Sample records for young galactic supernova

  1. G25.5 + 0.2 - A very young galactic supernova remnant

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Ekers, R. D.; Goss, W. M.; Sramek, R. A.; Roberts, Douglas A.

    1989-01-01

    Radio emission has been detected from a compact source which satisfies the criteria for a very young galactic supernova remnant. The source, G25.5 + 0.2 has a partially-filled shell structure, a total integrated flux density at 20 cm of 315 mJy, and a flat spectrum between 2 and 20 cm. Observations at 843 and 327 MHz indicate thermal absorption at low frequencies with a turnover in the spectrum near 1 GHz. It is suggested that the lower limit for the age of the supernova remnant is 25 yr, while the upper limit is about 100 yr. It is concluded that G25.5 + 0.2 could be the youngest known supernova remnant in the Galaxy.

  2. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.

  3. G306.3-0.9: A Newly Discovered Young Galactic Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Reynolds, Mark T.; Loi, Syheh T.; Murphy, Tara; Miller, Jon M.; Maitra, Dipankar; Gueltekin, Kayhan; Gehrels, Neil; Kennea, Jamie A.; Siegel, Michael H.; Gelbord, Jonathan; hide

    2013-01-01

    We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of 160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24µm, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.

  4. The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Atwood, W. B.; ...

    2008-11-21

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma raymore » sources associated with star-forming regions and SNRs are such young pulsars.« less

  5. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sourcesmore » associated with star-forming regions and SNRs are such young pulsars.« less

  6. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  7. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  8. Observing the Next Galactic Supernova

    NASA Astrophysics Data System (ADS)

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Vagins, Mark R.; Stanek, K. Z.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (sime 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (sime 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2^{+7.3}_{-2.6} per century and a Galactic SN Ia rate of 1.4^{+1.4}_{-0.8} per century for a

  9. Detection of Neutrinos from Galactic and Cosmic Supernovae

    NASA Astrophysics Data System (ADS)

    Beacom, John

    2010-11-01

    Detecting neutrinos is the key to understanding core-collapse supernovae, but this is notoriously difficult due to the small interaction cross section of neutrinos and the low frequency of supernovae. The prospects for detecting Galactic supernovae depend almost completely on the probability of a fluctuation from the low supernova rate; the detection aspects are largely under control. The prospects for detecting Cosmic supernovae instead depend almost completely on the detection aspects, especially regarding reducing detector backgrounds; the supernova rate and neutrino flux of the universe are now rather well measured or predicted. After decades of effort and patience, we have good reasons to anticipate that detecting supernova neutrinos is within reach.

  10. Evolution of Supernova Remnants Near the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalinewich, A.; Piran, T.; Sari, R.

    Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using thesemore » results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.« less

  11. How supernovae launch galactic winds?

    NASA Astrophysics Data System (ADS)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  12. Observing the Next Galactic Supernova with the NOvA Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasel, Justin A.; Sheshukov, Andrey; Habig, Alec

    The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvAmore » detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.« less

  13. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  14. Detectability of galactic supernova neutrinos coherently scattered on xenon nuclei in XMASS

    NASA Astrophysics Data System (ADS)

    Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakagawa, K.; Nakahata, M.; Norita, T.; Ogawa, H.; Sekiya, H.; Takachio, O.; Takeda, A.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Tasaka, S.; Liu, J.; Martens, K.; Suzuki, Y.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Onishi, Y.; Takeuchi, Y.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Itow, Y.; Kegasa, R.; Kobayashi, K.; Masuda, K.; Takiya, H.; Uchida, H.; Nishijima, K.; Fujii, K.; Murayama, I.; Nakamura, S.; Xmass Collaboration

    2017-03-01

    The coherent elastic neutrino-nucleus scattering (CEvNS) plays a crucial role at the final evolution of stars. The detection of it would be of importance in astroparticle physics. Among all available neutrino sources, galactic supernovae give the highest neutrino flux in the MeV range. Among all liquid xenon dark matter experiments, XMASS has the largest sensitive volume and light yield. The possibility to detect galactic supernova via the CEvNS-process on xenon nuclei in the current XMASS detector was investigated. The total number of events integrated in about 18 s after the explosion of a supernova 10 kpc away from the Earth was expected to be from 3.5 to 21.1, depending on the supernova model used to predict the neutrino flux, while the number of background events in the same time window was measured to be negligible. All lead to very high possibility to detect CEvNS experimentally for the first time utilizing the combination of galactic supernovae and the XMASS detector. In case of a supernova explosion as close as Betelgeuse, the total observable events can be more than ∼ 104, making it possible to distinguish different supernova models by examining the evolution of neutrino event rate in XMASS.

  15. Crystallography of rare galactic honeycomb structure near supernova 1987a

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1994-01-01

    Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.

  16. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2013-01-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.

  17. Implications of supernova remnant origin model of galactic cosmic rays on gamma rays from young supernova remnants

    NASA Astrophysics Data System (ADS)

    Banik, Prabir; Bhadra, Arunava

    2017-06-01

    It is widely believed that Galactic cosmic rays are originated in supernova remnants (SNRs), where they are accelerated by a diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. In recent theoretical developments of the DSA theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are the true generators of cosmic rays, they should accelerate not only protons but also heavier nuclei with the right proportions, and the maximum energy of the heavier nuclei should be the atomic number (Z ) times the mass of the proton. In this work, we investigate the implications of the acceleration of heavier nuclei in SNRs on energetic gamma rays produced in the hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition compared to that of pure protons to explain observations. In addition, the gamma-ray flux above a few tens of TeV would be significantly higher if cosmic ray particles could attain energies Z times the knee energy in lieu of 200 TeV, as suggested earlier for nonamplified magnetic fields. The two stated maximum energy paradigms will be discriminated in the future by upcoming gamma-ray experiments like the Cherenkov telescope array (CTA).

  18. The detectability of supernovae against elliptical galactic disks.

    NASA Astrophysics Data System (ADS)

    Pearce, E. C.

    A 75 cm telescope has been automated with a Prime 300 mini-computer to search approximately 250 galaxies per hour for young supernovae. The high-speed star-location and comparison algorithms used in the Digitized Astronomy Supernova Search (DASS) system is described.

  19. On the search for Galactic supernova remnant PeVatrons with current TeV instruments

    NASA Astrophysics Data System (ADS)

    Cristofari, P.; Gabici, S.; Terrier, R.; Humensky, T. B.

    2018-06-01

    The supernova remnant hypothesis for the origin of Galactic cosmic rays has passed several tests, but the firm identification of a supernova remnant pevatron, considered to be a decisive step to prove the hypothesis, is still missing. While a lot of hope has been placed in next-generation instruments operating in the multi-TeV range, it is possible that current gamma-ray instruments, operating in the TeV range, could pinpoint these objects or, most likely, identify a number of promising targets for instruments of next generation. Starting from the assumption that supernova remnants are indeed the sources of Galactic cosmic rays, and therefore must be pevatrons for some fraction of their lifetime, we investigate the ability of current instruments to detect such objects, or to identify the most promising candidates.

  20. Optical Emission Associated with the Galactic Supernova Remnant G179.0+2.6

    NASA Astrophysics Data System (ADS)

    How, Thomas G.; Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Outters, Nicolas

    2018-04-01

    Narrow passband optical images of the large Galactic supernova remnant G179.0+2.6 reveal a faint but nearly complete emission shell dominated by strong [O 3] 4959,5007 Å line emission. The remnant's optical emission, which consists of both diffuse and filamentary features, is brightest along its southern and northeastern limbs. Deep Hα images detect little coincidence emission indicating an unusually high [O 3]/Hα emission ratio for such a large and apparently old remnant. Low-dispersion optical spectra of several regions confirm large [O 3]/Hα line ratios with typical values around 10. The dominance of [O 3] emission for the majority of the remnant's optical filaments suggests shock velocities above 100 km s-1 are present throughout most of the remnant, likely reflecting a relatively low density ambient ISM. The remnant's unusually strong [O 3] emission adds to the remnant's interesting set of properties which include a thick radio emission shell, radial polarization of its radio emission like that typically seen in young supernova remnants, and an unusually slow-rotating gamma-ray pulsar with a characteristic spin-down age ≃ 50 kyr.

  1. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    DOE PAGES

    Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon; ...

    2017-07-10

    Here, we study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulentmore » dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk's spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.« less

  2. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo.more » The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.« less

  3. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon

    Here, we study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulentmore » dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk's spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.« less

  4. A Low-Frequency Survey of the Galactic Plane Near l = 11 degs: Discovery of Three New Supernova Remnants

    DTIC Science & Technology

    2004-01-01

    A LOW-FREQUENCY SURVEY OF THE GALACTIC PLANE NEAR l = 11: DISCOVERY OF THREE NEW SUPERNOVA REMNANTS C. L. Brogan,1,2 K. E. Devine,3,4 T. J. Lazio,5...230; Green 2002). This paucity is likely due in part to selection effects acting against the discovery of the more mature, faint, extended remnants...00-00-2004 to 00-00-2004 4. TITLE AND SUBTITLE A Low-Frequency Survey of the Galactic Plane Near l=11degrees: Discovery of Three New Supernova

  5. The evolution of supernova remnants in different galactic environments, and its effects on supernova statistics

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Sofia, S.; Bruhweiler, F.; Gull, T. R.

    1980-01-01

    Examination of the interaction between supernova (SN) ejecta and the various environments in which the explosive event might occur shows that only a small fraction of the many SNs produce observable supernova remnants (SNRs). This fraction, which is found to depend weakly upon the lower mass limit of the SN progenitors, and more strongly on the specfic characteristics of the associated interstellar medium, decreases from approximately 15 percent near the galctic center to 10 percent at Rgal approximately 10 kpc and drops nearly to zero for Rgal 15 kpc. Generally, whether a SNR is detectable is determined by the density of the ambient interstellar medium in which it is embeeede. The presence of large, low density cavities arpund stellar associations due to the combined effects of stellar winds and supernova shells strongly suggests that a large portion of the detectable SNRs have runway stars as their progenitors. These results explain the differences between the substantially larger SN rates in the galaxy derived both from pulsar statistics and from observations of SN events in external galaxies, when compared to the substantially smaller SN rates derived form galactic SNR statistics.

  6. Galactic Supernova Remnant Candidates Discovered by THOR

    NASA Astrophysics Data System (ADS)

    Anderson, Loren; Wang, Yuan; Bihr, Simon; Rugel, Michael; Beuther, Henrik; THOR Team

    2018-01-01

    There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the WISE Catalog of Galactic HII Regions, which contains all known and candidate H II regions in the Galaxy. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4deg>l>17.5deg, |b|<1.25deg and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near l=30deg, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4'+/-4.7' versus 11.0'+/-7.8', and have lower integrated flux densities. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.

  7. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  8. Cosmic Ray Production in Supernovae

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Ellison, D. C.; Marcowith, A.; Osipov, S. M.

    2018-02-01

    We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above 10^{18} eV over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.

  9. Galactic supernova remnant candidates discovered by THOR

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Bigiel, F.; Churchwell, E.; Glover, S. C. O.; Goodman, A. A.; Henning, Th.; Heyer, M.; Klessen, R. S.; Linz, H.; Longmore, S. N.; Menten, K. M.; Ott, J.; Roy, N.; Soler, J. D.; Stil, J. M.; Urquhart, J. S.

    2017-09-01

    Context. There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. This deficiency is thought to be caused by a lack of sensitive radio continuum data. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of H II regions makes identifying such features challenging. SNRs can, however, be separated from H II regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. Aims: Our goal is to find missing SNR candidates in the Galactic disk by locating extended radio continuum sources that lack MIR counterparts. Methods: We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with H II regions, we exclude radio continuum sources from the WISE Catalog of Galactic H II Regions, which contains all known and candidate H II regions in the Galaxy. Results: We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4° > ℓ > 17.5°, | b | ≤ 1.25° and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near ℓ ≃ 30°, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4' ± 4.7' versus 11.0' ± 7.8', and have lower integrated flux densities. Conclusions: The THOR survey shows that sensitive radio continuum data can discover a large number of SNR candidates, and that these candidates can be efficiently identified using the combination of radio and

  10. Galactic gamma-ray observations and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1975-01-01

    Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.

  11. Ages, chemistry, and type 1A supernovae: Clues to the formation of the galactic stellar halo

    NASA Technical Reports Server (NTRS)

    Smecker-Hane, Tammy A.; Wyse, Rosemary F. G.

    1993-01-01

    We endeavor to resolve two conflicting constraints on the duration of the formation of the Galactic stellar halo - 2-3 Gyr age differences in halo stars, and the time scale inferred from the observed constant values of chemical element abundance ratios characteristic of enrichment by Type II supernovae - by investigating the time scale for the onset of Type Ia supernovae (SNIa) in the currently favored progenitor model - mergers of carbon and oxygen white dwarfs (CO WDs).

  12. Dynamics of supernova remnants in the Galactic centre.

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Mapelli, M.; Spera, M.

    The Galactic centre (GC) is a unique place to study the extreme dynamical processes occurring near a super-massive black hole (SMBH). Here we simulate a large set of binaries orbiting the SMBH while the primary member undergoes a supernova (SN) explosion, in order to study the impact of SN kicks on the orbits of stars and dark remnants in the GC. We find that SN explosions are efficient in scattering neutron stars and other light stars on new (mostly eccentric) orbits, while black holes (BHs) tend to retain memory of the orbit of their progenitor star. SN kicks are thus unable to eject BHs from the GC: a cusp of dark remnants may be lurking in the central parsec of our Galaxy.

  13. Stochastic Acceleration of Galactic Cosmic Rays by Compressible Plasma Fluctuations in Supernova Shells

    NASA Astrophysics Data System (ADS)

    Zhang, Ming

    2015-10-01

    A theory of 2-stage acceleration of Galactic cosmic rays in supernova remnants is proposed. The first stage is accomplished by the supernova shock front, where a power-law spectrum is established up to a certain cutoff energy. It is followed by stochastic acceleration with compressible waves/turbulence in the downstream medium. With a broad \\propto {k}-2 spectrum for the compressible plasma fluctuations, the rate of stochastic acceleration is constant over a wide range of particle momentum. In this case, the stochastic acceleration process extends the power-law spectrum cutoff energy of Galactic cosmic rays to the knee without changing the spectral slope. This situation happens as long as the rate of stochastic acceleration is faster than 1/5 of the adiabatic cooling rate. A steeper spectrum of compressible plasma fluctuations that concentrate their power in long wavelengths will accelerate cosmic rays to the knee with a small bump before its cutoff in the comic-ray energy spectrum. This theory does not require a strong amplification of the magnetic field in the upstream interstellar medium in order to accelerate cosmic rays to the knee energy.

  14. Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations

    NASA Astrophysics Data System (ADS)

    Crocker, Roland M.; Ruiter, Ashley J.; Seitenzahl, Ivo R.; Panther, Fiona H.; Sim, Stuart; Baumgardt, Holger; Möller, Anais; Nataf, David M.; Ferrario, Lilia; Eldridge, J. J.; White, Martin; Tucker, Brad E.; Aharonian, Felix

    2017-06-01

    Our Galaxy hosts the annihilation of a few 1043 low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesized in stars, stellar remnants and supernovae. For decades, however, there has been no positive identification of a main stellar positron source, leading to suggestions that many positrons originate from exotic sources like the Galaxy's central supermassive black hole or dark matter annihilation. Here we show that a single type of transient source, deriving from stellar populations of age 3-6 Gyr and yielding ∼0.03 M ⊙ of the positron emitter 44Ti, can simultaneously explain the strength and morphology of the Galactic positron annihilation signal and the Solar System abundance of the 44Ti decay product 44Ca. This transient is likely the merger of two low-mass white dwarfs, observed in external galaxies as the sub-luminous, thermonuclear supernova known as SN 1991bg-like.

  15. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  16. Planck intermediate results: XXXI. Microwave survey of Galactic supernova remnants

    DOE PAGES

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; ...

    2016-02-09

    The all-sky Planck survey in 9 frequency bands was used in this paper to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evidentmore » for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, S ν ∝ ν -α, with the spectral index, α, increasing by 0.5–1 above a break frequency in the range 10–60 GHz. Finally, the break could be due to synchrotron losses.« less

  17. Investigating the galactic Supernova Remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Bamba, A.; Orlando, S.; Bocchino, F.

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  18. Investigating the Galactic supernova remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya; Orlando, Salvatore; Bocchino, Fabrizio

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  19. Investigating Galactic Supernova Remnant Candidates Using LOFAR

    NASA Astrophysics Data System (ADS)

    Driessen, Laura N.; Domček, Vladimír; Vink, Jacco; Hessels, Jason W. T.; Arias, Maria; Gelfand, Joseph D.

    2018-06-01

    We investigate six supernova remnant (SNR) candidates—G51.21+0.11, G52.37–0.70, G53.07+0.49, G53.41+0.03, G53.84–0.75, and the possible shell around G54.1+0.3—in the Galactic plane using newly acquired Low-Frequency Array High-band Antenna observations, as well as archival Westerbork Synthesis Radio Telescope and Very Large Array Galactic Plane Survey mosaics. We find that G52.37–0.70, G53.84–0.75, and the possible shell around pulsar wind nebula G54.1+0.3 are unlikely to be SNRs, while G53.07+0.49 remains a candidate SNR. G51.21+0.11 has a spectral index of α = ‑ 0.7 ± 0.21, but lacks X-ray observations and as such requires further investigation to confirm its nature. We confirm one candidate, G53.41+0.03, as a new SNR because it has a shell-like morphology, a radio spectral index of α = ‑ 0.6 ± 0.2 and it has the X-ray spectral characteristics of a 1000–8000 year old SNR. The X-ray analysis was performed using archival XMM-Newton observations, which show that G53.41+0.03 has strong emission lines and is best characterized by a nonequilibrium ionization model, consistent with an SNR interpretation. Deep Arecibo radio telescope searches for a pulsar associated with G53.41+0.03 resulted in no detection, but placed stringent upper limits on the flux density of such a source if it was beamed toward Earth.

  20. Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2014-01-01

    We report measurements of the X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60 along the X-ray bright SE-NW axis from 0.84 plus or minus 0.06% yr(exp -1) to 0.52% plus or minus 0.03 yr(exp -1). This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3 and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% plus or minus 0.4% yr(exp -1). We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either the ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as may be found at a wind termination shock, requiring strong mass loss in the progenitor.

  1. Fermi and Swift as supernova alarms: Alert, localization, and diagnosis of future Galactic Type Ia explosions

    NASA Astrophysics Data System (ADS)

    Wang, Xilu; Fields, Brian D.; Lien, Amy Y.

    2017-01-01

    A Galactic SNIa event could go entirely unnoticed due to the large optical and near-IR extinction in the Milky Way plane, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit nuclear γ- ray lines, from the 56Ni → 56Co → 56Fe radioactive decay. The energy released in these decays powers the SNIa UVOIR light curve at times after ~1 week, leading to an exponential decline. Importantly for Swift and Fermi, these decays are accompanied by γ-ray line emission, with distinct series of lines for both the 56Ni and 56Co decays, spanning 158 keV to 2.6 MeV. These lines are squarely within the Fermi/GBM energy range, and the 56Ni 158 keV line is detectable by Swift/BAT. The Galaxy is optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. Both GBM and BAT have continuous and nearly all-sky coverage. Thus GBM and BAT are ideal Galactic SNIa monitors and early warning systems. We will illustrate expected GBM and BAT light curves and spectra, based on our model for SNIa γ-ray emission and transfer. We show that the supernova signal emerges as distinct from the GBM background within days after the explosion in the SN2014J shell model. Therefore, if a Galactic SNIa were to explode, there are two possibilities of confirming and sounding the alert: 1) Swift/BAT discovers the SNIa first and localizes it within arcminutes; 2) Fermi/GBM finds the SNIa first and localizes it to within ~1 degree, using the Earth occultation technique, followed up by BAT to localize it within arcminutes. After the alert of either BAT or GBM, Swift localizes it to take spectra in optical, UV, soft and hard X-rays simultaneously with both XRT and UVOT instruments.

  2. Fermi Large Area Telescope as a Galactic Supernovae Axionscope

    DOE PAGES

    Meyer, M.; Giannotti, M.; Mirizzi, A.; ...

    2017-01-06

    In a Galactic core-collapse supernova (SN), axionlike particles (ALPs) could be emitted via the Primakoff process and eventually convert into γ rays in the magnetic field of the Milky Way. From a data-driven sensitivity estimate, we find that, for a SN exploding in our Galaxy, the Fermi Large Area Telescope (LAT) would be able to explore the photon-ALP coupling down to g aγ ≃ 2 × 10 -13 GeV -1 for an ALP mass m a ≲ 10 -9 eV. Also, these values are out of reach of next generation laboratory experiments. In this event, the Fermi LAT would probemore » large regions of the ALP parameter space invoked to explain the anomalous transparency of the Universe to γ rays, stellar cooling anomalies, and cold dark matter. Lastly, if no γ-ray emission were to be detected, Fermi-LAT observations would improve current bounds derived from SN 1987A by more than 1 order of magnitude.« less

  3. Galactic-cosmic-ray-produced 3He in a ferromanganese crust: any supernova 60Fe excess on earth?

    PubMed

    Basu, S; Stuart, F M; Schnabel, C; Klemm, V

    2007-04-06

    An excess of 60Fe in 2.4-3.2 x 10(6) year old ferromanganese crust (237 KD) from the deep Pacific Ocean has been considered as evidence for the delivery of debris from a nearby supernova explosion to Earth. Extremely high ;{3}He/;{4}He (up to 6.12 x 10(-3)) and 3He concentrations (up to 8 x 10(9) atoms/g) measured in 237 KD cannot be supernova-derived. The helium is produced by galactic cosmic rays (GCR) and delivered in micrometeorites that have survived atmospheric entry to be trapped by the crust. 60Fe is produced by GCR reactions on Ni in extraterrestrial material. The maximum (3)He/(60)Fe of 237 KD (80-850) is comparable to the GCR (3)He/(60)Fe production ratio (400-500) predicted for Ni-bearing minerals in iron meteorites. The excess 60Fe can be plausibly explained by the presence of micrometeorites trapped by the crust, rather than injection from a supernova source.

  4. G29.7-0.3: another supernova remnant with an identity crisis

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Helfand, D. J.; Szymkowiak, A. E.

    1983-01-01

    New radio and X-ray observations of the galactic supernova remnant G29.7-0.3 show that it is composed of two spectrally distinct components: a steep-spectrum, incomplete shell 3 arcmin in extent enclosing a flat-spectrum, X-ray emitting region 30 arcsec across. Thus, G29.7-0.3 joins the ranks of supernova remnants which exhibit a combination of Crab-like and shell remnant attributes. The Crab-like core has the highest ratio of X-ray radio luminosity of all the Crab-like remnants observed to date, suggesting that it is an extremely young object.

  5. Kinematics of the Galactic Supernova Remnant G109.1-1.0 (CTB 109)

    NASA Astrophysics Data System (ADS)

    Sánchez-Cruces, M.; Rosado, M.; Fuentes-Carrera, I.; Ambrocio-Cruz, P.

    2018-01-01

    We present direct images in the H α and [S II] λλ6717,6731 Å lines of the Galactic supernova remnant (SNR) G109.1-1.0 (CTB 109). We confirm that the filaments detected are the optical counterpart of the X-ray and radio SNR due to their high [S II]/H α line ratios. We study for the first time the kinematics of the optical counterpart of SNR CTB 109 using the Universidad Nacional Autónoma de México scanning Fabry-Perot interferometer PUMA. We estimate a systemic velocity of VLSR = -50 ± 6 km s-1 for this remnant and an expansion velocity of Vexp = 230 ± 5 km s-1. From this velocity and taking into account previous studies of the kinematics of objects at that Galactic longitude, we derive a distance to SNR CTB 109 of 3.1 ± 0.2 kpc, locating it in the Perseus arm. Using the [S II] λ6717/[S II] λ6731 line ratio, we find an electronic density value around ne = 580 cm-3. Considering that this remnant is evolving in a low-density medium with higher-density cloudlets responsible for the optical emission, we determine the age and energy deposited in the ISM by the supernova explosion (E0) in both the Sedov-Taylor phase and the radiative phase. For both cases, the age is thousands of years and E0 is rather typical of SNRs containing simple pulsars, so that the energy released to the ISM cannot be used to distinguish between SNRs hosting typical pulsars from those hosting powerful magnetars, like CTB 109.

  6. Is the Eagle Nebula powered by a hidden supernova remnant ?

    NASA Astrophysics Data System (ADS)

    Boulanger, Francois

    2008-10-01

    Spitzer observations of the Eagle nebula (M16) reveal the presence of a large (8 pc diameter) shell of dust heated to anomalously high temperatures. Modeling of dust excitation shows that the shell emission cannot be powered by the cluster UV radiation but that it can be accounted for by collisionally heated dust in a young (a few 1000 yrs) supernova remnant. We have re-analyzed deep Chandra observations that show diffuse emission consistent with this hypothesis, but also with galactic ridge emission. We propose a 50 ksec XMM observation to probe the spatial extent of the diffuse X-ray emission beyond the Spitzer shell. Absence of emission outside of this shell will strongly support the supernova remnant interpretation

  7. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  8. Simulating Supernovae Driven Outflows in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jaimee-Ian

    2018-01-01

    Galactic outflows, or winds, prove to be a necessary input for galactic simulations to produce results comparable to observation, for it solves issues caused by what previous literature dubbed the “angular momentum catastrophe.” While it is known that the nature of outflows depends on the nature of the Interstellar Medium (ISM), the mechanisms behind outflows are still not completely understood. We investigate the driving force behind galactic outflows and the factors that influence their behavior, hypothesizing that supernovae within the galaxy drive these winds. We study isolated, high-resolution, smooth particle hydrodynamic simulations, focusing specifically on dwarf galaxies due to their shallow potential wells, which allow for more significant outflows. We find that outflows follow star formation (and associated supernovae) suggesting the causal relationship between the two. Furthermore, simulations with higher diffusivity differ little in star formation rate, but show significantly lower outflow rates, suggesting that environmental factors that have little effect on regulating star formation can greatly influence outflows, and so efficient outflows can be driven by a constant rate of supernovae, depending on ISM behavior. We are currently analyzing disk morphology and ambient density in order to comprehend the effect of supernovae on the immediate interstellar gas. By attaining greater understanding of the origin of galactic outflows, we will be able to not only improve the accuracy of simulations, we will also be able to gain greater insight into galactic formation and evolution, as outflows and resultant inflows may be vital to the regulation of galaxies throughout their lifetimes.

  9. Nucleosynthesis in Supernovae

    NASA Astrophysics Data System (ADS)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  10. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less

  11. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  12. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE PAGES

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...

    2018-04-19

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  13. HD271791: dynamical versus binary-supernova ejection scenario

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  14. A search for new supernova remnant shells in the Galactic plane with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Bamba, A.; Fukui, Y.; Sano, H.; Yoshiike, S.

    2018-04-01

    A search for new supernova remnants (SNRs) has been conducted using TeV γ-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912+101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.

  15. Effect of Supernovae on the Local Interstellar Material

    NASA Astrophysics Data System (ADS)

    Frisch, Priscilla; Dwarkadas, Vikram V.

    A range of astronomical data indicates that ancient supernovae created the galactic environment of the Sun and sculpted the physical properties of the interstellar medium near the heliosphere. In this paper, we review the characteristics of the local interstellar medium that have been affected by supernovae. The kinematics, magnetic field, elemental abundances, and configuration of the nearest interstellar material support the view that the Sun is at the edge of the Loop I superbubble, which has merged into the low-density Local Bubble. The energy source for the higher temperature X-ray-emitting plasma pervading the Local Bubble is uncertain. Winds from massive stars and nearby supernovae, perhaps from the Sco-Cen association, may have contributed radioisotopes found in the geologic record and galactic cosmic ray population. Nested supernova shells in the Orion and Sco-Cen regions suggest spatially distinct sites of episodic star formation. The heliosphere properties vary with the pressure of the surrounding interstellar cloud. A nearby supernova would modify this pressure equilibrium and thereby severely disrupt the heliosphere as well as the local interstellar medium.

  16. Star formation inside a galactic outflow.

    PubMed

    Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E

    2017-04-13

    Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.

  17. A Systematic Survey for Broadened CO Emission toward Galactic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Charles D.; Bieging, John H.; Rieke, George H.

    2016-01-01

    We present molecular spectroscopy toward 50 Galactic supernova remnants (SNRs) taken at millimeter wavelengths in 12CO J = 2 - 1. These observations are part of a systematic survey for broad molecular line (BML) regions indicative of interactions with molecular clouds (MCs). We detected BML regions toward 19 SNRs, including 9 newly identified BML regions associated with SNRs (G08.3-0.0, G09.9-0.8, G11.2-0.3, G12.2+0.3, G18.6-0.2, G23.6+0.3, 4C-04.71, G29.6+0.1, and G32.4+0.1). The remaining 10 SNRs with BML regions confirm previous evidence for MC interaction in most cases (G16.7+0.1, Kes 75, 3C 391, Kes 79, 3C 396, 3C 397, W49B, Cas A, and IC 443), although we confirm that the BML region toward HB 3 is associated with the W3(OH) H II region, not the SNR. Based on the systemic velocity of each MC, molecular line diagnostics, and cloud morphology, we test whether these detections represent SNR-MC interactions. One of the targets (G54.1+0.3) had previous indications of a BML region, but we did not detect broadened emission toward it. Although broadened 12CO J = 2 - 1 line emission should be detectable toward virtually all SNR-MC interactions, we find relatively few examples; therefore, the number of interactions is low. This result favors mechanisms other than supernova feedback as the basic trigger for star formation. In addition, we find no significant association between TeV gamma-ray sources and MC interactions, contrary to predictions that SNR-MC interfaces are the primary venues for cosmic ray acceleration.

  18. Amplification and polarization of supernovae by gravitational lensing

    NASA Technical Reports Server (NTRS)

    Schneider, P.; Wagoner, Robert V.

    1987-01-01

    The gravitational lensing of supernovae by individual masses which could comprise the dark matter is analyzed. Detailed predictions of the amplification and polarization are presented, including effects of a galactic environment. Their time dependence is produced by the expansion of the supernovae beam within the lens. The fraction of supernovae which might thus be identified as being lensed in surveys at proposed limiting magnitudes is estimated. These two effects could provide the only known unique signature of microlensing.

  19. Investigating the Origin of the Supernova Remnant W49B

    NASA Astrophysics Data System (ADS)

    Crum, Ryan Matthew; Frank, Kari A.; Dwarkadas, Vikram; Burrows, David N.

    2018-01-01

    W49B is a Galactic supernova remnant whose origin is still debated. Is it the remains of an unusual asymmetric Type 1a supernova or of a jet-driven core collapse supernova? Using the X-ray analysis method, Smoothed Particle Inference (SPI), we dig deeper into understanding the complex properties of SNR W49B. We do this by characterizing the temperatures and abundance ratios throughout the remnant. We will compare the results with a wide variety of supernova nucleosynthesis models in order to constrain the mechanism behind this unusual supernova remnant.

  20. Calculating Galactic Distances Through Supernova Light Curve Analysis (Abstract)

    NASA Astrophysics Data System (ADS)

    Glanzer, J.

    2018-06-01

    (Abstract only) The purpose of this project is to experimentally determine the distance to the galaxy M101 by using data that were taken on the type Ia supernova SN 2011fe at the Paul P. Feder Observatory. Type Ia supernovae are useful for determining distances in astronomy because they all have roughly the same luminosity at the peak of their outburst. Comparing the apparent magnitude to the absolute magnitude allows a measurement of the distance. The absolute magnitude is estimated in two ways: using an empirical relationship from the literature between the rate of decline and the absolute magnitude, and using sncosmo, a PYTHON package used for supernova light curve analysis that fits model light curves to the photometric data.

  1. X-Ray Ejecta Kinematics of the Galactic Core-Collapse Supernova Remnant G292.0+1.8

    NASA Astrophysics Data System (ADS)

    Bhalerao, Jayant; Park, Sangwook; Dewey, Daniel; Hughes, John P.; Mori, Koji; Lee, Jae-Joon

    2015-02-01

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of -2300 lsim vr lsim 1400 km s-1. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ~90'' (corresponding to ~3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ~4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 1051 erg, we estimate the total ejecta mass to be lsim8 M ⊙, and we propose an upper limit of lsim35 M ⊙ on the progenitor's mass.

  2. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    NASA Astrophysics Data System (ADS)

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages < 6 Myr are ideal tools for mapping the current chemical abundances in the Galactic disk for several reasons. First of all, the locations of these clusters can be known through spectrophotometric distances. Secondly, their young ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  3. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centeredmore » SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.« less

  4. Supernovae-generated high-velocity compact clouds

    NASA Astrophysics Data System (ADS)

    Yalinewich, A.; Beniamini, P.

    2018-05-01

    Context. A previous study claimed the discovery of an intermediate-mass black hole (IMBH). This hypothetical black hole was invoked in order to explain the high-velocity dispersion in one of several dense molecular clouds near the Galactic center. The same study considered the possibility that this cloud was due to a supernova explosion, but disqualified this scenario because no X-rays were detected. Aims: We here check whether a supernova explosion could have produced that cloud, and whether this explanation is more likely than an IMBH. More specifically, we wish to determine whether a supernova inside a dense molecular cloud would emit in the X-rays. Methods: We have approached this problem from two different directions. First, we performed an analytic calculation to determine the cooling rate by thermal bremsstrahlung and compared this time to the lifetime of the cloud. Second, we estimated the creation rate of these dense clouds in the central molecular zone (CMZ) region near the Galactic center, where they were observed. Based on this rate, we can place lower bounds on the total mass of IMBHs and clouds and compare this to the masses of the components of the CMZ. Results: We find that the cooling time of the supernova remnant inside a molecular cloud is shorter than its dynamical time. This means that the temperature in such a remnant would be much lower than that of a typical supernova remnant. At such a low temperature, the remnant is not expected to emit in the X-rays. We also find that to explain the rate at which such dense clouds are created requires fine-tuning the number of IMBHs. Conclusions: We find the supernova model to be a more likely explanation for the formation of high-velocity compact clouds than an IMBH.

  5. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  6. Supernova VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  7. Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)

    1999-01-01

    Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.

  8. Cosmic rays from supernovae and comments on the Vela X pre-supernova

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1971-01-01

    A possible history of the production of elements in the galaxy is presented, based on assumptions about the end points of stellar evolution and of the general evolution of the galaxy. A wide range of quantities involving the relative abundances of nucleosynthesis products observed in the solar system, and various galactic quantities such as the current rate of supernova production and the present gas content of the galaxy, were considered. These assumptions were utilized in a computer program in which the gas content of the galaxy is gradually turned into stars. The stars are continually enriched in the products of nucleosynthesis as they approach the ends of their evolutionary lifetimes. It is suggested that supernova explosions are associated with the mass range of about 4-8 solar masses. Possible theories on the type of stellar explosive event represented by the Vela supernova are discussed.

  9. Population study of Galactic supernova remnants at very high γ-ray energies with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-04-01

    Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 1015 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm-3 and electron-to-proton energy fractions above 10 TeV to ɛep ≤ 5 × 10-3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.

  10. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  11. Neutrino astronomy with supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  12. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  13. High-energy particle acceleration in the shell of a supernova remnant.

    PubMed

    Aharonian, F A; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Bolz, O; Boisson, C; Borgmeier, C; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chitnis, V R; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Guy, J; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemoine, M; Lemière, A; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pohl, M; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rivoal, M; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Théoret, C G; Tluczykont, M; Van Der Walt, D J; Vasileiadis, G; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2004-11-04

    A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy gamma-rays of TeV energies (1 TeV = 10(12) eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.

  14. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  15. Very high-resolution observations of compact radio sources in the directions of supernova remnants

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Shaffer, D. B.

    1981-01-01

    Compact radio sources whose positions lie within the outlines of supernova remnants may be the stellar remnants of supernova explosions and, if they are related to the supernova remnants, may be used to explore the nature of any morphological connection between the Galactic and extragalactic radio sources. Three such compact sources, G 127.11+0.54, CL 4, and 2051+433, have been observed at 10.65 GHz with an array of very long baseline interferometers having elements in the USA and West Germany. The radio source 2051+433 was also observed briefly at 5.01 GHz. The measured size of CL 4 at 10.65 GHz is about 0.0005 arcsec and seems to be dominated by the effects of interstellar scattering. No fringes were seen in 2051+433, and results indicate there is no compact component of 2051+433 smaller than 0.001 arcsec radiating at 10.65 GHz above a level of about 50 mJy. The possibility is presented that G 127.11+0.54 is a Galactic object. It is found to consist of two components separated by about 0.002 arcsec and oriented perpendicular to both the radio bridge of the supernova remnant G 127.1+0.5 and the underlying optical image. G 127.11+0.54, if Galactic, lies at the extreme low-luminosity end of an apparent continuum of Galactic and extragalactic compact radio source luminosities.

  16. Are There Hidden Supernovae?

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Harker, David; Dunham, E.; Rank, David; Temi, Pasquale

    1997-01-01

    Ames Research Center and UCSC have been working on the development of a Mid IR Camera for the KAO in order to search for extra galactic supernovae. The development of the camera and its associated data reduction software have been successfully completed. Spectral Imaging of the Orion Bar at 6.2 and 7.8 microns demonstrates the derotation and data reduction software which was developed.

  17. X-ray studies of supernova remnants: A different view of supernova explosions

    PubMed Central

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206

  18. Variability-selected active galactic nuclei from supernova search in the Chandra deep field south

    NASA Astrophysics Data System (ADS)

    Trevese, D.; Boutsia, K.; Vagnetti, F.; Cappellaro, E.; Puccetti, S.

    2008-09-01

    Context: Variability is a property shared by virtually all active galactic nuclei (AGNs), and was adopted as a criterion for their selection using data from multi epoch surveys. Low Luminosity AGNs (LLAGNs) are contaminated by the light of their host galaxies, and cannot therefore be detected by the usual colour techniques. For this reason, their evolution in cosmic time is poorly known. Consistency with the evolution derived from X-ray detected samples has not been clearly established so far, also because the low luminosity population consists of a mixture of different object types. LLAGNs can be detected by the nuclear optical variability of extended objects. Aims: Several variability surveys have been, or are being, conducted for the detection of supernovae (SNe). We propose to re-analyse these SNe data using a variability criterion optimised for AGN detection, to select a new AGN sample and study its properties. Methods: We analysed images acquired with the wide field imager at the 2.2 m ESO/MPI telescope, in the framework of the STRESS supernova survey. We selected the AXAF field centred on the Chandra Deep Field South where, besides the deep X-ray survey, various optical data exist, originating in the EIS and COMBO-17 photometric surveys and the spectroscopic database of GOODS. Results: We obtained a catalogue of 132 variable AGN candidates. Several of the candidates are X-ray sources. We compare our results with an HST variability study of X-ray and IR detected AGNs, finding consistent results. The relatively high fraction of confirmed AGNs in our sample (60%) allowed us to extract a list of reliable AGN candidates for spectroscopic follow-up observations. Table [see full text] is only available in electronic form at http://www.aanda.org

  19. Population study of Galactic supernova remnants at very high γ -ray energies with H.E.S.S.

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2018-04-01

    Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 10 15 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study inmore » VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm -3 and electron-to-proton energy fractions above 10 TeV to ϵ ep ≤ 5 × 10 -3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.« less

  20. Population study of Galactic supernova remnants at very high γ -ray energies with H.E.S.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 10 15 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study inmore » VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm -3 and electron-to-proton energy fractions above 10 TeV to ϵ ep ≤ 5 × 10 -3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.« less

  1. A galactic chimney in the Perseus arm of the Milky Way.

    PubMed

    Normandeau, M; Taylor, A R; Dewdney, P E

    1996-04-25

    Galaxies are surrounded by large haloes of hot gas which must be replenished as the gas cools. This has led to the concept of galactic 'chimneys'--cavities in the interstellar medium, created by multiple supernova explosions, that can act as conduits for the efficient transport of hot gas from a galaxy's disk to its halo. Here we present a high-resolution map of atomic hydrogen in the Perseus arm of our galaxy, which shows clear evidence for the existence of such a chimney. This chimney appears to have been formed by the energetic winds from a cluster of young massive stars, and may currently have reached the stage of bowing out into the halo.

  2. The role of fission in Supernovae r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Otsuki, Kaori; Kajino, Toshitaka; Sumiyoshi, Kosuke; Ohta, Masahisa; Mathews, J. Grant

    2001-10-01

    The r-process elements are presumed to be produced in an explosive environment with short timescale at high entropy, like type-II supernova explosion. Intensive flux of free neutrons are absorbed successively by seed elements to form the nuclear reaction flow on extremely unstable nuclei on the neutron rich side. It would probe our knowledge of the properties of nulei far from the beta stability. It is also important in astronomy since this process forms the long-lived nuclear chronometers Thorium and Uranium that are utilised dating the age of the Milky Way. In our previous work, we showed that the succesful r-process nucleosynthesis can occure above young, hot protoneutron star. Although these long-lived heavy elements are produced comparable amounts to observation in several supernova models which we constructed, fission and alpha-decay were not included there. The fission products could play an important role in setting actinide yields which are used as cosmochronometers. In this talk, we report an infulence of fission on actinide yields and on estimate of Galactic age as well. We also discuss fission yields at lighter elements (Z ~ 50).

  3. Very old and very young compact objects: X-ray studies of galactic globular clusters and recent core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David Aaron

    2003-09-01

    This thesis comprises the results of two distinct areas of research, namely, X-ray studies of Galactic globular clusters and X-ray studies of recent core collapse supernovae. My analyses of the Chandra X-ray Observatory observations of the globular clusters NGC 6752 and NGC 6440 revealed as many low- luminosity X-ray sources as was in the entire census of globular cluster sources with the previous best X-ray imaging instrument, Röntgensatellit. In the observation of NGC 6752, I detect 6 X-ray sources within the 10''.5 core radius and 13 more within the 115' half-mass radius down to a limiting luminosity of Lx ≈ 1030 ergs s -1 for cluster sources. Based on a reanalysis of archival data from the Hubble Space Telescope and the Australia Telescope Compact Array, I make 12 optical identifications and one radio identification. Based on X- ray and optical properties of the identifications, I find 10 likely cataclysmic variables (CVs), 1 3 likely RS CVn or BY Dra systems, and 1 or 2 possible background objects. Of the 7 sources for which no optical identifications were made, one was detected in the archival radio data, and another was found to be a millisecond pulsar. Of the remaining sources, I expect that ˜2 4 are background objects and that the rest are either CVs or millisecond pulsars whose radio emission has not been detected. These and other Chandra results on globular clusters indicate that the dozens of CVs per cluster expected by theoretical arguments are being found. Based upon X-ray luminosities and colors, I conclude that there are 4 5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. I compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters. Observations of the Type II-P (plateau) Supernova (SN) 1999em and Type IIn (narrow emission line) SN 1998S have enabled estimation of the profile of the SN ejecta, the structure of the

  4. Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1999-04-01

    One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.

  5. Identification of the central compact object in the young supernova remnant 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.

    2018-04-01

    Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

  6. Identification of the central compact object in the young supernova remnant 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.

    2018-06-01

    Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

  7. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  8. Columbia/Einstein observations of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Long, K. S.

    1979-01-01

    The imaging observations of galactic clusters are presented. These fall into three categories: pre-main-sequence stars in the Orion nebulae, isolated-main-and-post main-sequence stars, and supernova remnants SNR. In addition to SNR, approximately 30 sources were detected.

  9. Impact of Distance Determinations on Galactic Structure. I. Young and Intermediate-Age Tracers

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki; Bono, Giuseppe; Chen, Xiaodian; de Grijs, Richard; Inno, Laura; Nishiyama, Shogo

    2018-06-01

    Here we discuss impacts of distance determinations on the Galactic disk traced by relatively young objects. The Galactic disk, ˜40 kpc in diameter, is a cross-road of studies on the methods of measuring distances, interstellar extinction, evolution of galaxies, and other subjects of interest in astronomy. A proper treatment of interstellar extinction is, for example, crucial for estimating distances to stars in the disk outside the small range of the solar neighborhood. We'll review the current status of relevant studies and discuss some new approaches to the extinction law. When the extinction law is reasonably constrained, distance indicators found in today and future surveys are telling us stellar distribution and more throughout the Galactic disk. Among several useful distance indicators, the focus of this review is Cepheids and open clusters (especially contact binaries in clusters). These tracers are particularly useful for addressing the metallicity gradient of the Galactic disk, an important feature for which comparison between observations and theoretical models can reveal the evolution of the disk.

  10. Near-Infrared [Fe II] and H2 Study of the Galactic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon; Jaffe, Daniel T.; Burton, Michael G.; Ryder, Stuart D.

    2018-01-01

    We have searched for near-infrared (NIR) [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE / UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° < l < 65° -1.3° < b < +1.3°), and a total of 79 SNRs are falling in the survey area. We have found 19 [Fe II]- and 19 H2-emitting SNRs, giving a detection rate of 24%. Eleven SNRs show both emission features. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. The brightest SNR in the both emission is W49B, contributing ~70% of the total [Fe II] luminosity of the detected SNRs. The total [Fe II] luminosity, however, is considerably less than what we would expect from the SN rate of our Galaxy.Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. We carried out high resolution (R~40,000) NIR H- and K-band spectroscopy of the five SNRs showing the [Fe II]-H2 reversal (G11.2-0.3, KES 73, W44, 3C 396, W49B) using IGRINS (Immersion GRating INfrared Spectrograph). Various ro-vibrational H2 lines have been detected, which are used to derive the kinematic distances to the SNRs and to investigate the origin of the H2 emission. The detected H2 lines show broad line width (> 10 km s-1) and line flux ratios of thermal excitation. We discuss the origin of the extended H2 emission features beyond the the [Fe II] emission boundary.

  11. Role of Turbulent Damping in Cosmic Ray Galactic Winds

    NASA Astrophysics Data System (ADS)

    Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen

    2018-06-01

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).

  12. Measurements of Amplified Magnetic Field and Cosmic-Ray Content in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yasunobu

    Supernova explosions drive collisionless shocks in the interstellar (or circumstellar) medium. Such shocks are mediated by plasma waves, resulting in the shock transition on a scale much smaller than the collisional mean free path. Galactic cosmic rays are widely considered to be accelerated at collisionless shocks in supernova remnants via diffusive shock acceleration. New high-energy data coming from the X-ray and gamma-ray satellites and from imaging air Cerenkov telescopes are making possible to study physics of particle acceleration at supernova shocks, such as magnetic field amplification which is considered to be realized as part of shock acceleration process and the energy content of cosmic-ray particles in the supernova shell. In particular, GeV observations with the Fermi Gamma-ray Space Telescope offer the prime means to establish the origin of the gamma-rays, and to measure the cosmic-ray content. Moreover they provide a new opportunity to learn about how particle acceleration responds to environ-mental effects. I will present recent observational results from the Chandra and Suzaku X-ray satellites and new results from the LAT onboard Fermi, and discuss their implications to the origin of galactic cosmic rays.

  13. Gamma-ray spectroscopy: The diffuse galactic glow

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.

    1991-01-01

    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.

  14. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    NASA Astrophysics Data System (ADS)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  15. IceCube sensitivity for low-energy neutrinos from nearby supernovae

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K. H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jakobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richard, A. S.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2011-11-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of ~1 km3 in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of \\barνe's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  16. Modeling Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  17. Galactic Winds and the Role Played by Massive Stars

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  18. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, V.; Chirac, T.; Lasserre, T., E-mail: vincent.fischer@cea.fr, E-mail: tchirac@gmail.fr, E-mail: thierry.lasserre@cea.fr

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generationmore » of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.« less

  19. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fischer, V.; Chirac, T.; Lasserre, T.; Volpe, C.; Cribier, M.; Durero, M.; Gaffiot, J.; Houdy, T.; Letourneau, A.; Mention, G.; Pequignot, M.; Sibille, V.; Vivier, M.

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generation of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.

  20. Cosmic Ray Acceleration from Multiple Galactic Wind Shocks

    NASA Astrophysics Data System (ADS)

    Cotter, Cory; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  1. A local recent supernova - Evidence from X-rays, Al-26 radioactivity and cosmic rays

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.; Cox, Donald P.; Michel, Curtis F.

    1986-01-01

    Possible ways in which cosmic rays could have been contaminated by a local recent supernova are discussed, and ways in which this contamination may be affecting interpretation of Al-26 gamma radiation and locally observed cosmic rays as samples of the average Galactic distribution are considered. Mass spectra of cosmic rays are examined to see whether there is enrichment by a population arising from supernova preacceleration. The reinterpretation of the anomalous component in terms of a local supernova model is addressed.

  2. Impact of Cosmic-Ray Transport on Galactic Winds

    NASA Astrophysics Data System (ADS)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  3. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  4. What can be learned from a future supernova neutrino detection?

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shunsaku; Kneller, James P.

    2018-04-01

    This year marks the 30th anniversary of the only supernova from which we have detected neutrinos—SN 1987A. The 20 or so neutrinos that were detected were mined to great depth in order to determine the events that occurred in the explosion and to place limits upon all manner of neutrino properties. Since 1987 the scale and sensitivity of the detectors capable of identifying neutrinos from a Galactic supernova have grown considerably so that current generation detectors are capable of detecting of order 10 000 neutrinos for a supernova at the Galactic Center. Next generation detectors will increase that yield by another order of magnitude. Simultaneous with the growth of neutrino detection capability, our understanding of how massive stars explode and how the neutrino interacts with hot and dense matter has also increased by a tremendous degree. The neutrino signal will contain much information on all manner of physics of interest to a wide community. In this review we describe the expected features of the neutrino signal, the detectors which will detect it, and the signatures one might try to look for in order to get at this physics.

  5. Mapping the Outer Edge of the Young Stellar Cluster in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Støstad, M.; Do, T.; Murray, N.; Lu, J. R.; Yelda, S.; Ghez, A.

    2015-08-01

    We present new near-infrared spectroscopic observations of the outer edges of the young stellar cluster around the supermassive black hole at the Galactic center. The observations show a break in the surface density profile of young stars at ˜13″ (0.52 pc). These observations spectroscopically confirm previous suggestions of a break based on photometry. Using Gemini North's Near-Infrared Integral Field Spectrometer, we are able to detect and separate early- and late-type stars with a 75% completeness at {K}{{s}}=15.5. We sample a region with radii between 7″ and 23″ (0.28-0.92 pc) from Sgr A* and present new spectral classifications of 144 stars brighter than {K}{{s}}=15.5, where 140 stars are late-type (\\gt 1 Gyr) and only four stars are early-type (young, 4-6 Myr). A broken power-law fit of the early-type surface density matches well with our data and previously published values. The projected surface density of late-type stars is also measured and found to be consistent with previous results. We find that the observed early-type surface-density profile is inconsistent with the theory of young stars originating from a tightly bound infalling cluster, as no significant trail of young stars is found at radii above 13″. We also note that either a simple disk instability criterion or a cloud-cloud collision could explain the location of the outer edge, though we lack information to make conclusive remarks on either alternative. If this break in surface density represents an edge to the young stellar cluster, it would set an important scale for the most recent episode of star formation at the Galactic center.

  6. Supernova kicks and dynamics of compact remnants in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Bortolas, Elisa; Mapelli, Michela; Spera, Mario

    2017-08-01

    The Galactic Centre (GC) is a unique place to study the extreme dynamical processes occurring near a supermassive black hole (SMBH). Here, we investigate the role of supernova (SN) explosions occurring in massive binary systems lying in a disc-like structure within the innermost parsec. We use a regularized algorithm to simulate 3 × 104 isolated three-body systems composed of a stellar binary orbiting the SMBH. We start the integration when the primary member undergoes an SN explosion and analyse the impact of SN kicks on the orbits of stars and compact remnants. We find that SN explosions scatter the lighter stars in the pair on completely different orbits, with higher eccentricity and inclination. In contrast, stellar-mass black holes (BHs) and massive stars retain memory of the orbit of their progenitor star. Our results suggest that SN kicks are not sufficient to eject BHs from the GC. We thus predict that all BHs that form in situ in the central parsec of our Galaxy remain in the GC, building up a cluster of dark remnants. In addition, the change of neutron star (NS) orbits induced by SNe may partially account for the observed dearth of NSs in the GC. About 40 per cent of remnants stay bound to the stellar companion after the kick; we expect up to 70 per cent of them might become X-ray binaries through Roche lobe filling. Finally, the eccentricity of some light stars becomes >0.7 as an effect of the SN kick, producing orbits similar to those of the G1 and G2 dusty objects.

  7. MASTER OT J014638.27+041324.4 is a Young Type IIP Supernova

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Kelly, P. L.; Clubb, K. I.; Filippenko, A. V.

    2013-12-01

    We report that a CCD spectrum (range 350-1000 nm) of MASTER OT J014638.27+041324.4 (Shurpakov et al., ATel #5630) was obtained on Dec 6.5 UT with the Shane 3-m reflector (+Kast spectrograph) at Lick Observatory. The spectrum shows a blue continuum and weak, broad hydrogen Balmer lines having P-Cyg profiles, indicating that the object is a young Type IIP supernova. Weak He I 587.6 nm is also present.

  8. Observations of the Non-Thermal X-ray Emission from the Galactic Supernova Remnant G347.3-0.5

    NASA Technical Reports Server (NTRS)

    Pannuti, Thomas G.; Allen, Glenn E.

    2002-01-01

    G347.3-0.5 (ALEX J1713.7-3946) is a member of the new class of shell-type Galactic supernova remnants (SNRs) that feature non-thermal components to their X-ray emission. We have analyzed the X-ray spectrum of this SNR over a broad energy range (0.5 to 30 key) using archived data from observations made with two satellites, the R6ntgensatellit (ROSA I) and the Advanced Satellite for Cosmology and Astrophysics (ASCA), along with data from our own observations made with the Rossi X-ray Timing Explorer (RXTE) Using a combination of the models EQUIL and SRCUT to fit thermal and non-thermal emission, respectively, from this SNR, we find evidence for a modest thermal component to G347.30.5's diffuse emission with a corresponding energy of kT approx. = 1.4 key. We also obtain an estimate of 70 Texas for the maximum energy of the cosmic-ray electrons that, have been accelerated by this SNR.

  9. Oscillation effects and time variation of the supernova neutrino signal

    NASA Astrophysics Data System (ADS)

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-01

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  10. Fires of Galactic Youth Artist Animation

    NASA Image and Video Library

    2004-12-22

    This artist's animation shows a typical young galaxy, teeming with hot, newborn stars and exploding supernovas. The supernovas are seen as white flashes of light. NASA's Galaxy Evolution Explorer spotted three-dozen young galaxies like the one shown here in our corner of the universe. It was able to see them with the help of its highly sensitive ultraviolet detectors. Because newborn stars radiate ultraviolet light, young galaxies light up brilliantly when viewed in ultraviolet wavelengths. The findings came as a surprise, because astronomers had thought that the universe's "birth-rate" had declined, and that massive galaxies were no longer forming. http://photojournal.jpl.nasa.gov/catalog/PIA07144

  11. Investigating the X-ray and Gamma-ray Properties of the Galactic Supernova Remnants Kes 69, 3C 396, 3C 400.2

    NASA Astrophysics Data System (ADS)

    Ergin, Tülün; Sezer, Aytap; Yamazaki, Ryo

    2016-06-01

    Kes 69, 3C 396, and 3C 400.2 are mixed-morphology (MM) Galactic supernova remnants (SNRs), where Kes 69 and 3C 396 are interacting with molecular clouds (MCs). Previous X-ray studies showed that the emission from these SNRs is thermal. It has been suggested that MM SNRs interacting with MCs are potential candidates for recombining plasma (RP) in X-rays and hadronic gamma-ray emission. Recently, Chandra observations revealed signs of RP in 3C 400.2. Our preliminary analyses show that the X-ray emission of NW and SE region of 3C 400.2 arises from recombining plasma. We detected GeV gamma-ray emission from Kes 69 and 3C 396 above 5σ

  12. Discovery of X-Ray-Emitting O-Ne-Mg-Rich Ejecta in the Galactic Supernova Remnant Puppis A

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Hwang, Una; Petre, Robert; Park, Sangwook; Mori, Koji; Tsunemi, Hiroshi

    2010-01-01

    We report on the discovery of X-ray-emitting O-Ne-Mg-rich ejecta in the middle-aged Galactic O-rich supernova remnant Puppis A with Chandra and XMM-Newton. We use line ratios to identify a low-ionization filament running parallel to the northeastern edge of the remnant that requires super-solar abundances, particularly for O, Ne, and Mg, which we interpret to be from O-Ne-Mg-rich ejecta. Abundance ratios of Ne/O, Mg/O, and Fe/O are measured to be [approx]2, [approx]2, and <0.3 times the solar values. Our spatially resolved spectral analysis from the northeastern rim to the western rim otherwise reveals sub-solar abundances consistent with those in the interstellar medium. The filament is coincident with several optically emitting O-rich knots with high velocities. If these are physically related, the filament would be a peculiar fragment of ejecta. On the other hand, the morphology of the filament suggests that it may trace ejecta heated by a shock reflected strongly off the dense ambient clouds near the northeastern rim.

  13. Abundances and Evolution of Lithium in the Galactic Halo and Disk

    NASA Astrophysics Data System (ADS)

    Ryan, Sean G.; Kajino, Toshitaka; Beers, Timothy C.; Suzuki, Takeru Ken; Romano, Donatella; Matteucci, Francesca; Rosolankova, Katarina

    2001-03-01

    We have measured the Li abundance of 18 stars with -2<~[Fe/H]<~-1 and 6000<~Teff<~6400 K, a parameter range that was poorly represented in previous studies. We examine the Galactic chemical evolution (GCE) of this element, combining these data with previous samples of turnoff stars over the full range of halo metallicities. We find that A(Li) increases from a level of ~2.10 at [Fe/H]=-3.5 to ~2.40 at [Fe/H]=-1.0, where A(Li)=log10(n(Li)/n(H))+12.00. We compare the observations with several GCE calculations, including existing one-zone models and a new model developed in the framework of inhomogeneous evolution of the Galactic halo. We show that Li evolved at a constant rate relative to iron throughout the halo and old disk epochs but that during the formation of young disk stars, the production of Li relative to iron increased significantly. These observations can be understood in the context of models in which postprimordial Li evolution during the halo and old disk epochs is dominated by Galactic cosmic-ray fusion and spallation reactions, with some contribution from the ν-process in supernovae. The onset of more efficient Li production (relative to iron) in the young disk coincides with the appearance of Li from novae and asymptotic giant branch (AGB) stars. The major challenge facing the models is to reconcile the mild evolution of Li during the halo and old disk phases with the more efficient production (relative to iron) at [Fe/H]>-0.5. We speculate that cool-bottom processing (production) of Li in low-mass stars may provide an important late-appearing source of Li, without attendant Fe production, that might explain the Li production in the young disk. Based on observations obtained with the University College London échelle spectrograph (UCLES) on the Anglo-Australian Telescope (AAT) and the Utrecht échelle spectrograph (UES) on the William Herschel Telescope (WHT).

  14. Measuring the Symmetry of Supernova Remnants in the Radio

    NASA Astrophysics Data System (ADS)

    Stafford, Jennifer; Lopez, Laura A.

    2017-01-01

    Nearly 300 supernova remnants (SNRs) are known in the MIlky Way galaxy, and they offer an important means to study the explosions and interactions of supernovae at sub-pc scales. In this poster, we present analysis of the morphology of Galactic SNRs at radio wavelengths. Specifically, we measure the symmetry of several tens of SNRs in 6- and 20-cm Very Large Array images using a multipole expansion technique, the power-ratio method. We explore how the SNRs' morphology changes as a function of their size and estimated dynamical ages, with the aim of probing how SNR shapes evolve with time.

  15. A high-resolution radio image of a young supernova

    NASA Technical Reports Server (NTRS)

    Bartel, N.; Rupen, M. P.; Shapiro, I. I.; Preston, R. A.; Rius, A.

    1991-01-01

    A VLBI radio images of the bright supernova 1986J, which occurred in the galaxy NGC891 at a distance of about 12 Mpc, is presented. No detailed image of any supernova or remnant has been obtained before so soon after the explosion. The image shows a shell of emission with jetlike protrusions. Analysis of the images should advance understanding of the dynamics of the expanding debris, the dissipation of energy into the surrounding circumstellar medium, and the evolution of the supernova into the remnant.

  16. Unraveling the Origin of Overionized Plasma in the Galactic Supernova Remnant W49B

    NASA Astrophysics Data System (ADS)

    Pearson, Sarah; Lopez, L. A.; Ramirez-Ruiz, E.; Castro, D.; Yamaguchi, H.; Slane, P. O.; Smith, R. K.

    2013-04-01

    In this presentation, I present maps of overionized plasma in the Galactic supernova remnant (SNR) W49B based on a recent 220 ks Chandra Advanced CCD Imaging Spectrometer observation. Overionized plasmas (those where ions are stripped of more electrons than they should be for a given electron temperature) have been found recently in several SNRs, and the physical origin of the rapid cooling necessary to produce them remains uncertain. To assess the cooling scenario responsible for overionization, we performed a spatially-resolved spectroscopic analysis of W49B, measuring the elec- tron temperature by modeling the bremsstrahlung continuum and comparing it to the temperature given by the flux ratio of He-like to H-like lines of sulfur, argon, and calcium. Using these results, we find that the west region of W49B is the most overionized, with a gradient of increasing overionization from East to West. As the ejecta expansion is impeded by molecular material in the east but not in the west, our overionization maps suggest the dominant cooling mechanism is adiabatic expansion of the hot plasma instead of thermal conduction. Furthermore, we find calcium has the greatest degree of overionization relative to argon and sulfur; this result arises because calcium has a longer recombination timescale. Thus, we caution that measurement of overionization is dependent on which elements one employs in their line ratio analysis.

  17. Design, characterization, and sensitivity of the supernova trigger system at Daya Bay

    NASA Astrophysics Data System (ADS)

    Wei, Hanyu; Lebanowski, Logan; Li, Fei; Wang, Zhe; Chen, Shaomin

    2016-02-01

    Providing an early warning of galactic supernova explosions from neutrino signals is important in studying supernova dynamics and neutrino physics. A dedicated supernova trigger system has been designed and installed in the data acquisition system at Daya Bay and integrated into the worldwide Supernova Early Warning System (SNEWS). Daya Bay's unique feature of eight identically-designed detectors deployed in three separate experimental halls makes the trigger system naturally robust against cosmogenic backgrounds, enabling a prompt analysis of online triggers and a tight control of the false-alert rate. The trigger system is estimated to be fully sensitive to 1987A-type supernova bursts throughout most of the Milky Way. The significant gain in sensitivity of the eight-detector configuration over a mass-equivalent single detector is also estimated. The experience of this online trigger system is applicable to future projects with spatially distributed detectors.

  18. MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ke-Jung; Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp

    2016-11-20

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input bymore » the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.« less

  19. ANTARES and KM3NeT programs for the supernova neutrino detection

    NASA Astrophysics Data System (ADS)

    Kulikovskiy, Vladimir

    2017-02-01

    The currently working ANTARES neutrino telescope has capabilities to detect neutrinos produced in astrophysical transient sources. Neutrino alerts are regularly generated to trigger multi-wavelength observatories. Potential sources include gamma-ray bursts, core-collapse supernovae, and flaring active galactic nuclei. In particular, the neutrino detection together with the multi-wavelength observations may reveal hidden jets in the supernova explosions. Supernovae remnants are currently the most promising acceleration sites of the cosmic rays in our Galaxy. The neutrino emission is expected during the cosmic ray interaction with the surrounding matter. The neutrino telescopes in the Northern hemisphere have excellent visibility to the most of the galactic supernovae remnants. Recent results on the search for point-sources with the ANTARES detector and the prospects for the future KM3NeT detector are presented. Although ANTARES and KM3NeT detectors are mainly designed for high energy neutrino detection, the MeV neutrino signal from the supernova can be identified as a simultaneous increase of the counting rate of the optical modules in the detector. The noise from the optical background due to 40K decay in the sea water and the bioluminescence can be significantly reduced by using nanosecond coincidences between the nearby placed photomultipliers. This technique has been tested with the ANTARES storeys, each one consisting of three 10-inch photomultipliers, and it is further optimized for the KM3NeT telescope where the directional optical modules containing 31 3-inch photomultipliers provide very promising expectations.

  20. Supernova neutrinos and explosive nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  1. A cloud/particle model of the interstellar medium - Galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Levinson, F. H.; Roberts, W. W., Jr.

    1981-01-01

    A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.

  2. Enhanced momentum feedback from clustered supernovae

    NASA Astrophysics Data System (ADS)

    Gentry, Eric S.; Krumholz, Mark R.; Dekel, Avishai; Madau, Piero

    2017-02-01

    Young stars typically form in star clusters, so the supernovae (SNe) they produce are clustered in space and time. This clustering of SNe may alter the momentum per SN deposited in the interstellar medium (ISM) by affecting the local ISM density, which in turn affects the cooling rate. We study the effect of multiple SNe using idealized 1D hydrodynamic simulations which explore a large parameter space of the number of SNe, and the background gas density and metallicity. The results are provided as a table and an analytic fitting formula. We find that for clusters with up to ˜100 SNe, the asymptotic momentum scales superlinearly with the number of SNe, resulting in a momentum per SN which can be an order of magnitude larger than for a single SN, with a maximum efficiency for clusters with 10-100 SNe. We argue that additional physical processes not included in our simulations - self-gravity, breakout from a galactic disc, and galactic shear - can slightly reduce the momentum enhancement from clustering, but the average momentum per SN still remains a factor of 4 larger than the isolated SN value when averaged over a realistic cluster mass function for a star-forming galaxy. We conclude with a discussion of the possible role of mixing between hot and cold gas, induced by multidimensional instabilities or pre-existing density variations, as a limiting factor in the build-up of momentum by clustered SNe, and suggest future numerical experiments to explore these effects.

  3. Asymmetric Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimerz J.; Gwynne, Peter; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Willett, Rebecca

    2017-01-01

    The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded approximately 1900 CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results of X-ray expansion measurements that illuminate the origin of the radio asymmetry. We confirm the mean expansion rate (2011-2015) of 0.58% per yr, but large spatial variations are present. Using the nonparametric 'Demons' method, we measure the velocity field throughout the entire SNR, finding that motions vary by a factor of 5, from 0.''09 to 0.''44 per yr. The slowest shocks are at the outer boundary of the bright northern radio rim, with velocities v(sub s) as low as 3600 km per sec (for an assumed distance of 8.5 kpc), much less than v(sub s) = 12,000-13,000 km per sec along the X-ray-bright major axis. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. This asymmetric ambient medium naturally explains the radio asymmetry. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially integrated X-ray flux continues to increase with time. Based on Chandra observations spanning 8.3 yr, we measure its increase at 1.3% +/- 0.8% per yr. The SN ejecta are likely colliding with the asymmetric circumstellar medium ejected by the SN progenitor prior to its explosion.

  4. On the radial oxygen distribution in the Galactic disc

    NASA Astrophysics Data System (ADS)

    Mishurov, Yu. N.; Tkachenko, R. V.

    2018-01-01

    The binned oxygen distribution, derived using new Cepheid observations, demonstrates wriggling radial pattern with different gradients in various ranges of Galactic radius, in particular a plateau distribution within 7 ≲ r ≲ 9 kpc (for the solar distance r⊙ = 7.9 kpc) where the mean Galactic abundance is about 0.2 dex higher than the solar one. Our modelling of oxygen synthesis in the Galactic disc is based on the refine theory that takes into account the combined effect of corotation resonance and turbulent diffusion on the disc enrichment. The theory fits to observations best of all if the time-scale (t_f=-f/\\dot{f}) of gas infall rate f(r, t) (where r and t are the Galactocentric radius and time, respectively) on to the disc is tf ∼ 2-3 Gyr whereas the fit is the worst if tf ∼ 6 Gyr (the last means that the high rate of gas infall at present epoch ∼1.5 M⊙ yr-1 does not satisfy the observed oxygen radial distribution). For inside-out scenario, further studies are necessary. Using the derived mean masses of newly synthesized oxygen ejected per core-collapsed supernova and theoretical oxygen yields, we compute the initial upper masses, mU, of stars that can explode as core-collapsed supernovae. Our estimates show that if tf ∼ 2 Gyr in the framework of rotating stars, their mU are no more than 24 M⊙, but if tf ∼ 3 Gyr in model of rotating stars or in the case of non-rotating star mU can be as high as 40-50 M⊙ like Wolf-Rayet stars that are considered as candidates for Types Ib/c supernovae.

  5. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2003-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory to study the X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in the existing experimental and theoretical data and are needed to explain all or part of the observed X-ray emission from the Galactic Ridge, solar and stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae.

  6. 44Ti Nucleosynthesis Lines and Hard X-ray Continuum in Young SNRs: from INTEGRAL to Simbol-X

    NASA Astrophysics Data System (ADS)

    Renaud, M.; Terrier, R.; Trap, G.; Lebrun, F.; Decourchelle, A.; Vink, J.

    2009-05-01

    Supemovae and their remnants are the main Galactic nucleosynthesis sites and the privileged sources of Galactic cosmic rays. The youngest of such remnants can be studied through two distinct observational features: 44Ti γ-ray lines and the hard X-ray nonthermal continuum emission. The former gives unique information on the nucleosynthesis conditions occuring during the first stages of the explosion, while the latter provides clues on acceleration processes at supernova remnant shocks. In this contribution, we present new INTEGRAL results on Tycho, the remnant of a historical supernova, and on G1.9+0.3, which has been recently unveiled as the youngest Galactic supernova remnant. Expectations with Simbol-X are also addressed.

  7. Hot interstellar tunnels. 1: Simulation of interacting supernova remnants

    NASA Technical Reports Server (NTRS)

    Smith, B. W.

    1976-01-01

    The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.

  8. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  9. Approximate supernova remnant dynamics with cosmic ray production

    NASA Technical Reports Server (NTRS)

    Voelk, H. J.; Drury, L. O.; Dorfi, E. A.

    1985-01-01

    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation.

  10. A young supernova remnant illuminating nearby molecular clouds with cosmic rays

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Pühlhofer, G.; Santangelo, A.

    2016-06-01

    The supernova remnant (SNR) HESS J1731-347 displays strong nonthermal TeV γ-ray and X-ray emission, thus the object is presently accelerating particles to very high energies. A distinctive feature of this young SNR is the nearby (~30 pc in projection) extended source HESS J1729-345, which is currently unidentified but is in spatial projection coinciding with known molecular clouds (MC). We model the SNR evolution to explore whether the TeV emission from HESS J1729-345 can be explained as emission from runaway hadronic cosmic rays (CRs) that are illuminating these MCs. The observational data of HESS J1729-345 and HESS J1731-347 can be reproduced using core-collapse SN models for HESS J1731-347. Starting with different progenitor stars and their presupernova environment, we model potential SNR evolution histories along with the CR acceleration in the SNR and the diffusion of the CRs. A simplified three-dimensional structure of the MCs is introduced based on data of that region, adopting a distance of 3.2 kpc to the source. A Monte Carlo based diffusion model for the escaping CRs is developed to deal with the inhomogeneous environment. The fast SNR forward shock speed, as implied from the X-ray data, can easily be explained when employing scenarios with progenitor star masses between 20 M⊙ and 25 M⊙, where the SNR shock is still expanding inside the main-sequence (MS) bubble at present time. The TeV spectrum of HESS J1729-345 is satisfactorily fitted by the emission from the highest energy CRs that have escaped the SNR, using a standard Galactic CR diffusion coefficient in the interclump medium. The TeV image of HESS J1729-345 can be explained with a reasonable three-dimensional structure of MCs. The TeV emission from the SNR itself is dominated by leptonic emission in this model. We also explore scenarios where the shock is starting to encounter the dense MS progenitor wind bubble shell. The escaping hadronic CR hypothesis for the γ-ray emission of HESS J1729

  11. Asymmetric Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Gwynne, Peter; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Willett, Rebecca

    2017-03-01

    The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded ˜1900 CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results of X-ray expansion measurements that illuminate the origin of the radio asymmetry. We confirm the mean expansion rate (2011-2015) of 0.58% yr-1, but large spatial variations are present. Using the nonparametric “Demons” method, we measure the velocity field throughout the entire SNR, finding that motions vary by a factor of 5, from 0\\buildrel{\\prime\\prime}\\over{.} 09 to 0\\buildrel{\\prime\\prime}\\over{.} 44 yr-1. The slowest shocks are at the outer boundary of the bright northern radio rim, with velocities v s as low as 3600 km s-1 (for an assumed distance of 8.5 kpc), much less than v s = 12,000-13,000 km s-1 along the X-ray-bright major axis. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. This asymmetric ambient medium naturally explains the radio asymmetry. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially integrated X-ray flux continues to increase with time. Based on Chandra observations spanning 8.3 yr, we measure its increase at 1.3 % +/- 0.8 % yr-1. The SN ejecta are likely colliding with the asymmetric circumstellar medium ejected by the SN progenitor prior to its explosion.

  12. Study of the influence of Type Ia supernovae environment on the Hubble diagram

    NASA Astrophysics Data System (ADS)

    Henne, Vincent

    2016-06-01

    The observational cosmology with distant Type Ia supernovae as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this report we investigated SNe Ia environment, studying the impact of the nature of their host galaxies and their distance to the host galactic center on the Hubble diagram fitting. The supernovae used in the analysis were extracted from Joint-Light-curves-Analysis compilation of high-redshift and nearby supernovae. The analysis are based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. No conclusive correlation between SN Ia light curve parameters and galocentric distance were identified. Concerning the host morphology, we showed that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch mainly exploded in elliptical and lenticular galaxies. The studies show that into old star population and low dust environment, supernovae are fainter. We did not find any significant correlation between Type Ia supernovae color and host morphology. We confirm that supernova properties depend on their environment and propose to incorporate a host galaxy term into the Hubble diagram fit in the future cosmological analysis.

  13. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  14. A luminous, blue progenitor system for the type Iax supernova 2012Z

    NASA Astrophysics Data System (ADS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Bildsten, Lars; Fong, Wen-Fai; Kirshner, Robert P.; Marion, G. H.; Riess, Adam G.; Stritzinger, Maximilian D.

    2014-08-01

    Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are `less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.

  15. A luminous, blue progenitor system for the type Iax supernova 2012Z.

    PubMed

    McCully, Curtis; Jha, Saurabh W; Foley, Ryan J; Bildsten, Lars; Fong, Wen-fai; Kirshner, Robert P; Marion, G H; Riess, Adam G; Stritzinger, Maximilian D

    2014-08-07

    Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are 'less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.

  16. Nucleosynthesis in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.

    2018-01-01

    The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further

  17. Discovery of new TeV supernova remnant shells in the Galactic plane with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Gottschall, D.; Capasso, M.; Deil, C.; Djannati-Atai, A.; Donath, A.; Eger, P.; Marandon, V.; Maxted, N.; Pühlhofer, G.; Renaud, M.; Sasaki, M.; Terrier, R.; Vink, J.; H.E.S.S. Collaboration

    2017-01-01

    Supernova remnants (SNRs) are prime candidates for efficient particle acceleration up to the knee in the cosmic ray particle spectrum. In this work we present a new method for a systematic search for new TeV-emitting SNR shells in 2864 hours of H.E.S.S. phase I data used for the H.E.S.S. Galactic Plane Survey. This new method, which correctly identifies the known shell morphologies of the TeV SNRs covered by the survey, HESS J1731-347, RX 1713.7-3946, RCW 86, and Vela Junior, reveals also the existence of three new SNR candidates. All three candidates were extensively studied regarding their morphological, spectral, and multi-wavelength (MWL) properties. HESS J1534-571 was associated with the radio SNR candidate G323.7-1.0, and thus is classified as an SNR. HESS J1912+101 and HESS J1614-518, on the other hand, do not have radio or X-ray counterparts that would permit to identify them firmly as SNRs, and therefore they remain SNR candidates, discovered first at TeV energies as such. Further MWL follow up observations are needed to confirm that these newly discovered SNR candidates are indeed SNRs.

  18. Supernovae, neutrinos and the chirality of amino acids.

    PubMed

    Boyd, Richard N; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the (14)N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  19. Young Pulsar Reveals Clues to Supernova

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Astronomers examined the remnants of a stellar explosion with NASA's Chandra X-ray Observatory and discovered one of the youngest known pulsars. The properties of this pulsar, a neutron star rotating 15 times a second, will enable scientists to better understand how neutron stars are formed in the seconds just before a supernova explosion, and how they pump energy into the space around them for thousands of years after the explosion. A team led by Stephen Murray of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA studied 3C58, the remains of a supernova observed on Earth in 1181 AD in the constellation Cassiopeia. In addition to a pulsating central source they observed an extended X-ray source surrounding the pulsar thought to be produced by a cloud of high-energy particles about 20 light years across. These results were presented at the "Two Years of Science with Chandra" symposium in Washington, D.C. According to Murray, "Our discovery shows that all pulsars are not born equal. This pulsar is about the same age as the Crab Nebula pulsar, but there is little family resemblance." Murray explained that the 3C58 pulsar, which is now rotating at about half the rate of the Crab pulsar, is rotating almost as fast as it was when it was formed. In contrast, the Crab pulsar was formed spinning much more rapidly and has slowed to about half its initial speed. Conventional theory has assumed that all pulsars were like the Crab, born with rapid rotation and then have spun down considerably. The observations of 3C58, along with Chandra observations by another group of scientists of a pulsar associated with the supernova of 386 AD have cast doubt on that assumption, however. Furthermore, the X-ray power of 3C58 and its surrounding nebula are 20,000 and 1,000 times weaker than the Crab pulsar and its surrounding nebula respectively. One possibility for the low power of 3C58 is that the energy flow from its pulsar is primarily in the form of electromagnetic fields

  20. What Can We Learn By Observing Supernova Neutrinos?

    NASA Astrophysics Data System (ADS)

    Beacom, John

    1999-10-01

    A core-collapse supernova emits of the order of 10^58 neutrinos of all flavors over about 10 seconds, with an average energy of about 11 MeV for ν_e, 16 MeV for barν_e, and 25 MeV for ν_μ, ν_τ, barν_μ, and barν_τ. The present and near-term solar neutrino detectors can readily observe a supernova anywhere in our Galaxy. The expected supernova rate in our Galaxy is about 3 per century. What can we learn by observing the neutrinos from the next Galactic supernova? Besides the nuclear and astrophysical aspects of the collapse mechanism, there will be an unprecedented opportunity to measure neutrino properties, in particular their masses. The ν_μ and ν_τ masses can be measured by time-of-flight relative to the νe and barνe neutrinos, with a nearly model-independent sensitivity down to about 30 eV. If the time development of the supernova neutrino luminosities were better known from theory, this could be reduced to 10 eV or less. In either case, it will be essential to map out the neutrino energy spectra by measuring the signals on several different nuclear targets. Direct information on the absolute scale of the neutrino masses is especially crucial now since the apparently positive signals from neutrino oscillation experiments indicate nonzero differences in neutrino masses, with no information on the overall scale.

  1. Long gamma-ray bursts and core-collapse supernovae have different environments.

    PubMed

    Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E

    2006-05-25

    When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.

  2. Starburst-Driven Winds May Have Created Giant "Lobe" in Galactic Center

    NASA Astrophysics Data System (ADS)

    2004-06-01

    An astronomer using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has discovered that two prominent features rising out of the center of the Milky Way Galaxy are actually the distant edges of the same superstructure. This object, which has the appearance of a "lobe," may have been formed during an epoch of furious star formation. Lobe Galactic center radio image with lobe feature shown in outline. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click for Image w/o lines) Astronomer Casey Law of Northwestern University presented his results at the Denver, Colorado, meeting of the American Astronomical Society. "The center of our Galaxy is an incredibly dynamic place and morphologically very difficult to untangle" said Law. "Among the many features we see there, including supernova remnants, hot star-forming regions, and massive molecular clouds, are two very prominent columns of radio-emitting material that seem to erupt out of the plane of the Galaxy. The nature and origin of these features have been the subjects of much speculation, but with the new data from the Green Bank Telescope we're finally able to discern that they are in fact part of the same superstructure." Much of what we know about the center of our Galaxy has come from studies conducted on radio telescopes. The center of the Milky Way is, in fact, hidden from view to optical telescopes due to intervening clouds of dust and gas. Radio waves, however, are able to pass through the obscuring material and reveal details about the core of our Galaxy. Astronomers now know that this area of the Milky Way -- approximately 26,000 light-years from Earth -- is a densely packed region brimming with hot , young stars, supernova remnants, and more esoteric features -- like long radio-emitting filaments. At the center of it all is a remarkably radio-bright region known as Sagittarius A* (pronounced A-star), which is known to contain a supermassive black hole. Deciphering what all these

  3. Supernova Explosions Stay In Shape

    NASA Astrophysics Data System (ADS)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  4. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  5. The HALO / HALO-2 Supernova Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Yen, Stanley; HALO Collaboration; HALO-2 Collaboration

    2016-09-01

    The Helium and Lead Observatory (HALO) is a dedicated supernova neutrino detector in SNOLAB, which is built from 79 tons of surplus lead and the helium-3 neutron detectors from the SNO experiment. It is sensitive primarily to electron neutrinos, and is thus complementary to water Cerenkov and organic scintillation detectors which are primarily sensitive to electron anti-neutrinos. A comparison of the rates in these complementary detectors will enable a flavor decomposition of the neutrino flux from the next galactic core-collapse supernova. We have tentative ideas to build a 1000-ton HALO-2 detector in the Gran Sasso laboratory by using the lead from the decommissioned OPERA detector. We are exploring several neutron detector technologies to supplement the existing helium-3 detectors. We welcome new collaborators to join us. This research is supported by the NRC and NSERC (Canada), the US DOE and NSF, and the German RISE program.

  6. KEGS Discovery of 28 Supernova Candidates in the K2 Campaign 17 Field with DECam

    NASA Astrophysics Data System (ADS)

    Narayan, G.; Rest, A.; Strampelli, G. M.; Zenteno, A.; James, D. J.; Smith, R. C.; Tucker, B. E.; Garnavich, P.; Margheim, S.; Kasen, D.; Olling, R.; Shaya, E.; Buron, F. Forster; Villar, V. A.

    2018-05-01

    The Kepler Extra-Galactic Survey (KEGS, see http://www.mso.anu.edu.au/kegs/ ) reports the discovery of 28 supernova candidates with the Dark Energy Camera (DECam, NOAO 2017B-0285) on the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory (CTIO).

  7. The Progenitor Systems and Explosion Mechanisms of Supernovae

    NASA Astrophysics Data System (ADS)

    Milisavljevic, D.

    2013-10-01

    Supernovae are among the most powerful explosions in the universe. They affect the energy balance, global structure, and chemical make-up of galaxies, they produce neutron stars, black holes, and some gamma-ray bursts, and they have been used as cosmological yardsticks to detect the accelerating expansion of the universe. Fundamental properties of these cosmic engines, however, remain uncertain. In this review we discuss the progress made over the last two decades in understanding supernova progenitor systems and explosion mechanisms. We also comment on anticipated future directions of research and highlight alternative methods of investigation using young supernova remnants.

  8. Supernovae, Neutrinos and the Chirality of Amino Acids

    PubMed Central

    Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids. PMID:21747686

  9. Are supernova remnants quasi-parallel or quasi-perpendicular accelerators

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.; Leckband, J. A.; Cairns, I. H.

    1989-01-01

    Observations of shock waves in the solar system which show a pronounced difference in the plasma wave and particle environment depending on whether the shock is propagating along or perpendicular to the interplanetary magnetic field are discussed. Theories for particle acceleration developed for quasi-parallel and quasi-perpendicular shocks, when extended to the interstellar medium suggest that the relativistic electrons in radio supernova remnants are accelerated by either the Q parallel or Q perpendicular mechanisms. A model for the galactic magnetic field and published maps of supernova remnants were used to search for a dependence of structure on the angle Phi. Results show no tendency for the remnants as a whole to favor the relationship expected for either mechanism, although individual sources resemble model remnants of one or the other acceleration process.

  10. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  11. Discovery of Most Recent Supernova in Our Galaxy

    NASA Astrophysics Data System (ADS)

    2008-05-01

    The most recent supernova in our Galaxy has been discovered by tracking the rapid expansion of its remains. This result, using NASA's Chandra X-ray Observatory and NRAO's Very Large Array (VLA), has implications for understanding how often supernovas explode in the Milky Way galaxy. The supernova explosion occurred about 140 years ago, making it the most recent supernova in the Milky Way as measured in Earth's time frame. Previously, the last known galactic supernova occurred around 1680, based on studying the expansion of its remnant Cassiopeia A. X-ray Image Radio and X-ray Images The recent supernova explosion was not seen in optical light about 140 years ago because it occurred close to the center of the Galaxy, and is embedded in a dense field of gas and dust. This made it about a trillion times fainter, in optical light, than an unobscured supernova. However, the supernova remnant it caused, G1.9+0.3, is now seen in X-ray and radio images. "We can see some supernova explosions with optical telescopes across half of the Universe, but when they're in this murk we can miss them in our own cosmic backyard," said Stephen Reynolds of North Carolina State University, who led the Chandra study. "Fortunately, the expanding gas cloud from the explosion shines brightly in radio waves and X-rays for thousands of years. X-ray and radio telescopes can see through all that obscuration and show us what we've been missing." Astronomers regularly observe supernovas in other galaxies like ours, and based on those rates, estimate that about three should explode every century in our Milky Way, although these estimates have large margins of error. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Action Replay of Powerful Stellar Explosion Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago "If the supernova rate estimates are correct, there should be the remnants of

  12. Thermal and non-thermal X-rays from the Galactic supernova remnant G348.5+0.1

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Minami, Sari; Ota, Naomi; Koyama, Katsuji

    2014-02-01

    We report on Suzaku results of the two distinct regions in the Galactic supernova remnant G348.5+0.1: extended thermal X-rays ("soft diffuse") at the north-east region and non-thermal X-rays (CXOU J171419.8-383023) at the north-west region. The X-ray spectrum of the soft diffuse X-rays can be fitted with neither an ionization equilibrium nor a non-equilibrium (ionizing) plasma model, leaving saw- tooth residuals in the 1.5-3 keV energy band. The residual structures can be produced when free electrons are recombined to the K-shells of highly ionized Mg and Si ions. In fact, the X-ray spectrum is nicely fitted with a recombination-dominant plasma model. We propose a scenario whereby the plasma in a nearly fully ionized state at high temperature quickly changed to a recombining phase due to selective cooling of electrons to a lower temperature of ˜ 0.5 keV. The spectrum of CXOU J171419.8-383023 is well explained by a simple power-law model with a photon index of 1.9, nearly equal to the typical value for pulsar wind nebulae. Since the distance is estimated to be the same as that of the soft diffuse radiation, we infer that both the soft diffuse X-rays and CXOU J171419.8-383023 are associated with the same object, SNR G348.5+0.1.

  13. Type II supernovae as a significant source of interstellar dust.

    PubMed

    Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike

    2003-07-17

    Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.

  14. Searches for Continuous Gravitational Waves from Nine Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Gossler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña na-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-11-01

    We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering {F}-statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 × 10-25 on intrinsic strain, 2 × 10-7 on fiducial ellipticity, and 4 × 10-5 on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.

  15. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in themore » largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.« less

  16. Supernova 2007bi as a pair-instability explosion.

    PubMed

    Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J

    2009-12-03

    Stars with initial masses such that 10M[symbol: see text] supernova. By contrast, extremely massive stars with M(initial) >or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.

  17. A faint type of supernova from a white dwarf with a helium-rich companion.

    PubMed

    Perets, H B; Gal-Yam, A; Mazzali, P A; Arnett, D; Kagan, D; Filippenko, A V; Li, W; Arcavi, I; Cenko, S B; Fox, D B; Leonard, D C; Moon, D-S; Sand, D J; Soderberg, A M; Anderson, J P; James, P A; Foley, R J; Ganeshalingam, M; Ofek, E O; Bildsten, L; Nelemans, G; Shen, K J; Weinberg, N N; Metzger, B D; Piro, A L; Quataert, E; Kiewe, M; Poznanski, D

    2010-05-20

    Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

  18. The Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo

    2013-08-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability.

  19. Recombining plasma in the remnant of a core-collapsed supernova, Kes 17

    NASA Astrophysics Data System (ADS)

    Washino, Ryosaku; Uchida, Hiroyuki; Nobukawa, Masayoshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Kawabata Nobukawa, Kumiko; Koyama, Katsuji

    2016-06-01

    We report on Suzaku results concerning Kes 17, a Galactic mixed-morphology supernova remnant. The X-ray spectrum of the whole Kes 17 is well explained by a pure thermal plasma, in which we found Lyα of Al XIII and Heα of Al XII, Ar XVII, and Ca XIX lines for the first time. The abundance pattern and the plasma mass suggest that Kes 17 is a remnant of a core-collapsed supernova of a 25-30 M⊙ progenitor star. The X-ray spectrum of the north region is expressed by a recombining plasma. The origin would be due to the cooling of electrons by thermal conduction to molecular clouds located near the north region.

  20. r-process nucleosynthesis in the high-entropy supernova bubble

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.; Mathews, G. J.; Howard, W. M.; Woosley, S. E.; Hoffman, R. D.

    1992-01-01

    We show that the high-temperature, high-entropy evacuated region outside the recent neutron star in a core-collapse supernova may be an ideal r-process site. In this high-entropy environment it is possible that most nucleons are in the form of free neutrons or bound into alpha particles. Thus, there can be many neutrons per seed nucleus even though the material is not particularly neutron rich. The predicted amount of r-process material ejected per event from this environment agrees well with that required by simple galactic evolution arguments. When averaged over regions of different neutron excess in the supernova ejecta, the calculated r-process abundance curve can give a good representation of the solar-system r-process abundances as long as the entropy per baryon is sufficiently high. Neutrino irradiation may aid in smoothing the final abundance distribution.

  1. Supernovae Discovery Efficiency

    NASA Astrophysics Data System (ADS)

    John, Colin

    2018-01-01

    Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.

  2. Progress of the equation of state table for supernova simulations and its influence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumiyoshi, Kohsuke

    2012-11-12

    We describe recent progress of the EOS tables for numerical simulations of core-collapse supernovae and related astrophysical phenomena. Based on the Shen EOS table, which has been widely used in supernova simulations, there is systematic progress by extending the degrees of freedom such as hyperons and quarks. These extended EOS tables have been used, for example, to study the neutrino bursts from the gravitational collapse of massive stars leading to the black hole formation. Observations of such neutrinos from galactic events in future will provide us with the information on the EOS. Recently, studies of the supernova EOS with themore » multi-composition of nuclei under the nuclear statistical equilibrium have been made beyond the single nucleus approximation as used in the Shen EOS. It has been found that light elements including deuterons are abundant in wide regions of the supernova cores. We discuss that neutrino-deuteron reactions may have a possible influence on the explosion mechanism through modifications of neutrino heating rates.« less

  3. The shock process and light-element production in supernova envelopes

    NASA Technical Reports Server (NTRS)

    Brown, Lawrence E.; Dearborn, David S.; Schramm, David N.; Larsen, Jon T.; Kurokawa, Shin

    1991-01-01

    Detailed hydrodynamic modeling of the passage of supernova shocks through the hydrogen enevlopes of blue and red progenitor stars was carried out to explore the sensitivity to model conditions of light element production (specifically Li7 and B-11) which was noted by Dearborn, Schramm, Steigman and Truran (1989) (DSST). It is found that, for stellar models with M is less than or approximately 100 M solar mass, current state of the art supernova shocks do not produce significant light element yields by hydrodynamic processes alone. The dependence of this conclusion on stellar models and on shock strengths is explored. Preliminary implications for Galactic evolution of lithium are discussed, and it is suspected that intermediate mass red giant stars may be the most consistent production site for lithium.

  4. Calibration of the Galactic Cosmic Ray Flux

    NASA Technical Reports Server (NTRS)

    Mathew, K. J.; Marti, K.

    2004-01-01

    We report first Xe data on the cross-calibration of I-129-Xe-129(sub n) ages with conventional CRE ages, a method which is expected to provide information on the long-term constancy of the galactic cosmic ray (GCR) flux. We studied isotopic signatures of Xe released in stepwise heating, decomposition and melting of troilites in the Cape York iron meteorite to identify isotopic shifts in Xe-129 and Xe-131 due to neutron capture in Te-128 and Te-130. We also resolve components due to extinct 129I, spallation and fission Xe. There has recently been much speculation on the constancy of GCR over long time scales, as may be inferred from iron meteorites. If GCRs originate from supernova events, this provides the basis for postulating increased fluxes at locations with higher than average densities of supernovae, specifically in OB-associations. The solar system at present appears to be inside a local bubble between spiral arms and may experience an increased GCR flux.

  5. Deciphering the Dipole Anisotropy of Galactic Cosmic Rays.

    PubMed

    Ahlers, Markus

    2016-10-07

    Recent measurements of the dipole anisotropy in the arrival directions of Galactic cosmic rays (CRs) indicate a strong energy dependence of the dipole amplitude and phase in the TeV-PeV range. We argue here that these observations can be well understood within standard diffusion theory as a combined effect of (i) one or more local sources at Galactic longitude 120°≲l≲300° dominating the CR gradient below 0.1-0.3 PeV, (ii) the presence of a strong ordered magnetic field in our local environment, (iii) the relative motion of the solar system, and (iv) the limited reconstruction capabilities of ground-based observatories. We show that an excellent candidate of the local CR source responsible for the dipole anisotropy at 1-100 TeV is the Vela supernova remnant.

  6. Neutrino oscillations in magnetically driven supernova explosions

    NASA Astrophysics Data System (ADS)

    Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  7. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  8. A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region

    NASA Technical Reports Server (NTRS)

    Matthews, T. A.; Simonson, S. C., III

    1971-01-01

    From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.

  9. Revised Distances to 21 Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Ranasinghe, S.; Leahy, D. A.

    2018-05-01

    We carry out a comprehensive study of H I 21 cm line observations and 13CO line observations of 21 supernova remnants (SNRs). The aim of the study is to search for H I absorption features to obtain kinematic distances in a consistent manner. The 21 SNRs are in the region of sky covered by the Very Large Array Galactic Plane Survey (H I 21 cm observations) and Galactic Ring Survey (13CO line observations). We obtain revised distances for 10 SNRs based on new evidence in the H I and 13CO observations. We revise distances for the other 11 SNRs based on an updated rotation curve and new error analysis. The mean change in distance for the 21 SNRs is ≃25%, i.e., a change of 1.5 kpc compared to a mean distance for the sample of 6.4 kpc. This has a significant impact on interpretation of the physical state of these SNRs. For example, using a Sedov model, age and explosion energy scale as the square of distance, and inferred ISM density scales as distance.

  10. Galactic Hearts of Glass

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger graph

    This artist's concept shows delicate greenish crystals sprinkled throughout the violent core of a pair of colliding galaxies. The white spots represent a thriving population of stars of all sizes and ages. NASA's Spitzer Space Telescope detected more than 20 bright and dusty galactic mergers like the one depicted here, all teeming with the tiny gem-like crystals.

    When galaxies collide, they trigger the birth of large numbers of massive stars. Astronomers believe these blazing hot stars act like furnaces to produce silicate crystals in the same way that glass is made from sand. The stars probably shed the crystals as they age, and as they blow apart in supernovae explosions.

    At the same time the crystals are being churned out, they are also being destroyed. Fast-moving particles from supernova blasts easily convert silicates crystals back to their amorphous, or shapeless, form.

    How is Spitzer seeing the crystals if they are rapidly disappearing? Astronomers say that, for a short period of time at the beginning of galactic mergers, massive stars might be producing silicate crystals faster than they are eliminating them. When our own galaxy merges with the Andromeda galaxy in a few billion years, a similar burst of massive stars and silicate crystals might occur.

    Crystal Storm in Distant Galaxy The graph (see inset above) of infrared data from NASA's Spitzer Space Telescope tells astronomers that a distant galaxy called IRAS 08752+3915 is experiencing a storm of tiny crystals made up of silicates. The crystals are similar to the glass-like grains of sand found on Earth's many beaches.

    The data were taken by Spitzer's infrared spectrograph, which splits light open to reveal its rainbow-like components. The resulting spectrum shown here reveals the signatures of both crystalline (green) and non-crystalline (brown) silicates.

    Spitzer detected the same

  11. The X-Ray Properties of Five Galactic Supernova Remnants Detected by the Spitzer GLIMPSE Survey

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas G.; Rho, Jeonghee; Heinke, Craig O.; Moffitt, William P.

    2014-03-01

    We present a study of the X-ray properties of five Galactic supernova remnants (SNRs)—Kes 17 (G304.6+0.1), G311.5-0.3, G346.6-0.2, CTB 37A (G348.5+0.1), and G348.5-0.0—that were detected in the infrared by Reach et al. in an analysis of data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) that was conducted by the Spitzer Space Telescope. We present and analyze archival ASCA observations of Kes 17, G311.5-0.3, and G346.6-0.2, archival XMM-Newton observations of Kes 17, CTB 37A, and G348.5-0.0, and an archival Chandra observation of CTB 37A. All of the SNRs are clearly detected in the X-ray except possibly G348.5-0.0. Our study reveals that the four detected SNRs all feature center-filled X-ray morphologies and that the observed emission from these sources is thermal in all cases. We argue that these SNRs should be classified as mixed-morphology SNRs (MM SNRs); our study strengthens the correlation between MM SNRs and SNRs interacting with molecular clouds and suggests that the origin of MM SNRs may be due to the interactions between these SNRs and adjacent clouds. Our ASCA analysis of G311.5-0.3 reveals for the first time X-ray emission from this SNR: the X-ray emission is center-filled within the radio and infrared shells and thermal in nature (kT ~ 0.98 keV), thus motivating its classification as an MM SNR. We find considerable spectral variations in the properties associated with the plasmas of the other X-ray-detected SNRs, such as a possible overabundance of magnesium in the plasma of Kes 17. Our new results also include the first detailed spatially resolved spectroscopic study of CTB 37A using Chandra as well as a spectroscopic study of the discrete X-ray source CXOU J171428.5-383601, which may be a neutron star associated with CTB 37A. Finally, we also estimate such properties as electron density ne , radiative age t rad and swept-up mass MX for each of the four X-ray-detected SNRs. Each of these values are comparable to

  12. Radioactivity in the galactic plane

    NASA Technical Reports Server (NTRS)

    Walraven, G. D.; Haymes, R. C.

    1976-01-01

    The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.

  13. Supernova remnants in the GC region

    NASA Astrophysics Data System (ADS)

    Asvarov, Abdul

    2016-07-01

    Along with the central Black hole the processes of active star formation play very important role in the energetics of the Galactic center region. The SNe and their remnants (SNRs) are the main ingredients of the processes of star formation. SNRs are also the sources of electromagnetic radiation of all wavelengths from the optical to hard gamma rays. In the presented work we consider the physics of supernova remnants evolving in extreme environmental conditions which are typical for the region of the Galactic center. Because of the high density and strong inhomogeneity of the surrounding medium these objects remain practically invisible at almost all wavelengths. We model evolution of SNR taking into account the pressure of the surrounding medium and the gravitational field of the matter (stars, compact clouds, dark matter) inside the remnant. As it is well established, considerable portion of the kinetic energy of the SNR can be converted into the cosmic ray particles by diffusive shock acceleration mechanism. Therefore the effect of particle acceleration is also included in the model (with the effectiveness of acceleration as a free parameter). Using the observed radiation fluxes at different wavelengths we attempt to obtain limits on the parameters of the model of the Galactic Center, namely, the frequency of star birth, the average density of the matter and radiation field, etc.

  14. Interacting supernovae and supernova impostors

    NASA Astrophysics Data System (ADS)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  15. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants

    NASA Astrophysics Data System (ADS)

    Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.

    2018-02-01

    Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.

  16. A more direct measure of supernova rates in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave; Greenhouse, Matthew A.

    1994-01-01

    We determine ages for young supernova remnants in the starburst galaxies M82 and NGC 253 by applying Chevalier's model for radio emission from supernova blast waves expanding into the ejecta of their precursor stars. Absolute ages are determined by calibrating the model with radio observations of Cas A. We derive supernova rates of 0.10 and 0.08/yr for M82 and NGC 253, respectively. Assuming L (sub FIR) to be proportional to the supernova rate, we find r(sub SN) approximately equal 2 x 10(exp -12) x L(sub FIR), solar yr(exp -1) for these archetypal starburst galaxies. This approach is unique in that the supernova rate is derived from direct observation of supernova remnants rather than from star formation rates and an assumed initial mass function (IMF). We suggest that the approach presented here can be used to derive star-formation rates that are more directly related to observable quantities than those derived by other methods. We find that the supernova rate, far infrared (FIR) luminosity, and dynamical mass of the M82 starburst place few constraints on the initial mass function (IMF) slope and mass limits.

  17. The Carnegie Supernova Project I. Photometry data release of low-redshift stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Anderson, J. P.; Contreras, C.; Heinrich-Josties, E.; Morrell, N.; Phillips, M. M.; Anais, J.; Boldt, L.; Busta, L.; Burns, C. R.; Campillay, A.; Corco, C.; Castellon, S.; Folatelli, G.; González, C.; Holmbo, S.; Hsiao, E. Y.; Krzeminski, W.; Salgado, F.; Serón, J.; Torres-Robledo, S.; Freedman, W. L.; Hamuy, M.; Krisciunas, K.; Madore, B. F.; Persson, S. E.; Roth, M.; Suntzeff, N. B.; Taddia, F.; Li, W.; Filippenko, A. V.

    2018-02-01

    The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper is the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction and the light-curve and progenitor star properties of the sample. The analysis of an accompanying visual-wavelength spectroscopy sample of 150 spectra will be the subject of a future paper. Based on observations collected at Las Campanas Observatory.Tables 2-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A134

  18. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  19. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    PubMed

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

  20. The combined effect of AGN and supernovae feedback in launching massive molecular outflows in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Biernacki, Pawel; Teyssier, Romain

    2018-04-01

    We have recently improved our model of active galactic nucleus (AGN) by attaching the supermassive black hole (SMBH) to a massive nuclear star cluster (NSC). Here, we study the effects of this new model in massive, gas-rich galaxies with several simulations of different feedback recipes with the hydrodynamics code RAMSES. These simulations are compared to a reference simulation without any feedback, in which the cooling halo gas is quickly consumed in a burst of star formation. In the presence of strong supernovae (SN) feedback, we observe the formation of a galactic fountain that regulates star formation over a longer period, but without halting it. If only AGN feedback is considered, as soon as the SMBH reaches a critical mass, strong outflows of hot gas are launched and prevent the cooling halo gas from reaching the disc, thus efficiently halting star formation, leading to the so-called `quenching'. If both feedback mechanisms act in tandem, we observe a non-linear coupling, in the sense that the dense gas in the supernovae-powered galactic fountain is propelled by the hot outflow powered by the AGN at much larger radii than without AGN. We argue that these particular outflows are able to unbind dense gas from the galactic halo, thanks to the combined effect of SN and AGN feedback. We speculate that this mechanism occurs at the end of the fast growing phase of SMBH, and is at the origin of the dense molecular outflows observed in many massive high-redshift galaxies.

  1. Fermi LAT discovery of GeV gamma-ray emission from the young supernova remnan Cassiopeia A

    DOE PAGES

    Abdo, A. A.

    2010-01-27

    Here, we report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant (SNR) with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. Our observations reveal a source with no discernible spatial extension detected at a significance level of 12.2σ above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation—Cassiopeia A (Cas A). The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles acceleratedmore » in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W CR sime (1-4) × 1049 erg thanks to the well-known density in the remnant assuming that the observed gamma ray originates in the SNR shell(s). Finally, the magnetic field in the radio-emitting plasma can be robustly constrained as B ≥ 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.« less

  2. Recording of Supernovae in Rock Art, A Case Study at the Paint Rock Pictograph Site

    NASA Astrophysics Data System (ADS)

    Houston, Gordon L.; Simonia, Irakli; NA

    2017-01-01

    The Paint Rock pictographs in central Texas and their use as solar markers were formally reported for the first time by Dr. R. Robert Robbins at the 1999 AAS meeting #193 in Austin, Texas. He reported the operations of the winter solstice marker and suggested the possibility of more, including a summer solstice solar marker. Since this first report, there have been many informal studies of the Paint Rock site. In 1955, William C. Miller made the first interpretation of rock art as depicting images of the Crab supernova of AD 1054, which has produced many reports at other rock art sites in the American Southwest, including one at Paint Rock. All of these claims have a star and crescent configuration. Recently, these claims have been dismissed. We propose that the second panel at Paint Rock is representative of Tycho Brahe's supernovae SN1572. Miller set up a set of restrictions and criteria to evaluate these potential claims. We discuss Miller's criteria and two additional sets of criteria to evaluate representations of historical records of supernovae sightings. Two sets of characteristics of supernovae are provided, the first being galactic location and the second observational characteristics of naked eye supernovae. Employing astronomical software, we show that the panel at Paint Rock meets the restrictions and criteria discussed, that leads to high confidence in stating it records Tycho Brahe's supernova SN1572.

  3. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M⊙ supernova model

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz

    2015-03-01

    In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.

  4. GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu

    2017-01-10

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less

  5. The first Fermi LAT supernova remnant catalog

    DOE PAGES

    Acero, F.

    2016-05-16

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude, allows us to determine an upper limit of 22% on the number of GeV candidatesmore » falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, demonstrates the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. As a result, we model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.« less

  6. A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood.

    PubMed

    Mirabel, I F; Dhawan, V; Mignani, R P; Rodrigues, I; Guglielmetti, F

    2001-09-13

    Only a few of the dozen or so known stellar-mass black holes have been observed away from the plane of the Galaxy. Those few could have been ejected from the plane as a result of a 'kick' received during a supernova explosion, or they could be remnants of the population of massive stars formed in the early stages of evolution of the Galaxy. Determining their orbital motion should help to distinguish between these options. Here we report the transverse motion (in the plane of the sky) for the black-hole X-ray nova XTE J1118+480 (refs 2, 3, 4, 5), from which we derive a large space velocity. This X-ray binary system has an eccentric orbit around the Galactic Centre, like most objects in the halo of the Galaxy, such as ancient stars and globular clusters. The properties of the system suggest that its age is comparable to or greater than the age of the Galactic disk. Only an extraordinary 'kick' from a supernova could have launched the black hole into an orbit like this from a birthplace in the disk of the Galaxy.

  7. Spectroscopic classification of AT 2017cfd as a young Type Ia supernova

    NASA Astrophysics Data System (ADS)

    Vinko, J.; Wheeler, J. C.

    2017-03-01

    We report the spectroscopic observation of AT 2017cfd, a transient discovered by the Lick Observatory Supernova Search (LOSS) on 2017-03-16. A spectrum (range 3700-9300 Angstroms), taken with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by Steve Odewahn on 2017-03-18.16 UT, is similar to that of a Type Ia supernova before maximum light.

  8. The locations of recent supernovae near the Sun from modelling (60)Fe transport.

    PubMed

    Breitschwerdt, D; Feige, J; Schulreich, M M; de Avillez, M A; Dettbarn, C; Fuchs, B

    2016-04-07

    The signature of (60)Fe in deep-sea crusts indicates that one or more supernovae exploded in the solar neighbourhood about 2.2 million years ago. Recent isotopic analysis is consistent with a core-collapse or electron-capture supernova that occurred 60 to 130 parsecs from the Sun. Moreover, peculiarities in the cosmic ray spectrum point to a nearby supernova about two million years ago. The Local Bubble of hot, diffuse plasma, in which the Solar System is embedded, originated from 14 to 20 supernovae within a moving group, whose surviving members are now in the Scorpius-Centaurus stellar association. Here we report calculations of the most probable trajectories and masses of the supernova progenitors, and hence their explosion times and sites. The (60)Fe signal arises from two supernovae at distances between 90 and 100 parsecs. The closest occurred 2.3 million years ago at present-day galactic coordinates l = 327°, b = 11°, and the second-closest exploded about 1.5 million years ago at l = 343°, b = 25°, with masses of 9.2 and 8.8 times the solar mass, respectively. The remaining supernovae, which formed the Local Bubble, contribute to a smaller extent because they happened at larger distances and longer ago ((60)Fe has a half-life of 2.6 million years). There are uncertainties relating to the nucleosynthesis yields and the loss of (60)Fe during transport, but they do not influence the relative distribution of (60)Fe in the crust layers, and therefore our model reproduces the measured relative abundances very well.

  9. The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil

    1999-01-01

    We show that (1) the newly discovered supernova remnant (SNR) GROJ0852-4642/RXJ0852.0-4622 was created by a core-collapse supernova of a massive star and (2) the same supernova event that produced the Ti-44 detected by COMPTEL from this source is probably also responsible for a large fraction of the observed Al-26 emission in the Vela region detected by the same instrument. The first conclusion is based on the fact that the remnant is currently expanding too slowly given its young age for it to be caused by a Type la supernova. If the current SNR shell expansion speed is greater than 3000 km/s, a 15 solar mass. Type II supernova with a moderate kinetic energy exploding at about 150 pc away is favored. If the SNR expansion speed is lower than 2000 km/s, as derived naively from X-ray data, a much more energetic supernova is required to have occurred at approximately 250 pc away in a dense environment at the edge of the Gum Nebula. This progenitor has a preferred ejecta mass of less than or equal to 10(Solar Mass), and therefore it is probably a Type Ib or Type Ic supernova. However, the required high ambient density of n(sub H) greater than or equal to 100 cu cm in this scenario is difficult to reconcile with the regional CO data. A combination of our estimates of the age/energetics of the new SNR and the almost perfect positional coincidence of the new SNR with the centroid of the COMPTEL Al-26 emission feature of the Vela region strongly favors a causal connection. If confirmed, this will be the first case in which both Ti-44 and Al-26 are detected from the same young SNR, and together they can be used to select preferred theoretical core-collapse supernova models.

  10. X-Ray Illumination of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.; hide

    2011-01-01

    When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.

  11. Revealing the Galactic Center in the Far-Infrared with SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Herter, Terry; Morris, Mark; Li, Zhiyuan; Becklin, Eric; Adams, Joseph; Hankins, Matthew

    2015-08-01

    We present a summary of far-infrared imaging observations of the inner 40 pc of the Galactic center addressing the dense, dusty torus around Sgr A*, massive star formation, and dust production around massive stars and in the Sgr A East supernova remnant. Observations of warm dust emission were performed using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). The Circumnuclear Ring (CNR) surrounding and heated by central cluster in the vicinity of Sgr A* shows no internal active star formation but does exhibit significant density “clumps,” a surprising result because tidal shearing should act quickly to smear out structure. G-0.02-0.07, a complex consisting of three compact HII regions and one ultracompact HII region, is site of the most recent confirmed star formation within ~10 pc of the Galactic center. Our observations reveal the dust morphologies and SEDs of the regions to constrain the composition and gas-to-dust mass ratios of the emitting dust and identify heating sources candidates from archival near-IR images. FORCAST observations Luminous Blue Variables (LBVs) located in and near the Quintuplet Cluster reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. These two LBV’s have nebulae with similar quantities of dust (~0.02 M⊙) but exhibit contrasting appearances due to the external influence of their different environments. Finally, the far-infrared observations indicate the presence of ~0.02 M⊙ of warm (~100 K) dust in the hot interior of the ~10,000 yr-old SgrA East supernova remnant indicating the dust has survived the passage of the reverse shock. The results suggest that supernovae may indeed be the dominant dust production mechanism in the dense environment of early Universe galaxies.

  12. On the radial oxygen distribution in the Galactic disc - II. Effects of local streams

    NASA Astrophysics Data System (ADS)

    Mishurov, Yu N.; Tkachenko, R. V.

    2018-06-01

    We analyse the idea that the local dips (˜1 kpc along the Galactic radius) observed in oxygen abundance are associated with the infall of intergalactic low-abundant gas (˜0.2 Z⊙) on to the Galactic disc during the last ˜100 Myr. We term such infall events local streams. The derived masses of the falling gas (of the order of several times 108 M⊙) are close to the observed ones (e.g. in the Magellanic Stream). Such local streams do not change the mean mass of oxygen ejected per core-collapse supernova (CC SN) event, so that our previous inference on probable upper initial masses for progenitors of CC SNe remains valid.

  13. Supernova-regulated ISM. V. Space and Time Correlations

    NASA Astrophysics Data System (ADS)

    Hollins, J. F.; Sarson, G. R.; Shukurov, A.; Fletcher, A.; Gent, F. A.

    2017-11-01

    We apply correlation analysis to random fields in numerical simulations of the supernova-driven interstellar medium (ISM) with the magnetic field produced by dynamo action. We solve the magnetohydrodynamic (MHD) equations in a shearing Cartesian box representing a local region of the ISM, subject to thermal and kinetic energy injection by supernova explosions, and parameterized, optically thin radiative cooling. We consider the cold, warm, and hot phases of the ISM separately; the analysis mostly considers the warm gas, which occupies the bulk of the domain. Various physical variables have different correlation lengths in the warm phase: 40,50, and 60 {pc} for the random magnetic field, density, and velocity, respectively, in the midplane. The correlation time of the random velocity is comparable to the eddy turnover time, about {10}7 {year}, although it may be shorter in regions with a higher star formation rate. The random magnetic field is anisotropic, with the standard deviations of its components {b}x/{b}y/{b}z having approximate ratios 0.5/0.6/0.6 in the midplane. The anisotropy is attributed to the global velocity shear from galactic differential rotation and locally inhomogeneous outflow to the galactic halo. The correlation length of Faraday depth along the z axis, 120 {pc}, is greater than for electron density, 60{--}90 {pc}, and the vertical magnetic field, 60 {pc}. Such comparisons may be sensitive to the orientation of the line of sight. Uncertainties of the structure functions of synchrotron intensity rapidly increase with the scale. This feature is hidden in a power spectrum analysis, which can undermine the usefulness of power spectra for detailed studies of interstellar turbulence.

  14. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Buckley, J. H.; Bugaev, V.

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less

  15. Walter Baade: Father of the Two Stellar Populations and Pioneer Supernova Researcher

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2001-05-01

    Walter Baade was the great observational astronomer of the middle part of the past century. He lived and worked in Pasadena, where he ``discovered" the two stellar populations and did outstanding pioneer research on supernovae at Mount Wilson and Palomar Observatories from 1931 until 1959, when he returned to his native Germany, and died the following year. Baade was born in a little town in northwest Germany, and educated at Goettingen University, where he received his Ph.D. in 1919, just after the end of World War I. He got a research position at Hamburg Observatory, and quickly jumped into globular cluster and galactic structure work with its 40-in reflector, then the largest telescope in Europe. Baade recognized very early the great importance of the extremely rare ``highly luminous novae" which Heber D. Curtis and Knut Lundmark isolated in 1919-21. In 1929 Baade called these ``Hauptnovae" the key to measuring distances of faint galaxies. We call them supernovae today, a term he and Fritz Zwicky began using in 1932. Similarly Baade's first inkling that there was a spherically symmetric distribution of stars in our Galaxy, which he named Population II in his two great 1944 papers, came when he began picking up field RR Lyrae variables in 1926. Baade's research on the two stellar populations and supernovae was extremely important in opening up the whole fields of stellar and galactic evolution. His invited lectures at meetings and symposia, and his courses as a visiting professor inspired a whole generation of research astrophysicists. Baade's attractive personality made it possible for him to make his great discoveries in a land in which he was officially an enemy alien during World War II.

  16. Hubble Space Telescope Observations of Oxygen-rich Supernova Remnants in the Magellanic Clouds. III. WFPC2 Imaging of the Young, Crab-like Supernova Remnant SNRO540-69.3

    NASA Technical Reports Server (NTRS)

    Morse, Jon A.; Smith, Nathan; Blair, William P.; Kirshner, Robert P.; Winkler, P. Frank; Hughes, John P.

    2006-01-01

    Hubble Space Telescope images with the Wide Field Planetary Camera 2 of the young, oxygen-rich, Crab-like supernova remnant SNR0540-69.3 in the Large Magellanic Cloud (LMC) reveal details of the emission distribution and the relationship between the expanding ejecta and synchrotron nebula. The emission distributions appear very similar to those seen in the Crab nebula, with the ejecta located in a thin envelope surrounding the synchrotron nebula. The [O III] emission is more extended than other tracers, forming a faint "skin" around the denser filaments and synchrotron nebula, as also observed in the Crab. The [O III] exhibits somewhat different kinematic structure in long-slit spectra, including a more extended high-velocity emission halo not seen in images. Yet even the fastest expansion speeds in SNR 0540 s halo are slow when compared to most other young supernova remnants, though the Crab nebula has similar slow expansion speeds. We show a striking correspondence between the morphology of the synchrotron nebula observed in an optical continuum filter with that recently resolved in Chandra X-ray images. We argue that the multi-component kinematics and filamentary morphology of the optical emission-line features likely result from magnetic Rayleigh-Taylor instabilities that form as the synchrotron nebula expands and sweeps up ejecta, as seen in the Crab nebula. Our images and spectra help to refine our understanding of SNR 0540 in several more detailed respects: they confirm the identification of H(alpha)+[N II] in the red spectrum, they show that the systemic velocity of SNR 0540 is not significantly different from that of the LMC, and they hint at a lower Ne abundance than the Crab (potentially indicating a more massive progenitor star).

  17. High-Energy Cosmic Rays from Supernovae

    NASA Astrophysics Data System (ADS)

    Morlino, Giovanni

    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around ˜ 1017 eV, cosmic rays are believed to be produced in the Milky Way, while above that energy, their origin is probably extragalactic. In the early 1930s, supernovae were already identified as possible sources for the galactic component of cosmic rays. After the 1970s this idea has gained more and more credibility, thanks to the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterward, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the nonlinear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources, and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.

  18. New Hubble Observations of Supernova 1987A Trace Shock Wave

    NASA Image and Video Library

    2017-12-08

    Image release September 2, 2010 ABOUT THIS IMAGE: This image shows the entire region around supernova 1987A. The most prominent feature in the image is a ring with dozens of bright spots. A shock wave of material unleashed by the stellar blast is slamming into regions along the ring's inner regions, heating them up, and causing them to glow. The ring, about a light-year across, was probably shed by the star about 20,000 years before it exploded. An international team of astronomers using the Hubble Space Telescope reports a significant brightening of the emissions from Supernova 1987A. The results, which appear in this week's Science magazine, are consistent with theoretical predictions about how supernovae interact with their immediate galactic environment. The team observed the supernova remnant in optical, ultraviolet, and near-infrared light. They studied the interaction between the ejecta from the stellar explosion and a glowing 6-trillion-mile-diameter ring of gas encircling the supernova remnant. The gas ring was probably shed some 20,000 years before the supernova exploded. Shock waves resulting from the impact of the ejecta onto the ring have brightened 30 to 40 pearl-like "hot spots" in the ring. These blobs likely will grow and merge together in the coming years to form a continuous, glowing circle. "We are seeing the effect a supernova can have in the surrounding galaxy, including how the energy deposited by these stellar explosions changes the dynamics and chemistry of the environment," said University of Colorado at Boulder Research Associate Kevin France of the Center for Astrophysics and Space Astronomy. "We can use these new data to understand how supernova processes regulate the evolution of galaxies." Discovered in 1987, Supernova 1987A is the closest exploding star to Earth to be detected since 1604 and it resides in the nearby Large Magellanic Cloud, a dwarf galaxy adjacent to our own Milky Way Galaxy. Credit: NASA, ESA, K. France (University

  19. RUNAWAY DWARF CARBON STARS AS CANDIDATE SUPERNOVA EJECTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plant, Kathryn A.; Margon, Bruce; Guhathakurta, Puragra

    2016-12-20

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531 ± 4 km s{sup −1}. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425 ± 9 km s{sup −1}. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of C {sub 2} bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the largemore » orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric C {sub 2} via mass transfer from an evolved companion.« less

  20. First Spectroscopic Identification of Massive Young Stellar Objects in the Galactic Center

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C.; Schultheis, Mathias; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A.

    2009-01-01

    We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.

  1. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  2. Sturm und Drang: The turbulent, magnetic tempest in the Galactic center

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.

    2014-05-01

    The Galactic center central molecular zone (GCCMZ) bears similarities with extragalactic starburst regions, including a high supernova (SN) rate density. As in other starbursts like M82, the frequent SNe can heat the ISM until it is filled with a hot (˜ 4 × 107 K) superwind. Furthermore, the random forcing from SNe stirs up the wind, powering Mach 1 turbulence. I argue that a turbulent dynamo explains the strong magnetic fields in starbursts, and I predict an average B ˜70 μG in the GCCMZ. I demonstrate how the SN driving of the ISM leads to equipartition between various pressure components in the ISM. The SN-heated wind escapes the center, but I show that it may be stopped in the Galactic halo. I propose that the Fermi bubbles are the wind's termination shock.

  3. THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Ballet, J.; Ackermann, M.

    2016-05-01

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identifiedmore » as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.« less

  4. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  5. Core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard

    2017-01-01

    Core-collapse supernovae, the deaths of massive stars, are among the most spectacular phenomena in astrophysics: Not only can supernovae outshine their host galaxy for weeks; they are also laboratories for the behavior of matter at supranuclear densities, and one of the few environments where collective neutrino effects can become important. Moreover, supernovae play a central role in the cosmic matter cycle, e.g., as the dominant producers of oxygen in the Universe. Yet the mechanism by which massive stars explode has eluded us for decades, partly because classical astronomical observations across the electromagnetic spectrum cannot directly probe the supernovae ``engine''. Numerical simulations are thus our primary tool for understanding the explosion mechanism(s) of massive stars. Rigorous modeling needs to take a host of important physical ingredients into account, such as the emission and partial reabsorption of neutrinos from the young proto-neutron star, multi-dimensional fluid motions, general relativistic gravity, the equation of state of nuclear matter, and magnetic fields. This is a challenging multi-physics problem that has not been fully solved yet. Nonetheless, as I shall argue in this talk, recent first-principle 3D simulations have gone a long way towards demonstrating the viability of the most popular explosion scenario, the ``neutrino-driven mechanism''. Focusing on successful explosion models of the MPA-QUB-Monash collaboration, I will discuss possible requirements for robust explosions across a wide range of progenitors, such as accurate neutrino opacities, stellar rotation, and seed asymmetries from convective shell burning. With the advent of successful explosion models, supernova theory can also be confronted with astronomical observations. I will show that recent 3D models come closer to matching observed explosion parameters (explosion energies, neutron star kicks) than older 2D models, although there are still discrepancies. This work has

  6. Exploring the Diffuse X-ray Emission of Supernova Remnant Kesteven 69 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Seo, Kyoung-Ae; Hui, Chung Yue

    2013-06-01

    We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and NH ~ 2.85 ×10^22 cm-2 respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.

  7. Astronomical Resources: Supernovae.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1987-01-01

    Contains a partially annotated, nontechnical bibliography of recent materials about supernovae, including some about the discovery of a supernova in the Large Magellanic Cloud. Includes citations of general books and articles about supernovae, articles about Supernova 1987A, and a few science fiction stories using supernovae. (TW)

  8. Expansion of Kes 73, a shell supernova remnant containing a magnetar

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz

    2014-09-01

    Formation and evolution of highly magnetized neutron stars (magnetars) remain poorly understood. We can learn about magnetars by studying their remnants. Kes 73 is a young supernova remnant containing a magnetar. But basic properties of Kes 73, including its age, remain poorly known. We propose a third-epoch observation of Kes 73 with Chandra. When combined with the 2000 and 2006 observations, this will allow for determination of the remnant's age through expansion rate measurements. We will also search for spatial variations in expansion rate that will help in understanding of the remnant's dynamics. New observations will also be used to determine abundances of heavy-element supernova ejecta, placing further constraints on the supernova that produced Kes 73.

  9. Exploring the Dust Content of Galactic Winds with MIPS

    NASA Astrophysics Data System (ADS)

    Martin, Crystal; Engelbracht, Charles; Gordon, Karl

    2005-06-01

    This program explores the dust content of galactic winds. Nearly half of all stars in the universe probably form in a starburst event, where high concentrations of supernova explosions drive galactic-scale gaseous outflows. In nearby starburst galaxies, winds have been mapped at radio, optical, and X-ray frequencies revealing bipolar lobes of hot gas laced with cooler filaments bubbling out of the host galaxy. Most of the outflowing material is entrained interstellar gas, so it will remain quite dusty unless the grains are destroyed. Dusty winds have significant implications for the circulation of heavy elements in galaxies, the dust content of the intergalactic medium, and the acceleration of gaseous outflows. GALEX images of scattered ultraviolet light from galactic winds now provide compelling evidence for the survival of some grains. MIPS photometry of starburst winds at 24, 70, and 160 microns can, in principle, measure the dust temperature providing accurate estimates of the amount of dust (e.g. Engelbracht et al. 2004). To date, however, most MIPS observations of starburst galaxies are far too shallow to detect thermal emission from halo dust. The requested observations would provide the most sensitive observations currently possible for a sample of starburst galaxies, selected to span the full range of starburst luminosity and spatial geometry in the local universe.

  10. A GeV Source in the Direction of Supernova Remnant CTB 37B

    NASA Astrophysics Data System (ADS)

    Xin, Yu-Liang; Liang, Yun-Feng; Li, Xiang; Yuan, Qiang; Liu, Si-Ming; Wei, Da-Ming

    2016-01-01

    Supernova remnants (SNRs) are the most attractive candidates for the acceleration sites of Galactic cosmic rays. We report the detection of GeV γ-ray emission with the Pass 8 events recorded by the Fermi Large Area Telescope (Fermi-LAT) in the vicinity of the shell-type SNR CTB 37B that is likely associated with the TeV γ-ray source HESS J1713-381. The photon spectrum of CTB 37B is consistent with a power law with an index of 1.89 ± 0.08 in the energy range of 0.5-500 GeV, and the measured flux connects smoothly with that of HESS J1713-381 at a few hundred GeV. No significant spatial extension and time variation are detected. The multi-wavelength data can be well fitted with either a leptonic model or a hadronic one. However, parameters of both models suggest more efficient particle acceleration than typical SNRs. Meanwhile, the X-ray and γ-ray spectral properties of CTB 37B show that it is an interesting source bridging young SNRs dominated by non-thermal emission and old SNRs interacting with molecular clouds.

  11. Observation of Galactic Sources of Very High Energy γ-RAYS with the Magic Telescope

    NASA Astrophysics Data System (ADS)

    Bartko, H.

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200 m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.

  12. High energy neutrinos and gamma-ray emission from supernovae in compact star clusters

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Ellison, D. C.; Gladilin, P. E.; Osipov, S. M.

    2017-01-01

    Compact clusters of young massive stars are observed in the Milky Way and in starburst galaxies. The compact clusters with multiple powerful winds of young massive stars and supernova shocks are favorable sites for high-energy particle acceleration. We argue that expanding young supernova (SN) shells in compact stellar clusters can be very efficient PeV CR accelerators. At a stage when a supernova shock is colliding with collective fast winds from massive stars in a compact cluster the Fermi mechanism allows particle acceleration to energies well above the standard limits of diffusive shock acceleration in an isolated SNR. The energy spectrum of protons in such an accelerator is a hard power-law with a broad spectral upturn above TeV before a break at multi-PeV energies, providing a large energy flux in the high-energy end of the spectrum. The acceleration stage in the colliding shock flow lasts for a few hundred years after the supernova explosion producing high-energy CRs that escape the accelerator and diffuse through the ambient matter producing γ-rays and neutrinos in inelastic nuclear collisions. In starburst galaxies a sizeable fraction of core collapse supernovae is expected to occur in compact star clusters and therefore their high energy gamma-ray and neutrino spectra in the PeV energy regime may differ strongly from that of our Galaxy. To test the model with individual sources we briefly discuss the recent H.E.S.S. detections of gamma-rays from two potential candidate sources, Westerlund 1 and HESS J1806-204 in the Milky Way. We argue that this model of compact star clusters, with typical parameters, could produce a neutrino flux sufficient to explain a fraction of the recently detected IceCube South Pole Observatory neutrinos.

  13. Dust in Supernovae and Supernova Remnants I: Formation Scenarios

    NASA Astrophysics Data System (ADS)

    Sarangi, A.; Matsuura, M.; Micelotta, E. R.

    2018-04-01

    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.

  14. Models for Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Woosley, Stan

    Supernovae and gamma-ray bursts are the brightest stellar mass explosions in the universe. As such, they serve as cosmic beacons for probing cosmic structure and diagnosing the properties of stars and the universe when it was young. They also produce black holes and neutron stars, interesting in themselves as laboratories where exotic physics comes into play, and they make the elements from which life arises. Consequently, supernovae and gamma-ray bursts are subject to intense study by many NASA missions. We propose focused studies in five areas of supernova research that are directly relevant to NASA's missions, especially SWIFT, HST, JWST, and planning for WFIRST. Our specific topics are a) models for Type Ia supernovae; b) extreme supernovae and first supernovae; c) magnetar-powered supernovae; d) ultra-long duration gamma-ray bursts; and e) shock breakout in supernovae. These phenomena all have in common their importance to NASA missions and the fact that they can be studied using similar tools - computer codes that do radiation hydrodynamics. Our two principal codes, KEPLER (one-dimension) and CASTRO (one to three dimensions), have been honed to the task by years of supernova modeling, and have some unique capabilities. Type Ia supernovae have long been of interest to NASA, but their importance has increased lately because of their utility in determining cosmic distances and because a string of recent observational breakthroughs has severely limited their progenitors. Responding to these developments, we propose to focus on a class of model we have previously neglected, the merger of two white dwarfs. The mergers will be studied with KEPLER and CASTRO in one and two dimensions, and the spectra and light curves determined. The library of model results will be useful in interpreting the results of present NASA missions and planning new ones. A second important area of investigation will be the study of first generation stars and the supernovae that they produce

  15. Active galactic nucleus outflows in galaxy discs

    NASA Astrophysics Data System (ADS)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  16. No hot and luminous progenitor for Tycho's supernova

    NASA Astrophysics Data System (ADS)

    Woods, T. E.; Ghavamian, P.; Badenes, C.; Gilfanov, M.

    2017-11-01

    Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of 10-100 pc for 100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho's supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant ( 3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10-8 M⊙ yr-1 (recurrent novae; M⊙ is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.

  17. Supernova nucleosynthesis and the physics of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, Toshitaka

    2012-11-01

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  18. supernovae: Photometric classification of supernovae

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  19. Probing Late-Stage Stellar Evolution through Robotic Follow-Up of Nearby Supernovae

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin

    2018-01-01

    Many of the remaining uncertainties in stellar evolution can be addressed through immediate and long-term photometry and spectroscopy of supernovae. The early light curves of thermonuclear supernovae can contain information about the nature of the binary companion to the exploding white dwarf. Spectra of core-collapse supernovae can reveal material lost by massive stars in their final months to years. Thanks to a revolution in technology—robotic telescopes, high-speed internet, machine learning—we can now routinely discover supernovae within days of explosion and obtain well-sampled follow-up data for months and years. Here I present three major results from the Global Supernova Project at Las Cumbres Observatory that take advantage of these technological advances. (1) SN 2017cbv is a Type Ia supernova discovered within a day of explosion. Early photometry shows a bump in the U-band relative to previously observed Type Ia light curves, possibly indicating the presence of a nondegenerate binary companion. (2) SN 2016bkv is a low-luminosity Type IIP supernova also caught very young. Narrow emission lines in the earliest spectra indicate interaction between the ejecta and a dense shell of circumstellar material, previously observed only in the brightest Type IIP supernovae. (3) Type Ibn supernovae are a rare class that interact with hydrogen-free circumstellar material. An analysis of the largest-yet sample of this class has found that their light curves are much more homogeneous and faster-evolving than their hydrogen-rich counterparts, Type IIn supernovae, but that their maximum-light spectra are more diverse.

  20. Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-02-09

    The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.

  1. Sagittarius A* as an origin of the Galactic PeV cosmic rays?

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Murase, Kohta; Kimura, Shigeo S.

    2017-04-01

    Supernova remnants (SNRs) have commonly been considered as a source of the observed PeV cosmic rays (CRs) or a Galactic PeV particle accelerator ("Pevatron"). In this work, we study Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, as another possible canditate of the Pevatron, because it sometimes became very active in the past. We assume that a large number of PeV CRs were injected by Sgr A* at the outburst about 107 yr ago when the Fermi bubbles were created. We constrain the diffusion coefficient for the CRs in the Galactic halo on the condition that the CRs have arrived on the Earth by now, while a fairly large fraction of them have escaped from the halo. Based on a diffusion-halo model, we solve a diffusion equation for the CRs and compare the results with the CR spectrum on the Earth. The observed small anisotropy of the arrival directions of CRs may be explained if the diffusion coefficient in the Galactic disk is smaller than that in the halo. Our model predicts that a boron-to-carbon ratio should be energy-independent around the knee, where the CRs from Sgr A* become dominant. It is unlikely that the spectrum of the CRs accelerated at the outburst is represented by a power-law similar to the one for those responsible for the gamma-ray emission from the central molecular zone (CMZ) around the Galactic center.

  2. The shock process and light element production in supernovae envelopes. Ph.D. Thesis - Chicago Univ.

    NASA Technical Reports Server (NTRS)

    Brown, Lawrence E.; Dearborn, David S.; Schramm, David N.; Larsen, Jon T.; Kurokawa, Shin

    1990-01-01

    Detailed hydrodynamic modeling of the passage of supernova shocks through the hydrogen envelopes of blue and red progenitor stars was carried out to explore the sensitivity to model conditions of light element production (specifically Li-7 and B-11) which was noted by Dearborn, Schramm, Steigman and Truran (1989) (DSST). It is found that, for stellar models with M is less than or approximately 100 M solar mass, current state of the art supernova shocks do not produce significant light element yields by hydrodynamic processes alone. The dependence of this conclusion on stellar models and on shock strengths is explored. Preliminary implications for Galactic evolution of lithium are discussed, and it is suspected that intermediate mass red giant stars may be the most consistent production site for lithium.

  3. Supernova remnant S 147 and its associated neutron star(s)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-07-01

    The supernova remnant S 147 harbors the pulsar PSR J 0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J 0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic age. Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S 147. We use the existing observational data on the system to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  4. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    DOE PAGES

    Lund, Tina; Kneller, James P.

    2013-07-16

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein conversion due to the shock wave passage throughmore » the star, and the impact of turbulence. In the Oxygen-Neon-Magnesium supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. Thus the spectral features of collective and shock effects in the neutrino signals from ONeMg supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.« less

  5. The role of neutron star mergers in the chemical evolution of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  6. Detection of Another Molecular Bubble in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Shiho; Oka, Tomoharu; Takekawa, Shunya; Yamada, Masaya; Tokuyama, Sekito; Iwata, Yuhei; Roll, Justin A.

    2018-04-01

    The l=-1\\buildrel{\\circ}\\over{.} 2 region in the Galactic center has a high CO J = 3–2/J = 1–0 intensity ratio and extremely broad velocity width. This paper reports the detection of five expanding shells in the l=-1\\buildrel{\\circ}\\over{.} 2 region based on the CO J = 1–0, 13CO J = 1–0, CO J = 3–2, and SiO J = 8–7 line data sets obtained with the Nobeyama Radio Observatory 45 m telescope and James Clerk Maxwell Telescope. The kinetic energy and expansion time of the expanding shells are estimated to be {10}48.3{--50.8} erg and {10}4.7{--5.0} yr, respectively. The origin of these expanding shells is discussed. The total kinetic energy of 1051 erg and the typical expansion time of ∼105 yr correspond to multiple supernova explosions at a rate of 10‑5–10‑4 yr‑1. This indicates that the l=-1\\buildrel{\\circ}\\over{.} 2 region may be a molecular bubble associated with an embedded massive star cluster, although the absence of an infrared counterpart makes this interpretation somewhat controversial. The expansion time of the shells increases as the Galactic longitude decreases, suggesting that the massive star cluster is moving from Galactic west to east with respect to the interacting molecular gas. We propose a model wherein the cluster is moving along the innermost x 1 orbit and the interacting gas collides with it from the Galactic eastern side.

  7. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  8. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vink, Jacco

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and {gamma}-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power lawmore » up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.« less

  9. Super-AGB Stars and their Role as Electron Capture Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel; Lattanzio, John C.

    2017-11-01

    We review the lives, deaths and nucleosynthetic signatures of intermediate-mass stars in the range ≈6-12 M⊙, which form super-AGB stars near the end of their lives. The critical mass boundaries both between different types of massive white dwarfs (CO, CO-Ne, ONe), and between white dwarfs and supernovae, are examined along with the relative fraction of super-AGB stars that end life either as an ONe white dwarf or as a neutron star (or an ONeFe white dwarf), after undergoing an electron capture supernova event. The contribution of the other potential single-star channel to electron-capture supernovae, that of the failed massive stars, is also discussed. The factors that influence these different final fates and mass limits, such as composition, rotation, the efficiency of convection, the nuclear reaction rates, mass-loss rates, and third dredge-up efficiency, are described. We stress the importance of the binary evolution channels for producing electron-capture supernovae. Recent nucleosynthesis calculations and elemental yield results are discussed and a new set of s-process heavy element yields is presented. The contribution of super-AGB star nucleosynthesis is assessed within a Galactic perspective, and the (super-)AGB scenario is considered in the context of the multiple stellar populations seen in globular clusters. A brief summary of recent works on dust production is included. Last, we conclude with a discussion of the observational constraints and potential future advances for study into these stars on the low mass/high mass star boundary.

  10. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  11. High Energy Observational Investigations of Supernova Remnants and their Interactions with Surroundings

    NASA Astrophysics Data System (ADS)

    Hui, Chung-Yue

    2013-09-01

    Here we review the effort of Fermi Asian Network (FAN) in exploring the supernova remnants (SNRs) with state-of-art high energy observatories, including Fermi Gamma-ray Space Telescope and Chandra X-ray Observatory, in the period of 2011- 2012. Utilizing the data from Fermi LAT, we have discovered the GeV emission at the position of the Galactic SNR Kes 17 which provides evidence for the hadronic acceleration. Our study also sheds light on the propagation of cosmic rays from their acceleration site to the intersteller medium. We have also launched an identification campaign of SNR candidates in the Milky Way, in which a new SNR G308.3-1.4 have been uncovered with our Chandra observation. Apart from the remnant, we have also discovered an associated compact object at its center. The multiwavelength properties of this X-ray source suggest it can possibly be the compact binary that survived a supernova explosion.

  12. Possible Detection of a Pair Instability Supernova in the Modern Universe, and Implications for the First Stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2008-03-01

    SN 2006gy radiated far more energy in visual light than any other supernova so far, and potential explanations for its energy demands have implications for galactic chemical evolution and the deaths of the first stars. It remained bright for over 200 days, longer than any normal supernova, and it radiated more than 1051 ergs of luminous energy at visual wavelengths. I argue that this Type IIn supernova was probably the explosion of an extremely massive star like Eta Carinae that retained its hydrogen envelope when it exploded, having suffered relatively little mass loss during its lifetime. That this occurred at roughly Solar metallicity challenges current paradigms for mass loss in massive-star evolution. I explore a few potential explanations for SN2006gy's power source, involving either circumstellar interaction, or instead, the decay of 56Ni to 56Co to 56Fe. If SN 2006gy was powered by the conversion of shock energy into light, then the conditions must be truly extraordinary and traditional interaction models don't work. If SN 2006gy was powered by radioactive decay, then the uncomfortably huge 56Ni mass requires that the star exploded as a pair instability supernova. The mere possibility of this makes SN 2006gy interesting, especially at this meeting, because it is the first good candidate for a genuine pair instability supernova.

  13. Galactic City at the Edge of the Universe

    NASA Image and Video Library

    2011-01-12

    Astronomers have discovered a massive cluster of young galaxies forming in the distant universe. The growing galactic metropolis is known as COSMOS-AzTEC3. This image was taken Japan Subaru telescope atop Mauna Kea in Hawaii.

  14. Impact! Chandra Images a Young Supernova Blast Wave

    NASA Astrophysics Data System (ADS)

    2000-05-01

    Two images made by NASA's Chandra X-ray Observatory, one in October 1999, the other in January 2000, show for the first time the full impact of the actual blast wave from Supernova 1987A (SN1987A). The observations are the first time that X-rays from a shock wave have been imaged at such an early stage of a supernova explosion. Recent observations of SN 1987A with the Hubble Space Telescope revealed gradually brightening hot spots from a ring of matter ejected by the star thousands of years before it exploded. Chandra's X-ray images show the cause for this brightening ring. A shock wave is smashing into portions of the ring at a speed of 10 million miles per hour (4,500 kilometers per second). The gas behind the shock wave has a temperature of about ten million degrees Celsius, and is visible only with an X-ray telescope. "With Hubble we heard the whistle from the oncoming train," said David Burrows of Pennsylvania State University, University Park, the leader of the team of scientists involved in analyzing the Chandra data on SN 1987A. "Now, with Chandra, we can see the train." The X-ray observations appear to confirm the general outlines of a model developed by team member Richard McCray of the University of Colorado, Boulder, and others, which holds that a shock wave has been moving out ahead of the debris expelled by the explosion. As this shock wave collides with material outside the ring, it heats it to millions of degrees. "We are witnessing the birth of a supernova remnant for the first time," McCray said. The Chandra images clearly show the previously unseen, shock-heated matter just inside the optical ring. Comparison with observations made with Chandra in October and January, and with Hubble in February 2000, show that the X-ray emission peaks close to the newly discovered optical hot spots, and indicate that the wave is beginning to hit the ring. In the next few years, the shock wave will light up still more material in the ring, and an inward moving

  15. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.

    2018-01-01

    We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.

  16. Asymmetric expansion of the youngest Galactic supernova remnant G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.

    2016-06-01

    The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) Type Ia SN that exploded around CE 1900, is strongly asymmetric at radio wavelengths, with a single bright maximum in its shell, but exhibits a bilaterally symmetric morphology in X-rays. It has been difficult to understand the origin of these contrasting morphologies. We present the results of expansion measurements of G1.9+0.3 that illuminate the origin of the radio asymmetry. These measurements are based on a comparison of our 2015 400-ks Chandra observation with earlier Chandra observations, including a 1-Ms observation in 2011. The mean expansion rate from 2011 to 2015 is 0.58% per yr, in agreement with previous measurements. We also confirm that the expansion decreases radially away from the remnant's center along the major E-W axis, from 0.77% per yr to 0.53% per yr. Large variations in expansion are also present along the minor N-S axis, but expansion there is strongly asymmetric and varies on small spatial scales. We use the “Demons” method to study the complex motions within G1.9+0.3. This method provides a nonparametric way for measuring these motions globally. We find motions varying by a factor of 5, from 0.09" to 0.44" per year. The slowest shocks are in the north, at the outer boundary of the bright radio emission, with speeds there as low as 3,600 km/s (for an assumed distance of 8.5 kpc), much less than the average shock speed of 12,000 km/s. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. The presence of this asymmetric ambient medium naturally explains the radio asymmetry. The SN ejecta have also been strongly decelerated in the N, but they expand faster than the blast wave. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially-integrated X-ray flux continues to increase with time. As with Kepler

  17. Supernova 1987A: The Supernova of a Lifetime

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. Fermi Large Area Telescope Detection Of The Young Supernova Remnant Tycho

    DOE PAGES

    Giordano, F.; Naumann-Godo, M.; Ballet, J.; ...

    2011-12-07

    After almost three years of data taking in sky survey mode, the Fermi -LAT has detected γ-ray emission toward the Tycho’s Supernova Remnant (SNR). The Tycho SNR is among the youngest remnants in the Galaxy, originating from a Type Ia Supernova in AD 1572. The γ-ray integral flux from 400 MeV up to 100 GeV has been measured to be (3.5±1.1stat±0.7syst)×10 -9 cm -2s -1 with a photon index of 2.3±0.2stat±0.1syst. A simple model consistent with TeV, X-ray and radio data is sufficient to explain the observed emission as originating from π 0-decays as a result of cosmicray acceleration andmore » interaction with the ambient medium.« less

  19. Supernova Cosmology Project

    Science.gov Websites

    Supernova The Supernova Cosmology Project The image above and the movie clips ( QuickTime, or MPEG), show Centaurus A galaxy. The image on the left shows how a supernova appears as it brightens and fades brightness is, from the image at left. The bottom right graph shows how the spectrum of the supernova changes

  20. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    DOE PAGES

    Takanashi, N.; Doi, M.; Yasuda, N.; ...

    2016-12-06

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less

  1. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takanashi, N.; Doi, M.; Yasuda, N.

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less

  2. Galactic Building Blocks Seen Swarming Around Andromeda

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Green Bank, WV - A team of astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has made the first conclusive detection of what appear to be the leftover building blocks of galaxy formation -- neutral hydrogen clouds -- swarming around the Andromeda Galaxy, the nearest large spiral galaxy to the Milky Way. This discovery may help scientists understand the structure and evolution of the Milky Way and all spiral galaxies. It also may help explain why certain young stars in mature galaxies are surprisingly bereft of the heavy elements that their contemporaries contain. Andromeda Galaxy This image depicts several long-sought galactic "building blocks" in orbit of the Andromeda Galaxy (M31). The newfound hydrogen clouds are depicted in a shade of orange (GBT), while gas that comprises the massive hydrogen disk of Andromeda is shown at high-resolution in blue (Westerbork Sythesis Radio Telescope). CREDIT: NRAO/AUI/NSF, WSRT (Click on Image for Larger Version) "Giant galaxies, like Andromeda and our own Milky Way, are thought to form through repeated mergers with smaller galaxies and through the accretion of vast numbers of even lower mass 'clouds' -- dark objects that lack stars and even are too small to call galaxies," said David A. Thilker of the Johns Hopkins University in Baltimore, Maryland. "Theoretical studies predict that this process of galactic growth continues today, but astronomers have been unable to detect the expected low mass 'building blocks' falling into nearby galaxies, until now." Thilker's research is published in the Astrophysical Journal Letters. Other contributors include: Robert Braun of the Netherlands Foundation for Research in Astronomy; Rene A.M. Walterbos of New Mexico State University; Edvige Corbelli of the Osservatorio Astrofisico di Arcetri in Italy; Felix J. Lockman and Ronald Maddalena of the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia; and Edward Murphy of the

  3. Neutrinos from type Ia supernovae: The gravitationally confined detonation scenario

    NASA Astrophysics Data System (ADS)

    Wright, Warren P.; Kneller, James P.; Ohlmann, Sebastian T.; Röpke, Friedrich K.; Scholberg, Kate; Seitenzahl, Ivo R.

    2017-02-01

    Despite their use as cosmological distance indicators and their importance in the chemical evolution of galaxies, the unequivocal identification of the progenitor systems and explosion mechanism of normal type Ia supernovae (SNe Ia) remains elusive. The leading hypothesis is that such a supernova is a thermonuclear explosion of a carbon-oxygen white dwarf, but the exact explosion mechanism is still a matter of debate. Observation of a galactic SN Ia would be of immense value in answering the many open questions related to these events. One potentially useful source of information about the explosion mechanism and progenitor is the neutrino signal because the neutrinos from the different mechanisms possess distinct spectra as a function of time and energy. In this paper, we compute the expected neutrino signal from a gravitationally confined detonation (GCD) explosion scenario for a SN Ia and show how the flux at Earth contains features in time and energy unique to this scenario. We then calculate the expected event rates in the Super-K, Hyper-K, JUNO, DUNE, and IceCube detectors and find both Hyper-K and IceCube will see a few events for a GCD supernova at 1 kpc or closer, while Super-K, JUNO, and DUNE will see events if the supernova is closer than ˜0.3 kpc . The distance and detector criteria needed to resolve the time and spectral features arising from the explosion mechanism, neutrino production, and neutrino oscillation processes are also discussed. The neutrino signal from the GCD is then compared with the signal from a deflagration-to-detonation transition (DDT) explosion model computed previously. We find the overall event rate is the most discriminating feature between the two scenarios followed by the event rate time structure. Using the event rate in the Hyper-K detector alone, the DDT can be distinguished from the GCD at 2 σ if the distance to the supernova is less than 2.3 kpc for a normal mass ordering and 3.6 kpc for an inverted ordering.

  4. Galactic fly-bys: New source of lithium production

    NASA Astrophysics Data System (ADS)

    Prodanović, Tijana; Bogdanović, Tamara; Urošević, Dejan

    2013-05-01

    Observations of low-metallicity halo stars have revealed a puzzling result: the abundance of Li7 in these stars is at least three times lower than their predicted primordial abundance. It is unclear whether the cause of this disagreement is a lack of understanding of lithium destruction mechanisms in stars or the non-standard physics behind the big bang nucleosynthesis (BBN). Uncertainties related to the destruction of lithium in stars can be circumvented if lithium abundance is measured in the “pristine” gas of the low metallicity systems. The first measurement in one such system, the small magellanic cloud (SMC), was found to be at the level of the pure expected primordial value, but is on the other hand, just barely consistent with the expected galactic abundance for the system at the SMC metallicity, where important lithium quantity was also produced in interactions of galactic cosmic rays and presents an addition to the already present primordial abundance. Because of the importance of the SMC lithium measurement for the resolution of the lithium problem, we here draw attention to the possibility of another post-BBN production channel of lithium, which could present an important addition to the observed SMC lithium abundance. Besides standard galactic cosmic rays, additional post-BBN production of lithium might come from cosmic rays accelerated in galaxy-galaxy interactions. This might be important for a system such is the SMC, which has experienced galaxy harassment in its history. Within a simplified but illustrative framework we demonstrate that large-scale tidal shocks from a few galactic fly-bys can possibly produce lithium in amounts comparable to those expected from the interactions of galactic cosmic-rays produced in supernovae over the entire history of a system. In case of the SMC, we find that only two such fly-bys could possibly account for as much lithium as the standard, galactic cosmic ray production channel. However, adding any a new

  5. Distribution of cosmic gamma rays in the galactic anticenter region as observed by SAS-2

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Hartman, R. C.; Thompson, D. J.; Ozel, M. E.; Tumer, T.; Bignami, G. F.; Ogelman, H.

    1975-01-01

    The high energy (above 35 MeV) gamma ray telescope flown on the second Small Astronomy Satellite has collected over one thousand gamma rays from the direction of the galactic anticenter. In addition to the diffuse galactic emission the distribution indicates a strong pulsed contribution from the Crab nebula with the same period and phase as the NP0532 pulsar. There also seems to be an excess in the direction of (gal. long. ? 195 deg; gal. lat ? +5 deg) where there is a region containing old supernova remnants. Search for gamma ray pulsations from other pulsars in the region do not show any statistically significant signal. The general intensity distribution of the gamma rays away from the plane appear to be similar to nonthermal radio emission brightness contours.

  6. Newly Formed Dust in the Core-Collapse Supernova Remnant E0102

    NASA Astrophysics Data System (ADS)

    Ludwig, Bethany; Sandstrom, Karin; Bolatto, Alberto

    2018-01-01

    The mechanism of interstellar dust formation is a matter of continuing debate. In the very early universe, some high redshift galaxies are observed to have a substantial amount of dust. This has led to the suggestion that core collapse supernovae must be the producers of much of the dust in the universe. However, most observed supernova remnants (SNRs) in the local universe have measured dust yields far below the necessary levels. Cassiopeia A and SN 1987A are exceptions--in these young remnants, Herschel Space Observatory observations found large quantities of newly-formed dust. In these two cases, the SNR is young enough that the reverse shock has not yet interacted with most of the newly formed dust. To study supernova dust production, we observe SNR 1E0102.2-7219, which is approximately 1000 years old with a reverse shock that has only reached into a small part of its ejecta making it an excellent candidate to search for newly formed dust that has not yet been destroyed by those shocks. Using Herschel data, we carefully model the background around the remnant to remove emission that is unrelated to the SNR. We then measure the mass, temperature, and chemical composition of the dust by fitting the spectral energy distribution. Our findings reveal a substantial amount of previously undetected cold dust in the remnant, suggesting that indeed core collapse supernovae may host substantial amounts of newly formed dust, at least prior to the passage of the reverse shock.

  7. A New Supernova Remnant Coincident with the Slow X-Ray Pulsar AX J1845-0258.

    PubMed

    Gaensler; Gotthelf; Vasisht

    1999-11-20

    We report on Very Large Array observations in the direction of the recently discovered slow X-ray pulsar AX J1845-0258. In the resulting images, we find a 5&arcmin; shell of radio emission; the shell is linearly polarized with a nonthermal spectral index. We classify this source as a previously unidentified, young (<8000 yr) supernova remnant (SNR), G29.6+0.1, which we propose is physically associated with AX J1845-0258. The young age of G29.6+0.1 is then consistent with the interpretation that anomalous X-ray pulsars (AXPs) are isolated, highly magnetized neutron stars ("magnetars"). Three of the six known AXPs can now be associated with SNRs; we conclude that AXPs are young ( less, similar10,000 yr) objects and that they are produced in at least 5% of core-collapse supernovae.

  8. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  9. Neutrino Flavor Evolution in Turbulent Supernova Matter

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.

  10. A New Type of Transient High-Energy Source in the Direction of the Galactic Centre

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; VanParadijs, J.; Fishman, G. J.; Briggs, M. S.; Kommers, J.; Harmon, B. A.; Meegan, C. A.; Lewin, W. H. G.

    1996-01-01

    Sources of high-energy (greater than 20 keV) bursts fall into two distinct types: the non-repeating gamma-ray bursters, several thousand of which have been detected but whose origin remains unknown, and the soft gamma-ray repeaters (SGRs), of which there are only three. The SGRs are known to be associated with supernova remnants, suggesting that the burst events most probably originate from young neutron stars. Here we report the detection of a third type of transient high-energy source. On 2 December 1995, we observed the onset of a sequence of hard X-ray bursts from a direction close to that of the Galactic Center. The interval between bursts was initially several minutes, but after two days, the burst rate had dropped to about one per hour and has been largely unchanged since then. More than 1,000 bursts have now been detected, with remarkably similar light curves and intensities; this behaviour is unprecendented among transient X-ray and gamma-ray sources. We suggest that the origin of these bursts might be related to the spasmodic accretion of material onto a neutron star.

  11. Supernova Relic Neutrinos and the Supernova Rate Problem: Analysis of Uncertainties and Detectability of ONeMg and Failed Supernovae

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R SN) in the redshift range 0 <= z <= 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this "supernova rate problem" by detecting the energy spectrum of supernova relic neutrinos with a next generation 106 ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 <=z <= 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R SN has large uncertainties {\\sim }1.8^{+1.6}_{-0.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to {\\sim }1.1^{+1.0}_{-0.4} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and

  12. Exposing Hierarchical Parallelism in the FLASH Code for Supernova Simulation on Summit and Other Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papatheodore, Thomas L.; Messer, Bronson

    Since roughly 100 million years after the big bang, the primordial elements hydrogen (H), helium (He), and lithium (Li) have been synthesized into heavier elements by thermonuclear reactions inside of the stars. The change in stellar composition resulting from these reactions causes stars to evolve over the course of their lives. Although most stars burn through their nuclear fuel and end their lives quietly as inert, compact objects, whereas others end in explosive deaths. These stellar explosions are called supernovae and are among the most energetic events known to occur in our universe. Supernovae themselves further process the matter ofmore » their progenitor stars and distribute this material into the interstellar medium of their host galaxies. In the process, they generate ∼1051 ergs of kinetic energy by sending shock waves into their surroundings, thereby contributing to galactic dynamics as well.« less

  13. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{supmore » 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the

  14. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  15. Stardust, Supernovae and the Chirality of the Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, R N; Kajino, T; Onaka, T

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereofmore » on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.« less

  16. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  17. Resolving Star Formation, Multiphase ISM Structure, and Wind Driving with MHD and RHD Models of Galactic Disks

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve

    Current studies of star and galaxy formation have concluded that energetic feedback from young stars and supernovae (SNe) is crucial, both for controlling observed interstellar medium (ISM) properties and star formation rates in the Milky Way and other galaxies, and for driving galactic winds that govern the baryon abundance in dark matter halos. However, in many numerical studies of the ISM, energy inputs have not been implemented self-consistently with the evolving rate of gravitational collapse to make stars, or have considered only isolated star-forming clouds without a realistic galactic environment (including sheared rotation and externally-originating SNe), or have not directly incorporated radiation, magnetic, and chemical effects that are important or even dominant. In models of galaxy formation and evolution in the cosmic context, galactic winds are indispensable but highly uncertain as the physics of superbubble evolution and radiation-gas interactions cannot be resolved. Our central objectives are (1) to address the above limitations of current models, developing self-consistent simulations of the multiphase ISM in disk galaxies that resolve both star formation and stellar feedback, covering the range of scales needed to connect star cluster formation to galactic superwind ejection, and the range of environments from dwarfs to ULIRGs; and (2) to analyze the detailed properties of the gas, magnetic field, radiation field, and star formation/SNe in our simulations, including dependencies on local galactic disk environment, and to connect intrinsic properties with observable diagnostics. The proposed project will employ the Athena code for numerical magneto-hydrodynamic (MHD) and radiation-hydrodynamic (RHD) simulations, using comprehensive physics modules that have been developed, tested, and demonstrated in sample simulations. We will consider local ``shearing box'' disk models with gas surface density Sigma = 2 - 10,000 Msun/pc^2, and a range of stellar

  18. Matching Supernovae to Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  19. X-ray emission from reverse-shocked ejecta in supernova remnants

    NASA Technical Reports Server (NTRS)

    Cioffi, Denis F.; Mckee, Christopher F.

    1990-01-01

    A simple physical model of the dynamics of a young supernova remnant is used to derive a straightforward kinematical description of the reverse shock. With suitable approximations, formulae can then be developed to give the X-ray emission of the reverse-shocked ejecta. The results are found to agree favorably with observations of SN1006.

  20. Evolution of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  1. The very young resolved stellar populations around stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Maund, Justyn R.

    2018-05-01

    The massive star origins for Type IIP supernovae (SNe) have been established through direct detection of their red supergiants progenitors in pre-explosion observations; however, there has been limited success in the detection of the progenitors of H-deficient SNe. The final fate of more massive stars, capable of undergoing a Wolf-Rayet phase, and the origins of Type Ibc SNe remain debated, including the relative importance of single massive star progenitors or lower mass stars stripped in binaries. We present an analysis of the ages and spatial distributions of massive stars around the sites of 23 stripped-envelope SNe, as observed with the Hubble Space Telescope, to probe the possible origins of the progenitors of these events. Using a Bayesian stellar populations analysis scheme, we find characteristic ages for the populations observed within 150 pc of the target Type IIb, Ib, and Ic SNe to be log (t) = 7.20, 7.05, and 6.57, respectively. The Type Ic SNe in the sample are nearly all observed within 100 pc of young, dense stellar populations. The environment around SN 2002ap is an important exception both in terms of age and spatial properties. These findings may support the hypothesis that stars with Minit > 30 M⊙ produce a relatively large proportion of Type Ibc SNe, and that these SN subtypes arise from progressively more massive progenitors. Significantly higher extinctions are derived towards the populations hosting these SNe than previously used in analysis of constraints from pre-explosion observations. The large initial masses inferred for the progenitors are in stark contrast with the low ejecta masses estimated from SN light curves.

  2. Very-high energy observations of the galactic center region by VERITAS in 2010-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Beilicke, M.; Buckley, J. H.

    2014-08-01

    The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) γ-ray observations. Potential sources of GeV/TeV γ-ray emission have been suggested, e.g., the accretion of matter onto the supermassive black hole, cosmic rays from a nearby supernova remnant (e.g., Sgr A East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significancemore » by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above ∼2.5 TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic, and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.« less

  3. Searching for fossil fragments of the Galactic bulge formation process

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  4. Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations

    NASA Astrophysics Data System (ADS)

    Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.

    2018-02-01

    The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.

  5. How to Find Gravitationally Lensed Type Ia supernovae

    DOE PAGES

    Goldstein, Daniel A.; Nugent, Peter E.

    2016-12-29

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H 0, w, and Ω m via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear tomore » be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts' photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. Finally, we also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search - despite the fact that this survey will not resolve a single system.« less

  6. Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources

    NASA Astrophysics Data System (ADS)

    D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale

    2018-02-01

    The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.

  7. Selected Theoretical Studies Group contributions to the 14th International Cosmic Ray conference. [including studies on galactic molecular hydrogen, interstellar reddening, and on the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The galactic distribution of H2 was studied through gamma radiation and through X-ray, optical, and infrared absorption measurements from SAS-2 and other sources. A comparison of the latitude distribution of gamma-ray intensity with reddening data shows reddening data to give the best estimate of interstellar gas in the solar vicinity. The distribution of galactic cosmic ray nucleons was determined and appears to be identical to the supernova remnant distribution. Interactions between ultrahigh energy cosmic-ray nuclei and intergalactic photon radiation fields were calculated, using the Monte Carlo method.

  8. The H.E.S.S. Galactic plane survey

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carrigan, S.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Malyshev, D.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schandri, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-04-01

    We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2-100 TeV). We constructed a catalog of VHE γ-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible

  9. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less

  10. A Study of the Type II-Plateau Supernova SN 2014cx

    NASA Astrophysics Data System (ADS)

    Flatland, Kelsi; Leonard, Douglas Christopher; Williams, George Grant; Smith, Paul S.; Bilinski, Christopher; Dessart, Luc; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah; Milne, Peter; Smith, Nathan

    2015-08-01

    The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the initial analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.

  11. A Study of the Type II-Plateau Supernova SN 2014cx

    NASA Astrophysics Data System (ADS)

    Flatland, Kelsi; Leonard, Douglas C.; Williams, Grant; Smith, Paul S.; Bilinski, Christopher; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah N.; Milne, Peter; Smith, Nathan; Supernova Spectropolarimetry Project

    2016-06-01

    The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.

  12. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2002-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory (LLNL) to study X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae. Progress made during the first year of the grant is described, as is work planned for the second year.

  13. Supernova Cosmology Project

    Science.gov Websites

    Supernova Survey: An Intensive HST Survey for z>1 Type Ia Supernovae by Targeting Galaxy Clusters Survey new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble improvement in the efficiency of finding SNe compared to an HST field survey and a factor of three improvement

  14. Supernova Cosmology Project

    Science.gov Websites

    Space Telescope Cluster Supernova Survey: II. The Type Ia Supernova Rate in High-Redshift Galaxy /abs/0809.1648 Constraining Dust and Color Variations of High-z SNe Using NICMOS on the Hubble Space /0804.4142 A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope

  15. Discovery and Spectroscopic Classification of DLT18q/AT2018aoz as a young type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Sand, D.; Valenti, S.; Wyatt, S.; Bostroem, K. A.; Reichart, D. E.; Haislip, J. B.; Kouprianov, V.

    2018-04-01

    We report the discovery and classification of DLT18q/AT 2018aoz. The supernova was found on 2018 April 02.1 (UT) at r 15.1 mag during the ongoing D < 40 Mpc (DLT40) supernova search, using data from the PROMPT5 0.41m telescope located at CTIO.

  16. 3D Simulations of Supernova Remnants from Type Ia Supernova Models

    NASA Astrophysics Data System (ADS)

    Johnson, Heather; Reynolds, S. P.; Frohlich, C.; Blondin, J. M.

    2014-01-01

    Type Ia supernovae (SNe) originate from thermonuclear explosions of white dwarfs. A great deal is still unknown about the explosion mechanisms, particularly the degree of asymmetry. However, Type Ia supernova remnants (SNRs) can bear the imprint of asymmetry long after the explosion. A SNR of interest is G1.9+0.3, the youngest Galactic SNR, which demonstrates an unusual spatial distribution of elements in the ejecta. While its X-ray spectrum is dominated by synchrotron emission, spectral lines of highly ionized Si, S, and Fe are seen in a few locations, with Fe near the edge of the remnant and with strongly varying Fe/Si ratios. An asymmetric explosion within the white dwarf progenitor may be necessary to explain these unusual features of G1.9+0.3, in particular the shocked Fe at large radii. We use the VH-1 hydrodynamics code to evolve initial Type Ia explosion models in 1, 2, and 3 dimensions at an age of 100 seconds provided by other researchers to study asymmetry, the ignition properties, and the nucleosynthesis resulting from these explosions. We follow the evolution of these models interacting with a uniform external medium to a few hundred years in age. We find the abundance and location of ejecta elements from our models to be inconsistent with the observations of G1.9+0.3; while our models show asymmetric element distributions, we find no tendency for iron-group elements to be found beyond intermediate-mass elements, or for significant iron to be reverse-shocked at all at the age of G1.9+0.3. We compare the amounts of shocked iron-group and intermediate-mass elements as a function of time in the different models. Some new kind of explosion asymmetry may be required to explain G1.9+0.3. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  17. Deep H.E.S.S. observations of the supernova remnant RX J0852.0-4622

    NASA Astrophysics Data System (ADS)

    Sushch, Iurii; Paz Arribas, Manuel; Komin, Nukri; Schwanke, Ullrich

    2016-06-01

    The largest TeV source, RX J0852.0-4622 (Vela Jr.), is one of the few supernova remnants (SNRs) with well resolved shell-like morphology at very-high-energy (VHE; E>100 GeV) gamma-rays. Strong non-thermal emission across the electromagnetic spectrum from radio to VHE gamma-rays, young age and proximity of the remnant makes it one of the prime objects for the study of particle acceleration aiming to test the paradigm of SNRs being sources of Galactic cosmic rays. Here we present deep H.E.S.S. observations of RX J0852.0-4622 with roughly doubled exposure comparing to previously published results. Improved statistics together with new analysis techniques result in a firm determination of the cut-off in the gamma-ray spectrum and allow the spatially resolved spectroscopy studies. A smooth connection of the H.E.S.S. spectrum to the spectrum at GeV energies as reported by Fermi/LAT provides an exciting opportunity to recover the present-time parent particle population in both leptonic and hadronic scenarios directly from the gamma-ray data alone. These new observations provide us a deeper insight and better understanding of the physical processes in SNRs.

  18. Herschel Detects a Massive Dust Reservoir in Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Matsuura, M.; Dwek, E.; Meixner, M.; Otsuka, M.; Babler, B.; Barlow, M. J.; Roman-Duval, J.; Engelbracht, C.; Sandstrom K.; Lakicevic, M.; hide

    2011-01-01

    We report far-infrared and submillimeter observations of Supernova 1987A, the star that exploded on February 23, 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of approx.17-23 K at a rate of about 220 stellar luminosity. The intensity and spectral energy distribution of the emission suggests a dust mass of approx.0.4-0.7 stellar mass. The radiation must originate from the SN ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high red shifts.

  19. Supernova Origin of Cosmic Rays from a γ-Ray Signal in the Constellation III Region of the Large Magellanic Cloud.

    PubMed

    Neronov, Andrii

    2017-11-10

    Cosmic rays could be produced via shock acceleration powered by supernovae. The supernova hypothesis implies that each supernova injects, on average, some 10^{50}  erg in cosmic rays, while the shock acceleration model predicts a power law cosmic ray spectrum with the slope close to 2. Verification of these predictions requires measurement of the spectrum and power of cosmic ray injection from supernova population(s). Here, we obtain such measurements based on γ-ray observation of the Constellation III region of the Large Magellanic Cloud. We show that γ-ray emission from this young star formation region originates from cosmic rays injected by approximately two thousand supernovae, rather than by a massive star wind powered by a superbubble predating supernova activity. Cosmic ray injection power is found to be (1.1_{-0.2}^{+0.5})×10^{50}  erg/supernova (for the estimated interstellar medium density 0.3  cm^{-3}). The spectrum is a power law with slope 2.09_{-0.07}^{+0.06}. This agrees with the model of particle acceleration at supernova shocks and provides a direct proof of the supernova origin of cosmic rays.

  20. Supernova explosions.

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1971-01-01

    The recent history of theoretical investigations of the supernova mechanism is considered, giving attention also to a number of nuclear physical problems which have yet to be solved in connection with the thermonuclear detonation. A variety of different processes of nucleo-synthesis are expected to occur in association with the supernova explosions. Aspects of the chemical evolution of the galaxy are discussed including the cosmic ray production of lithium, beryllium, and boron in the interstellar medium. Various hypotheses to account for the very large amount of light that comes from a supernova explosion are also examined.

  1. Supernova neutrino three-flavor evolution with dominant collective effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene

    2009-04-15

    Neutrino and antineutrino fluxes from a core-collapse galactic supernova are studied, within a representative three-flavor scenario with inverted mass hierarchy and tiny 1-3 mixing. The initial flavor evolution is dominated by collective self-interaction effects, which are computed in a full three-family framework along an averaged radial trajectory. During the whole time span considered (t = 1-20 s), neutrino and antineutrino spectral splits emerge as dominant features in the energy domain for the final, observable fluxes. The main results can be useful for SN event rate simulations in specific detectors. Some minor or unobservable three-family features (e.g., related to the muonic-tauonicmore » flavor sector), as well as observable effects due to variations in the spectral input, are also discussed for completeness.« less

  2. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Park, H.-S.; Huntington, C. M.; Miles, A. R.; Remington, B. A.; Drake, R. P.; Tranthan, M. A.; Handy, T. A.; Shvarts, D.; Malamud, G.; Shimony, A.; Shvarts, D.; Kline, J.; Flippo, K. A.; Doss, F. W.; Plewa, T.

    2017-10-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. We present data and simulations from Rayleigh-Taylor instability experiments in high- and low- energy flux experiments performed at the National Ignition Facility. We also will discuss the apparent, larger role of heat conduction when we closely examined the comparison between the experimental results, and the SNR observations and models. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  3. Inhomogeneous galactic chemical evolution of r-process elements

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Benjamin

    2018-01-01

    Stars provide a fundamental contribution to the cosmic life cycle. Gas clouds form and collapse to stars, experiencing different evolutionary stages according to their properties like mass and metal content. Small stars like our Sun end their life as planetary nebulae, while more massive stars end their evolution with violent explosions like supernovae or hypernovae, leaving behind either a neutron star or a black hole. These compact objects may also merge, leading to a new ejection of material. Today the origin of the heaviest elements is still matter of debate. The relative contributions of the proposed sources of r-process elements (e.g., Supernovae, Neutron Star Mergers) in the early galaxy as well as in the Sun is one of the main uncertainties. We use the inhomogeneous chemical evolution tool “ICE” [1, 2] to study the role of some of the main parameters of the cosmic life cycle. With ICE's high resolution (≥ 20parsec/cell) runs, we are able to get converged simulations of the inhomogeneities in the early Galactic evolution stages, and of the observed scatter of r-process elements in metal-poor stars [3].[1] B. Wehmeyer, M. Pignatari, F.-K. Thielemann, 2015 MNRAS 452, 1970–1981[2] B. Wehmeyer, M. Pignatari, F.-K. Thielemann, 2016 AIPC 1743, 040009[3] I. Roederer et al., 2010 ApJ 724:975–993

  4. LAD Early Career Prize Talk:Laboratory astrophysics experiments investigating the effects of high energy fluxes on Rayleigh-Taylor instability growth relevant to young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan

    2017-06-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.

  5. Assessing the link between recent supernovae near Earth and the iron-60 anomaly in a deep-sea crust

    NASA Astrophysics Data System (ADS)

    Schulreich, Michael M.; Breitschwerdt, Dieter

    2016-06-01

    Some time ago, an enhanced concentration of the radionuclide 60Fe was discovered in a deep-sea ferromanganese crust, isolated in layers dating from about 2.2, Myr ago. Since 60Fe (half-life of 2.6, Myr) is not naturally produced on Earth, such an excess can only be attributed to extraterrestrial sources, particularly one or several nearby supernovae in the recent past. It has been speculated that these supernovae might have been involved in the formation of the Local Superbubble, our Galactic habitat. The aim of this talk is to provide a quantitative evidence for this scenario. For that purpose, I will present results from high-resolution hydrodynamical simulations of the Local Superbubble and its neighbour Loop I in different environments, including a self-consistently evolved supernova-driven interstellar medium. For the superbubble modelling, the time sequence and locations of the generating core-collapse supernova explosions are taken into account, which are derived from the mass spectrum of the perished members of certain, carefully preselected stellar moving groups. The release and turbulent mixing of 60Fe is followed via passive scalars, where the yields of the decaying radioisotope were adjusted according to recent stellar evolution calculations. The models are able to reproduce both the timing and the intensity of the 60Fe excess observed with rather high precision.

  6. Peculiar Supernovae

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan; Margutti, Raffaella

    2018-06-01

    What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.

  7. Mapping Calcium Rich Ejecta in Two Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Fesen, Robert

    2016-10-01

    Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.

  8. Supernovae neutrino pasta interaction

    NASA Astrophysics Data System (ADS)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  9. Fermi-LAT Observations of Supernova Remnants Kesteven 79

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Slane, Patrick; Castro, Daniel

    2014-03-01

    In this paper, we report on the detection of γ-ray emission coincident with the Galactic supernova remnant (SNR) Kesteven 79 (Kes 79). We analyzed approximately 52 months of data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 79 is thought to be interacting with adjacent molecular clouds, based on the presence of strong 12CO J = 1 → 0 and HCO+ J = 1 → 0 emission and the detection of 1720 MHz line emission toward the east of the remnant. Acceleration of cosmic rays is expected to occur at SNR shocks, and SNRs interacting with dense molecular clouds provide a good testing ground for detecting and analyzing the production of γ-rays from the decay of π0 into two γ-ray photons. This analysis investigates γ-ray emission coincident with Kes 79, which has a detection significance of ~7σ. Additionally, we present an investigation of the spatial and spectral characteristics of Kes 79 using multiple archival XMM-Newton observations of this remnant. We determine the global X-ray properties of Kes 79 and estimate the ambient density across the remnant. We also performed a similar analysis for Galactic SNR Kesteven 78 (Kes 78), but due to large uncertainties in the γ-ray background model, no conclusion can be made about an excess of GeV γ-ray associated with the remnant.

  10. The Supernova Spectropolarimetry (SNSPOL) Project; Probing the Geometry of Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Williams, George Grant; Leonard, Douglas; Smith, Nathan; Smith, Paul; Milne, Peter; Hoffman, Jennifer L.; Bilinski, Christopher

    2018-01-01

    In recent years, evidence has grown that most supernovae exhibit departures from spherical symmetry. These results, together with full three-dimensional modeling, are exposing the possibility that asymmetries are not simply an observable feature of some supernovae, but may, in fact, be a necessity of the explosion mechanism itself. However, with the exception of SN 1987A, a supernova photosphere cannot be resolved through direct imaging from ground or space. Only the powerful technique of polarimetry can directly probe asymmetries on those spatial scales. Spectropolarimetry enhances the power of this technique by revealing wavelength-dependent variations that may result from differences in the geometrical distributions of the various ionic species. Multi-epoch observations over several months can be used to follow the evolution of these asymmetries as a supernova evolves and its photosphere recedes through the ejecta. The Supernova Spectropolarimetry (SNSPOL) Project aims to study the predominance and characteristics of asymmetries in all types of supernovae by decoding their complex, time-dependent polarimetric behavior. This is accomplished through multi-epoch observations using the CCD Imaging/Spectropolarimeter (SPOL) on the 61” Kuiper, the 90” Bok, and the 6.5-m MMT telescopes. During the past six years, the SNSPOL Project has observed more than 95 supernovae, approximately 2/3 of which have been observed at multiple epochs. Here we present a summary of the project, its current status, and a few selected results.

  11. OBSERVATIONS OF THE YOUNG SUPERNOVA REMNANT RX J1713.7-3946 WITH THE FERMI LARGE AREA TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0.{sup 0}55 {+-} 0.{sup 0}04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of {Gamma} = 1.5 {+-} 0.1 thatmore » coincides in normalization with the steeper H.E.S.S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.« less

  12. An Observational Study of Blended Young Stellar Clusters in the Galactic Plane - Do Massive Stars form First?

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban

    2018-01-01

    From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($<100~\\rm{M}_{\\odot}$), galactic blended clusters. For all of the clusters we obtain the most probable individual SED of each member and derive their physical properties, effectively deblending the confused emission from individual YSOs. Our algorithm incorporates a combined probabilistic model of the blended SEDs and the unresolved images in the long-wavelength end. We find that our results are compatible with competitive accretion in the central regions of young clusters, with the most massive stars forming early on in the process and less massive stars forming about 1Myr later. We also find evidence for a relationship between the total stellar mass of the cluster and the mass of the most massive member that favors optimal sampling in the cluster and disfavors random sampling for the canonical IMF, implying that star formation is self-regulated, and that the mass of the most massive star in a cluster depends on the available resources. The method presented here is easily adapted to future observations of

  13. Hubble views a spectacular supernova with interstellar material over 160,000 light-years away

    NASA Image and Video Library

    2017-12-08

    This NASA/ESA Hubble Space Telescope image captures the remnants of a long-dead star. These rippling wisps of ionized gas, named DEM L316A, are located some 160,000 light-years away within one of the Milky Way’s closest galactic neighbors — the Large Magellanic Cloud (LMC). The explosion that formed DEM L316A was an example of an especially energetic and bright variety of supernova, known as a Type Ia. Such supernova events are thought to occur when a white dwarf star steals more material than it can handle from a nearby companion, and becomes unbalanced. The result is a spectacular release of energy in the form of a bright, violent explosion, which ejects the star’s outer layers into the surrounding space at immense speeds. As this expelled gas travels through the interstellar material, it heats up and ionizes it, producing the faint glow that Hubble’s Wide Field Camera 3 has captured here. The LMC orbits the Milky Way as a satellite galaxy and is the fourth largest in our group of galaxies, the Local Group. DEM L316A is not the only supernova remnant in the LMC; Hubble came across another one in 2010 with SNR 0509, and in 2013 it snapped SNR 0519. Image credit: ESA (European Space Agency)/Hubble & NASA, Y. Chu

  14. Clustering of Local Group Distances: Publication Bias or Correlated Measurements? V. Galactic Rotation Constants

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Bono, Giuseppe

    2017-10-01

    As part of an extensive data mining effort, we have compiled a database of 162 Galactic rotation speed measurements at R 0 (the solar Galactocentric distance), {{{\\Theta }}}0. Published between 1927 and 2017 June, this represents the most comprehensive set of {{{\\Theta }}}0 values since the 1985 meta-analysis that led to the last revision of the International Astronomical Union’s recommended Galactic rotation constants. Although we do not find any compelling evidence for the presence of “publication bias” in recent decades, we find clear differences among the {{{\\Theta }}}0 values and the {{{\\Theta }}}0/{R}0 ratios resulting from the use of different tracer populations. Specifically, young tracers (including OB and supergiant stars, masers, Cepheid variables, H II regions, and young open clusters), as well as kinematic measurements of Sgr A* near the Galactic Center, imply a significantly larger Galactic rotation speed at the solar circle and a higher {{{\\Theta }}}0/{R}0 ratio (i.e., {{{\\Theta }}}0=247+/- 3 km s‑1 and {{{\\Theta }}}0/{R}0=29.81+/- 0.32 km s‑1 kpc‑1 statistical uncertainties only) than any of the tracers dominating the Galaxy’s mass budget (i.e., field stars and the H I/CO distributions). Using the latter to be most representative of the bulk of the Galaxy’s matter distribution, we arrive at an updated set of Galactic rotation constants,

  15. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Young Galaxies from SDSS

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine; Hainline, Kevin Nicholas; DiPompeo, Michael A.

    2016-04-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates, i.e. the Eddington ratio distribution, of active galactic nuclei (AGN). Specifically, it is matter of debate whether AGN follow a broad distribution in accretion rates, or if the distribution is more strongly peaked at characteristic Eddington ratios. Using a sample of galaxies from SDSS DR7, we test whether an intrinsic Eddington ratio distribution that takes the form of a broad Schechter function is in fact consistent with previous work that suggests instead that young galaxies in optical surveys have a more strongly peaked lognormal Eddington ratio distribution. Furthermore, we present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that the intrinsic Eddington ratio distribution of optically selected AGN is consistent with a power law with an exponential cutoff, as is observed in the X-rays. This work was supported in part by a NASA Jenkins Fellowship.

  16. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, 10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, 25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  17. Finding Distances to Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region

  18. Type Ia Supernova Cosmology

    NASA Astrophysics Data System (ADS)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  19. Evolution of the Oort Cloud under Galactic Perturbations

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-08-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  20. Supernova Cosmology Project

    Science.gov Websites

    , 2014 The Supernova Cosmology Project and High-Z Team share the 2015 Breakthrough Prize in Fundamental Perlmutter, leader of the international Supernova Cosmology Project, and principal investigator of the

  1. Handbook of Supernovae

    NASA Astrophysics Data System (ADS)

    Athem Alsabti, Abdul

    2015-08-01

    Since the discovery of pulsars in 1967, few celestial phenomena have fascinated amateur and professional astronomers, and the public, more than supernovae - dying stars that explode spectacularly and, in so doing, may outshine a whole galaxy. Thousands of research papers, reviews, monographs and books have been published on this subject. These publications are often written either for a highly specific level of expertise or education, or with respect to a particular aspect of supernovae research. However, the study of supernovae is a very broad topic involving many integral yet connected aspects, including physics, mathematics, computation, history, theoretical studies and observation. More specifically, areas of study include historical supernovae, the different types and light curves, nucleosynthesis, explosion mechanisms, formation of black holes, neutron stars, cosmic rays, neutrinos and gravitational waves. Related questions include how supernovae remnants interact with interstellar matter nearby and how do these events affect the formation of new stars or planetary systems? Could they affect existing planetary systems? Closer to home, did any supernovae affect life on earth in the past or could they do so in the future? And on the larger scale, how did supernovae observations help measure the size and expansion of the universe? All these topics, and more, are to be covered in a new reference work, consisting of more than 100 articles and more than 1700 pages. It is intended to cover all the main facets of current supernovae research. It will be pitched at or above the level of a new postgraduate student, who will have successfully studied physics (or a similar scientific subject) to Bachelor degree level. It will be available in both print and electronic (updatable) formats, with the exception of the first section, which will consist of a review of all the topics of the handbook at a level that allows anyone with basic scientific knowledge to grasp the

  2. Supernovae and the origin of the solar system

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1979-01-01

    This review concentrates on recent ideas involving a relationship between the early solar system and supernova explosions. It summarizes briefly the data that has helped inspire those ideas. Because the true relationship is still unknown and generates controversy, the distinct ideas are introduced singly in the historical context of their origins, and the active sense of surprise and controversy is visible. Quotations from pivotal papers are used as part of the exposition. The subject involves equally the isotopic anomalies detected in meteorites and the dynamic events of galactic evolution, nucleosynthesis, and protosolar collapse. Whatever the correct situation is, new connections have been found between the origin of the elements and the formation of the solar system. The objective of this review is to enable interested space scientists to quickly identify the competing points of view and the experiments and theories that have led to them.

  3. The Search for Lensed Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and

  4. Progenitor Masses for Every Nearby Historic Core-Collapse Supernova

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin

    2016-10-01

    Some of the most energetic explosions in the Universe are the core-collapse supernovae (CCSNe) that arise from the death of massive stars. They herald the birth of neutron stars and black holes, are prodigious emitters of neutrinos and gravitational waves, influence galactic hydrodynamics, trigger further star formation, and are a major site for nucleosynthesis, yet even the most basic elements of CCSN theory are poorly constrained by observations. Specifically, there are too few observations to constrain the progenitor mass distribution and fewer observations still to constrain the mapping between progenitor mass and explosion type (e.g. IIP IIL, IIb, Ib/c, etc.). Combining previous measurements with 9 proposed HST pointings covering 13 historic CCSNe, we plan to obtain progenitor mass measurements for all cataloged historic CCSNe within 8 Mpc, optimizing observational mass constraints for CCSN theory.

  5. No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard

    2011-10-01

    We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ13 is not very small.

  6. No collective neutrino flavor conversions during the supernova accretion phase.

    PubMed

    Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard

    2011-10-07

    We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ(13) is not very small.

  7. The chemical evolution of Dwarf Galaxies with galactic winds - the role of mass and gas distribution

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Recchi, Simone

    2015-08-01

    Energetic feedback from Supernovae and stellar winds can drive galactic winds. Dwarf galaxies (DGs), due to their shallower potential wells, are assumed to be more vulnera-ble to these energetic processes. Metal loss through galactic winds is also commonly invoked to explain the low metal content of DGs.Our main aim in this presentation is to show that galactic mass cannot be the only pa-rameter determining the fraction of metals lost by a galaxy. In particular, the distribution of gas must play an equally important role. We perform 2-D chemo-dynamical simula-tions of galaxies characterized by different gas distributions, masses and gas fractions. The gas distribution can change the fraction of lost metals through galactic winds by up to one order of magnitude. In particular, disk-like galaxies tend to lose metals more easily than roundish ones. Consequently, also the final element abundances attained by models with the same mass but with different gas distributions can vary by up to one dex. Confirming previous studies, we also show that the fate of gas and freshly pro-duced metals strongly depends on the mass of the galaxy. Smaller galaxies (with shal-lower potential wells) more easily develop large-scale outflows; therefore, the fraction of lost metals tends to be higher.Another important issue is that the invoked mechanism to transform central cusps to cored dark-matter distributions by baryon loss due to strong galactic winds cannot work in general, must be critically tested, and should be clearly discernible by the chemical evolution of DGs.

  8. Cosmic Ray Acceleration by a Versatile Family of Galactic Wind Termination Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustard, Chad; Zweibel, Ellen G.; Cotter, Cory, E-mail: bustard@wisc.edu

    2017-01-20

    There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called “knee” around 3 × 10{sup 15} eV and the so-called “ankle” around 10{sup 18} eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between 3 × 10{sup 15} and 10{sup 18} eV, which we dub the “shin,” have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, maymore » accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the Galaxy. We argue for acceleration times on the order of 100 Myr rather than a few billion years, as assumed in some previous works, and we discuss prospects for magnetic field amplification at the shock front. Ultimately, we generously assume that the magnetic field is amplified to equipartition. This formalism allows us to obtain analytic formulae, applicable to any wind model, for CR acceleration. Even with generous assumptions, we find that very high wind velocities are required to set up the necessary conditions for acceleration beyond 10{sup 17} eV. We also estimate the luminosities of CRs accelerated by outflow termination shocks, including estimates for the Milky Way wind.« less

  9. Radiation hydrodynamical instabilities in cosmological and galactic ionization fronts

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Norman, Michael L.

    2011-11-01

    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25-500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.

  10. On the Possibility of Fast Radio Bursts from Inside Supernovae: The Case of SN 1986J

    NASA Astrophysics Data System (ADS)

    Bietenholz, Michael F.; Bartel, Norbert

    2017-12-01

    We discuss the possibility of obtaining fast radio bursts (FRBs) from the interior of supernovae, in particular SN 1986J. Young neutron stars are involved in many of the possible scenarios for the origin of FRBs, and it has been suggested that the high dispersion measures observed in FRBs might be produced by the ionized material in the ejecta of associated supernovae. Using VLA and VLBI measurements of the Type IIn SN 1986J, which has a central compact component not seen in other supernovae, we can directly observe for the first time radio signals, which originate in the interior of a young (∼30 year old) supernova. We show that at an age of 30 years, any FRB signal at ∼1 GHz would still be largely absorbed by the ejecta. By the time the ejecta have expanded so that a 1 GHz signal would be visible, the internal dispersion measure due to the SN ejecta would be below the values typically seen for FRBs. The high dispersion measures seen for the FRBs detected so far could of course be due to propagation through the intergalactic medium provided that the FRBs are at distances much larger than that of SN 1986J, which is 10 Mpc. We conclude that if FRBs originate in Type II SNe/SNRs, they would likely not become visible until 60 ∼ 200 years after the SN explosion.

  11. WISEGAL. WISE for the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Noriega-Crespo, Alberto

    There is truly a community effort to study on a global scale the properties of the Milky Way, like its structure, its star formation and interstellar medium, and to use this knowledge to create accurate templates to understand the properties of extragalactic systems. A testimony of this effort are the multi-wavelength surveys of the Galactic Plane that have been recently carried out or are underway from both the ground (e.g. IPHAS, ATLASGAL, JCMT Galactic Plane Survey) or space (GLIMPSE, MIPSGAL, HiGAL). Adding to this wealth of data is the recent release of approximately 57 percent of the whole sky by the Wide-field Infrared Survey Explorer (WISE) team of their high angular resolution and sensitive mid-IR (3.4, 4.6, 12 and 22 micron) images and point source catalogs, encompassing nearly three quarters of the Galactic Plane, including the less studied regions of the Outer Galaxy. The WISE Atlas Images are spectacular, but to take full advantage of them, they need to be transformed from their default Data Number (DN) units into absolute surface brightness calibrated units. Furthermore, to mitigate the contamination effect of the point sources on the extended/diffuse emission, we will remove them and create residual images. This processing will enable a wide range of science projects using the Atlas Images, where measuring the spectral energy distribution of the extended emission is crucial. In this project we propose to transform the W3 (12 micron) and W4 (22 micron) images of the Galactic Plane, in particular of the Outer Galaxy where WISE provides an unique data set, into a background-calibrated, point-source subtracted images using IRIS (DIRBE IRAS Calibrated data). This transformation will allow us to carry out research projects on Massive star formation, the properties of dust in the diffuse ISM, the three dimensional distribution of the dust emission in the Galaxy and the mid/far infrared properties of Supernova Remnants, among others, and to perform a

  12. Changes in interstellar atomic abundances from the galactic plane to the halo

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1982-01-01

    A few, specially selected interstellar absorption lines were measured in the high resolution, far ultraviolet spectra of 200 O and B type stars observed by the International Ultraviolet Explorer (IUE). For lines of sight extending beyond about 500 pc from the galactic plane, the abundance of singly ionized iron atoms increases relative to singly ionized sulfur. However, the relative abundances of singly ionized sulfur, silicon and aluminum do not seem to change appreciably. An explanation for the apparent increase of iron is the partial sputtering of material off the surfaces of dust grains by interstellar shocks. Another possibility might be that the ejecta from type I supernovae enrich the low density medium in the halo with iron.

  13. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  14. Observations of the young supernova remnant RX J1713.7–3946 with the Fermi Large Area Telescope

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2011-05-23

    Here, we present observations of the young supernova remnant (SNR) RX J1713.7–3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0°.55 ± 0°.04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7–3946. The spectrum of the source can be described by a very hard power law with a photon index of Γ = 1.5 ± 0.1 that coincidesmore » in normalization with the steeper H.E.S.S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.« less

  15. Red-Supergiant and Supernova Rate Problems: Implication for the Relic Supernova Neutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Hidaka, J.; Kajino, T.; Mathews, G. J.

    2016-08-01

    Direct observations of core-collapse supernovae (SNe) and their red supergiant (RSG) progenitors suggest that the upper mass limit of RSGs may be only about 16.5{--}18{M}⊙ , while the standard theoretical value is as much as 25{M}⊙ . We investigate the possibility that RSGs with m\\gt 16.5{--}18{M}⊙ end their lives as failed supernovae (fSNe) and analyze their contribution to the relic supernova neutrino spectrum. We show that adopting this mass limit simultaneously solves both the RSG problem and the supernova rate problem. In addition, energetic neutrinos that originated from fSNe are sensitive to the explosion mechanism, and in particular, to the nuclear equation of state (EOS). We show that this solution to the RSG problem might also be used to constrain the EOS for failed supernovae.

  16. Future science issues for Galactic very-high-energy gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Torres, Diego F.

    2008-12-01

    This work intends to provide a brief summary of some of the Galactic science issues for the next generation of very high energy (VHE) instruments. The latter is here generically understood, as an instrument or set of instruments providing about one order of magnitude more sensitivity at its central energy (at about 1 TeV), but extending the observational window to have a real broadband capability (from a few tens of GeV up to tens of TeV) exceeding at low energies the current VHE threshold for observations set by MAGIC as well as the few-tens-of-GeV sensitivity set by Fermi. Science topics regarding populations of emitters, pulsars and their nebula, binaries, supernova remnants, stars, and their associations, are discussed.

  17. Type Ia supernova rate studies from the SDSS-II Supernova Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SNmore » Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.« less

  18. Is High Primordial Deuterium Consistent with Galactic Evolution?

    NASA Astrophysics Data System (ADS)

    Tosi, Monica; Steigman, Gary; Matteucci, Francesca; Chiappini, Cristina

    1998-05-01

    Galactic destruction of primordial deuterium is inevitably linked through star formation to the chemical evolution of the Galaxy. The relatively high present gas content and low metallicity suggest only modest D destruction. In concert with deuterium abundances derived from solar system and/or interstellar observations, this suggests a primordial deuterium abundance in possible conflict with data from some high-redshift, low-metallicity QSO absorbers. We have explored a variety of chemical evolution models including infall of processed material and early, supernovae-driven winds with the aim of identifying models with large D destruction that are consistent with the observations of stellar-produced heavy elements. When such models are confronted with data, we reconfirm that only modest destruction of deuterium (less than a factor of 3) is permitted. When combined with solar system and interstellar data, these results favor the low deuterium abundances derived for the QSO absorbers by Tytler et al.

  19. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  20. White dwarf models for type 1 supernovae and quiet supernovae, and presupernova evolution

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1980-01-01

    Supernova mechanisms in accreting white dwarfs are considered with emphasis on deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the white dwarf. The various types of hydrogen shell burning in the presupernova stage are also discussed.

  1. ASAS-SN Discovery of a Possible Galactic Nova ASASSN-18ix

    NASA Astrophysics Data System (ADS)

    Stanek, K. Z.; Kochanek, C. S.; Shields, J. V.; Thompson, T. A.; Chomiuk, L.; Strader, J.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Dong, Subo; Stritzinger, M.

    2018-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from multiple ASAS-SN telescopes, we detect a new bright transient source, possibly a classical nova, but it might also be a young, large amplitude outburst of a cataclysmic variable Object RA (J2000) DEC (J2000) Gal l (deg) Gal b (deg) Disc.

  2. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miknaitis, Gajus; Pignata, G.; Rest, A.

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on usingmore » reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).« less

  3. The Gaia-ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc

    NASA Astrophysics Data System (ADS)

    Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofré, P.; Pancino, E.; Tautvaišienė, G.; Tang, B.; Magrini, L.; Lanzafame, A. C.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.

    2018-02-01

    Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li-anticorrelation independent of [Fe/H], Teff, and log(g). Since in stellar evolution different α enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A38

  4. On the cosmic ray spectrum from type II supernovae expanding in their red giant presupernova wind

    NASA Astrophysics Data System (ADS)

    Cardillo, Martina; Amato, Elena; Blasi, Pasquale

    2015-09-01

    While from the energetic point of view supernova remnants are viable sources of Galactic cosmic rays (CRs), the issue of whether they can accelerate protons up to a few PeV remains unsolved. Here we discuss particle acceleration at the forward shock of supernovae, and discuss the possibility that the current of escaping particles may excite a non-resonant instability that in turn leads to the formation of resonant modes that confine particles close to the shock, thereby increasing the maximum energy. This mechanism is at work throughout the expansion of the supernova explosion, from the ejecta dominated (ED) phase to the Sedov-Taylor (ST) phase. The transition from one stage to the other reflects in a break in the spectrum of injected particles. Because of their higher explosion rate, we focus our work on type II SNe expanding in the slow, dense wind, produced by the red super-giant progenitor stars. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. The highest energies are reached at even earlier times, when, however, a small fraction of the mass of ejecta has been processed. As a result, the spectrum of accelerated particles shows a break in the slope, at an energy that is the maximum energy (EM) achieved at the beginning of the ST phase. Above this characteristic energy, the spectrum becomes steeper but remains a power law rather than developing an exponential cutoff. An exponential cut is eventually present at much higher energies but it does not have a phenomenological relevance. We show that for parameters typical of type II supernovae, EM for protons can easily reach values in the PeV range, confirming that type II SNRs are the best candidate sources for CRs at the knee. From the point of view of implications of this scenario on the measured particle spectra, we have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find

  5. Very high energy observations of the Galactic Centre: recent results and perspectives with CTA

    NASA Astrophysics Data System (ADS)

    Terrier, Regis

    2016-07-01

    The central 300 pc of our Galaxy are a major laboratory for high energy astrophysics. They harbor the closest supermassive black hole (SMBH) and are the site of a sustained star formation activity. The energy released by the supernovae on the ambient medium must be very strong. Similarly, albeit extremely faint nowadays, the SMBH must have experienced episodes of intense activity in the past which can influence significantly the central regions and beyond, e.g. powering the Fermi bubbles. I review observational results at very high energies from the central region and discuss their implications and the questions they leave open. I discuss the perspectives CTA offers for Galactic Centre astrophysics.

  6. When Disorder Looks Like Order: A New Model to Explain Radial Magnetic Fields in Young Supernova Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J. L.; Gaensler, B. M.; Jaffe, T.

    Radial magnetic fields are observed in all known young, shell-type supernova remnants in our Galaxy, including Cas A, Tycho, Kepler, and SN1006, and yet the nature of these radial fields has not been thoroughly explored. Using a 3D model, we consider the existence and observational implications of an intrinsically radial field. We also present a new explanation of the origin of the radial pattern observed from polarization data as resulting from a selection effect due to the distribution of cosmic-ray electrons (CREs). We show that quasi-parallel acceleration can concentrate CREs at regions where the magnetic field is radial, making amore » completely turbulent field appear ordered, when it is in fact disordered. We discuss observational properties that may help distinguish between an intrinsically radial magnetic field and the case where it only appears radial due to the CRE distribution. We also show that the case of an intrinsically radial field with a quasi-perpendicular CRE acceleration mechanism has intriguing similarities to the observed polarization properties of SN1006.« less

  7. Supernova Fallback onto Magnetars and Propeller-powered Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Ott, Christian D.

    2011-08-01

    We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields (~1015 G) and short spin periods (~1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B <~ 5 × 1014 G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for ≈50-200 s until it collapses to a black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the "propeller regime" and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least ≈0.3 M sun, so we expect magnetars born within these types of environments to be more massive than the 1.4 M sun typically associated with neutron stars. The propeller mechanism converts the ~1052 erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first ~10-30 s. For a small ~5 M sun hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities ~(1-3) × 104 km s-1 and may appear as a broad-lined Type Ib/c supernova. For a large >~ 10 M sun hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of >~ 1043 erg s-1 lasting for a timescale of ~60-80 days.

  8. Spectral Modeling of the EGRET 3EG Gamma Ray Sources Near the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Hartman, R. C.; Hunter, S. D.; Thompson, D. J.; Lin, Y. C.; Kniffen, D. A.; Kanbach, G.; Mayer-Hasselwander, H. A.; Reimer, O.; Sreekumar, P.

    1999-01-01

    The third EGRET catalog lists 84 sources within 10 deg of the Galactic Plane. Five of these are well-known spin-powered pulsars, 2 and possibly 3 others are blazars, and the remaining 74 are classified as unidentified, although 6 of these are likely to be artifacts of nearby strong sources. Several of the remaining 68 unidentified sources have been noted as having positional agreement with supernovae remnants and OB associations. Others may be radio-quiet pulsars like Geminga, and still others may belong to a totally new class of sources. The question of the energy spectral distributions of these sources is an important clue to their identification. In this paper, the spectra of the sources within 10 deg of Galactic Plane are fit with three different functional forms; a single power law, two power laws, and a power law with an exponential cutoff. Where possible, the best fit is selected with statistical tests. Twelve, and possibly an additional 5 sources, are found to have spectra that are fit by a breaking power law or by the power law with exponential cutoff function.

  9. Toward Connecting Core-Collapse Supernova Theory with Observations: Nucleosynthetic Yields and Distribution of Elements in a 15 M⊙ Blue Supergiant Progenitor with SN 1987A Energetics

    NASA Astrophysics Data System (ADS)

    Plewa, Tomasz; Handy, Timothy; Odrzywolek, Andrzej

    2014-09-01

    We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. The work has been supported by the NSF grant AST-1109113 and DOE grant DE-FG52-09NA29548. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. DoE under Contract No. DE-AC02-05CH11231.

  10. Dust Processing in Supernova Remnants: Spitzer MIPS SED and IRS Observations

    NASA Technical Reports Server (NTRS)

    Hewitt, John W.; Petre, Robert; Katsuda Satoru; Andersen, M.; Rho, J.; Reach, W. T.; Bernard, J. P.

    2011-01-01

    We present Spitzer MIPS SED and IRS observations of 14 Galactic Supernova Remnants previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [OI] emission, ionic lines, and emission from molecular hydrogen. Through black-body fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three component dust model composed of populations of big grains, very small grains, and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of very small grains to big grains is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2--3. We suggest that dust shattering is responsible for the relative over-abundance of small grains, in agreement with prediction from dust destruction models. However, two of the SNRs are best fit with a very low abundance of carbon grains to silicate grains and with a very high radiation field. A likely reason for the low abundance of small carbon grains is sputtering. We find evidence for silicate emission at 20 $\\mu$m in their SEDs, indicating that they are young SNRs based on the strong radiation field necessary to reproduce the observed SEDs.

  11. A Formation Timescale of the Galactic Halo from Mg Isotopes in Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Carlos, Marília; Karakas, Amanda I.; Cohen, Judith G.; Kobayashi, Chiaki; Meléndez, Jorge

    2018-04-01

    We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of ‑1.9 < [Fe/H] < ‑0.9 and 4200 < T eff(K) < 4950, using the HIRES spectrograph at the Keck Observatory (R ≈ 105 and 200 ≤ S/N ≤ 300). We obtain magnesium isotopic abundances by spectral synthesis on three MgH features and compare our results with galactic chemical evolution models. With the current sample, we almost double the number of metal-poor stars with Mg isotopes determined from the literature. The new data allow us to determine the metallicity when the 26Mg abundances start to become important, [Fe/H] ∼ ‑1.4 ± 0.1. The data with [Fe/H] > ‑1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe

    PubMed Central

    Wallner, A.; Feige, J.; Kinoshita, N.; Paul, M.; Fifield, L.K.; Golser, R.; Honda, M.; Linnemann, U.; Matsuzaki, H.; Merchel, S.; Rugel, G.; Tims, S.G.; Steier, P.; Yamagata, T.; Winkler, S.R.

    2016-01-01

    The rate of supernovae (SNe) in our local galactic neighborhood within a distance of ~100 parsec from Earth (1 parsec (pc)=3.26 light years) is estimated at 1 SN every 2-4 million years (Myr), based on the total SN-rate in the Milky Way (2.0±0.7 per century1,2). Recent massive-star and SN activity in Earth’s vicinity may be evidenced by traces of radionuclides with half-lives t1/2 ≤100 Myr3-6, if trapped in interstellar dust grains that penetrate the Solar System (SS). One such radionuclide is 60Fe (t1/2=2.6 Myr)7,8 which is ejected in supernova explosions and winds from massive stars1,2,9. Here we report that the 60Fe signal observed previously in deep-sea crusts10,11, is global, extended in time and of interstellar origin from multiple events. Deep-sea archives from all major oceans were analyzed for 60Fe deposition via accretion of interstellar dust particles. Our results, based on 60Fe atom-counting at state-of-the-art sensitivity8, reveal 60Fe interstellar influxes onto Earth 1.7–3.2 Myr and 6.5–8.7 Myr ago. The measured signal implies that a few percent of fresh 60Fe was captured in dust and deposited on Earth. Our findings indicate multiple supernova and massive-star events during the last ~10 Myr at nearby distances ≤100 pc. PMID:27078565

  13. Supernova Collisions with the Heliosphere

    NASA Astrophysics Data System (ADS)

    Fields, Brian D.; Athanassiadou, Themis; Johnson, Scott R.

    2008-05-01

    Nearby supernova explosions—within a few tens of pc of the solar system—have become a subject of intense scrutiny, due to the discovery of live undersea 60Fe from an event 2.8 Myr ago. A key open question concerns the delivery of supernova ejecta to the Earth, in particular penetration of the heliosphere by the supernova remnant (SNR). We present the first systematic numerical hydrodynamical study of the interaction between a supernova blast and the solar wind. Our simulations explore dynamic pressure regimes that are factors >=10 above those in other studies of the heliosphere under exotic conditions, for supernovae exploding at a range of distances through different interstellar environments, and interacting with solar winds of varying strengths. Our results are qualitatively consistent with the structure of the contemporary heliosphere modeled by previous work, but compressed to within the inner solar system. We demonstrate that key characteristics of the resulting heliospheric structure follow simple scaling laws that can be understood in terms of pressure-balance arguments, and which are in agreement with previous work. Our models show that a 10 pc supernova event, incident on a solar-wind outflow with the mean observed properties, compresses the heliopause to just beyond 1 AU. We also demonstrate scenarios where the supernova remnant compresses the heliopause to within 1 AU, in which cases supernova material will be directly deposited on Earth. Since 8 pc marks the nominal "kill radius" for severe biosphere damage, any extinction-level events should have left terrestrial deposits of supernova debris. We conclude with a brief discussion of the effect of our approximations and the impact of additional physics.

  14. A High Resolution View of Galactic Centers: Arp 220 and M31

    NASA Astrophysics Data System (ADS)

    Lockhart, Kelly E.

    The centers of galaxy are small in size and yet incredibly complex. They play host to supermassive black holes and nuclear star clusters (NSCs) and are subject to large gas inows, nuclear starbursts, and active galactic nuclear (AGN) activity. They can also be the launching site for large-scale galactic outows. However, though these systems are quite important to galactic evolution, observations are quite difficult due to their small size. Using high spatial resolution narrowband imaging with HST/WFC3 of Arp 220, a latestage galaxy merger, I discover an ionized gas bubble feature ( r = 600 pc) just off the nucleus. The bubble is aligned with both the western nucleus and with the large-scale galactic outflow. Using energetics arguments, I link the bubble with a young, obscured AGN or with an intense nuclear starburst. Given its alignment along the large-scale outflow axis, I argue that the bubble presents evidence for a link between the galactic center and the large-scale outflow. I also present new observations of the NSC in M31, the closest large spiral galaxy to our own. Using the OSIRIS near-infrared integral field spectrograph (IFS) on Keck, I map the kinematics of the old stellar population in the eccentric disk of the NSC. I compare the observations to models to derive a precession speed of the disk of 0+/-5 km s-1 pc-1 , and hence confirm that winds from the old stellar population may be the source of gas needed to form the young stellar population in the NSC. Studies of galactic centers are dependent on high spatial resolution observations. In particular, IFSs are ideal instruments for these studies as they provide two-dimensional spectroscopy of the field of view, enabling 2D kinematic studies. I report on work to characterize and improve the data reduction pipeline of the OSIRIS IFS, and discuss implications for future generations of IFS instrumentation.

  15. TeV Gamma Rays From Galactic Center Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Cholis, Ilias; Linden, Tim

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requiresmore » a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.« less

  16. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    2013-07-01

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L

  17. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, W. W.; Leahy, D. A., E-mail: tww@bao.ac.cn

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. Thismore » new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.« less

  18. X-ray observations of Galactic H.E.S.S. sources: an update

    NASA Astrophysics Data System (ADS)

    Puehlhofer, G.; Eger, P.; Sasaki, M.; Gottschall, D.; Capasso, M.; H. E. S. S. Collaboration

    2016-06-01

    X-ray diagnostics of TeV sources continues to be an important tool to identify the nature of newly detected sources as well as to pinpoint the physics processes that are at work in these highly energetic objects. The contribution aims at giving a review of recent studies that we have performed on TeV sources with H.E.S.S. and XMM-Newton and also other X-ray facilities. Here, we will mainly focus on Galactic objects such as gamma-ray binaries, pulsar wind nebulae, and supernova remnants (SNRs). Particular emphasis will be given to SNR studies, including recently identified SNRs such as HESS J1731-347 and HESS J1534-571 as well as a revisit of RX J1713.7-3946.

  19. Evidence for a Neutral Iron Line Generated by MeV Protons from Supernova Remnants Interacting with Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Koyama, Katsuji; Yamauchi, Shigeo; Uchiyama, Hideki; Okon, Hiromichi; Tanaka, Takaaki; Uchida, Hiroyuki; Tsuru, Takeshi G.

    2018-02-01

    Supernova remnants (SNRs) have been prime candidates for Galactic cosmic-ray accelerators. When low-energy cosmic-ray protons (LECRp) collide with interstellar gas, they ionize neutral iron atoms and emit the neutral iron line (Fe I Kα) at 6.40 keV. We search for the iron K-shell line in seven SNRs from the Suzaku archive data of the Galactic plane in the 6^\\circ ≲ l≲ 40^\\circ ,| b| < 1^\\circ region. All of these SNRs interact with molecular clouds. We discover Fe I Kα line emissions from five SNRs (W28, Kes 67, Kes 69, Kes 78, and W44). The spectra and morphologies suggest that the Fe I Kα line is produced by interactions between LECRp and the adjacent cold gas. The proton energy density is estimated to be ≳10–100 eV cm‑3, which is more than 10 times higher than that in the ambient interstellar medium.

  20. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  1. The Core-Collapse Supernova-Black Hole Connection

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan

    The death of a massive star is typically associated with a bright optical transient known as a core-collapse supernova. However, there is growing evidence that not all massive stars end their lives with a brillant optical display, but rather in a whimper. These failed supernovae, or unnovae, result from the central engine failing to turn the initial implosion of the iron core into an explosion that launches the supernova shock wave, unbinds the majority of the star, and creates the supernova as we know it. In these unnovae, the failure of the central engine is soon followed by the collapse of the would-be neutron star into a stellar mass black hole. Instead of the bright optical display following successful supernovae, little to no optical emission is expected from typical failed supernovae as most of the material quietly accretes onto the black hole. This makes the hunt for failed supernovae difficult. In this chapter for the Handbook of Supernovae, I present the growing observational evidence for failed supernovae and discuss the current theoretical understanding of how and in what stars the supernova central engine fails.

  2. Neutron stars in supernova remnants and beyond

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the supernova remnants can be products of an off-centered supernova explosion in a preexisting bubble created by the wind of a moving massive star. A cavity supernova explosion of a moving star results in a considerable offset of the neutron star birth-place from the geometrical center of the supernova remnant. Therefore: a) the high transverse velocities inferred for a number of neutron stars through their association with supernova remnants can be reduced; b) the proper motion vector of a neutron star should not necessarily point away from the geometrical center of the associated supernova remnant. Taking into account these two facts allow us to enlarge the circle of possible neutron star/supernova remnant associations, and could significantly affect the results of previous studies of associations. The possibilities of our approach are illustrated with some examples. We also show that the concept of an off-centered cavity supernova explosion could be used to explain the peculiar structures of a number of supernova remnants and for searches for stellar remnants possibly associated with them.

  3. Supernova Remnants in the UWIFE and UWISH2 Surveys

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon

    2016-06-01

    We have searched for near-infrared [Fe II] (1.644 µm) and H2 1-0 S(1) (2.122 µm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE/ UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° < l < 62°; -1.5° < b < +1.5°), and a total of 79 SNRs are falling in the survey area among the currently known 294 Galactic SNRs. The images show diffuse structures as deep as the surface brightness limit of 10-19 W m-2 arcsec-2 which is comparable with a 5σ detection limit of point sources of 18 mag. In order to inspect the narrow-band features, we subtracted H and K-band continuum images obtained from the UKIDSS GPS (UKIRT Infrared Deep Sky Survey of the Galactic Plane) from the [Fe II] and H2 narrow-band images, respectively. By this time, we have found 19 [Fe II]- and 18 H2-emitting SNRs, and these are likely to increase in future as we inspect the images in more detail. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. Since [Fe II] and H2 lines trace dense atomic and molecular gases associated with SNR shocks, our results can help us understand the environment and evolution of individual SNRs. Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. This is opposite to the standard picture: If the shocks are driven by the same blast wave, we expect the H2 filaments to be closer to the explosion center than the [Fe II] filaments. In this presentation, we show several examples of such SNRs detected in our study, and present high resolution (R ˜ 40,000) H and K-band spectra of H2 emission features obtained by using IGRINS (Immersion Grating Infrared Spectrograph).

  4. Supernova Remnants in the UWIFE and UWISH2 Surveys

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Hyun

    2016-06-01

    We have searched for near-infrared [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE/ UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2 ). Both surveys cover about 180 square degrees of the first Galactic quadrant (7 {circ} < l < 62 {circ} ; -1.5 {circ} < b < +1.5 {circ} ), and a total of 79 SNRs are falling in the survey area among the currently known 294 Galactic SNRs. The images show diffuse structures as deep as the surface brightness limit of 10^(-19) W m^(-2) arcsec^(-2) which is comparable with a 5σ detection limit of point sources of 18 mag. In order to inspect the narrow-band features, we subtracted H and K-band continuum images obtained from the UKIDSS GPS (UKIRT Infrared Deep Sky Survey of the Galactic Plane) from the [Fe II] and H2 narrow-band images, respectively. By this time, we have found 19 [Fe II]- and 18 H2 -emitting SNRs, and these are likely to increase in future as we inspect the images in more detail. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. Since [Fe II] and H2 lines trace dense atomic and molecular gases associated with SNR shocks, our results can help us understand the environment and evolution of individual SNRs. Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. This is opposite to the standard picture: If the shocks are driven by the same blast wave, we expect the H2 filaments to be closer to the explosion center than the [Fe II] filaments. In this presentation, we show several examples of such SNRs detected in our study, and present high resolution (R 40,000) H and K-band spectra of H2 emission features obtained by using IGRINS (Immersion Grating Infrared Spectrograph).

  5. Are supernovae recorded in indigenous astronomical traditions?

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2014-07-01

    Novae and supernovae are rare astronomical events that would have had an influence on the skywatching peoples who witnessed them. Although several bright novae/supernovae have been visible during recorded human history, there are many proposed but no confirmed accounts of supernovae in indigenous oral traditions or material culture. Criteria are established for confirming novae/supernovae in oral traditions and material culture, and claims from around the world are discussed to determine if they meet these criteria. Aboriginal Australian traditions are explored for possible descriptions of novae/supernovae. Although representations of supernovae may exist in Aboriginal traditions, there are currently no confirmed accounts of supernovae in Indigenous Australian oral or material traditions.

  6. Radio emission from embryonic superluminous supernova remnants

    NASA Astrophysics Data System (ADS)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta

    2018-02-01

    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  7. Supernovae, supernebulae, and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Harkness, Robert P.; Barkat, Zalman; Swartz, Douglas

    1986-10-01

    Supernova atmosphere calculations continue to show that variants of previously calculated carbon-deflagration models provide a good representation of the maximum light spectra of classical type Ia supernovae including the ultraviolet deficit. Careful consideration of the conditions leading to central thermonuclear runaway of degenerate carbon shows that runaway can, however, lead to detonation and direct conflict with observations. As witnessed by the spectra of type Ib supernovae, massive stars are expected to be the primary source of oxygen. Estimates of the absolute production of oxygen in massive stars suggest that if all stars more massive than ≡12 M_sun; explode as supernovae, oxygen would be overproduced in the solar neighborhood, an effect exacerbated by the recent increase in the reaction rate for 12C(α, γ)16O.

  8. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae

    NASA Astrophysics Data System (ADS)

    Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim

    2017-04-01

    We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.

  9. The first ten years of Swift supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.; Roming, Peter W. A.; Milne, Peter A.

    2015-09-01

    The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.

  10. SUPERNOVA FALLBACK ONTO MAGNETARS AND PROPELLER-POWERED SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piro, Anthony L.; Ott, Christian D., E-mail: piro@caltech.edu, E-mail: cott@tapir.caltech.edu

    2011-08-01

    We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields ({approx}10{sup 15} G) and short spin periods ({approx}1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B {approx}< 5 x 10{sup 14} G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for {approx}50-200 s until it collapses to amore » black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the 'propeller regime' and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least {approx}0.3 M{sub sun}, so we expect magnetars born within these types of environments to be more massive than the 1.4 M{sub sun} typically associated with neutron stars. The propeller mechanism converts the {approx}10{sup 52} erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first {approx}10-30 s. For a small {approx}5 M{sub sun} hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities {approx}(1-3) x 10{sup 4} km s{sup -1} and may appear as a broad-lined Type Ib/c supernova. For a large {approx}> 10 M{sub sun} hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of {approx}> 10{sup 43} erg s{sup -1} lasting for a timescale of {approx}60-80 days.« less

  11. Uncertainties in Galactic Chemical Evolution Models

    DOE PAGES

    Cote, Benoit; Ritter, Christian; Oshea, Brian W.; ...

    2016-06-15

    Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical

  12. Low-z Type Ia Supernova Calibration

    NASA Astrophysics Data System (ADS)

    Hamuy, Mario

    The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.

  13. Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)

    NASA Astrophysics Data System (ADS)

    Eger, Peter

    2015-08-01

    The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.

  14. The Origin of IRS 16: Dynamically Driven In-Spiral of a Dense Star Cluster to the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.; McMillan, Stephen L. W.; Gerhard, Ortwin

    2003-08-01

    We use direct N-body simulations to study the in-spiral and internal evolution of dense star clusters near the Galactic center. These clusters sink toward the center owing to dynamical friction with the stellar background and may go into core collapse before being disrupted by the Galactic tidal field. If a cluster reaches core collapse before disruption, its dense core, which has become rich in massive stars, survives to reach close to the Galactic center. When it eventually dissolves, the cluster deposits a disproportionate number of massive stars in the innermost parsec of the Galactic nucleus. Comparing the spatial distribution and kinematics of the massive stars with observations of IRS 16, a group of young He I stars near the Galactic center, we argue that this association may have formed in this way.

  15. Gravitational lensing statistics of amplified supernovae

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.; Wagoner, Robert V.; Schneider, P.

    1988-01-01

    Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.

  16. How Bright Can Supernovae Get?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  17. An Astronomical Time Machine: Light Echoes from Historic Supernovae and Stellar Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin

    2014-01-01

    Tycho Brahe's observations of a supernova in 1572 challenged the dogma that the celestial realm was unchanging. Now, 440 years later we have once again seen the light that Tycho saw as simple reflections from walls of Galactic dust. These light echoes, as well as ones detected from other historical events such as Cas A and Eta Carinae's Great Eruption, give us a rare opportunity in astronomy: the direct observation of the cause (the explosion/eruption) and the effect (the remnant) of the same astronomical event. But we can do more: the light echoes let us look at the explosion from different angles, and permit us to map the asymmetries in the explosion. I will discuss how the unprecedented three-dimensional view of these exciting events allows us to unravel some of their secrets.

  18. PTF discovers and follows-up nearby, young, Type II supernova

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Quimby, R. M.; Ofek, E. O.; Kulkarni, S. R.; Gal-Yam, A.; Arcavi, I.; Green, Y.; Walker, E.; Mazzali, P.; Nugent, P. E.; Poznanski, D.; Howell, D. A.; Dilday, B.; Fox, D. B.

    2010-09-01

    On UT 2010 Sep 15.243, the Palomar Transient Factory discovered an optical transient, PTF10vdl at RA(J2000) = 23:05:49.001 and DEC(J2000)=03:31:20.50 near NGC 7483. We obtained Target Of Opportunity spectra with Gemini-S/GMOS (PI Kasliwal) on Sep 16.29. The spectrum was extremely blue (f_nu proportional to nu^4.5) and nearly featureless. We further obtained a spectrum with the TNG/DOLORES (PI Walker) on Sep 17.40 and P-Cygni profiles of four Balmer lines were clearly visible, consistent with the redshift of NGC 7483, suggesting this is a Type II supernova.

  19. SNaX: A Database of Supernova X-Ray Light Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Mathias; Dwarkadas, Vikram V., E-mail: Mathias_Ross@msn.com, E-mail: vikram@oddjob.uchicago.edu

    We present the Supernova X-ray Database (SNaX), a compilation of the X-ray data from young supernovae (SNe). The database includes the X-ray fluxes and luminosities of young SNe, from days to years after outburst. The original goal and intent of this study was to present a database of Type IIn SNe (SNe IIn), which we have accomplished. Our ongoing goal is to expand the database to include all SNe for which published data are available. The database interface allows one to search for SNe using various criteria, plot all or selected data points, and download both the data and themore » plot. The plotting facility allows for significant customization. There is also a facility for the user to submit data that can be directly incorporated into the database. We include an option to fit the decay of any given SN light curve with a power-law. The database includes a conversion of most data points to a common 0.3–8 keV band so that SN light curves may be directly compared with each other. A mailing list has been set up to disseminate information about the database. We outline the structure and function of the database, describe its various features, and outline the plans for future expansion.« less

  20. A debris disk around an isolated young neutron star.

    PubMed

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-06

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.

  1. Diagnostics of the Supernova Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.

    The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.

  2. Diagnostics of the Supernova Engine

    DOE PAGES

    Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.; ...

    2017-10-17

    The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.

  3. Testing the anisotropy of cosmic acceleration from Pantheon supernovae sample

    NASA Astrophysics Data System (ADS)

    Sun, Z. Q.; Wang, F. Y.

    2018-05-01

    In this paper, we study the anisotropy of cosmic acceleration the using Pantheon sample, which includes 1049 spectroscopically confirmed type Ia supernovae (SNe Ia) covering the redshift range 0.01 < z < 2.3. In hemisphere comparison method, we find the dipole direction is (l = 110 ± 11°, b = 15 ± 19°) with the maximum anisotropy level of δ =0.105 {}^{+0.002}_{-0.005}. From the dipole fitting method, we find that the magnitude of anisotropy is A = (2.6 ± 2.6) × 10-4, and the direction of the dipole (l = 108.2°+43.0°-76.9°, b = 7.1°+41.2°-77.5°) in the galactic coordinate system. The result is weakly dependent on redshift from the redshift tomography analysis. The anisotropy is small and the isotropic cosmological model is an excellent approximation.

  4. New possibilities in supernova accretion phase from dense matter effect

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Mirizzi, A.; Saviano, N.

    2012-07-01

    We carry out a detailed analysis of the supernova (SN) neutrino flavor evolution during the accretion phase (at post-bounce times tpb <= 500 ms), characterizing the SN ν signal by recent hydrodynamical simulations. We find that trajectory-dependent multi-angle effects, associated with the dense ordinary matter suppress collective oscillations, that would have been induced by ν-ν interactions in the deepest SN regions. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the likely case that the mixing angle θ13 is not very small.

  5. Neutrino signal from pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙supernova. Pair-instability supernovae are candidates for superluminous supernovae due to the prodigious amounts of radioactive elements they create. While the basic mechanism for the explosion is understood, how a star reaches a state is not, and thus observations of a nearby pair-instability supernova would allow us to test current models of stellar evolution at the extreme of stellar masses. Much will be sought within the electromagnetic radiation we detect from such a supernova but we should not forget that the neutrinos from a pair-instability supernova contain unique signatures of the event that unambiguously identify this type of explosion. We calculate the expected neutrino flux at Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  6. An Open Catalog for Supernova Data

    NASA Astrophysics Data System (ADS)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan; Margutti, Raffaella

    2017-01-01

    We present the Open Supernova Catalog, an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  7. The emergence of the galactic stellar mass function from a non-universal IMF in clusters

    NASA Astrophysics Data System (ADS)

    Dib, Sami; Basu, Shantanu

    2018-06-01

    We investigate the dependence of a single-generation galactic mass function (SGMF) on variations in the initial stellar mass functions (IMF) of stellar clusters. We show that cluster-to-cluster variations of the IMF lead to a multi-component SGMF where each component in a given mass range can be described by a distinct power-law function. We also show that a dispersion of ≈0.3 M⊙ in the characteristic mass of the IMF, as observed for young Galactic clusters, leads to a low-mass slope of the SGMF that matches the observed Galactic stellar mass function even when the IMFs in the low-mass end of individual clusters are much steeper.

  8. Infrared and X-ray study of the Galactic SNR G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Sasaki, Manami; Mäkelä, Minja M.; Klochkov, Dmitry; Santangelo, Andrea; Suleimanov, Valery

    2018-06-01

    G15.9+0.2 is a Galactic shell-type supernova remnant (SNR), which was detected in radio and has been confirmed in X-rays based on Chandra observations. An X-ray point source CXOUJ181852.0-150213 has been detected and suggested to be an associated neutron star. In a recent study, we have confirmed the source to be a central compact object (CCO). We have studied the SNR using high-resolution X-ray data taken with Chandra in combination with infrared (IR) data in order to understand its emission and to derive its physical parameters. This will also help to constrain, e.g., the age of the CCO and the environment in which it was born. The spectral analysis of the X-ray emission using the new Chandra data and the comparison to the IR data have shown that the SNR is relatively young with an age of a few thousand years and that its emission is dominated by that of shocked interstellar medium (ISM). However, the analysis of the spectrum of the bright eastern shell shows that there is an additional emission component with enhanced abundances of α elements and Fe, suggesting ejecta emission. The multi-wavelength emission is consistent with SNR G15.9+0.2 expanding in an ISM with a density gradient, while there is also colder material located in front of the SNR, which absorbs its thermal X-ray emission in the softer bands.

  9. The Perth Automated Supernova Search

    NASA Astrophysics Data System (ADS)

    Williams, A. J.

    1997-12-01

    An automated search for supernovae in late spiral galaxies has been established at Perth Observatory, Western Australia. This automated search uses three low-cost PC-clone computers, a liquid nitrogen cooled CCD camera built locally, and a 61-cm telescope automated for the search. The images are all analysed automatically in real-time by routines in Perth Vista, the image processing system ported to the PC architecture for the search system. The telescope control software written for the project, Teljoy, maintains open-loop position accuracy better than 30" of arc after hundreds of jumps over an entire night. Total capital cost to establish and run this supernova search over the seven years of development and operation was around US$30,000. To date, the system has discovered a total of 6 confirmed supernovae, made an independent detection of a seventh, and detected one unconfirmed event assumed to be a supernova. The various software and hardware components of the search system are described in detail, the analysis of the first three years of data is discussed, and results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units', expressed in supernovae per 10^10 solar blue luminosity galaxy per century. These values are for a Hubble constant of 75 km/s per Mpc, and scale as (H0/75)^2. The small number of discoveries has left large statistical uncertainties, but our strategy of frequent observations has reduced systematic errors - altering detection threshold or peak supernova luminosity by +/- 0.5 mag changes estimated rates by only around 20%. Similarly, adoption of different light curve templates for Type Ia and Type IIP supernovae has a minimal effect on the final statistics (2% and 4% change, respectively).

  10. X-ray spectroscopic observations and modeling of supernova remnants

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1981-01-01

    The X-ray observations of young remnants and their theoretical interpretation are described. A number of questions concerning the nature of the blast wave interaction with the interstellar gas and grains and of atomic processes in these hot plasmas are considered. It is concluded that future X-ray spectrometers with high collecting area, moderate spectral resolution and good spatial resolution can make important contributions to the understanding of supernova remnants in the Milky Way and neighboring galaxies and of their role in the global chemical and dynamical evolution of the interstellar medium.

  11. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-Age open Cluster Tombaugh 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraro, Giovanni; Silva, Joao Victor Sales; Bidin, Christian Moni

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the linemore » of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations.« less

  12. Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946

    NASA Astrophysics Data System (ADS)

    Acero, F.; Aloisio, R.; Amans, J.; Amato, E.; Antonelli, L. A.; Aramo, C.; Armstrong, T.; Arqueros, F.; Asano, K.; Ashley, M.; Backes, M.; Balazs, C.; Balzer, A.; Bamba, A.; Barkov, M.; Barrio, J. A.; Benbow, W.; Bernlöhr, K.; Beshley, V.; Bigongiari, C.; Biland, A.; Bilinsky, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blasi, P.; Blazek, J.; Boisson, C.; Bonanno, G.; Bonardi, A.; Bonavolontà, C.; Bonnoli, G.; Braiding, C.; Brau-Nogué, S.; Bregeon, J.; Brown, A. M.; Bugaev, V.; Bulgarelli, A.; Bulik, T.; Burton, M.; Burtovoi, A.; Busetto, G.; Böttcher, M.; Cameron, R.; Capalbi, M.; Caproni, A.; Caraveo, P.; Carosi, R.; Cascone, E.; Cerruti, M.; Chaty, S.; Chen, A.; Chen, X.; Chernyakova, M.; Chikawa, M.; Chudoba, J.; Cohen-Tanugi, J.; Colafrancesco, S.; Conforti, V.; Contreras, J. L.; Costa, A.; Cotter, G.; Covino, S.; Covone, G.; Cumani, P.; Cusumano, G.; D'Ammando, F.; D'Urso, D.; Daniel, M.; Dazzi, F.; De Angelis, A.; De Cesare, G.; De Franco, A.; De Frondat, F.; de Gouveia Dal Pino, E. M.; De Lisio, C.; de los Reyes Lopez, R.; De Lotto, B.; de Naurois, M.; De Palma, F.; Del Santo, M.; Delgado, C.; della Volpe, D.; Di Girolamo, T.; Di Giulio, C.; Di Pierro, F.; Di Venere, L.; Doro, M.; Dournaux, J.; Dumas, D.; Dwarkadas, V.; Díaz, C.; Ebr, J.; Egberts, K.; Einecke, S.; Elsässer, D.; Eschbach, S.; Falceta-Goncalves, D.; Fasola, G.; Fedorova, E.; Fernández-Barral, A.; Ferrand, G.; Fesquet, M.; Fiandrini, E.; Fiasson, A.; Filipovíc, M. D.; Fioretti, V.; Font, L.; Fontaine, G.; Franco, F. J.; Freixas Coromina, L.; Fujita, Y.; Fukui, Y.; Funk, S.; Förster, A.; Gadola, A.; Garcia López, R.; Garczarczyk, M.; Giglietto, N.; Giordano, F.; Giuliani, A.; Glicenstein, J.; Gnatyk, R.; Goldoni, P.; Grabarczyk, T.; Graciani, R.; Graham, J.; Grandi, P.; Granot, J.; Green, A. J.; Griffiths, S.; Gunji, S.; Hakobyan, H.; Hara, S.; Hassan, T.; Hayashida, M.; Heller, M.; Helo, J. C.; Hinton, J.; Hnatyk, B.; Huet, J.; Huetten, M.; Humensky, T. B.; Hussein, M.; Hörandel, J.; Ikeno, Y.; Inada, T.; Inome, Y.; Inoue, S.; Inoue, T.; Inoue, Y.; Ioka, K.; Iori, M.; Jacquemier, J.; Janecek, P.; Jankowsky, D.; Jung, I.; Kaaret, P.; Katagiri, H.; Kimeswenger, S.; Kimura, S.; Knödlseder, J.; Koch, B.; Kocot, J.; Kohri, K.; Komin, N.; Konno, Y.; Kosack, K.; Koyama, S.; Kraus, M.; Kubo, H.; Kukec Mezek, G.; Kushida, J.; La Palombara, N.; Lalik, K.; Lamanna, G.; Landt, H.; Lapington, J.; Laporte, P.; Lee, S.; Lees, J.; Lefaucheur, J.; Lenain, J.-P.; Leto, G.; Lindfors, E.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez, M.; Lucarelli, F.; Luque-Escamilla, P. L.; López-Coto, R.; Maccarone, M. C.; Maier, G.; Malaguti, G.; Mandat, D.; Maneva, G.; Mangano, S.; Marcowith, A.; Martí, J.; Martínez, M.; Martínez, G.; Masuda, S.; Maurin, G.; Maxted, N.; Melioli, C.; Mineo, T.; Mirabal, N.; Mizuno, T.; Moderski, R.; Mohammed, M.; Montaruli, T.; Moralejo, A.; Mori, K.; Morlino, G.; Morselli, A.; Moulin, E.; Mukherjee, R.; Mundell, C.; Muraishi, H.; Murase, K.; Nagataki, S.; Nagayoshi, T.; Naito, T.; Nakajima, D.; Nakamori, T.; Nemmen, R.; Niemiec, J.; Nieto, D.; Nievas-Rosillo, M.; Nikołajuk, M.; Nishijima, K.; Noda, K.; Nogues, L.; Nosek, D.; Novosyadlyj, B.; Nozaki, S.; Ohira, Y.; Ohishi, M.; Ohm, S.; Okumura, A.; Ong, R. A.; Orito, R.; Orlati, A.; Ostrowski, M.; Oya, I.; Padovani, M.; Palacio, J.; Palatka, M.; Paredes, J. M.; Pavy, S.; Pe'er, A.; Persic, M.; Petrucci, P.; Petruk, O.; Pisarski, A.; Pohl, M.; Porcelli, A.; Prandini, E.; Prast, J.; Principe, G.; Prouza, M.; Pueschel, E.; Pühlhofer, G.; Quirrenbach, A.; Rameez, M.; Reimer, O.; Renaud, M.; Ribó, M.; Rico, J.; Rizi, V.; Rodriguez, J.; Rodriguez Fernandez, G.; Rodríguez Vázquez, J. J.; Romano, P.; Romeo, G.; Rosado, J.; Rousselle, J.; Rowell, G.; Rudak, B.; Sadeh, I.; Safi-Harb, S.; Saito, T.; Sakaki, N.; Sanchez, D.; Sangiorgi, P.; Sano, H.; Santander, M.; Sarkar, S.; Sawada, M.; Schioppa, E. J.; Schoorlemmer, H.; Schovanek, P.; Schussler, F.; Sergijenko, O.; Servillat, M.; Shalchi, A.; Shellard, R. C.; Siejkowski, H.; Sillanpää, A.; Simone, D.; Sliusar, V.; Sol, H.; Stanič, S.; Starling, R.; Stawarz, Ł.; Stefanik, S.; Stephan, M.; Stolarczyk, T.; Szanecki, M.; Szepieniec, T.; Tagliaferri, G.; Tajima, H.; Takahashi, M.; Takeda, J.; Tanaka, M.; Tanaka, S.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Terada, Y.; Tescaro, D.; Teshima, M.; Testa, V.; Thoudam, S.; Tokanai, F.; Torres, D. F.; Torresi, E.; Tosti, G.; Townsley, C.; Travnicek, P.; Trichard, C.; Trifoglio, M.; Tsujimoto, S.; Vagelli, V.; Vallania, P.; Valore, L.; van Driel, W.; van Eldik, C.; Vandenbroucke, J.; Vassiliev, V.; Vecchi, M.; Vercellone, S.; Vergani, S.; Vigorito, C.; Vorobiov, S.; Vrastil, M.; Vázquez Acosta, M. L.; Wagner, S. J.; Wagner, R.; Wakely, S. P.; Walter, R.; Ward, J. E.; Watson, J. J.; Weinstein, A.; White, M.; White, R.; Wierzcholska, A.; Wilcox, P.; Williams, D. A.; Wischnewski, R.; Wojcik, P.; Yamamoto, T.; Yamamoto, H.; Yamazaki, R.; Yanagita, S.; Yang, L.; Yoshida, T.; Yoshida, M.; Yoshiike, S.; Yoshikoshi, T.; Zacharias, M.; Zampieri, L.; Zanin, R.; Zavrtanik, M.; Zavrtanik, D.; Zdziarski, A.; Zech, A.; Zechlin, H.; Zhdanov, V.; Ziegler, A.; Zorn, J.

    2017-05-01

    We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (I.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.

  13. Nuclear weak interactions, supernova nucleosynthesis and neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, Toshitaka

    2013-07-01

    We study the nuclear weak response in light-to-heavy mass nuclei and calculate neutrino-nucleus cross sections. We apply these cross sections to the explosive nucleosynthesis in core-collapse supernovae and find that several isotopes of rare elements 7Li, 11B, 138La, 180Ta and several others are predominantly produced by the neutrino-process nucleosynthesis. We discuss how to determine the suitable neutrino spectra of three different flavors and their anti-particles in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. Light-mass nuclei like 7Li and 11B, which are produced in outer He-layer, are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect, while heavy-mass nuclei like 138La, 180Ta and r-process elements, which are produced in the inner O-Ne-Mg layer or the atmosphere of proto-neutron star, are likely to be free from the MSW effect. Using such a different nature of the neutrino-process nucleosynthesis, we study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  14. Understanding Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  15. See Change: the Supernova Sample from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven

    2017-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.

  16. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  17. An Open Catalog for Supernova Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan

    We present the Open Supernova Catalog , an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsingmore » several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.« less

  18. A Search for High-Energy Gamma-Rays from Supernova SN1987A.

    NASA Astrophysics Data System (ADS)

    Waldron, Liam Edwin

    1992-01-01

    The Australian Defence Force Academy (ADFA) balloon -borne gamma-ray astronomy telescope was flown successfully from Alice Springs Australia twice during 1987 and 1988 (flights 87-2-19 and 88-1-5) with the aim of measuring the gamma-ray flux, in the energy range 50 to 500 MeV, from Supernova SN1987A in the Large Magellanic Cloud. The two flights corresponded to day 55 and day 407 respectively of remnant evolution. The instrument was complemented by a hard X-ray proportional counter, designed and constructed by the Istituto di Astrofisica Spaziale, CNR, Frascati Italy, and sensitive to the 10 to 250 KeV energy range. In this thesis, an account is given of the physical processes responsible for the production of gamma-rays astrophysical environments and their relation to supernovae and cosmic-rays. A description is then given of the main features of the gamma-ray telescope and its principle of operation, the most important part of the telescope being a spark-chamber used to determine the direction of arrival of incident gamma-rays. Data obtained during each flight was recorded as spark-chamber tacks on photographic film. A detailed account of the methods of subsequent data reduction and analysis, as carried out by the author, are given. The principal results of this work were that 3-sigma upper limits to the gamma-ray flux from Supernova SN1987A of 2.2 times 10^ {-5} photons cm^{ -2} s^{-1} and 3.4 times 10^{-5} photons cm^{-2} s^ {-1} were obtained for days 55 and 407 of remnant evolution respectively, these limits being somewhat lower than previously reported in the literature from a preliminary analysis of the data. The above two upper limits are consistent with Supernova SN1987A being an atypical Type-II supernova. That is, the progenitor was a blue, rather than a red, supergiant. The limits are compared with theoretical predictions related to current models of gamma-ray emission from young Type -II supernovae.

  19. THE ORIGIN OF THE HOT GAS IN THE GALACTIC HALO: TESTING GALACTIC FOUNTAIN MODELS' X-RAY EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henley, David B.; Shelton, Robin L.; Kwak, Kyujin

    2015-02-20

    We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Way's hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true for versions of the model with and without anmore » interstellar magnetic field. We consider different reasons for the discrepancy between the model predictions and the observations. We find that taking into account overionization in cooled halo plasma, which could in principle boost the predicted X-ray emission, is unlikely in practice to bring the predictions in line with the observations. We also find that including thermal conduction, which would tend to increase the surface brightnesses of interfaces between hot and cold gas, would not overcome the surface brightness shortfall. However, charge exchange emission from such interfaces, not included in the current model, may be significant. The faintness of the model may also be due to the lack of cosmic ray driving, meaning that the model may underestimate the amount of material transported from the disk to the halo. In addition, an extended hot halo of accreted material may be important, by supplying hot electrons that could boost the emission of the material driven out from the disk. Additional model predictions are needed to test the relative importance of these processes in explaining the observed halo emission.« less

  20. The Origin of the Hot Gas in the Galactic Halo: Testing Galactic Fountain Models' X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Henley, David B.; Shelton, Robin L.; Kwak, Kyujin; Hill, Alex S.; Mac Low, Mordecai-Mark

    2015-02-01

    We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Way's hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true for versions of the model with and without an interstellar magnetic field. We consider different reasons for the discrepancy between the model predictions and the observations. We find that taking into account overionization in cooled halo plasma, which could in principle boost the predicted X-ray emission, is unlikely in practice to bring the predictions in line with the observations. We also find that including thermal conduction, which would tend to increase the surface brightnesses of interfaces between hot and cold gas, would not overcome the surface brightness shortfall. However, charge exchange emission from such interfaces, not included in the current model, may be significant. The faintness of the model may also be due to the lack of cosmic ray driving, meaning that the model may underestimate the amount of material transported from the disk to the halo. In addition, an extended hot halo of accreted material may be important, by supplying hot electrons that could boost the emission of the material driven out from the disk. Additional model predictions are needed to test the relative importance of these processes in explaining the observed halo emission.

  1. Neutrino Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  2. Supernova Forensics

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia M.

    2014-01-01

    For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.

  3. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  4. The Population of Supernova Remnants in M51

    NASA Astrophysics Data System (ADS)

    Long, Knox S.; Blair, William P.; Kuntz, K. D.; Winkler, P. Frank

    2017-08-01

    The nearby, actively star-forming, nearly face-on spiral galaxy, M51 (NGC 5194/5), has been the site of four supernovae since 1941. As a result it should have a rich population of young supernova remnants (SNRs). Here we describe a search for optical SNRs in M51 among the 298 X-ray sources discovered inside the D25 contour in deep Chandra observations. The search uses interference filter images obtained with the WFC3 on Hubble Space Telescope and more recent images from GMOS on Gemini North. Of 80 emission nebulae identified in the HST images as SNR candidates based on elevated [SII]: Ha ratios compared to HII regions, 40 have X-ray counterparts. The diameters of the SNRs and SNR candidates detected with HST are systematically smaller than seen in SNR populations of other galaxies at comparable distances. However, this is most likely an instrumental effect, which our ongoing analysis of the new GMOS images will correct. At that point, we will be able to make of fair multi-wavelength comparison of the SNR population in M51 with other nearby, actively star-forming spiral galaxies, such as M83 and NGC6946.

  5. An XMM-Newton Study of the Mixed-morphology Supernova Remnant G346.6-0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auchettl, Katie; Lopez, Laura; Ng, C-Y.

    We present an X-ray imaging and spectroscopic study of the molecular cloud interacting mixed-morphology supernova remnant G346.6–0.2 using XMM-Newton . The X-ray spectrum of the remnant is well described by a recombining plasma that most likely arises from adiabatic cooling and has subsolar abundances of Mg, Si, and S. Our fits also suggest the presence of either an additional power-law component with a photon index of ∼2 or an additional thermal component with a temperature of ∼2.0 keV. We investigate the possible origin of this component and suggest that it could arise from either the Galactic ridge X-ray emission, anmore » unidentified pulsar wind nebula, or X-ray synchrotron emission from high-energy particles accelerated at the shock. However, deeper, high-resolution observations of this object are needed to shed light on the presence and origin of this feature. Based on its morphology, its Galactic latitude, the density of the surrounding environment, and its association with a dense molecular cloud, G346.6–0.2 most likely arises from a massive progenitor that underwent core collapse.« less

  6. The slow X-ray pulsar SXP 1062 and associated supernova remnant in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Guerrero, M. A.; Hénault-Brunet, V.; Sun, W.; Chu, Y.-H.; Evans, C.; Gallagher, J. S.; Gruendl, R. A.; Reyes-Iturbide, J.

    2013-03-01

    SXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.

  7. The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble

    NASA Astrophysics Data System (ADS)

    Broersen, Sjors; Chiotellis, Alexandros; Vink, Jacco; Bamba, Aya

    2014-07-01

    We present the results of a detailed investigation of the Galactic supernova remnant RCW 86 using the XMM-Newton X-ray telescope. RCW 86 is the probable remnant of SN 185 A.D., a supernova that likely exploded inside a wind-blown cavity. We use the XMM-Newton Reflection Grating Spectrometer to derive precise temperatures and ionization ages of the plasma, which are an indication of the interaction history of the remnant with the presumed cavity. We find that the spectra are well fitted by two non-equilibrium ionization models, which enables us to constrain the properties of the ejecta and interstellar matter plasma. Furthermore, we performed a principal component analysis on EPIC MOS and pn data to find regions with particular spectral properties. We present evidence that the shocked ejecta, emitting Fe K and Si line emission, are confined to a shell of approximately 2 pc width with an oblate spheroidal morphology. Using detailed hydrodynamical simulations, we show that general dynamical and emission properties at different portions of the remnant can be well reproduced by a Type Ia supernova that exploded in a non-spherically symmetric wind-blown cavity. We also show that this cavity can be created using general wind properties for a single degenerate system. Our data and simulations provide further evidence that RCW 86 is indeed the remnant of SN 185, and is the likely result of a Type Ia explosion of single degenerate origin.

  8. The Shape of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it

  9. The ASAS-SN bright supernova catalogue - III. 2016

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.

    2017-11-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  10. Star formation across cosmic time and its influence on galactic dynamics

    NASA Astrophysics Data System (ADS)

    Freundlich, Jonathan

    2015-12-01

    Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.

  11. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    PubMed

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.

  12. The Gaia-ESO Survey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

    NASA Astrophysics Data System (ADS)

    Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open star clusters allow us to derive both the radial metallicity distribution and its evolution over time. Aims: In this paper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current interstellar medium metallicity. Methods: We used the products of the Gaia-ESO Survey analysis of 12 young regions (age < 100 Myr), covering Galactocentric distances from 6.67 to 8.70 kpc. For the first time, we derived the metal content of star forming regions farther than 500 pc from the Sun. Median metallicities were determined through samples of reliable cluster members. For ten clusters the membership analysis is discussed in the present paper, while for other two clusters (I.e. Chamaeleon I and Gamma Velorum) we adopted the members identified in our previous works. Results: All the pre-main-sequence clusters considered in this paper have close-to-solar or slightly sub-solar metallicities. The radial metallicity distribution traced by these clusters is almost flat, with the innermost star forming regions having [Fe/H] values that are 0.10-0.15 dex lower than the majority of the older clusters located at similar Galactocentric radii. Conclusions: This homogeneous study of the present-day radial metallicity distribution in the Galactic thin disc favours models that predict a flattening of the radial gradient over time. On the other hand, the decrease of the average [Fe/H] at young ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way. Based on observations

  13. Spallative nucleosynthesis in supernova remnants. II. Time-dependent numerical results

    NASA Astrophysics Data System (ADS)

    Parizot, Etienne; Drury, Luke

    1999-06-01

    We calculate the spallative production of light elements associated with the explosion of an isolated supernova in the interstellar medium, using a time-dependent model taking into account the dilution of the ejected enriched material and the adiabatic energy losses. We first derive the injection function of energetic particles (EPs) accelerated at both the forward and the reverse shock, as a function of time. Then we calculate the Be yields obtained in both cases and compare them to the value implied by the observational data for metal-poor stars in the halo of our Galaxy, using both O and Fe data. We find that none of the processes investigated here can account for the amount of Be found in these stars, which confirms the analytical results of Parizot & Drury (1999). We finally analyze the consequences of these results for Galactic chemical evolution, and suggest that a model involving superbubbles might alleviate the energetics problem in a quite natural way.

  14. Fritz Zwicky: Novae Become Supernovae

    NASA Astrophysics Data System (ADS)

    Koenig, T.

    2005-12-01

    The Swiss physicist Fritz Zwicky (1898-1974) dabbled in a plethora of disciplines, including astronomy and astrophysics. His dabblings were with vested interest and he has left quite an impact. His first great success was his nova research. In the early 1930s, while supermarkets and Superman were flying, he labelled the distinctly brighter nova Supernova. It had been believed that novae were the collision of two stars, but Zwicky came to recognize supernovae as a phenomenon quite distinct from novae. He and Walter Baade explained supernova by melding astronomy and physics and in this aim they created neutron stars, explained the origin of cosmic rays, initiated the first sky survey, and confirmed that a number of historical novae were indeed supernovae. This was truly an important work in the history of astrophysics.

  15. Hardy Star Survives Supernova Blast

    NASA Image and Video Library

    2014-03-20

    This composite image contains data from Chandra (purple) that provides evidence for the survival of a companion star from the blast of a supernova explosion. Chandra's X-rays reveal a point-like source in the supernova remnant at the location of a massive star. The data suggest that mass is being pulled away from the massive star towards a neutron star or a black hole companion. If confirmed, this would be only the third binary system containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova. This supernova remnant is found embedded in clouds of ionized hydrogen, which are shown in optical light (yellow and cyan) from the MCELS survey, along with additional optical data from the DSS (white).

  16. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Burzawa, Lukasz; Popov, Sergei B.

    2016-10-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages ˜ tens to hundreds of years) born with regular magnetic field but very short - few milliseconds - spin periods. We assume that FRBs are extra-Galactic events coming from distances d ≲ 100 Mpc and that most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell. We then predict that for a given burst the DM should decrease with time and that FRBs are not expected to be seen below ˜300 MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star-forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers dot{E} in young energetic pulsars is consistent with equal birth rate per decade of dot{E}. Accepting this injection distribution and scaling the intrinsic brightness of FRBs with dot{E}, we predict the following properties of a large sample of FRBs: (I) the brightest observed events come from a broad distribution in distances; (II) for repeating bursts brightness either remains nearly constant (if the spin-down time is longer than the age of the pulsar) or decreases with time otherwise; in the latter case DM ∝ dot{E}.

  17. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  18. The CHilean Automatic Supernova sEarch (CHASE)

    NASA Astrophysics Data System (ADS)

    Pignata, G.; Maza, J.; Hamuy, M.; Antezana, R.; Gonzales, L.

    2009-05-01

    One of the most important challenges in modern cosmology will be to figure out the origin of the dark energy, to measure its equation of state and the time rate with which it changes (described by parameters w and w'). The measurement of these parameters will require high levels of accuracy in the Supernova (SN) Type Ia distances and various sources of systematic error such as reddening corrections and possible evolution in the SNcharacteristics which could couple with redshift and mimic the cosmological signal of interest. Fortunately, these concerns can be fully addressed through the comprehensive study of SNe in the local (z < 0.05) universe. Although Type II plateau SNe are not as luminous as SNe Ia, they afford two important, independent routes to cosmological distances using the Expanding Photosphere Method and the Standardized Candle Method. To assess the performance of these techniques a nearby sample of Type II SNe is necessary. With the purpose of addressing these issues the Millennium Center for Supernova Studies (MCSS) is teaming up with the Carnegie Supernova Project (CSP) to carry out an optical and near infrared (photometry, spectroscopy and polarimetry) follow up of nearby SNe. Unfortunately, the majority of the SNe observed by the MCSS and the CSP are discovered by searches carried out from the northern hemisphere. This entails a number of observational difficulties, in particular, it reduces the number of SNe for which the follow-up starts at very early epochs. The aim of the CHASE project is to remove this search bias by discovering young Southern SNe that will be extensively observed by the MCSS and the CSP. In the first nine-months of operation, CHASE has discovered two SNe: SN007oc (CBET 1114) and SN007pl (CBET 1130), thus demonstrating the feasibility of the survey.

  19. High Redshift Supernova Search

    Science.gov Websites

    ;on schedule." Before-and-after pictures (and Hubble Space Telescope picture) of a high-redshift High Redshift Supernova Search Home Page of the Supernova Cosmology Project This is the Lawrence Foretell Fate of the Universe." Pictures from the ground and from the Hubble Space Telescope: [PDF

  20. COSMIC-LAB: unveling the true nature of Terzan 5, a pristine fragment of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2012-10-01

    We have discovered that Terzan5, a stellar system in the Galactic bulge, harbors two stellar populations with different iron content {Delta[Fe/H] 0.5 dex} and possibly different ages {Ferraro et al. 2009, Nature 462, 483}. Moreover, the observed chemical patterns {Origlia et al. 2011, ApJ 726, L20} significantly differ from those observed in any known genuine GC. These evidences demonstrate that, similarly to omega Centauri in the halo, Terzan5 is NOT a genuine globular cluster {GC}, but a stellar system that was able to retain the gas ejected by violent supernova {SN} explosions.Indeed the striking chemical similarity with the bulge stars suggests that Terzan5 and the Galactic bulge shared the same star formation and chemical enrichment processes, driven by an exceptional amount of SNeII explosions {this is also the key to understand the origin of the extraordinary population of millisecond pulsars in Terzan5}. A quite intriguing scenario is emerging from these observations: Terzan5 could be the relic of one of the massive clumps that contributed {through strong dynamical interactions with other pre-formed and internally-evolved sub-structures} to the formation of the Galactic bulge.Here we propose to use the WFC3 to accurately measure the age of the two populations directly from the main sequence turn-off luminosities. Precisely dating the first and second burst of star formation is a crucial step for the correct reconstruction of the evolutionary history of Terzan5, with a significant impact on our comprehension of the formation processes of the Milky Way bulge and, more in general, of galactic spheroids.

  1. Supernova Photometric Lightcurve Classification

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  2. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  3. COLA. III. Radio Detection of Active Galactic Nucleus in Compact Moderate Luminosity Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Parra, R.; Conway, J. E.; Aalto, S.; Appleton, P. N.; Norris, R. P.; Pihlström, Y. M.; Kewley, L. J.

    2010-09-01

    We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L IR = 1011.01 L sun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (~1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.

  4. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps

  5. Some consequences of shear on galactic dynamos with helicity fluxes

    NASA Astrophysics Data System (ADS)

    Zhou, Hongzhe; Blackman, Eric G.

    2017-08-01

    Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.

  6. The distant type Ia supernova rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pain, R.; Fabbro, S.; Sullivan, M.

    2002-05-20

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1more » supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.« less

  7. The Distant Type Ia Supernova Rate

    DOE R&D Accomplishments Database

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

    2002-05-28

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  8. Mapping the Supernova-Rich Fireworks Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Patton, Locke; Levesque, Emily

    2018-01-01

    Supernovae (SNe) are the spectacularly violent deaths of evolved young massive stars, which expel a shock wave into the intergalactic medium that in turn can spark star formation and disperse heavy elements into their host galaxy. While a SN event can be classified by its spectral signature, determining the nature of a SN progenitor depends upon chance photometry taken prior to the event. By turning to the study of SN host environments and their surrounding interstellar medium within the unique and rare population of galaxies that have hosted three or more SN events within the last century, we are granted the opportunity to study the locations and environmental properties of stellar populations prone to supernova progenitor production. Using moderate-resolution optical slit spectra taken with the Apache Point Observatory 3.5m DIS spectrograph, our goal is to map metallicity, ionization parameter, and star formation rates using emission line diagnostic ratios across each SN-rich galaxy. Dubbed the “Fireworks Galaxy” at a distance of 5.6 ± 1.5 Mpc, NGC 6946 is of particular interest as it has uniquely produced ten core-collapse supernovae (CCSNe) and several other massive star transients within the last century. We present spatially-resolved metallicity and star formation rate (SFR) maps of NGC 6946, tracing fifty-five slit orientations which span the face of the galaxy and cover all CCSN host sites. Future work will include both stellar population synthesis modelling to determine stellar populations, ages, and SFR histories in NGC 6946 and a further expansion of this analysis to the other SN-rich host galaxies in our sample.

  9. Detecting the supernova breakout burst in terrestrial neutrino detectors

    DOE PAGES

    Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.

    2016-02-01

    Here, we calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We also examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the νe signal, making a detection of the breakout burst difficult. Furthermore, for the inverted hierarchy (IH),more » some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ~30% for Hyper-Kamiokande (Hyper-K) and ~60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ~3 ms at 7 kpc, in DUNE to ~2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ~2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the νe breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state.« less

  10. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovaemore » that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.« less

  11. The Carnegie Supernova Project: The Low-Redshift Survey

    NASA Astrophysics Data System (ADS)

    Hamuy, Mario; Folatelli, Gastón; Morrell, Nidia I.; Phillips, Mark M.; Suntzeff, Nicholas B.; Persson, S. E.; Roth, Miguel; Gonzalez, Sergio; Krzeminski, Wojtek; Contreras, Carlos; Freedman, Wendy L.; Murphy, D. C.; Madore, Barry F.; Wyatt, P.; Maza, José; Filippenko, Alexei V.; Li, Weidong; Pinto, P. A.

    2006-01-01

    Supernovae are essential to understanding the chemical evolution of the universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a 5 year program that began in 2004 September, we expect to obtain high-precision u'g'r'i'BVYJHKs light curves and optical spectrophotometry for about 250 supernovae of all types. In this paper we provide a detailed description of the CSP survey observing and data reduction methodology. In addition, we present preliminary photometry and spectra obtained for a few representative supernovae during the first observing campaign.

  12. Quasars in the Galactic Anti-Center Area from LAMOST DR3

    NASA Astrophysics Data System (ADS)

    Huo, Zhi-Ying; Liu, Xiao-Wei; Shi, Jian-Rong; Xiang, Mao-Sheng; Huang, Yang; Yuan, Hai-Bo; Zhang, Jian-Nan; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Cao, Zi-Huang; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei

    2017-03-01

    We present a sample of quasars discovered in an area near the Galactic Anti-Center covering 150^\\circ ≤ l≤ 210^\\circ and | b| ≤ 30^\\circ , based on LAMOST Data Release 3 (DR3). This sample contains 151 spectroscopically confirmed quasars. Among them 80 are newly discovered with LAMOST. All these quasars are very bright, with i magnitudes peaking around 17.5 mag. All the new quasars were discovered serendipitously from objects that were originally targeted with LAMOST as stars having bluer colors, except for a few candidates targeted as variable, young stellar objects. This bright quasar sample at low Galactic latitudes will help fill the gap in the spatial distribution of known quasars near the Galactic disk that are used to construct an astrometric reference frame for the purpose of accurate proper motion measurements that can be applied to, for example, Gaia. They are also excellent tracers to probe the kinematics and chemistry of the interstellar medium in the Milky Way disk and halo via absorption line spectroscopy.

  13. New Classical Cepheids in the Inner Part of the Northern Galactic Disk, and Their Kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanioka, Satoshi; Matsunaga, Noriyuki; Fukue, Kei

    2017-06-20

    The characteristics of the inner Galaxy remain obscured by significant dust extinction, hence infrared surveys are useful for finding young Cepheids whose distances and ages can be accurately determined. A near-infrared photometric and spectroscopic survey was carried out and three classical Cepheids were unveiled in the inner disk, around 20° and 30° in Galactic longitude. The targets feature small Galactocentric distances, 3–5 kpc, and their velocities are important, as they may be under the environmental influence of the Galactic bar. While one of the Cepheids has a radial velocity consistent with the Galactic rotation, the other two are moving significantlymore » slower. We also compare their kinematics with that of high-mass star-forming regions with measured parallactic distances.« less

  14. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-age Open Cluster Tombaugh 1

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Sales Silva, Joao Victor; Moni Bidin, Christian; Vazquez, Ruben A.

    2017-03-01

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color-magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations. Based on observations carried out at Las Campanas Observatory, Chile (program ID CN009B-042), and Cerro Tololo Inter-American Observatory.

  15. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  16. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Wetzel, Andrew; Kereš, Dušan

    2017-11-01

    We introduce massive black holes (BHs) in the Feedback In Realistic Environments (FIRE) project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass haloes [Mhalo(z = 2) ≈ 1012.5 M⊙] down to z = 1. These simulations model stellar feedback by supernovae, stellar winds and radiation, and BH growth using a gravitational torque-based prescription tied to the resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short (≲1 Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain undermassive in low-mass galaxies relative to the local MBH-Mbulgerelation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty and galaxies settle into a more ordered state. BHs rapidly converge on to the observed scaling relations when the host reaches Mbulge ∼ 1010 M⊙. We show that resolving the effects of stellar feedback on the gas supply in the inner ∼100 pc of galaxies is necessary to accurately capture the growth of central BHs. Our simulations imply that bursty stellar feedback has important implications for BH-galaxy relations, AGN demographics and time variability, the formation of early quasars and massive BH mergers.

  17. Pulsational Pair-instability Supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    2017-02-01

    The final evolution of stars in the mass range 70-140 {\\text{}}{M}⊙ is explored. Depending upon their mass loss history and rotation rates, these stars will end their lives as pulsational pair-instability supernovae (PPISN) producing a great variety of observational transients with total durations ranging from weeks to millennia and luminosities from 1041 to over 1044 erg s-1. No nonrotating model radiates more than 5× {10}50 erg of light or has a kinetic energy exceeding 5× {10}51 erg, but greater energies are possible, in principle, in magnetar-powered explosions, which are explored. Many events resemble SNe Ibn, SNe Icn, and SNe IIn, and some potential observational counterparts are mentioned. Some PPISN can exist in a dormant state for extended periods, producing explosions millennia after their first violent pulse. These dormant supernovae contain bright Wolf-Rayet stars, possibly embedded in bright X-ray and radio sources. The relevance of PPISN to supernova impostors like Eta Carinae, to superluminous supernovae, and to sources of gravitational radiation is discussed. No black holes between 52 and 133 {\\text{}}{M}⊙ are expected from stellar evolution in close binaries.

  18. Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2018-01-01

    There are indications that γ-ray dark objects such as supernovae (SNe) with choked jets, and the cores of active galactic nuclei may contribute to the diffuse flux of astrophysical neutrinos measured by the IceCube observatory. In particular, stripped-envelope SNe have received much attention since they are capable of producing relativistic jets and could explain the diversity in observations of collapsar explosions (e.g., gamma-ray bursts (GRBs), low-luminosity GRBs, and Type Ibc SNe). We use an unbinned maximum likelihood method to search for spatial and temporal coincidences between Type Ibc core-collapse SNe, which may harbor a choked jet, and muon neutrinos from a sample of IceCube up-going track-like events measured from May 2011–May 2012. In this stacking analysis, we find no significant deviation from a background-only hypothesis using one year of data, and are able to place upper limits on the total amount of isotropic equivalent energy that choked jet core-collapse SNe deposit in cosmic rays Script Ecr and the fraction of core-collapse SNe which have a jet pointed towards Earth fjet. This analysis can be extended with yet to be made public IceCube data, and the increased amount of optically detected core-collapse SNe discovered by wide field-of-view surveys such as the Palomar Transient Factory and All-Sky Automated Survey for Supernovae. The choked jet SNe/high-energy cosmic neutrino connection can be more tightly constrained in the near future.

  19. Fast evolving pair-instability supernovae

    DOE PAGES

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; ...

    2016-10-06

    With an increasing number of superluminous supernovae (SLSNe) discovered the ques- tion of their origin remains open and causes heated debates in the supernova commu- nity. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the su- pernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In themore » cur- rent study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolu- tion with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z=0.001) do not retain hydro- gen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.« less

  20. Semi-supervised learning for photometric supernova classification

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.; Homrighausen, Darren; Freeman, Peter E.; Schafer, Chad M.; Poznanski, Dovi

    2012-01-01

    We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5

  1. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1988-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  2. Supernova shock breakout from a red supergiant.

    PubMed

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  3. Inside supernova 1987A

    NASA Technical Reports Server (NTRS)

    Mccray, Richard; Shull, J. Michael; Sutherland, Peter

    1987-01-01

    The future evolution of the electromagnetic spectrum of the supernova 1987A is considered. It is shown that conventional models for supernova explosions predict that within several months a spectacular display of X-rays and UV emission lines will be seen from SN 1987A as the envelope expands to reveal the inner debris of the explosion. Two likely scenarios are considered: first, that the debris produces strong gamma rays from radioactive Co-56, and second, that an X-ray-emitting pulsar exists at the center. It is also predicted that a bright infrared echo will soon appear as a result of reprocessing of the optical/ultraviolet light by circumstellar grains; the luminosity of this echo can provide a sensitive test of the mass-loss history of the supernova progenitor.

  4. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Baldini, L.; Uchiyama, Y.

    2012-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  5. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Baldini, L.; Uchiyama, Y.

    2011-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  6. Constraining the intermediate-mass range of the Initial Mass Function using Galactic Cepheids

    NASA Astrophysics Data System (ADS)

    Mor, R.; Figueras, F.; Robin, A. C.; Lemasle, B.

    2015-05-01

    Aims. To use the Besançon Galaxy Model (Robin A.C. et al., 2003) and the most complete observational catalogues of Galactic Cepheids to constrain the intermediate-mass range of the Initial Mass Function (IMF) in the Milky Way Galactic thin disc. Methods. We have optimized the flexibility of the new Besançon Galaxy Model (Czekaj et al., 2014) to simulate magnitude and distance complete samples of young intermediate mass stars assuming different IMFs and Star Formation Histories (SFH). Comparing the simulated synthetic catalogues with the observational data, we studied which IMF reproduces better the observational number of Cepheids in the Galactic thin disc. We analysed three different IMFs: (1) Salpeter, (2) Kroupa-Haywood and (3) Haywood-Robin, all of them with a decreasing SFH from Aumer and Binney, 2009. Results. For the first time the Besançon Galaxy Model is used to characterize the Galactic Cepheids. We find that for most of the cases the Salpeter IMF overestimates the number of observed Cepheids and Haywood-Robin IMF underestimates it. The Kroupa-Haywood IMF, with a slope α=3.2, is the one that best reproduces the observed Cepheids. From the comparison of the predicted and observed number of Cepheids up to V=12, we point that the model might underestimate the scale-height of the young population. The effects of the variation of the model ingredients need to be quantified. Conclusions. In agreement with Kroupa and Weidner (2003), our study shows that the Salpeter IMF (α=2.35) overestimates the star counts in the range 4 ≤ M/M_{⊙} ≤ 10 and supports the idea that the slope of the intermediate and massive stars IMF is steeper than the Salpeter IMF.

  7. Chandra Associates Pulsar and Historic Supernova

    NASA Astrophysics Data System (ADS)

    2001-01-01

    SAN DIEGO -- Scientists using NASA’s Chandra X-ray Observatory have found new evidence that a pulsar in the constellation of Sagittarius was created when a massive star exploded, witnessed by Chinese astronomers in the year 386 AD. If confirmed, this will be only the second pulsar to be clearly associated with a historic event. These results were presented today by Victoria Kaspi and Mallory Roberts of McGill University at the American Astronomical Society meeting. Also participating in the research were Gautum Vasisht from the Jet Propulsion Laboratory, Eric Gotthelf from Columbia University, Michael Pivovaroff from Therma-Wave, Inc., and Nobuyuki Kawai from the Institute of Physical and Chemical Research, Japan. The scientists used Chandra to locate the pulsar exactly at the geometric center of the supernova remnant known as G11.2-0.3. This location provides very strong evidence that the pulsar, a neutron star that is rotating 14 times a second, was formed in the supernova of 386 AD, and therefore has an age of 1615 years. "Determining the true ages of astronomical objects is notoriously difficult, and for this reason, historical records of supernovas are of great importance,"said Kaspi."In roughly the past 2,000 years, fewer than 10 reports of probable supernovae have been archived mostly by Asian astronomers. Of those handful, the remnant of 1054 AD, the Crab Nebula, was until now the only pulsar whose birth could be associated with a historic event - and, hence, the only neutron star that has a firm age." Between mid-April and mid-May in the year 386 AD, a young "guest star", presumably a supernova, was recorded by Chinese observers in the direction of the sky now known as the constellation of Sagittarius. In the 1970s, radio astronomers discovered an expanding nebula of gas and high-energy particles, called G11.2-0.3, that is believed to be the remnant of that explosion. In 1997, a team of X-ray astronomers used Japan’s ASCA satellite to discover a pulsar

  8. High-Resolution CCD Spectra of Stars in Globular Clusters. IX. The "Young" Clusters Ruprecht 106 and PAL 12

    NASA Astrophysics Data System (ADS)

    Brown, Jeffrey A.; Wallerstein, George; Zucker, Daniel

    1997-07-01

    We have performed a spectroscopic abundance analysis of two stars each in the anomalously young globular clusters Rup 106 and Pal 12. We find [Fe/H] =~ -1.45 for Rup 106 and -1.0 for Pal 12. The abundance ratios in both clusters are peculiar in comparison to other globulars: the alpha -elements are not enhanced over the solar ratio. We find that oxygen in Rup 106 is also relatively low, with [O/Fe] =~ 0.0 - +0.1. The similarity of the ratio of the alpha-elements to iron to the solar ratio shows that species contributed by supernovae of type Ia have ``caught up" with species produced by SN II's. The similar contributions of the alpha - and Fe-peak species to disk stars shows that age, not metallicity, is the determining factor in the ratio of SN II/SN Ia nucleosynthesis. Galactic enrichment models show that these abundance ratios can be understood as being the result of these two clusters coming from an environment with multiple discontinuous star formation events.

  9. ASASSN-18bt: Discovery of A Probable, Bright Supernova in a Kepler Supernova Field

    NASA Astrophysics Data System (ADS)

    Brown, Jon S.; Stanek, K. Z.; Vallely, P.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Brimacombe, J.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 04780, which is being monitored by Kepler between Dec 7 2017 and Feb 25, 2018.

  10. The ASAS-SN Bright Supernova Catalog – II. 2015

    DOE PAGES

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...

    2017-01-16

    Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  11. The ASAS-SN Bright Supernova Catalog – II. 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  12. The ASAS-SN bright supernova catalogue – III. 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  13. The ASAS-SN bright supernova catalogue – III. 2016

    DOE PAGES

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...

    2017-08-18

    In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  14. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    New surveys of galactic gamma ray emission together with millimeter wave radio surveys indicated that cosmic rays were produced as the result of supernova explosions in our galaxy with the most intense production occurring in a Great Galactic Ring about 35,000 light years in diameter where supernova remnants and pulsars were concentrated.

  15. Detection of supernova neutrinos at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  16. Supernovae and cosmology with future European facilities.

    PubMed

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  17. Nearby stars of the Galactic disk and halo. III.

    NASA Astrophysics Data System (ADS)

    Fuhrmann, K.

    2004-01-01

    High-resolution spectroscopic observations of about 150 nearby stars or star systems are presented and discussed. The study of these and another 100 objects of the previous papers of this series implies that the Galaxy became reality 13 or 14 Gyr ago with the implementation of a massive, rotationally-supported population of thick-disk stars. The very high star formation rate in that phase gave rise to a rapid metal enrichment and an expulsion of gas in supernovae-driven Galactic winds, but was followed by a star formation gap for no less than three billion years at the Sun's galactocentric distance. In a second phase, then, the thin disk - our ``familiar Milky Way'' - came on stage. Nowadays it traces the bright side of the Galaxy, but it is also embedded in a huge coffin of dead thick-disk stars that account for a large amount of baryonic dark matter. As opposed to this, cold-dark-matter-dominated cosmologies that suggest a more gradual hierarchical buildup through mergers of minor structures, though popular, are a poor description for the Milky Way Galaxy - and by inference many other spirals as well - if, as the sample implies, the fossil records of its long-lived stars do not stick to this paradigm. Apart from this general picture that emerges with reference to the entire sample stars, a good deal of the present work is however also concerned with detailed discussions of many individual objects. Among the most interesting we mention the blue straggler or merger candidates HD 165401 and HD 137763/HD 137778, the likely accretion of a giant planet or brown dwarf on 59 Vir in its recent history, and HD 63433 that proves to be a young solar analog at \\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspected non-single from the Hipparcos astrometry, is directly detectable in the high-resolution spectroscopic tracings, whereas the visual binary \\chi Cet is instead at least triple, and presumably even quadruple. With respect to the nearby young stars a

  18. Nucleosynthesis in Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo Rolf; Townsley, Dean M.

    The explosion energy of thermonuclear (type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light "fuel" nuclei, predominantly carbon and oxygen, into more tightly bound nuclear "ash" dominated by iron and silicon group elements. The very same explosive thermonuclear fusion event is also one of the major processes contributing to the nucleosynthesis of the heavy elements, in particular the iron-group elements. For example, most of the iron and manganese in the sun and its planetary system were produced in thermonuclear supernovae. Here, we review the physics of explosive thermonuclear burning in carbon-oxygen white dwarf material and the methodologies utilized in calculating predicted nucleosynthesis from hydrodynamic explosion models. While the dominant explosion scenario remains unclear, many aspects of the nuclear combustion and nucleosynthesis are common to all models and must occur in some form in order to produce the observed yields. We summarize the predicted nucleosynthetic yields for existing explosion models, placing particular emphasis on characteristic differences in the nucleosynthetic signatures of the different suggested scenarios leading to type Ia supernovae. Following this, we discuss how these signatures compare with observations of several individual supernovae, remnants, and the composition of material in our galaxy and galaxy clusters.

  19. Toward an efficient Photometric Supernova Classifier

    NASA Astrophysics Data System (ADS)

    McClain, Bradley

    2018-01-01

    The Sloan Digital Sky Survey Supernova Survey (SDSS) discovered more than 1,000 Type Ia Supernovae, yet less than half of these have spectroscopic measurements. As wide-field imaging telescopes such as The Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) discover more supernovae, the need for accurate and computationally cheap photometric classifiers increases. My goal is to use a photometric classification algorithm based on Sncosmo, a python library for supernova cosmology analysis, to reclassify previously identified Hubble SN and other non-spectroscopically confirmed surveys. My results will be compared to other photometric classifiers such as PSNID and STARDUST. In the near future, I expect to have the algorithm validated with simulated data, optimized for efficiency, and applied with high performance computing to real data.

  20. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  1. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  2. Spatio-temporal evolution of the non-resonant instability in shock precursors of young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kobzar, Oleh; Niemiec, Jacek; Pohl, Martin; Bohdan, Artem

    2017-08-01

    A non-resonant cosmic ray (CR) current-driven instability may operate in the shock precursors of young supernova remnants and be responsible for magnetic-field amplification, plasma heating and turbulence. Earlier simulations demonstrated magnetic-field amplification, and in kinetic studies a reduction of the relative drift between CRs and thermal plasma was observed as backreaction. However, all published simulations used periodic boundary conditions, which do not account for mass conservation in decelerating flows and only allow the temporal development to be studied. Here we report results of fully kinetic particle-in-cell simulations with open boundaries that permit inflow of plasma on one side of the simulation box and outflow at the other end, hence allowing an investigation of both the temporal and the spatial development of the instability. Magnetic-field amplification proceeds as in studies with periodic boundaries and, observed here for the first time, the reduction of relative drifts causes the formation of a shock-like compression structure at which a fraction of the plasma ions are reflected. Turbulent electric field generated by the non-resonant instability inelastically scatters CRs, modifying and anisotropizing their energy distribution. Spatial CR scattering is compatible with Bohm diffusion. Electromagnetic turbulence leads to significant non-adiabatic heating of the background plasma maintaining bulk equipartition between ions and electrons. The highest temperatures are reached at sites of large-amplitude electrostatic fields. Ion spectra show supra-thermal tails resulting from stochastic scattering in the turbulent electric field. Together, these modifications in the plasma flow will affect the properties of the shock and particle acceleration there.

  3. Temperature relaxation in supernova remnants, revisited

    NASA Technical Reports Server (NTRS)

    Itoh, H.

    1984-01-01

    Some supernova remnants are expanding into a partially neutral medium. The neutral atoms which are engulfed by the fast blast shock are collisionally ionized to eject low-energy secondary electrons. Calculations are conducted of the temperature relaxation through Coulomb collisions among the secondary electrons, the shocked electrons, and the ions, assuming that the three species have Maxwellian velocity distributions. The results are applied to a self-similar blast wave. If the efficiency of collisionless electron heating at the shock front is high in young remnants such as Tycho, the secondary electrons may be much cooler than both the shocked electrons and the ions. In this case, the emergent X-ray continuum spectrum will have a two-temperature, or a power-law, appearance. This effect may have been observed in the bright rim of the remnant of SN 1006.

  4. Unusual Metals in Galactic Center Stars

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    while one star is only slightly above solar metallicity, the other is likely more than four times as metal-rich as the Sun.The features in the observed and synthetic spectra generally matched well, but the absorption lines of scandium, vanadium, and yttrium were consistently stronger in the observed spectra than in the synthetic spectra. This led the authors to conclude that these galactic center stars are unusually rich in these metals trace elements that could reveal the formation history of the galactic nucleus.Old Stars, New Trends?Scandium to iron ratio versusiron abundance for stars in the disk of the Milky Way (blue) and the stars in this sample (orange). The value reported for this sample is a 95% lower limit. [Do et al. 2018]For stars in the disk of the Milky Way, the abundance of scandium relative to iron tends to decrease as the overall metallicity increases, but the stars investigated in this study are both iron-rich and anomalously high in scandium. This hints that the nuclear star cluster might represent a distinct stellar population with different metallicity trends.However, its not yet clear what could cause the elevated abundances of scandium, vanadium, and yttrium relative to other metals. Each of these elements is linked to a different source; scandium and vanadium are mainly produced in Type II and Type Ia supernovae, respectively, while yttrium is likely synthesized in asymptotic giant branch stars. Future observations of stars near the center of the Milky Way may help answer this question and further constrain the origin of our galaxys nuclear star cluster.CitationTuan Do et al 2018 ApJL 855 L5. doi:10.3847/2041-8213/aaaec3

  5. STScI-PRC96-21b DISTANCE MEASUREMENTS TO A TYPE-IA SUPERNOVA BEARING GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Hubble Space Telescope image shows NGC 4639, a spiral galaxy located 78 million light-years away in the Virgo cluster of galaxies. The blue dots in the galaxy's outlying regions indicate the presence of young stars. Among them are young, bright stars called Cepheids, which are used as reliable milepost markers to obtain accurate distances to nearby galaxies. Astronomers measure the brightness of Cepheids to calculate the distance to a galaxy. Allan Sandage's team used Cepheids to measure the distance to NGC 4639, the farthest galaxy to which Cepheid distance has been calculated. After using Cepheids to calculate the distance to NGC 4639, the team compared the results to the peak brightness measurements of SN 1990N, a type Ia supernova located in the galaxy. Then they compared those numbers with the peak brightness of supernovae similarly calibrated in nearby galaxies. The team then determined that type Ia supernovae are reliable secondary distance markers, and can be used to determine distances to galaxies several hundred times farther away than Cepheids. An accurate value for the Hubble Constant depends on Cepheids and secondary distance methods. The color image was made from separate exposures taken in the visible and near-infrared regions of the spectrum with the Wide Field Planetary Camera 2. Credit: A. Sandage (Carnegie Observatories), A. Saha (Space Telescope Science Institute), G.A. Tammann, and L. Labhardt (Astronomical Institute, University Basel), F.D. Macchetto and N. Panagia (Space Telescope Science Institute/ European Space Agency), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  6. Stellar dynamics. The fastest unbound star in our Galaxy ejected by a thermonuclear supernova.

    PubMed

    Geier, S; Fürst, F; Ziegerer, E; Kupfer, T; Heber, U; Irrgang, A; Wang, B; Liu, Z; Han, Z; Sesar, B; Levitan, D; Kotak, R; Magnier, E; Smith, K; Burgett, W S; Chambers, K; Flewelling, H; Kaiser, N; Wainscoat, R; Waters, C

    2015-03-06

    Hypervelocity stars (HVSs) travel with velocities so high that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US 708. Traveling with a velocity of ~1200 kilometers per second, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVSs. Furthermore, we detected that US 708 is a fast rotator. According to our binary evolution model, it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova. Copyright © 2015, American Association for the Advancement of Science.

  7. COLA. III. RADIO DETECTION OF ACTIVE GALACTIC NUCLEUS IN COMPACT MODERATE LUMINOSITY INFRARED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, R.; Conway, J. E.; Aalto, S.

    2010-09-01

    We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L{sub IR} = 10{sup 11.01} L{sub sun}) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores ({approx}10{sup 21} W Hz{sup -1}) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whosemore » VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.« less

  8. Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7–3946

    DOE PAGES

    Acero, F.; Aloisio, R.; Amans, J.; ...

    2017-05-09

    Here, we perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7–3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7–3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emissionmore » observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less

  9. Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7−3946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Aloisio, R.; Amato, E.

    We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7−3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7−3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observedmore » by XMM-Newton , whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less

  10. Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7–3946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Aloisio, R.; Amans, J.

    Here, we perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7–3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7–3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emissionmore » observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less

  11. Neutron Stars in Supernova Remnants and Beyond

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  12. Supernova Dust at Sub-micrometer Scales

    NASA Astrophysics Data System (ADS)

    Nittler, Larry; Stroud, R. M.

    2006-06-01

    Meteorites contain nanometer to micrometer stardust grains, which formed in pre-solar generations of stars and exhibit large isotopic anomalies that reflect the nuclear processes that occurred in their individual parent stars [1]. Supernovae of Type II have been identified as the sources of much of the stardust, including grains of SiC, Si3N4, graphite and Mg2SiO4. Although, the isotopic compositions of many elements in these grains point unambiguously to supernova nucleosynthesis processes [2], the data require extensive and heterogeneous mixing of disparate nuclear burning zones. A recent study found that individual 200 nm TiC sub-grains within a 12 micron supernova graphite grain have uniform Ti isotopic composition but a range of O isotopic ratios [3]. New microanalysis techniques allow us to correlate the physical microstructures of supernova grains with isotopic composition, e.g., SiC and Si3N4, providing a sub-micron view of condensation processes in supernova ejecta. Results on two SiC grains indicate that micron-sized SiC grains from supernovae consist of assemblages of smaller crystallites with some evidence of radiation and/or shock processing. This is in strong contrast to SiC grains from AGB stars, which are typically single euhedral crystals [4]. The Si, C and N isotopic compositions of the grains are highly uniform, in contrast to the model of [5], which predicts strong isotopic gradients in supernova-derived SiC grains.This work is supported by NASA.[1] Clayton D. D. and Nittler L. R. (2004) ARAA, 42, 39-78.[2] Nittler L. R., et al. (1996) ApJ, 462, L31-34.[3] Stadermann F. J., et al. (2005) GCA, 69, 177-188.[4] Daulton T. L., et al. (2002) Science, 296, 1852-1855.[5] Deneault E. A.-N., et al. (2003) ApJ, 594, 312-325.

  13. A new supernova remnant candidate in the UWIFE [Fe II] line survey

    NASA Astrophysics Data System (ADS)

    Kim, Yesol; Koo, Bon-Chul

    2016-06-01

    We report the discovery of a new supernova remnant (SNR) candidate in the narrow-band [Fe II] 1.644 um line imaging survey UWIFE (UKIRT Widefield Infrared Survey for Fe). UWIFE covers the first quadrant of the Galactic plane (7degrees < l < 62degrees, |b| < 1.5degrees), and, by visual inspection, we have found ~300 extended Ionized Fe objects (IFOs) in the survey area. Most of IFOs are associated with SNRs, young stellar objects, HII regions, and planetary nebulae. But about 12% of IFOs are not associated with any known astronomical objects, and the SNR candidate, IFO J183740.829-061452.41 (hereafter IFO J183740) is one of those. IFO J183740 is a 6`-long, faint, arc-like filament with small-scale irregular structures. It appears to be a portion of a circular loop, but the rest of the loop is not seen in [Fe II] emission. It is found to coincide with a well-defined radio continuum arc. The radio arc has a complicated morphology, and IFO J183740 coincides with the bright inner part of the radio arc. Hydrogen recombination lines have been detected toward the radio arc from low-resolution surveys, so it has been known as an HII region (G25.8+0.2) at a kinematic distance of 6.5 kpc. But the inside of this radio arc is filled with soft X-rays, while, just outside the arc to the north, there is hard X-ray nebula harboring a young pulsar. Therefore, the nature of this arc-like structure seen in radio and [Fe II] emission is uncertain. In this presentation, we present the results of follow-up spectroscopic study of IFO J183740 using IGRINS (Immersion Grating Infrared Spectrograph) which is high spectral resolution (R~40,000) spectrograph covering H and K-bands, simultaneously. We have found that the [Fe II] filaments are both spatially and kinematically distinct from the HII filaments. The intensity ratios of [Fe II] to Brγ lines suggest that the HII filaments are photoionized while the [Fe II] filaments are shock-ionized, which supports the SNR origin for IFO J183740. We

  14. Gamma-Ray Observations of Tycho’s Supernova Remnant with VERITAS and Fermi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archambault, S.; Bourbeau, E.; Feng, Q.

    2017-02-10

    High-energy gamma-ray emission from supernova remnants (SNRs) has provided a unique perspective for studies of Galactic cosmic-ray acceleration. Tycho’s SNR is a particularly good target because it is a young, type Ia SNR that has been well-studied over a wide range of energies and located in a relatively clean environment. Since the detection of gamma-ray emission from Tycho’s SNR by VERITAS and Fermi -LAT, there have been several theoretical models proposed to explain its broadband emission and high-energy morphology. We report on an update to the gamma-ray measurements of Tycho’s SNR with 147 hr of VERITAS and 84 months ofmore » Fermi -LAT observations, which represent about a factor of two increase in exposure over previously published data. About half of the VERITAS data benefited from a camera upgrade, which has made it possible to extend the TeV measurements toward lower energies. The TeV spectral index measured by VERITAS is consistent with previous results, but the expanded energy range softens a straight power-law fit. At energies higher than 400 GeV, the power-law index is 2.92 ± 0.42{sub stat} ± 0.20{sub sys}. It is also softer than the spectral index in the GeV energy range, 2.14 ± 0.09{sub stat} ± 0.02{sub sys}, measured in this study using Fermi -LAT data. The centroid position of the gamma-ray emission is coincident with the center of the remnant, as well as with the centroid measurement of Fermi -LAT above 1 GeV. The results are consistent with an SNR shell origin of the emission, as many models assume. The updated spectrum points to a lower maximum particle energy than has been suggested previously.« less

  15. Gamma-Ray Observations of Tycho’s Supernova Remnant with VERITAS and Fermi

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Connolly, M. P.; Cui, W.; Dwarkadas, V. V.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortson, L.; Furniss, A.; Griffin, S.; Hütten, M.; Hanna, D.; Holder, J.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Slane, P.; Staszak, D.; Telezhinsky, I.; Trepanier, S.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Weisgarber, T.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2017-02-01

    High-energy gamma-ray emission from supernova remnants (SNRs) has provided a unique perspective for studies of Galactic cosmic-ray acceleration. Tycho’s SNR is a particularly good target because it is a young, type Ia SNR that has been well-studied over a wide range of energies and located in a relatively clean environment. Since the detection of gamma-ray emission from Tycho’s SNR by VERITAS and Fermi-LAT, there have been several theoretical models proposed to explain its broadband emission and high-energy morphology. We report on an update to the gamma-ray measurements of Tycho’s SNR with 147 hr of VERITAS and 84 months of Fermi-LAT observations, which represent about a factor of two increase in exposure over previously published data. About half of the VERITAS data benefited from a camera upgrade, which has made it possible to extend the TeV measurements toward lower energies. The TeV spectral index measured by VERITAS is consistent with previous results, but the expanded energy range softens a straight power-law fit. At energies higher than 400 GeV, the power-law index is 2.92 ± 0.42stat ± 0.20sys. It is also softer than the spectral index in the GeV energy range, 2.14 ± 0.09stat ± 0.02sys, measured in this study using Fermi-LAT data. The centroid position of the gamma-ray emission is coincident with the center of the remnant, as well as with the centroid measurement of Fermi-LAT above 1 GeV. The results are consistent with an SNR shell origin of the emission, as many models assume. The updated spectrum points to a lower maximum particle energy than has been suggested previously.

  16. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE PAGES

    Tartaglia, L.; Pastorello, A.; Sullivan, M.; ...

    2016-03-23

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  17. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, L.; Pastorello, A.; Sullivan, M.

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  18. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}}< T< 2× {10}4 {{K}}) fountains. The hot gas at distance d> 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  19. Galactic interstellar abundance surveys with IUE and IRAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Steenberg, M.E.

    1987-01-01

    This thesis is a survey of interstellar densities, abundances, and cloud structure in the Galaxy, using two NASA satellites: the International Ultraviolet Explorer (IUE) and Infrared Astronomical Satellite (IRAS). From IUE high-resolution spectra, the author measured equivalent widths of 18 ultraviolet resonance transitions and derived column densities for Si/sup +/, Mn/sup +/, Fe/sup +/, S/sup +/, and Zn/sup +/ toward 261 early-type stars. From the IRAS all-sky survey he also measured the infrared cirrus flux. He examined the variations of the measured parameters with spectral type, E(B-V), galactic longitude and latitude, distance from the Sun, and mean density. The hydrogen-columnmore » densities, metal-column densities, and gas-to-dust ratio are in good agreement with Copernicus surveys. The derived interstellar abundances yield mean logarithmic depletions. These depletions correlate with mean density but not with the physical density derived from Copernicus H/sub 2/ rotational states. Abundance ratios indicate a larger Fe halo abundance compared to Si, Mn, S, or Zn, which may result from selective grain processing in shocks or from Type I supernovae.« less

  20. Broadband Observations and Modeling of the Shell-Type Supernova Remnant G347.3-0.5

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Slane, Patrick O.; Gaensler, Bryan M.

    2002-01-01

    The supernova remnant G347.3-0.5 emits a featureless power law in X-rays, thought to indicate shock acceleration of electrons to high energies. We here produce a broadband spectrum of the bright northwest limb of this source by combining radio observations from the Australia Telescope Compact Array (ATCA), X-ray observations from the Advanced Satellite for Cosmology and Astrophysics (ASCA), and TeV gamma-ray observations from the CANGAROO imaging Cerenkov telescope. We assume that this emission is produced by an electron population generated by diffusive shock acceleration at the remnant forward shock. The nonlinear aspects of the particle acceleration force a connection between the widely different wavelength bands and between the electrons and the unseen ions, presumably accelerated simultaneously with the electrons. This allows us to infer the relativistic proton spectrum and estimate ambient parameters such as the supernova explosion energy, magnetic field, matter density in the emission region, and efficiency of the shock acceleration process. We find convincing evidence that the shock acceleration is efficient, placing greater than 25% of the shock kinetic energy flux into relativistic ions. Despite this high efficiency, the maximum electron and proton energies, while depending somewhat on assumptions for the compression of the magnetic field in the shock, are well below the observed 'knee' at 10(exp 15) eV in the Galactic cosmic-ray spectrum.

  1. The GALAH survey: properties of the Galactic disc(s) in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Duong, L.; Freeman, K. C.; Asplund, M.; Casagrande, L.; Buder, S.; Lind, K.; Ness, M.; Bland-Hawthorn, J.; De Silva, G. M.; D'Orazi, V.; Kos, J.; Lewis, G. F.; Lin, J.; Martell, S. L.; Schlesinger, K.; Sharma, S.; Simpson, J. D.; Zucker, D. B.; Zwitter, T.; Anguiano, B.; Da Costa, G. S.; Hyde, E.; Horner, J.; Kafle, P. R.; Nataf, D. M.; Reid, W.; Stello, D.; Ting, Y.-S.; Wyse, R. F. G.

    2018-06-01

    Using data from the GALAH pilot survey, we determine properties of the Galactic thin and thick discs near the solar neighbourhood. The data cover a small range of Galactocentric radius (7.9 ≲ R_GC ≲ 9.5 kpc), but extend up to 4 kpc in height from the Galactic plane, and several kpc in the direction of Galactic anti-rotation (at longitude 260° ≤ ℓ ≤ 280°). This allows us to reliably measure the vertical density and abundance profiles of the chemically and kinematically defined `thick' and `thin' discs of the Galaxy. The thin disc (low-α population) exhibits a steep negative vertical metallicity gradient, at d[M/H]/dz = -0.18 ± 0.01 dex kpc-1, which is broadly consistent with previous studies. In contrast, its vertical α-abundance profile is almost flat, with a gradient of d[α/M]/dz = 0.008 ± 0.002 dex kpc-1. The steep vertical metallicity gradient of the low-α population is in agreement with models where radial migration has a major role in the evolution of the thin disc. The thick disc (high-α population) has a weaker vertical metallicity gradient d[M/H]/dz = -0.058 ± 0.003 dex kpc-1. The α-abundance of the thick disc is nearly constant with height, d[α/M]/dz = 0.007 ± 0.002 dex kpc-1. The negative gradient in metallicity and the small gradient in [α/M] indicate that the high-α population experienced a settling phase, but also formed prior to the onset of major Type Ia supernova enrichment. We explore the implications of the distinct α-enrichments and narrow [α/M] range of the sub-populations in the context of thick disc formation.

  2. Bridging the gap: from massive stars to supernovae.

    PubMed

    Maund, Justyn R; Crowther, Paul A; Janka, Hans-Thomas; Langer, Norbert

    2017-10-28

    Almost since the beginning, massive stars and their resultant supernovae have played a crucial role in the Universe. These objects produce tremendous amounts of energy and new, heavy elements that enrich galaxies, encourage new stars to form and sculpt the shapes of galaxies that we see today. The end of millions of years of massive star evolution and the beginning of hundreds or thousands of years of supernova evolution are separated by a matter of a few seconds, in which some of the most extreme physics found in the Universe causes the explosive and terminal disruption of the star. Key questions remain unanswered in both the studies of how massive stars evolve and the behaviour of supernovae, and it appears the solutions may not lie on just one side of the explosion or the other or in just the domain of the stellar evolution or the supernova astrophysics communities. The need to view massive star evolution and supernovae as continuous phases in a single narrative motivated the Theo Murphy international scientific meeting 'Bridging the gap: from massive stars to supernovae' at Chicheley Hall, UK, in June 2016, with the specific purpose of simultaneously addressing the scientific connections between theoretical and observational studies of massive stars and their supernovae, through engaging astronomers from both communities.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  3. A Search for New Galactic Magnetars in Archival Chandra and XMM-Newton Observations

    NASA Astrophysics Data System (ADS)

    Muno, M. P.; Gaensler, B. M.; Nechita, A.; Miller, J. M.; Slane, P. O.

    2008-06-01

    We present constraints on the number of Galactic magnetars, which we have established by searching for sources with periodic variability in 506 archival Chandra observations and 441 archival XMM-Newton observations of the Galactic plane (| b| < 5°). Our search revealed four sources with periodic variability on timescales of 200-5000 s, all of which are probably accreting white dwarfs. We identify 7 of 12 known Galactic magnetars, but find no new examples with periods between 5 and 20 s. We convert this nondetection into limits on the total number of Galactic magnetars by computing the fraction of the young Galactic stellar population that our survey covered. We find that easily detectable magnetars, modeled after persistent anomalous X-ray pulsars (e.g., with LX = 1035 ergs s-1 [0.5-10.0 keV] and Arms = 12% ), could have been identified in ≈5% of the Galactic spiral arms by mass. If we assume that three previously known examples randomly fall within our survey, then there are 59+ 92-32 in the Galaxy. Barely detectable magnetars (LX = 3 × 1033 ergs s-1 and Arms = 15% ) could have been identified throughout ≈0.4% of the spiral arms. The lack of new examples implies that <540 exist in the Galaxy (90% confidence). Similar constraints are found by considering the detectability of transient magnetars in outburst. For assumed lifetimes of 104 yr, the birth rate of magnetars is between 0.003 and 0.06 yr-1. Therefore, the birth rate of magnetars is at least 10% of that for normal radio pulsars, and could exceed that value, unless transient magnetars are active for gtrsim105 yr.

  4. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  5. Pulsar Wind Bubble Blowout from a Supernova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blondin, John M.; Chevalier, Roger A., E-mail: blondin@ncsu.edu

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell ismore » subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.« less

  6. Supernova brightening from chameleon-photon mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrage, C.

    2008-02-15

    Measurements of standard candles and measurements of standard rulers give an inconsistent picture of the history of the universe. This discrepancy can be explained if photon number is not conserved as computations of the luminosity distance must be modified. I show that photon number is not conserved when photons mix with chameleons in the presence of a magnetic field. The strong magnetic fields in a supernova mean that the probability of a photon converting into a chameleon in the interior of the supernova is high, this results in a large flux of chameleons at the surface of the supernova. Chameleonsmore » and photons also mix as a result of the intergalactic magnetic field. These two effects combined cause the image of the supernova to be brightened resulting in a model which fits both observations of standard candles and observations of standard rulers.« less

  7. Unusual Supernovae and Alternative Power Sources

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel

    Recent observations have revealed a diverse class of peculiar supernovae, among them transients that are extremely luminous and unusually dim, or that evolve remarkably rapidly or slowly over time. The light curves of some of these events cannot be powered by ordinary energy sources such as the decay of radioactive isotopes. This chapter begins with a brief description of certain types of unusual supernovae and then reviews the basic physics of supernova light curves, deriving in a pedagogical way the analytic scalings that characterize the peak brightness and duration. After illustrating that ordinary power sources cannot explain all of the observed events, we turn to theoretical ideas involving less common mechanisms, such as energy injection from a long-lived central engine (a rapidly rotating magnetar or an accreting black hole). We conclude by speculating how alternative power sources may be manifest in observations of the assorted classes of peculiar supernovae.

  8. PSR J0538+2817 as the remnant of the first supernova explosion in a massive binary

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    It is generally accepted that the radio pulsar PSR J 0538 2817 is associated with the supernova remnant SNR S 147 The only problem for the association is the obvious discrepancy Kramer et al 2003 between the kinematic age of the system of sim 30 kyr estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar s proper motion and the characteristic age of the pulsar of sim 600 kyr To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one Kramer et al 2003 Romani Ng 2003 We propose an alternative explanation of the age discrepancy based on the fact that PSR J 0538 2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion that disrupted the binary system and that a much younger second neutron star not necessarily manifesting itself as a radio pulsar should be associated with S 147 We use the existing observational data on the system PSR J 0538 2817 SNR S 147 to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star so that the supernova explosion occurred within a wind bubble surrounded by a massive shell and to constrain the parameters of the binary system We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector

  9. The supernova - supernova remnant connection through multi-dimensional magnetohydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Petruk, O.; Ono, M.

    2017-10-01

    Supernova remnants (SNRs) are diffuse extended sources often characterized by a rather complex morphology and a highly non-uniform distribution of ejecta. General consensus is that such a morphology reflects, on one hand, pristine structures and features of the progenitor supernova (SN) explosion and, on the other hand, the early interaction of the SN blast wave with the inhomogeneous circumstellar medium (CSM) formed in the latest stages of the progenitor star's evolution. Deciphering X-ray observations of SNRs, therefore, might open the possibility to reconstruct the ejecta structure as it was soon after the SN explosion and the structure and geometry of the medium immediately surrounding the progenitor star. This requires accurate and detailed models which describe the evolution from the on-set of the SN to the full remnant development and which connect the X-ray emission properties of the remnants to the progenitor SNe. Here we show how multi-dimensional SN-SNR magnetohydrodynamic models have been very effective in deciphering X-ray observations of SNR Cassiopeia A and SN 1987A. This has allowed us to unveil the average structure of ejecta in the immediate aftermath of the SN explosion and to constrain the 3D pre-supernova structure and geometry of the environment surrounding the progenitor SN.

  10. Supernovas y Cosmología

    NASA Astrophysics Data System (ADS)

    Folatelli, G.

    Supernovae are very relevant astrophysical objects because they indicate the violent end of certain stars and because they alter the interstellar medium. But most importantly, they have become an extremely useful tool for measuring cosmological distances. Based on highly precise distances to type Ia supernovae it was possible to find out that the expansion of the universe is currently accelerated. This led to introducing the concept of ``dark energy'' as a dominant and yet unknown component of the cosmos. In this article we will describe the method of distance measurements that leads to the determination of cosmological parameters. We will briefly review the current status of the field with emphasis on the importance of improving our knowledge about the physical nature of supernovae. FULL TEXT IN SPANISH

  11. Galactic Astronomy in the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Sachkov, M. E.; Zabolotskikh, M. V.

    2017-12-01

    We propose a number of prospective observational programs for the ultraviolet space observatory WSO-UV, which seem to be of great importance to modern galactic astronomy. The programs include the search for binary Cepheids; the search and detailed photometric study and the analysis of radial distribution of UV-bright stars in globular clusters ("blue stragglers", blue horizontal-branch stars, RR Lyrae variables, white dwarfs, and stars with UV excesses); the investigation of stellar content and kinematics of young open clusters and associations; the study of spectral energy distribution in hot stars, including calculation of the extinction curves in the UV, optical and NIR; and accurate definition of the relations between the UV-colors and effective temperature. The high angular resolution of the observatory allows accurate astrometric measurements of stellar proper motions and their kinematic analysis.

  12. A common explosion mechanism for type Ia supernovae.

    PubMed

    Mazzali, Paolo A; Röpke, Friedrich K; Benetti, Stefano; Hillebrandt, Wolfgang

    2007-02-09

    Type Ia supernovae, the thermonuclear explosions of white dwarf stars composed of carbon and oxygen, were instrumental as distance indicators in establishing the acceleration of the universe's expansion. However, the physics of the explosion are debated. Here we report a systematic spectral analysis of a large sample of well-observed type Ia supernovae. Mapping the velocity distribution of the main products of nuclear burning, we constrain theoretical scenarios. We find that all supernovae have low-velocity cores of stable iron-group elements. Outside this core, nickel-56 dominates the supernova ejecta. The outer extent of the iron-group material depends on the amount of nickel-56 and coincides with the inner extent of silicon, the principal product of incomplete burning. The outer extent of the bulk of silicon is similar in all supernovae, having an expansion velocity of approximately 11,000 kilometers per second and corresponding to a mass of slightly over one solar mass. This indicates that all the supernovae considered here burned similar masses and suggests that their progenitors had the same mass. Synthetic light-curve parameters and three-dimensional explosion simulations support this interpretation. A single explosion scenario, possibly a delayed detonation, may thus explain most type Ia supernovae.

  13. Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, WeiKang; Filippenko, Alexei V.; Mauerhan, Jon

    The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. In this study, we performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SNmore » 2016coj is a spectroscopically normal SN Ia, but the velocity of Si ii λ6355 around peak brightness (~12,600 kms -1) is a bit higher than that of typical normal SNe. The Si ii λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (M B≈ -18.9 ± 0.2 mag), and it reaches a B-band maximum ~16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na i D absorption lines in our low- and high-resolution spectra. Finally, the spectropolarimetric data exhibit weak polarization in the continuum, but the Si ii line polarization is quite strong (~0.9% ± 0.1%) at peak brightness.« less

  14. Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

    NASA Astrophysics Data System (ADS)

    Zheng, WeiKang; Filippenko, Alexei V.; Mauerhan, Jon; Graham, Melissa L.; Yuk, Heechan; Hosseinzadeh, Griffin; Silverman, Jeffrey M.; Rui, Liming; Arbour, Ron; Foley, Ryan J.; Abolfathi, Bela; Abramson, Louis E.; Arcavi, Iair; Barth, Aaron J.; Bennert, Vardha N.; Brandel, Andrew P.; Cooper, Michael C.; Cosens, Maren; Fillingham, Sean P.; Fulton, Benjamin J.; Halevi, Goni; Howell, D. Andrew; Hsyu, Tiffany; Kelly, Patrick L.; Kumar, Sahana; Li, Linyi; Li, Wenxiong; Malkan, Matthew A.; Manzano-King, Christina; McCully, Curtis; Nugent, Peter E.; Pan, Yen-Chen; Pei, Liuyi; Scott, Bryan; Sexton, Remington Oliver; Shivvers, Isaac; Stahl, Benjamin; Treu, Tommaso; Valenti, Stefano; Vogler, H. Alexander; Walsh, Jonelle L.; Wang, Xiaofeng

    2017-05-01

    The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but the velocity of Si II λ6355 around peak brightness (˜12,600 {km} {{{s}}}-1) is a bit higher than that of typical normal SNe. The Si II λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ({M}B≈ -18.9+/- 0.2 mag), and it reaches a B-band maximum ˜16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na I D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the Si II line polarization is quite strong (˜0.9% ± 0.1%) at peak brightness.

  15. How supernovae became the basis of observational cosmology

    NASA Astrophysics Data System (ADS)

    Pruzhinskaya, Maria Victorovna; Lisakov, Sergey Mikhailovich

    2016-12-01

    This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology - the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii.

  16. Constraints for the Progenitor Masses of Historic Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Hillis, Tristan J.; Murphy, Jeremiah W.; Gilbert, Karoline; Dalcanton, Julianne J.; Dolphin, Andrew E.

    2018-06-01

    We age-date the stellar populations associated with 12 historic nearby core-collapse supernovae (CCSNe) and two supernova impostors; from these ages, we infer their initial masses and associated uncertainties. To do this, we have obtained new Hubble Space Telescope imaging covering these CCSNe. Using these images, we measure resolved stellar photometry for the stars surrounding the locations of the SNe. We then fit the color–magnitude distributions of this photometry with stellar evolution models to determine the ages of any young existing populations present. From these age distributions, we infer the most likely progenitor masses for all of the SNe in our sample. We find ages between 4 and 50 Myr, corresponding to masses from 7.5 to 59 solar masses. There were no SNe that lacked a local young population. Our sample contains four SNe Ib/c; their masses have a wide range of values, suggesting that the progenitors of stripped-envelope SNe are binary systems. Both impostors have masses constrained to be ≲7.5 solar masses. In cases with precursor imaging measurements, we find that age-dating and precursor imaging give consistent progenitor masses. This consistency implies that, although the uncertainties for each technique are significantly different, the results of both are reliable to the measured uncertainties. We combine these new measurements with those from our previous work and find that the distribution of 25 core-collapse SNe progenitor masses is consistent with a standard Salpeter power-law mass function, no upper mass cutoff, and an assumed minimum mass for core-collapse of 7.5 M⊙. The distribution is consistent with a minimum mass <9.5 M⊙.

  17. Preview of a Forthcoming Supernova

    NASA Image and Video Library

    2017-12-08

    Supernova Supernovae can occur one of two ways. The first occurs when a white dwarf—the vestigial ember of a dead star—passes so close to a living star that its matter leaks into the white dwarf. This causes a catastrophic explosion. However most people understand supernovae as the death of a massive star. When the star runs out of fuel toward the end of its life, the gravity at its heart sucks the surrounding mass into its center. At temperatures rocketing above 100 billion degrees Fahrenheit, all the layers of the star abruptly explode outward. The explosions produced by supernovae are so brilliant that astronomers use their luminosity to measure the distance between galaxies, the scale of the universe and the effects of dark energy. For a short period of time, one dying star can appear to shine as brightly as an entire galaxy. Supernovae are relatively common events, one occurring in our own galaxy once every 100 years. In 2014, a person could see the supernova M82 with a pair of binoculars. The cosmologist Tycho Brahe’s observation of a supernova in 1572 allowed him to disprove Aristotle’s theory that the heavens never changed. After a supernova, material expelled in the explosion can form a nebula—an interstellar pile of gas and dust. Over millions of years, gravity pulls the nebula’s materials into a dense orb called a protostar, which will become a new star. Within a few million years, this new star could go supernova as well. ------------------------------ Original Caption: NASA image release Feb. 24, 2012 At the turn of the 19th century, the binary star system Eta Carinae was faint and undistinguished. In the first decades of the century, it became brighter and brighter, until, by April 1843, it was the second brightest star in the sky, outshone only by Sirius (which is almost a thousand times closer to Earth). In the years that followed, it gradually dimmed again and by the 20th century was totally invisible to the naked eye. The star has

  18. The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.

    2016-08-01

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  19. THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overallmore » clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.« less

  20. Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Chernoff, David F.

    1998-09-01

    We use astrometric, distance, and spindown data on pulsars to (1) estimate three-dimensional velocity components, birth distances from the Galactic plane, and ages of individual objects; (2) determine the distribution of space velocities and the scale height of pulsar progenitors; (3) test spindown laws for pulsars; (4) test for correlations between space velocities and other pulsar parameters; and (5) place empirical requirements on mechanisms than can produce high-velocity neutron stars. Our approach incorporates measurement errors, uncertainties in distances, deceleration in the Galactic potential, and differential Galactic rotation. We focus on a sample of proper motion measurements of young (<10 Myr) pulsars whose trajectories may be accurately and simply modeled. This sample of 49 pulsars excludes millisecond pulsars and other objects that may have undergone accretion-driven spinup. We estimate velocity components and birth z distance on a case-by-case basis assuming that the actual age equals the conventional spindown age for a braking index n = 3, no torque decay, and birth periods much shorter than present-day periods. Every sample member could have originated within 0.3 kpc of the Galactic plane while still having reasonable present-day peculiar radial velocities. For the 49 object sample, the scale height of the progenitors is ~0.13 kpc, and the three-dimensional velocities are distributed in two components with characteristic speeds of 175+19-24 km s-1 and 700+300-132 km s-1, representing ~86% and ~14% of the population, respectively. The sample velocities are inconsistent with a single-component Gaussian model and are well described by a two-component Gaussian model but do not require models of additional complexity. From the best-fit distribution, we estimate that about 20% of the known pulsars will escape the Galaxy, assuming an escape speed of 500 km s-1. The best-fit, dual-component model, if augmented by an additional, low-velocity (<50 km s-1

  1. A Quick Look at Supernova 1987A

    NASA Image and Video Library

    2017-02-24

    On February 24, 1987, astronomers in the southern hemisphere saw a supernova in the Large Magellanic Cloud. This new object was dubbed “Supernova 1987A” and was the brightest stellar explosion seen in over four centuries. Chandra has observed Supernova 1987A many times and the X-ray data reveal important information about this object. X-rays from Chandra have shown the expanding blast wave from the original explosion slamming into a ring of material expelled by the star before it exploded. The latest Chandra data reveal the blast wave has moved beyond the ring into a region that astronomers do not know much about. These observations can help astronomers learn how supernovas impact their environments and affect future generations of stars and planets.

  2. Possible Progenitor of Special Supernova Type Detected

    NASA Astrophysics Data System (ADS)

    2008-04-01

    Using data from NASA's Chandra X-ray Observatory, scientists have reported the possible detection of a binary star system that was later destroyed in a supernova explosion. The new method they used provides great future promise for finding the detailed origin of these important cosmic events. In an article appearing in the February 14th issue of the journal Nature, Rasmus Voss of the Max Planck Institute for Extraterrestrial Physics in Germany and Gijs Nelemans of Radboud University in the Netherlands searched Chandra images for evidence of a much sought after, but as yet unobserved binary system - one that was about to go supernova. Near the position of a recently detected supernova, they discovered an object in Chandra images taken more than four years before the explosion. Optical image of SN 2007on Optical image of SN 2007on The supernova, known as SN 2007on, was identified as a Type Ia supernova. Astronomers generally agree that Type Ia supernovas are produced by the explosion of a white dwarf star in a binary star system. However, the exact configuration and trigger for the explosion is unclear. Is the explosion caused by a collision between two white dwarfs, or because a white dwarf became unstable by pulling too much material off a companion star? Answering such questions is a high priority because Type Ia supernovas are major sources of iron in the Universe. Also, because of their nearly uniform intrinsic brightness, Type Ia supernova are used as important tools by scientists to study the nature of dark energy and other cosmological issues. People Who Read This Also Read... Oldest Known Objects Are Surprisingly Immature Black Holes Have Simple Feeding Habits Discovery of Most Recent Supernova in Our Galaxy Geriatric Pulsar Still Kicking "Right now these supernovas are used as black boxes to measure distances and derive the rate of expansion of the universe," said Nelemans. "What we're trying to do is look inside the box." If the supernova explosion is

  3. New selection effect in statistical investigations of supernova remnants

    NASA Astrophysics Data System (ADS)

    Allakhverdiev, A. O.; Guseinov, O. Kh.; Kasumov, F. K.

    1986-01-01

    The influence of H II regions on the parameters of supernova remnants (SNR) is investigated. It has been shown that the projection of such regions on the SNRs leads to: a) local changes of morphological structure of young shell-type SNRs and b) considerable distortions of integral parameters of evolved shell-type SNRs (with D > 10 pc) and plerions, up to their complete undetectability on the background of classical and gigantic H II regions. A new selection effect, in fact, arises from these factors connected with additional limitations made by the real structure of the interstellar medium on the statistical investigations of SNRs. The influence of this effect on the statistical completeness of objects has been estimated.

  4. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  5. Zeeman Effect observations toward 36 GHz methanol masers in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Potvin, Justin A.; Momjian, Emmanuel; Pratim Sarma, Anuj

    2017-01-01

    We present observations of 36 GHz Class I methanol masers taken with the Karl G. Jansky Very Large Array (VLA) in the B configuration with the aim of detecting the Zeeman Effect. We targeted several 36 GHz Class I methanol masers associated with supernova remnants (SNRs) toward the Galactic Center. Each source was observed in dual circular polarizations for three hours. The observed spectral profiles of the masers are complex, with several components blended in velocity. In only one case was the Stokes V maser profile prominent enough to reveal a 2-sigma hint of a magnetic field of zBlos = 14.56 +/- 5.60 Hz; we have chosen to express our results in terms of zBlos since the Zeeman splitting factor (z) for 36 GHz methanol masers has not been measured. There are several hints that these spectra would reveal significant magnetic fields if they could be spatially and spectrally resolved.

  6. Expansion of Kes 73, A Shell Supernova Remnant Containing a Magnetar

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.

    2017-09-01

    Of the 30 or so Galactic magnetars, about 8 are in supernova remnants (SNRs). One of the most extreme magnetars, 1E 1841-045, is at the center of the SNR Kes 73 (G27.4+0.0), whose age is uncertain. We measure its expansion using three Chandra observations over 15 years, obtaining a mean rate of 0.023 % +/- 0.002 % yr-1. For a distance of 8.5 kpc, we obtain a shell velocity of 1100 km s-1 and infer a blast wave speed of 1400 km s-1. For Sedov expansion into a uniform medium, this gives an age of 1800 years. Derived emission measures imply an ambient density of about 2 cm-3 and an upper limit on the swept-up mass of about 70 {M}⊙ , with lower limits of tens of {M}⊙ , confirming that Kes 73 is in an advanced evolutionary stage. Our spectral analysis shows no evidence for enhanced abundances as would be expected from a massive progenitor. Our derived total energy is 1.9× {10}51 erg, giving a very conservative lower limit to the magnetar’s initial period of about 3 ms, unless its energy was lost by non-electromagnetic means. We see no evidence of a wind-blown bubble as would be produced by a massive progenitor, or any evidence that the progenitor of Kes 73/1E 1841-045 was anything but a normal red supergiant producing a Type IIP supernova, though a short-lived stripped-envelope progenitor cannot be absolutely excluded. Kes 73's magnetar thus joins SGR 1900+14 as magnetars resulting from relatively low-mass progenitors.

  7. Preparatory studies for the WFIRST supernova cosmology measurements

    NASA Astrophysics Data System (ADS)

    Perlmutter, Saul

    In the context of the WFIRST-AFTA Science Definition Team we developed a first version of a supernova program, described in the WFIRST-AFTA SDT report. This program uses the imager to discover supernova candidates and an Integral Field Spectrograph (IFS) to obtain spectrophotometric light curves and higher signal to noise spectra of the supernovae near peak to better characterize the supernovae and thus minimize systematic errors. While this program was judged a robust one, and the estimates of the sensitivity to the cosmological parameters were felt to be reliable, due to limitation of time the analysis was clearly limited in depth on a number of issues. The goal of this proposal is to further develop this program and refine the estimates of the sensitivities to the cosmological parameters using more sophisticated systematic uncertainty models and covariance error matrices that fold in more realistic data concerning observed populations of SNe Ia as well as more realistic instrument models. We propose to develop analysis algorithms and approaches that are needed to build, optimize, and refine the WFIRST instrument and program requirements to accomplish the best supernova cosmology measurements possible. We plan to address the following: a) Use realistic Supernova populations, subclasses and population drift. One bothersome uncertainty with the supernova technique is the possibility of population drift with redshift. We are in a unique position to characterize and mitigate such effects using the spectrophotometric time series of real Type Ia supernovae from the Nearby Supernova Factory (SNfactory). Each supernova in this sample has global galaxy measurements as well as additional local environment information derived from the IFS spectroscopy. We plan to develop methods of coping with this issue, e.g., by selecting similar subsamples of supernovae and allowing additional model flexibility, in order to reduce systematic uncertainties. These studies will allow us to

  8. An optical supernova associated with the X-ray flash XRF 060218.

    PubMed

    Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R

    2006-08-31

    Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.

  9. Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-02-01

    Recent radio observations show that giant molecular cloud (GMC) mass functions noticeably vary across galactic disks. High-resolution magnetohydrodynamics simulations show that multiple episodes of compression are required for creating a molecular cloud in the magnetized interstellar medium. In this article, we formulate the evolution equation for the GMC mass function to reproduce the observed profiles, for which multiple compressions are driven by a network of expanding shells due to H II regions and supernova remnants. We introduce the cloud-cloud collision (CCC) terms in the evolution equation in contrast to previous work (Inutsuka et al.). The computed time evolution suggests that the GMC mass function slope is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC effect is limited only in the massive end of the mass function. In addition, we identify a gas resurrection channel that allows the gas dispersed by massive stars to regenerate GMC populations or to accrete onto pre-existing GMCs. Our results show that almost all of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60% contributes in inter-arm regions. Our results also predict that GMC mass functions have a single power-law exponent in the mass range <105.5 {M}⊙ (where {M}⊙ represents the solar mass), which is well characterized by GMC self-growth and dispersal timescales. Measurement of the GMC mass function slope provides a powerful method to constrain those GMC timescales and the gas resurrecting factor in various environments across galactic disks.

  10. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, Brian D.; Margalit, Ben; Berger, Edo

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernovamore » (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.« less

  11. Constraints on the yields of the first supernovae in the Universe

    NASA Astrophysics Data System (ADS)

    Cayrel, Roger

    The study of the chemical composition of the most primitive stars of the galactic halo has been made possible with the help of large surveys aimed at finding such stars, and by powerful new instruments, as the Keck telescopes, the Subaru telescope, and the ESO Very Large Telescope. The atmospheres of these primitive stars possess, per hydrogen atom, from 1/1000th to 1/10000th less supernovae-made elements than the Sun, and reflect the yields of the first supernovae. It was once expected that these yields would show a larger scatter than those in the more metal-rich Population II stars, which have been enriched by many more supernovae explosions than the earlier generations. If we leave aside one class of objects, the Carbon-Enhanced Metal-Poor (CEMP) stars, which is the topic of another talk at this conference, a rather well-defined set of abundance ratios emerge for C to Zn amongst the most primitive population, with a scatter that is surprisingly small. The quality of the high-resolution spectroscopic data is such that the observed level of scatter in the measured elemental abundances for these species is no longer limited by accuracy of the observations, nor by other errors inherent to the analysis of the data. By way of contrast, amongst the neutron-capture elements produced by the r-process, at a given metallicity a spread reaching a factor of over 1000 exists for elements such as Ba. The stable portion of the r-process pattern observed in such stars is the second peak (Z = 56 to 72), in which the relative abundances of these elements in very metal-poor stars are almost indistinguishable from their inferred proportions in solar-system material. Recent observations have permitted the determination of the abundances of uranium, tho- rium, and lead produced by the r-process in extremely metal-poor stars, and indicate that lead is mainly produced by radioactive decay of the actinides (as opposed to other direct channels). In addition, the observed U/Th ratio has

  12. Eta Carinae: An Astrophysical Laboratory to Study Conditions During the Transition Between a Pseudo-Supernova and a Supernova

    NASA Astrophysics Data System (ADS)

    McKinnon, Darren; Gull, T. R.; Madura, T.

    2014-01-01

    A major puzzle in the studies of supernovae is the pseudo-supernova, or the near-supernovae state. It has been found to precede, in timespans ranging from months to years, a number of recently-detected distant supernovae. One explanation of these systems is that a member of a massive binary underwent a near-supernova event shortly before the actual supernova phenomenon. Luckily, we have a nearby massive binary, Eta Carinae, that provides an astrophysical laboratory of a near-analog. The massive, highly-eccentric, colliding-wind binary star system survived a non-terminal stellar explosion in the 1800's, leaving behind the incredible bipolar, 10"x20" Homunculus nebula. Today, the interaction of the binary stellar winds 1") is resolvable by the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST). Using HST/STIS, several three-dimensional (3D) data cubes (2D spatial, 1D velocity) have been obtained at selected phases during Eta Carinae's 5.54-year orbital cycle. The data cubes were collected by mapping the central 1-2" at 0.05" intervals with a 52"x0.1" aperture. Selected forbidden lines, that form in the colliding wind regions, provide information on electron density of the shocked regions, the ionization by the hot secondary companion of the primary wind and how these regions change with orbital phase. By applying various analysis techniques to these data cubes, we can compare and measure temporal changes due to the interactions between the two massive winds. The observations, when compared to current 3D hydrodynamic models, provide insight on Eta Carinae's recent mass-loss history, important for determining the current and future states of this likely nearby supernova progenitor.

  13. On the Origin of Hyperfast Neutron Stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2008-05-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822 4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars ordinary stars moving with a speed of ~ 1 000 km s-1.

  14. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.

  15. The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). Gamma-ray observations of SNR-MC associations are a powerful tool to constrain the origin of Galactic cosmic rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. Here, we report the detection of a γ-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes together with amore » study of the source with five years of Fermi-LAT high-energy γ-ray (0.06–300 GeV) data. The smoothly connected, combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at 304 ± 20 MeV and 8.4 -2.5 +2.2 GeV; the latter is constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR-MC associations and are found to be indicative of γ-ray emission produced through neutral-pion decay.« less

  16. The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2018-04-01

    The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). Gamma-ray observations of SNR-MC associations are a powerful tool to constrain the origin of Galactic cosmic rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. Here, we report the detection of a γ-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes together with amore » study of the source with five years of Fermi-LAT high-energy γ-ray (0.06–300 GeV) data. The smoothly connected, combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at 304 ± 20 MeV and 8.4 -2.5 +2.2 GeV; the latter is constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR-MC associations and are found to be indicative of γ-ray emission produced through neutral-pion decay.« less

  17. How to See a Recently Discovered Supernova

    ScienceCinema

    Nugent, Peter

    2017-12-12

    Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth — approximately 21 million light-years away — than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release: http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/

  18. How to See a Recently Discovered Supernova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, Peter

    2011-08-31

    Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth — approximately 21 million light-years away — than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release:more » http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/« less

  19. G0.9 + 0.1 and the emerging class of composite supernova remnants

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.; Becker, R. H.

    1987-01-01

    High-resolution, multifrequency maps of a bright extended radio source near the Galactic center have revealed it to be a classic example of a composite supernova remnant. A steep-spectrum shell of emission, about 8 arcmin in diameter, surrounds a flat-spectrum, highly polarized Crab-like core about 2 arcmin across. The two components have equal flux densities at about 6 cm, marking this source as having the highest core-to-shell ratio among the about 10 composite remnants identified to date. X-ray and far-infrared data on the source are used to constrain the energetics and evolutionary state of the remnant and its putative central pulsar. It is argued that the total energy contained in the Crab-like components requires that the pulsars powering them were all born with periods shorter than 50 ms, and that if a substantial number of neutron stars with slow initial rotation rates exist, their birthplaces have not yet been found.

  20. Cosmic stellar relics in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Salvadori, Stefania; Schneider, Raffaella; Ferrara, Andrea

    2007-10-01

    We study the stellar population history and chemical evolution of the Milky Way (MW) in a hierarchical Λ cold dark matter model for structure formation. Using a Monte Carlo method based on the semi-analytical extended Press & Schechter formalism, we develop a new code GALAXY MERGER TREE AND EVOLUTION (GAMETE) to reconstruct the merger tree of the Galaxy and follow the evolution of gas and stars along the hierarchical tree. Our approach allows us to compare the observational properties of the MW with model results, exploring different properties of primordial stars, such as their initial mass function and the critical metallicity for low-mass star formation, Zcr. In particular, by matching our predictions to the metallicity distribution function (MDF) of metal-poor stars in the Galactic halo we find that: (i) a strong supernova (SN) feedback is required to reproduce the observed properties of the MW; (ii) stars with [Fe/H] < -2.5 form in haloes accreting Galactic medium (GM) enriched by earlier SN explosions; (iii) the fiducial model (Zcr = 10-4Zsolar, mPopIII = 200 Msolar) provides an overall good fit to the MDF, but cannot account for the two hyper-metal-poor (HMP) stars with [Fe/H] < -5 the latter can be accommodated if Zcr <= 10-6 Zsolar but such model overpopulates the `metallicity desert', that is, the range -5.3 < [Fe/H] < -4 in which no stars have been detected; (iv) the current non-detection of metal-free stars robustly constrains either Zcr > 0 or the masses of the first stars mPopIII > 0.9 Msolar (v) the statistical impact of truly second-generation stars, that is, stars forming out of gas polluted only by metal-free stars, is negligible in current samples; and (vi) independent of Zcr, 60 per cent of metals in the GM are ejected through winds by haloes with masses M < 6 × 109 Msolar, thus showing that low-mass haloes are the dominant population contributing to cosmic metal enrichment. We discuss the limitations of our study and comparison with previous