- as shown by our study of this young stellar system -- but it also proves that our concept for expanding the VLA is technically sound," he added. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Flat spectrum T Tauri stars: The case for infall
NASA Technical Reports Server (NTRS)
Calvet, Nuria; Hartmann, Lee; Kenyon, S. J.; Whitney, B. A.
1994-01-01
We show that the mid- to far-infrared fluxes of 'flat spectrum' T Tauri stars can be explained by radiative equilibrium emission from infalling dusty envelopes. Infall eliminates the need for accretion disks with non-standard temperature distributions. The simplicity and power of this explanantion indicates that models employing 'active' disks, in which the temperature distribution is a parameterized power law, should be invoked with caution. Infall also naturally explains the scattered light nebulae detected around many flat spectrum sources. To match the observed spectra, material must fall onto a disk rather than the central star, as expected for collapse of a rotating molecular cloud. It may be necessary to invoke cavities in the envelopes to explain the strength of optical and near-infrared emission; these cavities could be produced by the powerful bipolar outflows commonly observed from young stars. If viewed along the cavity, a source may be lightly extincted at visual wavelengths, while still accreting substantial amounts of material from the envelope. Infall may also be needed to explain the infrared-bright companions of many optical T Tauri stars. This picture suggests that many of the flat spectrum sources are 'protostars'-young stellar objects surrounded by dust infalling envelopes of substantial mass.
A POSSIBLE DETECTION OF OCCULTATION BY A PROTO-PLANETARY CLUMP IN GM Cephei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, W. P.; Hu, S. C.-L.; Guo, J. K.
2012-06-01
GM Cephei (GM Cep), in the young ({approx}4 Myr) open cluster Trumpler 37, has been known to be an abrupt variable and to have a circumstellar disk with a very active accretion. Our monitoring observations in 2009-2011 revealed that the star showed sporadic flare events, each with a brightening of {approx}< 0.5 mag lasting for days. These brightening events, associated with a color change toward blue, should originate from increased accretion activity. Moreover, the star also underwent a brightness drop of {approx}1 mag lasting for about a month, during which time the star became bluer when fainter. Such brightness dropsmore » seem to have a recurrence timescale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by the obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between the grain coagulation and the planetesimal formation in a young circumstellar disk.« less
Cepheid variables in the flared outer disk of our galaxy.
Feast, Michael W; Menzies, John W; Matsunaga, Noriyuki; Whitelock, Patricia A
2014-05-15
Flaring and warping of the disk of the Milky Way have been inferred from observations of atomic hydrogen but stars associated with flaring have not hitherto been reported. In the area beyond the Galactic centre the stars are largely hidden from view by dust, and the kinematic distances of the gas cannot be estimated. Thirty-two possible Cepheid stars (young pulsating variable stars) in the direction of the Galactic bulge were recently identified. With their well-calibrated period-luminosity relationships, Cepheid stars are useful distance indicators. When observations of these stars are made in two colours, so that their distance and reddening can be determined simultaneously, the problems of dust obscuration are minimized. Here we report that five of the candidates are classical Cepheid stars. These five stars are distributed from approximately one to two kiloparsecs above and below the plane of the Galaxy, at radial distances of about 13 to 22 kiloparsecs from the centre. The presence of these relatively young (less than 130 million years old) stars so far from the Galactic plane is puzzling, unless they are in the flared outer disk. If so, they may be associated with the outer molecular arm.
A CANDIDATE PLANETARY-MASS OBJECT WITH A PHOTOEVAPORATING DISK IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Min; Kim, Jinyoung Serena; Apai, Dániel
2016-12-20
In this work, we report the discovery of a candidate planetary-mass object with a photoevaporating protoplanetary disk, Proplyd 133-353, which is near the massive star θ {sup 1} Ori C at the center of the Orion Nebula Cluster (ONC). The object was known to have extended emission pointing away from θ {sup 1} Ori C, indicating ongoing external photoevaporation. Our near-infrared spectroscopic data and the location on the H–R diagram suggest that the central source of Proplyd 133-353 is substellar (∼M9.5) and has a mass probably less than 13 Jupiter mass and an age younger than 0.5 Myr. Proplyd 133-353more » shows a similar ratio of X-ray luminosity to stellar luminosity to other young stars in the ONC with a similar stellar luminosity and has a similar proper motion to the mean one of confirmed ONC members. We propose that Proplyd 133-353 formed in a very low-mass dusty cloud or an evaporating gas globule near θ {sup 1} Ori C as a second generation of star formation, which can explain both its young age and the presence of its disk.« less
Imaging Forming Planetary Systems: The HST/STIS Legacy and Prospects for Future Missions
NASA Technical Reports Server (NTRS)
Grady, Carol; Woodgate, Bruce E.; Bowers, Charles; Weinberger, Alycia; Schneider, Glenn; Oegerle, William R. (Technical Monitor)
2002-01-01
The first indication that debris and protoplanetary disks associated with other, young planetary systems were sufficiently nearby to image came with the IRAS detection of infrared excesses around $\\beta$ Pic, Vega, Fomalhaut, and $\\epsilon$ Eri. Moving beyond analysis of the infrared excess to optical and near-IR imaging requires access to high Strehl ratio and high contrast imaging techniques, with the ability to efficiently reject the residual scattered and diffracted light from the star to reveal the fainter scattered light and circumstellar emission originating from the vicinity of the star. HST/STIS imaging studies have made use of incomplete Lyot coronagraphic imaging modes to reveal the warped, inner disk of $\\beta$ Pic, provide the highest spatial resolution images of young debris disk systems such as HR 4796A, have revealed the presence of azimuthally symmetric structure in HD 141569 and HD 163296, and have demonstrated that currently active, collimated outflows survive to higher stellar masses than previously expected, and through more of the star's pre-main sequence lifetime than anticipated. The HST/STIS coronagraphic imaging legacy will be discussed, together with the implications for future NIR and optical high contrast imaging capabilities.
An Incipient Debris Disk in the Chamaeleon I Cloud
NASA Astrophysics Data System (ADS)
Espaillat, C. C.; Ribas, Á.; McClure, M. K.; Hernández, J.; Owen, J. E.; Avish, N.; Calvet, N.; Franco-Hernández, R.
2017-07-01
The point at which a protoplanetary disk becomes a debris disk is difficult to identify. To better understand this, here we study the ˜40 au separation binary T 54 in the Chamaeleon I cloud. We derive a K5 spectral type for T 54 A (which dominates the emission of the system) and an age of ˜2 Myr. However, the dust disk properties of T 54 are consistent with those of debris disks seen around older- and earlier-type stars. At the same time, T 54 has evidence of gas remaining in the disk, as indicated by [Ne II], [Ne III], and [O I] line detections. We model the spectral energy distribution of T 54 and estimate that ˜ 3× {10}-3 {M}\\oplus of small dust grains (<0.25 μm) are present in an optically thin circumbinary disk along with at least ˜ 3× {10}-7 {M}\\oplus of larger (>10 μm) grains within a circumprimary disk. Assuming a solar-like mixture, we use Ne line luminosities to place a minimum limit on the gas mass of the disk (˜ 3× {10}-4 {M}\\oplus ) and derive a gas-to-dust mass ratio of ˜0.1. We do not detect substantial accretion, but we do see Hα in emission in one epoch, which is suggestive that there may be intermittent dumping of small amounts of matter onto the star. Considering the low dust mass, the presence of gas, and young age of T 54, we conclude that this system is on the bridge between the protoplanetary and debris disk stages.
NASA Astrophysics Data System (ADS)
Eisner, J. A.; Arce, H. G.; Ballering, N. P.; Bally, J.; Andrews, S. M.; Boyden, R. D.; Di Francesco, J.; Fang, M.; Johnstone, D.; Kim, J. S.; Mann, R. K.; Matthews, B.; Pascucci, I.; Ricci, L.; Sheehan, P. D.; Williams, J. P.
2018-06-01
We present Atacama Large Millimeter Array 850 μm continuum observations of the Orion Nebula Cluster that provide the highest angular resolution (∼0.″1 ≈ 40 au) and deepest sensitivity (∼0.1 mJy) of the region to date. We mosaicked a field containing ∼225 optical or near-IR-identified young stars, ∼60 of which are also optically identified “proplyds.” We detect continuum emission at 850 μm toward ∼80% of the proplyd sample, and ∼50% of the larger sample of previously identified cluster members. Detected objects have fluxes of ∼0.5–80 mJy. We remove submillimeter flux due to free–free emission in some objects, leaving a sample of sources detected in dust emission. Under standard assumptions of isothermal, optically thin disks, submillimeter fluxes correspond to dust masses of ∼0.5–80 Earth masses. We measure the distribution of disk sizes, and find that disks in this region are particularly compact. Such compact disks are likely to be significantly optically thick. The distributions of submillimeter flux and inferred disk size indicate smaller, lower-flux disks than in lower-density star-forming regions of similar age. Measured disk flux is correlated weakly with stellar mass, contrary to studies in other star-forming regions that found steeper correlations. We find a correlation between disk flux and distance from the massive star θ 1 Ori C, suggesting that disk properties in this region are influenced strongly by the rich cluster environment.
From Large-scale to Protostellar Disk Fragmentation into Close Binary Stars
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Cruz, Fidel; Gabbasov, Ruslan; Klapp, Jaime; Ramírez-Velasquez, José
2018-04-01
Recent observations of young stellar systems with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Karl G. Jansky Very Large Array are helping to cement the idea that close companion stars form via fragmentation of a gravitationally unstable disk around a protostar early in the star formation process. As the disk grows in mass, it eventually becomes gravitationally unstable and fragments, forming one or more new protostars in orbit with the first at mean separations of 100 au or even less. Here, we report direct numerical calculations down to scales as small as ∼0.1 au, using a consistent Smoothed Particle Hydrodynamics code, that show the large-scale fragmentation of a cloud core into two protostars accompanied by small-scale fragmentation of their circumstellar disks. Our results demonstrate the two dominant mechanisms of star formation, where the disk forming around a protostar (which in turn results from the large-scale fragmentation of the cloud core) undergoes eccentric (m = 1) fragmentation to produce a close binary. We generate two-dimensional emission maps and simulated ALMA 1.3 mm continuum images of the structure and fragmentation of the disks that can help explain the dynamical processes occurring within collapsing cloud cores.
DETECTION OF SHARP SYMMETRIC FEATURES IN THE CIRCUMBINARY DISK AROUND AK Sco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janson, Markus; Asensio-Torres, Ruben; Thalmann, Christian
The Search for Planets Orbiting Two Stars survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ∼13–40 AU range. Themore » sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.« less
Imaging Protoplanets: Observing Transition Disks with Non-Redundant Masking
NASA Astrophysics Data System (ADS)
Sallum, Stephanie
2017-01-01
Transition disks - protoplanetary disks with inner, solar system sized clearings - may be shaped by young planets. Directly imaging protoplanets in these objects requires high contrast and resolution, making them promising targets for future extremely large telescopes. The interferometric technique of non-redundant masking (NRM) is well suited for these observations, enabling companion detection for contrasts of 1:100 - 1:1000 at or within the diffraction limit. My dissertation focuses on searching for and characterizing companions in transition disk clearings using NRM. I will briefly describe the technique and present spatially resolved observations of the T Cha and LkCa 15 transition disks. Both of these objects hosted posited substellar companions. However multi-epoch T Cha datasets cannot be explained by planets orbiting in the disk plane. Conversely, LkCa 15 data taken with the Large Binocular Telescope (LBT) in single-aperture mode reveal the presence of multiple forming planets. The dual aperture LBT will provide triple the angular resolution of these observations, dramatically increasing the phase space for exoplanet detection. I will also present new results from the dual-aperture LBT, with similar resolution to that expected for next generation facilities like GMT.
NASA Astrophysics Data System (ADS)
Stapelfeldt, K. R.; Menard, F.; Brandner, W.; Padgett, D. L.; Krist, J. E.; Watson, A. M.
2000-12-01
Hubble Space Telescope images of the HV Tauri triple system show that HV Tau C appears as a compact bipolar nebula at visual wavelengths. Near-infrared adaptive optics observations made at the Canada France Hawaii Telescope show a similar morphology, and no directly visible star at wavelengths less than 2 microns. These results confirm the conclusions of Monin & Bouvier 2000, namely that HV Tau C is an optically thick circumstellar disk seen close to edge-on. The images are compared to scattered light models for circumstellar disks. We find that the HV Tau C disk has an outer radius of 85 AU, inclination of about 6 deg, gaussian scale height of 15 AU at its outer radius, and is flared. The thickness of the dark lane indicates a total disk mass about half that of Jupiter. There is clear evidence for declining dust opacity toward longer wavelengths, as the dust lane thickness shrinks by 30 between 0.8 and 2.2 microns; the trend is consistent with interstellar dust grains. Tidal truncation of the disk outer radius may have occurred in this system.
NASA Astrophysics Data System (ADS)
Brown, Alexander; France, Kevin; Walter, Frederick M.; Schneider, P. Christian; Brown, Timothy M.; Andrews, Sean M.; Wilner, David J.
2018-06-01
The young (7 Myr) 1.5 solar mass T Tauri star T Chamaeleontis shows dramatic variability. The optical extinction varies by at least 3 magnitudes on few hour time-scales with no obvious periodicity. The obscuration is produced by material at the inner edge of the circumstellar disk and therefore characterizing the absorbing material can reveal important clues regarding the transport of gas and dust within such disks. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. For this reason we have conducted a major multi-spectral-region observing campaign to study the UV/X-ray/optical variability of T Cha. During 2018 February/March we monitored the optical photometric and spectral variability using LCOGT (Chile/South Africa/Australia) and the SMARTS telescopes in Chile. These optical data provide a broad context within which to interpret our shorter UV and X-ray observations. We observed T Cha during 3 coordinated observations (each 5 HST orbits + 25 ksec XMM; on 2018 Feb 22, Feb 26, Mar 2) using the HST COS/STIS spectrographs to measure the FUV/NUV spectra and XMM-Newton to measure the corresponding X-ray energy distribution. The observed spectral changes are well correlated and demonstrate the influence of the same absorbing material in all the spectral regions observed. By examining which spectral features change and by how much we can determine the location of different emitting regions relative to the absorbers along the line-of-sight to the star. In this poster we provide an overview of the variability seen in the different spectral regions and quantify the dust and gas content of T Cha's inner disk edge.(This work is supported by grant HST-GO-15128 and time awarded by HST, XMM-Newton, LCOGT, and SMARTS. We acknowledge the assistance provided by Dr. Todd Henry in conducting this observing campaign.)
INVESTIGATING PLANET FORMATION IN CIRCUMSTELLAR DISKS: CARMA OBSERVATIONS OF RY Tau AND DG Tau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isella, Andrea; Carpenter, John M.; Sargent, Anneila I., E-mail: isella@astro.caltech.ed
2010-05-10
We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RY Tau and DG Tau at wavelengths of 1.3 mm and 2.8 mm. The angular resolution of the maps is as high as 0.''15, or 20 AU at the distance of the Taurus cloud, which is a factor of 2 higher than has been achieved to date at these wavelengths. The unprecedented detail of the resulting disk images enables us to address three important questions related to the formation of planets. (1) What is the radial distribution of the circumstellar dust? (2) Doesmore » the dust emission show any indication of gaps that might signify the presence of (proto-)planets? (3) Do the dust properties depend on the orbital radius? We find that modeling the disk surface density in terms of either a classical power law or the similarity solution for viscous disk evolution reproduces the observations well. Both models constrain the surface density between 15 and 50 AU to within 30% for a given dust opacity. Outside this range, the densities inferred from the two models differ by almost an order of magnitude. The 1.3 mm image from RY Tau shows two peaks separated by 0.''2 with a decline in the dust emission toward the stellar position, which is significant at about 2{sigma}-4{sigma}. For both RY Tau and DG Tau, the dust emission at radii larger than 15 AU displays no significant deviation from an unperturbed viscous disk model. In particular, no radial gaps in the dust distribution are detected. Under reasonable assumptions, we exclude the presence of planets more massive than 5 M{sub J} orbiting either star at distances between about 10 and 60 AU, unless such a planet is so young that there has been insufficient time to open a gap in the disk surface density. The radial variation of the dust opacity slope, {beta}, was investigated by comparing the 1.3 mm and 2.8 mm observations. We find mean values of {beta} of 0.5 and 0.7 for DG Tau and RY Tau, respectively. Variations in {beta} are smaller than {Delta}{beta} = 0.7 between 20 and 70 AU. These results confirm that the circumstellar dust throughout these disks differs significantly from dust in the interstellar medium.« less
VOSED: a tool for the characterization of developing planetary systems
NASA Astrophysics Data System (ADS)
Solano, E.; Gutiérrez, R.; Delgado, A.; Sarro, L. M.; Merín, B.
2007-08-01
The transition phase from optically thick disks around young pre-main sequence stars to optically thin debris disks around Vega type stars is not well understood and plays an important role in the theory of planet formation. One of the most promising methods to characterize this process is the fitting of the observed SED with disk models. However, despite its potential, this technique is affected by two major problems if a non-VO methodology is used: on the one hand, SEDs building requires accessing to a variety of astronomical services which provide, in most of the cases, heterogeneous information. On the other hand, model fitting demands a tremendous amount of work and time which makes it very inefficient even for a modest dataset. This is an important issue considering the large volume of data that missions like Spitzer is producing. In the framework of the Spanish Virtual Observatory (SVO) we have developed VOSED
High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukagoshi, Takashi; Momose, Munetake; Hashimoto, Jun
2014-03-10
To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of themore » spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.« less
High-Resolution Submillimeter and Near-Infrared Studies of the Transition Disk Around Sz 91
NASA Technical Reports Server (NTRS)
Tsukagoshi, Takashi; Momose, Munetake; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Goto, Miwa;
2014-01-01
To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91, we have performed aperture synthesis 345 GHz continuum and CO(3--2) observations with the Submillimeter Array (approximately 1" - 3" resolution), and high-resolution imaging of polarized intensity at the K(sub s) -band by using the HiCIAO instrument on the Subaru Telescope (0.25" resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 AU and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H 2 mass of 2.4×10(exp -3) M(solar mass) in the cold (T less than 30 K) outer part at 65 less than r less than 170 AU by assuming a canonical gas-to-dust mass ratio of 100, although a small amount (greater than 3×10(exp -9) M(solar mass)) of hot (T approximately 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3--2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus
The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticummore » Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo and shows a significant scatter.« less
The MagAO Giant Accreting Protoplanet Survey (GAPlanetS): Recent Results
NASA Astrophysics Data System (ADS)
Follette, Katherine; Close, Laird; Males, Jared; Morzinski, Katie; Leonard, Clare; MagAO
2018-01-01
I will summarize recent results of the MagAO Giant Accreting Protoplant Survey (GAPlanetS), a search for accreting protoplanets at H-alpha inside of transitional disk gaps. These young, centrally-cleared circumstellar disks are often hosted by stars that are still actively accreting, making it likely that any planets that lie in their central cavities will also be actively accreting. Through differential imaging at Hydrogen-alpha using Magellan's visible light adaptive optics system, we have completed the first systematic search for H-alpha emission from accreting protoplanets in fifteen bright Southern hemisphere transitional disks. I will present results from this survey, including a second epoch on the LkCa 15 system that shows several accreting protoplanet candidates.
What Shaped Elias 2-27's Disk?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
The young star Elias 2-27 is surrounded by a massive disk with spectacular spiral arms. A team of scientists from University of Cambridges Institute of Astronomy has now examined what might cause this disks appearance.Top: ALMA 1.3-mm observations of Elias 2-27s spiral arms, processed with an unsharp masking filter. Two symmetric spiral arms, a bright inner ellipse, and two dark crescents are clearly visible. Bottom: a deprojection of the top image (i.e., what the system would look like face-on). [Meru et al. 2017]ALMA-Imaged Spiral ArmsWith the dawn of new telescopes such as the Atacama Large Millimeter/submillimeter Array, were now able to study the birth of young stars and their newly forming planetary systems in more detail than ever before. But these new images require new models and interpretations!Case in point: Elias 2-27 is a low-mass star thats only a million years old and is surrounded by an unusually massive disk of gas and dust. Recent spatially-resolved ALMA observations of Elias 2-27 have revealed the stunning structure of the stars disk: it contains two enormous, symmetric spiral arms, as well as additional features interior to the spirals.What caused the disk to develop this structure? Led by Farzana Meru, a group of Institute of Astronomy researchers has run a series of simulations that explore different ways that Elias 2-27s disk might have evolved into the shape we see today.Modeling a DiskMeru and collaborators performed a total of 72 three-dimensional smoothed particle hydrodynamics simulations tracking 250,000 gas particles in a model disk around a star like Elias 2-27. They then modeled the transfer of energy through these simulated disks and produced synthetic ALMA observations based on the outcomes.Left: Synthetic ALMA observations of disks shaped by an internal companion (top), an external companion (middle), and gravitational instability within the disk (bottom). Right: Deprojections of the images on the left. Scales are the same as in the actual observations above. The external companion and the gravitational instability scenarios match the actual ALMA observations of Elias 2-27 well. [Adapted from Meru et al. 2017]By comparing these synthetic observations to the true ALMA observations of Elias 2-27, the authors hoped to determine which of three possible scenarios could produce the disk shape we see: 1) a companion (a planet or star) internal to the spiral arms, 2) a companion external to the spirals, or 3) gravitational instabilities operating within the disk.Gravity or a Companion?Meru and collaborators find that two scenarios produce observations that are very similar to what ALMA imaged. In the first, the disk is so massive that it becomes gravitationally unstable. Self-gravity of the disk then forms the spiral structures. In the second scenario, the arms are formed by a planetary companion of up to 1013 Jupiter masses orbiting Elias 2-27 outside of the spiral arms, at a large distance roughly in the range of 300700 AU.Though the possible companion inside the spiral arms is ruled out, the scenarios of a gravitational instability or an external companion remain plausible. If the former is true, then Elias 2-27 would be one of the first examples of an observed self-gravitating disk. If the latter is true, then Elias 2-27s disk likely fragmented recently, forming the giant planet thatshapesthe disk. This would be the first evidence for a disk that has fragmented into planetary-mass objects.Future deep near-infrared imaging may offer the chance to distinguish between these scenarios by allowing us to search for the heat from the possible companion.CitationF. Meru et al 2017ApJL 839 L24. doi:10.3847/2041-8213/aa6837
Declining Rotation Curves at z = 2 in ΛCDM Galaxy Formation Simulations
NASA Astrophysics Data System (ADS)
Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Arth, Alexander; Burkert, Andreas; Obreja, Aura; Schulze, Felix
2018-02-01
Selecting disk galaxies from the cosmological, hydrodynamical simulation Magneticum Pathfinder, we show that almost half of our poster child disk galaxies at z = 2 show significantly declining rotation curves and low dark matter fractions, very similar to recently reported observations. These galaxies do not show any anomalous behavior, they reside in standard dark matter halos, and they typically grow significantly in mass until z = 0, where they span all morphological classes, including disk galaxies matching present-day rotation curves and observed dark matter fractions. Our findings demonstrate that declining rotation curves and low dark matter fractions in rotation-dominated galaxies at z = 2 appear naturally within the ΛCDM paradigm and reflect the complex baryonic physics, which plays a role at the peak epoch of star formation. In addition, we find some dispersion-dominated galaxies at z = 2 that host a significant gas disk and exhibit similar shaped rotation curves as the disk galaxy population, rendering it difficult to differentiate between these two populations with currently available observation techniques.
The Mysterious Bar of the Large Magellanic Cloud: What Is It?
NASA Astrophysics Data System (ADS)
Subramaniam, Annapurni; Subramanian, Smitha
2009-09-01
The bar of the Large Magellanic Cloud (LMC) is one of the prominent, but controversial, features regarding its location with respect to the disk of the LMC. In order to study the relative location of the bar with respect to the disk, we present the high-resolution map of the structure across the LMC. We used the reddening corrected mean magnitudes (I 0) of red clump (RC) stars from the OGLE III catalog to map the relative variation in distance (vertical structure) or variation in RC population across the LMC. The bar does not appear as an identifiable vertical feature in the map, as there is no difference in I 0 values between the bar and the disk regions. We conclude that the LMC bar is very much part of the disk (within 0.02 mag), located in the plane of the disk and not a separate component. We identify warps or variation in RC population with increase in radial distance.
Protoplanetary Disks in Multiple Star Systems
NASA Astrophysics Data System (ADS)
Harris, Robert J.
Most stars are born in multiple systems, so the presence of a stellar companion may commonly influence planet formation. Theory indicates that companions may inhibit planet formation in two ways. First, dynamical interactions can tidally truncate circumstellar disks. Truncation reduces disk lifetimes and masses, leaving less time and material for planet formation. Second, these interactions might reduce grain-coagulation efficiency, slowing planet formation in its earliest stages. I present three observational studies investigating these issues. First is a spatially resolved Submillimeter Array (SMA) census of disks in young multiple systems in the Taurus-Auriga star-forming region to study their bulk properties. With this survey, I confirmed that disk lifetimes are preferentially decreased in multiples: single stars have detectable millimeter-wave continuum emission twice as often as components of multiples. I also verified that millimeter luminosity (proportional to disk mass) declines with decreasing stellar separation. Furthermore, by measuring resolved-disk radii, I quantitatively tested tidal-truncation theories: results were mixed, with a few disks much larger than expected. I then switch focus to the grain-growth properties of disks in multiple star systems. By combining SMA, Combined Array for Research in Millimeter Astronomy (CARMA), and Jansky Very Large Array (VLA) observations of the circumbinary disk in the UZ Tau quadruple system, I detected radial variations in the grain-size distribution: large particles preferentially inhabit the inner disk. Detections of these theoretically predicted variations have been rare. I related this to models of grain coagulation in gas disks and find that our results are consistent with growth limited by radial drift. I then present a study of grain growth in the disks of the AS 205 and UX Tau multiple systems. By combining SMA, Atacama Large Millimeter/submillimeter Array (ALMA), and VLA observations, I detected radial variations of the grain-size distribution in the AS 205 A disk, but not in the UX Tau A disk. I find that some combination of radial drift and fragmentation limits growth in the AS 205 A disk. In the final chapter, I summarize my findings that, while multiplicity clearly influences bulk disk properties, it does not obviously inhibit grain growth. Other investigations are suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Buizer, James M.; Bartkiewicz, Anna; Szymczak, Marian, E-mail: jdebuizer@sofia.usra.edu
2012-08-01
Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combinationmore » of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.« less
NASA Astrophysics Data System (ADS)
Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.; Martínez-Serrano, F. J.; Serna, A.
2017-09-01
Recent determinations of the radial distributions of mono-metallicity populations (MMPs, I.e., stars in narrow bins in [Fe/H] within wider [α/Fe] ranges) by the SDSS-III/APOGEE DR12 survey cast doubts on the classical thin- and thick-disk dichotomy. The analysis of these observations led to the non-[α /Fe] enhanced populations splitting into MMPs with different surface densities according to their [Fe/H]. By contrast, [α /Fe] enhanced (I.e., old) populations show a homogeneous behavior. We analyze these results in the wider context of disk formation within non-isolated halos embedded in the Cosmic Web, resulting in a two-phase mass assembly. By performing hydrodynamical simulations in the context of the ΛCDM model, we have found that the two phases of halo mass assembly (an early fast phase, followed by a slow phase with low mass-assembly rates) are very relevant to determine the radial structure of MMP distributions, while radial mixing only plays a secondary role, depending on the coeval dynamical and/or destabilizing events. Indeed, while the frequent dynamical violent events occuring at high redshift remove metallicity gradients and imply efficient stellar mixing, the relatively quiescent dynamics after the transition keeps [Fe/H] gaseous gradients and prevents newly formed stars from suffering strong radial mixing. By linking the two-component disk concept with the two-phase halo mass-assembly scenario, our results set halo virialization (the event marking the transition from the fast to the slow phases) as the separating event that marks periods that are characterized by different physical conditions under which thick- and thin-disk stars were born.
NASA Astrophysics Data System (ADS)
Mosoni, L.; Sipos, N.; Ábrahám, P.; Moór, A.; Kóspál, Á.; Henning, Th.; Juhász, A.; Kun, M.; Leinert, Ch.; Quanz, S. P.; Ratzka, Th.; Schegerer, A. A.; van Boekel, R.; Wolf, S.
2013-04-01
Context. It is hypothesized that low-mass young stellar objects undergo eruptive phases during their early evolution. These eruptions are thought to be caused by highly increased mass accretion from the disk onto the star, and therefore play an important role in the early evolution of Sun-like stars, of their circumstellar disks (structure, dust composition), and in the formation of their planetary systems. The outburst of V1647 Ori between 2003 and 2006 offered a rare opportunity to investigate such an accretion event. Aims: By means of our interferometry observing campaign during this outburst, supplemented by other observations, we investigate the temporal evolution of the inner circumstellar structure of V1647 Ori, the region where Earth-like planets could be born. We also study the role of the changing extinction in the brightening of the object and separate it from the accretional brightening. Methods: We observed V1647 Ori with MIDI on the VLTI at two epochs in this outburst. First, during the slowly fading plateau phase (2005 March) and second, just before the rapid fading of the object (2005 September), which ended the outburst. We used the radiative transfer code MC3D to fit the interferometry data and the spectral energy distributions from five different epochs at different stages of the outburst. The comparison of these models allowed us to trace structural changes in the system on AU-scales. We also considered qualitative alternatives for the interpretation of our data. Results: We found that the disk and the envelope are similar to those of non-eruptive young stars and that the accretion rate varied during the outburst. We also found evidence for the increase of the inner radii of the circumstellar disk and envelope at the beginning of the outburst. Furthermore, the change of the interferometric visibilities indicates structural changes in the circumstellar material. We test a few scenarios to interpret these data. We also speculate that the changes are caused by the fading of the central source, which is not immediately followed by the fading of the outer regions. Conclusions: We found that most of our results fit in the canonical picture of young eruptive stars. Our study provided dynamical information from the regions of the innermost few AU of the system: changes of the inner radii of the disk and envelope. However, if the delay in the fading of the disk is responsible for the changes seen in the MIDI data, the effect should be confirmed by dynamical modeling. Based on observations made with ESO telescopes at the Paranal Observatory under program IDs 274.C-5026 and 076.C-0736. In addition, this work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.
Infrared Images of an Infant Solar System
NASA Astrophysics Data System (ADS)
2002-05-01
ESO Telescopes Detect a Strange-Looking Object Summary Using the ESO 3.5-m New Technology Telescope and the Very Large Telescope (VLT) , a team of astronomers [1] have discovered a dusty and opaque disk surrounding a young solar-type star in the outskirts of a dark cloud in the Milky Way. It was found by chance during an unrelated research programme and provides a striking portrait of what our Solar System must have looked like when it was in its early infancy. Because of its striking appearance, the astronomers have nicknamed it the "Flying Saucer" . The new object appears to be a perfect example of a very young star with a disk in which planets are forming or will soon form, and located far away from the usual perils of an active star-forming environment . Most other young stars, especially those that are born in dense regions, run a serious risk of having their natal dusty disks destroyed by the blazing radiation of their more massive and hotter siblings in these clusters. The star at the centre of the "Flying Saucer", seems destined to live a long and quiet life at the centre of a planetary system , very much like our own Sun. This contributes to making it a most interesting object for further studies with the VLT and other telescopes. The mass of the observed disk of gas and dust is at least twice that of the planet Jupiter and its radius measures about 45 billion km, or 5 times the size of the orbit of Neptune. PR Photo 12a/02 : The "Flying Saucer" object photographed with NTT/SOFI. PR Photo 12b/02 : VLT/ISAAC image of this object. PR Photo 12c/02 : Enlargement of VLT/ISAAC image . Circumstellar Disks and Planets Planets form in dust disks around young stars. This is a complex process of which not all stages are yet fully understood but it begins when small dust particles collide and stick to each other. For this reason, observations of such dust disks, in particular those that appear as extended structures (are "resolved"), are very important for our understanding of the formation of solar-type stars and planetary systems from the interstellar medium. However, in most cases the large difference of brightness between the young star and its surrounding material makes it impossible to image directly the circumstellar disk. But when the disk is seen nearly edge-on, the light from the central star will be blocked out by the dust grains in the disk. Other grains below and above the disk midplane scatter the stellar light, producing a typical pattern of a dark lane between two reflection nebulae. The first young stellar object (YSO) found to display this typical pattern, HH 30 IRS in the Taurus dark cloud at a distance of about 500 light-years (140 pc), was imaged by the Hubble Space telescope (HST) in 1996. Edge-on disks have since also been observed with ground-based telescopes in the near-infrared region of the spectrum, sometimes by means of adaptive optics techniques or speckle imaging, or under very good sky image quality, cf. ESO PR Photo 03d/01 with a VLT image of such an object in the Orion Nebula. A surprise discovery ESO PR Photo 12a/02 ESO PR Photo 12a/02 [Preview - JPEG: 400 x 459 pix - 55k] [Normal - JPEG: 800 x 918 pix - 352k] Caption : PR Photo 12a/02 shows a three-colour reproduction of the discovery image of strange-looking object (nicknamed the "Flying Saucer" by the astronomers), obtained with the SOFI multi-mode instrument at the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory. Compared to the unresolved stars in the field, the image of this object appears extended. Two characteristic reflection nebulae are barely visible, together with a marginally resolved dark dust lane in front of the star and oriented East-West. Technical information about the photo is available below. Last year, a group of astronomers [1] carried out follow-up observations of new X-ray sources found by the ESA XMM-Newton and NASA Chandra X-ray satellites. They were looking at the periphery of the so-called Rho Ophiuchi dark cloud , one of the nearest star-forming regions at a distance of about 500 light-years (140 pc), obtaining images in near-infrared light with the SOFI multi-mode instrument on the 3.5-m New Technology Telescope (NTT) at the ESO La Silla Observatory (Chile). On one of the NTT photos obtained on April 7, 2001, they discovered by chance a strange object which by closer inspection turned out to be a resolved edge-on circumstellar disk, so far unnoticed and displaying infrared scattered light around a young star. On this photo ( PR Photo 12a/02 ) two characteristic reflection nebulae can barely be seen, flanking a marginally resolved dark dust lane in the East-West direction in front of the star. VLT confirmation ESO PR Photo 12b/02 ESO PR Photo 12b/02 [Preview - JPEG: 437 x 430 pix - 64k] [Normal - JPEG: 873 x 800 pix - 564k] ESO PR Photo 12c/02 ESO PR Photo 12c/02 [Preview - JPEG: 400 x 468 pix - 69k] [Normal - JPEG: 800 x 935 pix - 432k] Captions : PR Photo 12b/02 shows the new object, as imaged with the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope at Paranal during the follow-up observations. The circumstellar disk is well visible in the left part of the field as a shadow in front of the nebula. Many background galaxies are visible in this deep image and one edge-on galaxy is seen visible close to the image centre. A close-up of the object is shown in PR Photo 12c/02 . Note the reddish aspect of the upper nebula; this phenomenon is not yet fully understood. Technical information about the photos is available below. To confirm this discovery and in order to learn more about the object and the disk, the astronomers obtained additional observations (during "Director's Discretionary Time") with the 8.2-m VLT ANTU telescope. The observations were carried out in "service mode" by ESO staff, using the near-infrared multi-mode Infrared Spectrometer And Array Camera (ISAAC) - the "father" of the SOFI instrument ("Son OF Isaac"). A series of fine images was obtained on August 15, 2001, under very good observing conditions (with "seeing" of 0.4 arcsec). Now the two reflection nebulae are clearly seen ( PR Photos 12b-c/02 ), and the dark dust lane is well resolved. The leader of the group, Nicolas Grosso , recalls the first impression when seeing the true shape of the object: "That is when we looked at each other and, with one voice, immediately decided to nickname it the `Flying Saucer'!". The nature of the new object Seven young stars in the Rho Ophiuchi star-forming region are known to display similar reflection nebulae surrounding a dark lane (suggesting the presence of a dusty disk), but these objects are all still deeply embedded in the dense cores of this dark cloud. They are mostly protostars with ages of about 100,000 years, surrounded by a remnant infalling envelope. On the other hand, astronomers think that the newly found object has an age of about 1 million years and is in a more evolved stage than those in the neighboring Rho Ophiuchi star-forming region. The new disk is located at the periphery of the dark cloud and is much less obscured than the younger objects still embedded in the dense dark cloud nursery, thus allowing a much clearer view of the dust disk. The resolved circumstellar dust disk in the "Flying Saucer" has a radius of about 300 Astronomical Units (45 billion km), or 5 times the size of the orbit of Neptune (assuming the same distance as the Rho Ophiuchi star-forming cloud, 500 light-years). From model calculations, the astronomers find that it is inclined only about 4° to the line of sight and therefore seen very nearly from the side. A lower limit to the total mass of the disk is about twice the mass of planet Jupiter, or 600-700 times the mass of the Earth. A study of the recorded (reflected) light from the optical to the near-infrared indicates that the central young solar-type star has a temperature of about 3000 K and 0.4 times the luminosity of our actual Sun. A detailed analysis of both reflection nebulae shows an unusual excess of infrared light from the upper nebula, both visible in the NTT and VLT images, which cannot be explained by a simple axisymmetrical model. Future complementary high-resolution observations by the VLT adaptive optics camera NAOS-CONICA will help the astronomers to understand the origin of this puzzling phenomenon, and its possible link to the planet-forming mechanism. Said Nicolas Grosso : "The `Flying Saucer' object presents us with a striking portrait of our Solar System in its early infancy. With this object, Nature has provided us a perfect laboratory for the study of both dust and gas in young circumstellar disks, the raw material of planets." The next steps As this disk is located at a dark cloud periphery and not embedded in it, follow-up studies at millimetre wavelengths with existing antenna arrays will give a clear view without the complication of unrelated background emission from dark cloud material. These future observations will provide an easy mapping of the gas and dust material around this young solar-type star, and allow a study of the chemical processes at work in this protoplanetary disk. Moreover, current antenna arrays should be able to detect the Keplerian rotation of this disk, providing a direct measurement of the mass of the central star. Computer simulations predict that baby planets produce measurable structural changes in circumstellar disks, however such signs of the planet formation are far from the sensitivity and the spatial resolution of the actual antenna arrays. The detection of these features are the goal of ALMA , and there is no doubt that this "planet nursery" object will be a prime target for this future array of antennas. More information The results described in this Press Release have been submitted to the European research journal Astronomy & Astrophysics ("The `Flying Saucer': a new edge-on circumstellar dust disk at the periphery of the rho Ophiuchi dark cloud" by N. Grosso and co-authors). Notes [1]: The team consists of Nicolas Grosso (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), João Alves (ESO, Garching, Germany), Kenneth Wood (School of Physics & Astronomy, University of St Andrews, Scotland, UK), Ralph Neuhäuser (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), Thierry Montmerle (Service d'Astrophysique, CEA Saclay,Gif-sur-Yvette, France) and Jon E. Bjorkman (Ritter Observatory, Department of Physics & Astronomy, University of Toledo, Ohio, USA).
Connecting Stellar Substructures to the Oscillating Disk: Monoceros and A13
NASA Astrophysics Data System (ADS)
Sheffield, Allyson; Tzanidakis, Anastasios; Johnston, Kathryn; Price-Whelan, Adrian
2018-01-01
Recent observations of stellar substructures in the Milky Way have challenged our view of where the traditional disk ends. By assessing the stellar populations in a stellar feature, particularly the fraction of RR Lyrae to M giant stars, an accretion scenario can be ruled out in favor of a kicked-out disk origin. A more definitive distinction can be made with the inclusion of high-resolution abundances. I will present evidence that two low latitude stellar substructures, the Monoceros Ring and A13, originated in the Galactic disk and were kicked out to their current location, in the outer regions of the stellar disk, due to a dynamic perturbation to the disk.
The X-Ray View of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Guedel, Manuel
2007-08-01
X-rays offer ideal access to high-energy phenomena in young, accreting stars. The energy released in magnetic flares has profound effects on the stellar environment. Star-disk magnetic reconnection has been suggested as a possible origin of bipolar jets. Such jets from have been detected at X-ray wavelengths, offering new diagnostics for the energy release and jet shock physics. Finally, eruptive phenomena of FU Ori and EX Lup-type stars have been monitored in X-rays. I will discuss observations and suggest simple models for high-energy eruptive phenomena in young stars.
The detection and study of pre-planetary disks
NASA Technical Reports Server (NTRS)
Sargent, A. I.; Beckwith, S. V. W.
1994-01-01
A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of the very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.
Improved Constraints on the Disk around MWC 349A from the 23 m LBTI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sallum, S.; Eisner, J. A.; Hinz, P. M.
2017-07-20
We present new spatially resolved observations of MWC 349A from the Large Binocular Telescope Interferometer (LBTI), a 23 m baseline interferometer made up of two, co-mounted 8 m telescopes. MWC 349A is a B[e] star with an unknown evolutionary state. Proposed scenarios range from a young stellar object, to a B[e] supergiant, to a tight binary system. Radio continuum and recombination line observations of this source revealed a sub-arcsecond bipolar outflow surrounding an ∼100 mas circumstellar disk. Follow-up infrared studies detected the disk, and suggested that it may have skew and an inner clearing. Our new infrared interferometric observations, whichmore » have more than twice the resolution of previously published data sets, support the presence of both skew and a compact infrared excess. They rule out inner clearings with radii greater than ∼14 mas. We show the improvements in disk parameter constraints provided by LBTI, and discuss the inferred disk parameters in the context of the posited evolutionary states for MWC 349A.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp
We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with sizemore » of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.« less
NASA Technical Reports Server (NTRS)
Hill, Jesse K.; Bohlin, Ralph C.; Cheng, Kwang-Ping; Hintzen, Paul M. N.; Landsman, Wayne B.; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.
1992-01-01
The study employs UV images of M81 obtained by the Ultraviolet Imaging Telescope (UIT) during the December 1990 Astro-1 spacelab mission to determine 2490- and 1520-A fluxes from 46 H II regions and global surface brightness profiles. Comparison photometry in the V band is obtained from a ground-based CCD image. UV radial profiles show bulge and exponential disk components, with a local decrease in disk surface brightness inside the inner Lindblad Resonance about 4 arcmin from the nucleus. The V profile shows typical bulge plus exponential disk structure, with no local maximum in the disk. There is little change of UV color across the disk, although there is a strong gradient in the bulge. Observed m152-V colors of the H II regions are consistent with model spectra for young clusters, after dereddening using Av determined from m249-V and the Galactic extinction curve. The value of Av, so determined, is 0.4 mag greater on the average than Av derived from radio continuum and H-alpha fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppenhaeger, K.; Wolk, S. J.; Hora, J. L.
2015-10-15
We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 μm with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2–6 days.more » Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color–magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.« less
An extremely young massive clump forming by gravitational collapse in a primordial galaxy.
Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C
2015-05-07
When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.
Zodiac II: Debris Disk Science from a Balloon
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne;
2011-01-01
Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.
Zodiac II: Debris Disk Science from a Balloon
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne;
2011-01-01
Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.
Scaling Relations for the Efficiency of Radial Migration in Disk Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.
2018-01-01
Radial migration is frequently recognized as an internal, secular process that could play an important role in disk galaxy evolution. The driving mechanism for radial migration is transient spiral patterns, which rearrange the orbital angular momentum distribution of disk stars around corotation without causing kinematic heating. Should radial migration be an efficient process, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having a significant impact on the disk’s kinematic, structural and chemical evolution. Observational and simulated data are consistent with radial migration being important for kinematically cold stellar populations and less so for populations with hot kinematics. I will present an analytic criterion that determines which stars are in orbits that could lead to radial migration. I will then show some scaling relations for the efficacy of radial migration that result from applying this analytic criterion to a series of models that have a variety of distribution functions and spiral patterns in systems with an assumed flat rotation curve. Most importantly, I will argue that these scaling relations can be used to place constraints on the efficiency of radial migration, where stronger spiral patterns and kinematically cold populations will lead to a higher fraction of stars in orbits that can lead to radial migration.
Young Stellar Objects in the Massive Star-forming Regions W51 and W43
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saral, G.; Audard, M.; Hora, J. L.
We present the results of our investigation of the star-forming complexes W51 and W43, two of the brightest in the first Galactic quadrant. In order to determine the young stellar object (YSO) populations in W51 and W43 we used color–magnitude relations based on Spitzer mid-infrared and 2MASS/UKIDSS near-infrared data. We identified 302 Class I YSOs and 1178 Class II/transition disk candidates in W51, and 917 Class I YSOs and 5187 Class II/transition disk candidates in W43. We also identified tens of groups of YSOs in both regions using the Minimal Spanning Tree (MST) method. We found similar cluster densities inmore » both regions, even though Spitzer was not able to probe the densest part of W43. By using the Class II/I ratios, we traced the relative ages within the regions and, based on the morphology of the clusters, we argue that several sites of star formation are independent of one another in terms of their ages and physical conditions. We used spectral energy distribution-fitting to identify the massive YSO (MYSO) candidates since they play a vital role in the star formation process, and then examined them to see if they are related to any massive star formation tracers such as UCH ii regions, masers, or dense fragments. We identified 17 MYSO candidates in W51, and 14 in W43, respectively, and found that groups of YSOs hosting MYSO candidates are positionally associated with H ii regions in W51, though we do not see any MYSO candidates associated with previously identified massive dense fragments in W43.« less
A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1
NASA Astrophysics Data System (ADS)
Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus
2015-01-01
Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of accretion and the formation of giant planets.
Misty Star in the Sea Serpent Artist Concept
2011-10-20
This artist concept, based on data from NASA Herschel telescope, illustrates an icy planet-forming disk around a young star called TW Hydrae, located about 175 light-years away in the Hydra, or Sea Serpent, constellation.
Stars Cant Spin Out of Control Artist Animation
2006-07-24
This artist concept demonstrates how a dusty planet-forming disk can slow down a whirling young star, essentially saving the star from spinning itself to death. Evidence for this phenomenon comes from NASA Spitzer Space Telescope.
A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2
NASA Technical Reports Server (NTRS)
Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.
1993-01-01
We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).
Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kóspál, Á.; Ábrahám, P.; Moór, A.
FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the COmore » emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.« less
An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects
NASA Astrophysics Data System (ADS)
Alcalá, J. M.; Stelzer, B.; Covino, E.; Cupani, G.; Natta, A.; Randich, S.; Rigliaco, E.; Spezzi, L.; Testi, L.; Bacciotti, F.; Bonito, R.; Covino, S.; Flaccomio, E.; Frasca, A.; Gandolfi, D.; Leone, F.; Micela, G.; Nisini, B.; Whelan, E.
2011-03-01
We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near-IR, avoiding ambiguities due to possible YSO variability. Based on observations collected at the European Southern Observatory, Chile, under Programmes 084.C-0269 and 085.C-0238.
The History of the M31 Disk from Resolved Stellar Populations as Seen by PHAT
NASA Astrophysics Data System (ADS)
Lewis, A. R.; Dalcanton, J. J.; Dolphin, A. E.; Weisz, D. R.; Williams, B. F.; PHAT Collaboration
2014-03-01
The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that is mapping the resolved stellar populations of ˜1/3 of M31 from the UV through the near-IR. These data provide color and luminosity information for more than 150 million stars in the M31 disk. We use stellar evolution models to fit the luminous main sequence to derive spatially-resolved recent star formation histories (SFHs) over large areas of M31 with 50-100 pc resolution. These include individual star-forming regions as well as quiescent portions of the disk. We use the gridded SFHs to create movies of star formation activity to study the evolution of individual star-forming events across the disk. Outside of the star-forming regions, we use our resolved stellar photometry to derive the full SFHs of larger regions. These allow us to probe spatial and temporal trends in age and metallicity across a large radial baseline, providing constraints on the global formation and evolution of the disk over a Hubble time. M31 is the only large disk galaxy that is close enough to obtain the photometry necessary for this type of spatially-resolved SFH mapping.
THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Rix, Hans-Walter; Liu Chao
2012-07-10
The spatial, kinematic, and elemental-abundance structure of the Milky Way's stellar disk is complex, and has been difficult to dissect with local spectroscopic or global photometric data. Here, we develop and apply a rigorous density modeling approach for Galactic spectroscopic surveys that enables investigation of the global spatial structure of stellar sub-populations in narrow bins of [{alpha}/Fe] and [Fe/H], using 23,767 G-type dwarfs from SDSS/SEGUE, which effectively sample 5 kpc < R{sub GC} < 12 kpc and 0.3 kpc {approx}< |Z| {approx}< 3 kpc. We fit models for the number density of each such ([{alpha}/Fe] and [Fe/H]) mono-abundance component, properlymore » accounting for the complex spectroscopic SEGUE sampling of the underlying stellar population, as well as for the metallicity and color distributions of the samples. We find that each mono-abundance sub-population has a simple spatial structure that can be described by a single exponential in both the vertical and radial directions, with continuously increasing scale heights ( Almost-Equal-To 200 pc to 1 kpc) and decreasing scale lengths (>4.5 kpc to 2 kpc) for increasingly older sub-populations, as indicated by their lower metallicities and [{alpha}/Fe] enhancements. That the abundance-selected sub-components with the largest scale heights have the shortest scale lengths is in sharp contrast with purely geometric 'thick-thin disk' decompositions. To the extent that [{alpha}/Fe] is an adequate proxy for age, our results directly show that older disk sub-populations are more centrally concentrated, which implies inside-out formation of galactic disks. The fact that the largest scale-height sub-components are most centrally concentrated in the Milky Way is an almost inevitable consequence of explaining the vertical structure of the disk through internal evolution. Whether the simple spatial structure of the mono-abundance sub-components and the striking correlations between age, scale length, and scale height can be plausibly explained by satellite accretion or other external heating remains to be seen.« less
NASA Astrophysics Data System (ADS)
Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.
2018-04-01
The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.
DOUBLE DCO{sup +} RINGS REVEAL CO ICE DESORPTION IN THE OUTER DISK AROUND IM LUP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öberg, Karin I.; Loomis, Ryan; Andrews, Sean M.
2015-09-10
In a protoplanetary disk, a combination of thermal and non-thermal desorption processes regulate where volatiles are liberated from icy grain mantles into the gas phase. Non-thermal desorption should result in volatile-enriched gas in disk-regions where complete freeze-out is otherwise expected. We present Atacama Large Millimeter/Submillimeter Array observations of the disk around the young star IM Lup in 1.4 mm continuum, C{sup 18}O 2–1, H{sup 13}CO{sup +} 3–2 and DCO{sup +} 3–2 emission at ∼0.″5 resolution. The images of these dust and gas tracers are clearly resolved. The DCO{sup +} line exhibits a striking pair of concentric rings of emission thatmore » peak at radii of ∼0.″6 and 2″ (∼90 and 300 AU, respectively). Based on disk chemistry model comparison, the inner DCO{sup +} ring is associated with the balance of CO freeze-out and thermal desorption due to a radial decrease in disk temperature. The outer DCO{sup +} ring is explained by non-thermal desorption of CO ice in the low-column-density outer disk, repopulating the disk midplane with cold CO gas. The CO gas then reacts with abundant H{sub 2}D{sup +} to form the observed DCO{sup +} outer ring. These observations demonstrate that spatially resolved DCO{sup +} emission can be used to trace otherwise hidden cold gas reservoirs in the outmost disk regions, opening a new window onto their chemistry and kinematics.« less
Signatures of Young Planets in the Continuum Emission from Protostellar Disks
NASA Astrophysics Data System (ADS)
Isella, Andrea; Turner, Neal J.
2018-06-01
Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.
Probing the Gaseous Disk of T Tau N with CN 5-4 Lines
NASA Technical Reports Server (NTRS)
Podio, L.; Kamp, I.; Codella, C.; Nisini, B.; Aresu, G.; Brittain, S.; Cabrit, S.; Dougados, C.; Grady, C.; Meijerink, R.;
2014-01-01
We present spectrally resolved observations of the young multiple system T Tau in atomic and molecular lines obtained with the Heterodyne Instrument for the Far Infrared on board Herschel. While CO, H2O, [C ii], and SO lines trace the envelope and the outflowing gas up to velocities of 33 km s(exp -1) with respect to systemic, the CN 5-4 hyperfine structure lines at 566.7, 566.9 GHz show a narrow double-peaked profile centered at systemic velocity, consistent with an origin in the outer region of the compact disk of T Tau N. Disk modeling of the T Tau N disk with the thermo-chemical code ProDiMo produces CN line fluxes and profiles consistent with the observed ones and constrain the size of the gaseous disk (R(sub out) = 110(+10/-20) AU) and its inclination (i = 25 deg +/- 5 deg). The model indicates that the CN lines originate in a disk upper layer at 40-110 AU from the star, which is irradiated by the stellar UV field and heated up to temperatures of 50-700 K. With respect to previously observed CN 2-1 millimeter lines, the CN 5-4 lines appear to be less affected by envelope emission, due to their larger critical density and excitation temperature. Hence, high-J CN lines are a unique confusion-free tracer of embedded disks, such as the disk of T Tau N.
A Method to Constrain the Size of the Protosolar Nebula
NASA Astrophysics Data System (ADS)
Kretke, K. A.; Levison, H. F.; Buie, M. W.; Morbidelli, A.
2012-04-01
Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial disks, yet in general it is impossible to connect an existing planetary system with an observed disk. We present a method by which we can constrain the size of our own protosolar nebula using the properties of the small body reservoirs in the solar system. In standard planet formation theory, after Jupiter and Saturn formed they scattered a significant number of remnant planetesimals into highly eccentric orbits. In this paper, we show that if there had been a massive, extended protoplanetary disk at that time, then the disk would have excited Kozai oscillations in some of the scattered objects, driving them into high-inclination (i >~ 50°), low-eccentricity orbits (q >~ 30 AU). The dissipation of the gaseous disk would strand a subset of objects in these high-inclination orbits; orbits that are stable on Gyr timescales. To date, surveys have not detected any Kuiper-belt objects with orbits consistent with this dynamical mechanism. Using these non-detections by the Deep Ecliptic Survey and the Palomar Distant Solar System Survey we are able to rule out an extended gaseous protoplanetary disk (RD >~ 80 AU) in our solar system at the time of Jupiter's formation. Future deep all sky surveys such as the Large Synoptic Survey Telescope will allow us to further constrain the size of the protoplanetary disk.
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Annotated Version This diagram illustrates the earliest journeys of water in a young, forming star system. Stars are born out of icy cocoons of gas and dust. As the cocoon collapses under its own weight in an inside-out fashion, a stellar embryo forms at the center surrounded by a dense, dusty disk. The stellar embryo 'feeds' from the disk for a few million years, while material in the disk begins to clump together to form planets. NASA's Spitzer Space Telescope was able to probe a crucial phase of this stellar evolution - a time when the cocoon is vigorously falling onto the pre-planetary disk. The infrared telescope detected water vapor as it smacks down on a disk circling a forming star called NGC 1333-IRAS 4B. This vapor started out as ice in the outer envelope, but vaporized upon its arrival at the disk. By analyzing the water in the system, astronomers were also able learn about other characteristics of the disk, such as its size, density and temperature. How did Spitzer see the water vapor deep in the NGC 1333-IRAS 4B system? This is most likely because the system is oriented in just the right way, such that its thicker disk is seen face-on from our Earthly perspective. In this 'face-on' orientation, Spitzer can peer through a window carved by an outflow of material from the embryonic star. This system in this drawing is shown in the opposite 'edge-on' configuration.Properties of Planet-Forming Prostellar Disks
NASA Technical Reports Server (NTRS)
Lindstrom, David (Technical Monitor); Lubow, Stephen
2005-01-01
The proposal achieved many of its objectives. The main area of investigation was the interaction of young planets with surrounding protostellar disks. The grant funds were used to support visits by CoIs and visitors: Gordon Ogilvie, Gennaro D Angelo, and Matthew Bate. Funds were used for travel and partial salary support for Lubow. We made important progress in two areas described in the original proposal: secular resonances (Section 3) and nonlinear waves in three dimensions (Section 5). In addition, we investigated several new areas: planet migration, orbital distribution of planets, and noncoorbital corotation resonances.
Optical High-resolution Spectroscopy of 14 Young α-rich Stars
NASA Astrophysics Data System (ADS)
Matsuno, Tadafumi; Yong, David; Aoki, Wako; Ishigaki, Miho N.
2018-06-01
We report chemical abundances of 14 young α-rich stars including neutron-capture elements based on high-quality optical spectra from HIRES/Keck I and differential line-by-line analysis. From a comparison of the abundance patterns of young α-rich stars to those of nearby bright red giants with a similar metallicity range (‑0.7 < [Fe/H] < ‑0.2), we confirm their high α-element abundances reported by previous studies based on near-infrared spectroscopy. We reveal for the first time low abundances of s-process elements and high abundances of r-process elements. All the abundances are consistent with those seen in the typical α-rich population of the Galactic disk, and no abundance anomalies are found except for Li-enhancement in one object previously reported and mild enhancement of Na in two stars. In particular, the lack of s-process enhancement excludes the hypothesis that mass transfer from asymptotic giant branch stars plays an important role in the formation of young α-rich stars. The high frequency of radial velocity variation (more than 50%) is also confirmed. We argue that mass transfer from low-mass red giants is the likely dominant formation mechanism for young α-rich stars. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Unlocking CO Depletion in Protoplanetary Disks. I. The Warm Molecular Layer
NASA Astrophysics Data System (ADS)
Schwarz, Kamber R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Zhang, Ke; Öberg, Karin I.; Blake, Geoffrey A.; Anderson, Dana
2018-03-01
CO is commonly used as a tracer of the total gas mass in both the interstellar medium and in protoplanetary disks. Recently, there has been much debate about the utility of CO as a mass tracer in disks. Observations of CO in protoplanetary disks reveal a range of CO abundances, with measurements of low CO to dust mass ratios in numerous systems. One possibility is that carbon is removed from CO via chemistry. However, the full range of physical conditions conducive to this chemical reprocessing is not well understood. We perform a systematic survey of the time dependent chemistry in protoplanetary disks for 198 models with a range of physical conditions. We vary dust grain size distribution, temperature, comic-ray and X-ray ionization rates, disk mass, and initial water abundance, detailing what physical conditions are necessary to activate the various CO depletion mechanisms in the warm molecular layer. We focus our analysis on the warm molecular layer in two regions: the outer disk (100 au) well outside the CO snowline and the inner disk (19 au) just inside the midplane CO snowline. After 1 Myr, we find that the majority of models have a CO abundance relative to H2 less than 10‑4 in the outer disk, while an abundance less than 10‑5 requires the presence of cosmic-rays. Inside the CO snowline, significant depletion of CO only occurs in models with a high cosmic-ray rate. If cosmic-rays are not present in young disks, it is difficult to chemically remove carbon from CO. Additionally, removing water prior to CO depletion impedes the chemical processing of CO. Chemical processing alone cannot explain current observations of low CO abundances. Other mechanisms must also be involved.
NASA Astrophysics Data System (ADS)
Currie, Thayne; Grady, Carol A.; Cloutier, Ryan; Konishi, Mihoko; Stassun, Keivan; Debes, John; van der Marel, Nienke; Muto, Takayuki; Jayawardhana, Ray; Ratzka, Thorsten
2016-03-01
Using Keck/NIRC2 {L}\\prime (3.78 μm) data, we report the direct imaging discovery of a scattered-light-resolved, solar-system-scale residual protoplanetary disk around the young A-type star HD 141569A, interior to and concentric with the two ring-like structures at wider separations. The disk is resolved down to ˜0.″25 and appears as an arc-like rim with attached hook-like features. It is located at an angular separation intermediate between that of warm CO gas identified from spatially resolved mid-infrared spectroscopy and diffuse dust emission recently discovered with the Hubble Space Telescope. The inner disk has a radius of ˜39 au, a position angle consistent with north up, and an inclination of I ˜ 56o and has a center offset from the star. Forward modeling of the disk favors a thick torus-like emission sharply truncated at separations beyond the torus’s photocenter and heavily depleted at smaller separations. In particular, the best-fit density power law for the dust suggests that the inner disk dust and gas (as probed by CO) are radially segregated, a feature consistent with the dust trapping mechanism inferred from observations of “canonical” transitional disks. However, the inner disk component may instead be explained by radiation pressure-induced migration in optically thin conditions, in contrast to the two stellar companion/planet-influenced ring-like structures at wider separations. HD 141569A’s circumstellar environment—with three nested, gapped, concentric dust populations—is an excellent laboratory for understanding the relationship between planet formation and the evolution of both dust grains and disk architecture.
NASA Astrophysics Data System (ADS)
Morrow, A. L.; Luhman, K. L.; Espaillat, C.; D'Alessio, P.; Adame, L.; Calvet, N.; Forrest, W. J.; Sargent, B.; Hartmann, L.; Watson, D. M.; Bohac, C. J.
2008-04-01
Using SpeX at the NASA Infrared Telescope Facility and the Spitzer Infrared Spectrograph, we have obtained infrared spectra from 0.7 to 40 μm for three young brown dwarfs in the TW Hydra association (τ ~ 10 Myr), 2MASSW J1207334-393254, 2MASSW J1139511-315921, and SSSPM J1102-3431. The spectral energy distribution for 2MASSW J1139511-315921 is consistent with a stellar photosphere for the entire wavelength range of our data, whereas the other two objects exhibit significant excess emission at λ > 5μm. We are able to reproduce the excess emission from each brown dwarf using our models of irradiated accretion disks. According to our model fits, both disks have experienced a high degree of dust settling. We also find that silicate emission at 10 and 20 μm is absent from the spectra of these disks, indicating that grains in the upper disk layers have grown to sizes larger than ~5 μm. Both of these characteristics are consistent with previous observations of decreasing silicate emission with lower stellar masses and older ages. These trends suggest that either (1) the growth of dust grains, and perhaps planetesimal formation, occurs faster in disks around brown dwarfs than in disks around stars or (2) the radii of the mid-IR-emitting regions of disks are smaller for brown dwarfs than for stars, and grains grow faster at smaller disk radii. Finally, we note the possible detection of an unexplained emission feature near 14 μm in the spectra of both of the disk-bearing brown dwarfs. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory at the California Institute of Technology under NASA contract 1407.
NASA Technical Reports Server (NTRS)
Alvarez, R.; Mennessier, M.-O.; Barthes, D.; Luri, X.; Mattei, J. A.
1997-01-01
Hipparcos astrometric and kinematical data of oxygen-rich Mira variables are used to calibrate absolute near-infrared magnitudes and kinematic parameters. Three distinct classes of stars with different kinematics and scale heights were identified. The two most significant groups present characteristics close to those usually assigned to extended/thick disk-halo populations and old disk populations, respectively, and thus they may differ by their metallicity abundance. Two parallel period-luminosity relations are found, one for each population. The shift between these relations is interpreted as the consequence of the effects of metallicity abundance on the luminosity.
An Ultraviolet/Optical Atlas of Bright Galaxies
NASA Astrophysics Data System (ADS)
Marcum, Pamela M.; O'Connell, Robert W.; Fanelli, Michael N.; Cornett, Robert H.; Waller, William H.; Bohlin, Ralph C.; Neff, Susan G.; Roberts, Morton S.; Smith, Andrew M.; Cheng, K.-P.; Collins, Nicholas R.; Hennessy, Gregory S.; Hill, Jesse K.; Hill, Robert S.; Hintzen, Paul; Landsman, Wayne B.; Ohl, Raymond G.; Parise, Ronald A.; Smith, Eric P.; Freedman, Wendy L.; Kuchinski, Leslie E.; Madore, Barry; Angione, Ronald; Palma, Christopher; Talbert, Freddie; Stecher, Theodore P.
2001-02-01
We present wide-field imagery and photometry of 43 selected nearby galaxies of all morphological types at ultraviolet and optical wavelengths. The ultraviolet (UV) images, in two broad bands at 1500 and 2500 Å, were obtained using the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission. The UV images have ~3" resolution, and the comparison sets of ground-based CCD images (in one or more of B, V, R, and Hα) have pixel scales and fields of view closely matching the UV frames. The atlas consists of multiband images and plots of UV/optical surface brightness and color profiles. Other associated parameters, such as integrated photometry and half-light radii, are tabulated. In an appendix, we discuss the sensitivity of different wavebands to a galaxy's star formation history in the form of ``history weighting functions'' and emphasize the importance of UV observations as probes of evolution during the past 10-1000 Myr. We find that UV galaxy morphologies are usually significantly different from visible band morphologies as a consequence of spatially inhomogeneous stellar populations. Differences are quite pronounced for systems in the middle range of Hubble types, Sa through Sc, but less so for ellipticals or late-type disks. Normal ellipticals and large spiral bulges are fainter and more compact in the UV. However, they typically exhibit smooth UV profiles with far-UV/optical color gradients which are larger than any at optical/IR wavelengths. The far-UV light in these cases is probably produced by extreme horizontal branch stars and their descendants in the dominant, low-mass, metal-rich population. The cool stars in the large bulges of Sa and Sb spirals fade in the UV while hot OB stars in their disks brighten, such that their Hubble classifications become significantly later. In the far-UV, early-type spirals often appear as peculiar, ringlike systems. In some spiral disks, UV-bright structures closely outline the spiral pattern; in others, the disks can be much more fragmented and chaotic than at optical wavelengths. Contributions by bright active galactic nuclei (AGNs) to the integrated UV light in our sample range from less than 10% to nearly 100%. A number of systems have unusual UV-bright structures in their inner disks, including rings, compact knots, and starburst nuclei, which could easily dominate the UV light in high-redshift analogs. A significant but variable fraction of the far-UV light in spiral disks is diffuse rather than closely concentrated to star-forming regions. Dust in normal spiral disks does not control UV morphologies, even in some highly inclined disk systems. The heaviest extinction is apparently confined to thin layers and the immediate vicinity of young H II complexes; the UV light emerges from thicker star distributions, regions evacuated of dust by photodestruction or winds, or by virtue of strong dust clumpiness. Only in cases where the dust layers are disturbed does dust appear to be a major factor in UV morphology. The UV-bright plume of M82 indicates that dust scattering of UV photons can be important in some cases. In a companion paper, we discuss far-UV data from the Astro-2 mission and optical comparisons for another 35 galaxies, emphasizing face-on spirals.
Chemical and physical characterization of the first stages of protoplanetary disk formation
NASA Astrophysics Data System (ADS)
Hincelin, Ugo
2012-12-01
Low mass stars, like our Sun, are born from the collapse of a molecular cloud. The matter falls in the center of the cloud, creating a protoplanetary disk surrounding a protostar. Planets and other Solar System bodies will be formed in the disk. The chemical composition of the interstellar matter and its evolution during the formation of the disk are important to better understand the formation process of these objects. I studied the chemical and physical evolution of this matter, from the cloud to the disk, using the chemical gas-grain code Nautilus. A sensitivity study to some parameters of the code (such as elemental abundances and parameters of grain surface chemistry) has been done. More particularly, the updates of rate coefficients and branching ratios of the reactions of our chemical network showed their importance, such as on the abundances of some chemical species, and on the code sensitivity to others parameters. Several physical models of collapsing dense core have also been considered. The more complex and solid approach has been to interface our chemical code with the radiation-magneto-hydrodynamic model of stellar formation RAMSES, in order to model in three dimensions the physical and chemical evolution of a young disk formation. Our study showed that the disk keeps imprints of the past history of the matter, and so its chemical composition is sensitive to the initial conditions.
Dust Coagulation in Protoplanetary Accretion Disks
NASA Technical Reports Server (NTRS)
Schmitt, W.; Henning, Th.; Mucha, R.
1996-01-01
The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.
Protoplanetary and Transitional Disks in the Open Stellar Cluster IC 2395
NASA Astrophysics Data System (ADS)
Balog, Zoltan; Siegler, Nick; Rieke, G. H.; Kiss, L. L.; Muzerolle, James; Gutermuth, R. A.; Bell, Cameron P. M.; Vinkó, J.; Su, K. Y. L.; Young, E. T.; Gáspár, András
2016-11-01
We present new deep UBVRI images and high-resolution multi-object optical spectroscopy of the young (˜6-10 Myr old), relatively nearby (800 pc) open cluster IC 2395. We identify nearly 300 cluster members and use the photometry to estimate their spectral types, which extend from early B to middle M. We also present an infrared imaging survey of the central region using the IRAC and MIPS instruments on board the Spitzer Space Telescope, covering the wavelength range from 3.6 to 24 μm. Our infrared observations allow us to detect dust in circumstellar disks originating over a typical range of radii from ˜0.1 to ˜10 au from the central star. We identify 18 Class II, 8 transitional disk, and 23 debris disk candidates, respectively, 6.5%, 2.9%, and 8.3% of the cluster members with appropriate data. We apply the same criteria for transitional disk identification to 19 other stellar clusters and associations spanning ages from ˜1 to ˜18 Myr. We find that the number of disks in the transitional phase as a fraction of the total with strong 24 μm excesses ([8] - [24] ≥ 1.5) increases from (8.4 ± 1.3)% at ˜3 Myr to (46 ± 5)% at ˜10 Myr. Alternative definitions of transitional disks will yield different percentages but should show the same trend.
YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.
The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample ismore » newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.« less
GalMod: A Galactic Synthesis Population Model
NASA Astrophysics Data System (ADS)
Pasetto, Stefano; Grebel, Eva K.; Chiosi, Cesare; Crnojević, Denija; Zeidler, Peter; Busso, Giorgia; Cassarà, Letizia P.; Piovan, Lorenzo; Tantalo, Rosaria; Brogliato, Claudio
2018-06-01
We present a new Galaxy population synthesis Model, GalMod. GalMod is a star-count model featuring an asymmetric bar/bulge as well as spiral arms and related extinction. The model, initially introduced in Pasetto et al., has been here completed with a central bar, a new bulge description, new disk vertical profiles, and several new bolometric corrections. The model can generate synthetic mock catalogs of visible portions of the Milky Way, external galaxies like M31, or N-body simulation initial conditions. At any given time, e.g., at a chosen age of the Galaxy, the model contains a sum of discrete stellar populations, namely the bulge/bar, disk, and halo. These populations are in turn the sum of different components: the disk is the sum of the spiral arms, thin disks, a thick disk, and various gas components, while the halo is the sum of a stellar component, a hot coronal gas, and a dark-matter component. The Galactic potential is computed from these population density profiles and used to generate detailed kinematics by considering up to the first four moments of the collisionless Boltzmann equation. The same density profiles are then used to define the observed color–magnitude diagrams in a user-defined field of view (FoV) from an arbitrary solar location. Several photometric systems have been included and made available online, and no limits on the size of the FoV are imposed thus allowing full-sky simulations, too. Finally, we model the extinction by adopting a dust model with advanced ray-tracing solutions. The model's Web page (and tutorial) can be accessed at www.GalMod.org and support is provided at Galaxy.Model@yahoo.com.
THE ERUPTION OF THE CANDIDATE YOUNG STAR ASASSN-15QI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herczeg, Gregory J.; Dong, Subo; Chen, Ping
Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star–disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∼3.5 mag brightening in the V band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission frommore » ∼10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km s{sup −1}. The wind and hot gas both disappeared as the outburst faded and the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10–20 days. Fluorescent excitation of H{sub 2} is detected in emission from vibrational levels as high as v = 11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, though the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling.« less
Evolution of protoplanetary disks with dynamo magnetic fields
NASA Technical Reports Server (NTRS)
Reyes-Ruiz, M.; Stepinski, Tomasz F.
1994-01-01
The notion that planetary systems are formed within dusty disks is certainly not a new one; the modern planet formation paradigm is based on suggestions made by Laplace more than 200 years ago. More recently, the foundations of accretion disk theory where initially developed with this problem in mind, and in the last decade astronomical observations have indicated that many young stars have disks around them. Such observations support the generally accepted model of a viscous Keplerian accretion disk for the early stages of planetary system formation. However, one of the major uncertainties remaining in understanding the dynamical evolution of protoplanetary disks is the mechanism responsible for the transport of angular momentum and subsequent mass accretion through the disk. This is a fundamental piece of the planetary system genesis problem since such mechanisms will determine the environment in which planets are formed. Among the mechanisms suggested for this effect is the Maxwell stress associated with a magnetic field treading the disk. Due to the low internal temperatures through most of the disk, even the question of the existence of a magnetic field must be seriously studied before including magnetic effects in the disk dynamics. On the other hand, from meteoritic evidence it is believed that magnetic fields of significant magnitude existed in the earliest, PP-disk-like, stage of our own solar system's evolution. Hence, the hypothesis that PP disks are magnetized is not made solely on the basis of theory. Previous studies have addressed the problem of the existence of a magnetic field in a steady-state disk and have found that the low conductivity results in a fast diffusion of the magnetic field on timescales much shorter than the evolutionary timescale. Hence the only way for a magnetic field to exist in PP disks for a considerable portion of their lifetimes is for it to be continuously regenerated. In the present work, we present results on the self-consistent evolution of a turbulent PP disk including the effects of a dynamo-generated magnetic field.
A SYMMETRIC INNER CAVITY IN THE HD 141569A CIRCUMSTELLAR DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazoyer, J.; Choquet, É.; Perrin, M. D.
2016-02-20
Some circumstellar disks, called transitional or hybrid disks, present characteristics of both protoplanetary disks (significant amount of gas) and debris disks (evolved structures around young main-sequence stars, composed of second generation dust, from collisions between planetesimals). Therefore, they are ideal astrophysical laboratories to witness the last stages of planet formation. The circumstellar disk around HD 141569A was intensively observed and resolved in the past from space, but also from the ground. However, the recent implementation of high contrast imaging systems has opened up new opportunities to re-analyze this object. We analyzed Gemini archival data from the Near-infrared Coronagraphic Imager obtained inmore » 2011 in the H band, using several angular differential imaging techniques (classical ADI, LOCI, KLIP). These images reveal the complex structures of this disk with an unprecedented resolution. We also include archival Hubble Space Telescope images as an independent data set to confirm these findings. Using an analysis of the inner edge of the disk, we show that the inner disk is almost axisymmetrical. The measurement of an offset toward the east observed by previous authors is likely due to the fact that the eastern part of this disk is wider and more complex in substructure. Our precise reanalysis of the eastern side shows several structures, including a splitting of the disk and a small finger detached from the inner edge to the southeast. Finally, we find that the arc at 250 AU is unlikely to be a spiral, at least not at the inclination derived from the first ring, but instead could be interpreted as a third belt at a different inclination. If the very symmetrical inner disk edge is carved by a companion, the data presented here put additional constraints on its position. The observed very complex structures will be confirmed by the new generation of coronagraphic instrument (GPI, SPHERE). However, a full understanding of this system will require gas observations at millimetric wavelengths.« less